acpi_cpu.c revision 328386
1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/dev/acpica/acpi_cpu.c 328386 2018-01-25 02:45:21Z pkelsey $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sched.h>
42#include <sys/sbuf.h>
43#include <sys/smp.h>
44
45#include <dev/pci/pcivar.h>
46#include <machine/atomic.h>
47#include <machine/bus.h>
48#if defined(__amd64__) || defined(__i386__)
49#include <machine/clock.h>
50#include <machine/specialreg.h>
51#include <machine/md_var.h>
52#endif
53#include <sys/rman.h>
54
55#include <contrib/dev/acpica/include/acpi.h>
56#include <contrib/dev/acpica/include/accommon.h>
57
58#include <dev/acpica/acpivar.h>
59
60/*
61 * Support for ACPI Processor devices, including C[1-3] sleep states.
62 */
63
64/* Hooks for the ACPI CA debugging infrastructure */
65#define _COMPONENT	ACPI_PROCESSOR
66ACPI_MODULE_NAME("PROCESSOR")
67
68struct acpi_cx {
69    struct resource	*p_lvlx;	/* Register to read to enter state. */
70    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
71    uint32_t		 trans_lat;	/* Transition latency (usec). */
72    uint32_t		 power;		/* Power consumed (mW). */
73    int			 res_type;	/* Resource type for p_lvlx. */
74    int			 res_rid;	/* Resource ID for p_lvlx. */
75    bool		 do_mwait;
76    uint32_t		 mwait_hint;
77    bool		 mwait_hw_coord;
78    bool		 mwait_bm_avoidance;
79};
80#define MAX_CX_STATES	 8
81
82struct acpi_cpu_softc {
83    device_t		 cpu_dev;
84    ACPI_HANDLE		 cpu_handle;
85    struct pcpu		*cpu_pcpu;
86    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
87    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
88    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
89    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
90    int			 cpu_cx_count;	/* Number of valid Cx states. */
91    int			 cpu_prev_sleep;/* Last idle sleep duration. */
92    int			 cpu_features;	/* Child driver supported features. */
93    /* Runtime state. */
94    int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
95    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
96    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
97    /* Values for sysctl. */
98    struct sysctl_ctx_list cpu_sysctl_ctx;
99    struct sysctl_oid	*cpu_sysctl_tree;
100    int			 cpu_cx_lowest;
101    int			 cpu_cx_lowest_lim;
102    int			 cpu_disable_idle; /* Disable entry to idle function */
103    char 		 cpu_cx_supported[64];
104};
105
106struct acpi_cpu_device {
107    struct resource_list	ad_rl;
108};
109
110#define CPU_GET_REG(reg, width) 					\
111    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
112		      rman_get_bushandle((reg)), 0))
113#define CPU_SET_REG(reg, width, val)					\
114    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
115		       rman_get_bushandle((reg)), 0, (val)))
116
117#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
118
119#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
120
121#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
122#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
123
124#define PCI_VENDOR_INTEL	0x8086
125#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
126#define PCI_REVISION_A_STEP	0
127#define PCI_REVISION_B_STEP	1
128#define PCI_REVISION_4E		2
129#define PCI_REVISION_4M		3
130#define PIIX4_DEVACTB_REG	0x58
131#define PIIX4_BRLD_EN_IRQ0	(1<<0)
132#define PIIX4_BRLD_EN_IRQ	(1<<1)
133#define PIIX4_BRLD_EN_IRQ8	(1<<5)
134#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
135#define PIIX4_PCNTRL_BST_EN	(1<<10)
136
137#define	CST_FFH_VENDOR_INTEL	1
138#define	CST_FFH_INTEL_CL_C1IO	1
139#define	CST_FFH_INTEL_CL_MWAIT	2
140#define	CST_FFH_MWAIT_HW_COORD	0x0001
141#define	CST_FFH_MWAIT_BM_AVOID	0x0002
142
143/* Allow users to ignore processor orders in MADT. */
144static int cpu_unordered;
145SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
146    &cpu_unordered, 0,
147    "Do not use the MADT to match ACPI Processor objects to CPUs.");
148
149/* Knob to disable acpi_cpu devices */
150bool acpi_cpu_disabled = false;
151
152/* Platform hardware resource information. */
153static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
154static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
155static int		 cpu_quirks;	/* Indicate any hardware bugs. */
156
157/* Values for sysctl. */
158static struct sysctl_ctx_list cpu_sysctl_ctx;
159static struct sysctl_oid *cpu_sysctl_tree;
160static int		 cpu_cx_generic;
161static int		 cpu_cx_lowest_lim;
162
163static device_t		*cpu_devices;
164static int		 cpu_ndevices;
165static struct acpi_cpu_softc **cpu_softc;
166ACPI_SERIAL_DECL(cpu, "ACPI CPU");
167
168static int	acpi_cpu_probe(device_t dev);
169static int	acpi_cpu_attach(device_t dev);
170static int	acpi_cpu_suspend(device_t dev);
171static int	acpi_cpu_resume(device_t dev);
172static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
173		    uint32_t *cpu_id);
174static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
175static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
176		    int unit);
177static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
178		    uintptr_t *result);
179static int	acpi_cpu_shutdown(device_t dev);
180static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
181static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
182static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
183static void	acpi_cpu_startup(void *arg);
184static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
185static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
186#if defined(__i386__) || defined(__amd64__)
187static void	acpi_cpu_idle(sbintime_t sbt);
188#endif
189static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
190static void	acpi_cpu_quirks(void);
191static void	acpi_cpu_quirks_piix4(void);
192static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
193static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
194static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
195static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
196static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
197#if defined(__i386__) || defined(__amd64__)
198static int	acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
199#endif
200
201static device_method_t acpi_cpu_methods[] = {
202    /* Device interface */
203    DEVMETHOD(device_probe,	acpi_cpu_probe),
204    DEVMETHOD(device_attach,	acpi_cpu_attach),
205    DEVMETHOD(device_detach,	bus_generic_detach),
206    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
207    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
208    DEVMETHOD(device_resume,	acpi_cpu_resume),
209
210    /* Bus interface */
211    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
212    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
213    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
214    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
215    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
216    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
217    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
218    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
219    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
220    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
221    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
222
223    DEVMETHOD_END
224};
225
226static driver_t acpi_cpu_driver = {
227    "cpu",
228    acpi_cpu_methods,
229    sizeof(struct acpi_cpu_softc),
230};
231
232static devclass_t acpi_cpu_devclass;
233DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
234MODULE_DEPEND(cpu, acpi, 1, 1, 1);
235
236static int
237acpi_cpu_probe(device_t dev)
238{
239    int			   acpi_id, cpu_id;
240    ACPI_BUFFER		   buf;
241    ACPI_HANDLE		   handle;
242    ACPI_OBJECT		   *obj;
243    ACPI_STATUS		   status;
244
245    if (acpi_disabled("cpu") || acpi_get_type(dev) != ACPI_TYPE_PROCESSOR ||
246	    acpi_cpu_disabled)
247	return (ENXIO);
248
249    handle = acpi_get_handle(dev);
250    if (cpu_softc == NULL)
251	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
252	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
253
254    /* Get our Processor object. */
255    buf.Pointer = NULL;
256    buf.Length = ACPI_ALLOCATE_BUFFER;
257    status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
258    if (ACPI_FAILURE(status)) {
259	device_printf(dev, "probe failed to get Processor obj - %s\n",
260		      AcpiFormatException(status));
261	return (ENXIO);
262    }
263    obj = (ACPI_OBJECT *)buf.Pointer;
264    if (obj->Type != ACPI_TYPE_PROCESSOR) {
265	device_printf(dev, "Processor object has bad type %d\n", obj->Type);
266	AcpiOsFree(obj);
267	return (ENXIO);
268    }
269
270    /*
271     * Find the processor associated with our unit.  We could use the
272     * ProcId as a key, however, some boxes do not have the same values
273     * in their Processor object as the ProcId values in the MADT.
274     */
275    acpi_id = obj->Processor.ProcId;
276    AcpiOsFree(obj);
277    if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
278	return (ENXIO);
279
280    /*
281     * Check if we already probed this processor.  We scan the bus twice
282     * so it's possible we've already seen this one.
283     */
284    if (cpu_softc[cpu_id] != NULL)
285	return (ENXIO);
286
287    /* Mark this processor as in-use and save our derived id for attach. */
288    cpu_softc[cpu_id] = (void *)1;
289    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
290    device_set_desc(dev, "ACPI CPU");
291
292    return (0);
293}
294
295static int
296acpi_cpu_attach(device_t dev)
297{
298    ACPI_BUFFER		   buf;
299    ACPI_OBJECT		   arg, *obj;
300    ACPI_OBJECT_LIST	   arglist;
301    struct pcpu		   *pcpu_data;
302    struct acpi_cpu_softc *sc;
303    struct acpi_softc	  *acpi_sc;
304    ACPI_STATUS		   status;
305    u_int		   features;
306    int			   cpu_id, drv_count, i;
307    driver_t 		  **drivers;
308    uint32_t		   cap_set[3];
309
310    /* UUID needed by _OSC evaluation */
311    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
312				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
313				       0x58, 0x71, 0x39, 0x53 };
314
315    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
316
317    sc = device_get_softc(dev);
318    sc->cpu_dev = dev;
319    sc->cpu_handle = acpi_get_handle(dev);
320    cpu_id = (int)(intptr_t)acpi_get_private(dev);
321    cpu_softc[cpu_id] = sc;
322    pcpu_data = pcpu_find(cpu_id);
323    pcpu_data->pc_device = dev;
324    sc->cpu_pcpu = pcpu_data;
325    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
326    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
327
328    buf.Pointer = NULL;
329    buf.Length = ACPI_ALLOCATE_BUFFER;
330    status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
331    if (ACPI_FAILURE(status)) {
332	device_printf(dev, "attach failed to get Processor obj - %s\n",
333		      AcpiFormatException(status));
334	return (ENXIO);
335    }
336    obj = (ACPI_OBJECT *)buf.Pointer;
337    sc->cpu_p_blk = obj->Processor.PblkAddress;
338    sc->cpu_p_blk_len = obj->Processor.PblkLength;
339    sc->cpu_acpi_id = obj->Processor.ProcId;
340    AcpiOsFree(obj);
341    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
342		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
343
344    /*
345     * If this is the first cpu we attach, create and initialize the generic
346     * resources that will be used by all acpi cpu devices.
347     */
348    if (device_get_unit(dev) == 0) {
349	/* Assume we won't be using generic Cx mode by default */
350	cpu_cx_generic = FALSE;
351
352	/* Install hw.acpi.cpu sysctl tree */
353	acpi_sc = acpi_device_get_parent_softc(dev);
354	sysctl_ctx_init(&cpu_sysctl_ctx);
355	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
356	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
357	    CTLFLAG_RD, 0, "node for CPU children");
358    }
359
360    /*
361     * Before calling any CPU methods, collect child driver feature hints
362     * and notify ACPI of them.  We support unified SMP power control
363     * so advertise this ourselves.  Note this is not the same as independent
364     * SMP control where each CPU can have different settings.
365     */
366    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
367      ACPI_CAP_C1_IO_HALT;
368
369#if defined(__i386__) || defined(__amd64__)
370    /*
371     * Ask for MWAIT modes if not disabled and interrupts work
372     * reasonable with MWAIT.
373     */
374    if (!acpi_disabled("mwait") && cpu_mwait_usable())
375	sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
376#endif
377
378    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
379	for (i = 0; i < drv_count; i++) {
380	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
381		sc->cpu_features |= features;
382	}
383	free(drivers, M_TEMP);
384    }
385
386    /*
387     * CPU capabilities are specified in
388     * Intel Processor Vendor-Specific ACPI Interface Specification.
389     */
390    if (sc->cpu_features) {
391	cap_set[1] = sc->cpu_features;
392	status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
393	    cap_set, false);
394	if (ACPI_SUCCESS(status)) {
395	    if (cap_set[0] != 0)
396		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
397	}
398	else {
399	    arglist.Pointer = &arg;
400	    arglist.Count = 1;
401	    arg.Type = ACPI_TYPE_BUFFER;
402	    arg.Buffer.Length = sizeof(cap_set);
403	    arg.Buffer.Pointer = (uint8_t *)cap_set;
404	    cap_set[0] = 1; /* revision */
405	    cap_set[1] = 1; /* number of capabilities integers */
406	    cap_set[2] = sc->cpu_features;
407	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
408	}
409    }
410
411    /* Probe for Cx state support. */
412    acpi_cpu_cx_probe(sc);
413
414    return (0);
415}
416
417static void
418acpi_cpu_postattach(void *unused __unused)
419{
420    device_t *devices;
421    int err;
422    int i, n;
423    int attached;
424
425    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
426    if (err != 0) {
427	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
428	return;
429    }
430    attached = 0;
431    for (i = 0; i < n; i++)
432	if (device_is_attached(devices[i]) &&
433	    device_get_driver(devices[i]) == &acpi_cpu_driver)
434	    attached = 1;
435    for (i = 0; i < n; i++)
436	bus_generic_probe(devices[i]);
437    for (i = 0; i < n; i++)
438	bus_generic_attach(devices[i]);
439    free(devices, M_TEMP);
440
441    if (attached) {
442#ifdef EARLY_AP_STARTUP
443	acpi_cpu_startup(NULL);
444#else
445	/* Queue post cpu-probing task handler */
446	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
447#endif
448    }
449}
450
451SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
452    acpi_cpu_postattach, NULL);
453
454static void
455disable_idle(struct acpi_cpu_softc *sc)
456{
457    cpuset_t cpuset;
458
459    CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
460    sc->cpu_disable_idle = TRUE;
461
462    /*
463     * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
464     * Note that this code depends on the fact that the rendezvous IPI
465     * can not penetrate context where interrupts are disabled and acpi_cpu_idle
466     * is called and executed in such a context with interrupts being re-enabled
467     * right before return.
468     */
469    smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
470	smp_no_rendezvous_barrier, NULL);
471}
472
473static void
474enable_idle(struct acpi_cpu_softc *sc)
475{
476
477    sc->cpu_disable_idle = FALSE;
478}
479
480#if defined(__i386__) || defined(__amd64__)
481static int
482is_idle_disabled(struct acpi_cpu_softc *sc)
483{
484
485    return (sc->cpu_disable_idle);
486}
487#endif
488
489/*
490 * Disable any entry to the idle function during suspend and re-enable it
491 * during resume.
492 */
493static int
494acpi_cpu_suspend(device_t dev)
495{
496    int error;
497
498    error = bus_generic_suspend(dev);
499    if (error)
500	return (error);
501    disable_idle(device_get_softc(dev));
502    return (0);
503}
504
505static int
506acpi_cpu_resume(device_t dev)
507{
508
509    enable_idle(device_get_softc(dev));
510    return (bus_generic_resume(dev));
511}
512
513/*
514 * Find the processor associated with a given ACPI ID.  By default,
515 * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
516 * processor.  Some systems have inconsistent ASL and MADT however.
517 * For these systems the cpu_unordered tunable can be set in which
518 * case we assume that Processor objects are listed in the same order
519 * in both the MADT and ASL.
520 */
521static int
522acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
523{
524    struct pcpu	*pc;
525    uint32_t	 i, idx;
526
527    KASSERT(acpi_id != NULL, ("Null acpi_id"));
528    KASSERT(cpu_id != NULL, ("Null cpu_id"));
529    idx = device_get_unit(dev);
530
531    /*
532     * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
533     * UP box) use the ACPI ID from the first processor we find.
534     */
535    if (idx == 0 && mp_ncpus == 1) {
536	pc = pcpu_find(0);
537	if (pc->pc_acpi_id == 0xffffffff)
538	    pc->pc_acpi_id = *acpi_id;
539	*cpu_id = 0;
540	return (0);
541    }
542
543    CPU_FOREACH(i) {
544	pc = pcpu_find(i);
545	KASSERT(pc != NULL, ("no pcpu data for %d", i));
546	if (cpu_unordered) {
547	    if (idx-- == 0) {
548		/*
549		 * If pc_acpi_id doesn't match the ACPI ID from the
550		 * ASL, prefer the MADT-derived value.
551		 */
552		if (pc->pc_acpi_id != *acpi_id)
553		    *acpi_id = pc->pc_acpi_id;
554		*cpu_id = pc->pc_cpuid;
555		return (0);
556	    }
557	} else {
558	    if (pc->pc_acpi_id == *acpi_id) {
559		if (bootverbose)
560		    device_printf(dev,
561			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
562			acpi_name(acpi_get_handle(dev)), *acpi_id,
563			pc->pc_cpuid);
564		*cpu_id = pc->pc_cpuid;
565		return (0);
566	    }
567	}
568    }
569
570    if (bootverbose)
571	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
572	    acpi_name(acpi_get_handle(dev)), *acpi_id);
573
574    return (ESRCH);
575}
576
577static struct resource_list *
578acpi_cpu_get_rlist(device_t dev, device_t child)
579{
580    struct acpi_cpu_device *ad;
581
582    ad = device_get_ivars(child);
583    if (ad == NULL)
584	return (NULL);
585    return (&ad->ad_rl);
586}
587
588static device_t
589acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
590{
591    struct acpi_cpu_device *ad;
592    device_t child;
593
594    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
595	return (NULL);
596
597    resource_list_init(&ad->ad_rl);
598
599    child = device_add_child_ordered(dev, order, name, unit);
600    if (child != NULL)
601	device_set_ivars(child, ad);
602    else
603	free(ad, M_TEMP);
604    return (child);
605}
606
607static int
608acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
609{
610    struct acpi_cpu_softc *sc;
611
612    sc = device_get_softc(dev);
613    switch (index) {
614    case ACPI_IVAR_HANDLE:
615	*result = (uintptr_t)sc->cpu_handle;
616	break;
617    case CPU_IVAR_PCPU:
618	*result = (uintptr_t)sc->cpu_pcpu;
619	break;
620#if defined(__amd64__) || defined(__i386__)
621    case CPU_IVAR_NOMINAL_MHZ:
622	if (tsc_is_invariant) {
623	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
624	    break;
625	}
626	/* FALLTHROUGH */
627#endif
628    default:
629	return (ENOENT);
630    }
631    return (0);
632}
633
634static int
635acpi_cpu_shutdown(device_t dev)
636{
637    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
638
639    /* Allow children to shutdown first. */
640    bus_generic_shutdown(dev);
641
642    /*
643     * Disable any entry to the idle function.
644     */
645    disable_idle(device_get_softc(dev));
646
647    /*
648     * CPU devices are not truly detached and remain referenced,
649     * so their resources are not freed.
650     */
651
652    return_VALUE (0);
653}
654
655static void
656acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
657{
658    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
659
660    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
661    sc->cpu_prev_sleep = 1000000;
662    sc->cpu_cx_lowest = 0;
663    sc->cpu_cx_lowest_lim = 0;
664
665    /*
666     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
667     * any, we'll revert to generic FADT/P_BLK Cx control method which will
668     * be handled by acpi_cpu_startup. We need to defer to after having
669     * probed all the cpus in the system before probing for generic Cx
670     * states as we may already have found cpus with valid _CST packages
671     */
672    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
673	/*
674	 * We were unable to find a _CST package for this cpu or there
675	 * was an error parsing it. Switch back to generic mode.
676	 */
677	cpu_cx_generic = TRUE;
678	if (bootverbose)
679	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
680    }
681
682    /*
683     * TODO: _CSD Package should be checked here.
684     */
685}
686
687static void
688acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
689{
690    ACPI_GENERIC_ADDRESS	 gas;
691    struct acpi_cx		*cx_ptr;
692
693    sc->cpu_cx_count = 0;
694    cx_ptr = sc->cpu_cx_states;
695
696    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
697    sc->cpu_prev_sleep = 1000000;
698
699    /* C1 has been required since just after ACPI 1.0 */
700    cx_ptr->type = ACPI_STATE_C1;
701    cx_ptr->trans_lat = 0;
702    cx_ptr++;
703    sc->cpu_non_c2 = sc->cpu_cx_count;
704    sc->cpu_non_c3 = sc->cpu_cx_count;
705    sc->cpu_cx_count++;
706
707    /*
708     * The spec says P_BLK must be 6 bytes long.  However, some systems
709     * use it to indicate a fractional set of features present so we
710     * take 5 as C2.  Some may also have a value of 7 to indicate
711     * another C3 but most use _CST for this (as required) and having
712     * "only" C1-C3 is not a hardship.
713     */
714    if (sc->cpu_p_blk_len < 5)
715	return;
716
717    /* Validate and allocate resources for C2 (P_LVL2). */
718    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
719    gas.BitWidth = 8;
720    if (AcpiGbl_FADT.C2Latency <= 100) {
721	gas.Address = sc->cpu_p_blk + 4;
722	cx_ptr->res_rid = 0;
723	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
724	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
725	if (cx_ptr->p_lvlx != NULL) {
726	    cx_ptr->type = ACPI_STATE_C2;
727	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
728	    cx_ptr++;
729	    sc->cpu_non_c3 = sc->cpu_cx_count;
730	    sc->cpu_cx_count++;
731	}
732    }
733    if (sc->cpu_p_blk_len < 6)
734	return;
735
736    /* Validate and allocate resources for C3 (P_LVL3). */
737    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
738	gas.Address = sc->cpu_p_blk + 5;
739	cx_ptr->res_rid = 1;
740	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
741	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
742	if (cx_ptr->p_lvlx != NULL) {
743	    cx_ptr->type = ACPI_STATE_C3;
744	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
745	    cx_ptr++;
746	    sc->cpu_cx_count++;
747	}
748    }
749}
750
751#if defined(__i386__) || defined(__amd64__)
752static void
753acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
754{
755
756	cx_ptr->do_mwait = true;
757	cx_ptr->mwait_hint = address & 0xffffffff;
758	cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
759	cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
760}
761#endif
762
763static void
764acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
765{
766
767	if (cx_ptr->p_lvlx == NULL)
768		return;
769	bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
770	    cx_ptr->p_lvlx);
771	cx_ptr->p_lvlx = NULL;
772}
773
774/*
775 * Parse a _CST package and set up its Cx states.  Since the _CST object
776 * can change dynamically, our notify handler may call this function
777 * to clean up and probe the new _CST package.
778 */
779static int
780acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
781{
782    struct	 acpi_cx *cx_ptr;
783    ACPI_STATUS	 status;
784    ACPI_BUFFER	 buf;
785    ACPI_OBJECT	*top;
786    ACPI_OBJECT	*pkg;
787    uint32_t	 count;
788    int		 i;
789#if defined(__i386__) || defined(__amd64__)
790    uint64_t	 address;
791    int		 vendor, class, accsize;
792#endif
793
794    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
795
796    buf.Pointer = NULL;
797    buf.Length = ACPI_ALLOCATE_BUFFER;
798    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
799    if (ACPI_FAILURE(status))
800	return (ENXIO);
801
802    /* _CST is a package with a count and at least one Cx package. */
803    top = (ACPI_OBJECT *)buf.Pointer;
804    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
805	device_printf(sc->cpu_dev, "invalid _CST package\n");
806	AcpiOsFree(buf.Pointer);
807	return (ENXIO);
808    }
809    if (count != top->Package.Count - 1) {
810	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
811	       count, top->Package.Count - 1);
812	count = top->Package.Count - 1;
813    }
814    if (count > MAX_CX_STATES) {
815	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
816	count = MAX_CX_STATES;
817    }
818
819    sc->cpu_non_c2 = 0;
820    sc->cpu_non_c3 = 0;
821    sc->cpu_cx_count = 0;
822    cx_ptr = sc->cpu_cx_states;
823
824    /*
825     * C1 has been required since just after ACPI 1.0.
826     * Reserve the first slot for it.
827     */
828    cx_ptr->type = ACPI_STATE_C0;
829    cx_ptr++;
830    sc->cpu_cx_count++;
831
832    /* Set up all valid states. */
833    for (i = 0; i < count; i++) {
834	pkg = &top->Package.Elements[i + 1];
835	if (!ACPI_PKG_VALID(pkg, 4) ||
836	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
837	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
838	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
839
840	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
841	    continue;
842	}
843
844	/* Validate the state to see if we should use it. */
845	switch (cx_ptr->type) {
846	case ACPI_STATE_C1:
847	    acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
848#if defined(__i386__) || defined(__amd64__)
849	    if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
850	      &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
851		if (class == CST_FFH_INTEL_CL_C1IO) {
852		    /* C1 I/O then Halt */
853		    cx_ptr->res_rid = sc->cpu_cx_count;
854		    bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
855		      cx_ptr->res_rid, address, 1);
856		    cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
857		      SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
858		      RF_SHAREABLE);
859		    if (cx_ptr->p_lvlx == NULL) {
860			bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
861			  cx_ptr->res_rid);
862			device_printf(sc->cpu_dev,
863			  "C1 I/O failed to allocate port %d, "
864			  "degrading to C1 Halt", (int)address);
865		    }
866		} else if (class == CST_FFH_INTEL_CL_MWAIT) {
867		    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
868		}
869	    }
870#endif
871	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
872		/* This is the first C1 state.  Use the reserved slot. */
873		sc->cpu_cx_states[0] = *cx_ptr;
874	    } else {
875		sc->cpu_non_c2 = sc->cpu_cx_count;
876		sc->cpu_non_c3 = sc->cpu_cx_count;
877		cx_ptr++;
878		sc->cpu_cx_count++;
879	    }
880	    continue;
881	case ACPI_STATE_C2:
882	    sc->cpu_non_c3 = sc->cpu_cx_count;
883	    break;
884	case ACPI_STATE_C3:
885	default:
886	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
887		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
888				 "acpi_cpu%d: C3[%d] not available.\n",
889				 device_get_unit(sc->cpu_dev), i));
890		continue;
891	    }
892	    break;
893	}
894
895	/* Free up any previous register. */
896	acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
897
898	/* Allocate the control register for C2 or C3. */
899#if defined(__i386__) || defined(__amd64__)
900	if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
901	  &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
902	  class == CST_FFH_INTEL_CL_MWAIT) {
903	    /* Native C State Instruction use (mwait) */
904	    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
905	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
906	      "acpi_cpu%d: Got C%d/mwait - %d latency\n",
907	      device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
908	    cx_ptr++;
909	    sc->cpu_cx_count++;
910	} else
911#endif
912	{
913	    cx_ptr->res_rid = sc->cpu_cx_count;
914	    acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
915		&cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
916	    if (cx_ptr->p_lvlx) {
917		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
918		     "acpi_cpu%d: Got C%d - %d latency\n",
919		     device_get_unit(sc->cpu_dev), cx_ptr->type,
920		     cx_ptr->trans_lat));
921		cx_ptr++;
922		sc->cpu_cx_count++;
923	    }
924	}
925    }
926    AcpiOsFree(buf.Pointer);
927
928    /* If C1 state was not found, we need one now. */
929    cx_ptr = sc->cpu_cx_states;
930    if (cx_ptr->type == ACPI_STATE_C0) {
931	cx_ptr->type = ACPI_STATE_C1;
932	cx_ptr->trans_lat = 0;
933    }
934
935    return (0);
936}
937
938/*
939 * Call this *after* all CPUs have been attached.
940 */
941static void
942acpi_cpu_startup(void *arg)
943{
944    struct acpi_cpu_softc *sc;
945    int i;
946
947    /* Get set of CPU devices */
948    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
949
950    /*
951     * Setup any quirks that might necessary now that we have probed
952     * all the CPUs
953     */
954    acpi_cpu_quirks();
955
956    if (cpu_cx_generic) {
957	/*
958	 * We are using generic Cx mode, probe for available Cx states
959	 * for all processors.
960	 */
961	for (i = 0; i < cpu_ndevices; i++) {
962	    sc = device_get_softc(cpu_devices[i]);
963	    acpi_cpu_generic_cx_probe(sc);
964	}
965    } else {
966	/*
967	 * We are using _CST mode, remove C3 state if necessary.
968	 * As we now know for sure that we will be using _CST mode
969	 * install our notify handler.
970	 */
971	for (i = 0; i < cpu_ndevices; i++) {
972	    sc = device_get_softc(cpu_devices[i]);
973	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
974		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
975	    }
976	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
977		acpi_cpu_notify, sc);
978	}
979    }
980
981    /* Perform Cx final initialization. */
982    for (i = 0; i < cpu_ndevices; i++) {
983	sc = device_get_softc(cpu_devices[i]);
984	acpi_cpu_startup_cx(sc);
985    }
986
987    /* Add a sysctl handler to handle global Cx lowest setting */
988    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
989	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
990	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
991	"Global lowest Cx sleep state to use");
992
993    /* Take over idling from cpu_idle_default(). */
994    cpu_cx_lowest_lim = 0;
995    for (i = 0; i < cpu_ndevices; i++) {
996	sc = device_get_softc(cpu_devices[i]);
997	enable_idle(sc);
998    }
999#if defined(__i386__) || defined(__amd64__)
1000    cpu_idle_hook = acpi_cpu_idle;
1001#endif
1002}
1003
1004static void
1005acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
1006{
1007    struct sbuf sb;
1008    int i;
1009
1010    /*
1011     * Set up the list of Cx states
1012     */
1013    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
1014	SBUF_FIXEDLEN);
1015    for (i = 0; i < sc->cpu_cx_count; i++)
1016	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
1017	    sc->cpu_cx_states[i].trans_lat);
1018    sbuf_trim(&sb);
1019    sbuf_finish(&sb);
1020}
1021
1022static void
1023acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
1024{
1025    acpi_cpu_cx_list(sc);
1026
1027    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
1028		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1029		      OID_AUTO, "cx_supported", CTLFLAG_RD,
1030		      sc->cpu_cx_supported, 0,
1031		      "Cx/microsecond values for supported Cx states");
1032    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1033		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1034		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
1035		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
1036		    "lowest Cx sleep state to use");
1037    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1038		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1039		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
1040		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
1041		    "percent usage for each Cx state");
1042    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1043		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1044		    OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD,
1045		    (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
1046		    "Cx sleep state counters");
1047#if defined(__i386__) || defined(__amd64__)
1048    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1049		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1050		    OID_AUTO, "cx_method", CTLTYPE_STRING | CTLFLAG_RD,
1051		    (void *)sc, 0, acpi_cpu_method_sysctl, "A",
1052		    "Cx entrance methods");
1053#endif
1054
1055    /* Signal platform that we can handle _CST notification. */
1056    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
1057	ACPI_LOCK(acpi);
1058	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
1059	ACPI_UNLOCK(acpi);
1060    }
1061}
1062
1063#if defined(__i386__) || defined(__amd64__)
1064/*
1065 * Idle the CPU in the lowest state possible.  This function is called with
1066 * interrupts disabled.  Note that once it re-enables interrupts, a task
1067 * switch can occur so do not access shared data (i.e. the softc) after
1068 * interrupts are re-enabled.
1069 */
1070static void
1071acpi_cpu_idle(sbintime_t sbt)
1072{
1073    struct	acpi_cpu_softc *sc;
1074    struct	acpi_cx *cx_next;
1075    uint64_t	cputicks;
1076    uint32_t	start_time, end_time;
1077    ACPI_STATUS	status;
1078    int		bm_active, cx_next_idx, i, us;
1079
1080    /*
1081     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
1082     * since there is no ACPI processor object for this CPU.  This occurs
1083     * for logical CPUs in the HTT case.
1084     */
1085    sc = cpu_softc[PCPU_GET(cpuid)];
1086    if (sc == NULL) {
1087	acpi_cpu_c1();
1088	return;
1089    }
1090
1091    /* If disabled, take the safe path. */
1092    if (is_idle_disabled(sc)) {
1093	acpi_cpu_c1();
1094	return;
1095    }
1096
1097    /* Find the lowest state that has small enough latency. */
1098    us = sc->cpu_prev_sleep;
1099    if (sbt >= 0 && us > (sbt >> 12))
1100	us = (sbt >> 12);
1101    cx_next_idx = 0;
1102    if (cpu_disable_c2_sleep)
1103	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
1104    else if (cpu_disable_c3_sleep)
1105	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1106    else
1107	i = sc->cpu_cx_lowest;
1108    for (; i >= 0; i--) {
1109	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1110	    cx_next_idx = i;
1111	    break;
1112	}
1113    }
1114
1115    /*
1116     * Check for bus master activity.  If there was activity, clear
1117     * the bit and use the lowest non-C3 state.  Note that the USB
1118     * driver polling for new devices keeps this bit set all the
1119     * time if USB is loaded.
1120     */
1121    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1122	cx_next_idx > sc->cpu_non_c3) {
1123	status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1124	if (ACPI_SUCCESS(status) && bm_active != 0) {
1125	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1126	    cx_next_idx = sc->cpu_non_c3;
1127	}
1128    }
1129
1130    /* Select the next state and update statistics. */
1131    cx_next = &sc->cpu_cx_states[cx_next_idx];
1132    sc->cpu_cx_stats[cx_next_idx]++;
1133    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1134
1135    /*
1136     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1137     * precisely calculate the time spent in C1 since the place we wake up
1138     * is an ISR.  Assume we slept no more then half of quantum, unless
1139     * we are called inside critical section, delaying context switch.
1140     */
1141    if (cx_next->type == ACPI_STATE_C1) {
1142	cputicks = cpu_ticks();
1143	if (cx_next->p_lvlx != NULL) {
1144	    /* C1 I/O then Halt */
1145	    CPU_GET_REG(cx_next->p_lvlx, 1);
1146	}
1147	if (cx_next->do_mwait)
1148	    acpi_cpu_idle_mwait(cx_next->mwait_hint);
1149	else
1150	    acpi_cpu_c1();
1151	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1152	if (curthread->td_critnest == 0)
1153		end_time = min(end_time, 500000 / hz);
1154	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1155	return;
1156    }
1157
1158    /*
1159     * For C3, disable bus master arbitration and enable bus master wake
1160     * if BM control is available, otherwise flush the CPU cache.
1161     */
1162    if (cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) {
1163	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1164	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1165	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1166	} else
1167	    ACPI_FLUSH_CPU_CACHE();
1168    }
1169
1170    /*
1171     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1172     * Use the ACPI timer for measuring sleep time.  Since we need to
1173     * get the time very close to the CPU start/stop clock logic, this
1174     * is the only reliable time source.
1175     */
1176    if (cx_next->type == ACPI_STATE_C3) {
1177	AcpiGetTimer(&start_time);
1178	cputicks = 0;
1179    } else {
1180	start_time = 0;
1181	cputicks = cpu_ticks();
1182    }
1183    if (cx_next->do_mwait)
1184	acpi_cpu_idle_mwait(cx_next->mwait_hint);
1185    else
1186	CPU_GET_REG(cx_next->p_lvlx, 1);
1187
1188    /*
1189     * Read the end time twice.  Since it may take an arbitrary time
1190     * to enter the idle state, the first read may be executed before
1191     * the processor has stopped.  Doing it again provides enough
1192     * margin that we are certain to have a correct value.
1193     */
1194    AcpiGetTimer(&end_time);
1195    if (cx_next->type == ACPI_STATE_C3) {
1196	AcpiGetTimer(&end_time);
1197	AcpiGetTimerDuration(start_time, end_time, &end_time);
1198    } else
1199	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1200
1201    /* Enable bus master arbitration and disable bus master wakeup. */
1202    if ((cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) &&
1203      (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1204	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1205	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1206    }
1207    ACPI_ENABLE_IRQS();
1208
1209    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1210}
1211#endif
1212
1213/*
1214 * Re-evaluate the _CST object when we are notified that it changed.
1215 */
1216static void
1217acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1218{
1219    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1220
1221    if (notify != ACPI_NOTIFY_CX_STATES)
1222	return;
1223
1224    /*
1225     * C-state data for target CPU is going to be in flux while we execute
1226     * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1227     * Also, it may happen that multiple ACPI taskqueues may concurrently
1228     * execute notifications for the same CPU.  ACPI_SERIAL is used to
1229     * protect against that.
1230     */
1231    ACPI_SERIAL_BEGIN(cpu);
1232    disable_idle(sc);
1233
1234    /* Update the list of Cx states. */
1235    acpi_cpu_cx_cst(sc);
1236    acpi_cpu_cx_list(sc);
1237    acpi_cpu_set_cx_lowest(sc);
1238
1239    enable_idle(sc);
1240    ACPI_SERIAL_END(cpu);
1241
1242    acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1243}
1244
1245static void
1246acpi_cpu_quirks(void)
1247{
1248    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1249
1250    /*
1251     * Bus mastering arbitration control is needed to keep caches coherent
1252     * while sleeping in C3.  If it's not present but a working flush cache
1253     * instruction is present, flush the caches before entering C3 instead.
1254     * Otherwise, just disable C3 completely.
1255     */
1256    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1257	AcpiGbl_FADT.Pm2ControlLength == 0) {
1258	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1259	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1260	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1261	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1262		"acpi_cpu: no BM control, using flush cache method\n"));
1263	} else {
1264	    cpu_quirks |= CPU_QUIRK_NO_C3;
1265	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1266		"acpi_cpu: no BM control, C3 not available\n"));
1267	}
1268    }
1269
1270    /*
1271     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1272     * the expensive flush cache instruction.
1273     */
1274    if (cpu_cx_generic && mp_ncpus > 1) {
1275	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1276	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1277	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1278    }
1279
1280    /* Look for various quirks of the PIIX4 part. */
1281    acpi_cpu_quirks_piix4();
1282}
1283
1284static void
1285acpi_cpu_quirks_piix4(void)
1286{
1287#ifdef __i386__
1288    device_t acpi_dev;
1289    uint32_t val;
1290    ACPI_STATUS status;
1291
1292    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1293    if (acpi_dev != NULL) {
1294	switch (pci_get_revid(acpi_dev)) {
1295	/*
1296	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1297	 * do not report the BMIDE status to the BM status register and
1298	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1299	 * works around the BMIDE bug by reading the BM status directly
1300	 * but we take the simpler approach of disabling C3 for these
1301	 * parts.
1302	 *
1303	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1304	 * Livelock") from the January 2002 PIIX4 specification update.
1305	 * Applies to all PIIX4 models.
1306	 *
1307	 * Also, make sure that all interrupts cause a "Stop Break"
1308	 * event to exit from C2 state.
1309	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1310	 * should be set to zero, otherwise it causes C2 to short-sleep.
1311	 * PIIX4 doesn't properly support C3 and bus master activity
1312	 * need not break out of C2.
1313	 */
1314	case PCI_REVISION_A_STEP:
1315	case PCI_REVISION_B_STEP:
1316	case PCI_REVISION_4E:
1317	case PCI_REVISION_4M:
1318	    cpu_quirks |= CPU_QUIRK_NO_C3;
1319	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1320		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1321
1322	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1323	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1324		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1325		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1326	    	val |= PIIX4_STOP_BREAK_MASK;
1327		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1328	    }
1329	    status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1330	    if (ACPI_SUCCESS(status) && val != 0) {
1331		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1332		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1333		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1334	    }
1335	    break;
1336	default:
1337	    break;
1338	}
1339    }
1340#endif
1341}
1342
1343static int
1344acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1345{
1346    struct acpi_cpu_softc *sc;
1347    struct sbuf	 sb;
1348    char	 buf[128];
1349    int		 i;
1350    uintmax_t	 fract, sum, whole;
1351
1352    sc = (struct acpi_cpu_softc *) arg1;
1353    sum = 0;
1354    for (i = 0; i < sc->cpu_cx_count; i++)
1355	sum += sc->cpu_cx_stats[i];
1356    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1357    for (i = 0; i < sc->cpu_cx_count; i++) {
1358	if (sum > 0) {
1359	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1360	    fract = (whole % sum) * 100;
1361	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1362		(u_int)(fract / sum));
1363	} else
1364	    sbuf_printf(&sb, "0.00%% ");
1365    }
1366    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1367    sbuf_trim(&sb);
1368    sbuf_finish(&sb);
1369    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1370    sbuf_delete(&sb);
1371
1372    return (0);
1373}
1374
1375/*
1376 * XXX TODO: actually add support to count each entry/exit
1377 * from the Cx states.
1378 */
1379static int
1380acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1381{
1382    struct acpi_cpu_softc *sc;
1383    struct sbuf	 sb;
1384    char	 buf[128];
1385    int		 i;
1386
1387    sc = (struct acpi_cpu_softc *) arg1;
1388
1389    /* Print out the raw counters */
1390    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1391
1392    for (i = 0; i < sc->cpu_cx_count; i++) {
1393        sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]);
1394    }
1395
1396    sbuf_trim(&sb);
1397    sbuf_finish(&sb);
1398    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1399    sbuf_delete(&sb);
1400
1401    return (0);
1402}
1403
1404#if defined(__i386__) || defined(__amd64__)
1405static int
1406acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
1407{
1408	struct acpi_cpu_softc *sc;
1409	struct acpi_cx *cx;
1410	struct sbuf sb;
1411	char buf[128];
1412	int i;
1413
1414	sc = (struct acpi_cpu_softc *)arg1;
1415	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1416	for (i = 0; i < sc->cpu_cx_count; i++) {
1417		cx = &sc->cpu_cx_states[i];
1418		sbuf_printf(&sb, "C%d/", i + 1);
1419		if (cx->do_mwait) {
1420			sbuf_cat(&sb, "mwait");
1421			if (cx->mwait_hw_coord)
1422				sbuf_cat(&sb, "/hwc");
1423			if (cx->mwait_bm_avoidance)
1424				sbuf_cat(&sb, "/bma");
1425		} else if (cx->type == ACPI_STATE_C1) {
1426			sbuf_cat(&sb, "hlt");
1427		} else {
1428			sbuf_cat(&sb, "io");
1429		}
1430		if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
1431			sbuf_cat(&sb, "/iohlt");
1432		sbuf_putc(&sb, ' ');
1433	}
1434	sbuf_trim(&sb);
1435	sbuf_finish(&sb);
1436	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1437	sbuf_delete(&sb);
1438	return (0);
1439}
1440#endif
1441
1442static int
1443acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1444{
1445    int i;
1446
1447    ACPI_SERIAL_ASSERT(cpu);
1448    sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1449
1450    /* If not disabling, cache the new lowest non-C3 state. */
1451    sc->cpu_non_c3 = 0;
1452    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1453	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1454	    sc->cpu_non_c3 = i;
1455	    break;
1456	}
1457    }
1458
1459    /* Reset the statistics counters. */
1460    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1461    return (0);
1462}
1463
1464static int
1465acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1466{
1467    struct	 acpi_cpu_softc *sc;
1468    char	 state[8];
1469    int		 val, error;
1470
1471    sc = (struct acpi_cpu_softc *) arg1;
1472    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1473    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1474    if (error != 0 || req->newptr == NULL)
1475	return (error);
1476    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1477	return (EINVAL);
1478    if (strcasecmp(state, "Cmax") == 0)
1479	val = MAX_CX_STATES;
1480    else {
1481	val = (int) strtol(state + 1, NULL, 10);
1482	if (val < 1 || val > MAX_CX_STATES)
1483	    return (EINVAL);
1484    }
1485
1486    ACPI_SERIAL_BEGIN(cpu);
1487    sc->cpu_cx_lowest_lim = val - 1;
1488    acpi_cpu_set_cx_lowest(sc);
1489    ACPI_SERIAL_END(cpu);
1490
1491    return (0);
1492}
1493
1494static int
1495acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1496{
1497    struct	acpi_cpu_softc *sc;
1498    char	state[8];
1499    int		val, error, i;
1500
1501    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1502    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1503    if (error != 0 || req->newptr == NULL)
1504	return (error);
1505    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1506	return (EINVAL);
1507    if (strcasecmp(state, "Cmax") == 0)
1508	val = MAX_CX_STATES;
1509    else {
1510	val = (int) strtol(state + 1, NULL, 10);
1511	if (val < 1 || val > MAX_CX_STATES)
1512	    return (EINVAL);
1513    }
1514
1515    /* Update the new lowest useable Cx state for all CPUs. */
1516    ACPI_SERIAL_BEGIN(cpu);
1517    cpu_cx_lowest_lim = val - 1;
1518    for (i = 0; i < cpu_ndevices; i++) {
1519	sc = device_get_softc(cpu_devices[i]);
1520	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1521	acpi_cpu_set_cx_lowest(sc);
1522    }
1523    ACPI_SERIAL_END(cpu);
1524
1525    return (0);
1526}
1527