aic79xx_inline.h revision 331722
1/*-
2 * Inline routines shareable across OS platforms.
3 *
4 * Copyright (c) 1994-2001 Justin T. Gibbs.
5 * Copyright (c) 2000-2003 Adaptec Inc.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions, and the following disclaimer,
13 *    without modification.
14 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
15 *    substantially similar to the "NO WARRANTY" disclaimer below
16 *    ("Disclaimer") and any redistribution must be conditioned upon
17 *    including a substantially similar Disclaimer requirement for further
18 *    binary redistribution.
19 * 3. Neither the names of the above-listed copyright holders nor the names
20 *    of any contributors may be used to endorse or promote products derived
21 *    from this software without specific prior written permission.
22 *
23 * Alternatively, this software may be distributed under the terms of the
24 * GNU General Public License ("GPL") version 2 as published by the Free
25 * Software Foundation.
26 *
27 * NO WARRANTY
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
36 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
37 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
38 * POSSIBILITY OF SUCH DAMAGES.
39 *
40 * $Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#57 $
41 *
42 * $FreeBSD: stable/11/sys/dev/aic7xxx/aic79xx_inline.h 331722 2018-03-29 02:50:57Z eadler $
43 */
44
45#ifndef _AIC79XX_INLINE_H_
46#define _AIC79XX_INLINE_H_
47
48/******************************** Debugging ***********************************/
49static __inline char *ahd_name(struct ahd_softc *ahd);
50
51static __inline char *
52ahd_name(struct ahd_softc *ahd)
53{
54	return (ahd->name);
55}
56
57/************************ Sequencer Execution Control *************************/
58static __inline void ahd_known_modes(struct ahd_softc *ahd,
59				     ahd_mode src, ahd_mode dst);
60static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
61						    ahd_mode src,
62						    ahd_mode dst);
63static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
64					    ahd_mode_state state,
65					    ahd_mode *src, ahd_mode *dst);
66static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
67				   ahd_mode dst);
68static __inline void ahd_update_modes(struct ahd_softc *ahd);
69static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
70				      ahd_mode dstmode, const char *file,
71				      int line);
72static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
73static __inline void ahd_restore_modes(struct ahd_softc *ahd,
74				       ahd_mode_state state);
75static __inline int  ahd_is_paused(struct ahd_softc *ahd);
76static __inline void ahd_pause(struct ahd_softc *ahd);
77static __inline void ahd_unpause(struct ahd_softc *ahd);
78
79static __inline void
80ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
81{
82	ahd->src_mode = src;
83	ahd->dst_mode = dst;
84	ahd->saved_src_mode = src;
85	ahd->saved_dst_mode = dst;
86}
87
88static __inline ahd_mode_state
89ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
90{
91	return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
92}
93
94static __inline void
95ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
96		       ahd_mode *src, ahd_mode *dst)
97{
98	*src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
99	*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
100}
101
102static __inline void
103ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
104{
105	if (ahd->src_mode == src && ahd->dst_mode == dst)
106		return;
107#ifdef AHD_DEBUG
108	if (ahd->src_mode == AHD_MODE_UNKNOWN
109	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
110		panic("Setting mode prior to saving it.\n");
111	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
112		printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
113		       ahd_build_mode_state(ahd, src, dst));
114#endif
115	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
116	ahd->src_mode = src;
117	ahd->dst_mode = dst;
118}
119
120static __inline void
121ahd_update_modes(struct ahd_softc *ahd)
122{
123	ahd_mode_state mode_ptr;
124	ahd_mode src;
125	ahd_mode dst;
126
127	mode_ptr = ahd_inb(ahd, MODE_PTR);
128#ifdef AHD_DEBUG
129	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
130		printf("Reading mode 0x%x\n", mode_ptr);
131#endif
132	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
133	ahd_known_modes(ahd, src, dst);
134}
135
136static __inline void
137ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
138		 ahd_mode dstmode, const char *file, int line)
139{
140#ifdef AHD_DEBUG
141	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
142	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
143		panic("%s:%s:%d: Mode assertion failed.\n",
144		       ahd_name(ahd), file, line);
145	}
146#endif
147}
148
149static __inline ahd_mode_state
150ahd_save_modes(struct ahd_softc *ahd)
151{
152	if (ahd->src_mode == AHD_MODE_UNKNOWN
153	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
154		ahd_update_modes(ahd);
155
156	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
157}
158
159static __inline void
160ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
161{
162	ahd_mode src;
163	ahd_mode dst;
164
165	ahd_extract_mode_state(ahd, state, &src, &dst);
166	ahd_set_modes(ahd, src, dst);
167}
168
169#define AHD_ASSERT_MODES(ahd, source, dest) \
170	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
171
172/*
173 * Determine whether the sequencer has halted code execution.
174 * Returns non-zero status if the sequencer is stopped.
175 */
176static __inline int
177ahd_is_paused(struct ahd_softc *ahd)
178{
179	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
180}
181
182/*
183 * Request that the sequencer stop and wait, indefinitely, for it
184 * to stop.  The sequencer will only acknowledge that it is paused
185 * once it has reached an instruction boundary and PAUSEDIS is
186 * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
187 * for critical sections.
188 */
189static __inline void
190ahd_pause(struct ahd_softc *ahd)
191{
192	ahd_outb(ahd, HCNTRL, ahd->pause);
193
194	/*
195	 * Since the sequencer can disable pausing in a critical section, we
196	 * must loop until it actually stops.
197	 */
198	while (ahd_is_paused(ahd) == 0)
199		;
200}
201
202/*
203 * Allow the sequencer to continue program execution.
204 * We check here to ensure that no additional interrupt
205 * sources that would cause the sequencer to halt have been
206 * asserted.  If, for example, a SCSI bus reset is detected
207 * while we are fielding a different, pausing, interrupt type,
208 * we don't want to release the sequencer before going back
209 * into our interrupt handler and dealing with this new
210 * condition.
211 */
212static __inline void
213ahd_unpause(struct ahd_softc *ahd)
214{
215	/*
216	 * Automatically restore our modes to those saved
217	 * prior to the first change of the mode.
218	 */
219	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
220	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
221		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
222			ahd_reset_cmds_pending(ahd);
223		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
224	}
225
226	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
227		ahd_outb(ahd, HCNTRL, ahd->unpause);
228
229	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
230}
231
232/*********************** Scatter Gather List Handling *************************/
233static __inline void	*ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
234				      void *sgptr, bus_addr_t addr,
235				      bus_size_t len, int last);
236static __inline void	 ahd_setup_scb_common(struct ahd_softc *ahd,
237					      struct scb *scb);
238static __inline void	 ahd_setup_data_scb(struct ahd_softc *ahd,
239					    struct scb *scb);
240static __inline void	 ahd_setup_noxfer_scb(struct ahd_softc *ahd,
241					      struct scb *scb);
242
243static __inline void *
244ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
245	     void *sgptr, bus_addr_t addr, bus_size_t len, int last)
246{
247	scb->sg_count++;
248	if (sizeof(bus_addr_t) > 4
249	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
250		struct ahd_dma64_seg *sg;
251
252		sg = (struct ahd_dma64_seg *)sgptr;
253		sg->addr = aic_htole64(addr);
254		sg->len = aic_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
255		return (sg + 1);
256	} else {
257		struct ahd_dma_seg *sg;
258
259		sg = (struct ahd_dma_seg *)sgptr;
260		sg->addr = aic_htole32(addr & 0xFFFFFFFF);
261		sg->len = aic_htole32(len | ((addr >> 8) & 0x7F000000)
262				    | (last ? AHD_DMA_LAST_SEG : 0));
263		return (sg + 1);
264	}
265}
266
267static __inline void
268ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
269{
270	/* XXX Handle target mode SCBs. */
271	scb->crc_retry_count = 0;
272	if ((scb->flags & SCB_PACKETIZED) != 0) {
273		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
274		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
275	} else {
276		if (aic_get_transfer_length(scb) & 0x01)
277			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
278		else
279			scb->hscb->task_attribute = 0;
280	}
281
282	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
283	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
284		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
285		    aic_htole32(scb->sense_busaddr);
286}
287
288static __inline void
289ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
290{
291	/*
292	 * Copy the first SG into the "current" data ponter area.
293	 */
294	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
295		struct ahd_dma64_seg *sg;
296
297		sg = (struct ahd_dma64_seg *)scb->sg_list;
298		scb->hscb->dataptr = sg->addr;
299		scb->hscb->datacnt = sg->len;
300	} else {
301		struct ahd_dma_seg *sg;
302		uint32_t *dataptr_words;
303
304		sg = (struct ahd_dma_seg *)scb->sg_list;
305		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
306		dataptr_words[0] = sg->addr;
307		dataptr_words[1] = 0;
308		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
309			uint64_t high_addr;
310
311			high_addr = aic_le32toh(sg->len) & 0x7F000000;
312			scb->hscb->dataptr |= aic_htole64(high_addr << 8);
313		}
314		scb->hscb->datacnt = sg->len;
315	}
316	/*
317	 * Note where to find the SG entries in bus space.
318	 * We also set the full residual flag which the
319	 * sequencer will clear as soon as a data transfer
320	 * occurs.
321	 */
322	scb->hscb->sgptr = aic_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
323}
324
325static __inline void
326ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
327{
328	scb->hscb->sgptr = aic_htole32(SG_LIST_NULL);
329	scb->hscb->dataptr = 0;
330	scb->hscb->datacnt = 0;
331}
332
333/************************** Memory mapping routines ***************************/
334static __inline size_t	ahd_sg_size(struct ahd_softc *ahd);
335static __inline void *
336			ahd_sg_bus_to_virt(struct ahd_softc *ahd,
337					   struct scb *scb,
338					   uint32_t sg_busaddr);
339static __inline uint32_t
340			ahd_sg_virt_to_bus(struct ahd_softc *ahd,
341					   struct scb *scb,
342					   void *sg);
343static __inline void	ahd_sync_scb(struct ahd_softc *ahd,
344				     struct scb *scb, int op);
345static __inline void	ahd_sync_sglist(struct ahd_softc *ahd,
346					struct scb *scb, int op);
347static __inline void	ahd_sync_sense(struct ahd_softc *ahd,
348				       struct scb *scb, int op);
349static __inline uint32_t
350			ahd_targetcmd_offset(struct ahd_softc *ahd,
351					     u_int index);
352
353static __inline size_t
354ahd_sg_size(struct ahd_softc *ahd)
355{
356	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
357		return (sizeof(struct ahd_dma64_seg));
358	return (sizeof(struct ahd_dma_seg));
359}
360
361static __inline void *
362ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
363{
364	bus_addr_t sg_offset;
365
366	/* sg_list_phys points to entry 1, not 0 */
367	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
368	return ((uint8_t *)scb->sg_list + sg_offset);
369}
370
371static __inline uint32_t
372ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
373{
374	bus_addr_t sg_offset;
375
376	/* sg_list_phys points to entry 1, not 0 */
377	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
378		  - ahd_sg_size(ahd);
379
380	return (scb->sg_list_busaddr + sg_offset);
381}
382
383static __inline void
384ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
385{
386	aic_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
387			scb->hscb_map->dmamap,
388			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
389			/*len*/sizeof(*scb->hscb), op);
390}
391
392static __inline void
393ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
394{
395	if (scb->sg_count == 0)
396		return;
397
398	aic_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
399			scb->sg_map->dmamap,
400			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
401			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
402}
403
404static __inline void
405ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
406{
407	aic_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
408			scb->sense_map->dmamap,
409			/*offset*/scb->sense_busaddr,
410			/*len*/AHD_SENSE_BUFSIZE, op);
411}
412
413static __inline uint32_t
414ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
415{
416	return (((uint8_t *)&ahd->targetcmds[index])
417	       - (uint8_t *)ahd->qoutfifo);
418}
419
420/********************** Miscellaneous Support Functions ***********************/
421static __inline void	ahd_complete_scb(struct ahd_softc *ahd,
422					 struct scb *scb);
423static __inline void	ahd_update_residual(struct ahd_softc *ahd,
424					    struct scb *scb);
425static __inline struct ahd_initiator_tinfo *
426			ahd_fetch_transinfo(struct ahd_softc *ahd,
427					    char channel, u_int our_id,
428					    u_int remote_id,
429					    struct ahd_tmode_tstate **tstate);
430static __inline uint16_t
431			ahd_inw(struct ahd_softc *ahd, u_int port);
432static __inline void	ahd_outw(struct ahd_softc *ahd, u_int port,
433				 u_int value);
434static __inline uint32_t
435			ahd_inl(struct ahd_softc *ahd, u_int port);
436static __inline void	ahd_outl(struct ahd_softc *ahd, u_int port,
437				 uint32_t value);
438static __inline uint64_t
439			ahd_inq(struct ahd_softc *ahd, u_int port);
440static __inline void	ahd_outq(struct ahd_softc *ahd, u_int port,
441				 uint64_t value);
442static __inline u_int	ahd_get_scbptr(struct ahd_softc *ahd);
443static __inline void	ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
444static __inline u_int	ahd_get_hnscb_qoff(struct ahd_softc *ahd);
445static __inline void	ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
446static __inline u_int	ahd_get_hescb_qoff(struct ahd_softc *ahd);
447static __inline void	ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
448static __inline u_int	ahd_get_snscb_qoff(struct ahd_softc *ahd);
449static __inline void	ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
450static __inline u_int	ahd_get_sescb_qoff(struct ahd_softc *ahd);
451static __inline void	ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
452static __inline u_int	ahd_get_sdscb_qoff(struct ahd_softc *ahd);
453static __inline void	ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
454static __inline u_int	ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
455static __inline u_int	ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
456static __inline uint32_t
457			ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
458static __inline uint64_t
459			ahd_inq_scbram(struct ahd_softc *ahd, u_int offset);
460static __inline void	ahd_swap_with_next_hscb(struct ahd_softc *ahd,
461						struct scb *scb);
462static __inline void	ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
463static __inline uint8_t *
464			ahd_get_sense_buf(struct ahd_softc *ahd,
465					  struct scb *scb);
466static __inline uint32_t
467			ahd_get_sense_bufaddr(struct ahd_softc *ahd,
468					      struct scb *scb);
469
470static __inline void
471ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
472{
473	uint32_t sgptr;
474
475	sgptr = aic_le32toh(scb->hscb->sgptr);
476	if ((sgptr & SG_STATUS_VALID) != 0)
477		ahd_handle_scb_status(ahd, scb);
478	else
479		ahd_done(ahd, scb);
480}
481
482/*
483 * Determine whether the sequencer reported a residual
484 * for this SCB/transaction.
485 */
486static __inline void
487ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
488{
489	uint32_t sgptr;
490
491	sgptr = aic_le32toh(scb->hscb->sgptr);
492	if ((sgptr & SG_STATUS_VALID) != 0)
493		ahd_calc_residual(ahd, scb);
494}
495
496/*
497 * Return pointers to the transfer negotiation information
498 * for the specified our_id/remote_id pair.
499 */
500static __inline struct ahd_initiator_tinfo *
501ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
502		    u_int remote_id, struct ahd_tmode_tstate **tstate)
503{
504	/*
505	 * Transfer data structures are stored from the perspective
506	 * of the target role.  Since the parameters for a connection
507	 * in the initiator role to a given target are the same as
508	 * when the roles are reversed, we pretend we are the target.
509	 */
510	if (channel == 'B')
511		our_id += 8;
512	*tstate = ahd->enabled_targets[our_id];
513	return (&(*tstate)->transinfo[remote_id]);
514}
515
516#define AHD_COPY_COL_IDX(dst, src)				\
517do {								\
518	dst->hscb->scsiid = src->hscb->scsiid;			\
519	dst->hscb->lun = src->hscb->lun;			\
520} while (0)
521
522static __inline uint16_t
523ahd_inw(struct ahd_softc *ahd, u_int port)
524{
525	/*
526	 * Read high byte first as some registers increment
527	 * or have other side effects when the low byte is
528	 * read.
529	 */
530	return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
531}
532
533static __inline void
534ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
535{
536	/*
537	 * Write low byte first to accommodate registers
538	 * such as PRGMCNT where the order maters.
539	 */
540	ahd_outb(ahd, port, value & 0xFF);
541	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
542}
543
544static __inline uint32_t
545ahd_inl(struct ahd_softc *ahd, u_int port)
546{
547	return ((ahd_inb(ahd, port))
548	      | (ahd_inb(ahd, port+1) << 8)
549	      | (ahd_inb(ahd, port+2) << 16)
550	      | (ahd_inb(ahd, port+3) << 24));
551}
552
553static __inline void
554ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
555{
556	ahd_outb(ahd, port, (value) & 0xFF);
557	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
558	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
559	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
560}
561
562static __inline uint64_t
563ahd_inq(struct ahd_softc *ahd, u_int port)
564{
565	return ((ahd_inb(ahd, port))
566	      | (ahd_inb(ahd, port+1) << 8)
567	      | (ahd_inb(ahd, port+2) << 16)
568	      | (ahd_inb(ahd, port+3) << 24)
569	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
570	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
571	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
572	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
573}
574
575static __inline void
576ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
577{
578	ahd_outb(ahd, port, value & 0xFF);
579	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
580	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
581	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
582	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
583	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
584	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
585	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
586}
587
588static __inline u_int
589ahd_get_scbptr(struct ahd_softc *ahd)
590{
591	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
592			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
593	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
594}
595
596static __inline void
597ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
598{
599	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
600			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
601	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
602	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
603}
604
605static __inline u_int
606ahd_get_hnscb_qoff(struct ahd_softc *ahd)
607{
608	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
609}
610
611static __inline void
612ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
613{
614	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
615}
616
617static __inline u_int
618ahd_get_hescb_qoff(struct ahd_softc *ahd)
619{
620	return (ahd_inb(ahd, HESCB_QOFF));
621}
622
623static __inline void
624ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
625{
626	ahd_outb(ahd, HESCB_QOFF, value);
627}
628
629static __inline u_int
630ahd_get_snscb_qoff(struct ahd_softc *ahd)
631{
632	u_int oldvalue;
633
634	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
635	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
636	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
637	return (oldvalue);
638}
639
640static __inline void
641ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
642{
643	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
644	ahd_outw(ahd, SNSCB_QOFF, value);
645}
646
647static __inline u_int
648ahd_get_sescb_qoff(struct ahd_softc *ahd)
649{
650	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
651	return (ahd_inb(ahd, SESCB_QOFF));
652}
653
654static __inline void
655ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
656{
657	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
658	ahd_outb(ahd, SESCB_QOFF, value);
659}
660
661static __inline u_int
662ahd_get_sdscb_qoff(struct ahd_softc *ahd)
663{
664	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
665	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
666}
667
668static __inline void
669ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
670{
671	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
672	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
673	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
674}
675
676static __inline u_int
677ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
678{
679	u_int value;
680
681	/*
682	 * Workaround PCI-X Rev A. hardware bug.
683	 * After a host read of SCB memory, the chip
684	 * may become confused into thinking prefetch
685	 * was required.  This starts the discard timer
686	 * running and can cause an unexpected discard
687	 * timer interrupt.  The work around is to read
688	 * a normal register prior to the exhaustion of
689	 * the discard timer.  The mode pointer register
690	 * has no side effects and so serves well for
691	 * this purpose.
692	 *
693	 * Razor #528
694	 */
695	value = ahd_inb(ahd, offset);
696	if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
697		ahd_inb(ahd, MODE_PTR);
698	return (value);
699}
700
701static __inline u_int
702ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
703{
704	return (ahd_inb_scbram(ahd, offset)
705	      | (ahd_inb_scbram(ahd, offset+1) << 8));
706}
707
708static __inline uint32_t
709ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
710{
711	return (ahd_inw_scbram(ahd, offset)
712	      | (ahd_inw_scbram(ahd, offset+2) << 16));
713}
714
715static __inline uint64_t
716ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
717{
718	return (ahd_inl_scbram(ahd, offset)
719	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
720}
721
722static __inline struct scb *
723ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
724{
725	struct scb* scb;
726
727	if (tag >= AHD_SCB_MAX)
728		return (NULL);
729	scb = ahd->scb_data.scbindex[tag];
730	if (scb != NULL)
731		ahd_sync_scb(ahd, scb,
732			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
733	return (scb);
734}
735
736static __inline void
737ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
738{
739	struct	 hardware_scb *q_hscb;
740	struct	 map_node *q_hscb_map;
741	uint32_t saved_hscb_busaddr;
742
743	/*
744	 * Our queuing method is a bit tricky.  The card
745	 * knows in advance which HSCB (by address) to download,
746	 * and we can't disappoint it.  To achieve this, the next
747	 * HSCB to download is saved off in ahd->next_queued_hscb.
748	 * When we are called to queue "an arbitrary scb",
749	 * we copy the contents of the incoming HSCB to the one
750	 * the sequencer knows about, swap HSCB pointers and
751	 * finally assign the SCB to the tag indexed location
752	 * in the scb_array.  This makes sure that we can still
753	 * locate the correct SCB by SCB_TAG.
754	 */
755	q_hscb = ahd->next_queued_hscb;
756	q_hscb_map = ahd->next_queued_hscb_map;
757	saved_hscb_busaddr = q_hscb->hscb_busaddr;
758	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
759	q_hscb->hscb_busaddr = saved_hscb_busaddr;
760	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
761
762	/* Now swap HSCB pointers. */
763	ahd->next_queued_hscb = scb->hscb;
764	ahd->next_queued_hscb_map = scb->hscb_map;
765	scb->hscb = q_hscb;
766	scb->hscb_map = q_hscb_map;
767
768	/* Now define the mapping from tag to SCB in the scbindex */
769	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
770}
771
772/*
773 * Tell the sequencer about a new transaction to execute.
774 */
775static __inline void
776ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
777{
778	ahd_swap_with_next_hscb(ahd, scb);
779
780	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
781		panic("Attempt to queue invalid SCB tag %x\n",
782		      SCB_GET_TAG(scb));
783
784	/*
785	 * Keep a history of SCBs we've downloaded in the qinfifo.
786	 */
787	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
788	ahd->qinfifonext++;
789
790	if (scb->sg_count != 0)
791		ahd_setup_data_scb(ahd, scb);
792	else
793		ahd_setup_noxfer_scb(ahd, scb);
794	ahd_setup_scb_common(ahd, scb);
795
796	/*
797	 * Make sure our data is consistent from the
798	 * perspective of the adapter.
799	 */
800	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
801
802#ifdef AHD_DEBUG
803	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
804		uint64_t host_dataptr;
805
806		host_dataptr = aic_le64toh(scb->hscb->dataptr);
807		printf("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
808		       ahd_name(ahd),
809		       SCB_GET_TAG(scb), scb->hscb->scsiid,
810		       aic_le32toh(scb->hscb->hscb_busaddr),
811		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
812		       (u_int)(host_dataptr & 0xFFFFFFFF),
813		       aic_le32toh(scb->hscb->datacnt));
814	}
815#endif
816	/* Tell the adapter about the newly queued SCB */
817	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
818}
819
820static __inline uint8_t *
821ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
822{
823	return (scb->sense_data);
824}
825
826static __inline uint32_t
827ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
828{
829	return (scb->sense_busaddr);
830}
831
832/************************** Interrupt Processing ******************************/
833static __inline void	ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
834static __inline void	ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
835static __inline u_int	ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
836static __inline int	ahd_intr(struct ahd_softc *ahd);
837
838static __inline void
839ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
840{
841	aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
842			/*offset*/0,
843			/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
844}
845
846static __inline void
847ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
848{
849#ifdef AHD_TARGET_MODE
850	if ((ahd->flags & AHD_TARGETROLE) != 0) {
851		aic_dmamap_sync(ahd, ahd->shared_data_dmat,
852				ahd->shared_data_map.dmamap,
853				ahd_targetcmd_offset(ahd, 0),
854				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
855				op);
856	}
857#endif
858}
859
860/*
861 * See if the firmware has posted any completed commands
862 * into our in-core command complete fifos.
863 */
864#define AHD_RUN_QOUTFIFO 0x1
865#define AHD_RUN_TQINFIFO 0x2
866static __inline u_int
867ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
868{
869	u_int retval;
870
871	retval = 0;
872	aic_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
873			/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
874			/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
875	if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
876	  == ahd->qoutfifonext_valid_tag)
877		retval |= AHD_RUN_QOUTFIFO;
878#ifdef AHD_TARGET_MODE
879	if ((ahd->flags & AHD_TARGETROLE) != 0
880	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
881		aic_dmamap_sync(ahd, ahd->shared_data_dmat,
882				ahd->shared_data_map.dmamap,
883				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
884				/*len*/sizeof(struct target_cmd),
885				BUS_DMASYNC_POSTREAD);
886		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
887			retval |= AHD_RUN_TQINFIFO;
888	}
889#endif
890	return (retval);
891}
892
893/*
894 * Catch an interrupt from the adapter
895 */
896static __inline int
897ahd_intr(struct ahd_softc *ahd)
898{
899	u_int	intstat;
900
901	if ((ahd->pause & INTEN) == 0) {
902		/*
903		 * Our interrupt is not enabled on the chip
904		 * and may be disabled for re-entrancy reasons,
905		 * so just return.  This is likely just a shared
906		 * interrupt.
907		 */
908		return (0);
909	}
910
911	/*
912	 * Instead of directly reading the interrupt status register,
913	 * infer the cause of the interrupt by checking our in-core
914	 * completion queues.  This avoids a costly PCI bus read in
915	 * most cases.
916	 */
917	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
918	 && (ahd_check_cmdcmpltqueues(ahd) != 0))
919		intstat = CMDCMPLT;
920	else
921		intstat = ahd_inb(ahd, INTSTAT);
922
923	if ((intstat & INT_PEND) == 0)
924		return (0);
925
926	if (intstat & CMDCMPLT) {
927		ahd_outb(ahd, CLRINT, CLRCMDINT);
928
929		/*
930		 * Ensure that the chip sees that we've cleared
931		 * this interrupt before we walk the output fifo.
932		 * Otherwise, we may, due to posted bus writes,
933		 * clear the interrupt after we finish the scan,
934		 * and after the sequencer has added new entries
935		 * and asserted the interrupt again.
936		 */
937		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
938			if (ahd_is_paused(ahd)) {
939				/*
940				 * Potentially lost SEQINT.
941				 * If SEQINTCODE is non-zero,
942				 * simulate the SEQINT.
943				 */
944				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
945					intstat |= SEQINT;
946			}
947		} else {
948			ahd_flush_device_writes(ahd);
949		}
950		ahd_run_qoutfifo(ahd);
951		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
952		ahd->cmdcmplt_total++;
953#ifdef AHD_TARGET_MODE
954		if ((ahd->flags & AHD_TARGETROLE) != 0)
955			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
956#endif
957	}
958
959	/*
960	 * Handle statuses that may invalidate our cached
961	 * copy of INTSTAT separately.
962	 */
963	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
964		/* Hot eject.  Do nothing */
965	} else if (intstat & HWERRINT) {
966		ahd_handle_hwerrint(ahd);
967	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
968		ahd->bus_intr(ahd);
969	} else {
970
971		if ((intstat & SEQINT) != 0)
972			ahd_handle_seqint(ahd, intstat);
973
974		if ((intstat & SCSIINT) != 0)
975			ahd_handle_scsiint(ahd, intstat);
976	}
977	return (1);
978}
979
980#endif  /* _AIC79XX_INLINE_H_ */
981