t4_hw.c revision 309560
1/*-
2 * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/cxgbe/common/t4_hw.c 309560 2016-12-05 20:43:25Z jhb $");
29
30#include "opt_inet.h"
31
32#include <sys/param.h>
33#include <sys/eventhandler.h>
34
35#include "common.h"
36#include "t4_regs.h"
37#include "t4_regs_values.h"
38#include "firmware/t4fw_interface.h"
39
40#undef msleep
41#define msleep(x) do { \
42	if (cold) \
43		DELAY((x) * 1000); \
44	else \
45		pause("t4hw", (x) * hz / 1000); \
46} while (0)
47
48/**
49 *	t4_wait_op_done_val - wait until an operation is completed
50 *	@adapter: the adapter performing the operation
51 *	@reg: the register to check for completion
52 *	@mask: a single-bit field within @reg that indicates completion
53 *	@polarity: the value of the field when the operation is completed
54 *	@attempts: number of check iterations
55 *	@delay: delay in usecs between iterations
56 *	@valp: where to store the value of the register at completion time
57 *
58 *	Wait until an operation is completed by checking a bit in a register
59 *	up to @attempts times.  If @valp is not NULL the value of the register
60 *	at the time it indicated completion is stored there.  Returns 0 if the
61 *	operation completes and	-EAGAIN	otherwise.
62 */
63static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64			       int polarity, int attempts, int delay, u32 *valp)
65{
66	while (1) {
67		u32 val = t4_read_reg(adapter, reg);
68
69		if (!!(val & mask) == polarity) {
70			if (valp)
71				*valp = val;
72			return 0;
73		}
74		if (--attempts == 0)
75			return -EAGAIN;
76		if (delay)
77			udelay(delay);
78	}
79}
80
81static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82				  int polarity, int attempts, int delay)
83{
84	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85				   delay, NULL);
86}
87
88/**
89 *	t4_set_reg_field - set a register field to a value
90 *	@adapter: the adapter to program
91 *	@addr: the register address
92 *	@mask: specifies the portion of the register to modify
93 *	@val: the new value for the register field
94 *
95 *	Sets a register field specified by the supplied mask to the
96 *	given value.
97 */
98void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99		      u32 val)
100{
101	u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103	t4_write_reg(adapter, addr, v | val);
104	(void) t4_read_reg(adapter, addr);      /* flush */
105}
106
107/**
108 *	t4_read_indirect - read indirectly addressed registers
109 *	@adap: the adapter
110 *	@addr_reg: register holding the indirect address
111 *	@data_reg: register holding the value of the indirect register
112 *	@vals: where the read register values are stored
113 *	@nregs: how many indirect registers to read
114 *	@start_idx: index of first indirect register to read
115 *
116 *	Reads registers that are accessed indirectly through an address/data
117 *	register pair.
118 */
119void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120			     unsigned int data_reg, u32 *vals,
121			     unsigned int nregs, unsigned int start_idx)
122{
123	while (nregs--) {
124		t4_write_reg(adap, addr_reg, start_idx);
125		*vals++ = t4_read_reg(adap, data_reg);
126		start_idx++;
127	}
128}
129
130/**
131 *	t4_write_indirect - write indirectly addressed registers
132 *	@adap: the adapter
133 *	@addr_reg: register holding the indirect addresses
134 *	@data_reg: register holding the value for the indirect registers
135 *	@vals: values to write
136 *	@nregs: how many indirect registers to write
137 *	@start_idx: address of first indirect register to write
138 *
139 *	Writes a sequential block of registers that are accessed indirectly
140 *	through an address/data register pair.
141 */
142void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143		       unsigned int data_reg, const u32 *vals,
144		       unsigned int nregs, unsigned int start_idx)
145{
146	while (nregs--) {
147		t4_write_reg(adap, addr_reg, start_idx++);
148		t4_write_reg(adap, data_reg, *vals++);
149	}
150}
151
152/*
153 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154 * mechanism.  This guarantees that we get the real value even if we're
155 * operating within a Virtual Machine and the Hypervisor is trapping our
156 * Configuration Space accesses.
157 *
158 * N.B. This routine should only be used as a last resort: the firmware uses
159 *      the backdoor registers on a regular basis and we can end up
160 *      conflicting with it's uses!
161 */
162u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163{
164	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165	u32 val;
166
167	if (chip_id(adap) <= CHELSIO_T5)
168		req |= F_ENABLE;
169	else
170		req |= F_T6_ENABLE;
171
172	if (is_t4(adap))
173		req |= F_LOCALCFG;
174
175	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178	/*
179	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180	 * Configuration Space read.  (None of the other fields matter when
181	 * F_ENABLE is 0 so a simple register write is easier than a
182	 * read-modify-write via t4_set_reg_field().)
183	 */
184	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186	return val;
187}
188
189/*
190 * t4_report_fw_error - report firmware error
191 * @adap: the adapter
192 *
193 * The adapter firmware can indicate error conditions to the host.
194 * If the firmware has indicated an error, print out the reason for
195 * the firmware error.
196 */
197static void t4_report_fw_error(struct adapter *adap)
198{
199	static const char *const reason[] = {
200		"Crash",			/* PCIE_FW_EVAL_CRASH */
201		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207		"Reserved",			/* reserved */
208	};
209	u32 pcie_fw;
210
211	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212	if (pcie_fw & F_PCIE_FW_ERR)
213		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215}
216
217/*
218 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219 */
220static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221			 u32 mbox_addr)
222{
223	for ( ; nflit; nflit--, mbox_addr += 8)
224		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225}
226
227/*
228 * Handle a FW assertion reported in a mailbox.
229 */
230static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231{
232	CH_ALERT(adap,
233		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234		  asrt->u.assert.filename_0_7,
235		  be32_to_cpu(asrt->u.assert.line),
236		  be32_to_cpu(asrt->u.assert.x),
237		  be32_to_cpu(asrt->u.assert.y));
238}
239
240#define X_CIM_PF_NOACCESS 0xeeeeeeee
241/**
242 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 *	@adap: the adapter
244 *	@mbox: index of the mailbox to use
245 *	@cmd: the command to write
246 *	@size: command length in bytes
247 *	@rpl: where to optionally store the reply
248 *	@sleep_ok: if true we may sleep while awaiting command completion
249 *	@timeout: time to wait for command to finish before timing out
250 *		(negative implies @sleep_ok=false)
251 *
252 *	Sends the given command to FW through the selected mailbox and waits
253 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254 *	store the FW's reply to the command.  The command and its optional
255 *	reply are of the same length.  Some FW commands like RESET and
256 *	INITIALIZE can take a considerable amount of time to execute.
257 *	@sleep_ok determines whether we may sleep while awaiting the response.
258 *	If sleeping is allowed we use progressive backoff otherwise we spin.
259 *	Note that passing in a negative @timeout is an alternate mechanism
260 *	for specifying @sleep_ok=false.  This is useful when a higher level
261 *	interface allows for specification of @timeout but not @sleep_ok ...
262 *
263 *	The return value is 0 on success or a negative errno on failure.  A
264 *	failure can happen either because we are not able to execute the
265 *	command or FW executes it but signals an error.  In the latter case
266 *	the return value is the error code indicated by FW (negated).
267 */
268int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269			    int size, void *rpl, bool sleep_ok, int timeout)
270{
271	/*
272	 * We delay in small increments at first in an effort to maintain
273	 * responsiveness for simple, fast executing commands but then back
274	 * off to larger delays to a maximum retry delay.
275	 */
276	static const int delay[] = {
277		1, 1, 3, 5, 10, 10, 20, 50, 100
278	};
279	u32 v;
280	u64 res;
281	int i, ms, delay_idx, ret;
282	const __be64 *p = cmd;
283	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285	u32 ctl;
286	__be64 cmd_rpl[MBOX_LEN/8];
287	u32 pcie_fw;
288
289	if ((size & 15) || size > MBOX_LEN)
290		return -EINVAL;
291
292	if (adap->flags & IS_VF) {
293		if (is_t6(adap))
294			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295		else
296			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298	}
299
300	/*
301	 * If we have a negative timeout, that implies that we can't sleep.
302	 */
303	if (timeout < 0) {
304		sleep_ok = false;
305		timeout = -timeout;
306	}
307
308	/*
309	 * Attempt to gain access to the mailbox.
310	 */
311	for (i = 0; i < 4; i++) {
312		ctl = t4_read_reg(adap, ctl_reg);
313		v = G_MBOWNER(ctl);
314		if (v != X_MBOWNER_NONE)
315			break;
316	}
317
318	/*
319	 * If we were unable to gain access, dequeue ourselves from the
320	 * mailbox atomic access list and report the error to our caller.
321	 */
322	if (v != X_MBOWNER_PL) {
323		t4_report_fw_error(adap);
324		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325		return ret;
326	}
327
328	/*
329	 * If we gain ownership of the mailbox and there's a "valid" message
330	 * in it, this is likely an asynchronous error message from the
331	 * firmware.  So we'll report that and then proceed on with attempting
332	 * to issue our own command ... which may well fail if the error
333	 * presaged the firmware crashing ...
334	 */
335	if (ctl & F_MBMSGVALID) {
336		CH_ERR(adap, "found VALID command in mbox %u: "
337		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338		       (unsigned long long)t4_read_reg64(adap, data_reg),
339		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346	}
347
348	/*
349	 * Copy in the new mailbox command and send it on its way ...
350	 */
351	for (i = 0; i < size; i += 8, p++)
352		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353
354	if (adap->flags & IS_VF) {
355		/*
356		 * For the VFs, the Mailbox Data "registers" are
357		 * actually backed by T4's "MA" interface rather than
358		 * PL Registers (as is the case for the PFs).  Because
359		 * these are in different coherency domains, the write
360		 * to the VF's PL-register-backed Mailbox Control can
361		 * race in front of the writes to the MA-backed VF
362		 * Mailbox Data "registers".  So we need to do a
363		 * read-back on at least one byte of the VF Mailbox
364		 * Data registers before doing the write to the VF
365		 * Mailbox Control register.
366		 */
367		t4_read_reg(adap, data_reg);
368	}
369
370	CH_DUMP_MBOX(adap, mbox, data_reg);
371
372	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373	t4_read_reg(adap, ctl_reg);	/* flush write */
374
375	delay_idx = 0;
376	ms = delay[0];
377
378	/*
379	 * Loop waiting for the reply; bail out if we time out or the firmware
380	 * reports an error.
381	 */
382	pcie_fw = 0;
383	for (i = 0; i < timeout; i += ms) {
384		if (!(adap->flags & IS_VF)) {
385			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386			if (pcie_fw & F_PCIE_FW_ERR)
387				break;
388		}
389		if (sleep_ok) {
390			ms = delay[delay_idx];  /* last element may repeat */
391			if (delay_idx < ARRAY_SIZE(delay) - 1)
392				delay_idx++;
393			msleep(ms);
394		} else {
395			mdelay(ms);
396		}
397
398		v = t4_read_reg(adap, ctl_reg);
399		if (v == X_CIM_PF_NOACCESS)
400			continue;
401		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402			if (!(v & F_MBMSGVALID)) {
403				t4_write_reg(adap, ctl_reg,
404					     V_MBOWNER(X_MBOWNER_NONE));
405				continue;
406			}
407
408			/*
409			 * Retrieve the command reply and release the mailbox.
410			 */
411			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413
414			CH_DUMP_MBOX(adap, mbox, data_reg);
415
416			res = be64_to_cpu(cmd_rpl[0]);
417			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419				res = V_FW_CMD_RETVAL(EIO);
420			} else if (rpl)
421				memcpy(rpl, cmd_rpl, size);
422			return -G_FW_CMD_RETVAL((int)res);
423		}
424	}
425
426	/*
427	 * We timed out waiting for a reply to our mailbox command.  Report
428	 * the error and also check to see if the firmware reported any
429	 * errors ...
430	 */
431	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433	       *(const u8 *)cmd, mbox);
434
435	t4_report_fw_error(adap);
436	t4_fatal_err(adap);
437	return ret;
438}
439
440int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441		    void *rpl, bool sleep_ok)
442{
443		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
444					       sleep_ok, FW_CMD_MAX_TIMEOUT);
445
446}
447
448static int t4_edc_err_read(struct adapter *adap, int idx)
449{
450	u32 edc_ecc_err_addr_reg;
451	u32 edc_bist_status_rdata_reg;
452
453	if (is_t4(adap)) {
454		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
455		return 0;
456	}
457	if (idx != 0 && idx != 1) {
458		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
459		return 0;
460	}
461
462	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
463	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
464
465	CH_WARN(adap,
466		"edc%d err addr 0x%x: 0x%x.\n",
467		idx, edc_ecc_err_addr_reg,
468		t4_read_reg(adap, edc_ecc_err_addr_reg));
469	CH_WARN(adap,
470	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
471		edc_bist_status_rdata_reg,
472		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
473		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
474		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
475		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
476		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
477		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
478		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
479		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
480		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
481
482	return 0;
483}
484
485/**
486 *	t4_mc_read - read from MC through backdoor accesses
487 *	@adap: the adapter
488 *	@idx: which MC to access
489 *	@addr: address of first byte requested
490 *	@data: 64 bytes of data containing the requested address
491 *	@ecc: where to store the corresponding 64-bit ECC word
492 *
493 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
494 *	that covers the requested address @addr.  If @parity is not %NULL it
495 *	is assigned the 64-bit ECC word for the read data.
496 */
497int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
498{
499	int i;
500	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
501	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
502
503	if (is_t4(adap)) {
504		mc_bist_cmd_reg = A_MC_BIST_CMD;
505		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
506		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
507		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
508		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
509	} else {
510		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
511		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
512		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
513		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
514						  idx);
515		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
516						  idx);
517	}
518
519	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
520		return -EBUSY;
521	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
522	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
523	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
524	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
525		     F_START_BIST | V_BIST_CMD_GAP(1));
526	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
527	if (i)
528		return i;
529
530#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
531
532	for (i = 15; i >= 0; i--)
533		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
534	if (ecc)
535		*ecc = t4_read_reg64(adap, MC_DATA(16));
536#undef MC_DATA
537	return 0;
538}
539
540/**
541 *	t4_edc_read - read from EDC through backdoor accesses
542 *	@adap: the adapter
543 *	@idx: which EDC to access
544 *	@addr: address of first byte requested
545 *	@data: 64 bytes of data containing the requested address
546 *	@ecc: where to store the corresponding 64-bit ECC word
547 *
548 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
549 *	that covers the requested address @addr.  If @parity is not %NULL it
550 *	is assigned the 64-bit ECC word for the read data.
551 */
552int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
553{
554	int i;
555	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
556	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
557
558	if (is_t4(adap)) {
559		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
560		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
561		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
562		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
563						    idx);
564		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
565						    idx);
566	} else {
567/*
568 * These macro are missing in t4_regs.h file.
569 * Added temporarily for testing.
570 */
571#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
572#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
573		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
574		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
575		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
576		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
577						    idx);
578		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
579						    idx);
580#undef EDC_REG_T5
581#undef EDC_STRIDE_T5
582	}
583
584	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
585		return -EBUSY;
586	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
587	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
588	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
589	t4_write_reg(adap, edc_bist_cmd_reg,
590		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
591	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
592	if (i)
593		return i;
594
595#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
596
597	for (i = 15; i >= 0; i--)
598		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
599	if (ecc)
600		*ecc = t4_read_reg64(adap, EDC_DATA(16));
601#undef EDC_DATA
602	return 0;
603}
604
605/**
606 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
607 *	@adap: the adapter
608 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
609 *	@addr: address within indicated memory type
610 *	@len: amount of memory to read
611 *	@buf: host memory buffer
612 *
613 *	Reads an [almost] arbitrary memory region in the firmware: the
614 *	firmware memory address, length and host buffer must be aligned on
615 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
616 *	the firmware's memory.  If this memory contains data structures which
617 *	contain multi-byte integers, it's the callers responsibility to
618 *	perform appropriate byte order conversions.
619 */
620int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
621		__be32 *buf)
622{
623	u32 pos, start, end, offset;
624	int ret;
625
626	/*
627	 * Argument sanity checks ...
628	 */
629	if ((addr & 0x3) || (len & 0x3))
630		return -EINVAL;
631
632	/*
633	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
634	 * need to round down the start and round up the end.  We'll start
635	 * copying out of the first line at (addr - start) a word at a time.
636	 */
637	start = rounddown2(addr, 64);
638	end = roundup2(addr + len, 64);
639	offset = (addr - start)/sizeof(__be32);
640
641	for (pos = start; pos < end; pos += 64, offset = 0) {
642		__be32 data[16];
643
644		/*
645		 * Read the chip's memory block and bail if there's an error.
646		 */
647		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
648			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
649		else
650			ret = t4_edc_read(adap, mtype, pos, data, NULL);
651		if (ret)
652			return ret;
653
654		/*
655		 * Copy the data into the caller's memory buffer.
656		 */
657		while (offset < 16 && len > 0) {
658			*buf++ = data[offset++];
659			len -= sizeof(__be32);
660		}
661	}
662
663	return 0;
664}
665
666/*
667 * Return the specified PCI-E Configuration Space register from our Physical
668 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
669 * since we prefer to let the firmware own all of these registers, but if that
670 * fails we go for it directly ourselves.
671 */
672u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
673{
674
675	/*
676	 * If fw_attach != 0, construct and send the Firmware LDST Command to
677	 * retrieve the specified PCI-E Configuration Space register.
678	 */
679	if (drv_fw_attach != 0) {
680		struct fw_ldst_cmd ldst_cmd;
681		int ret;
682
683		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
684		ldst_cmd.op_to_addrspace =
685			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
686				    F_FW_CMD_REQUEST |
687				    F_FW_CMD_READ |
688				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
689		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
690		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
691		ldst_cmd.u.pcie.ctrl_to_fn =
692			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
693		ldst_cmd.u.pcie.r = reg;
694
695		/*
696		 * If the LDST Command succeeds, return the result, otherwise
697		 * fall through to reading it directly ourselves ...
698		 */
699		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
700				 &ldst_cmd);
701		if (ret == 0)
702			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
703
704		CH_WARN(adap, "Firmware failed to return "
705			"Configuration Space register %d, err = %d\n",
706			reg, -ret);
707	}
708
709	/*
710	 * Read the desired Configuration Space register via the PCI-E
711	 * Backdoor mechanism.
712	 */
713	return t4_hw_pci_read_cfg4(adap, reg);
714}
715
716/**
717 *	t4_get_regs_len - return the size of the chips register set
718 *	@adapter: the adapter
719 *
720 *	Returns the size of the chip's BAR0 register space.
721 */
722unsigned int t4_get_regs_len(struct adapter *adapter)
723{
724	unsigned int chip_version = chip_id(adapter);
725
726	switch (chip_version) {
727	case CHELSIO_T4:
728		if (adapter->flags & IS_VF)
729			return FW_T4VF_REGMAP_SIZE;
730		return T4_REGMAP_SIZE;
731
732	case CHELSIO_T5:
733	case CHELSIO_T6:
734		if (adapter->flags & IS_VF)
735			return FW_T4VF_REGMAP_SIZE;
736		return T5_REGMAP_SIZE;
737	}
738
739	CH_ERR(adapter,
740		"Unsupported chip version %d\n", chip_version);
741	return 0;
742}
743
744/**
745 *	t4_get_regs - read chip registers into provided buffer
746 *	@adap: the adapter
747 *	@buf: register buffer
748 *	@buf_size: size (in bytes) of register buffer
749 *
750 *	If the provided register buffer isn't large enough for the chip's
751 *	full register range, the register dump will be truncated to the
752 *	register buffer's size.
753 */
754void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
755{
756	static const unsigned int t4_reg_ranges[] = {
757		0x1008, 0x1108,
758		0x1180, 0x1184,
759		0x1190, 0x1194,
760		0x11a0, 0x11a4,
761		0x11b0, 0x11b4,
762		0x11fc, 0x123c,
763		0x1300, 0x173c,
764		0x1800, 0x18fc,
765		0x3000, 0x30d8,
766		0x30e0, 0x30e4,
767		0x30ec, 0x5910,
768		0x5920, 0x5924,
769		0x5960, 0x5960,
770		0x5968, 0x5968,
771		0x5970, 0x5970,
772		0x5978, 0x5978,
773		0x5980, 0x5980,
774		0x5988, 0x5988,
775		0x5990, 0x5990,
776		0x5998, 0x5998,
777		0x59a0, 0x59d4,
778		0x5a00, 0x5ae0,
779		0x5ae8, 0x5ae8,
780		0x5af0, 0x5af0,
781		0x5af8, 0x5af8,
782		0x6000, 0x6098,
783		0x6100, 0x6150,
784		0x6200, 0x6208,
785		0x6240, 0x6248,
786		0x6280, 0x62b0,
787		0x62c0, 0x6338,
788		0x6370, 0x638c,
789		0x6400, 0x643c,
790		0x6500, 0x6524,
791		0x6a00, 0x6a04,
792		0x6a14, 0x6a38,
793		0x6a60, 0x6a70,
794		0x6a78, 0x6a78,
795		0x6b00, 0x6b0c,
796		0x6b1c, 0x6b84,
797		0x6bf0, 0x6bf8,
798		0x6c00, 0x6c0c,
799		0x6c1c, 0x6c84,
800		0x6cf0, 0x6cf8,
801		0x6d00, 0x6d0c,
802		0x6d1c, 0x6d84,
803		0x6df0, 0x6df8,
804		0x6e00, 0x6e0c,
805		0x6e1c, 0x6e84,
806		0x6ef0, 0x6ef8,
807		0x6f00, 0x6f0c,
808		0x6f1c, 0x6f84,
809		0x6ff0, 0x6ff8,
810		0x7000, 0x700c,
811		0x701c, 0x7084,
812		0x70f0, 0x70f8,
813		0x7100, 0x710c,
814		0x711c, 0x7184,
815		0x71f0, 0x71f8,
816		0x7200, 0x720c,
817		0x721c, 0x7284,
818		0x72f0, 0x72f8,
819		0x7300, 0x730c,
820		0x731c, 0x7384,
821		0x73f0, 0x73f8,
822		0x7400, 0x7450,
823		0x7500, 0x7530,
824		0x7600, 0x760c,
825		0x7614, 0x761c,
826		0x7680, 0x76cc,
827		0x7700, 0x7798,
828		0x77c0, 0x77fc,
829		0x7900, 0x79fc,
830		0x7b00, 0x7b58,
831		0x7b60, 0x7b84,
832		0x7b8c, 0x7c38,
833		0x7d00, 0x7d38,
834		0x7d40, 0x7d80,
835		0x7d8c, 0x7ddc,
836		0x7de4, 0x7e04,
837		0x7e10, 0x7e1c,
838		0x7e24, 0x7e38,
839		0x7e40, 0x7e44,
840		0x7e4c, 0x7e78,
841		0x7e80, 0x7ea4,
842		0x7eac, 0x7edc,
843		0x7ee8, 0x7efc,
844		0x8dc0, 0x8e04,
845		0x8e10, 0x8e1c,
846		0x8e30, 0x8e78,
847		0x8ea0, 0x8eb8,
848		0x8ec0, 0x8f6c,
849		0x8fc0, 0x9008,
850		0x9010, 0x9058,
851		0x9060, 0x9060,
852		0x9068, 0x9074,
853		0x90fc, 0x90fc,
854		0x9400, 0x9408,
855		0x9410, 0x9458,
856		0x9600, 0x9600,
857		0x9608, 0x9638,
858		0x9640, 0x96bc,
859		0x9800, 0x9808,
860		0x9820, 0x983c,
861		0x9850, 0x9864,
862		0x9c00, 0x9c6c,
863		0x9c80, 0x9cec,
864		0x9d00, 0x9d6c,
865		0x9d80, 0x9dec,
866		0x9e00, 0x9e6c,
867		0x9e80, 0x9eec,
868		0x9f00, 0x9f6c,
869		0x9f80, 0x9fec,
870		0xd004, 0xd004,
871		0xd010, 0xd03c,
872		0xdfc0, 0xdfe0,
873		0xe000, 0xea7c,
874		0xf000, 0x11190,
875		0x19040, 0x1906c,
876		0x19078, 0x19080,
877		0x1908c, 0x190e4,
878		0x190f0, 0x190f8,
879		0x19100, 0x19110,
880		0x19120, 0x19124,
881		0x19150, 0x19194,
882		0x1919c, 0x191b0,
883		0x191d0, 0x191e8,
884		0x19238, 0x1924c,
885		0x193f8, 0x1943c,
886		0x1944c, 0x19474,
887		0x19490, 0x194e0,
888		0x194f0, 0x194f8,
889		0x19800, 0x19c08,
890		0x19c10, 0x19c90,
891		0x19ca0, 0x19ce4,
892		0x19cf0, 0x19d40,
893		0x19d50, 0x19d94,
894		0x19da0, 0x19de8,
895		0x19df0, 0x19e40,
896		0x19e50, 0x19e90,
897		0x19ea0, 0x19f4c,
898		0x1a000, 0x1a004,
899		0x1a010, 0x1a06c,
900		0x1a0b0, 0x1a0e4,
901		0x1a0ec, 0x1a0f4,
902		0x1a100, 0x1a108,
903		0x1a114, 0x1a120,
904		0x1a128, 0x1a130,
905		0x1a138, 0x1a138,
906		0x1a190, 0x1a1c4,
907		0x1a1fc, 0x1a1fc,
908		0x1e040, 0x1e04c,
909		0x1e284, 0x1e28c,
910		0x1e2c0, 0x1e2c0,
911		0x1e2e0, 0x1e2e0,
912		0x1e300, 0x1e384,
913		0x1e3c0, 0x1e3c8,
914		0x1e440, 0x1e44c,
915		0x1e684, 0x1e68c,
916		0x1e6c0, 0x1e6c0,
917		0x1e6e0, 0x1e6e0,
918		0x1e700, 0x1e784,
919		0x1e7c0, 0x1e7c8,
920		0x1e840, 0x1e84c,
921		0x1ea84, 0x1ea8c,
922		0x1eac0, 0x1eac0,
923		0x1eae0, 0x1eae0,
924		0x1eb00, 0x1eb84,
925		0x1ebc0, 0x1ebc8,
926		0x1ec40, 0x1ec4c,
927		0x1ee84, 0x1ee8c,
928		0x1eec0, 0x1eec0,
929		0x1eee0, 0x1eee0,
930		0x1ef00, 0x1ef84,
931		0x1efc0, 0x1efc8,
932		0x1f040, 0x1f04c,
933		0x1f284, 0x1f28c,
934		0x1f2c0, 0x1f2c0,
935		0x1f2e0, 0x1f2e0,
936		0x1f300, 0x1f384,
937		0x1f3c0, 0x1f3c8,
938		0x1f440, 0x1f44c,
939		0x1f684, 0x1f68c,
940		0x1f6c0, 0x1f6c0,
941		0x1f6e0, 0x1f6e0,
942		0x1f700, 0x1f784,
943		0x1f7c0, 0x1f7c8,
944		0x1f840, 0x1f84c,
945		0x1fa84, 0x1fa8c,
946		0x1fac0, 0x1fac0,
947		0x1fae0, 0x1fae0,
948		0x1fb00, 0x1fb84,
949		0x1fbc0, 0x1fbc8,
950		0x1fc40, 0x1fc4c,
951		0x1fe84, 0x1fe8c,
952		0x1fec0, 0x1fec0,
953		0x1fee0, 0x1fee0,
954		0x1ff00, 0x1ff84,
955		0x1ffc0, 0x1ffc8,
956		0x20000, 0x2002c,
957		0x20100, 0x2013c,
958		0x20190, 0x201a0,
959		0x201a8, 0x201b8,
960		0x201c4, 0x201c8,
961		0x20200, 0x20318,
962		0x20400, 0x204b4,
963		0x204c0, 0x20528,
964		0x20540, 0x20614,
965		0x21000, 0x21040,
966		0x2104c, 0x21060,
967		0x210c0, 0x210ec,
968		0x21200, 0x21268,
969		0x21270, 0x21284,
970		0x212fc, 0x21388,
971		0x21400, 0x21404,
972		0x21500, 0x21500,
973		0x21510, 0x21518,
974		0x2152c, 0x21530,
975		0x2153c, 0x2153c,
976		0x21550, 0x21554,
977		0x21600, 0x21600,
978		0x21608, 0x2161c,
979		0x21624, 0x21628,
980		0x21630, 0x21634,
981		0x2163c, 0x2163c,
982		0x21700, 0x2171c,
983		0x21780, 0x2178c,
984		0x21800, 0x21818,
985		0x21820, 0x21828,
986		0x21830, 0x21848,
987		0x21850, 0x21854,
988		0x21860, 0x21868,
989		0x21870, 0x21870,
990		0x21878, 0x21898,
991		0x218a0, 0x218a8,
992		0x218b0, 0x218c8,
993		0x218d0, 0x218d4,
994		0x218e0, 0x218e8,
995		0x218f0, 0x218f0,
996		0x218f8, 0x21a18,
997		0x21a20, 0x21a28,
998		0x21a30, 0x21a48,
999		0x21a50, 0x21a54,
1000		0x21a60, 0x21a68,
1001		0x21a70, 0x21a70,
1002		0x21a78, 0x21a98,
1003		0x21aa0, 0x21aa8,
1004		0x21ab0, 0x21ac8,
1005		0x21ad0, 0x21ad4,
1006		0x21ae0, 0x21ae8,
1007		0x21af0, 0x21af0,
1008		0x21af8, 0x21c18,
1009		0x21c20, 0x21c20,
1010		0x21c28, 0x21c30,
1011		0x21c38, 0x21c38,
1012		0x21c80, 0x21c98,
1013		0x21ca0, 0x21ca8,
1014		0x21cb0, 0x21cc8,
1015		0x21cd0, 0x21cd4,
1016		0x21ce0, 0x21ce8,
1017		0x21cf0, 0x21cf0,
1018		0x21cf8, 0x21d7c,
1019		0x21e00, 0x21e04,
1020		0x22000, 0x2202c,
1021		0x22100, 0x2213c,
1022		0x22190, 0x221a0,
1023		0x221a8, 0x221b8,
1024		0x221c4, 0x221c8,
1025		0x22200, 0x22318,
1026		0x22400, 0x224b4,
1027		0x224c0, 0x22528,
1028		0x22540, 0x22614,
1029		0x23000, 0x23040,
1030		0x2304c, 0x23060,
1031		0x230c0, 0x230ec,
1032		0x23200, 0x23268,
1033		0x23270, 0x23284,
1034		0x232fc, 0x23388,
1035		0x23400, 0x23404,
1036		0x23500, 0x23500,
1037		0x23510, 0x23518,
1038		0x2352c, 0x23530,
1039		0x2353c, 0x2353c,
1040		0x23550, 0x23554,
1041		0x23600, 0x23600,
1042		0x23608, 0x2361c,
1043		0x23624, 0x23628,
1044		0x23630, 0x23634,
1045		0x2363c, 0x2363c,
1046		0x23700, 0x2371c,
1047		0x23780, 0x2378c,
1048		0x23800, 0x23818,
1049		0x23820, 0x23828,
1050		0x23830, 0x23848,
1051		0x23850, 0x23854,
1052		0x23860, 0x23868,
1053		0x23870, 0x23870,
1054		0x23878, 0x23898,
1055		0x238a0, 0x238a8,
1056		0x238b0, 0x238c8,
1057		0x238d0, 0x238d4,
1058		0x238e0, 0x238e8,
1059		0x238f0, 0x238f0,
1060		0x238f8, 0x23a18,
1061		0x23a20, 0x23a28,
1062		0x23a30, 0x23a48,
1063		0x23a50, 0x23a54,
1064		0x23a60, 0x23a68,
1065		0x23a70, 0x23a70,
1066		0x23a78, 0x23a98,
1067		0x23aa0, 0x23aa8,
1068		0x23ab0, 0x23ac8,
1069		0x23ad0, 0x23ad4,
1070		0x23ae0, 0x23ae8,
1071		0x23af0, 0x23af0,
1072		0x23af8, 0x23c18,
1073		0x23c20, 0x23c20,
1074		0x23c28, 0x23c30,
1075		0x23c38, 0x23c38,
1076		0x23c80, 0x23c98,
1077		0x23ca0, 0x23ca8,
1078		0x23cb0, 0x23cc8,
1079		0x23cd0, 0x23cd4,
1080		0x23ce0, 0x23ce8,
1081		0x23cf0, 0x23cf0,
1082		0x23cf8, 0x23d7c,
1083		0x23e00, 0x23e04,
1084		0x24000, 0x2402c,
1085		0x24100, 0x2413c,
1086		0x24190, 0x241a0,
1087		0x241a8, 0x241b8,
1088		0x241c4, 0x241c8,
1089		0x24200, 0x24318,
1090		0x24400, 0x244b4,
1091		0x244c0, 0x24528,
1092		0x24540, 0x24614,
1093		0x25000, 0x25040,
1094		0x2504c, 0x25060,
1095		0x250c0, 0x250ec,
1096		0x25200, 0x25268,
1097		0x25270, 0x25284,
1098		0x252fc, 0x25388,
1099		0x25400, 0x25404,
1100		0x25500, 0x25500,
1101		0x25510, 0x25518,
1102		0x2552c, 0x25530,
1103		0x2553c, 0x2553c,
1104		0x25550, 0x25554,
1105		0x25600, 0x25600,
1106		0x25608, 0x2561c,
1107		0x25624, 0x25628,
1108		0x25630, 0x25634,
1109		0x2563c, 0x2563c,
1110		0x25700, 0x2571c,
1111		0x25780, 0x2578c,
1112		0x25800, 0x25818,
1113		0x25820, 0x25828,
1114		0x25830, 0x25848,
1115		0x25850, 0x25854,
1116		0x25860, 0x25868,
1117		0x25870, 0x25870,
1118		0x25878, 0x25898,
1119		0x258a0, 0x258a8,
1120		0x258b0, 0x258c8,
1121		0x258d0, 0x258d4,
1122		0x258e0, 0x258e8,
1123		0x258f0, 0x258f0,
1124		0x258f8, 0x25a18,
1125		0x25a20, 0x25a28,
1126		0x25a30, 0x25a48,
1127		0x25a50, 0x25a54,
1128		0x25a60, 0x25a68,
1129		0x25a70, 0x25a70,
1130		0x25a78, 0x25a98,
1131		0x25aa0, 0x25aa8,
1132		0x25ab0, 0x25ac8,
1133		0x25ad0, 0x25ad4,
1134		0x25ae0, 0x25ae8,
1135		0x25af0, 0x25af0,
1136		0x25af8, 0x25c18,
1137		0x25c20, 0x25c20,
1138		0x25c28, 0x25c30,
1139		0x25c38, 0x25c38,
1140		0x25c80, 0x25c98,
1141		0x25ca0, 0x25ca8,
1142		0x25cb0, 0x25cc8,
1143		0x25cd0, 0x25cd4,
1144		0x25ce0, 0x25ce8,
1145		0x25cf0, 0x25cf0,
1146		0x25cf8, 0x25d7c,
1147		0x25e00, 0x25e04,
1148		0x26000, 0x2602c,
1149		0x26100, 0x2613c,
1150		0x26190, 0x261a0,
1151		0x261a8, 0x261b8,
1152		0x261c4, 0x261c8,
1153		0x26200, 0x26318,
1154		0x26400, 0x264b4,
1155		0x264c0, 0x26528,
1156		0x26540, 0x26614,
1157		0x27000, 0x27040,
1158		0x2704c, 0x27060,
1159		0x270c0, 0x270ec,
1160		0x27200, 0x27268,
1161		0x27270, 0x27284,
1162		0x272fc, 0x27388,
1163		0x27400, 0x27404,
1164		0x27500, 0x27500,
1165		0x27510, 0x27518,
1166		0x2752c, 0x27530,
1167		0x2753c, 0x2753c,
1168		0x27550, 0x27554,
1169		0x27600, 0x27600,
1170		0x27608, 0x2761c,
1171		0x27624, 0x27628,
1172		0x27630, 0x27634,
1173		0x2763c, 0x2763c,
1174		0x27700, 0x2771c,
1175		0x27780, 0x2778c,
1176		0x27800, 0x27818,
1177		0x27820, 0x27828,
1178		0x27830, 0x27848,
1179		0x27850, 0x27854,
1180		0x27860, 0x27868,
1181		0x27870, 0x27870,
1182		0x27878, 0x27898,
1183		0x278a0, 0x278a8,
1184		0x278b0, 0x278c8,
1185		0x278d0, 0x278d4,
1186		0x278e0, 0x278e8,
1187		0x278f0, 0x278f0,
1188		0x278f8, 0x27a18,
1189		0x27a20, 0x27a28,
1190		0x27a30, 0x27a48,
1191		0x27a50, 0x27a54,
1192		0x27a60, 0x27a68,
1193		0x27a70, 0x27a70,
1194		0x27a78, 0x27a98,
1195		0x27aa0, 0x27aa8,
1196		0x27ab0, 0x27ac8,
1197		0x27ad0, 0x27ad4,
1198		0x27ae0, 0x27ae8,
1199		0x27af0, 0x27af0,
1200		0x27af8, 0x27c18,
1201		0x27c20, 0x27c20,
1202		0x27c28, 0x27c30,
1203		0x27c38, 0x27c38,
1204		0x27c80, 0x27c98,
1205		0x27ca0, 0x27ca8,
1206		0x27cb0, 0x27cc8,
1207		0x27cd0, 0x27cd4,
1208		0x27ce0, 0x27ce8,
1209		0x27cf0, 0x27cf0,
1210		0x27cf8, 0x27d7c,
1211		0x27e00, 0x27e04,
1212	};
1213
1214	static const unsigned int t4vf_reg_ranges[] = {
1215		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1216		VF_MPS_REG(A_MPS_VF_CTL),
1217		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1218		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1219		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1220		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1221		FW_T4VF_MBDATA_BASE_ADDR,
1222		FW_T4VF_MBDATA_BASE_ADDR +
1223		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1224	};
1225
1226	static const unsigned int t5_reg_ranges[] = {
1227		0x1008, 0x10c0,
1228		0x10cc, 0x10f8,
1229		0x1100, 0x1100,
1230		0x110c, 0x1148,
1231		0x1180, 0x1184,
1232		0x1190, 0x1194,
1233		0x11a0, 0x11a4,
1234		0x11b0, 0x11b4,
1235		0x11fc, 0x123c,
1236		0x1280, 0x173c,
1237		0x1800, 0x18fc,
1238		0x3000, 0x3028,
1239		0x3060, 0x30b0,
1240		0x30b8, 0x30d8,
1241		0x30e0, 0x30fc,
1242		0x3140, 0x357c,
1243		0x35a8, 0x35cc,
1244		0x35ec, 0x35ec,
1245		0x3600, 0x5624,
1246		0x56cc, 0x56ec,
1247		0x56f4, 0x5720,
1248		0x5728, 0x575c,
1249		0x580c, 0x5814,
1250		0x5890, 0x589c,
1251		0x58a4, 0x58ac,
1252		0x58b8, 0x58bc,
1253		0x5940, 0x59c8,
1254		0x59d0, 0x59dc,
1255		0x59fc, 0x5a18,
1256		0x5a60, 0x5a70,
1257		0x5a80, 0x5a9c,
1258		0x5b94, 0x5bfc,
1259		0x6000, 0x6020,
1260		0x6028, 0x6040,
1261		0x6058, 0x609c,
1262		0x60a8, 0x614c,
1263		0x7700, 0x7798,
1264		0x77c0, 0x78fc,
1265		0x7b00, 0x7b58,
1266		0x7b60, 0x7b84,
1267		0x7b8c, 0x7c54,
1268		0x7d00, 0x7d38,
1269		0x7d40, 0x7d80,
1270		0x7d8c, 0x7ddc,
1271		0x7de4, 0x7e04,
1272		0x7e10, 0x7e1c,
1273		0x7e24, 0x7e38,
1274		0x7e40, 0x7e44,
1275		0x7e4c, 0x7e78,
1276		0x7e80, 0x7edc,
1277		0x7ee8, 0x7efc,
1278		0x8dc0, 0x8de0,
1279		0x8df8, 0x8e04,
1280		0x8e10, 0x8e84,
1281		0x8ea0, 0x8f84,
1282		0x8fc0, 0x9058,
1283		0x9060, 0x9060,
1284		0x9068, 0x90f8,
1285		0x9400, 0x9408,
1286		0x9410, 0x9470,
1287		0x9600, 0x9600,
1288		0x9608, 0x9638,
1289		0x9640, 0x96f4,
1290		0x9800, 0x9808,
1291		0x9820, 0x983c,
1292		0x9850, 0x9864,
1293		0x9c00, 0x9c6c,
1294		0x9c80, 0x9cec,
1295		0x9d00, 0x9d6c,
1296		0x9d80, 0x9dec,
1297		0x9e00, 0x9e6c,
1298		0x9e80, 0x9eec,
1299		0x9f00, 0x9f6c,
1300		0x9f80, 0xa020,
1301		0xd004, 0xd004,
1302		0xd010, 0xd03c,
1303		0xdfc0, 0xdfe0,
1304		0xe000, 0x1106c,
1305		0x11074, 0x11088,
1306		0x1109c, 0x1117c,
1307		0x11190, 0x11204,
1308		0x19040, 0x1906c,
1309		0x19078, 0x19080,
1310		0x1908c, 0x190e8,
1311		0x190f0, 0x190f8,
1312		0x19100, 0x19110,
1313		0x19120, 0x19124,
1314		0x19150, 0x19194,
1315		0x1919c, 0x191b0,
1316		0x191d0, 0x191e8,
1317		0x19238, 0x19290,
1318		0x193f8, 0x19428,
1319		0x19430, 0x19444,
1320		0x1944c, 0x1946c,
1321		0x19474, 0x19474,
1322		0x19490, 0x194cc,
1323		0x194f0, 0x194f8,
1324		0x19c00, 0x19c08,
1325		0x19c10, 0x19c60,
1326		0x19c94, 0x19ce4,
1327		0x19cf0, 0x19d40,
1328		0x19d50, 0x19d94,
1329		0x19da0, 0x19de8,
1330		0x19df0, 0x19e10,
1331		0x19e50, 0x19e90,
1332		0x19ea0, 0x19f24,
1333		0x19f34, 0x19f34,
1334		0x19f40, 0x19f50,
1335		0x19f90, 0x19fb4,
1336		0x19fc4, 0x19fe4,
1337		0x1a000, 0x1a004,
1338		0x1a010, 0x1a06c,
1339		0x1a0b0, 0x1a0e4,
1340		0x1a0ec, 0x1a0f8,
1341		0x1a100, 0x1a108,
1342		0x1a114, 0x1a120,
1343		0x1a128, 0x1a130,
1344		0x1a138, 0x1a138,
1345		0x1a190, 0x1a1c4,
1346		0x1a1fc, 0x1a1fc,
1347		0x1e008, 0x1e00c,
1348		0x1e040, 0x1e044,
1349		0x1e04c, 0x1e04c,
1350		0x1e284, 0x1e290,
1351		0x1e2c0, 0x1e2c0,
1352		0x1e2e0, 0x1e2e0,
1353		0x1e300, 0x1e384,
1354		0x1e3c0, 0x1e3c8,
1355		0x1e408, 0x1e40c,
1356		0x1e440, 0x1e444,
1357		0x1e44c, 0x1e44c,
1358		0x1e684, 0x1e690,
1359		0x1e6c0, 0x1e6c0,
1360		0x1e6e0, 0x1e6e0,
1361		0x1e700, 0x1e784,
1362		0x1e7c0, 0x1e7c8,
1363		0x1e808, 0x1e80c,
1364		0x1e840, 0x1e844,
1365		0x1e84c, 0x1e84c,
1366		0x1ea84, 0x1ea90,
1367		0x1eac0, 0x1eac0,
1368		0x1eae0, 0x1eae0,
1369		0x1eb00, 0x1eb84,
1370		0x1ebc0, 0x1ebc8,
1371		0x1ec08, 0x1ec0c,
1372		0x1ec40, 0x1ec44,
1373		0x1ec4c, 0x1ec4c,
1374		0x1ee84, 0x1ee90,
1375		0x1eec0, 0x1eec0,
1376		0x1eee0, 0x1eee0,
1377		0x1ef00, 0x1ef84,
1378		0x1efc0, 0x1efc8,
1379		0x1f008, 0x1f00c,
1380		0x1f040, 0x1f044,
1381		0x1f04c, 0x1f04c,
1382		0x1f284, 0x1f290,
1383		0x1f2c0, 0x1f2c0,
1384		0x1f2e0, 0x1f2e0,
1385		0x1f300, 0x1f384,
1386		0x1f3c0, 0x1f3c8,
1387		0x1f408, 0x1f40c,
1388		0x1f440, 0x1f444,
1389		0x1f44c, 0x1f44c,
1390		0x1f684, 0x1f690,
1391		0x1f6c0, 0x1f6c0,
1392		0x1f6e0, 0x1f6e0,
1393		0x1f700, 0x1f784,
1394		0x1f7c0, 0x1f7c8,
1395		0x1f808, 0x1f80c,
1396		0x1f840, 0x1f844,
1397		0x1f84c, 0x1f84c,
1398		0x1fa84, 0x1fa90,
1399		0x1fac0, 0x1fac0,
1400		0x1fae0, 0x1fae0,
1401		0x1fb00, 0x1fb84,
1402		0x1fbc0, 0x1fbc8,
1403		0x1fc08, 0x1fc0c,
1404		0x1fc40, 0x1fc44,
1405		0x1fc4c, 0x1fc4c,
1406		0x1fe84, 0x1fe90,
1407		0x1fec0, 0x1fec0,
1408		0x1fee0, 0x1fee0,
1409		0x1ff00, 0x1ff84,
1410		0x1ffc0, 0x1ffc8,
1411		0x30000, 0x30030,
1412		0x30038, 0x30038,
1413		0x30040, 0x30040,
1414		0x30100, 0x30144,
1415		0x30190, 0x301a0,
1416		0x301a8, 0x301b8,
1417		0x301c4, 0x301c8,
1418		0x301d0, 0x301d0,
1419		0x30200, 0x30318,
1420		0x30400, 0x304b4,
1421		0x304c0, 0x3052c,
1422		0x30540, 0x3061c,
1423		0x30800, 0x30828,
1424		0x30834, 0x30834,
1425		0x308c0, 0x30908,
1426		0x30910, 0x309ac,
1427		0x30a00, 0x30a14,
1428		0x30a1c, 0x30a2c,
1429		0x30a44, 0x30a50,
1430		0x30a74, 0x30a74,
1431		0x30a7c, 0x30afc,
1432		0x30b08, 0x30c24,
1433		0x30d00, 0x30d00,
1434		0x30d08, 0x30d14,
1435		0x30d1c, 0x30d20,
1436		0x30d3c, 0x30d3c,
1437		0x30d48, 0x30d50,
1438		0x31200, 0x3120c,
1439		0x31220, 0x31220,
1440		0x31240, 0x31240,
1441		0x31600, 0x3160c,
1442		0x31a00, 0x31a1c,
1443		0x31e00, 0x31e20,
1444		0x31e38, 0x31e3c,
1445		0x31e80, 0x31e80,
1446		0x31e88, 0x31ea8,
1447		0x31eb0, 0x31eb4,
1448		0x31ec8, 0x31ed4,
1449		0x31fb8, 0x32004,
1450		0x32200, 0x32200,
1451		0x32208, 0x32240,
1452		0x32248, 0x32280,
1453		0x32288, 0x322c0,
1454		0x322c8, 0x322fc,
1455		0x32600, 0x32630,
1456		0x32a00, 0x32abc,
1457		0x32b00, 0x32b10,
1458		0x32b20, 0x32b30,
1459		0x32b40, 0x32b50,
1460		0x32b60, 0x32b70,
1461		0x33000, 0x33028,
1462		0x33030, 0x33048,
1463		0x33060, 0x33068,
1464		0x33070, 0x3309c,
1465		0x330f0, 0x33128,
1466		0x33130, 0x33148,
1467		0x33160, 0x33168,
1468		0x33170, 0x3319c,
1469		0x331f0, 0x33238,
1470		0x33240, 0x33240,
1471		0x33248, 0x33250,
1472		0x3325c, 0x33264,
1473		0x33270, 0x332b8,
1474		0x332c0, 0x332e4,
1475		0x332f8, 0x33338,
1476		0x33340, 0x33340,
1477		0x33348, 0x33350,
1478		0x3335c, 0x33364,
1479		0x33370, 0x333b8,
1480		0x333c0, 0x333e4,
1481		0x333f8, 0x33428,
1482		0x33430, 0x33448,
1483		0x33460, 0x33468,
1484		0x33470, 0x3349c,
1485		0x334f0, 0x33528,
1486		0x33530, 0x33548,
1487		0x33560, 0x33568,
1488		0x33570, 0x3359c,
1489		0x335f0, 0x33638,
1490		0x33640, 0x33640,
1491		0x33648, 0x33650,
1492		0x3365c, 0x33664,
1493		0x33670, 0x336b8,
1494		0x336c0, 0x336e4,
1495		0x336f8, 0x33738,
1496		0x33740, 0x33740,
1497		0x33748, 0x33750,
1498		0x3375c, 0x33764,
1499		0x33770, 0x337b8,
1500		0x337c0, 0x337e4,
1501		0x337f8, 0x337fc,
1502		0x33814, 0x33814,
1503		0x3382c, 0x3382c,
1504		0x33880, 0x3388c,
1505		0x338e8, 0x338ec,
1506		0x33900, 0x33928,
1507		0x33930, 0x33948,
1508		0x33960, 0x33968,
1509		0x33970, 0x3399c,
1510		0x339f0, 0x33a38,
1511		0x33a40, 0x33a40,
1512		0x33a48, 0x33a50,
1513		0x33a5c, 0x33a64,
1514		0x33a70, 0x33ab8,
1515		0x33ac0, 0x33ae4,
1516		0x33af8, 0x33b10,
1517		0x33b28, 0x33b28,
1518		0x33b3c, 0x33b50,
1519		0x33bf0, 0x33c10,
1520		0x33c28, 0x33c28,
1521		0x33c3c, 0x33c50,
1522		0x33cf0, 0x33cfc,
1523		0x34000, 0x34030,
1524		0x34038, 0x34038,
1525		0x34040, 0x34040,
1526		0x34100, 0x34144,
1527		0x34190, 0x341a0,
1528		0x341a8, 0x341b8,
1529		0x341c4, 0x341c8,
1530		0x341d0, 0x341d0,
1531		0x34200, 0x34318,
1532		0x34400, 0x344b4,
1533		0x344c0, 0x3452c,
1534		0x34540, 0x3461c,
1535		0x34800, 0x34828,
1536		0x34834, 0x34834,
1537		0x348c0, 0x34908,
1538		0x34910, 0x349ac,
1539		0x34a00, 0x34a14,
1540		0x34a1c, 0x34a2c,
1541		0x34a44, 0x34a50,
1542		0x34a74, 0x34a74,
1543		0x34a7c, 0x34afc,
1544		0x34b08, 0x34c24,
1545		0x34d00, 0x34d00,
1546		0x34d08, 0x34d14,
1547		0x34d1c, 0x34d20,
1548		0x34d3c, 0x34d3c,
1549		0x34d48, 0x34d50,
1550		0x35200, 0x3520c,
1551		0x35220, 0x35220,
1552		0x35240, 0x35240,
1553		0x35600, 0x3560c,
1554		0x35a00, 0x35a1c,
1555		0x35e00, 0x35e20,
1556		0x35e38, 0x35e3c,
1557		0x35e80, 0x35e80,
1558		0x35e88, 0x35ea8,
1559		0x35eb0, 0x35eb4,
1560		0x35ec8, 0x35ed4,
1561		0x35fb8, 0x36004,
1562		0x36200, 0x36200,
1563		0x36208, 0x36240,
1564		0x36248, 0x36280,
1565		0x36288, 0x362c0,
1566		0x362c8, 0x362fc,
1567		0x36600, 0x36630,
1568		0x36a00, 0x36abc,
1569		0x36b00, 0x36b10,
1570		0x36b20, 0x36b30,
1571		0x36b40, 0x36b50,
1572		0x36b60, 0x36b70,
1573		0x37000, 0x37028,
1574		0x37030, 0x37048,
1575		0x37060, 0x37068,
1576		0x37070, 0x3709c,
1577		0x370f0, 0x37128,
1578		0x37130, 0x37148,
1579		0x37160, 0x37168,
1580		0x37170, 0x3719c,
1581		0x371f0, 0x37238,
1582		0x37240, 0x37240,
1583		0x37248, 0x37250,
1584		0x3725c, 0x37264,
1585		0x37270, 0x372b8,
1586		0x372c0, 0x372e4,
1587		0x372f8, 0x37338,
1588		0x37340, 0x37340,
1589		0x37348, 0x37350,
1590		0x3735c, 0x37364,
1591		0x37370, 0x373b8,
1592		0x373c0, 0x373e4,
1593		0x373f8, 0x37428,
1594		0x37430, 0x37448,
1595		0x37460, 0x37468,
1596		0x37470, 0x3749c,
1597		0x374f0, 0x37528,
1598		0x37530, 0x37548,
1599		0x37560, 0x37568,
1600		0x37570, 0x3759c,
1601		0x375f0, 0x37638,
1602		0x37640, 0x37640,
1603		0x37648, 0x37650,
1604		0x3765c, 0x37664,
1605		0x37670, 0x376b8,
1606		0x376c0, 0x376e4,
1607		0x376f8, 0x37738,
1608		0x37740, 0x37740,
1609		0x37748, 0x37750,
1610		0x3775c, 0x37764,
1611		0x37770, 0x377b8,
1612		0x377c0, 0x377e4,
1613		0x377f8, 0x377fc,
1614		0x37814, 0x37814,
1615		0x3782c, 0x3782c,
1616		0x37880, 0x3788c,
1617		0x378e8, 0x378ec,
1618		0x37900, 0x37928,
1619		0x37930, 0x37948,
1620		0x37960, 0x37968,
1621		0x37970, 0x3799c,
1622		0x379f0, 0x37a38,
1623		0x37a40, 0x37a40,
1624		0x37a48, 0x37a50,
1625		0x37a5c, 0x37a64,
1626		0x37a70, 0x37ab8,
1627		0x37ac0, 0x37ae4,
1628		0x37af8, 0x37b10,
1629		0x37b28, 0x37b28,
1630		0x37b3c, 0x37b50,
1631		0x37bf0, 0x37c10,
1632		0x37c28, 0x37c28,
1633		0x37c3c, 0x37c50,
1634		0x37cf0, 0x37cfc,
1635		0x38000, 0x38030,
1636		0x38038, 0x38038,
1637		0x38040, 0x38040,
1638		0x38100, 0x38144,
1639		0x38190, 0x381a0,
1640		0x381a8, 0x381b8,
1641		0x381c4, 0x381c8,
1642		0x381d0, 0x381d0,
1643		0x38200, 0x38318,
1644		0x38400, 0x384b4,
1645		0x384c0, 0x3852c,
1646		0x38540, 0x3861c,
1647		0x38800, 0x38828,
1648		0x38834, 0x38834,
1649		0x388c0, 0x38908,
1650		0x38910, 0x389ac,
1651		0x38a00, 0x38a14,
1652		0x38a1c, 0x38a2c,
1653		0x38a44, 0x38a50,
1654		0x38a74, 0x38a74,
1655		0x38a7c, 0x38afc,
1656		0x38b08, 0x38c24,
1657		0x38d00, 0x38d00,
1658		0x38d08, 0x38d14,
1659		0x38d1c, 0x38d20,
1660		0x38d3c, 0x38d3c,
1661		0x38d48, 0x38d50,
1662		0x39200, 0x3920c,
1663		0x39220, 0x39220,
1664		0x39240, 0x39240,
1665		0x39600, 0x3960c,
1666		0x39a00, 0x39a1c,
1667		0x39e00, 0x39e20,
1668		0x39e38, 0x39e3c,
1669		0x39e80, 0x39e80,
1670		0x39e88, 0x39ea8,
1671		0x39eb0, 0x39eb4,
1672		0x39ec8, 0x39ed4,
1673		0x39fb8, 0x3a004,
1674		0x3a200, 0x3a200,
1675		0x3a208, 0x3a240,
1676		0x3a248, 0x3a280,
1677		0x3a288, 0x3a2c0,
1678		0x3a2c8, 0x3a2fc,
1679		0x3a600, 0x3a630,
1680		0x3aa00, 0x3aabc,
1681		0x3ab00, 0x3ab10,
1682		0x3ab20, 0x3ab30,
1683		0x3ab40, 0x3ab50,
1684		0x3ab60, 0x3ab70,
1685		0x3b000, 0x3b028,
1686		0x3b030, 0x3b048,
1687		0x3b060, 0x3b068,
1688		0x3b070, 0x3b09c,
1689		0x3b0f0, 0x3b128,
1690		0x3b130, 0x3b148,
1691		0x3b160, 0x3b168,
1692		0x3b170, 0x3b19c,
1693		0x3b1f0, 0x3b238,
1694		0x3b240, 0x3b240,
1695		0x3b248, 0x3b250,
1696		0x3b25c, 0x3b264,
1697		0x3b270, 0x3b2b8,
1698		0x3b2c0, 0x3b2e4,
1699		0x3b2f8, 0x3b338,
1700		0x3b340, 0x3b340,
1701		0x3b348, 0x3b350,
1702		0x3b35c, 0x3b364,
1703		0x3b370, 0x3b3b8,
1704		0x3b3c0, 0x3b3e4,
1705		0x3b3f8, 0x3b428,
1706		0x3b430, 0x3b448,
1707		0x3b460, 0x3b468,
1708		0x3b470, 0x3b49c,
1709		0x3b4f0, 0x3b528,
1710		0x3b530, 0x3b548,
1711		0x3b560, 0x3b568,
1712		0x3b570, 0x3b59c,
1713		0x3b5f0, 0x3b638,
1714		0x3b640, 0x3b640,
1715		0x3b648, 0x3b650,
1716		0x3b65c, 0x3b664,
1717		0x3b670, 0x3b6b8,
1718		0x3b6c0, 0x3b6e4,
1719		0x3b6f8, 0x3b738,
1720		0x3b740, 0x3b740,
1721		0x3b748, 0x3b750,
1722		0x3b75c, 0x3b764,
1723		0x3b770, 0x3b7b8,
1724		0x3b7c0, 0x3b7e4,
1725		0x3b7f8, 0x3b7fc,
1726		0x3b814, 0x3b814,
1727		0x3b82c, 0x3b82c,
1728		0x3b880, 0x3b88c,
1729		0x3b8e8, 0x3b8ec,
1730		0x3b900, 0x3b928,
1731		0x3b930, 0x3b948,
1732		0x3b960, 0x3b968,
1733		0x3b970, 0x3b99c,
1734		0x3b9f0, 0x3ba38,
1735		0x3ba40, 0x3ba40,
1736		0x3ba48, 0x3ba50,
1737		0x3ba5c, 0x3ba64,
1738		0x3ba70, 0x3bab8,
1739		0x3bac0, 0x3bae4,
1740		0x3baf8, 0x3bb10,
1741		0x3bb28, 0x3bb28,
1742		0x3bb3c, 0x3bb50,
1743		0x3bbf0, 0x3bc10,
1744		0x3bc28, 0x3bc28,
1745		0x3bc3c, 0x3bc50,
1746		0x3bcf0, 0x3bcfc,
1747		0x3c000, 0x3c030,
1748		0x3c038, 0x3c038,
1749		0x3c040, 0x3c040,
1750		0x3c100, 0x3c144,
1751		0x3c190, 0x3c1a0,
1752		0x3c1a8, 0x3c1b8,
1753		0x3c1c4, 0x3c1c8,
1754		0x3c1d0, 0x3c1d0,
1755		0x3c200, 0x3c318,
1756		0x3c400, 0x3c4b4,
1757		0x3c4c0, 0x3c52c,
1758		0x3c540, 0x3c61c,
1759		0x3c800, 0x3c828,
1760		0x3c834, 0x3c834,
1761		0x3c8c0, 0x3c908,
1762		0x3c910, 0x3c9ac,
1763		0x3ca00, 0x3ca14,
1764		0x3ca1c, 0x3ca2c,
1765		0x3ca44, 0x3ca50,
1766		0x3ca74, 0x3ca74,
1767		0x3ca7c, 0x3cafc,
1768		0x3cb08, 0x3cc24,
1769		0x3cd00, 0x3cd00,
1770		0x3cd08, 0x3cd14,
1771		0x3cd1c, 0x3cd20,
1772		0x3cd3c, 0x3cd3c,
1773		0x3cd48, 0x3cd50,
1774		0x3d200, 0x3d20c,
1775		0x3d220, 0x3d220,
1776		0x3d240, 0x3d240,
1777		0x3d600, 0x3d60c,
1778		0x3da00, 0x3da1c,
1779		0x3de00, 0x3de20,
1780		0x3de38, 0x3de3c,
1781		0x3de80, 0x3de80,
1782		0x3de88, 0x3dea8,
1783		0x3deb0, 0x3deb4,
1784		0x3dec8, 0x3ded4,
1785		0x3dfb8, 0x3e004,
1786		0x3e200, 0x3e200,
1787		0x3e208, 0x3e240,
1788		0x3e248, 0x3e280,
1789		0x3e288, 0x3e2c0,
1790		0x3e2c8, 0x3e2fc,
1791		0x3e600, 0x3e630,
1792		0x3ea00, 0x3eabc,
1793		0x3eb00, 0x3eb10,
1794		0x3eb20, 0x3eb30,
1795		0x3eb40, 0x3eb50,
1796		0x3eb60, 0x3eb70,
1797		0x3f000, 0x3f028,
1798		0x3f030, 0x3f048,
1799		0x3f060, 0x3f068,
1800		0x3f070, 0x3f09c,
1801		0x3f0f0, 0x3f128,
1802		0x3f130, 0x3f148,
1803		0x3f160, 0x3f168,
1804		0x3f170, 0x3f19c,
1805		0x3f1f0, 0x3f238,
1806		0x3f240, 0x3f240,
1807		0x3f248, 0x3f250,
1808		0x3f25c, 0x3f264,
1809		0x3f270, 0x3f2b8,
1810		0x3f2c0, 0x3f2e4,
1811		0x3f2f8, 0x3f338,
1812		0x3f340, 0x3f340,
1813		0x3f348, 0x3f350,
1814		0x3f35c, 0x3f364,
1815		0x3f370, 0x3f3b8,
1816		0x3f3c0, 0x3f3e4,
1817		0x3f3f8, 0x3f428,
1818		0x3f430, 0x3f448,
1819		0x3f460, 0x3f468,
1820		0x3f470, 0x3f49c,
1821		0x3f4f0, 0x3f528,
1822		0x3f530, 0x3f548,
1823		0x3f560, 0x3f568,
1824		0x3f570, 0x3f59c,
1825		0x3f5f0, 0x3f638,
1826		0x3f640, 0x3f640,
1827		0x3f648, 0x3f650,
1828		0x3f65c, 0x3f664,
1829		0x3f670, 0x3f6b8,
1830		0x3f6c0, 0x3f6e4,
1831		0x3f6f8, 0x3f738,
1832		0x3f740, 0x3f740,
1833		0x3f748, 0x3f750,
1834		0x3f75c, 0x3f764,
1835		0x3f770, 0x3f7b8,
1836		0x3f7c0, 0x3f7e4,
1837		0x3f7f8, 0x3f7fc,
1838		0x3f814, 0x3f814,
1839		0x3f82c, 0x3f82c,
1840		0x3f880, 0x3f88c,
1841		0x3f8e8, 0x3f8ec,
1842		0x3f900, 0x3f928,
1843		0x3f930, 0x3f948,
1844		0x3f960, 0x3f968,
1845		0x3f970, 0x3f99c,
1846		0x3f9f0, 0x3fa38,
1847		0x3fa40, 0x3fa40,
1848		0x3fa48, 0x3fa50,
1849		0x3fa5c, 0x3fa64,
1850		0x3fa70, 0x3fab8,
1851		0x3fac0, 0x3fae4,
1852		0x3faf8, 0x3fb10,
1853		0x3fb28, 0x3fb28,
1854		0x3fb3c, 0x3fb50,
1855		0x3fbf0, 0x3fc10,
1856		0x3fc28, 0x3fc28,
1857		0x3fc3c, 0x3fc50,
1858		0x3fcf0, 0x3fcfc,
1859		0x40000, 0x4000c,
1860		0x40040, 0x40050,
1861		0x40060, 0x40068,
1862		0x4007c, 0x4008c,
1863		0x40094, 0x400b0,
1864		0x400c0, 0x40144,
1865		0x40180, 0x4018c,
1866		0x40200, 0x40254,
1867		0x40260, 0x40264,
1868		0x40270, 0x40288,
1869		0x40290, 0x40298,
1870		0x402ac, 0x402c8,
1871		0x402d0, 0x402e0,
1872		0x402f0, 0x402f0,
1873		0x40300, 0x4033c,
1874		0x403f8, 0x403fc,
1875		0x41304, 0x413c4,
1876		0x41400, 0x4140c,
1877		0x41414, 0x4141c,
1878		0x41480, 0x414d0,
1879		0x44000, 0x44054,
1880		0x4405c, 0x44078,
1881		0x440c0, 0x44174,
1882		0x44180, 0x441ac,
1883		0x441b4, 0x441b8,
1884		0x441c0, 0x44254,
1885		0x4425c, 0x44278,
1886		0x442c0, 0x44374,
1887		0x44380, 0x443ac,
1888		0x443b4, 0x443b8,
1889		0x443c0, 0x44454,
1890		0x4445c, 0x44478,
1891		0x444c0, 0x44574,
1892		0x44580, 0x445ac,
1893		0x445b4, 0x445b8,
1894		0x445c0, 0x44654,
1895		0x4465c, 0x44678,
1896		0x446c0, 0x44774,
1897		0x44780, 0x447ac,
1898		0x447b4, 0x447b8,
1899		0x447c0, 0x44854,
1900		0x4485c, 0x44878,
1901		0x448c0, 0x44974,
1902		0x44980, 0x449ac,
1903		0x449b4, 0x449b8,
1904		0x449c0, 0x449fc,
1905		0x45000, 0x45004,
1906		0x45010, 0x45030,
1907		0x45040, 0x45060,
1908		0x45068, 0x45068,
1909		0x45080, 0x45084,
1910		0x450a0, 0x450b0,
1911		0x45200, 0x45204,
1912		0x45210, 0x45230,
1913		0x45240, 0x45260,
1914		0x45268, 0x45268,
1915		0x45280, 0x45284,
1916		0x452a0, 0x452b0,
1917		0x460c0, 0x460e4,
1918		0x47000, 0x4703c,
1919		0x47044, 0x4708c,
1920		0x47200, 0x47250,
1921		0x47400, 0x47408,
1922		0x47414, 0x47420,
1923		0x47600, 0x47618,
1924		0x47800, 0x47814,
1925		0x48000, 0x4800c,
1926		0x48040, 0x48050,
1927		0x48060, 0x48068,
1928		0x4807c, 0x4808c,
1929		0x48094, 0x480b0,
1930		0x480c0, 0x48144,
1931		0x48180, 0x4818c,
1932		0x48200, 0x48254,
1933		0x48260, 0x48264,
1934		0x48270, 0x48288,
1935		0x48290, 0x48298,
1936		0x482ac, 0x482c8,
1937		0x482d0, 0x482e0,
1938		0x482f0, 0x482f0,
1939		0x48300, 0x4833c,
1940		0x483f8, 0x483fc,
1941		0x49304, 0x493c4,
1942		0x49400, 0x4940c,
1943		0x49414, 0x4941c,
1944		0x49480, 0x494d0,
1945		0x4c000, 0x4c054,
1946		0x4c05c, 0x4c078,
1947		0x4c0c0, 0x4c174,
1948		0x4c180, 0x4c1ac,
1949		0x4c1b4, 0x4c1b8,
1950		0x4c1c0, 0x4c254,
1951		0x4c25c, 0x4c278,
1952		0x4c2c0, 0x4c374,
1953		0x4c380, 0x4c3ac,
1954		0x4c3b4, 0x4c3b8,
1955		0x4c3c0, 0x4c454,
1956		0x4c45c, 0x4c478,
1957		0x4c4c0, 0x4c574,
1958		0x4c580, 0x4c5ac,
1959		0x4c5b4, 0x4c5b8,
1960		0x4c5c0, 0x4c654,
1961		0x4c65c, 0x4c678,
1962		0x4c6c0, 0x4c774,
1963		0x4c780, 0x4c7ac,
1964		0x4c7b4, 0x4c7b8,
1965		0x4c7c0, 0x4c854,
1966		0x4c85c, 0x4c878,
1967		0x4c8c0, 0x4c974,
1968		0x4c980, 0x4c9ac,
1969		0x4c9b4, 0x4c9b8,
1970		0x4c9c0, 0x4c9fc,
1971		0x4d000, 0x4d004,
1972		0x4d010, 0x4d030,
1973		0x4d040, 0x4d060,
1974		0x4d068, 0x4d068,
1975		0x4d080, 0x4d084,
1976		0x4d0a0, 0x4d0b0,
1977		0x4d200, 0x4d204,
1978		0x4d210, 0x4d230,
1979		0x4d240, 0x4d260,
1980		0x4d268, 0x4d268,
1981		0x4d280, 0x4d284,
1982		0x4d2a0, 0x4d2b0,
1983		0x4e0c0, 0x4e0e4,
1984		0x4f000, 0x4f03c,
1985		0x4f044, 0x4f08c,
1986		0x4f200, 0x4f250,
1987		0x4f400, 0x4f408,
1988		0x4f414, 0x4f420,
1989		0x4f600, 0x4f618,
1990		0x4f800, 0x4f814,
1991		0x50000, 0x50084,
1992		0x50090, 0x500cc,
1993		0x50400, 0x50400,
1994		0x50800, 0x50884,
1995		0x50890, 0x508cc,
1996		0x50c00, 0x50c00,
1997		0x51000, 0x5101c,
1998		0x51300, 0x51308,
1999	};
2000
2001	static const unsigned int t5vf_reg_ranges[] = {
2002		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2003		VF_MPS_REG(A_MPS_VF_CTL),
2004		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2005		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2006		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2007		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2008		FW_T4VF_MBDATA_BASE_ADDR,
2009		FW_T4VF_MBDATA_BASE_ADDR +
2010		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2011	};
2012
2013	static const unsigned int t6_reg_ranges[] = {
2014		0x1008, 0x101c,
2015		0x1024, 0x10a8,
2016		0x10b4, 0x10f8,
2017		0x1100, 0x1114,
2018		0x111c, 0x112c,
2019		0x1138, 0x113c,
2020		0x1144, 0x114c,
2021		0x1180, 0x1184,
2022		0x1190, 0x1194,
2023		0x11a0, 0x11a4,
2024		0x11b0, 0x11b4,
2025		0x11fc, 0x1274,
2026		0x1280, 0x133c,
2027		0x1800, 0x18fc,
2028		0x3000, 0x302c,
2029		0x3060, 0x30b0,
2030		0x30b8, 0x30d8,
2031		0x30e0, 0x30fc,
2032		0x3140, 0x357c,
2033		0x35a8, 0x35cc,
2034		0x35ec, 0x35ec,
2035		0x3600, 0x5624,
2036		0x56cc, 0x56ec,
2037		0x56f4, 0x5720,
2038		0x5728, 0x575c,
2039		0x580c, 0x5814,
2040		0x5890, 0x589c,
2041		0x58a4, 0x58ac,
2042		0x58b8, 0x58bc,
2043		0x5940, 0x595c,
2044		0x5980, 0x598c,
2045		0x59b0, 0x59c8,
2046		0x59d0, 0x59dc,
2047		0x59fc, 0x5a18,
2048		0x5a60, 0x5a6c,
2049		0x5a80, 0x5a8c,
2050		0x5a94, 0x5a9c,
2051		0x5b94, 0x5bfc,
2052		0x5c10, 0x5e48,
2053		0x5e50, 0x5e94,
2054		0x5ea0, 0x5eb0,
2055		0x5ec0, 0x5ec0,
2056		0x5ec8, 0x5ed0,
2057		0x5ee0, 0x5ee0,
2058		0x5ef0, 0x5ef0,
2059		0x5f00, 0x5f00,
2060		0x6000, 0x6020,
2061		0x6028, 0x6040,
2062		0x6058, 0x609c,
2063		0x60a8, 0x619c,
2064		0x7700, 0x7798,
2065		0x77c0, 0x7880,
2066		0x78cc, 0x78fc,
2067		0x7b00, 0x7b58,
2068		0x7b60, 0x7b84,
2069		0x7b8c, 0x7c54,
2070		0x7d00, 0x7d38,
2071		0x7d40, 0x7d84,
2072		0x7d8c, 0x7ddc,
2073		0x7de4, 0x7e04,
2074		0x7e10, 0x7e1c,
2075		0x7e24, 0x7e38,
2076		0x7e40, 0x7e44,
2077		0x7e4c, 0x7e78,
2078		0x7e80, 0x7edc,
2079		0x7ee8, 0x7efc,
2080		0x8dc0, 0x8de4,
2081		0x8df8, 0x8e04,
2082		0x8e10, 0x8e84,
2083		0x8ea0, 0x8f88,
2084		0x8fb8, 0x9058,
2085		0x9060, 0x9060,
2086		0x9068, 0x90f8,
2087		0x9100, 0x9124,
2088		0x9400, 0x9470,
2089		0x9600, 0x9600,
2090		0x9608, 0x9638,
2091		0x9640, 0x9704,
2092		0x9710, 0x971c,
2093		0x9800, 0x9808,
2094		0x9820, 0x983c,
2095		0x9850, 0x9864,
2096		0x9c00, 0x9c6c,
2097		0x9c80, 0x9cec,
2098		0x9d00, 0x9d6c,
2099		0x9d80, 0x9dec,
2100		0x9e00, 0x9e6c,
2101		0x9e80, 0x9eec,
2102		0x9f00, 0x9f6c,
2103		0x9f80, 0xa020,
2104		0xd004, 0xd03c,
2105		0xd100, 0xd118,
2106		0xd200, 0xd214,
2107		0xd220, 0xd234,
2108		0xd240, 0xd254,
2109		0xd260, 0xd274,
2110		0xd280, 0xd294,
2111		0xd2a0, 0xd2b4,
2112		0xd2c0, 0xd2d4,
2113		0xd2e0, 0xd2f4,
2114		0xd300, 0xd31c,
2115		0xdfc0, 0xdfe0,
2116		0xe000, 0xf008,
2117		0xf010, 0xf018,
2118		0xf020, 0xf028,
2119		0x11000, 0x11014,
2120		0x11048, 0x1106c,
2121		0x11074, 0x11088,
2122		0x11098, 0x11120,
2123		0x1112c, 0x1117c,
2124		0x11190, 0x112e0,
2125		0x11300, 0x1130c,
2126		0x12000, 0x1206c,
2127		0x19040, 0x1906c,
2128		0x19078, 0x19080,
2129		0x1908c, 0x190e8,
2130		0x190f0, 0x190f8,
2131		0x19100, 0x19110,
2132		0x19120, 0x19124,
2133		0x19150, 0x19194,
2134		0x1919c, 0x191b0,
2135		0x191d0, 0x191e8,
2136		0x19238, 0x19290,
2137		0x192a4, 0x192b0,
2138		0x192bc, 0x192bc,
2139		0x19348, 0x1934c,
2140		0x193f8, 0x19418,
2141		0x19420, 0x19428,
2142		0x19430, 0x19444,
2143		0x1944c, 0x1946c,
2144		0x19474, 0x19474,
2145		0x19490, 0x194cc,
2146		0x194f0, 0x194f8,
2147		0x19c00, 0x19c48,
2148		0x19c50, 0x19c80,
2149		0x19c94, 0x19c98,
2150		0x19ca0, 0x19cbc,
2151		0x19ce4, 0x19ce4,
2152		0x19cf0, 0x19cf8,
2153		0x19d00, 0x19d28,
2154		0x19d50, 0x19d78,
2155		0x19d94, 0x19d98,
2156		0x19da0, 0x19dc8,
2157		0x19df0, 0x19e10,
2158		0x19e50, 0x19e6c,
2159		0x19ea0, 0x19ebc,
2160		0x19ec4, 0x19ef4,
2161		0x19f04, 0x19f2c,
2162		0x19f34, 0x19f34,
2163		0x19f40, 0x19f50,
2164		0x19f90, 0x19fac,
2165		0x19fc4, 0x19fc8,
2166		0x19fd0, 0x19fe4,
2167		0x1a000, 0x1a004,
2168		0x1a010, 0x1a06c,
2169		0x1a0b0, 0x1a0e4,
2170		0x1a0ec, 0x1a0f8,
2171		0x1a100, 0x1a108,
2172		0x1a114, 0x1a120,
2173		0x1a128, 0x1a130,
2174		0x1a138, 0x1a138,
2175		0x1a190, 0x1a1c4,
2176		0x1a1fc, 0x1a1fc,
2177		0x1e008, 0x1e00c,
2178		0x1e040, 0x1e044,
2179		0x1e04c, 0x1e04c,
2180		0x1e284, 0x1e290,
2181		0x1e2c0, 0x1e2c0,
2182		0x1e2e0, 0x1e2e0,
2183		0x1e300, 0x1e384,
2184		0x1e3c0, 0x1e3c8,
2185		0x1e408, 0x1e40c,
2186		0x1e440, 0x1e444,
2187		0x1e44c, 0x1e44c,
2188		0x1e684, 0x1e690,
2189		0x1e6c0, 0x1e6c0,
2190		0x1e6e0, 0x1e6e0,
2191		0x1e700, 0x1e784,
2192		0x1e7c0, 0x1e7c8,
2193		0x1e808, 0x1e80c,
2194		0x1e840, 0x1e844,
2195		0x1e84c, 0x1e84c,
2196		0x1ea84, 0x1ea90,
2197		0x1eac0, 0x1eac0,
2198		0x1eae0, 0x1eae0,
2199		0x1eb00, 0x1eb84,
2200		0x1ebc0, 0x1ebc8,
2201		0x1ec08, 0x1ec0c,
2202		0x1ec40, 0x1ec44,
2203		0x1ec4c, 0x1ec4c,
2204		0x1ee84, 0x1ee90,
2205		0x1eec0, 0x1eec0,
2206		0x1eee0, 0x1eee0,
2207		0x1ef00, 0x1ef84,
2208		0x1efc0, 0x1efc8,
2209		0x1f008, 0x1f00c,
2210		0x1f040, 0x1f044,
2211		0x1f04c, 0x1f04c,
2212		0x1f284, 0x1f290,
2213		0x1f2c0, 0x1f2c0,
2214		0x1f2e0, 0x1f2e0,
2215		0x1f300, 0x1f384,
2216		0x1f3c0, 0x1f3c8,
2217		0x1f408, 0x1f40c,
2218		0x1f440, 0x1f444,
2219		0x1f44c, 0x1f44c,
2220		0x1f684, 0x1f690,
2221		0x1f6c0, 0x1f6c0,
2222		0x1f6e0, 0x1f6e0,
2223		0x1f700, 0x1f784,
2224		0x1f7c0, 0x1f7c8,
2225		0x1f808, 0x1f80c,
2226		0x1f840, 0x1f844,
2227		0x1f84c, 0x1f84c,
2228		0x1fa84, 0x1fa90,
2229		0x1fac0, 0x1fac0,
2230		0x1fae0, 0x1fae0,
2231		0x1fb00, 0x1fb84,
2232		0x1fbc0, 0x1fbc8,
2233		0x1fc08, 0x1fc0c,
2234		0x1fc40, 0x1fc44,
2235		0x1fc4c, 0x1fc4c,
2236		0x1fe84, 0x1fe90,
2237		0x1fec0, 0x1fec0,
2238		0x1fee0, 0x1fee0,
2239		0x1ff00, 0x1ff84,
2240		0x1ffc0, 0x1ffc8,
2241		0x30000, 0x30030,
2242		0x30038, 0x30038,
2243		0x30040, 0x30040,
2244		0x30048, 0x30048,
2245		0x30050, 0x30050,
2246		0x3005c, 0x30060,
2247		0x30068, 0x30068,
2248		0x30070, 0x30070,
2249		0x30100, 0x30168,
2250		0x30190, 0x301a0,
2251		0x301a8, 0x301b8,
2252		0x301c4, 0x301c8,
2253		0x301d0, 0x301d0,
2254		0x30200, 0x30320,
2255		0x30400, 0x304b4,
2256		0x304c0, 0x3052c,
2257		0x30540, 0x3061c,
2258		0x30800, 0x308a0,
2259		0x308c0, 0x30908,
2260		0x30910, 0x309b8,
2261		0x30a00, 0x30a04,
2262		0x30a0c, 0x30a14,
2263		0x30a1c, 0x30a2c,
2264		0x30a44, 0x30a50,
2265		0x30a74, 0x30a74,
2266		0x30a7c, 0x30afc,
2267		0x30b08, 0x30c24,
2268		0x30d00, 0x30d14,
2269		0x30d1c, 0x30d3c,
2270		0x30d44, 0x30d4c,
2271		0x30d54, 0x30d74,
2272		0x30d7c, 0x30d7c,
2273		0x30de0, 0x30de0,
2274		0x30e00, 0x30ed4,
2275		0x30f00, 0x30fa4,
2276		0x30fc0, 0x30fc4,
2277		0x31000, 0x31004,
2278		0x31080, 0x310fc,
2279		0x31208, 0x31220,
2280		0x3123c, 0x31254,
2281		0x31300, 0x31300,
2282		0x31308, 0x3131c,
2283		0x31338, 0x3133c,
2284		0x31380, 0x31380,
2285		0x31388, 0x313a8,
2286		0x313b4, 0x313b4,
2287		0x31400, 0x31420,
2288		0x31438, 0x3143c,
2289		0x31480, 0x31480,
2290		0x314a8, 0x314a8,
2291		0x314b0, 0x314b4,
2292		0x314c8, 0x314d4,
2293		0x31a40, 0x31a4c,
2294		0x31af0, 0x31b20,
2295		0x31b38, 0x31b3c,
2296		0x31b80, 0x31b80,
2297		0x31ba8, 0x31ba8,
2298		0x31bb0, 0x31bb4,
2299		0x31bc8, 0x31bd4,
2300		0x32140, 0x3218c,
2301		0x321f0, 0x321f4,
2302		0x32200, 0x32200,
2303		0x32218, 0x32218,
2304		0x32400, 0x32400,
2305		0x32408, 0x3241c,
2306		0x32618, 0x32620,
2307		0x32664, 0x32664,
2308		0x326a8, 0x326a8,
2309		0x326ec, 0x326ec,
2310		0x32a00, 0x32abc,
2311		0x32b00, 0x32b38,
2312		0x32b40, 0x32b58,
2313		0x32b60, 0x32b78,
2314		0x32c00, 0x32c00,
2315		0x32c08, 0x32c3c,
2316		0x32e00, 0x32e2c,
2317		0x32f00, 0x32f2c,
2318		0x33000, 0x3302c,
2319		0x33034, 0x33050,
2320		0x33058, 0x33058,
2321		0x33060, 0x3308c,
2322		0x3309c, 0x330ac,
2323		0x330c0, 0x330c0,
2324		0x330c8, 0x330d0,
2325		0x330d8, 0x330e0,
2326		0x330ec, 0x3312c,
2327		0x33134, 0x33150,
2328		0x33158, 0x33158,
2329		0x33160, 0x3318c,
2330		0x3319c, 0x331ac,
2331		0x331c0, 0x331c0,
2332		0x331c8, 0x331d0,
2333		0x331d8, 0x331e0,
2334		0x331ec, 0x33290,
2335		0x33298, 0x332c4,
2336		0x332e4, 0x33390,
2337		0x33398, 0x333c4,
2338		0x333e4, 0x3342c,
2339		0x33434, 0x33450,
2340		0x33458, 0x33458,
2341		0x33460, 0x3348c,
2342		0x3349c, 0x334ac,
2343		0x334c0, 0x334c0,
2344		0x334c8, 0x334d0,
2345		0x334d8, 0x334e0,
2346		0x334ec, 0x3352c,
2347		0x33534, 0x33550,
2348		0x33558, 0x33558,
2349		0x33560, 0x3358c,
2350		0x3359c, 0x335ac,
2351		0x335c0, 0x335c0,
2352		0x335c8, 0x335d0,
2353		0x335d8, 0x335e0,
2354		0x335ec, 0x33690,
2355		0x33698, 0x336c4,
2356		0x336e4, 0x33790,
2357		0x33798, 0x337c4,
2358		0x337e4, 0x337fc,
2359		0x33814, 0x33814,
2360		0x33854, 0x33868,
2361		0x33880, 0x3388c,
2362		0x338c0, 0x338d0,
2363		0x338e8, 0x338ec,
2364		0x33900, 0x3392c,
2365		0x33934, 0x33950,
2366		0x33958, 0x33958,
2367		0x33960, 0x3398c,
2368		0x3399c, 0x339ac,
2369		0x339c0, 0x339c0,
2370		0x339c8, 0x339d0,
2371		0x339d8, 0x339e0,
2372		0x339ec, 0x33a90,
2373		0x33a98, 0x33ac4,
2374		0x33ae4, 0x33b10,
2375		0x33b24, 0x33b28,
2376		0x33b38, 0x33b50,
2377		0x33bf0, 0x33c10,
2378		0x33c24, 0x33c28,
2379		0x33c38, 0x33c50,
2380		0x33cf0, 0x33cfc,
2381		0x34000, 0x34030,
2382		0x34038, 0x34038,
2383		0x34040, 0x34040,
2384		0x34048, 0x34048,
2385		0x34050, 0x34050,
2386		0x3405c, 0x34060,
2387		0x34068, 0x34068,
2388		0x34070, 0x34070,
2389		0x34100, 0x34168,
2390		0x34190, 0x341a0,
2391		0x341a8, 0x341b8,
2392		0x341c4, 0x341c8,
2393		0x341d0, 0x341d0,
2394		0x34200, 0x34320,
2395		0x34400, 0x344b4,
2396		0x344c0, 0x3452c,
2397		0x34540, 0x3461c,
2398		0x34800, 0x348a0,
2399		0x348c0, 0x34908,
2400		0x34910, 0x349b8,
2401		0x34a00, 0x34a04,
2402		0x34a0c, 0x34a14,
2403		0x34a1c, 0x34a2c,
2404		0x34a44, 0x34a50,
2405		0x34a74, 0x34a74,
2406		0x34a7c, 0x34afc,
2407		0x34b08, 0x34c24,
2408		0x34d00, 0x34d14,
2409		0x34d1c, 0x34d3c,
2410		0x34d44, 0x34d4c,
2411		0x34d54, 0x34d74,
2412		0x34d7c, 0x34d7c,
2413		0x34de0, 0x34de0,
2414		0x34e00, 0x34ed4,
2415		0x34f00, 0x34fa4,
2416		0x34fc0, 0x34fc4,
2417		0x35000, 0x35004,
2418		0x35080, 0x350fc,
2419		0x35208, 0x35220,
2420		0x3523c, 0x35254,
2421		0x35300, 0x35300,
2422		0x35308, 0x3531c,
2423		0x35338, 0x3533c,
2424		0x35380, 0x35380,
2425		0x35388, 0x353a8,
2426		0x353b4, 0x353b4,
2427		0x35400, 0x35420,
2428		0x35438, 0x3543c,
2429		0x35480, 0x35480,
2430		0x354a8, 0x354a8,
2431		0x354b0, 0x354b4,
2432		0x354c8, 0x354d4,
2433		0x35a40, 0x35a4c,
2434		0x35af0, 0x35b20,
2435		0x35b38, 0x35b3c,
2436		0x35b80, 0x35b80,
2437		0x35ba8, 0x35ba8,
2438		0x35bb0, 0x35bb4,
2439		0x35bc8, 0x35bd4,
2440		0x36140, 0x3618c,
2441		0x361f0, 0x361f4,
2442		0x36200, 0x36200,
2443		0x36218, 0x36218,
2444		0x36400, 0x36400,
2445		0x36408, 0x3641c,
2446		0x36618, 0x36620,
2447		0x36664, 0x36664,
2448		0x366a8, 0x366a8,
2449		0x366ec, 0x366ec,
2450		0x36a00, 0x36abc,
2451		0x36b00, 0x36b38,
2452		0x36b40, 0x36b58,
2453		0x36b60, 0x36b78,
2454		0x36c00, 0x36c00,
2455		0x36c08, 0x36c3c,
2456		0x36e00, 0x36e2c,
2457		0x36f00, 0x36f2c,
2458		0x37000, 0x3702c,
2459		0x37034, 0x37050,
2460		0x37058, 0x37058,
2461		0x37060, 0x3708c,
2462		0x3709c, 0x370ac,
2463		0x370c0, 0x370c0,
2464		0x370c8, 0x370d0,
2465		0x370d8, 0x370e0,
2466		0x370ec, 0x3712c,
2467		0x37134, 0x37150,
2468		0x37158, 0x37158,
2469		0x37160, 0x3718c,
2470		0x3719c, 0x371ac,
2471		0x371c0, 0x371c0,
2472		0x371c8, 0x371d0,
2473		0x371d8, 0x371e0,
2474		0x371ec, 0x37290,
2475		0x37298, 0x372c4,
2476		0x372e4, 0x37390,
2477		0x37398, 0x373c4,
2478		0x373e4, 0x3742c,
2479		0x37434, 0x37450,
2480		0x37458, 0x37458,
2481		0x37460, 0x3748c,
2482		0x3749c, 0x374ac,
2483		0x374c0, 0x374c0,
2484		0x374c8, 0x374d0,
2485		0x374d8, 0x374e0,
2486		0x374ec, 0x3752c,
2487		0x37534, 0x37550,
2488		0x37558, 0x37558,
2489		0x37560, 0x3758c,
2490		0x3759c, 0x375ac,
2491		0x375c0, 0x375c0,
2492		0x375c8, 0x375d0,
2493		0x375d8, 0x375e0,
2494		0x375ec, 0x37690,
2495		0x37698, 0x376c4,
2496		0x376e4, 0x37790,
2497		0x37798, 0x377c4,
2498		0x377e4, 0x377fc,
2499		0x37814, 0x37814,
2500		0x37854, 0x37868,
2501		0x37880, 0x3788c,
2502		0x378c0, 0x378d0,
2503		0x378e8, 0x378ec,
2504		0x37900, 0x3792c,
2505		0x37934, 0x37950,
2506		0x37958, 0x37958,
2507		0x37960, 0x3798c,
2508		0x3799c, 0x379ac,
2509		0x379c0, 0x379c0,
2510		0x379c8, 0x379d0,
2511		0x379d8, 0x379e0,
2512		0x379ec, 0x37a90,
2513		0x37a98, 0x37ac4,
2514		0x37ae4, 0x37b10,
2515		0x37b24, 0x37b28,
2516		0x37b38, 0x37b50,
2517		0x37bf0, 0x37c10,
2518		0x37c24, 0x37c28,
2519		0x37c38, 0x37c50,
2520		0x37cf0, 0x37cfc,
2521		0x40040, 0x40040,
2522		0x40080, 0x40084,
2523		0x40100, 0x40100,
2524		0x40140, 0x401bc,
2525		0x40200, 0x40214,
2526		0x40228, 0x40228,
2527		0x40240, 0x40258,
2528		0x40280, 0x40280,
2529		0x40304, 0x40304,
2530		0x40330, 0x4033c,
2531		0x41304, 0x413c8,
2532		0x413d0, 0x413dc,
2533		0x413f0, 0x413f0,
2534		0x41400, 0x4140c,
2535		0x41414, 0x4141c,
2536		0x41480, 0x414d0,
2537		0x44000, 0x4407c,
2538		0x440c0, 0x441ac,
2539		0x441b4, 0x4427c,
2540		0x442c0, 0x443ac,
2541		0x443b4, 0x4447c,
2542		0x444c0, 0x445ac,
2543		0x445b4, 0x4467c,
2544		0x446c0, 0x447ac,
2545		0x447b4, 0x4487c,
2546		0x448c0, 0x449ac,
2547		0x449b4, 0x44a7c,
2548		0x44ac0, 0x44bac,
2549		0x44bb4, 0x44c7c,
2550		0x44cc0, 0x44dac,
2551		0x44db4, 0x44e7c,
2552		0x44ec0, 0x44fac,
2553		0x44fb4, 0x4507c,
2554		0x450c0, 0x451ac,
2555		0x451b4, 0x451fc,
2556		0x45800, 0x45804,
2557		0x45810, 0x45830,
2558		0x45840, 0x45860,
2559		0x45868, 0x45868,
2560		0x45880, 0x45884,
2561		0x458a0, 0x458b0,
2562		0x45a00, 0x45a04,
2563		0x45a10, 0x45a30,
2564		0x45a40, 0x45a60,
2565		0x45a68, 0x45a68,
2566		0x45a80, 0x45a84,
2567		0x45aa0, 0x45ab0,
2568		0x460c0, 0x460e4,
2569		0x47000, 0x4703c,
2570		0x47044, 0x4708c,
2571		0x47200, 0x47250,
2572		0x47400, 0x47408,
2573		0x47414, 0x47420,
2574		0x47600, 0x47618,
2575		0x47800, 0x47814,
2576		0x47820, 0x4782c,
2577		0x50000, 0x50084,
2578		0x50090, 0x500cc,
2579		0x50300, 0x50384,
2580		0x50400, 0x50400,
2581		0x50800, 0x50884,
2582		0x50890, 0x508cc,
2583		0x50b00, 0x50b84,
2584		0x50c00, 0x50c00,
2585		0x51000, 0x51020,
2586		0x51028, 0x510b0,
2587		0x51300, 0x51324,
2588	};
2589
2590	static const unsigned int t6vf_reg_ranges[] = {
2591		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2592		VF_MPS_REG(A_MPS_VF_CTL),
2593		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2594		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2595		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2596		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2597		FW_T6VF_MBDATA_BASE_ADDR,
2598		FW_T6VF_MBDATA_BASE_ADDR +
2599		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2600	};
2601
2602	u32 *buf_end = (u32 *)(buf + buf_size);
2603	const unsigned int *reg_ranges;
2604	int reg_ranges_size, range;
2605	unsigned int chip_version = chip_id(adap);
2606
2607	/*
2608	 * Select the right set of register ranges to dump depending on the
2609	 * adapter chip type.
2610	 */
2611	switch (chip_version) {
2612	case CHELSIO_T4:
2613		if (adap->flags & IS_VF) {
2614			reg_ranges = t4vf_reg_ranges;
2615			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2616		} else {
2617			reg_ranges = t4_reg_ranges;
2618			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2619		}
2620		break;
2621
2622	case CHELSIO_T5:
2623		if (adap->flags & IS_VF) {
2624			reg_ranges = t5vf_reg_ranges;
2625			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2626		} else {
2627			reg_ranges = t5_reg_ranges;
2628			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2629		}
2630		break;
2631
2632	case CHELSIO_T6:
2633		if (adap->flags & IS_VF) {
2634			reg_ranges = t6vf_reg_ranges;
2635			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2636		} else {
2637			reg_ranges = t6_reg_ranges;
2638			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2639		}
2640		break;
2641
2642	default:
2643		CH_ERR(adap,
2644			"Unsupported chip version %d\n", chip_version);
2645		return;
2646	}
2647
2648	/*
2649	 * Clear the register buffer and insert the appropriate register
2650	 * values selected by the above register ranges.
2651	 */
2652	memset(buf, 0, buf_size);
2653	for (range = 0; range < reg_ranges_size; range += 2) {
2654		unsigned int reg = reg_ranges[range];
2655		unsigned int last_reg = reg_ranges[range + 1];
2656		u32 *bufp = (u32 *)(buf + reg);
2657
2658		/*
2659		 * Iterate across the register range filling in the register
2660		 * buffer but don't write past the end of the register buffer.
2661		 */
2662		while (reg <= last_reg && bufp < buf_end) {
2663			*bufp++ = t4_read_reg(adap, reg);
2664			reg += sizeof(u32);
2665		}
2666	}
2667}
2668
2669/*
2670 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2671 * VPD-R sections.
2672 */
2673struct t4_vpd_hdr {
2674	u8  id_tag;
2675	u8  id_len[2];
2676	u8  id_data[ID_LEN];
2677	u8  vpdr_tag;
2678	u8  vpdr_len[2];
2679};
2680
2681/*
2682 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683 */
2684#define EEPROM_DELAY		10		/* 10us per poll spin */
2685#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686
2687#define EEPROM_STAT_ADDR	0x7bfc
2688#define VPD_BASE		0x400
2689#define VPD_BASE_OLD		0
2690#define VPD_LEN			1024
2691#define VPD_INFO_FLD_HDR_SIZE	3
2692#define CHELSIO_VPD_UNIQUE_ID	0x82
2693
2694/*
2695 * Small utility function to wait till any outstanding VPD Access is complete.
2696 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2697 * VPD Access in flight.  This allows us to handle the problem of having a
2698 * previous VPD Access time out and prevent an attempt to inject a new VPD
2699 * Request before any in-flight VPD reguest has completed.
2700 */
2701static int t4_seeprom_wait(struct adapter *adapter)
2702{
2703	unsigned int base = adapter->params.pci.vpd_cap_addr;
2704	int max_poll;
2705
2706	/*
2707	 * If no VPD Access is in flight, we can just return success right
2708	 * away.
2709	 */
2710	if (!adapter->vpd_busy)
2711		return 0;
2712
2713	/*
2714	 * Poll the VPD Capability Address/Flag register waiting for it
2715	 * to indicate that the operation is complete.
2716	 */
2717	max_poll = EEPROM_MAX_POLL;
2718	do {
2719		u16 val;
2720
2721		udelay(EEPROM_DELAY);
2722		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2723
2724		/*
2725		 * If the operation is complete, mark the VPD as no longer
2726		 * busy and return success.
2727		 */
2728		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2729			adapter->vpd_busy = 0;
2730			return 0;
2731		}
2732	} while (--max_poll);
2733
2734	/*
2735	 * Failure!  Note that we leave the VPD Busy status set in order to
2736	 * avoid pushing a new VPD Access request into the VPD Capability till
2737	 * the current operation eventually succeeds.  It's a bug to issue a
2738	 * new request when an existing request is in flight and will result
2739	 * in corrupt hardware state.
2740	 */
2741	return -ETIMEDOUT;
2742}
2743
2744/**
2745 *	t4_seeprom_read - read a serial EEPROM location
2746 *	@adapter: adapter to read
2747 *	@addr: EEPROM virtual address
2748 *	@data: where to store the read data
2749 *
2750 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2751 *	VPD capability.  Note that this function must be called with a virtual
2752 *	address.
2753 */
2754int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2755{
2756	unsigned int base = adapter->params.pci.vpd_cap_addr;
2757	int ret;
2758
2759	/*
2760	 * VPD Accesses must alway be 4-byte aligned!
2761	 */
2762	if (addr >= EEPROMVSIZE || (addr & 3))
2763		return -EINVAL;
2764
2765	/*
2766	 * Wait for any previous operation which may still be in flight to
2767	 * complete.
2768	 */
2769	ret = t4_seeprom_wait(adapter);
2770	if (ret) {
2771		CH_ERR(adapter, "VPD still busy from previous operation\n");
2772		return ret;
2773	}
2774
2775	/*
2776	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2777	 * for our request to complete.  If it doesn't complete, note the
2778	 * error and return it to our caller.  Note that we do not reset the
2779	 * VPD Busy status!
2780	 */
2781	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2782	adapter->vpd_busy = 1;
2783	adapter->vpd_flag = PCI_VPD_ADDR_F;
2784	ret = t4_seeprom_wait(adapter);
2785	if (ret) {
2786		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2787		return ret;
2788	}
2789
2790	/*
2791	 * Grab the returned data, swizzle it into our endianness and
2792	 * return success.
2793	 */
2794	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2795	*data = le32_to_cpu(*data);
2796	return 0;
2797}
2798
2799/**
2800 *	t4_seeprom_write - write a serial EEPROM location
2801 *	@adapter: adapter to write
2802 *	@addr: virtual EEPROM address
2803 *	@data: value to write
2804 *
2805 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2806 *	VPD capability.  Note that this function must be called with a virtual
2807 *	address.
2808 */
2809int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2810{
2811	unsigned int base = adapter->params.pci.vpd_cap_addr;
2812	int ret;
2813	u32 stats_reg;
2814	int max_poll;
2815
2816	/*
2817	 * VPD Accesses must alway be 4-byte aligned!
2818	 */
2819	if (addr >= EEPROMVSIZE || (addr & 3))
2820		return -EINVAL;
2821
2822	/*
2823	 * Wait for any previous operation which may still be in flight to
2824	 * complete.
2825	 */
2826	ret = t4_seeprom_wait(adapter);
2827	if (ret) {
2828		CH_ERR(adapter, "VPD still busy from previous operation\n");
2829		return ret;
2830	}
2831
2832	/*
2833	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2834	 * for our request to complete.  If it doesn't complete, note the
2835	 * error and return it to our caller.  Note that we do not reset the
2836	 * VPD Busy status!
2837	 */
2838	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2839				 cpu_to_le32(data));
2840	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2841				 (u16)addr | PCI_VPD_ADDR_F);
2842	adapter->vpd_busy = 1;
2843	adapter->vpd_flag = 0;
2844	ret = t4_seeprom_wait(adapter);
2845	if (ret) {
2846		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2847		return ret;
2848	}
2849
2850	/*
2851	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2852	 * request to complete. If it doesn't complete, return error.
2853	 */
2854	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2855	max_poll = EEPROM_MAX_POLL;
2856	do {
2857		udelay(EEPROM_DELAY);
2858		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2859	} while ((stats_reg & 0x1) && --max_poll);
2860	if (!max_poll)
2861		return -ETIMEDOUT;
2862
2863	/* Return success! */
2864	return 0;
2865}
2866
2867/**
2868 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2869 *	@phys_addr: the physical EEPROM address
2870 *	@fn: the PCI function number
2871 *	@sz: size of function-specific area
2872 *
2873 *	Translate a physical EEPROM address to virtual.  The first 1K is
2874 *	accessed through virtual addresses starting at 31K, the rest is
2875 *	accessed through virtual addresses starting at 0.
2876 *
2877 *	The mapping is as follows:
2878 *	[0..1K) -> [31K..32K)
2879 *	[1K..1K+A) -> [ES-A..ES)
2880 *	[1K+A..ES) -> [0..ES-A-1K)
2881 *
2882 *	where A = @fn * @sz, and ES = EEPROM size.
2883 */
2884int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2885{
2886	fn *= sz;
2887	if (phys_addr < 1024)
2888		return phys_addr + (31 << 10);
2889	if (phys_addr < 1024 + fn)
2890		return EEPROMSIZE - fn + phys_addr - 1024;
2891	if (phys_addr < EEPROMSIZE)
2892		return phys_addr - 1024 - fn;
2893	return -EINVAL;
2894}
2895
2896/**
2897 *	t4_seeprom_wp - enable/disable EEPROM write protection
2898 *	@adapter: the adapter
2899 *	@enable: whether to enable or disable write protection
2900 *
2901 *	Enables or disables write protection on the serial EEPROM.
2902 */
2903int t4_seeprom_wp(struct adapter *adapter, int enable)
2904{
2905	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2906}
2907
2908/**
2909 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2910 *	@v: Pointer to buffered vpd data structure
2911 *	@kw: The keyword to search for
2912 *
2913 *	Returns the value of the information field keyword or
2914 *	-ENOENT otherwise.
2915 */
2916static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2917{
2918	int i;
2919	unsigned int offset , len;
2920	const u8 *buf = (const u8 *)v;
2921	const u8 *vpdr_len = &v->vpdr_len[0];
2922	offset = sizeof(struct t4_vpd_hdr);
2923	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2924
2925	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2926		return -ENOENT;
2927	}
2928
2929	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2930		if(memcmp(buf + i , kw , 2) == 0){
2931			i += VPD_INFO_FLD_HDR_SIZE;
2932			return i;
2933		}
2934
2935		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2936	}
2937
2938	return -ENOENT;
2939}
2940
2941
2942/**
2943 *	get_vpd_params - read VPD parameters from VPD EEPROM
2944 *	@adapter: adapter to read
2945 *	@p: where to store the parameters
2946 *	@vpd: caller provided temporary space to read the VPD into
2947 *
2948 *	Reads card parameters stored in VPD EEPROM.
2949 */
2950static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2951    u8 *vpd)
2952{
2953	int i, ret, addr;
2954	int ec, sn, pn, na;
2955	u8 csum;
2956	const struct t4_vpd_hdr *v;
2957
2958	/*
2959	 * Card information normally starts at VPD_BASE but early cards had
2960	 * it at 0.
2961	 */
2962	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2963	if (ret)
2964		return (ret);
2965
2966	/*
2967	 * The VPD shall have a unique identifier specified by the PCI SIG.
2968	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2969	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2970	 * is expected to automatically put this entry at the
2971	 * beginning of the VPD.
2972	 */
2973	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2974
2975	for (i = 0; i < VPD_LEN; i += 4) {
2976		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2977		if (ret)
2978			return ret;
2979	}
2980 	v = (const struct t4_vpd_hdr *)vpd;
2981
2982#define FIND_VPD_KW(var,name) do { \
2983	var = get_vpd_keyword_val(v , name); \
2984	if (var < 0) { \
2985		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2986		return -EINVAL; \
2987	} \
2988} while (0)
2989
2990	FIND_VPD_KW(i, "RV");
2991	for (csum = 0; i >= 0; i--)
2992		csum += vpd[i];
2993
2994	if (csum) {
2995		CH_ERR(adapter,
2996			"corrupted VPD EEPROM, actual csum %u\n", csum);
2997		return -EINVAL;
2998	}
2999
3000	FIND_VPD_KW(ec, "EC");
3001	FIND_VPD_KW(sn, "SN");
3002	FIND_VPD_KW(pn, "PN");
3003	FIND_VPD_KW(na, "NA");
3004#undef FIND_VPD_KW
3005
3006	memcpy(p->id, v->id_data, ID_LEN);
3007	strstrip(p->id);
3008	memcpy(p->ec, vpd + ec, EC_LEN);
3009	strstrip(p->ec);
3010	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3011	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3012	strstrip(p->sn);
3013	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3014	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3015	strstrip((char *)p->pn);
3016	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3017	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3018	strstrip((char *)p->na);
3019
3020	return 0;
3021}
3022
3023/* serial flash and firmware constants and flash config file constants */
3024enum {
3025	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3026
3027	/* flash command opcodes */
3028	SF_PROG_PAGE    = 2,	/* program page */
3029	SF_WR_DISABLE   = 4,	/* disable writes */
3030	SF_RD_STATUS    = 5,	/* read status register */
3031	SF_WR_ENABLE    = 6,	/* enable writes */
3032	SF_RD_DATA_FAST = 0xb,	/* read flash */
3033	SF_RD_ID	= 0x9f,	/* read ID */
3034	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3035};
3036
3037/**
3038 *	sf1_read - read data from the serial flash
3039 *	@adapter: the adapter
3040 *	@byte_cnt: number of bytes to read
3041 *	@cont: whether another operation will be chained
3042 *	@lock: whether to lock SF for PL access only
3043 *	@valp: where to store the read data
3044 *
3045 *	Reads up to 4 bytes of data from the serial flash.  The location of
3046 *	the read needs to be specified prior to calling this by issuing the
3047 *	appropriate commands to the serial flash.
3048 */
3049static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3050		    int lock, u32 *valp)
3051{
3052	int ret;
3053
3054	if (!byte_cnt || byte_cnt > 4)
3055		return -EINVAL;
3056	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3057		return -EBUSY;
3058	t4_write_reg(adapter, A_SF_OP,
3059		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3060	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3061	if (!ret)
3062		*valp = t4_read_reg(adapter, A_SF_DATA);
3063	return ret;
3064}
3065
3066/**
3067 *	sf1_write - write data to the serial flash
3068 *	@adapter: the adapter
3069 *	@byte_cnt: number of bytes to write
3070 *	@cont: whether another operation will be chained
3071 *	@lock: whether to lock SF for PL access only
3072 *	@val: value to write
3073 *
3074 *	Writes up to 4 bytes of data to the serial flash.  The location of
3075 *	the write needs to be specified prior to calling this by issuing the
3076 *	appropriate commands to the serial flash.
3077 */
3078static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3079		     int lock, u32 val)
3080{
3081	if (!byte_cnt || byte_cnt > 4)
3082		return -EINVAL;
3083	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3084		return -EBUSY;
3085	t4_write_reg(adapter, A_SF_DATA, val);
3086	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3087		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3088	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3089}
3090
3091/**
3092 *	flash_wait_op - wait for a flash operation to complete
3093 *	@adapter: the adapter
3094 *	@attempts: max number of polls of the status register
3095 *	@delay: delay between polls in ms
3096 *
3097 *	Wait for a flash operation to complete by polling the status register.
3098 */
3099static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3100{
3101	int ret;
3102	u32 status;
3103
3104	while (1) {
3105		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3106		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3107			return ret;
3108		if (!(status & 1))
3109			return 0;
3110		if (--attempts == 0)
3111			return -EAGAIN;
3112		if (delay)
3113			msleep(delay);
3114	}
3115}
3116
3117/**
3118 *	t4_read_flash - read words from serial flash
3119 *	@adapter: the adapter
3120 *	@addr: the start address for the read
3121 *	@nwords: how many 32-bit words to read
3122 *	@data: where to store the read data
3123 *	@byte_oriented: whether to store data as bytes or as words
3124 *
3125 *	Read the specified number of 32-bit words from the serial flash.
3126 *	If @byte_oriented is set the read data is stored as a byte array
3127 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3128 *	natural endianness.
3129 */
3130int t4_read_flash(struct adapter *adapter, unsigned int addr,
3131		  unsigned int nwords, u32 *data, int byte_oriented)
3132{
3133	int ret;
3134
3135	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3136		return -EINVAL;
3137
3138	addr = swab32(addr) | SF_RD_DATA_FAST;
3139
3140	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3141	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3142		return ret;
3143
3144	for ( ; nwords; nwords--, data++) {
3145		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3146		if (nwords == 1)
3147			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3148		if (ret)
3149			return ret;
3150		if (byte_oriented)
3151			*data = (__force __u32)(cpu_to_be32(*data));
3152	}
3153	return 0;
3154}
3155
3156/**
3157 *	t4_write_flash - write up to a page of data to the serial flash
3158 *	@adapter: the adapter
3159 *	@addr: the start address to write
3160 *	@n: length of data to write in bytes
3161 *	@data: the data to write
3162 *	@byte_oriented: whether to store data as bytes or as words
3163 *
3164 *	Writes up to a page of data (256 bytes) to the serial flash starting
3165 *	at the given address.  All the data must be written to the same page.
3166 *	If @byte_oriented is set the write data is stored as byte stream
3167 *	(i.e. matches what on disk), otherwise in big-endian.
3168 */
3169int t4_write_flash(struct adapter *adapter, unsigned int addr,
3170			  unsigned int n, const u8 *data, int byte_oriented)
3171{
3172	int ret;
3173	u32 buf[SF_PAGE_SIZE / 4];
3174	unsigned int i, c, left, val, offset = addr & 0xff;
3175
3176	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3177		return -EINVAL;
3178
3179	val = swab32(addr) | SF_PROG_PAGE;
3180
3181	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3182	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3183		goto unlock;
3184
3185	for (left = n; left; left -= c) {
3186		c = min(left, 4U);
3187		for (val = 0, i = 0; i < c; ++i)
3188			val = (val << 8) + *data++;
3189
3190		if (!byte_oriented)
3191			val = cpu_to_be32(val);
3192
3193		ret = sf1_write(adapter, c, c != left, 1, val);
3194		if (ret)
3195			goto unlock;
3196	}
3197	ret = flash_wait_op(adapter, 8, 1);
3198	if (ret)
3199		goto unlock;
3200
3201	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3202
3203	/* Read the page to verify the write succeeded */
3204	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3205			    byte_oriented);
3206	if (ret)
3207		return ret;
3208
3209	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3210		CH_ERR(adapter,
3211			"failed to correctly write the flash page at %#x\n",
3212			addr);
3213		return -EIO;
3214	}
3215	return 0;
3216
3217unlock:
3218	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3219	return ret;
3220}
3221
3222/**
3223 *	t4_get_fw_version - read the firmware version
3224 *	@adapter: the adapter
3225 *	@vers: where to place the version
3226 *
3227 *	Reads the FW version from flash.
3228 */
3229int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3230{
3231	return t4_read_flash(adapter, FLASH_FW_START +
3232			     offsetof(struct fw_hdr, fw_ver), 1,
3233			     vers, 0);
3234}
3235
3236/**
3237 *	t4_get_bs_version - read the firmware bootstrap version
3238 *	@adapter: the adapter
3239 *	@vers: where to place the version
3240 *
3241 *	Reads the FW Bootstrap version from flash.
3242 */
3243int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3244{
3245	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3246			     offsetof(struct fw_hdr, fw_ver), 1,
3247			     vers, 0);
3248}
3249
3250/**
3251 *	t4_get_tp_version - read the TP microcode version
3252 *	@adapter: the adapter
3253 *	@vers: where to place the version
3254 *
3255 *	Reads the TP microcode version from flash.
3256 */
3257int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3258{
3259	return t4_read_flash(adapter, FLASH_FW_START +
3260			     offsetof(struct fw_hdr, tp_microcode_ver),
3261			     1, vers, 0);
3262}
3263
3264/**
3265 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3266 *	@adapter: the adapter
3267 *	@vers: where to place the version
3268 *
3269 *	Reads the Expansion ROM header from FLASH and returns the version
3270 *	number (if present) through the @vers return value pointer.  We return
3271 *	this in the Firmware Version Format since it's convenient.  Return
3272 *	0 on success, -ENOENT if no Expansion ROM is present.
3273 */
3274int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3275{
3276	struct exprom_header {
3277		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3278		unsigned char hdr_ver[4];	/* Expansion ROM version */
3279	} *hdr;
3280	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3281					   sizeof(u32))];
3282	int ret;
3283
3284	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3285			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3286			    0);
3287	if (ret)
3288		return ret;
3289
3290	hdr = (struct exprom_header *)exprom_header_buf;
3291	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3292		return -ENOENT;
3293
3294	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3295		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3296		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3297		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3298	return 0;
3299}
3300
3301/**
3302 *	t4_get_scfg_version - return the Serial Configuration version
3303 *	@adapter: the adapter
3304 *	@vers: where to place the version
3305 *
3306 *	Reads the Serial Configuration Version via the Firmware interface
3307 *	(thus this can only be called once we're ready to issue Firmware
3308 *	commands).  The format of the Serial Configuration version is
3309 *	adapter specific.  Returns 0 on success, an error on failure.
3310 *
3311 *	Note that early versions of the Firmware didn't include the ability
3312 *	to retrieve the Serial Configuration version, so we zero-out the
3313 *	return-value parameter in that case to avoid leaving it with
3314 *	garbage in it.
3315 *
3316 *	Also note that the Firmware will return its cached copy of the Serial
3317 *	Initialization Revision ID, not the actual Revision ID as written in
3318 *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3319 *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3320 *	it's best to defer calling this routine till after a FW_RESET_CMD has
3321 *	been issued if the Host Driver will be performing a full adapter
3322 *	initialization.
3323 */
3324int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3325{
3326	u32 scfgrev_param;
3327	int ret;
3328
3329	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3330			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3331	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3332			      1, &scfgrev_param, vers);
3333	if (ret)
3334		*vers = 0;
3335	return ret;
3336}
3337
3338/**
3339 *	t4_get_vpd_version - return the VPD version
3340 *	@adapter: the adapter
3341 *	@vers: where to place the version
3342 *
3343 *	Reads the VPD via the Firmware interface (thus this can only be called
3344 *	once we're ready to issue Firmware commands).  The format of the
3345 *	VPD version is adapter specific.  Returns 0 on success, an error on
3346 *	failure.
3347 *
3348 *	Note that early versions of the Firmware didn't include the ability
3349 *	to retrieve the VPD version, so we zero-out the return-value parameter
3350 *	in that case to avoid leaving it with garbage in it.
3351 *
3352 *	Also note that the Firmware will return its cached copy of the VPD
3353 *	Revision ID, not the actual Revision ID as written in the Serial
3354 *	EEPROM.  This is only an issue if a new VPD has been written and the
3355 *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3356 *	to defer calling this routine till after a FW_RESET_CMD has been issued
3357 *	if the Host Driver will be performing a full adapter initialization.
3358 */
3359int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3360{
3361	u32 vpdrev_param;
3362	int ret;
3363
3364	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3365			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3366	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3367			      1, &vpdrev_param, vers);
3368	if (ret)
3369		*vers = 0;
3370	return ret;
3371}
3372
3373/**
3374 *	t4_get_version_info - extract various chip/firmware version information
3375 *	@adapter: the adapter
3376 *
3377 *	Reads various chip/firmware version numbers and stores them into the
3378 *	adapter Adapter Parameters structure.  If any of the efforts fails
3379 *	the first failure will be returned, but all of the version numbers
3380 *	will be read.
3381 */
3382int t4_get_version_info(struct adapter *adapter)
3383{
3384	int ret = 0;
3385
3386	#define FIRST_RET(__getvinfo) \
3387	do { \
3388		int __ret = __getvinfo; \
3389		if (__ret && !ret) \
3390			ret = __ret; \
3391	} while (0)
3392
3393	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3394	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3395	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3396	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3397	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3398	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3399
3400	#undef FIRST_RET
3401
3402	return ret;
3403}
3404
3405/**
3406 *	t4_flash_erase_sectors - erase a range of flash sectors
3407 *	@adapter: the adapter
3408 *	@start: the first sector to erase
3409 *	@end: the last sector to erase
3410 *
3411 *	Erases the sectors in the given inclusive range.
3412 */
3413int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3414{
3415	int ret = 0;
3416
3417	if (end >= adapter->params.sf_nsec)
3418		return -EINVAL;
3419
3420	while (start <= end) {
3421		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3422		    (ret = sf1_write(adapter, 4, 0, 1,
3423				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3424		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3425			CH_ERR(adapter,
3426				"erase of flash sector %d failed, error %d\n",
3427				start, ret);
3428			break;
3429		}
3430		start++;
3431	}
3432	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3433	return ret;
3434}
3435
3436/**
3437 *	t4_flash_cfg_addr - return the address of the flash configuration file
3438 *	@adapter: the adapter
3439 *
3440 *	Return the address within the flash where the Firmware Configuration
3441 *	File is stored, or an error if the device FLASH is too small to contain
3442 *	a Firmware Configuration File.
3443 */
3444int t4_flash_cfg_addr(struct adapter *adapter)
3445{
3446	/*
3447	 * If the device FLASH isn't large enough to hold a Firmware
3448	 * Configuration File, return an error.
3449	 */
3450	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3451		return -ENOSPC;
3452
3453	return FLASH_CFG_START;
3454}
3455
3456/*
3457 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3458 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3459 * and emit an error message for mismatched firmware to save our caller the
3460 * effort ...
3461 */
3462static int t4_fw_matches_chip(struct adapter *adap,
3463			      const struct fw_hdr *hdr)
3464{
3465	/*
3466	 * The expression below will return FALSE for any unsupported adapter
3467	 * which will keep us "honest" in the future ...
3468	 */
3469	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3470	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3471	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3472		return 1;
3473
3474	CH_ERR(adap,
3475		"FW image (%d) is not suitable for this adapter (%d)\n",
3476		hdr->chip, chip_id(adap));
3477	return 0;
3478}
3479
3480/**
3481 *	t4_load_fw - download firmware
3482 *	@adap: the adapter
3483 *	@fw_data: the firmware image to write
3484 *	@size: image size
3485 *
3486 *	Write the supplied firmware image to the card's serial flash.
3487 */
3488int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3489{
3490	u32 csum;
3491	int ret, addr;
3492	unsigned int i;
3493	u8 first_page[SF_PAGE_SIZE];
3494	const u32 *p = (const u32 *)fw_data;
3495	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3496	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3497	unsigned int fw_start_sec;
3498	unsigned int fw_start;
3499	unsigned int fw_size;
3500
3501	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3502		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3503		fw_start = FLASH_FWBOOTSTRAP_START;
3504		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3505	} else {
3506		fw_start_sec = FLASH_FW_START_SEC;
3507 		fw_start = FLASH_FW_START;
3508		fw_size = FLASH_FW_MAX_SIZE;
3509	}
3510
3511	if (!size) {
3512		CH_ERR(adap, "FW image has no data\n");
3513		return -EINVAL;
3514	}
3515	if (size & 511) {
3516		CH_ERR(adap,
3517			"FW image size not multiple of 512 bytes\n");
3518		return -EINVAL;
3519	}
3520	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3521		CH_ERR(adap,
3522			"FW image size differs from size in FW header\n");
3523		return -EINVAL;
3524	}
3525	if (size > fw_size) {
3526		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3527			fw_size);
3528		return -EFBIG;
3529	}
3530	if (!t4_fw_matches_chip(adap, hdr))
3531		return -EINVAL;
3532
3533	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3534		csum += be32_to_cpu(p[i]);
3535
3536	if (csum != 0xffffffff) {
3537		CH_ERR(adap,
3538			"corrupted firmware image, checksum %#x\n", csum);
3539		return -EINVAL;
3540	}
3541
3542	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3543	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3544	if (ret)
3545		goto out;
3546
3547	/*
3548	 * We write the correct version at the end so the driver can see a bad
3549	 * version if the FW write fails.  Start by writing a copy of the
3550	 * first page with a bad version.
3551	 */
3552	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3553	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3554	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3555	if (ret)
3556		goto out;
3557
3558	addr = fw_start;
3559	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3560		addr += SF_PAGE_SIZE;
3561		fw_data += SF_PAGE_SIZE;
3562		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3563		if (ret)
3564			goto out;
3565	}
3566
3567	ret = t4_write_flash(adap,
3568			     fw_start + offsetof(struct fw_hdr, fw_ver),
3569			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3570out:
3571	if (ret)
3572		CH_ERR(adap, "firmware download failed, error %d\n",
3573			ret);
3574	return ret;
3575}
3576
3577/**
3578 *	t4_fwcache - firmware cache operation
3579 *	@adap: the adapter
3580 *	@op  : the operation (flush or flush and invalidate)
3581 */
3582int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3583{
3584	struct fw_params_cmd c;
3585
3586	memset(&c, 0, sizeof(c));
3587	c.op_to_vfn =
3588	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3589			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3590				V_FW_PARAMS_CMD_PFN(adap->pf) |
3591				V_FW_PARAMS_CMD_VFN(0));
3592	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3593	c.param[0].mnem =
3594	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3595			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3596	c.param[0].val = (__force __be32)op;
3597
3598	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3599}
3600
3601void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3602			unsigned int *pif_req_wrptr,
3603			unsigned int *pif_rsp_wrptr)
3604{
3605	int i, j;
3606	u32 cfg, val, req, rsp;
3607
3608	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3609	if (cfg & F_LADBGEN)
3610		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3611
3612	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3613	req = G_POLADBGWRPTR(val);
3614	rsp = G_PILADBGWRPTR(val);
3615	if (pif_req_wrptr)
3616		*pif_req_wrptr = req;
3617	if (pif_rsp_wrptr)
3618		*pif_rsp_wrptr = rsp;
3619
3620	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3621		for (j = 0; j < 6; j++) {
3622			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3623				     V_PILADBGRDPTR(rsp));
3624			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3625			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3626			req++;
3627			rsp++;
3628		}
3629		req = (req + 2) & M_POLADBGRDPTR;
3630		rsp = (rsp + 2) & M_PILADBGRDPTR;
3631	}
3632	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3633}
3634
3635void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3636{
3637	u32 cfg;
3638	int i, j, idx;
3639
3640	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3641	if (cfg & F_LADBGEN)
3642		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3643
3644	for (i = 0; i < CIM_MALA_SIZE; i++) {
3645		for (j = 0; j < 5; j++) {
3646			idx = 8 * i + j;
3647			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3648				     V_PILADBGRDPTR(idx));
3649			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3650			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3651		}
3652	}
3653	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3654}
3655
3656void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3657{
3658	unsigned int i, j;
3659
3660	for (i = 0; i < 8; i++) {
3661		u32 *p = la_buf + i;
3662
3663		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3664		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3665		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3666		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3667			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3668	}
3669}
3670
3671#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3672		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3673		     FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3674		     FW_PORT_CAP_ANEG)
3675
3676/**
3677 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3678 *	@phy: the PHY to setup
3679 *	@mac: the MAC to setup
3680 *	@lc: the requested link configuration
3681 *
3682 *	Set up a port's MAC and PHY according to a desired link configuration.
3683 *	- If the PHY can auto-negotiate first decide what to advertise, then
3684 *	  enable/disable auto-negotiation as desired, and reset.
3685 *	- If the PHY does not auto-negotiate just reset it.
3686 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3687 *	  otherwise do it later based on the outcome of auto-negotiation.
3688 */
3689int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3690		  struct link_config *lc)
3691{
3692	struct fw_port_cmd c;
3693	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3694
3695	lc->link_ok = 0;
3696	if (lc->requested_fc & PAUSE_RX)
3697		fc |= FW_PORT_CAP_FC_RX;
3698	if (lc->requested_fc & PAUSE_TX)
3699		fc |= FW_PORT_CAP_FC_TX;
3700
3701	memset(&c, 0, sizeof(c));
3702	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3703				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3704				     V_FW_PORT_CMD_PORTID(port));
3705	c.action_to_len16 =
3706		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3707			    FW_LEN16(c));
3708
3709	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3710		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3711					     fc);
3712		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3713	} else if (lc->autoneg == AUTONEG_DISABLE) {
3714		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3715		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3716	} else
3717		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3718
3719	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3720}
3721
3722/**
3723 *	t4_restart_aneg - restart autonegotiation
3724 *	@adap: the adapter
3725 *	@mbox: mbox to use for the FW command
3726 *	@port: the port id
3727 *
3728 *	Restarts autonegotiation for the selected port.
3729 */
3730int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3731{
3732	struct fw_port_cmd c;
3733
3734	memset(&c, 0, sizeof(c));
3735	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3736				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3737				     V_FW_PORT_CMD_PORTID(port));
3738	c.action_to_len16 =
3739		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3740			    FW_LEN16(c));
3741	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3742	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3743}
3744
3745typedef void (*int_handler_t)(struct adapter *adap);
3746
3747struct intr_info {
3748	unsigned int mask;	/* bits to check in interrupt status */
3749	const char *msg;	/* message to print or NULL */
3750	short stat_idx;		/* stat counter to increment or -1 */
3751	unsigned short fatal;	/* whether the condition reported is fatal */
3752	int_handler_t int_handler;	/* platform-specific int handler */
3753};
3754
3755/**
3756 *	t4_handle_intr_status - table driven interrupt handler
3757 *	@adapter: the adapter that generated the interrupt
3758 *	@reg: the interrupt status register to process
3759 *	@acts: table of interrupt actions
3760 *
3761 *	A table driven interrupt handler that applies a set of masks to an
3762 *	interrupt status word and performs the corresponding actions if the
3763 *	interrupts described by the mask have occurred.  The actions include
3764 *	optionally emitting a warning or alert message.  The table is terminated
3765 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3766 *	conditions.
3767 */
3768static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3769				 const struct intr_info *acts)
3770{
3771	int fatal = 0;
3772	unsigned int mask = 0;
3773	unsigned int status = t4_read_reg(adapter, reg);
3774
3775	for ( ; acts->mask; ++acts) {
3776		if (!(status & acts->mask))
3777			continue;
3778		if (acts->fatal) {
3779			fatal++;
3780			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3781				  status & acts->mask);
3782		} else if (acts->msg)
3783			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3784				 status & acts->mask);
3785		if (acts->int_handler)
3786			acts->int_handler(adapter);
3787		mask |= acts->mask;
3788	}
3789	status &= mask;
3790	if (status)	/* clear processed interrupts */
3791		t4_write_reg(adapter, reg, status);
3792	return fatal;
3793}
3794
3795/*
3796 * Interrupt handler for the PCIE module.
3797 */
3798static void pcie_intr_handler(struct adapter *adapter)
3799{
3800	static const struct intr_info sysbus_intr_info[] = {
3801		{ F_RNPP, "RXNP array parity error", -1, 1 },
3802		{ F_RPCP, "RXPC array parity error", -1, 1 },
3803		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3804		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3805		{ F_RFTP, "RXFT array parity error", -1, 1 },
3806		{ 0 }
3807	};
3808	static const struct intr_info pcie_port_intr_info[] = {
3809		{ F_TPCP, "TXPC array parity error", -1, 1 },
3810		{ F_TNPP, "TXNP array parity error", -1, 1 },
3811		{ F_TFTP, "TXFT array parity error", -1, 1 },
3812		{ F_TCAP, "TXCA array parity error", -1, 1 },
3813		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3814		{ F_RCAP, "RXCA array parity error", -1, 1 },
3815		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3816		{ F_RDPE, "Rx data parity error", -1, 1 },
3817		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3818		{ 0 }
3819	};
3820	static const struct intr_info pcie_intr_info[] = {
3821		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3822		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3823		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3824		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3825		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3826		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3827		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3828		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3829		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3830		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3831		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3832		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3833		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3834		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3835		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3836		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3837		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3838		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3839		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3840		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3841		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3842		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3843		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3844		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3845		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3846		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3847		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3848		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3849		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3850		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3851		  0 },
3852		{ 0 }
3853	};
3854
3855	static const struct intr_info t5_pcie_intr_info[] = {
3856		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3857		  -1, 1 },
3858		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3859		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3860		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3861		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3862		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3863		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3864		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3865		  -1, 1 },
3866		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3867		  -1, 1 },
3868		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3869		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3870		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3871		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3872		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3873		  -1, 1 },
3874		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3875		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3876		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3877		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3878		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3879		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3880		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3881		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3882		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3883		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3884		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3885		  -1, 1 },
3886		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3887		  -1, 1 },
3888		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3889		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3890		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3891		{ F_READRSPERR, "Outbound read error", -1,
3892		  0 },
3893		{ 0 }
3894	};
3895
3896	int fat;
3897
3898	if (is_t4(adapter))
3899		fat = t4_handle_intr_status(adapter,
3900				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3901				sysbus_intr_info) +
3902			t4_handle_intr_status(adapter,
3903					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3904					pcie_port_intr_info) +
3905			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3906					      pcie_intr_info);
3907	else
3908		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3909					    t5_pcie_intr_info);
3910	if (fat)
3911		t4_fatal_err(adapter);
3912}
3913
3914/*
3915 * TP interrupt handler.
3916 */
3917static void tp_intr_handler(struct adapter *adapter)
3918{
3919	static const struct intr_info tp_intr_info[] = {
3920		{ 0x3fffffff, "TP parity error", -1, 1 },
3921		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3922		{ 0 }
3923	};
3924
3925	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3926		t4_fatal_err(adapter);
3927}
3928
3929/*
3930 * SGE interrupt handler.
3931 */
3932static void sge_intr_handler(struct adapter *adapter)
3933{
3934	u64 v;
3935	u32 err;
3936
3937	static const struct intr_info sge_intr_info[] = {
3938		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3939		  "SGE received CPL exceeding IQE size", -1, 1 },
3940		{ F_ERR_INVALID_CIDX_INC,
3941		  "SGE GTS CIDX increment too large", -1, 0 },
3942		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3943		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3944		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3945		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3946		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3947		  0 },
3948		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3949		  0 },
3950		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3951		  0 },
3952		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3953		  0 },
3954		{ F_ERR_ING_CTXT_PRIO,
3955		  "SGE too many priority ingress contexts", -1, 0 },
3956		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3957		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3958		{ 0 }
3959	};
3960
3961	static const struct intr_info t4t5_sge_intr_info[] = {
3962		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3963		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3964		{ F_ERR_EGR_CTXT_PRIO,
3965		  "SGE too many priority egress contexts", -1, 0 },
3966		{ 0 }
3967	};
3968
3969	/*
3970 	* For now, treat below interrupts as fatal so that we disable SGE and
3971 	* get better debug */
3972	static const struct intr_info t6_sge_intr_info[] = {
3973		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3974		  "SGE PCIe error for a DBP thread", -1, 1 },
3975		{ F_FATAL_WRE_LEN,
3976		  "SGE Actual WRE packet is less than advertized length",
3977		  -1, 1 },
3978		{ 0 }
3979	};
3980
3981	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3982		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3983	if (v) {
3984		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
3985				(unsigned long long)v);
3986		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
3987		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
3988	}
3989
3990	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
3991	if (chip_id(adapter) <= CHELSIO_T5)
3992		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3993					   t4t5_sge_intr_info);
3994	else
3995		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3996					   t6_sge_intr_info);
3997
3998	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
3999	if (err & F_ERROR_QID_VALID) {
4000		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4001		if (err & F_UNCAPTURED_ERROR)
4002			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4003		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4004			     F_UNCAPTURED_ERROR);
4005	}
4006
4007	if (v != 0)
4008		t4_fatal_err(adapter);
4009}
4010
4011#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4012		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4013#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4014		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4015
4016/*
4017 * CIM interrupt handler.
4018 */
4019static void cim_intr_handler(struct adapter *adapter)
4020{
4021	static const struct intr_info cim_intr_info[] = {
4022		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4023		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4024		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4025		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4026		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4027		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4028		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4029		{ 0 }
4030	};
4031	static const struct intr_info cim_upintr_info[] = {
4032		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4033		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4034		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4035		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4036		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4037		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4038		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4039		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4040		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4041		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4042		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4043		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4044		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4045		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4046		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4047		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4048		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4049		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4050		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4051		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4052		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4053		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4054		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4055		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4056		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4057		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4058		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4059		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4060		{ 0 }
4061	};
4062	int fat;
4063
4064	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
4065		t4_report_fw_error(adapter);
4066
4067	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4068				    cim_intr_info) +
4069	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4070				    cim_upintr_info);
4071	if (fat)
4072		t4_fatal_err(adapter);
4073}
4074
4075/*
4076 * ULP RX interrupt handler.
4077 */
4078static void ulprx_intr_handler(struct adapter *adapter)
4079{
4080	static const struct intr_info ulprx_intr_info[] = {
4081		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4082		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4083		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4084		{ 0 }
4085	};
4086
4087	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4088		t4_fatal_err(adapter);
4089}
4090
4091/*
4092 * ULP TX interrupt handler.
4093 */
4094static void ulptx_intr_handler(struct adapter *adapter)
4095{
4096	static const struct intr_info ulptx_intr_info[] = {
4097		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4098		  0 },
4099		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4100		  0 },
4101		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4102		  0 },
4103		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4104		  0 },
4105		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4106		{ 0 }
4107	};
4108
4109	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4110		t4_fatal_err(adapter);
4111}
4112
4113/*
4114 * PM TX interrupt handler.
4115 */
4116static void pmtx_intr_handler(struct adapter *adapter)
4117{
4118	static const struct intr_info pmtx_intr_info[] = {
4119		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4120		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4121		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4122		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4123		{ 0xffffff0, "PMTX framing error", -1, 1 },
4124		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4125		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4126		  1 },
4127		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4128		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4129		{ 0 }
4130	};
4131
4132	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4133		t4_fatal_err(adapter);
4134}
4135
4136/*
4137 * PM RX interrupt handler.
4138 */
4139static void pmrx_intr_handler(struct adapter *adapter)
4140{
4141	static const struct intr_info pmrx_intr_info[] = {
4142		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4143		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4144		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4145		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4146		  1 },
4147		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4148		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4149		{ 0 }
4150	};
4151
4152	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4153		t4_fatal_err(adapter);
4154}
4155
4156/*
4157 * CPL switch interrupt handler.
4158 */
4159static void cplsw_intr_handler(struct adapter *adapter)
4160{
4161	static const struct intr_info cplsw_intr_info[] = {
4162		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4163		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4164		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4165		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4166		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4167		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4168		{ 0 }
4169	};
4170
4171	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4172		t4_fatal_err(adapter);
4173}
4174
4175/*
4176 * LE interrupt handler.
4177 */
4178static void le_intr_handler(struct adapter *adap)
4179{
4180	unsigned int chip_ver = chip_id(adap);
4181	static const struct intr_info le_intr_info[] = {
4182		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4183		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4184		{ F_PARITYERR, "LE parity error", -1, 1 },
4185		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4186		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4187		{ 0 }
4188	};
4189
4190	static const struct intr_info t6_le_intr_info[] = {
4191		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4192		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4193		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4194		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4195		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4196		{ 0 }
4197	};
4198
4199	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4200				  (chip_ver <= CHELSIO_T5) ?
4201				  le_intr_info : t6_le_intr_info))
4202		t4_fatal_err(adap);
4203}
4204
4205/*
4206 * MPS interrupt handler.
4207 */
4208static void mps_intr_handler(struct adapter *adapter)
4209{
4210	static const struct intr_info mps_rx_intr_info[] = {
4211		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4212		{ 0 }
4213	};
4214	static const struct intr_info mps_tx_intr_info[] = {
4215		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4216		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4217		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4218		  -1, 1 },
4219		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4220		  -1, 1 },
4221		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4222		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4223		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4224		{ 0 }
4225	};
4226	static const struct intr_info mps_trc_intr_info[] = {
4227		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4228		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4229		  1 },
4230		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4231		{ 0 }
4232	};
4233	static const struct intr_info mps_stat_sram_intr_info[] = {
4234		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4235		{ 0 }
4236	};
4237	static const struct intr_info mps_stat_tx_intr_info[] = {
4238		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4239		{ 0 }
4240	};
4241	static const struct intr_info mps_stat_rx_intr_info[] = {
4242		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4243		{ 0 }
4244	};
4245	static const struct intr_info mps_cls_intr_info[] = {
4246		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4247		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4248		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4249		{ 0 }
4250	};
4251
4252	int fat;
4253
4254	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4255				    mps_rx_intr_info) +
4256	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4257				    mps_tx_intr_info) +
4258	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4259				    mps_trc_intr_info) +
4260	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4261				    mps_stat_sram_intr_info) +
4262	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4263				    mps_stat_tx_intr_info) +
4264	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4265				    mps_stat_rx_intr_info) +
4266	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4267				    mps_cls_intr_info);
4268
4269	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4270	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4271	if (fat)
4272		t4_fatal_err(adapter);
4273}
4274
4275#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4276		      F_ECC_UE_INT_CAUSE)
4277
4278/*
4279 * EDC/MC interrupt handler.
4280 */
4281static void mem_intr_handler(struct adapter *adapter, int idx)
4282{
4283	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4284
4285	unsigned int addr, cnt_addr, v;
4286
4287	if (idx <= MEM_EDC1) {
4288		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4289		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4290	} else if (idx == MEM_MC) {
4291		if (is_t4(adapter)) {
4292			addr = A_MC_INT_CAUSE;
4293			cnt_addr = A_MC_ECC_STATUS;
4294		} else {
4295			addr = A_MC_P_INT_CAUSE;
4296			cnt_addr = A_MC_P_ECC_STATUS;
4297		}
4298	} else {
4299		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4300		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4301	}
4302
4303	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4304	if (v & F_PERR_INT_CAUSE)
4305		CH_ALERT(adapter, "%s FIFO parity error\n",
4306			  name[idx]);
4307	if (v & F_ECC_CE_INT_CAUSE) {
4308		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4309
4310		t4_edc_err_read(adapter, idx);
4311
4312		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4313		CH_WARN_RATELIMIT(adapter,
4314				  "%u %s correctable ECC data error%s\n",
4315				  cnt, name[idx], cnt > 1 ? "s" : "");
4316	}
4317	if (v & F_ECC_UE_INT_CAUSE)
4318		CH_ALERT(adapter,
4319			 "%s uncorrectable ECC data error\n", name[idx]);
4320
4321	t4_write_reg(adapter, addr, v);
4322	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4323		t4_fatal_err(adapter);
4324}
4325
4326/*
4327 * MA interrupt handler.
4328 */
4329static void ma_intr_handler(struct adapter *adapter)
4330{
4331	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4332
4333	if (status & F_MEM_PERR_INT_CAUSE) {
4334		CH_ALERT(adapter,
4335			  "MA parity error, parity status %#x\n",
4336			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4337		if (is_t5(adapter))
4338			CH_ALERT(adapter,
4339				  "MA parity error, parity status %#x\n",
4340				  t4_read_reg(adapter,
4341					      A_MA_PARITY_ERROR_STATUS2));
4342	}
4343	if (status & F_MEM_WRAP_INT_CAUSE) {
4344		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4345		CH_ALERT(adapter, "MA address wrap-around error by "
4346			  "client %u to address %#x\n",
4347			  G_MEM_WRAP_CLIENT_NUM(v),
4348			  G_MEM_WRAP_ADDRESS(v) << 4);
4349	}
4350	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4351	t4_fatal_err(adapter);
4352}
4353
4354/*
4355 * SMB interrupt handler.
4356 */
4357static void smb_intr_handler(struct adapter *adap)
4358{
4359	static const struct intr_info smb_intr_info[] = {
4360		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4361		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4362		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4363		{ 0 }
4364	};
4365
4366	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4367		t4_fatal_err(adap);
4368}
4369
4370/*
4371 * NC-SI interrupt handler.
4372 */
4373static void ncsi_intr_handler(struct adapter *adap)
4374{
4375	static const struct intr_info ncsi_intr_info[] = {
4376		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4377		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4378		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4379		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4380		{ 0 }
4381	};
4382
4383	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4384		t4_fatal_err(adap);
4385}
4386
4387/*
4388 * XGMAC interrupt handler.
4389 */
4390static void xgmac_intr_handler(struct adapter *adap, int port)
4391{
4392	u32 v, int_cause_reg;
4393
4394	if (is_t4(adap))
4395		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4396	else
4397		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4398
4399	v = t4_read_reg(adap, int_cause_reg);
4400
4401	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4402	if (!v)
4403		return;
4404
4405	if (v & F_TXFIFO_PRTY_ERR)
4406		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4407			  port);
4408	if (v & F_RXFIFO_PRTY_ERR)
4409		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4410			  port);
4411	t4_write_reg(adap, int_cause_reg, v);
4412	t4_fatal_err(adap);
4413}
4414
4415/*
4416 * PL interrupt handler.
4417 */
4418static void pl_intr_handler(struct adapter *adap)
4419{
4420	static const struct intr_info pl_intr_info[] = {
4421		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4422		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4423		{ 0 }
4424	};
4425
4426	static const struct intr_info t5_pl_intr_info[] = {
4427		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4428		{ 0 }
4429	};
4430
4431	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4432				  is_t4(adap) ?
4433				  pl_intr_info : t5_pl_intr_info))
4434		t4_fatal_err(adap);
4435}
4436
4437#define PF_INTR_MASK (F_PFSW | F_PFCIM)
4438
4439/**
4440 *	t4_slow_intr_handler - control path interrupt handler
4441 *	@adapter: the adapter
4442 *
4443 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4444 *	The designation 'slow' is because it involves register reads, while
4445 *	data interrupts typically don't involve any MMIOs.
4446 */
4447int t4_slow_intr_handler(struct adapter *adapter)
4448{
4449	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4450
4451	if (!(cause & GLBL_INTR_MASK))
4452		return 0;
4453	if (cause & F_CIM)
4454		cim_intr_handler(adapter);
4455	if (cause & F_MPS)
4456		mps_intr_handler(adapter);
4457	if (cause & F_NCSI)
4458		ncsi_intr_handler(adapter);
4459	if (cause & F_PL)
4460		pl_intr_handler(adapter);
4461	if (cause & F_SMB)
4462		smb_intr_handler(adapter);
4463	if (cause & F_MAC0)
4464		xgmac_intr_handler(adapter, 0);
4465	if (cause & F_MAC1)
4466		xgmac_intr_handler(adapter, 1);
4467	if (cause & F_MAC2)
4468		xgmac_intr_handler(adapter, 2);
4469	if (cause & F_MAC3)
4470		xgmac_intr_handler(adapter, 3);
4471	if (cause & F_PCIE)
4472		pcie_intr_handler(adapter);
4473	if (cause & F_MC0)
4474		mem_intr_handler(adapter, MEM_MC);
4475	if (is_t5(adapter) && (cause & F_MC1))
4476		mem_intr_handler(adapter, MEM_MC1);
4477	if (cause & F_EDC0)
4478		mem_intr_handler(adapter, MEM_EDC0);
4479	if (cause & F_EDC1)
4480		mem_intr_handler(adapter, MEM_EDC1);
4481	if (cause & F_LE)
4482		le_intr_handler(adapter);
4483	if (cause & F_TP)
4484		tp_intr_handler(adapter);
4485	if (cause & F_MA)
4486		ma_intr_handler(adapter);
4487	if (cause & F_PM_TX)
4488		pmtx_intr_handler(adapter);
4489	if (cause & F_PM_RX)
4490		pmrx_intr_handler(adapter);
4491	if (cause & F_ULP_RX)
4492		ulprx_intr_handler(adapter);
4493	if (cause & F_CPL_SWITCH)
4494		cplsw_intr_handler(adapter);
4495	if (cause & F_SGE)
4496		sge_intr_handler(adapter);
4497	if (cause & F_ULP_TX)
4498		ulptx_intr_handler(adapter);
4499
4500	/* Clear the interrupts just processed for which we are the master. */
4501	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4502	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4503	return 1;
4504}
4505
4506/**
4507 *	t4_intr_enable - enable interrupts
4508 *	@adapter: the adapter whose interrupts should be enabled
4509 *
4510 *	Enable PF-specific interrupts for the calling function and the top-level
4511 *	interrupt concentrator for global interrupts.  Interrupts are already
4512 *	enabled at each module,	here we just enable the roots of the interrupt
4513 *	hierarchies.
4514 *
4515 *	Note: this function should be called only when the driver manages
4516 *	non PF-specific interrupts from the various HW modules.  Only one PCI
4517 *	function at a time should be doing this.
4518 */
4519void t4_intr_enable(struct adapter *adapter)
4520{
4521	u32 val = 0;
4522	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4523	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4524		  ? G_SOURCEPF(whoami)
4525		  : G_T6_SOURCEPF(whoami));
4526
4527	if (chip_id(adapter) <= CHELSIO_T5)
4528		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4529	else
4530		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4531	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4532		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4533		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4534		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4535		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4536		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4537		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4538	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4539	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4540}
4541
4542/**
4543 *	t4_intr_disable - disable interrupts
4544 *	@adapter: the adapter whose interrupts should be disabled
4545 *
4546 *	Disable interrupts.  We only disable the top-level interrupt
4547 *	concentrators.  The caller must be a PCI function managing global
4548 *	interrupts.
4549 */
4550void t4_intr_disable(struct adapter *adapter)
4551{
4552	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4553	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4554		  ? G_SOURCEPF(whoami)
4555		  : G_T6_SOURCEPF(whoami));
4556
4557	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4558	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4559}
4560
4561/**
4562 *	t4_intr_clear - clear all interrupts
4563 *	@adapter: the adapter whose interrupts should be cleared
4564 *
4565 *	Clears all interrupts.  The caller must be a PCI function managing
4566 *	global interrupts.
4567 */
4568void t4_intr_clear(struct adapter *adapter)
4569{
4570	static const unsigned int cause_reg[] = {
4571		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4572		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4573		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4574		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4575		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4576		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4577		A_TP_INT_CAUSE,
4578		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4579		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4580		A_MPS_RX_PERR_INT_CAUSE,
4581		A_CPL_INTR_CAUSE,
4582		MYPF_REG(A_PL_PF_INT_CAUSE),
4583		A_PL_PL_INT_CAUSE,
4584		A_LE_DB_INT_CAUSE,
4585	};
4586
4587	unsigned int i;
4588
4589	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4590		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4591
4592	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4593				A_MC_P_INT_CAUSE, 0xffffffff);
4594
4595	if (is_t4(adapter)) {
4596		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4597				0xffffffff);
4598		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4599				0xffffffff);
4600	} else
4601		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4602
4603	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4604	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4605}
4606
4607/**
4608 *	hash_mac_addr - return the hash value of a MAC address
4609 *	@addr: the 48-bit Ethernet MAC address
4610 *
4611 *	Hashes a MAC address according to the hash function used by HW inexact
4612 *	(hash) address matching.
4613 */
4614static int hash_mac_addr(const u8 *addr)
4615{
4616	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4617	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4618	a ^= b;
4619	a ^= (a >> 12);
4620	a ^= (a >> 6);
4621	return a & 0x3f;
4622}
4623
4624/**
4625 *	t4_config_rss_range - configure a portion of the RSS mapping table
4626 *	@adapter: the adapter
4627 *	@mbox: mbox to use for the FW command
4628 *	@viid: virtual interface whose RSS subtable is to be written
4629 *	@start: start entry in the table to write
4630 *	@n: how many table entries to write
4631 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4632 *	@nrspq: number of values in @rspq
4633 *
4634 *	Programs the selected part of the VI's RSS mapping table with the
4635 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4636 *	until the full table range is populated.
4637 *
4638 *	The caller must ensure the values in @rspq are in the range allowed for
4639 *	@viid.
4640 */
4641int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4642			int start, int n, const u16 *rspq, unsigned int nrspq)
4643{
4644	int ret;
4645	const u16 *rsp = rspq;
4646	const u16 *rsp_end = rspq + nrspq;
4647	struct fw_rss_ind_tbl_cmd cmd;
4648
4649	memset(&cmd, 0, sizeof(cmd));
4650	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4651				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4652				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4653	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4654
4655	/*
4656	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4657	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4658	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4659	 * reserved.
4660	 */
4661	while (n > 0) {
4662		int nq = min(n, 32);
4663		int nq_packed = 0;
4664		__be32 *qp = &cmd.iq0_to_iq2;
4665
4666		/*
4667		 * Set up the firmware RSS command header to send the next
4668		 * "nq" Ingress Queue IDs to the firmware.
4669		 */
4670		cmd.niqid = cpu_to_be16(nq);
4671		cmd.startidx = cpu_to_be16(start);
4672
4673		/*
4674		 * "nq" more done for the start of the next loop.
4675		 */
4676		start += nq;
4677		n -= nq;
4678
4679		/*
4680		 * While there are still Ingress Queue IDs to stuff into the
4681		 * current firmware RSS command, retrieve them from the
4682		 * Ingress Queue ID array and insert them into the command.
4683		 */
4684		while (nq > 0) {
4685			/*
4686			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4687			 * around the Ingress Queue ID array if necessary) and
4688			 * insert them into the firmware RSS command at the
4689			 * current 3-tuple position within the commad.
4690			 */
4691			u16 qbuf[3];
4692			u16 *qbp = qbuf;
4693			int nqbuf = min(3, nq);
4694
4695			nq -= nqbuf;
4696			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4697			while (nqbuf && nq_packed < 32) {
4698				nqbuf--;
4699				nq_packed++;
4700				*qbp++ = *rsp++;
4701				if (rsp >= rsp_end)
4702					rsp = rspq;
4703			}
4704			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4705					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4706					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4707		}
4708
4709		/*
4710		 * Send this portion of the RRS table update to the firmware;
4711		 * bail out on any errors.
4712		 */
4713		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4714		if (ret)
4715			return ret;
4716	}
4717	return 0;
4718}
4719
4720/**
4721 *	t4_config_glbl_rss - configure the global RSS mode
4722 *	@adapter: the adapter
4723 *	@mbox: mbox to use for the FW command
4724 *	@mode: global RSS mode
4725 *	@flags: mode-specific flags
4726 *
4727 *	Sets the global RSS mode.
4728 */
4729int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4730		       unsigned int flags)
4731{
4732	struct fw_rss_glb_config_cmd c;
4733
4734	memset(&c, 0, sizeof(c));
4735	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4736				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4737	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4738	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4739		c.u.manual.mode_pkd =
4740			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4741	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4742		c.u.basicvirtual.mode_keymode =
4743			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4744		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4745	} else
4746		return -EINVAL;
4747	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4748}
4749
4750/**
4751 *	t4_config_vi_rss - configure per VI RSS settings
4752 *	@adapter: the adapter
4753 *	@mbox: mbox to use for the FW command
4754 *	@viid: the VI id
4755 *	@flags: RSS flags
4756 *	@defq: id of the default RSS queue for the VI.
4757 *	@skeyidx: RSS secret key table index for non-global mode
4758 *	@skey: RSS vf_scramble key for VI.
4759 *
4760 *	Configures VI-specific RSS properties.
4761 */
4762int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4763		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4764		     unsigned int skey)
4765{
4766	struct fw_rss_vi_config_cmd c;
4767
4768	memset(&c, 0, sizeof(c));
4769	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4770				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4771				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4772	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4773	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4774					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4775	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4776					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4777	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4778
4779	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4780}
4781
4782/* Read an RSS table row */
4783static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4784{
4785	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4786	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4787				   5, 0, val);
4788}
4789
4790/**
4791 *	t4_read_rss - read the contents of the RSS mapping table
4792 *	@adapter: the adapter
4793 *	@map: holds the contents of the RSS mapping table
4794 *
4795 *	Reads the contents of the RSS hash->queue mapping table.
4796 */
4797int t4_read_rss(struct adapter *adapter, u16 *map)
4798{
4799	u32 val;
4800	int i, ret;
4801
4802	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4803		ret = rd_rss_row(adapter, i, &val);
4804		if (ret)
4805			return ret;
4806		*map++ = G_LKPTBLQUEUE0(val);
4807		*map++ = G_LKPTBLQUEUE1(val);
4808	}
4809	return 0;
4810}
4811
4812/**
4813 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4814 *	@adap: the adapter
4815 *	@vals: where the indirect register values are stored/written
4816 *	@nregs: how many indirect registers to read/write
4817 *	@start_idx: index of first indirect register to read/write
4818 *	@rw: Read (1) or Write (0)
4819 *
4820 *	Access TP PIO registers through LDST
4821 */
4822void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4823		     unsigned int start_index, unsigned int rw)
4824{
4825	int ret, i;
4826	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4827	struct fw_ldst_cmd c;
4828
4829	for (i = 0 ; i < nregs; i++) {
4830		memset(&c, 0, sizeof(c));
4831		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4832						F_FW_CMD_REQUEST |
4833						(rw ? F_FW_CMD_READ :
4834						     F_FW_CMD_WRITE) |
4835						V_FW_LDST_CMD_ADDRSPACE(cmd));
4836		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4837
4838		c.u.addrval.addr = cpu_to_be32(start_index + i);
4839		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4840		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4841		if (ret == 0) {
4842			if (rw)
4843				vals[i] = be32_to_cpu(c.u.addrval.val);
4844		}
4845	}
4846}
4847
4848/**
4849 *	t4_read_rss_key - read the global RSS key
4850 *	@adap: the adapter
4851 *	@key: 10-entry array holding the 320-bit RSS key
4852 *
4853 *	Reads the global 320-bit RSS key.
4854 */
4855void t4_read_rss_key(struct adapter *adap, u32 *key)
4856{
4857	if (t4_use_ldst(adap))
4858		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4859	else
4860		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4861				 A_TP_RSS_SECRET_KEY0);
4862}
4863
4864/**
4865 *	t4_write_rss_key - program one of the RSS keys
4866 *	@adap: the adapter
4867 *	@key: 10-entry array holding the 320-bit RSS key
4868 *	@idx: which RSS key to write
4869 *
4870 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4871 *	0..15 the corresponding entry in the RSS key table is written,
4872 *	otherwise the global RSS key is written.
4873 */
4874void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4875{
4876	u8 rss_key_addr_cnt = 16;
4877	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4878
4879	/*
4880	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4881	 * allows access to key addresses 16-63 by using KeyWrAddrX
4882	 * as index[5:4](upper 2) into key table
4883	 */
4884	if ((chip_id(adap) > CHELSIO_T5) &&
4885	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4886		rss_key_addr_cnt = 32;
4887
4888	if (t4_use_ldst(adap))
4889		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4890	else
4891		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4892				  A_TP_RSS_SECRET_KEY0);
4893
4894	if (idx >= 0 && idx < rss_key_addr_cnt) {
4895		if (rss_key_addr_cnt > 16)
4896			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4897				     vrt | V_KEYWRADDRX(idx >> 4) |
4898				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4899		else
4900			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4901				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
4902	}
4903}
4904
4905/**
4906 *	t4_read_rss_pf_config - read PF RSS Configuration Table
4907 *	@adapter: the adapter
4908 *	@index: the entry in the PF RSS table to read
4909 *	@valp: where to store the returned value
4910 *
4911 *	Reads the PF RSS Configuration Table at the specified index and returns
4912 *	the value found there.
4913 */
4914void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4915			   u32 *valp)
4916{
4917	if (t4_use_ldst(adapter))
4918		t4_fw_tp_pio_rw(adapter, valp, 1,
4919				A_TP_RSS_PF0_CONFIG + index, 1);
4920	else
4921		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4922				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4923}
4924
4925/**
4926 *	t4_write_rss_pf_config - write PF RSS Configuration Table
4927 *	@adapter: the adapter
4928 *	@index: the entry in the VF RSS table to read
4929 *	@val: the value to store
4930 *
4931 *	Writes the PF RSS Configuration Table at the specified index with the
4932 *	specified value.
4933 */
4934void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4935			    u32 val)
4936{
4937	if (t4_use_ldst(adapter))
4938		t4_fw_tp_pio_rw(adapter, &val, 1,
4939				A_TP_RSS_PF0_CONFIG + index, 0);
4940	else
4941		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4942				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4943}
4944
4945/**
4946 *	t4_read_rss_vf_config - read VF RSS Configuration Table
4947 *	@adapter: the adapter
4948 *	@index: the entry in the VF RSS table to read
4949 *	@vfl: where to store the returned VFL
4950 *	@vfh: where to store the returned VFH
4951 *
4952 *	Reads the VF RSS Configuration Table at the specified index and returns
4953 *	the (VFL, VFH) values found there.
4954 */
4955void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4956			   u32 *vfl, u32 *vfh)
4957{
4958	u32 vrt, mask, data;
4959
4960	if (chip_id(adapter) <= CHELSIO_T5) {
4961		mask = V_VFWRADDR(M_VFWRADDR);
4962		data = V_VFWRADDR(index);
4963	} else {
4964		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4965		 data = V_T6_VFWRADDR(index);
4966	}
4967	/*
4968	 * Request that the index'th VF Table values be read into VFL/VFH.
4969	 */
4970	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4971	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4972	vrt |= data | F_VFRDEN;
4973	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4974
4975	/*
4976	 * Grab the VFL/VFH values ...
4977	 */
4978	if (t4_use_ldst(adapter)) {
4979		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4980		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4981	} else {
4982		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4983				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4984		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4985				 vfh, 1, A_TP_RSS_VFH_CONFIG);
4986	}
4987}
4988
4989/**
4990 *	t4_write_rss_vf_config - write VF RSS Configuration Table
4991 *
4992 *	@adapter: the adapter
4993 *	@index: the entry in the VF RSS table to write
4994 *	@vfl: the VFL to store
4995 *	@vfh: the VFH to store
4996 *
4997 *	Writes the VF RSS Configuration Table at the specified index with the
4998 *	specified (VFL, VFH) values.
4999 */
5000void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5001			    u32 vfl, u32 vfh)
5002{
5003	u32 vrt, mask, data;
5004
5005	if (chip_id(adapter) <= CHELSIO_T5) {
5006		mask = V_VFWRADDR(M_VFWRADDR);
5007		data = V_VFWRADDR(index);
5008	} else {
5009		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5010		data = V_T6_VFWRADDR(index);
5011	}
5012
5013	/*
5014	 * Load up VFL/VFH with the values to be written ...
5015	 */
5016	if (t4_use_ldst(adapter)) {
5017		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
5018		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
5019	} else {
5020		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5021				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
5022		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5023				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
5024	}
5025
5026	/*
5027	 * Write the VFL/VFH into the VF Table at index'th location.
5028	 */
5029	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5030	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5031	vrt |= data | F_VFRDEN;
5032	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5033}
5034
5035/**
5036 *	t4_read_rss_pf_map - read PF RSS Map
5037 *	@adapter: the adapter
5038 *
5039 *	Reads the PF RSS Map register and returns its value.
5040 */
5041u32 t4_read_rss_pf_map(struct adapter *adapter)
5042{
5043	u32 pfmap;
5044
5045	if (t4_use_ldst(adapter))
5046		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
5047	else
5048		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5049				 &pfmap, 1, A_TP_RSS_PF_MAP);
5050	return pfmap;
5051}
5052
5053/**
5054 *	t4_write_rss_pf_map - write PF RSS Map
5055 *	@adapter: the adapter
5056 *	@pfmap: PF RSS Map value
5057 *
5058 *	Writes the specified value to the PF RSS Map register.
5059 */
5060void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
5061{
5062	if (t4_use_ldst(adapter))
5063		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
5064	else
5065		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5066				  &pfmap, 1, A_TP_RSS_PF_MAP);
5067}
5068
5069/**
5070 *	t4_read_rss_pf_mask - read PF RSS Mask
5071 *	@adapter: the adapter
5072 *
5073 *	Reads the PF RSS Mask register and returns its value.
5074 */
5075u32 t4_read_rss_pf_mask(struct adapter *adapter)
5076{
5077	u32 pfmask;
5078
5079	if (t4_use_ldst(adapter))
5080		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
5081	else
5082		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5083				 &pfmask, 1, A_TP_RSS_PF_MSK);
5084	return pfmask;
5085}
5086
5087/**
5088 *	t4_write_rss_pf_mask - write PF RSS Mask
5089 *	@adapter: the adapter
5090 *	@pfmask: PF RSS Mask value
5091 *
5092 *	Writes the specified value to the PF RSS Mask register.
5093 */
5094void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
5095{
5096	if (t4_use_ldst(adapter))
5097		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
5098	else
5099		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5100				  &pfmask, 1, A_TP_RSS_PF_MSK);
5101}
5102
5103/**
5104 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5105 *	@adap: the adapter
5106 *	@v4: holds the TCP/IP counter values
5107 *	@v6: holds the TCP/IPv6 counter values
5108 *
5109 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5110 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5111 */
5112void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5113			 struct tp_tcp_stats *v6)
5114{
5115	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5116
5117#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5118#define STAT(x)     val[STAT_IDX(x)]
5119#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5120
5121	if (v4) {
5122		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5123				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
5124		v4->tcp_out_rsts = STAT(OUT_RST);
5125		v4->tcp_in_segs  = STAT64(IN_SEG);
5126		v4->tcp_out_segs = STAT64(OUT_SEG);
5127		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5128	}
5129	if (v6) {
5130		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5131				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5132		v6->tcp_out_rsts = STAT(OUT_RST);
5133		v6->tcp_in_segs  = STAT64(IN_SEG);
5134		v6->tcp_out_segs = STAT64(OUT_SEG);
5135		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5136	}
5137#undef STAT64
5138#undef STAT
5139#undef STAT_IDX
5140}
5141
5142/**
5143 *	t4_tp_get_err_stats - read TP's error MIB counters
5144 *	@adap: the adapter
5145 *	@st: holds the counter values
5146 *
5147 *	Returns the values of TP's error counters.
5148 */
5149void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5150{
5151	int nchan = adap->chip_params->nchan;
5152
5153	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5154			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5155	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5156			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5157	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5158			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5159	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5160			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5161	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5162			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5163	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5164			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5165	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5166			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5167	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5168			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5169
5170	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5171			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5172}
5173
5174/**
5175 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5176 *	@adap: the adapter
5177 *	@st: holds the counter values
5178 *
5179 *	Returns the values of TP's proxy counters.
5180 */
5181void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5182{
5183	int nchan = adap->chip_params->nchan;
5184
5185	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5186			 nchan, A_TP_MIB_TNL_LPBK_0);
5187}
5188
5189/**
5190 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5191 *	@adap: the adapter
5192 *	@st: holds the counter values
5193 *
5194 *	Returns the values of TP's CPL counters.
5195 */
5196void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5197{
5198	int nchan = adap->chip_params->nchan;
5199
5200	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5201			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5202	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5203			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5204}
5205
5206/**
5207 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5208 *	@adap: the adapter
5209 *	@st: holds the counter values
5210 *
5211 *	Returns the values of TP's RDMA counters.
5212 */
5213void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5214{
5215	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5216			 2, A_TP_MIB_RQE_DFR_PKT);
5217}
5218
5219/**
5220 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5221 *	@adap: the adapter
5222 *	@idx: the port index
5223 *	@st: holds the counter values
5224 *
5225 *	Returns the values of TP's FCoE counters for the selected port.
5226 */
5227void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5228		       struct tp_fcoe_stats *st)
5229{
5230	u32 val[2];
5231
5232	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5233			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5234	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5235			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5236	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5237			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5238	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5239}
5240
5241/**
5242 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5243 *	@adap: the adapter
5244 *	@st: holds the counter values
5245 *
5246 *	Returns the values of TP's counters for non-TCP directly-placed packets.
5247 */
5248void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5249{
5250	u32 val[4];
5251
5252	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5253			 A_TP_MIB_USM_PKTS);
5254	st->frames = val[0];
5255	st->drops = val[1];
5256	st->octets = ((u64)val[2] << 32) | val[3];
5257}
5258
5259/**
5260 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5261 *	@adap: the adapter
5262 *	@mtus: where to store the MTU values
5263 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5264 *
5265 *	Reads the HW path MTU table.
5266 */
5267void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5268{
5269	u32 v;
5270	int i;
5271
5272	for (i = 0; i < NMTUS; ++i) {
5273		t4_write_reg(adap, A_TP_MTU_TABLE,
5274			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5275		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5276		mtus[i] = G_MTUVALUE(v);
5277		if (mtu_log)
5278			mtu_log[i] = G_MTUWIDTH(v);
5279	}
5280}
5281
5282/**
5283 *	t4_read_cong_tbl - reads the congestion control table
5284 *	@adap: the adapter
5285 *	@incr: where to store the alpha values
5286 *
5287 *	Reads the additive increments programmed into the HW congestion
5288 *	control table.
5289 */
5290void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5291{
5292	unsigned int mtu, w;
5293
5294	for (mtu = 0; mtu < NMTUS; ++mtu)
5295		for (w = 0; w < NCCTRL_WIN; ++w) {
5296			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5297				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5298			incr[mtu][w] = (u16)t4_read_reg(adap,
5299						A_TP_CCTRL_TABLE) & 0x1fff;
5300		}
5301}
5302
5303/**
5304 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5305 *	@adap: the adapter
5306 *	@addr: the indirect TP register address
5307 *	@mask: specifies the field within the register to modify
5308 *	@val: new value for the field
5309 *
5310 *	Sets a field of an indirect TP register to the given value.
5311 */
5312void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5313			    unsigned int mask, unsigned int val)
5314{
5315	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5316	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5317	t4_write_reg(adap, A_TP_PIO_DATA, val);
5318}
5319
5320/**
5321 *	init_cong_ctrl - initialize congestion control parameters
5322 *	@a: the alpha values for congestion control
5323 *	@b: the beta values for congestion control
5324 *
5325 *	Initialize the congestion control parameters.
5326 */
5327static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5328{
5329	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5330	a[9] = 2;
5331	a[10] = 3;
5332	a[11] = 4;
5333	a[12] = 5;
5334	a[13] = 6;
5335	a[14] = 7;
5336	a[15] = 8;
5337	a[16] = 9;
5338	a[17] = 10;
5339	a[18] = 14;
5340	a[19] = 17;
5341	a[20] = 21;
5342	a[21] = 25;
5343	a[22] = 30;
5344	a[23] = 35;
5345	a[24] = 45;
5346	a[25] = 60;
5347	a[26] = 80;
5348	a[27] = 100;
5349	a[28] = 200;
5350	a[29] = 300;
5351	a[30] = 400;
5352	a[31] = 500;
5353
5354	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5355	b[9] = b[10] = 1;
5356	b[11] = b[12] = 2;
5357	b[13] = b[14] = b[15] = b[16] = 3;
5358	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5359	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5360	b[28] = b[29] = 6;
5361	b[30] = b[31] = 7;
5362}
5363
5364/* The minimum additive increment value for the congestion control table */
5365#define CC_MIN_INCR 2U
5366
5367/**
5368 *	t4_load_mtus - write the MTU and congestion control HW tables
5369 *	@adap: the adapter
5370 *	@mtus: the values for the MTU table
5371 *	@alpha: the values for the congestion control alpha parameter
5372 *	@beta: the values for the congestion control beta parameter
5373 *
5374 *	Write the HW MTU table with the supplied MTUs and the high-speed
5375 *	congestion control table with the supplied alpha, beta, and MTUs.
5376 *	We write the two tables together because the additive increments
5377 *	depend on the MTUs.
5378 */
5379void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5380		  const unsigned short *alpha, const unsigned short *beta)
5381{
5382	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5383		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5384		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5385		28672, 40960, 57344, 81920, 114688, 163840, 229376
5386	};
5387
5388	unsigned int i, w;
5389
5390	for (i = 0; i < NMTUS; ++i) {
5391		unsigned int mtu = mtus[i];
5392		unsigned int log2 = fls(mtu);
5393
5394		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5395			log2--;
5396		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5397			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5398
5399		for (w = 0; w < NCCTRL_WIN; ++w) {
5400			unsigned int inc;
5401
5402			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5403				  CC_MIN_INCR);
5404
5405			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5406				     (w << 16) | (beta[w] << 13) | inc);
5407		}
5408	}
5409}
5410
5411/**
5412 *	t4_set_pace_tbl - set the pace table
5413 *	@adap: the adapter
5414 *	@pace_vals: the pace values in microseconds
5415 *	@start: index of the first entry in the HW pace table to set
5416 *	@n: how many entries to set
5417 *
5418 *	Sets (a subset of the) HW pace table.
5419 */
5420int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5421		     unsigned int start, unsigned int n)
5422{
5423	unsigned int vals[NTX_SCHED], i;
5424	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5425
5426	if (n > NTX_SCHED)
5427	    return -ERANGE;
5428
5429	/* convert values from us to dack ticks, rounding to closest value */
5430	for (i = 0; i < n; i++, pace_vals++) {
5431		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5432		if (vals[i] > 0x7ff)
5433			return -ERANGE;
5434		if (*pace_vals && vals[i] == 0)
5435			return -ERANGE;
5436	}
5437	for (i = 0; i < n; i++, start++)
5438		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5439	return 0;
5440}
5441
5442/**
5443 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5444 *	@adap: the adapter
5445 *	@kbps: target rate in Kbps
5446 *	@sched: the scheduler index
5447 *
5448 *	Configure a Tx HW scheduler for the target rate.
5449 */
5450int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5451{
5452	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5453	unsigned int clk = adap->params.vpd.cclk * 1000;
5454	unsigned int selected_cpt = 0, selected_bpt = 0;
5455
5456	if (kbps > 0) {
5457		kbps *= 125;     /* -> bytes */
5458		for (cpt = 1; cpt <= 255; cpt++) {
5459			tps = clk / cpt;
5460			bpt = (kbps + tps / 2) / tps;
5461			if (bpt > 0 && bpt <= 255) {
5462				v = bpt * tps;
5463				delta = v >= kbps ? v - kbps : kbps - v;
5464				if (delta < mindelta) {
5465					mindelta = delta;
5466					selected_cpt = cpt;
5467					selected_bpt = bpt;
5468				}
5469			} else if (selected_cpt)
5470				break;
5471		}
5472		if (!selected_cpt)
5473			return -EINVAL;
5474	}
5475	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5476		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5477	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5478	if (sched & 1)
5479		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5480	else
5481		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5482	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5483	return 0;
5484}
5485
5486/**
5487 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5488 *	@adap: the adapter
5489 *	@sched: the scheduler index
5490 *	@ipg: the interpacket delay in tenths of nanoseconds
5491 *
5492 *	Set the interpacket delay for a HW packet rate scheduler.
5493 */
5494int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5495{
5496	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5497
5498	/* convert ipg to nearest number of core clocks */
5499	ipg *= core_ticks_per_usec(adap);
5500	ipg = (ipg + 5000) / 10000;
5501	if (ipg > M_TXTIMERSEPQ0)
5502		return -EINVAL;
5503
5504	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5505	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5506	if (sched & 1)
5507		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5508	else
5509		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5510	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5511	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5512	return 0;
5513}
5514
5515/*
5516 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5517 * clocks.  The formula is
5518 *
5519 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5520 *
5521 * which is equivalent to
5522 *
5523 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5524 */
5525static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5526{
5527	u64 v = bytes256 * adap->params.vpd.cclk;
5528
5529	return v * 62 + v / 2;
5530}
5531
5532/**
5533 *	t4_get_chan_txrate - get the current per channel Tx rates
5534 *	@adap: the adapter
5535 *	@nic_rate: rates for NIC traffic
5536 *	@ofld_rate: rates for offloaded traffic
5537 *
5538 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5539 *	for each channel.
5540 */
5541void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5542{
5543	u32 v;
5544
5545	v = t4_read_reg(adap, A_TP_TX_TRATE);
5546	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5547	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5548	if (adap->chip_params->nchan > 2) {
5549		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5550		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5551	}
5552
5553	v = t4_read_reg(adap, A_TP_TX_ORATE);
5554	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5555	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5556	if (adap->chip_params->nchan > 2) {
5557		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5558		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5559	}
5560}
5561
5562/**
5563 *	t4_set_trace_filter - configure one of the tracing filters
5564 *	@adap: the adapter
5565 *	@tp: the desired trace filter parameters
5566 *	@idx: which filter to configure
5567 *	@enable: whether to enable or disable the filter
5568 *
5569 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5570 *	it indicates that the filter is already written in the register and it
5571 *	just needs to be enabled or disabled.
5572 */
5573int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5574    int idx, int enable)
5575{
5576	int i, ofst = idx * 4;
5577	u32 data_reg, mask_reg, cfg;
5578	u32 multitrc = F_TRCMULTIFILTER;
5579	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5580
5581	if (idx < 0 || idx >= NTRACE)
5582		return -EINVAL;
5583
5584	if (tp == NULL || !enable) {
5585		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5586		    enable ? en : 0);
5587		return 0;
5588	}
5589
5590	/*
5591	 * TODO - After T4 data book is updated, specify the exact
5592	 * section below.
5593	 *
5594	 * See T4 data book - MPS section for a complete description
5595	 * of the below if..else handling of A_MPS_TRC_CFG register
5596	 * value.
5597	 */
5598	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5599	if (cfg & F_TRCMULTIFILTER) {
5600		/*
5601		 * If multiple tracers are enabled, then maximum
5602		 * capture size is 2.5KB (FIFO size of a single channel)
5603		 * minus 2 flits for CPL_TRACE_PKT header.
5604		 */
5605		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5606			return -EINVAL;
5607	} else {
5608		/*
5609		 * If multiple tracers are disabled, to avoid deadlocks
5610		 * maximum packet capture size of 9600 bytes is recommended.
5611		 * Also in this mode, only trace0 can be enabled and running.
5612		 */
5613		multitrc = 0;
5614		if (tp->snap_len > 9600 || idx)
5615			return -EINVAL;
5616	}
5617
5618	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5619	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5620	    tp->min_len > M_TFMINPKTSIZE)
5621		return -EINVAL;
5622
5623	/* stop the tracer we'll be changing */
5624	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5625
5626	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5627	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5628	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5629
5630	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5631		t4_write_reg(adap, data_reg, tp->data[i]);
5632		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5633	}
5634	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5635		     V_TFCAPTUREMAX(tp->snap_len) |
5636		     V_TFMINPKTSIZE(tp->min_len));
5637	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5638		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5639		     (is_t4(adap) ?
5640		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5641		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5642
5643	return 0;
5644}
5645
5646/**
5647 *	t4_get_trace_filter - query one of the tracing filters
5648 *	@adap: the adapter
5649 *	@tp: the current trace filter parameters
5650 *	@idx: which trace filter to query
5651 *	@enabled: non-zero if the filter is enabled
5652 *
5653 *	Returns the current settings of one of the HW tracing filters.
5654 */
5655void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5656			 int *enabled)
5657{
5658	u32 ctla, ctlb;
5659	int i, ofst = idx * 4;
5660	u32 data_reg, mask_reg;
5661
5662	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5663	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5664
5665	if (is_t4(adap)) {
5666		*enabled = !!(ctla & F_TFEN);
5667		tp->port =  G_TFPORT(ctla);
5668		tp->invert = !!(ctla & F_TFINVERTMATCH);
5669	} else {
5670		*enabled = !!(ctla & F_T5_TFEN);
5671		tp->port = G_T5_TFPORT(ctla);
5672		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5673	}
5674	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5675	tp->min_len = G_TFMINPKTSIZE(ctlb);
5676	tp->skip_ofst = G_TFOFFSET(ctla);
5677	tp->skip_len = G_TFLENGTH(ctla);
5678
5679	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5680	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5681	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5682
5683	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5684		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5685		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5686	}
5687}
5688
5689/**
5690 *	t4_pmtx_get_stats - returns the HW stats from PMTX
5691 *	@adap: the adapter
5692 *	@cnt: where to store the count statistics
5693 *	@cycles: where to store the cycle statistics
5694 *
5695 *	Returns performance statistics from PMTX.
5696 */
5697void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5698{
5699	int i;
5700	u32 data[2];
5701
5702	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5703		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5704		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5705		if (is_t4(adap))
5706			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5707		else {
5708			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5709					 A_PM_TX_DBG_DATA, data, 2,
5710					 A_PM_TX_DBG_STAT_MSB);
5711			cycles[i] = (((u64)data[0] << 32) | data[1]);
5712		}
5713	}
5714}
5715
5716/**
5717 *	t4_pmrx_get_stats - returns the HW stats from PMRX
5718 *	@adap: the adapter
5719 *	@cnt: where to store the count statistics
5720 *	@cycles: where to store the cycle statistics
5721 *
5722 *	Returns performance statistics from PMRX.
5723 */
5724void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5725{
5726	int i;
5727	u32 data[2];
5728
5729	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5730		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5731		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5732		if (is_t4(adap)) {
5733			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5734		} else {
5735			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5736					 A_PM_RX_DBG_DATA, data, 2,
5737					 A_PM_RX_DBG_STAT_MSB);
5738			cycles[i] = (((u64)data[0] << 32) | data[1]);
5739		}
5740	}
5741}
5742
5743/**
5744 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5745 *	@adap: the adapter
5746 *	@idx: the port index
5747 *
5748 *	Returns a bitmap indicating which MPS buffer groups are associated
5749 *	with the given port.  Bit i is set if buffer group i is used by the
5750 *	port.
5751 */
5752static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5753{
5754	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5755
5756	if (n == 0)
5757		return idx == 0 ? 0xf : 0;
5758	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5759		return idx < 2 ? (3 << (2 * idx)) : 0;
5760	return 1 << idx;
5761}
5762
5763/**
5764 *      t4_get_port_type_description - return Port Type string description
5765 *      @port_type: firmware Port Type enumeration
5766 */
5767const char *t4_get_port_type_description(enum fw_port_type port_type)
5768{
5769	static const char *const port_type_description[] = {
5770		"Fiber_XFI",
5771		"Fiber_XAUI",
5772		"BT_SGMII",
5773		"BT_XFI",
5774		"BT_XAUI",
5775		"KX4",
5776		"CX4",
5777		"KX",
5778		"KR",
5779		"SFP",
5780		"BP_AP",
5781		"BP4_AP",
5782		"QSFP_10G",
5783		"QSA",
5784		"QSFP",
5785		"BP40_BA",
5786		"KR4_100G",
5787		"CR4_QSFP",
5788		"CR_QSFP",
5789		"CR_SFP28",
5790		"SFP28",
5791		"KR_SFP28",
5792		"CR2_QSFP",
5793	};
5794
5795	if (port_type < ARRAY_SIZE(port_type_description))
5796		return port_type_description[port_type];
5797	return "UNKNOWN";
5798}
5799
5800/**
5801 *      t4_get_port_stats_offset - collect port stats relative to a previous
5802 *				   snapshot
5803 *      @adap: The adapter
5804 *      @idx: The port
5805 *      @stats: Current stats to fill
5806 *      @offset: Previous stats snapshot
5807 */
5808void t4_get_port_stats_offset(struct adapter *adap, int idx,
5809		struct port_stats *stats,
5810		struct port_stats *offset)
5811{
5812	u64 *s, *o;
5813	int i;
5814
5815	t4_get_port_stats(adap, idx, stats);
5816	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5817			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5818			i++, s++, o++)
5819		*s -= *o;
5820}
5821
5822/**
5823 *	t4_get_port_stats - collect port statistics
5824 *	@adap: the adapter
5825 *	@idx: the port index
5826 *	@p: the stats structure to fill
5827 *
5828 *	Collect statistics related to the given port from HW.
5829 */
5830void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5831{
5832	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5833	u32 stat_ctl;
5834
5835#define GET_STAT(name) \
5836	t4_read_reg64(adap, \
5837	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5838	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5839#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5840
5841	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5842
5843	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5844	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5845	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5846	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5847	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5848	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5849	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5850	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5851	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5852	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5853	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5854	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5855	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5856	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5857	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5858	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5859	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5860	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5861	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5862	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5863	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5864	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5865	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5866
5867	if (stat_ctl & F_COUNTPAUSESTATTX) {
5868		p->tx_frames -= p->tx_pause;
5869		p->tx_octets -= p->tx_pause * 64;
5870		p->tx_mcast_frames -= p->tx_pause;
5871	}
5872
5873	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5874	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5875	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5876	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5877	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5878	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5879	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5880	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5881	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5882	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5883	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5884	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5885	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5886	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5887	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5888	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5889	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5890	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5891	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5892	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5893	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5894	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5895	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5896	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5897	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5898	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5899	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5900
5901	if (stat_ctl & F_COUNTPAUSESTATRX) {
5902		p->rx_frames -= p->rx_pause;
5903		p->rx_octets -= p->rx_pause * 64;
5904		p->rx_mcast_frames -= p->rx_pause;
5905	}
5906
5907	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5908	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5909	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5910	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5911	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5912	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5913	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5914	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5915
5916#undef GET_STAT
5917#undef GET_STAT_COM
5918}
5919
5920/**
5921 *	t4_get_lb_stats - collect loopback port statistics
5922 *	@adap: the adapter
5923 *	@idx: the loopback port index
5924 *	@p: the stats structure to fill
5925 *
5926 *	Return HW statistics for the given loopback port.
5927 */
5928void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5929{
5930	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5931
5932#define GET_STAT(name) \
5933	t4_read_reg64(adap, \
5934	(is_t4(adap) ? \
5935	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5936	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5937#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5938
5939	p->octets	= GET_STAT(BYTES);
5940	p->frames	= GET_STAT(FRAMES);
5941	p->bcast_frames	= GET_STAT(BCAST);
5942	p->mcast_frames	= GET_STAT(MCAST);
5943	p->ucast_frames	= GET_STAT(UCAST);
5944	p->error_frames	= GET_STAT(ERROR);
5945
5946	p->frames_64		= GET_STAT(64B);
5947	p->frames_65_127	= GET_STAT(65B_127B);
5948	p->frames_128_255	= GET_STAT(128B_255B);
5949	p->frames_256_511	= GET_STAT(256B_511B);
5950	p->frames_512_1023	= GET_STAT(512B_1023B);
5951	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5952	p->frames_1519_max	= GET_STAT(1519B_MAX);
5953	p->drop			= GET_STAT(DROP_FRAMES);
5954
5955	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5956	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5957	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5958	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5959	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5960	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5961	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5962	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5963
5964#undef GET_STAT
5965#undef GET_STAT_COM
5966}
5967
5968/**
5969 *	t4_wol_magic_enable - enable/disable magic packet WoL
5970 *	@adap: the adapter
5971 *	@port: the physical port index
5972 *	@addr: MAC address expected in magic packets, %NULL to disable
5973 *
5974 *	Enables/disables magic packet wake-on-LAN for the selected port.
5975 */
5976void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5977			 const u8 *addr)
5978{
5979	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5980
5981	if (is_t4(adap)) {
5982		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5983		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5984		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5985	} else {
5986		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
5987		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
5988		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5989	}
5990
5991	if (addr) {
5992		t4_write_reg(adap, mag_id_reg_l,
5993			     (addr[2] << 24) | (addr[3] << 16) |
5994			     (addr[4] << 8) | addr[5]);
5995		t4_write_reg(adap, mag_id_reg_h,
5996			     (addr[0] << 8) | addr[1]);
5997	}
5998	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
5999			 V_MAGICEN(addr != NULL));
6000}
6001
6002/**
6003 *	t4_wol_pat_enable - enable/disable pattern-based WoL
6004 *	@adap: the adapter
6005 *	@port: the physical port index
6006 *	@map: bitmap of which HW pattern filters to set
6007 *	@mask0: byte mask for bytes 0-63 of a packet
6008 *	@mask1: byte mask for bytes 64-127 of a packet
6009 *	@crc: Ethernet CRC for selected bytes
6010 *	@enable: enable/disable switch
6011 *
6012 *	Sets the pattern filters indicated in @map to mask out the bytes
6013 *	specified in @mask0/@mask1 in received packets and compare the CRC of
6014 *	the resulting packet against @crc.  If @enable is %true pattern-based
6015 *	WoL is enabled, otherwise disabled.
6016 */
6017int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6018		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6019{
6020	int i;
6021	u32 port_cfg_reg;
6022
6023	if (is_t4(adap))
6024		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6025	else
6026		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6027
6028	if (!enable) {
6029		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6030		return 0;
6031	}
6032	if (map > 0xff)
6033		return -EINVAL;
6034
6035#define EPIO_REG(name) \
6036	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6037	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6038
6039	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6040	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6041	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6042
6043	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6044		if (!(map & 1))
6045			continue;
6046
6047		/* write byte masks */
6048		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6049		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6050		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6051		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6052			return -ETIMEDOUT;
6053
6054		/* write CRC */
6055		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6056		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6057		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6058		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6059			return -ETIMEDOUT;
6060	}
6061#undef EPIO_REG
6062
6063	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6064	return 0;
6065}
6066
6067/*     t4_mk_filtdelwr - create a delete filter WR
6068 *     @ftid: the filter ID
6069 *     @wr: the filter work request to populate
6070 *     @qid: ingress queue to receive the delete notification
6071 *
6072 *     Creates a filter work request to delete the supplied filter.  If @qid is
6073 *     negative the delete notification is suppressed.
6074 */
6075void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6076{
6077	memset(wr, 0, sizeof(*wr));
6078	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6079	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6080	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6081				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6082	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6083	if (qid >= 0)
6084		wr->rx_chan_rx_rpl_iq =
6085				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6086}
6087
6088#define INIT_CMD(var, cmd, rd_wr) do { \
6089	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6090					F_FW_CMD_REQUEST | \
6091					F_FW_CMD_##rd_wr); \
6092	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6093} while (0)
6094
6095int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6096			  u32 addr, u32 val)
6097{
6098	u32 ldst_addrspace;
6099	struct fw_ldst_cmd c;
6100
6101	memset(&c, 0, sizeof(c));
6102	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6103	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6104					F_FW_CMD_REQUEST |
6105					F_FW_CMD_WRITE |
6106					ldst_addrspace);
6107	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6108	c.u.addrval.addr = cpu_to_be32(addr);
6109	c.u.addrval.val = cpu_to_be32(val);
6110
6111	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6112}
6113
6114/**
6115 *	t4_mdio_rd - read a PHY register through MDIO
6116 *	@adap: the adapter
6117 *	@mbox: mailbox to use for the FW command
6118 *	@phy_addr: the PHY address
6119 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6120 *	@reg: the register to read
6121 *	@valp: where to store the value
6122 *
6123 *	Issues a FW command through the given mailbox to read a PHY register.
6124 */
6125int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6126	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6127{
6128	int ret;
6129	u32 ldst_addrspace;
6130	struct fw_ldst_cmd c;
6131
6132	memset(&c, 0, sizeof(c));
6133	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6134	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6135					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6136					ldst_addrspace);
6137	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6138	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6139					 V_FW_LDST_CMD_MMD(mmd));
6140	c.u.mdio.raddr = cpu_to_be16(reg);
6141
6142	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6143	if (ret == 0)
6144		*valp = be16_to_cpu(c.u.mdio.rval);
6145	return ret;
6146}
6147
6148/**
6149 *	t4_mdio_wr - write a PHY register through MDIO
6150 *	@adap: the adapter
6151 *	@mbox: mailbox to use for the FW command
6152 *	@phy_addr: the PHY address
6153 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6154 *	@reg: the register to write
6155 *	@valp: value to write
6156 *
6157 *	Issues a FW command through the given mailbox to write a PHY register.
6158 */
6159int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6160	       unsigned int mmd, unsigned int reg, unsigned int val)
6161{
6162	u32 ldst_addrspace;
6163	struct fw_ldst_cmd c;
6164
6165	memset(&c, 0, sizeof(c));
6166	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6167	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6168					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6169					ldst_addrspace);
6170	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6171	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6172					 V_FW_LDST_CMD_MMD(mmd));
6173	c.u.mdio.raddr = cpu_to_be16(reg);
6174	c.u.mdio.rval = cpu_to_be16(val);
6175
6176	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6177}
6178
6179/**
6180 *
6181 *	t4_sge_decode_idma_state - decode the idma state
6182 *	@adap: the adapter
6183 *	@state: the state idma is stuck in
6184 */
6185void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6186{
6187	static const char * const t4_decode[] = {
6188		"IDMA_IDLE",
6189		"IDMA_PUSH_MORE_CPL_FIFO",
6190		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6191		"Not used",
6192		"IDMA_PHYSADDR_SEND_PCIEHDR",
6193		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6194		"IDMA_PHYSADDR_SEND_PAYLOAD",
6195		"IDMA_SEND_FIFO_TO_IMSG",
6196		"IDMA_FL_REQ_DATA_FL_PREP",
6197		"IDMA_FL_REQ_DATA_FL",
6198		"IDMA_FL_DROP",
6199		"IDMA_FL_H_REQ_HEADER_FL",
6200		"IDMA_FL_H_SEND_PCIEHDR",
6201		"IDMA_FL_H_PUSH_CPL_FIFO",
6202		"IDMA_FL_H_SEND_CPL",
6203		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6204		"IDMA_FL_H_SEND_IP_HDR",
6205		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6206		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6207		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6208		"IDMA_FL_D_SEND_PCIEHDR",
6209		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6210		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6211		"IDMA_FL_SEND_PCIEHDR",
6212		"IDMA_FL_PUSH_CPL_FIFO",
6213		"IDMA_FL_SEND_CPL",
6214		"IDMA_FL_SEND_PAYLOAD_FIRST",
6215		"IDMA_FL_SEND_PAYLOAD",
6216		"IDMA_FL_REQ_NEXT_DATA_FL",
6217		"IDMA_FL_SEND_NEXT_PCIEHDR",
6218		"IDMA_FL_SEND_PADDING",
6219		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6220		"IDMA_FL_SEND_FIFO_TO_IMSG",
6221		"IDMA_FL_REQ_DATAFL_DONE",
6222		"IDMA_FL_REQ_HEADERFL_DONE",
6223	};
6224	static const char * const t5_decode[] = {
6225		"IDMA_IDLE",
6226		"IDMA_ALMOST_IDLE",
6227		"IDMA_PUSH_MORE_CPL_FIFO",
6228		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6229		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6230		"IDMA_PHYSADDR_SEND_PCIEHDR",
6231		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6232		"IDMA_PHYSADDR_SEND_PAYLOAD",
6233		"IDMA_SEND_FIFO_TO_IMSG",
6234		"IDMA_FL_REQ_DATA_FL",
6235		"IDMA_FL_DROP",
6236		"IDMA_FL_DROP_SEND_INC",
6237		"IDMA_FL_H_REQ_HEADER_FL",
6238		"IDMA_FL_H_SEND_PCIEHDR",
6239		"IDMA_FL_H_PUSH_CPL_FIFO",
6240		"IDMA_FL_H_SEND_CPL",
6241		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6242		"IDMA_FL_H_SEND_IP_HDR",
6243		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6244		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6245		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6246		"IDMA_FL_D_SEND_PCIEHDR",
6247		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6248		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6249		"IDMA_FL_SEND_PCIEHDR",
6250		"IDMA_FL_PUSH_CPL_FIFO",
6251		"IDMA_FL_SEND_CPL",
6252		"IDMA_FL_SEND_PAYLOAD_FIRST",
6253		"IDMA_FL_SEND_PAYLOAD",
6254		"IDMA_FL_REQ_NEXT_DATA_FL",
6255		"IDMA_FL_SEND_NEXT_PCIEHDR",
6256		"IDMA_FL_SEND_PADDING",
6257		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6258	};
6259	static const char * const t6_decode[] = {
6260		"IDMA_IDLE",
6261		"IDMA_PUSH_MORE_CPL_FIFO",
6262		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6263		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6264		"IDMA_PHYSADDR_SEND_PCIEHDR",
6265		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6266		"IDMA_PHYSADDR_SEND_PAYLOAD",
6267		"IDMA_FL_REQ_DATA_FL",
6268		"IDMA_FL_DROP",
6269		"IDMA_FL_DROP_SEND_INC",
6270		"IDMA_FL_H_REQ_HEADER_FL",
6271		"IDMA_FL_H_SEND_PCIEHDR",
6272		"IDMA_FL_H_PUSH_CPL_FIFO",
6273		"IDMA_FL_H_SEND_CPL",
6274		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6275		"IDMA_FL_H_SEND_IP_HDR",
6276		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6277		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6278		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6279		"IDMA_FL_D_SEND_PCIEHDR",
6280		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6281		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6282		"IDMA_FL_SEND_PCIEHDR",
6283		"IDMA_FL_PUSH_CPL_FIFO",
6284		"IDMA_FL_SEND_CPL",
6285		"IDMA_FL_SEND_PAYLOAD_FIRST",
6286		"IDMA_FL_SEND_PAYLOAD",
6287		"IDMA_FL_REQ_NEXT_DATA_FL",
6288		"IDMA_FL_SEND_NEXT_PCIEHDR",
6289		"IDMA_FL_SEND_PADDING",
6290		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6291	};
6292	static const u32 sge_regs[] = {
6293		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6294		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6295		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6296	};
6297	const char * const *sge_idma_decode;
6298	int sge_idma_decode_nstates;
6299	int i;
6300	unsigned int chip_version = chip_id(adapter);
6301
6302	/* Select the right set of decode strings to dump depending on the
6303	 * adapter chip type.
6304	 */
6305	switch (chip_version) {
6306	case CHELSIO_T4:
6307		sge_idma_decode = (const char * const *)t4_decode;
6308		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6309		break;
6310
6311	case CHELSIO_T5:
6312		sge_idma_decode = (const char * const *)t5_decode;
6313		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6314		break;
6315
6316	case CHELSIO_T6:
6317		sge_idma_decode = (const char * const *)t6_decode;
6318		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6319		break;
6320
6321	default:
6322		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6323		return;
6324	}
6325
6326	if (state < sge_idma_decode_nstates)
6327		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6328	else
6329		CH_WARN(adapter, "idma state %d unknown\n", state);
6330
6331	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6332		CH_WARN(adapter, "SGE register %#x value %#x\n",
6333			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6334}
6335
6336/**
6337 *      t4_sge_ctxt_flush - flush the SGE context cache
6338 *      @adap: the adapter
6339 *      @mbox: mailbox to use for the FW command
6340 *
6341 *      Issues a FW command through the given mailbox to flush the
6342 *      SGE context cache.
6343 */
6344int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6345{
6346	int ret;
6347	u32 ldst_addrspace;
6348	struct fw_ldst_cmd c;
6349
6350	memset(&c, 0, sizeof(c));
6351	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6352	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6353					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6354					ldst_addrspace);
6355	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6356	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6357
6358	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6359	return ret;
6360}
6361
6362/**
6363 *      t4_fw_hello - establish communication with FW
6364 *      @adap: the adapter
6365 *      @mbox: mailbox to use for the FW command
6366 *      @evt_mbox: mailbox to receive async FW events
6367 *      @master: specifies the caller's willingness to be the device master
6368 *	@state: returns the current device state (if non-NULL)
6369 *
6370 *	Issues a command to establish communication with FW.  Returns either
6371 *	an error (negative integer) or the mailbox of the Master PF.
6372 */
6373int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6374		enum dev_master master, enum dev_state *state)
6375{
6376	int ret;
6377	struct fw_hello_cmd c;
6378	u32 v;
6379	unsigned int master_mbox;
6380	int retries = FW_CMD_HELLO_RETRIES;
6381
6382retry:
6383	memset(&c, 0, sizeof(c));
6384	INIT_CMD(c, HELLO, WRITE);
6385	c.err_to_clearinit = cpu_to_be32(
6386		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6387		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6388		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6389					mbox : M_FW_HELLO_CMD_MBMASTER) |
6390		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6391		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6392		F_FW_HELLO_CMD_CLEARINIT);
6393
6394	/*
6395	 * Issue the HELLO command to the firmware.  If it's not successful
6396	 * but indicates that we got a "busy" or "timeout" condition, retry
6397	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6398	 * retry limit, check to see if the firmware left us any error
6399	 * information and report that if so ...
6400	 */
6401	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6402	if (ret != FW_SUCCESS) {
6403		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6404			goto retry;
6405		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6406			t4_report_fw_error(adap);
6407		return ret;
6408	}
6409
6410	v = be32_to_cpu(c.err_to_clearinit);
6411	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6412	if (state) {
6413		if (v & F_FW_HELLO_CMD_ERR)
6414			*state = DEV_STATE_ERR;
6415		else if (v & F_FW_HELLO_CMD_INIT)
6416			*state = DEV_STATE_INIT;
6417		else
6418			*state = DEV_STATE_UNINIT;
6419	}
6420
6421	/*
6422	 * If we're not the Master PF then we need to wait around for the
6423	 * Master PF Driver to finish setting up the adapter.
6424	 *
6425	 * Note that we also do this wait if we're a non-Master-capable PF and
6426	 * there is no current Master PF; a Master PF may show up momentarily
6427	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6428	 * OS loads lots of different drivers rapidly at the same time).  In
6429	 * this case, the Master PF returned by the firmware will be
6430	 * M_PCIE_FW_MASTER so the test below will work ...
6431	 */
6432	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6433	    master_mbox != mbox) {
6434		int waiting = FW_CMD_HELLO_TIMEOUT;
6435
6436		/*
6437		 * Wait for the firmware to either indicate an error or
6438		 * initialized state.  If we see either of these we bail out
6439		 * and report the issue to the caller.  If we exhaust the
6440		 * "hello timeout" and we haven't exhausted our retries, try
6441		 * again.  Otherwise bail with a timeout error.
6442		 */
6443		for (;;) {
6444			u32 pcie_fw;
6445
6446			msleep(50);
6447			waiting -= 50;
6448
6449			/*
6450			 * If neither Error nor Initialialized are indicated
6451			 * by the firmware keep waiting till we exhaust our
6452			 * timeout ... and then retry if we haven't exhausted
6453			 * our retries ...
6454			 */
6455			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6456			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6457				if (waiting <= 0) {
6458					if (retries-- > 0)
6459						goto retry;
6460
6461					return -ETIMEDOUT;
6462				}
6463				continue;
6464			}
6465
6466			/*
6467			 * We either have an Error or Initialized condition
6468			 * report errors preferentially.
6469			 */
6470			if (state) {
6471				if (pcie_fw & F_PCIE_FW_ERR)
6472					*state = DEV_STATE_ERR;
6473				else if (pcie_fw & F_PCIE_FW_INIT)
6474					*state = DEV_STATE_INIT;
6475			}
6476
6477			/*
6478			 * If we arrived before a Master PF was selected and
6479			 * there's not a valid Master PF, grab its identity
6480			 * for our caller.
6481			 */
6482			if (master_mbox == M_PCIE_FW_MASTER &&
6483			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6484				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6485			break;
6486		}
6487	}
6488
6489	return master_mbox;
6490}
6491
6492/**
6493 *	t4_fw_bye - end communication with FW
6494 *	@adap: the adapter
6495 *	@mbox: mailbox to use for the FW command
6496 *
6497 *	Issues a command to terminate communication with FW.
6498 */
6499int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6500{
6501	struct fw_bye_cmd c;
6502
6503	memset(&c, 0, sizeof(c));
6504	INIT_CMD(c, BYE, WRITE);
6505	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6506}
6507
6508/**
6509 *	t4_fw_reset - issue a reset to FW
6510 *	@adap: the adapter
6511 *	@mbox: mailbox to use for the FW command
6512 *	@reset: specifies the type of reset to perform
6513 *
6514 *	Issues a reset command of the specified type to FW.
6515 */
6516int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6517{
6518	struct fw_reset_cmd c;
6519
6520	memset(&c, 0, sizeof(c));
6521	INIT_CMD(c, RESET, WRITE);
6522	c.val = cpu_to_be32(reset);
6523	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6524}
6525
6526/**
6527 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6528 *	@adap: the adapter
6529 *	@mbox: mailbox to use for the FW RESET command (if desired)
6530 *	@force: force uP into RESET even if FW RESET command fails
6531 *
6532 *	Issues a RESET command to firmware (if desired) with a HALT indication
6533 *	and then puts the microprocessor into RESET state.  The RESET command
6534 *	will only be issued if a legitimate mailbox is provided (mbox <=
6535 *	M_PCIE_FW_MASTER).
6536 *
6537 *	This is generally used in order for the host to safely manipulate the
6538 *	adapter without fear of conflicting with whatever the firmware might
6539 *	be doing.  The only way out of this state is to RESTART the firmware
6540 *	...
6541 */
6542int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6543{
6544	int ret = 0;
6545
6546	/*
6547	 * If a legitimate mailbox is provided, issue a RESET command
6548	 * with a HALT indication.
6549	 */
6550	if (mbox <= M_PCIE_FW_MASTER) {
6551		struct fw_reset_cmd c;
6552
6553		memset(&c, 0, sizeof(c));
6554		INIT_CMD(c, RESET, WRITE);
6555		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6556		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6557		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6558	}
6559
6560	/*
6561	 * Normally we won't complete the operation if the firmware RESET
6562	 * command fails but if our caller insists we'll go ahead and put the
6563	 * uP into RESET.  This can be useful if the firmware is hung or even
6564	 * missing ...  We'll have to take the risk of putting the uP into
6565	 * RESET without the cooperation of firmware in that case.
6566	 *
6567	 * We also force the firmware's HALT flag to be on in case we bypassed
6568	 * the firmware RESET command above or we're dealing with old firmware
6569	 * which doesn't have the HALT capability.  This will serve as a flag
6570	 * for the incoming firmware to know that it's coming out of a HALT
6571	 * rather than a RESET ... if it's new enough to understand that ...
6572	 */
6573	if (ret == 0 || force) {
6574		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6575		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6576				 F_PCIE_FW_HALT);
6577	}
6578
6579	/*
6580	 * And we always return the result of the firmware RESET command
6581	 * even when we force the uP into RESET ...
6582	 */
6583	return ret;
6584}
6585
6586/**
6587 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6588 *	@adap: the adapter
6589 *	@reset: if we want to do a RESET to restart things
6590 *
6591 *	Restart firmware previously halted by t4_fw_halt().  On successful
6592 *	return the previous PF Master remains as the new PF Master and there
6593 *	is no need to issue a new HELLO command, etc.
6594 *
6595 *	We do this in two ways:
6596 *
6597 *	 1. If we're dealing with newer firmware we'll simply want to take
6598 *	    the chip's microprocessor out of RESET.  This will cause the
6599 *	    firmware to start up from its start vector.  And then we'll loop
6600 *	    until the firmware indicates it's started again (PCIE_FW.HALT
6601 *	    reset to 0) or we timeout.
6602 *
6603 *	 2. If we're dealing with older firmware then we'll need to RESET
6604 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6605 *	    flag and automatically RESET itself on startup.
6606 */
6607int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6608{
6609	if (reset) {
6610		/*
6611		 * Since we're directing the RESET instead of the firmware
6612		 * doing it automatically, we need to clear the PCIE_FW.HALT
6613		 * bit.
6614		 */
6615		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6616
6617		/*
6618		 * If we've been given a valid mailbox, first try to get the
6619		 * firmware to do the RESET.  If that works, great and we can
6620		 * return success.  Otherwise, if we haven't been given a
6621		 * valid mailbox or the RESET command failed, fall back to
6622		 * hitting the chip with a hammer.
6623		 */
6624		if (mbox <= M_PCIE_FW_MASTER) {
6625			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6626			msleep(100);
6627			if (t4_fw_reset(adap, mbox,
6628					F_PIORST | F_PIORSTMODE) == 0)
6629				return 0;
6630		}
6631
6632		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6633		msleep(2000);
6634	} else {
6635		int ms;
6636
6637		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6638		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6639			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6640				return FW_SUCCESS;
6641			msleep(100);
6642			ms += 100;
6643		}
6644		return -ETIMEDOUT;
6645	}
6646	return 0;
6647}
6648
6649/**
6650 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6651 *	@adap: the adapter
6652 *	@mbox: mailbox to use for the FW RESET command (if desired)
6653 *	@fw_data: the firmware image to write
6654 *	@size: image size
6655 *	@force: force upgrade even if firmware doesn't cooperate
6656 *
6657 *	Perform all of the steps necessary for upgrading an adapter's
6658 *	firmware image.  Normally this requires the cooperation of the
6659 *	existing firmware in order to halt all existing activities
6660 *	but if an invalid mailbox token is passed in we skip that step
6661 *	(though we'll still put the adapter microprocessor into RESET in
6662 *	that case).
6663 *
6664 *	On successful return the new firmware will have been loaded and
6665 *	the adapter will have been fully RESET losing all previous setup
6666 *	state.  On unsuccessful return the adapter may be completely hosed ...
6667 *	positive errno indicates that the adapter is ~probably~ intact, a
6668 *	negative errno indicates that things are looking bad ...
6669 */
6670int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6671		  const u8 *fw_data, unsigned int size, int force)
6672{
6673	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6674	unsigned int bootstrap =
6675	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6676	int reset, ret;
6677
6678	if (!t4_fw_matches_chip(adap, fw_hdr))
6679		return -EINVAL;
6680
6681	if (!bootstrap) {
6682		ret = t4_fw_halt(adap, mbox, force);
6683		if (ret < 0 && !force)
6684			return ret;
6685	}
6686
6687	ret = t4_load_fw(adap, fw_data, size);
6688	if (ret < 0 || bootstrap)
6689		return ret;
6690
6691	/*
6692	 * Older versions of the firmware don't understand the new
6693	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6694	 * restart.  So for newly loaded older firmware we'll have to do the
6695	 * RESET for it so it starts up on a clean slate.  We can tell if
6696	 * the newly loaded firmware will handle this right by checking
6697	 * its header flags to see if it advertises the capability.
6698	 */
6699	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6700	return t4_fw_restart(adap, mbox, reset);
6701}
6702
6703/**
6704 *	t4_fw_initialize - ask FW to initialize the device
6705 *	@adap: the adapter
6706 *	@mbox: mailbox to use for the FW command
6707 *
6708 *	Issues a command to FW to partially initialize the device.  This
6709 *	performs initialization that generally doesn't depend on user input.
6710 */
6711int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6712{
6713	struct fw_initialize_cmd c;
6714
6715	memset(&c, 0, sizeof(c));
6716	INIT_CMD(c, INITIALIZE, WRITE);
6717	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6718}
6719
6720/**
6721 *	t4_query_params_rw - query FW or device parameters
6722 *	@adap: the adapter
6723 *	@mbox: mailbox to use for the FW command
6724 *	@pf: the PF
6725 *	@vf: the VF
6726 *	@nparams: the number of parameters
6727 *	@params: the parameter names
6728 *	@val: the parameter values
6729 *	@rw: Write and read flag
6730 *
6731 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6732 *	queried at once.
6733 */
6734int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6735		       unsigned int vf, unsigned int nparams, const u32 *params,
6736		       u32 *val, int rw)
6737{
6738	int i, ret;
6739	struct fw_params_cmd c;
6740	__be32 *p = &c.param[0].mnem;
6741
6742	if (nparams > 7)
6743		return -EINVAL;
6744
6745	memset(&c, 0, sizeof(c));
6746	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6747				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6748				  V_FW_PARAMS_CMD_PFN(pf) |
6749				  V_FW_PARAMS_CMD_VFN(vf));
6750	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6751
6752	for (i = 0; i < nparams; i++) {
6753		*p++ = cpu_to_be32(*params++);
6754		if (rw)
6755			*p = cpu_to_be32(*(val + i));
6756		p++;
6757	}
6758
6759	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6760	if (ret == 0)
6761		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6762			*val++ = be32_to_cpu(*p);
6763	return ret;
6764}
6765
6766int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6767		    unsigned int vf, unsigned int nparams, const u32 *params,
6768		    u32 *val)
6769{
6770	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6771}
6772
6773/**
6774 *      t4_set_params_timeout - sets FW or device parameters
6775 *      @adap: the adapter
6776 *      @mbox: mailbox to use for the FW command
6777 *      @pf: the PF
6778 *      @vf: the VF
6779 *      @nparams: the number of parameters
6780 *      @params: the parameter names
6781 *      @val: the parameter values
6782 *      @timeout: the timeout time
6783 *
6784 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6785 *      specified at once.
6786 */
6787int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6788			  unsigned int pf, unsigned int vf,
6789			  unsigned int nparams, const u32 *params,
6790			  const u32 *val, int timeout)
6791{
6792	struct fw_params_cmd c;
6793	__be32 *p = &c.param[0].mnem;
6794
6795	if (nparams > 7)
6796		return -EINVAL;
6797
6798	memset(&c, 0, sizeof(c));
6799	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6800				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6801				  V_FW_PARAMS_CMD_PFN(pf) |
6802				  V_FW_PARAMS_CMD_VFN(vf));
6803	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6804
6805	while (nparams--) {
6806		*p++ = cpu_to_be32(*params++);
6807		*p++ = cpu_to_be32(*val++);
6808	}
6809
6810	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6811}
6812
6813/**
6814 *	t4_set_params - sets FW or device parameters
6815 *	@adap: the adapter
6816 *	@mbox: mailbox to use for the FW command
6817 *	@pf: the PF
6818 *	@vf: the VF
6819 *	@nparams: the number of parameters
6820 *	@params: the parameter names
6821 *	@val: the parameter values
6822 *
6823 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6824 *	specified at once.
6825 */
6826int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6827		  unsigned int vf, unsigned int nparams, const u32 *params,
6828		  const u32 *val)
6829{
6830	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6831				     FW_CMD_MAX_TIMEOUT);
6832}
6833
6834/**
6835 *	t4_cfg_pfvf - configure PF/VF resource limits
6836 *	@adap: the adapter
6837 *	@mbox: mailbox to use for the FW command
6838 *	@pf: the PF being configured
6839 *	@vf: the VF being configured
6840 *	@txq: the max number of egress queues
6841 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6842 *	@rxqi: the max number of interrupt-capable ingress queues
6843 *	@rxq: the max number of interruptless ingress queues
6844 *	@tc: the PCI traffic class
6845 *	@vi: the max number of virtual interfaces
6846 *	@cmask: the channel access rights mask for the PF/VF
6847 *	@pmask: the port access rights mask for the PF/VF
6848 *	@nexact: the maximum number of exact MPS filters
6849 *	@rcaps: read capabilities
6850 *	@wxcaps: write/execute capabilities
6851 *
6852 *	Configures resource limits and capabilities for a physical or virtual
6853 *	function.
6854 */
6855int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6856		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6857		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6858		unsigned int vi, unsigned int cmask, unsigned int pmask,
6859		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6860{
6861	struct fw_pfvf_cmd c;
6862
6863	memset(&c, 0, sizeof(c));
6864	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6865				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6866				  V_FW_PFVF_CMD_VFN(vf));
6867	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6868	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6869				     V_FW_PFVF_CMD_NIQ(rxq));
6870	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6871				    V_FW_PFVF_CMD_PMASK(pmask) |
6872				    V_FW_PFVF_CMD_NEQ(txq));
6873	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6874				      V_FW_PFVF_CMD_NVI(vi) |
6875				      V_FW_PFVF_CMD_NEXACTF(nexact));
6876	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6877				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6878				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6879	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6880}
6881
6882/**
6883 *	t4_alloc_vi_func - allocate a virtual interface
6884 *	@adap: the adapter
6885 *	@mbox: mailbox to use for the FW command
6886 *	@port: physical port associated with the VI
6887 *	@pf: the PF owning the VI
6888 *	@vf: the VF owning the VI
6889 *	@nmac: number of MAC addresses needed (1 to 5)
6890 *	@mac: the MAC addresses of the VI
6891 *	@rss_size: size of RSS table slice associated with this VI
6892 *	@portfunc: which Port Application Function MAC Address is desired
6893 *	@idstype: Intrusion Detection Type
6894 *
6895 *	Allocates a virtual interface for the given physical port.  If @mac is
6896 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6897 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6898 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6899 *	stored consecutively so the space needed is @nmac * 6 bytes.
6900 *	Returns a negative error number or the non-negative VI id.
6901 */
6902int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6903		     unsigned int port, unsigned int pf, unsigned int vf,
6904		     unsigned int nmac, u8 *mac, u16 *rss_size,
6905		     unsigned int portfunc, unsigned int idstype)
6906{
6907	int ret;
6908	struct fw_vi_cmd c;
6909
6910	memset(&c, 0, sizeof(c));
6911	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6912				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6913				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6914	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6915	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6916				     V_FW_VI_CMD_FUNC(portfunc));
6917	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6918	c.nmac = nmac - 1;
6919	if(!rss_size)
6920		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6921
6922	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6923	if (ret)
6924		return ret;
6925
6926	if (mac) {
6927		memcpy(mac, c.mac, sizeof(c.mac));
6928		switch (nmac) {
6929		case 5:
6930			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6931		case 4:
6932			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6933		case 3:
6934			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6935		case 2:
6936			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6937		}
6938	}
6939	if (rss_size)
6940		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6941	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6942}
6943
6944/**
6945 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6946 *      @adap: the adapter
6947 *      @mbox: mailbox to use for the FW command
6948 *      @port: physical port associated with the VI
6949 *      @pf: the PF owning the VI
6950 *      @vf: the VF owning the VI
6951 *      @nmac: number of MAC addresses needed (1 to 5)
6952 *      @mac: the MAC addresses of the VI
6953 *      @rss_size: size of RSS table slice associated with this VI
6954 *
6955 *	backwards compatible and convieniance routine to allocate a Virtual
6956 *	Interface with a Ethernet Port Application Function and Intrustion
6957 *	Detection System disabled.
6958 */
6959int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6960		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6961		u16 *rss_size)
6962{
6963	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6964				FW_VI_FUNC_ETH, 0);
6965}
6966
6967/**
6968 * 	t4_free_vi - free a virtual interface
6969 * 	@adap: the adapter
6970 * 	@mbox: mailbox to use for the FW command
6971 * 	@pf: the PF owning the VI
6972 * 	@vf: the VF owning the VI
6973 * 	@viid: virtual interface identifiler
6974 *
6975 * 	Free a previously allocated virtual interface.
6976 */
6977int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6978	       unsigned int vf, unsigned int viid)
6979{
6980	struct fw_vi_cmd c;
6981
6982	memset(&c, 0, sizeof(c));
6983	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6984				  F_FW_CMD_REQUEST |
6985				  F_FW_CMD_EXEC |
6986				  V_FW_VI_CMD_PFN(pf) |
6987				  V_FW_VI_CMD_VFN(vf));
6988	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
6989	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
6990
6991	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6992}
6993
6994/**
6995 *	t4_set_rxmode - set Rx properties of a virtual interface
6996 *	@adap: the adapter
6997 *	@mbox: mailbox to use for the FW command
6998 *	@viid: the VI id
6999 *	@mtu: the new MTU or -1
7000 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7001 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7002 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7003 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7004 *	@sleep_ok: if true we may sleep while awaiting command completion
7005 *
7006 *	Sets Rx properties of a virtual interface.
7007 */
7008int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7009		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7010		  bool sleep_ok)
7011{
7012	struct fw_vi_rxmode_cmd c;
7013
7014	/* convert to FW values */
7015	if (mtu < 0)
7016		mtu = M_FW_VI_RXMODE_CMD_MTU;
7017	if (promisc < 0)
7018		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7019	if (all_multi < 0)
7020		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7021	if (bcast < 0)
7022		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7023	if (vlanex < 0)
7024		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7025
7026	memset(&c, 0, sizeof(c));
7027	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7028				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7029				   V_FW_VI_RXMODE_CMD_VIID(viid));
7030	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7031	c.mtu_to_vlanexen =
7032		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7033			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7034			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7035			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7036			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7037	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7038}
7039
7040/**
7041 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7042 *	@adap: the adapter
7043 *	@mbox: mailbox to use for the FW command
7044 *	@viid: the VI id
7045 *	@free: if true any existing filters for this VI id are first removed
7046 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7047 *	@addr: the MAC address(es)
7048 *	@idx: where to store the index of each allocated filter
7049 *	@hash: pointer to hash address filter bitmap
7050 *	@sleep_ok: call is allowed to sleep
7051 *
7052 *	Allocates an exact-match filter for each of the supplied addresses and
7053 *	sets it to the corresponding address.  If @idx is not %NULL it should
7054 *	have at least @naddr entries, each of which will be set to the index of
7055 *	the filter allocated for the corresponding MAC address.  If a filter
7056 *	could not be allocated for an address its index is set to 0xffff.
7057 *	If @hash is not %NULL addresses that fail to allocate an exact filter
7058 *	are hashed and update the hash filter bitmap pointed at by @hash.
7059 *
7060 *	Returns a negative error number or the number of filters allocated.
7061 */
7062int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7063		      unsigned int viid, bool free, unsigned int naddr,
7064		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7065{
7066	int offset, ret = 0;
7067	struct fw_vi_mac_cmd c;
7068	unsigned int nfilters = 0;
7069	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7070	unsigned int rem = naddr;
7071
7072	if (naddr > max_naddr)
7073		return -EINVAL;
7074
7075	for (offset = 0; offset < naddr ; /**/) {
7076		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7077					 ? rem
7078					 : ARRAY_SIZE(c.u.exact));
7079		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7080						     u.exact[fw_naddr]), 16);
7081		struct fw_vi_mac_exact *p;
7082		int i;
7083
7084		memset(&c, 0, sizeof(c));
7085		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7086					   F_FW_CMD_REQUEST |
7087					   F_FW_CMD_WRITE |
7088					   V_FW_CMD_EXEC(free) |
7089					   V_FW_VI_MAC_CMD_VIID(viid));
7090		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7091						  V_FW_CMD_LEN16(len16));
7092
7093		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7094			p->valid_to_idx =
7095				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7096					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7097			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7098		}
7099
7100		/*
7101		 * It's okay if we run out of space in our MAC address arena.
7102		 * Some of the addresses we submit may get stored so we need
7103		 * to run through the reply to see what the results were ...
7104		 */
7105		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7106		if (ret && ret != -FW_ENOMEM)
7107			break;
7108
7109		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7110			u16 index = G_FW_VI_MAC_CMD_IDX(
7111						be16_to_cpu(p->valid_to_idx));
7112
7113			if (idx)
7114				idx[offset+i] = (index >=  max_naddr
7115						 ? 0xffff
7116						 : index);
7117			if (index < max_naddr)
7118				nfilters++;
7119			else if (hash)
7120				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7121		}
7122
7123		free = false;
7124		offset += fw_naddr;
7125		rem -= fw_naddr;
7126	}
7127
7128	if (ret == 0 || ret == -FW_ENOMEM)
7129		ret = nfilters;
7130	return ret;
7131}
7132
7133/**
7134 *	t4_change_mac - modifies the exact-match filter for a MAC address
7135 *	@adap: the adapter
7136 *	@mbox: mailbox to use for the FW command
7137 *	@viid: the VI id
7138 *	@idx: index of existing filter for old value of MAC address, or -1
7139 *	@addr: the new MAC address value
7140 *	@persist: whether a new MAC allocation should be persistent
7141 *	@add_smt: if true also add the address to the HW SMT
7142 *
7143 *	Modifies an exact-match filter and sets it to the new MAC address if
7144 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7145 *	latter case the address is added persistently if @persist is %true.
7146 *
7147 *	Note that in general it is not possible to modify the value of a given
7148 *	filter so the generic way to modify an address filter is to free the one
7149 *	being used by the old address value and allocate a new filter for the
7150 *	new address value.
7151 *
7152 *	Returns a negative error number or the index of the filter with the new
7153 *	MAC value.  Note that this index may differ from @idx.
7154 */
7155int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7156		  int idx, const u8 *addr, bool persist, bool add_smt)
7157{
7158	int ret, mode;
7159	struct fw_vi_mac_cmd c;
7160	struct fw_vi_mac_exact *p = c.u.exact;
7161	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7162
7163	if (idx < 0)		/* new allocation */
7164		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7165	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7166
7167	memset(&c, 0, sizeof(c));
7168	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7169				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7170				   V_FW_VI_MAC_CMD_VIID(viid));
7171	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7172	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7173				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7174				      V_FW_VI_MAC_CMD_IDX(idx));
7175	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7176
7177	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7178	if (ret == 0) {
7179		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7180		if (ret >= max_mac_addr)
7181			ret = -ENOMEM;
7182	}
7183	return ret;
7184}
7185
7186/**
7187 *	t4_set_addr_hash - program the MAC inexact-match hash filter
7188 *	@adap: the adapter
7189 *	@mbox: mailbox to use for the FW command
7190 *	@viid: the VI id
7191 *	@ucast: whether the hash filter should also match unicast addresses
7192 *	@vec: the value to be written to the hash filter
7193 *	@sleep_ok: call is allowed to sleep
7194 *
7195 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7196 */
7197int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7198		     bool ucast, u64 vec, bool sleep_ok)
7199{
7200	struct fw_vi_mac_cmd c;
7201	u32 val;
7202
7203	memset(&c, 0, sizeof(c));
7204	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7205				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7206				   V_FW_VI_ENABLE_CMD_VIID(viid));
7207	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7208	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7209	c.freemacs_to_len16 = cpu_to_be32(val);
7210	c.u.hash.hashvec = cpu_to_be64(vec);
7211	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7212}
7213
7214/**
7215 *      t4_enable_vi_params - enable/disable a virtual interface
7216 *      @adap: the adapter
7217 *      @mbox: mailbox to use for the FW command
7218 *      @viid: the VI id
7219 *      @rx_en: 1=enable Rx, 0=disable Rx
7220 *      @tx_en: 1=enable Tx, 0=disable Tx
7221 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7222 *
7223 *      Enables/disables a virtual interface.  Note that setting DCB Enable
7224 *      only makes sense when enabling a Virtual Interface ...
7225 */
7226int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7227			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7228{
7229	struct fw_vi_enable_cmd c;
7230
7231	memset(&c, 0, sizeof(c));
7232	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7233				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7234				   V_FW_VI_ENABLE_CMD_VIID(viid));
7235	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7236				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7237				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7238				     FW_LEN16(c));
7239	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7240}
7241
7242/**
7243 *	t4_enable_vi - enable/disable a virtual interface
7244 *	@adap: the adapter
7245 *	@mbox: mailbox to use for the FW command
7246 *	@viid: the VI id
7247 *	@rx_en: 1=enable Rx, 0=disable Rx
7248 *	@tx_en: 1=enable Tx, 0=disable Tx
7249 *
7250 *	Enables/disables a virtual interface.  Note that setting DCB Enable
7251 *	only makes sense when enabling a Virtual Interface ...
7252 */
7253int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7254		 bool rx_en, bool tx_en)
7255{
7256	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7257}
7258
7259/**
7260 *	t4_identify_port - identify a VI's port by blinking its LED
7261 *	@adap: the adapter
7262 *	@mbox: mailbox to use for the FW command
7263 *	@viid: the VI id
7264 *	@nblinks: how many times to blink LED at 2.5 Hz
7265 *
7266 *	Identifies a VI's port by blinking its LED.
7267 */
7268int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7269		     unsigned int nblinks)
7270{
7271	struct fw_vi_enable_cmd c;
7272
7273	memset(&c, 0, sizeof(c));
7274	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7275				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7276				   V_FW_VI_ENABLE_CMD_VIID(viid));
7277	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7278	c.blinkdur = cpu_to_be16(nblinks);
7279	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7280}
7281
7282/**
7283 *	t4_iq_stop - stop an ingress queue and its FLs
7284 *	@adap: the adapter
7285 *	@mbox: mailbox to use for the FW command
7286 *	@pf: the PF owning the queues
7287 *	@vf: the VF owning the queues
7288 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7289 *	@iqid: ingress queue id
7290 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7291 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7292 *
7293 *	Stops an ingress queue and its associated FLs, if any.  This causes
7294 *	any current or future data/messages destined for these queues to be
7295 *	tossed.
7296 */
7297int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7298	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7299	       unsigned int fl0id, unsigned int fl1id)
7300{
7301	struct fw_iq_cmd c;
7302
7303	memset(&c, 0, sizeof(c));
7304	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7305				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7306				  V_FW_IQ_CMD_VFN(vf));
7307	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7308	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7309	c.iqid = cpu_to_be16(iqid);
7310	c.fl0id = cpu_to_be16(fl0id);
7311	c.fl1id = cpu_to_be16(fl1id);
7312	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7313}
7314
7315/**
7316 *	t4_iq_free - free an ingress queue and its FLs
7317 *	@adap: the adapter
7318 *	@mbox: mailbox to use for the FW command
7319 *	@pf: the PF owning the queues
7320 *	@vf: the VF owning the queues
7321 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7322 *	@iqid: ingress queue id
7323 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7324 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7325 *
7326 *	Frees an ingress queue and its associated FLs, if any.
7327 */
7328int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7329	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7330	       unsigned int fl0id, unsigned int fl1id)
7331{
7332	struct fw_iq_cmd c;
7333
7334	memset(&c, 0, sizeof(c));
7335	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7336				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7337				  V_FW_IQ_CMD_VFN(vf));
7338	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7339	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7340	c.iqid = cpu_to_be16(iqid);
7341	c.fl0id = cpu_to_be16(fl0id);
7342	c.fl1id = cpu_to_be16(fl1id);
7343	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7344}
7345
7346/**
7347 *	t4_eth_eq_free - free an Ethernet egress queue
7348 *	@adap: the adapter
7349 *	@mbox: mailbox to use for the FW command
7350 *	@pf: the PF owning the queue
7351 *	@vf: the VF owning the queue
7352 *	@eqid: egress queue id
7353 *
7354 *	Frees an Ethernet egress queue.
7355 */
7356int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7357		   unsigned int vf, unsigned int eqid)
7358{
7359	struct fw_eq_eth_cmd c;
7360
7361	memset(&c, 0, sizeof(c));
7362	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7363				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7364				  V_FW_EQ_ETH_CMD_PFN(pf) |
7365				  V_FW_EQ_ETH_CMD_VFN(vf));
7366	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7367	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7368	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7369}
7370
7371/**
7372 *	t4_ctrl_eq_free - free a control egress queue
7373 *	@adap: the adapter
7374 *	@mbox: mailbox to use for the FW command
7375 *	@pf: the PF owning the queue
7376 *	@vf: the VF owning the queue
7377 *	@eqid: egress queue id
7378 *
7379 *	Frees a control egress queue.
7380 */
7381int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7382		    unsigned int vf, unsigned int eqid)
7383{
7384	struct fw_eq_ctrl_cmd c;
7385
7386	memset(&c, 0, sizeof(c));
7387	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7388				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7389				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7390				  V_FW_EQ_CTRL_CMD_VFN(vf));
7391	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7392	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7393	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7394}
7395
7396/**
7397 *	t4_ofld_eq_free - free an offload egress queue
7398 *	@adap: the adapter
7399 *	@mbox: mailbox to use for the FW command
7400 *	@pf: the PF owning the queue
7401 *	@vf: the VF owning the queue
7402 *	@eqid: egress queue id
7403 *
7404 *	Frees a control egress queue.
7405 */
7406int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7407		    unsigned int vf, unsigned int eqid)
7408{
7409	struct fw_eq_ofld_cmd c;
7410
7411	memset(&c, 0, sizeof(c));
7412	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7413				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7414				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7415				  V_FW_EQ_OFLD_CMD_VFN(vf));
7416	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7417	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7418	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7419}
7420
7421/**
7422 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7423 *	@link_down_rc: Link Down Reason Code
7424 *
7425 *	Returns a string representation of the Link Down Reason Code.
7426 */
7427const char *t4_link_down_rc_str(unsigned char link_down_rc)
7428{
7429	static const char *reason[] = {
7430		"Link Down",
7431		"Remote Fault",
7432		"Auto-negotiation Failure",
7433		"Reserved3",
7434		"Insufficient Airflow",
7435		"Unable To Determine Reason",
7436		"No RX Signal Detected",
7437		"Reserved7",
7438	};
7439
7440	if (link_down_rc >= ARRAY_SIZE(reason))
7441		return "Bad Reason Code";
7442
7443	return reason[link_down_rc];
7444}
7445
7446/**
7447 *	t4_handle_fw_rpl - process a FW reply message
7448 *	@adap: the adapter
7449 *	@rpl: start of the FW message
7450 *
7451 *	Processes a FW message, such as link state change messages.
7452 */
7453int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7454{
7455	u8 opcode = *(const u8 *)rpl;
7456	const struct fw_port_cmd *p = (const void *)rpl;
7457	unsigned int action =
7458			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7459
7460	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7461		/* link/module state change message */
7462		int speed = 0, fc = 0, i;
7463		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7464		struct port_info *pi = NULL;
7465		struct link_config *lc;
7466		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7467		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7468		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7469
7470		if (stat & F_FW_PORT_CMD_RXPAUSE)
7471			fc |= PAUSE_RX;
7472		if (stat & F_FW_PORT_CMD_TXPAUSE)
7473			fc |= PAUSE_TX;
7474		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7475			speed = 100;
7476		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7477			speed = 1000;
7478		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7479			speed = 10000;
7480		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7481			speed = 25000;
7482		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7483			speed = 40000;
7484		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7485			speed = 100000;
7486
7487		for_each_port(adap, i) {
7488			pi = adap2pinfo(adap, i);
7489			if (pi->tx_chan == chan)
7490				break;
7491		}
7492		lc = &pi->link_cfg;
7493
7494		if (mod != pi->mod_type) {
7495			pi->mod_type = mod;
7496			t4_os_portmod_changed(adap, i);
7497		}
7498		if (link_ok != lc->link_ok || speed != lc->speed ||
7499		    fc != lc->fc) {                    /* something changed */
7500			int reason;
7501
7502			if (!link_ok && lc->link_ok)
7503				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7504			else
7505				reason = -1;
7506
7507			lc->link_ok = link_ok;
7508			lc->speed = speed;
7509			lc->fc = fc;
7510			lc->supported = be16_to_cpu(p->u.info.pcap);
7511			t4_os_link_changed(adap, i, link_ok, reason);
7512		}
7513	} else {
7514		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7515		return -EINVAL;
7516	}
7517	return 0;
7518}
7519
7520/**
7521 *	get_pci_mode - determine a card's PCI mode
7522 *	@adapter: the adapter
7523 *	@p: where to store the PCI settings
7524 *
7525 *	Determines a card's PCI mode and associated parameters, such as speed
7526 *	and width.
7527 */
7528static void get_pci_mode(struct adapter *adapter,
7529				   struct pci_params *p)
7530{
7531	u16 val;
7532	u32 pcie_cap;
7533
7534	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7535	if (pcie_cap) {
7536		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7537		p->speed = val & PCI_EXP_LNKSTA_CLS;
7538		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7539	}
7540}
7541
7542/**
7543 *	init_link_config - initialize a link's SW state
7544 *	@lc: structure holding the link state
7545 *	@caps: link capabilities
7546 *
7547 *	Initializes the SW state maintained for each link, including the link's
7548 *	capabilities and default speed/flow-control/autonegotiation settings.
7549 */
7550static void init_link_config(struct link_config *lc, unsigned int caps)
7551{
7552	lc->supported = caps;
7553	lc->requested_speed = 0;
7554	lc->speed = 0;
7555	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7556	if (lc->supported & FW_PORT_CAP_ANEG) {
7557		lc->advertising = lc->supported & ADVERT_MASK;
7558		lc->autoneg = AUTONEG_ENABLE;
7559		lc->requested_fc |= PAUSE_AUTONEG;
7560	} else {
7561		lc->advertising = 0;
7562		lc->autoneg = AUTONEG_DISABLE;
7563	}
7564}
7565
7566struct flash_desc {
7567	u32 vendor_and_model_id;
7568	u32 size_mb;
7569};
7570
7571int t4_get_flash_params(struct adapter *adapter)
7572{
7573	/*
7574	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7575	 * to the preexisting well-tested code.  All flash parts have 64KB
7576	 * sectors.
7577	 */
7578	static struct flash_desc supported_flash[] = {
7579		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7580	};
7581
7582	int ret;
7583	u32 info = 0;
7584
7585	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7586	if (!ret)
7587		ret = sf1_read(adapter, 3, 0, 1, &info);
7588	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7589	if (ret < 0)
7590		return ret;
7591
7592	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7593		if (supported_flash[ret].vendor_and_model_id == info) {
7594			adapter->params.sf_size = supported_flash[ret].size_mb;
7595			adapter->params.sf_nsec =
7596				adapter->params.sf_size / SF_SEC_SIZE;
7597			return 0;
7598		}
7599
7600	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7601		return -EINVAL;
7602	info >>= 16;				/* log2 of size */
7603	if (info >= 0x14 && info < 0x18)
7604		adapter->params.sf_nsec = 1 << (info - 16);
7605	else if (info == 0x18)
7606		adapter->params.sf_nsec = 64;
7607	else
7608		return -EINVAL;
7609	adapter->params.sf_size = 1 << info;
7610
7611	/*
7612	 * We should ~probably~ reject adapters with FLASHes which are too
7613	 * small but we have some legacy FPGAs with small FLASHes that we'd
7614	 * still like to use.  So instead we emit a scary message ...
7615	 */
7616	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7617		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7618			adapter->params.sf_size, FLASH_MIN_SIZE);
7619
7620	return 0;
7621}
7622
7623static void set_pcie_completion_timeout(struct adapter *adapter,
7624						  u8 range)
7625{
7626	u16 val;
7627	u32 pcie_cap;
7628
7629	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7630	if (pcie_cap) {
7631		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7632		val &= 0xfff0;
7633		val |= range ;
7634		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7635	}
7636}
7637
7638const struct chip_params *t4_get_chip_params(int chipid)
7639{
7640	static const struct chip_params chip_params[] = {
7641		{
7642			/* T4 */
7643			.nchan = NCHAN,
7644			.pm_stats_cnt = PM_NSTATS,
7645			.cng_ch_bits_log = 2,
7646			.nsched_cls = 15,
7647			.cim_num_obq = CIM_NUM_OBQ,
7648			.mps_rplc_size = 128,
7649			.vfcount = 128,
7650			.sge_fl_db = F_DBPRIO,
7651			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7652		},
7653		{
7654			/* T5 */
7655			.nchan = NCHAN,
7656			.pm_stats_cnt = PM_NSTATS,
7657			.cng_ch_bits_log = 2,
7658			.nsched_cls = 16,
7659			.cim_num_obq = CIM_NUM_OBQ_T5,
7660			.mps_rplc_size = 128,
7661			.vfcount = 128,
7662			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7663			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7664		},
7665		{
7666			/* T6 */
7667			.nchan = T6_NCHAN,
7668			.pm_stats_cnt = T6_PM_NSTATS,
7669			.cng_ch_bits_log = 3,
7670			.nsched_cls = 16,
7671			.cim_num_obq = CIM_NUM_OBQ_T5,
7672			.mps_rplc_size = 256,
7673			.vfcount = 256,
7674			.sge_fl_db = 0,
7675			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7676		},
7677	};
7678
7679	chipid -= CHELSIO_T4;
7680	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7681		return NULL;
7682
7683	return &chip_params[chipid];
7684}
7685
7686/**
7687 *	t4_prep_adapter - prepare SW and HW for operation
7688 *	@adapter: the adapter
7689 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7690 *
7691 *	Initialize adapter SW state for the various HW modules, set initial
7692 *	values for some adapter tunables, take PHYs out of reset, and
7693 *	initialize the MDIO interface.
7694 */
7695int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7696{
7697	int ret;
7698	uint16_t device_id;
7699	uint32_t pl_rev;
7700
7701	get_pci_mode(adapter, &adapter->params.pci);
7702
7703	pl_rev = t4_read_reg(adapter, A_PL_REV);
7704	adapter->params.chipid = G_CHIPID(pl_rev);
7705	adapter->params.rev = G_REV(pl_rev);
7706	if (adapter->params.chipid == 0) {
7707		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7708		adapter->params.chipid = CHELSIO_T4;
7709
7710		/* T4A1 chip is not supported */
7711		if (adapter->params.rev == 1) {
7712			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7713			return -EINVAL;
7714		}
7715	}
7716
7717	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7718	if (adapter->chip_params == NULL)
7719		return -EINVAL;
7720
7721	adapter->params.pci.vpd_cap_addr =
7722	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7723
7724	ret = t4_get_flash_params(adapter);
7725	if (ret < 0)
7726		return ret;
7727
7728	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7729	if (ret < 0)
7730		return ret;
7731
7732	/* Cards with real ASICs have the chipid in the PCIe device id */
7733	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7734	if (device_id >> 12 == chip_id(adapter))
7735		adapter->params.cim_la_size = CIMLA_SIZE;
7736	else {
7737		/* FPGA */
7738		adapter->params.fpga = 1;
7739		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7740	}
7741
7742	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7743
7744	/*
7745	 * Default port and clock for debugging in case we can't reach FW.
7746	 */
7747	adapter->params.nports = 1;
7748	adapter->params.portvec = 1;
7749	adapter->params.vpd.cclk = 50000;
7750
7751	/* Set pci completion timeout value to 4 seconds. */
7752	set_pcie_completion_timeout(adapter, 0xd);
7753	return 0;
7754}
7755
7756/**
7757 *	t4_shutdown_adapter - shut down adapter, host & wire
7758 *	@adapter: the adapter
7759 *
7760 *	Perform an emergency shutdown of the adapter and stop it from
7761 *	continuing any further communication on the ports or DMA to the
7762 *	host.  This is typically used when the adapter and/or firmware
7763 *	have crashed and we want to prevent any further accidental
7764 *	communication with the rest of the world.  This will also force
7765 *	the port Link Status to go down -- if register writes work --
7766 *	which should help our peers figure out that we're down.
7767 */
7768int t4_shutdown_adapter(struct adapter *adapter)
7769{
7770	int port;
7771
7772	t4_intr_disable(adapter);
7773	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7774	for_each_port(adapter, port) {
7775		u32 a_port_cfg = PORT_REG(port,
7776					  is_t4(adapter)
7777					  ? A_XGMAC_PORT_CFG
7778					  : A_MAC_PORT_CFG);
7779
7780		t4_write_reg(adapter, a_port_cfg,
7781			     t4_read_reg(adapter, a_port_cfg)
7782			     & ~V_SIGNAL_DET(1));
7783	}
7784	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7785
7786	return 0;
7787}
7788
7789/**
7790 *	t4_init_devlog_params - initialize adapter->params.devlog
7791 *	@adap: the adapter
7792 *	@fw_attach: whether we can talk to the firmware
7793 *
7794 *	Initialize various fields of the adapter's Firmware Device Log
7795 *	Parameters structure.
7796 */
7797int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7798{
7799	struct devlog_params *dparams = &adap->params.devlog;
7800	u32 pf_dparams;
7801	unsigned int devlog_meminfo;
7802	struct fw_devlog_cmd devlog_cmd;
7803	int ret;
7804
7805	/* If we're dealing with newer firmware, the Device Log Paramerters
7806	 * are stored in a designated register which allows us to access the
7807	 * Device Log even if we can't talk to the firmware.
7808	 */
7809	pf_dparams =
7810		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7811	if (pf_dparams) {
7812		unsigned int nentries, nentries128;
7813
7814		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7815		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7816
7817		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7818		nentries = (nentries128 + 1) * 128;
7819		dparams->size = nentries * sizeof(struct fw_devlog_e);
7820
7821		return 0;
7822	}
7823
7824	/*
7825	 * For any failing returns ...
7826	 */
7827	memset(dparams, 0, sizeof *dparams);
7828
7829	/*
7830	 * If we can't talk to the firmware, there's really nothing we can do
7831	 * at this point.
7832	 */
7833	if (!fw_attach)
7834		return -ENXIO;
7835
7836	/* Otherwise, ask the firmware for it's Device Log Parameters.
7837	 */
7838	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7839	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7840					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7841	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7842	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7843			 &devlog_cmd);
7844	if (ret)
7845		return ret;
7846
7847	devlog_meminfo =
7848		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7849	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7850	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7851	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7852
7853	return 0;
7854}
7855
7856/**
7857 *	t4_init_sge_params - initialize adap->params.sge
7858 *	@adapter: the adapter
7859 *
7860 *	Initialize various fields of the adapter's SGE Parameters structure.
7861 */
7862int t4_init_sge_params(struct adapter *adapter)
7863{
7864	u32 r;
7865	struct sge_params *sp = &adapter->params.sge;
7866	unsigned i;
7867
7868	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7869	sp->counter_val[0] = G_THRESHOLD_0(r);
7870	sp->counter_val[1] = G_THRESHOLD_1(r);
7871	sp->counter_val[2] = G_THRESHOLD_2(r);
7872	sp->counter_val[3] = G_THRESHOLD_3(r);
7873
7874	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7875	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7876	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7877	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7878	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7879	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7880	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7881	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7882	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7883
7884	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7885	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7886	if (is_t4(adapter))
7887		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7888	else if (is_t5(adapter))
7889		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7890	else
7891		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
7892
7893	/* egress queues: log2 of # of doorbells per BAR2 page */
7894	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7895	r >>= S_QUEUESPERPAGEPF0 +
7896	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7897	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7898
7899	/* ingress queues: log2 of # of doorbells per BAR2 page */
7900	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7901	r >>= S_QUEUESPERPAGEPF0 +
7902	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7903	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7904
7905	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7906	r >>= S_HOSTPAGESIZEPF0 +
7907	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7908	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7909
7910	r = t4_read_reg(adapter, A_SGE_CONTROL);
7911	sp->sge_control = r;
7912	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7913	sp->fl_pktshift = G_PKTSHIFT(r);
7914	if (chip_id(adapter) <= CHELSIO_T5) {
7915		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7916		    X_INGPADBOUNDARY_SHIFT);
7917	} else {
7918		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7919		    X_T6_INGPADBOUNDARY_SHIFT);
7920	}
7921	if (is_t4(adapter))
7922		sp->pack_boundary = sp->pad_boundary;
7923	else {
7924		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7925		if (G_INGPACKBOUNDARY(r) == 0)
7926			sp->pack_boundary = 16;
7927		else
7928			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7929	}
7930	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7931		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7932		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7933
7934	return 0;
7935}
7936
7937/*
7938 * Read and cache the adapter's compressed filter mode and ingress config.
7939 */
7940static void read_filter_mode_and_ingress_config(struct adapter *adap)
7941{
7942	struct tp_params *tpp = &adap->params.tp;
7943
7944	if (t4_use_ldst(adap)) {
7945		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7946				A_TP_VLAN_PRI_MAP, 1);
7947		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7948				A_TP_INGRESS_CONFIG, 1);
7949	} else {
7950		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7951				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7952		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7953				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7954	}
7955
7956	/*
7957	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7958	 * shift positions of several elements of the Compressed Filter Tuple
7959	 * for this adapter which we need frequently ...
7960	 */
7961	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7962	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7963	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7964	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7965	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7966	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7967	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7968	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7969	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7970	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7971
7972	/*
7973	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7974	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7975	 */
7976	if ((tpp->ingress_config & F_VNIC) == 0)
7977		tpp->vnic_shift = -1;
7978}
7979
7980/**
7981 *      t4_init_tp_params - initialize adap->params.tp
7982 *      @adap: the adapter
7983 *
7984 *      Initialize various fields of the adapter's TP Parameters structure.
7985 */
7986int t4_init_tp_params(struct adapter *adap)
7987{
7988	int chan;
7989	u32 v;
7990	struct tp_params *tpp = &adap->params.tp;
7991
7992	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
7993	tpp->tre = G_TIMERRESOLUTION(v);
7994	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
7995
7996	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7997	for (chan = 0; chan < MAX_NCHAN; chan++)
7998		tpp->tx_modq[chan] = chan;
7999
8000	read_filter_mode_and_ingress_config(adap);
8001
8002	/*
8003	 * For T6, cache the adapter's compressed error vector
8004	 * and passing outer header info for encapsulated packets.
8005	 */
8006	if (chip_id(adap) > CHELSIO_T5) {
8007		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8008		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
8009	}
8010
8011	return 0;
8012}
8013
8014/**
8015 *      t4_filter_field_shift - calculate filter field shift
8016 *      @adap: the adapter
8017 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8018 *
8019 *      Return the shift position of a filter field within the Compressed
8020 *      Filter Tuple.  The filter field is specified via its selection bit
8021 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8022 */
8023int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8024{
8025	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8026	unsigned int sel;
8027	int field_shift;
8028
8029	if ((filter_mode & filter_sel) == 0)
8030		return -1;
8031
8032	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8033		switch (filter_mode & sel) {
8034		case F_FCOE:
8035			field_shift += W_FT_FCOE;
8036			break;
8037		case F_PORT:
8038			field_shift += W_FT_PORT;
8039			break;
8040		case F_VNIC_ID:
8041			field_shift += W_FT_VNIC_ID;
8042			break;
8043		case F_VLAN:
8044			field_shift += W_FT_VLAN;
8045			break;
8046		case F_TOS:
8047			field_shift += W_FT_TOS;
8048			break;
8049		case F_PROTOCOL:
8050			field_shift += W_FT_PROTOCOL;
8051			break;
8052		case F_ETHERTYPE:
8053			field_shift += W_FT_ETHERTYPE;
8054			break;
8055		case F_MACMATCH:
8056			field_shift += W_FT_MACMATCH;
8057			break;
8058		case F_MPSHITTYPE:
8059			field_shift += W_FT_MPSHITTYPE;
8060			break;
8061		case F_FRAGMENTATION:
8062			field_shift += W_FT_FRAGMENTATION;
8063			break;
8064		}
8065	}
8066	return field_shift;
8067}
8068
8069int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8070{
8071	u8 addr[6];
8072	int ret, i, j;
8073	struct fw_port_cmd c;
8074	u16 rss_size;
8075	struct port_info *p = adap2pinfo(adap, port_id);
8076	u32 param, val;
8077
8078	memset(&c, 0, sizeof(c));
8079
8080	for (i = 0, j = -1; i <= p->port_id; i++) {
8081		do {
8082			j++;
8083		} while ((adap->params.portvec & (1 << j)) == 0);
8084	}
8085
8086	if (!(adap->flags & IS_VF) ||
8087	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8088		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
8089				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
8090				       V_FW_PORT_CMD_PORTID(j));
8091		c.action_to_len16 = htonl(
8092			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
8093			FW_LEN16(c));
8094		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8095		if (ret)
8096			return ret;
8097
8098		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8099		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
8100			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
8101		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
8102		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
8103
8104		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
8105	}
8106
8107	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8108	if (ret < 0)
8109		return ret;
8110
8111	p->vi[0].viid = ret;
8112	if (chip_id(adap) <= CHELSIO_T5)
8113		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8114	else
8115		p->vi[0].smt_idx = (ret & 0x7f);
8116	p->tx_chan = j;
8117	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8118	p->lport = j;
8119	p->vi[0].rss_size = rss_size;
8120	t4_os_set_hw_addr(adap, p->port_id, addr);
8121
8122	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8123	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8124	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8125	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8126	if (ret)
8127		p->vi[0].rss_base = 0xffff;
8128	else {
8129		/* MPASS((val >> 16) == rss_size); */
8130		p->vi[0].rss_base = val & 0xffff;
8131	}
8132
8133	return 0;
8134}
8135
8136/**
8137 *	t4_read_cimq_cfg - read CIM queue configuration
8138 *	@adap: the adapter
8139 *	@base: holds the queue base addresses in bytes
8140 *	@size: holds the queue sizes in bytes
8141 *	@thres: holds the queue full thresholds in bytes
8142 *
8143 *	Returns the current configuration of the CIM queues, starting with
8144 *	the IBQs, then the OBQs.
8145 */
8146void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8147{
8148	unsigned int i, v;
8149	int cim_num_obq = adap->chip_params->cim_num_obq;
8150
8151	for (i = 0; i < CIM_NUM_IBQ; i++) {
8152		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8153			     V_QUENUMSELECT(i));
8154		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8155		/* value is in 256-byte units */
8156		*base++ = G_CIMQBASE(v) * 256;
8157		*size++ = G_CIMQSIZE(v) * 256;
8158		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8159	}
8160	for (i = 0; i < cim_num_obq; i++) {
8161		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8162			     V_QUENUMSELECT(i));
8163		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8164		/* value is in 256-byte units */
8165		*base++ = G_CIMQBASE(v) * 256;
8166		*size++ = G_CIMQSIZE(v) * 256;
8167	}
8168}
8169
8170/**
8171 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8172 *	@adap: the adapter
8173 *	@qid: the queue index
8174 *	@data: where to store the queue contents
8175 *	@n: capacity of @data in 32-bit words
8176 *
8177 *	Reads the contents of the selected CIM queue starting at address 0 up
8178 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8179 *	error and the number of 32-bit words actually read on success.
8180 */
8181int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8182{
8183	int i, err, attempts;
8184	unsigned int addr;
8185	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8186
8187	if (qid > 5 || (n & 3))
8188		return -EINVAL;
8189
8190	addr = qid * nwords;
8191	if (n > nwords)
8192		n = nwords;
8193
8194	/* It might take 3-10ms before the IBQ debug read access is allowed.
8195	 * Wait for 1 Sec with a delay of 1 usec.
8196	 */
8197	attempts = 1000000;
8198
8199	for (i = 0; i < n; i++, addr++) {
8200		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8201			     F_IBQDBGEN);
8202		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8203				      attempts, 1);
8204		if (err)
8205			return err;
8206		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8207	}
8208	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8209	return i;
8210}
8211
8212/**
8213 *	t4_read_cim_obq - read the contents of a CIM outbound queue
8214 *	@adap: the adapter
8215 *	@qid: the queue index
8216 *	@data: where to store the queue contents
8217 *	@n: capacity of @data in 32-bit words
8218 *
8219 *	Reads the contents of the selected CIM queue starting at address 0 up
8220 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8221 *	error and the number of 32-bit words actually read on success.
8222 */
8223int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8224{
8225	int i, err;
8226	unsigned int addr, v, nwords;
8227	int cim_num_obq = adap->chip_params->cim_num_obq;
8228
8229	if ((qid > (cim_num_obq - 1)) || (n & 3))
8230		return -EINVAL;
8231
8232	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8233		     V_QUENUMSELECT(qid));
8234	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8235
8236	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8237	nwords = G_CIMQSIZE(v) * 64;  /* same */
8238	if (n > nwords)
8239		n = nwords;
8240
8241	for (i = 0; i < n; i++, addr++) {
8242		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8243			     F_OBQDBGEN);
8244		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8245				      2, 1);
8246		if (err)
8247			return err;
8248		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8249	}
8250	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8251	return i;
8252}
8253
8254enum {
8255	CIM_QCTL_BASE     = 0,
8256	CIM_CTL_BASE      = 0x2000,
8257	CIM_PBT_ADDR_BASE = 0x2800,
8258	CIM_PBT_LRF_BASE  = 0x3000,
8259	CIM_PBT_DATA_BASE = 0x3800
8260};
8261
8262/**
8263 *	t4_cim_read - read a block from CIM internal address space
8264 *	@adap: the adapter
8265 *	@addr: the start address within the CIM address space
8266 *	@n: number of words to read
8267 *	@valp: where to store the result
8268 *
8269 *	Reads a block of 4-byte words from the CIM intenal address space.
8270 */
8271int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8272		unsigned int *valp)
8273{
8274	int ret = 0;
8275
8276	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8277		return -EBUSY;
8278
8279	for ( ; !ret && n--; addr += 4) {
8280		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8281		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8282				      0, 5, 2);
8283		if (!ret)
8284			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8285	}
8286	return ret;
8287}
8288
8289/**
8290 *	t4_cim_write - write a block into CIM internal address space
8291 *	@adap: the adapter
8292 *	@addr: the start address within the CIM address space
8293 *	@n: number of words to write
8294 *	@valp: set of values to write
8295 *
8296 *	Writes a block of 4-byte words into the CIM intenal address space.
8297 */
8298int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8299		 const unsigned int *valp)
8300{
8301	int ret = 0;
8302
8303	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8304		return -EBUSY;
8305
8306	for ( ; !ret && n--; addr += 4) {
8307		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8308		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8309		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8310				      0, 5, 2);
8311	}
8312	return ret;
8313}
8314
8315static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8316			 unsigned int val)
8317{
8318	return t4_cim_write(adap, addr, 1, &val);
8319}
8320
8321/**
8322 *	t4_cim_ctl_read - read a block from CIM control region
8323 *	@adap: the adapter
8324 *	@addr: the start address within the CIM control region
8325 *	@n: number of words to read
8326 *	@valp: where to store the result
8327 *
8328 *	Reads a block of 4-byte words from the CIM control region.
8329 */
8330int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8331		    unsigned int *valp)
8332{
8333	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8334}
8335
8336/**
8337 *	t4_cim_read_la - read CIM LA capture buffer
8338 *	@adap: the adapter
8339 *	@la_buf: where to store the LA data
8340 *	@wrptr: the HW write pointer within the capture buffer
8341 *
8342 *	Reads the contents of the CIM LA buffer with the most recent entry at
8343 *	the end	of the returned data and with the entry at @wrptr first.
8344 *	We try to leave the LA in the running state we find it in.
8345 */
8346int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8347{
8348	int i, ret;
8349	unsigned int cfg, val, idx;
8350
8351	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8352	if (ret)
8353		return ret;
8354
8355	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8356		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8357		if (ret)
8358			return ret;
8359	}
8360
8361	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8362	if (ret)
8363		goto restart;
8364
8365	idx = G_UPDBGLAWRPTR(val);
8366	if (wrptr)
8367		*wrptr = idx;
8368
8369	for (i = 0; i < adap->params.cim_la_size; i++) {
8370		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8371				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8372		if (ret)
8373			break;
8374		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8375		if (ret)
8376			break;
8377		if (val & F_UPDBGLARDEN) {
8378			ret = -ETIMEDOUT;
8379			break;
8380		}
8381		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8382		if (ret)
8383			break;
8384
8385		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8386		idx = (idx + 1) & M_UPDBGLARDPTR;
8387		/*
8388		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8389		 * identify the 32-bit portion of the full 312-bit data
8390		 */
8391		if (is_t6(adap))
8392			while ((idx & 0xf) > 9)
8393				idx = (idx + 1) % M_UPDBGLARDPTR;
8394	}
8395restart:
8396	if (cfg & F_UPDBGLAEN) {
8397		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8398				      cfg & ~F_UPDBGLARDEN);
8399		if (!ret)
8400			ret = r;
8401	}
8402	return ret;
8403}
8404
8405/**
8406 *	t4_tp_read_la - read TP LA capture buffer
8407 *	@adap: the adapter
8408 *	@la_buf: where to store the LA data
8409 *	@wrptr: the HW write pointer within the capture buffer
8410 *
8411 *	Reads the contents of the TP LA buffer with the most recent entry at
8412 *	the end	of the returned data and with the entry at @wrptr first.
8413 *	We leave the LA in the running state we find it in.
8414 */
8415void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8416{
8417	bool last_incomplete;
8418	unsigned int i, cfg, val, idx;
8419
8420	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8421	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8422		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8423			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8424
8425	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8426	idx = G_DBGLAWPTR(val);
8427	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8428	if (last_incomplete)
8429		idx = (idx + 1) & M_DBGLARPTR;
8430	if (wrptr)
8431		*wrptr = idx;
8432
8433	val &= 0xffff;
8434	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8435	val |= adap->params.tp.la_mask;
8436
8437	for (i = 0; i < TPLA_SIZE; i++) {
8438		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8439		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8440		idx = (idx + 1) & M_DBGLARPTR;
8441	}
8442
8443	/* Wipe out last entry if it isn't valid */
8444	if (last_incomplete)
8445		la_buf[TPLA_SIZE - 1] = ~0ULL;
8446
8447	if (cfg & F_DBGLAENABLE)		/* restore running state */
8448		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8449			     cfg | adap->params.tp.la_mask);
8450}
8451
8452/*
8453 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8454 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8455 * state for more than the Warning Threshold then we'll issue a warning about
8456 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8457 * appears to be hung every Warning Repeat second till the situation clears.
8458 * If the situation clears, we'll note that as well.
8459 */
8460#define SGE_IDMA_WARN_THRESH 1
8461#define SGE_IDMA_WARN_REPEAT 300
8462
8463/**
8464 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8465 *	@adapter: the adapter
8466 *	@idma: the adapter IDMA Monitor state
8467 *
8468 *	Initialize the state of an SGE Ingress DMA Monitor.
8469 */
8470void t4_idma_monitor_init(struct adapter *adapter,
8471			  struct sge_idma_monitor_state *idma)
8472{
8473	/* Initialize the state variables for detecting an SGE Ingress DMA
8474	 * hang.  The SGE has internal counters which count up on each clock
8475	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8476	 * same state they were on the previous clock tick.  The clock used is
8477	 * the Core Clock so we have a limit on the maximum "time" they can
8478	 * record; typically a very small number of seconds.  For instance,
8479	 * with a 600MHz Core Clock, we can only count up to a bit more than
8480	 * 7s.  So we'll synthesize a larger counter in order to not run the
8481	 * risk of having the "timers" overflow and give us the flexibility to
8482	 * maintain a Hung SGE State Machine of our own which operates across
8483	 * a longer time frame.
8484	 */
8485	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8486	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8487}
8488
8489/**
8490 *	t4_idma_monitor - monitor SGE Ingress DMA state
8491 *	@adapter: the adapter
8492 *	@idma: the adapter IDMA Monitor state
8493 *	@hz: number of ticks/second
8494 *	@ticks: number of ticks since the last IDMA Monitor call
8495 */
8496void t4_idma_monitor(struct adapter *adapter,
8497		     struct sge_idma_monitor_state *idma,
8498		     int hz, int ticks)
8499{
8500	int i, idma_same_state_cnt[2];
8501
8502	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8503	  * are counters inside the SGE which count up on each clock when the
8504	  * SGE finds its Ingress DMA State Engines in the same states they
8505	  * were in the previous clock.  The counters will peg out at
8506	  * 0xffffffff without wrapping around so once they pass the 1s
8507	  * threshold they'll stay above that till the IDMA state changes.
8508	  */
8509	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8510	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8511	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8512
8513	for (i = 0; i < 2; i++) {
8514		u32 debug0, debug11;
8515
8516		/* If the Ingress DMA Same State Counter ("timer") is less
8517		 * than 1s, then we can reset our synthesized Stall Timer and
8518		 * continue.  If we have previously emitted warnings about a
8519		 * potential stalled Ingress Queue, issue a note indicating
8520		 * that the Ingress Queue has resumed forward progress.
8521		 */
8522		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8523			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8524				CH_WARN(adapter, "SGE idma%d, queue %u, "
8525					"resumed after %d seconds\n",
8526					i, idma->idma_qid[i],
8527					idma->idma_stalled[i]/hz);
8528			idma->idma_stalled[i] = 0;
8529			continue;
8530		}
8531
8532		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8533		 * domain.  The first time we get here it'll be because we
8534		 * passed the 1s Threshold; each additional time it'll be
8535		 * because the RX Timer Callback is being fired on its regular
8536		 * schedule.
8537		 *
8538		 * If the stall is below our Potential Hung Ingress Queue
8539		 * Warning Threshold, continue.
8540		 */
8541		if (idma->idma_stalled[i] == 0) {
8542			idma->idma_stalled[i] = hz;
8543			idma->idma_warn[i] = 0;
8544		} else {
8545			idma->idma_stalled[i] += ticks;
8546			idma->idma_warn[i] -= ticks;
8547		}
8548
8549		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8550			continue;
8551
8552		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8553		 */
8554		if (idma->idma_warn[i] > 0)
8555			continue;
8556		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8557
8558		/* Read and save the SGE IDMA State and Queue ID information.
8559		 * We do this every time in case it changes across time ...
8560		 * can't be too careful ...
8561		 */
8562		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8563		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8564		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8565
8566		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8567		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8568		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8569
8570		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8571			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8572			i, idma->idma_qid[i], idma->idma_state[i],
8573			idma->idma_stalled[i]/hz,
8574			debug0, debug11);
8575		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8576	}
8577}
8578
8579/**
8580 *	t4_read_pace_tbl - read the pace table
8581 *	@adap: the adapter
8582 *	@pace_vals: holds the returned values
8583 *
8584 *	Returns the values of TP's pace table in microseconds.
8585 */
8586void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8587{
8588	unsigned int i, v;
8589
8590	for (i = 0; i < NTX_SCHED; i++) {
8591		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8592		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8593		pace_vals[i] = dack_ticks_to_usec(adap, v);
8594	}
8595}
8596
8597/**
8598 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8599 *	@adap: the adapter
8600 *	@sched: the scheduler index
8601 *	@kbps: the byte rate in Kbps
8602 *	@ipg: the interpacket delay in tenths of nanoseconds
8603 *
8604 *	Return the current configuration of a HW Tx scheduler.
8605 */
8606void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8607		     unsigned int *ipg)
8608{
8609	unsigned int v, addr, bpt, cpt;
8610
8611	if (kbps) {
8612		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8613		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8614		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8615		if (sched & 1)
8616			v >>= 16;
8617		bpt = (v >> 8) & 0xff;
8618		cpt = v & 0xff;
8619		if (!cpt)
8620			*kbps = 0;	/* scheduler disabled */
8621		else {
8622			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8623			*kbps = (v * bpt) / 125;
8624		}
8625	}
8626	if (ipg) {
8627		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8628		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8629		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8630		if (sched & 1)
8631			v >>= 16;
8632		v &= 0xffff;
8633		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8634	}
8635}
8636
8637/**
8638 *	t4_load_cfg - download config file
8639 *	@adap: the adapter
8640 *	@cfg_data: the cfg text file to write
8641 *	@size: text file size
8642 *
8643 *	Write the supplied config text file to the card's serial flash.
8644 */
8645int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8646{
8647	int ret, i, n, cfg_addr;
8648	unsigned int addr;
8649	unsigned int flash_cfg_start_sec;
8650	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8651
8652	cfg_addr = t4_flash_cfg_addr(adap);
8653	if (cfg_addr < 0)
8654		return cfg_addr;
8655
8656	addr = cfg_addr;
8657	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8658
8659	if (size > FLASH_CFG_MAX_SIZE) {
8660		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8661		       FLASH_CFG_MAX_SIZE);
8662		return -EFBIG;
8663	}
8664
8665	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8666			 sf_sec_size);
8667	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8668				     flash_cfg_start_sec + i - 1);
8669	/*
8670	 * If size == 0 then we're simply erasing the FLASH sectors associated
8671	 * with the on-adapter Firmware Configuration File.
8672	 */
8673	if (ret || size == 0)
8674		goto out;
8675
8676	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8677	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8678		if ( (size - i) <  SF_PAGE_SIZE)
8679			n = size - i;
8680		else
8681			n = SF_PAGE_SIZE;
8682		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8683		if (ret)
8684			goto out;
8685
8686		addr += SF_PAGE_SIZE;
8687		cfg_data += SF_PAGE_SIZE;
8688	}
8689
8690out:
8691	if (ret)
8692		CH_ERR(adap, "config file %s failed %d\n",
8693		       (size == 0 ? "clear" : "download"), ret);
8694	return ret;
8695}
8696
8697/**
8698 *	t5_fw_init_extern_mem - initialize the external memory
8699 *	@adap: the adapter
8700 *
8701 *	Initializes the external memory on T5.
8702 */
8703int t5_fw_init_extern_mem(struct adapter *adap)
8704{
8705	u32 params[1], val[1];
8706	int ret;
8707
8708	if (!is_t5(adap))
8709		return 0;
8710
8711	val[0] = 0xff; /* Initialize all MCs */
8712	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8713			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8714	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8715			FW_CMD_MAX_TIMEOUT);
8716
8717	return ret;
8718}
8719
8720/* BIOS boot headers */
8721typedef struct pci_expansion_rom_header {
8722	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8723	u8	reserved[22]; /* Reserved per processor Architecture data */
8724	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8725} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8726
8727/* Legacy PCI Expansion ROM Header */
8728typedef struct legacy_pci_expansion_rom_header {
8729	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8730	u8	size512; /* Current Image Size in units of 512 bytes */
8731	u8	initentry_point[4];
8732	u8	cksum; /* Checksum computed on the entire Image */
8733	u8	reserved[16]; /* Reserved */
8734	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8735} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8736
8737/* EFI PCI Expansion ROM Header */
8738typedef struct efi_pci_expansion_rom_header {
8739	u8	signature[2]; // ROM signature. The value 0xaa55
8740	u8	initialization_size[2]; /* Units 512. Includes this header */
8741	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8742	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8743	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8744	u8	compression_type[2]; /* Compression type. */
8745		/*
8746		 * Compression type definition
8747		 * 0x0: uncompressed
8748		 * 0x1: Compressed
8749		 * 0x2-0xFFFF: Reserved
8750		 */
8751	u8	reserved[8]; /* Reserved */
8752	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8753	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8754} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8755
8756/* PCI Data Structure Format */
8757typedef struct pcir_data_structure { /* PCI Data Structure */
8758	u8	signature[4]; /* Signature. The string "PCIR" */
8759	u8	vendor_id[2]; /* Vendor Identification */
8760	u8	device_id[2]; /* Device Identification */
8761	u8	vital_product[2]; /* Pointer to Vital Product Data */
8762	u8	length[2]; /* PCIR Data Structure Length */
8763	u8	revision; /* PCIR Data Structure Revision */
8764	u8	class_code[3]; /* Class Code */
8765	u8	image_length[2]; /* Image Length. Multiple of 512B */
8766	u8	code_revision[2]; /* Revision Level of Code/Data */
8767	u8	code_type; /* Code Type. */
8768		/*
8769		 * PCI Expansion ROM Code Types
8770		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8771		 * 0x01: Open Firmware standard for PCI. FCODE
8772		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8773		 * 0x03: EFI Image. EFI
8774		 * 0x04-0xFF: Reserved.
8775		 */
8776	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8777	u8	reserved[2]; /* Reserved */
8778} pcir_data_t; /* PCI__DATA_STRUCTURE */
8779
8780/* BOOT constants */
8781enum {
8782	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8783	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8784	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8785	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8786	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8787	VENDOR_ID = 0x1425, /* Vendor ID */
8788	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8789};
8790
8791/*
8792 *	modify_device_id - Modifies the device ID of the Boot BIOS image
8793 *	@adatper: the device ID to write.
8794 *	@boot_data: the boot image to modify.
8795 *
8796 *	Write the supplied device ID to the boot BIOS image.
8797 */
8798static void modify_device_id(int device_id, u8 *boot_data)
8799{
8800	legacy_pci_exp_rom_header_t *header;
8801	pcir_data_t *pcir_header;
8802	u32 cur_header = 0;
8803
8804	/*
8805	 * Loop through all chained images and change the device ID's
8806	 */
8807	while (1) {
8808		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8809		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8810			      le16_to_cpu(*(u16*)header->pcir_offset)];
8811
8812		/*
8813		 * Only modify the Device ID if code type is Legacy or HP.
8814		 * 0x00: Okay to modify
8815		 * 0x01: FCODE. Do not be modify
8816		 * 0x03: Okay to modify
8817		 * 0x04-0xFF: Do not modify
8818		 */
8819		if (pcir_header->code_type == 0x00) {
8820			u8 csum = 0;
8821			int i;
8822
8823			/*
8824			 * Modify Device ID to match current adatper
8825			 */
8826			*(u16*) pcir_header->device_id = device_id;
8827
8828			/*
8829			 * Set checksum temporarily to 0.
8830			 * We will recalculate it later.
8831			 */
8832			header->cksum = 0x0;
8833
8834			/*
8835			 * Calculate and update checksum
8836			 */
8837			for (i = 0; i < (header->size512 * 512); i++)
8838				csum += (u8)boot_data[cur_header + i];
8839
8840			/*
8841			 * Invert summed value to create the checksum
8842			 * Writing new checksum value directly to the boot data
8843			 */
8844			boot_data[cur_header + 7] = -csum;
8845
8846		} else if (pcir_header->code_type == 0x03) {
8847
8848			/*
8849			 * Modify Device ID to match current adatper
8850			 */
8851			*(u16*) pcir_header->device_id = device_id;
8852
8853		}
8854
8855
8856		/*
8857		 * Check indicator element to identify if this is the last
8858		 * image in the ROM.
8859		 */
8860		if (pcir_header->indicator & 0x80)
8861			break;
8862
8863		/*
8864		 * Move header pointer up to the next image in the ROM.
8865		 */
8866		cur_header += header->size512 * 512;
8867	}
8868}
8869
8870/*
8871 *	t4_load_boot - download boot flash
8872 *	@adapter: the adapter
8873 *	@boot_data: the boot image to write
8874 *	@boot_addr: offset in flash to write boot_data
8875 *	@size: image size
8876 *
8877 *	Write the supplied boot image to the card's serial flash.
8878 *	The boot image has the following sections: a 28-byte header and the
8879 *	boot image.
8880 */
8881int t4_load_boot(struct adapter *adap, u8 *boot_data,
8882		 unsigned int boot_addr, unsigned int size)
8883{
8884	pci_exp_rom_header_t *header;
8885	int pcir_offset ;
8886	pcir_data_t *pcir_header;
8887	int ret, addr;
8888	uint16_t device_id;
8889	unsigned int i;
8890	unsigned int boot_sector = (boot_addr * 1024 );
8891	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8892
8893	/*
8894	 * Make sure the boot image does not encroach on the firmware region
8895	 */
8896	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8897		CH_ERR(adap, "boot image encroaching on firmware region\n");
8898		return -EFBIG;
8899	}
8900
8901	/*
8902	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8903	 * and Boot configuration data sections. These 3 boot sections span
8904	 * sectors 0 to 7 in flash and live right before the FW image location.
8905	 */
8906	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8907			sf_sec_size);
8908	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8909				     (boot_sector >> 16) + i - 1);
8910
8911	/*
8912	 * If size == 0 then we're simply erasing the FLASH sectors associated
8913	 * with the on-adapter option ROM file
8914	 */
8915	if (ret || (size == 0))
8916		goto out;
8917
8918	/* Get boot header */
8919	header = (pci_exp_rom_header_t *)boot_data;
8920	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8921	/* PCIR Data Structure */
8922	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8923
8924	/*
8925	 * Perform some primitive sanity testing to avoid accidentally
8926	 * writing garbage over the boot sectors.  We ought to check for
8927	 * more but it's not worth it for now ...
8928	 */
8929	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8930		CH_ERR(adap, "boot image too small/large\n");
8931		return -EFBIG;
8932	}
8933
8934#ifndef CHELSIO_T4_DIAGS
8935	/*
8936	 * Check BOOT ROM header signature
8937	 */
8938	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8939		CH_ERR(adap, "Boot image missing signature\n");
8940		return -EINVAL;
8941	}
8942
8943	/*
8944	 * Check PCI header signature
8945	 */
8946	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8947		CH_ERR(adap, "PCI header missing signature\n");
8948		return -EINVAL;
8949	}
8950
8951	/*
8952	 * Check Vendor ID matches Chelsio ID
8953	 */
8954	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8955		CH_ERR(adap, "Vendor ID missing signature\n");
8956		return -EINVAL;
8957	}
8958#endif
8959
8960	/*
8961	 * Retrieve adapter's device ID
8962	 */
8963	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8964	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8965	device_id = device_id & 0xf0ff;
8966
8967	/*
8968	 * Check PCIE Device ID
8969	 */
8970	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8971		/*
8972		 * Change the device ID in the Boot BIOS image to match
8973		 * the Device ID of the current adapter.
8974		 */
8975		modify_device_id(device_id, boot_data);
8976	}
8977
8978	/*
8979	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
8980	 * we finish copying the rest of the boot image. This will ensure
8981	 * that the BIOS boot header will only be written if the boot image
8982	 * was written in full.
8983	 */
8984	addr = boot_sector;
8985	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
8986		addr += SF_PAGE_SIZE;
8987		boot_data += SF_PAGE_SIZE;
8988		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
8989		if (ret)
8990			goto out;
8991	}
8992
8993	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
8994			     (const u8 *)header, 0);
8995
8996out:
8997	if (ret)
8998		CH_ERR(adap, "boot image download failed, error %d\n", ret);
8999	return ret;
9000}
9001
9002/*
9003 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9004 *	@adapter: the adapter
9005 *
9006 *	Return the address within the flash where the OptionROM Configuration
9007 *	is stored, or an error if the device FLASH is too small to contain
9008 *	a OptionROM Configuration.
9009 */
9010static int t4_flash_bootcfg_addr(struct adapter *adapter)
9011{
9012	/*
9013	 * If the device FLASH isn't large enough to hold a Firmware
9014	 * Configuration File, return an error.
9015	 */
9016	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9017		return -ENOSPC;
9018
9019	return FLASH_BOOTCFG_START;
9020}
9021
9022int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9023{
9024	int ret, i, n, cfg_addr;
9025	unsigned int addr;
9026	unsigned int flash_cfg_start_sec;
9027	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9028
9029	cfg_addr = t4_flash_bootcfg_addr(adap);
9030	if (cfg_addr < 0)
9031		return cfg_addr;
9032
9033	addr = cfg_addr;
9034	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9035
9036	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9037		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9038			FLASH_BOOTCFG_MAX_SIZE);
9039		return -EFBIG;
9040	}
9041
9042	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9043			 sf_sec_size);
9044	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9045					flash_cfg_start_sec + i - 1);
9046
9047	/*
9048	 * If size == 0 then we're simply erasing the FLASH sectors associated
9049	 * with the on-adapter OptionROM Configuration File.
9050	 */
9051	if (ret || size == 0)
9052		goto out;
9053
9054	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9055	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9056		if ( (size - i) <  SF_PAGE_SIZE)
9057			n = size - i;
9058		else
9059			n = SF_PAGE_SIZE;
9060		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9061		if (ret)
9062			goto out;
9063
9064		addr += SF_PAGE_SIZE;
9065		cfg_data += SF_PAGE_SIZE;
9066	}
9067
9068out:
9069	if (ret)
9070		CH_ERR(adap, "boot config data %s failed %d\n",
9071				(size == 0 ? "clear" : "download"), ret);
9072	return ret;
9073}
9074
9075/**
9076 *	t4_set_filter_mode - configure the optional components of filter tuples
9077 *	@adap: the adapter
9078 *	@mode_map: a bitmap selcting which optional filter components to enable
9079 *
9080 *	Sets the filter mode by selecting the optional components to enable
9081 *	in filter tuples.  Returns 0 on success and a negative error if the
9082 *	requested mode needs more bits than are available for optional
9083 *	components.
9084 */
9085int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
9086{
9087	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9088
9089	int i, nbits = 0;
9090
9091	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9092		if (mode_map & (1 << i))
9093			nbits += width[i];
9094	if (nbits > FILTER_OPT_LEN)
9095		return -EINVAL;
9096	if (t4_use_ldst(adap))
9097		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
9098	else
9099		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
9100				  1, A_TP_VLAN_PRI_MAP);
9101	read_filter_mode_and_ingress_config(adap);
9102
9103	return 0;
9104}
9105
9106/**
9107 *	t4_clr_port_stats - clear port statistics
9108 *	@adap: the adapter
9109 *	@idx: the port index
9110 *
9111 *	Clear HW statistics for the given port.
9112 */
9113void t4_clr_port_stats(struct adapter *adap, int idx)
9114{
9115	unsigned int i;
9116	u32 bgmap = t4_get_mps_bg_map(adap, idx);
9117	u32 port_base_addr;
9118
9119	if (is_t4(adap))
9120		port_base_addr = PORT_BASE(idx);
9121	else
9122		port_base_addr = T5_PORT_BASE(idx);
9123
9124	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9125			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9126		t4_write_reg(adap, port_base_addr + i, 0);
9127	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9128			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9129		t4_write_reg(adap, port_base_addr + i, 0);
9130	for (i = 0; i < 4; i++)
9131		if (bgmap & (1 << i)) {
9132			t4_write_reg(adap,
9133			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9134			t4_write_reg(adap,
9135			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9136		}
9137}
9138
9139/**
9140 *	t4_i2c_rd - read I2C data from adapter
9141 *	@adap: the adapter
9142 *	@port: Port number if per-port device; <0 if not
9143 *	@devid: per-port device ID or absolute device ID
9144 *	@offset: byte offset into device I2C space
9145 *	@len: byte length of I2C space data
9146 *	@buf: buffer in which to return I2C data
9147 *
9148 *	Reads the I2C data from the indicated device and location.
9149 */
9150int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9151	      int port, unsigned int devid,
9152	      unsigned int offset, unsigned int len,
9153	      u8 *buf)
9154{
9155	u32 ldst_addrspace;
9156	struct fw_ldst_cmd ldst;
9157	int ret;
9158
9159	if (port >= 4 ||
9160	    devid >= 256 ||
9161	    offset >= 256 ||
9162	    len > sizeof ldst.u.i2c.data)
9163		return -EINVAL;
9164
9165	memset(&ldst, 0, sizeof ldst);
9166	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9167	ldst.op_to_addrspace =
9168		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9169			    F_FW_CMD_REQUEST |
9170			    F_FW_CMD_READ |
9171			    ldst_addrspace);
9172	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9173	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9174	ldst.u.i2c.did = devid;
9175	ldst.u.i2c.boffset = offset;
9176	ldst.u.i2c.blen = len;
9177	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9178	if (!ret)
9179		memcpy(buf, ldst.u.i2c.data, len);
9180	return ret;
9181}
9182
9183/**
9184 *	t4_i2c_wr - write I2C data to adapter
9185 *	@adap: the adapter
9186 *	@port: Port number if per-port device; <0 if not
9187 *	@devid: per-port device ID or absolute device ID
9188 *	@offset: byte offset into device I2C space
9189 *	@len: byte length of I2C space data
9190 *	@buf: buffer containing new I2C data
9191 *
9192 *	Write the I2C data to the indicated device and location.
9193 */
9194int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9195	      int port, unsigned int devid,
9196	      unsigned int offset, unsigned int len,
9197	      u8 *buf)
9198{
9199	u32 ldst_addrspace;
9200	struct fw_ldst_cmd ldst;
9201
9202	if (port >= 4 ||
9203	    devid >= 256 ||
9204	    offset >= 256 ||
9205	    len > sizeof ldst.u.i2c.data)
9206		return -EINVAL;
9207
9208	memset(&ldst, 0, sizeof ldst);
9209	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9210	ldst.op_to_addrspace =
9211		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9212			    F_FW_CMD_REQUEST |
9213			    F_FW_CMD_WRITE |
9214			    ldst_addrspace);
9215	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9216	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9217	ldst.u.i2c.did = devid;
9218	ldst.u.i2c.boffset = offset;
9219	ldst.u.i2c.blen = len;
9220	memcpy(ldst.u.i2c.data, buf, len);
9221	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9222}
9223
9224/**
9225 * 	t4_sge_ctxt_rd - read an SGE context through FW
9226 * 	@adap: the adapter
9227 * 	@mbox: mailbox to use for the FW command
9228 * 	@cid: the context id
9229 * 	@ctype: the context type
9230 * 	@data: where to store the context data
9231 *
9232 * 	Issues a FW command through the given mailbox to read an SGE context.
9233 */
9234int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9235		   enum ctxt_type ctype, u32 *data)
9236{
9237	int ret;
9238	struct fw_ldst_cmd c;
9239
9240	if (ctype == CTXT_EGRESS)
9241		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9242	else if (ctype == CTXT_INGRESS)
9243		ret = FW_LDST_ADDRSPC_SGE_INGC;
9244	else if (ctype == CTXT_FLM)
9245		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9246	else
9247		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9248
9249	memset(&c, 0, sizeof(c));
9250	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9251					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9252					V_FW_LDST_CMD_ADDRSPACE(ret));
9253	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9254	c.u.idctxt.physid = cpu_to_be32(cid);
9255
9256	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9257	if (ret == 0) {
9258		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9259		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9260		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9261		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9262		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9263		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9264	}
9265	return ret;
9266}
9267
9268/**
9269 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9270 * 	@adap: the adapter
9271 * 	@cid: the context id
9272 * 	@ctype: the context type
9273 * 	@data: where to store the context data
9274 *
9275 * 	Reads an SGE context directly, bypassing FW.  This is only for
9276 * 	debugging when FW is unavailable.
9277 */
9278int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9279		      u32 *data)
9280{
9281	int i, ret;
9282
9283	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9284	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9285	if (!ret)
9286		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9287			*data++ = t4_read_reg(adap, i);
9288	return ret;
9289}
9290
9291int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9292    		    int sleep_ok)
9293{
9294	struct fw_sched_cmd cmd;
9295
9296	memset(&cmd, 0, sizeof(cmd));
9297	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9298				      F_FW_CMD_REQUEST |
9299				      F_FW_CMD_WRITE);
9300	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9301
9302	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9303	cmd.u.config.type = type;
9304	cmd.u.config.minmaxen = minmaxen;
9305
9306	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9307			       NULL, sleep_ok);
9308}
9309
9310int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9311		    int rateunit, int ratemode, int channel, int cl,
9312		    int minrate, int maxrate, int weight, int pktsize,
9313		    int sleep_ok)
9314{
9315	struct fw_sched_cmd cmd;
9316
9317	memset(&cmd, 0, sizeof(cmd));
9318	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9319				      F_FW_CMD_REQUEST |
9320				      F_FW_CMD_WRITE);
9321	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9322
9323	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9324	cmd.u.params.type = type;
9325	cmd.u.params.level = level;
9326	cmd.u.params.mode = mode;
9327	cmd.u.params.ch = channel;
9328	cmd.u.params.cl = cl;
9329	cmd.u.params.unit = rateunit;
9330	cmd.u.params.rate = ratemode;
9331	cmd.u.params.min = cpu_to_be32(minrate);
9332	cmd.u.params.max = cpu_to_be32(maxrate);
9333	cmd.u.params.weight = cpu_to_be16(weight);
9334	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9335
9336	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9337			       NULL, sleep_ok);
9338}
9339
9340/*
9341 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9342 *	@adapter: the adapter
9343 * 	@mbox: mailbox to use for the FW command
9344 * 	@pf: the PF owning the queue
9345 * 	@vf: the VF owning the queue
9346 *	@timeout: watchdog timeout in ms
9347 *	@action: watchdog timer / action
9348 *
9349 *	There are separate watchdog timers for each possible watchdog
9350 *	action.  Configure one of the watchdog timers by setting a non-zero
9351 *	timeout.  Disable a watchdog timer by using a timeout of zero.
9352 */
9353int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9354		       unsigned int pf, unsigned int vf,
9355		       unsigned int timeout, unsigned int action)
9356{
9357	struct fw_watchdog_cmd wdog;
9358	unsigned int ticks;
9359
9360	/*
9361	 * The watchdog command expects a timeout in units of 10ms so we need
9362	 * to convert it here (via rounding) and force a minimum of one 10ms
9363	 * "tick" if the timeout is non-zero but the conversion results in 0
9364	 * ticks.
9365	 */
9366	ticks = (timeout + 5)/10;
9367	if (timeout && !ticks)
9368		ticks = 1;
9369
9370	memset(&wdog, 0, sizeof wdog);
9371	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9372				     F_FW_CMD_REQUEST |
9373				     F_FW_CMD_WRITE |
9374				     V_FW_PARAMS_CMD_PFN(pf) |
9375				     V_FW_PARAMS_CMD_VFN(vf));
9376	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9377	wdog.timeout = cpu_to_be32(ticks);
9378	wdog.action = cpu_to_be32(action);
9379
9380	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9381}
9382
9383int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9384{
9385	struct fw_devlog_cmd devlog_cmd;
9386	int ret;
9387
9388	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9389	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9390					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9391	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9392	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9393			 sizeof(devlog_cmd), &devlog_cmd);
9394	if (ret)
9395		return ret;
9396
9397	*level = devlog_cmd.level;
9398	return 0;
9399}
9400
9401int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9402{
9403	struct fw_devlog_cmd devlog_cmd;
9404
9405	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9406	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9407					     F_FW_CMD_REQUEST |
9408					     F_FW_CMD_WRITE);
9409	devlog_cmd.level = level;
9410	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9411	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9412			  sizeof(devlog_cmd), &devlog_cmd);
9413}
9414