vdev_removal.c revision 339106
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 */
26
27#include <sys/zfs_context.h>
28#include <sys/spa_impl.h>
29#include <sys/dmu.h>
30#include <sys/dmu_tx.h>
31#include <sys/zap.h>
32#include <sys/vdev_impl.h>
33#include <sys/metaslab.h>
34#include <sys/metaslab_impl.h>
35#include <sys/uberblock_impl.h>
36#include <sys/txg.h>
37#include <sys/avl.h>
38#include <sys/bpobj.h>
39#include <sys/dsl_pool.h>
40#include <sys/dsl_synctask.h>
41#include <sys/dsl_dir.h>
42#include <sys/arc.h>
43#include <sys/zfeature.h>
44#include <sys/vdev_indirect_births.h>
45#include <sys/vdev_indirect_mapping.h>
46#include <sys/abd.h>
47
48/*
49 * This file contains the necessary logic to remove vdevs from a
50 * storage pool.  Currently, the only devices that can be removed
51 * are log, cache, and spare devices; and top level vdevs from a pool
52 * w/o raidz.  (Note that members of a mirror can also be removed
53 * by the detach operation.)
54 *
55 * Log vdevs are removed by evacuating them and then turning the vdev
56 * into a hole vdev while holding spa config locks.
57 *
58 * Top level vdevs are removed and converted into an indirect vdev via
59 * a multi-step process:
60 *
61 *  - Disable allocations from this device (spa_vdev_remove_top).
62 *
63 *  - From a new thread (spa_vdev_remove_thread), copy data from
64 *    the removing vdev to a different vdev.  The copy happens in open
65 *    context (spa_vdev_copy_impl) and issues a sync task
66 *    (vdev_mapping_sync) so the sync thread can update the partial
67 *    indirect mappings in core and on disk.
68 *
69 *  - If a free happens during a removal, it is freed from the
70 *    removing vdev, and if it has already been copied, from the new
71 *    location as well (free_from_removing_vdev).
72 *
73 *  - After the removal is completed, the copy thread converts the vdev
74 *    into an indirect vdev (vdev_remove_complete) before instructing
75 *    the sync thread to destroy the space maps and finish the removal
76 *    (spa_finish_removal).
77 */
78
79typedef struct vdev_copy_arg {
80	metaslab_t	*vca_msp;
81	uint64_t	vca_outstanding_bytes;
82	kcondvar_t	vca_cv;
83	kmutex_t	vca_lock;
84} vdev_copy_arg_t;
85
86/*
87 * The maximum amount of memory we can use for outstanding i/o while
88 * doing a device removal.  This determines how much i/o we can have
89 * in flight concurrently.
90 */
91int zfs_remove_max_copy_bytes = 64 * 1024 * 1024;
92
93/*
94 * The largest contiguous segment that we will attempt to allocate when
95 * removing a device.  This can be no larger than SPA_MAXBLOCKSIZE.  If
96 * there is a performance problem with attempting to allocate large blocks,
97 * consider decreasing this.
98 *
99 * Note: we will issue I/Os of up to this size.  The mpt driver does not
100 * respond well to I/Os larger than 1MB, so we set this to 1MB.  (When
101 * mpt processes an I/O larger than 1MB, it needs to do an allocation of
102 * 2 physically contiguous pages; if this allocation fails, mpt will drop
103 * the I/O and hang the device.)
104 */
105int zfs_remove_max_segment = 1024 * 1024;
106
107/*
108 * This is used by the test suite so that it can ensure that certain
109 * actions happen while in the middle of a removal.
110 */
111uint64_t zfs_remove_max_bytes_pause = UINT64_MAX;
112
113#define	VDEV_REMOVAL_ZAP_OBJS	"lzap"
114
115static void spa_vdev_remove_thread(void *arg);
116
117static void
118spa_sync_removing_state(spa_t *spa, dmu_tx_t *tx)
119{
120	VERIFY0(zap_update(spa->spa_dsl_pool->dp_meta_objset,
121	    DMU_POOL_DIRECTORY_OBJECT,
122	    DMU_POOL_REMOVING, sizeof (uint64_t),
123	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
124	    &spa->spa_removing_phys, tx));
125}
126
127static nvlist_t *
128spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
129{
130	for (int i = 0; i < count; i++) {
131		uint64_t guid =
132		    fnvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID);
133
134		if (guid == target_guid)
135			return (nvpp[i]);
136	}
137
138	return (NULL);
139}
140
141static void
142spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
143    nvlist_t *dev_to_remove)
144{
145	nvlist_t **newdev = NULL;
146
147	if (count > 1)
148		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
149
150	for (int i = 0, j = 0; i < count; i++) {
151		if (dev[i] == dev_to_remove)
152			continue;
153		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
154	}
155
156	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
157	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
158
159	for (int i = 0; i < count - 1; i++)
160		nvlist_free(newdev[i]);
161
162	if (count > 1)
163		kmem_free(newdev, (count - 1) * sizeof (void *));
164}
165
166static spa_vdev_removal_t *
167spa_vdev_removal_create(vdev_t *vd)
168{
169	spa_vdev_removal_t *svr = kmem_zalloc(sizeof (*svr), KM_SLEEP);
170	mutex_init(&svr->svr_lock, NULL, MUTEX_DEFAULT, NULL);
171	cv_init(&svr->svr_cv, NULL, CV_DEFAULT, NULL);
172	svr->svr_allocd_segs = range_tree_create(NULL, NULL);
173	svr->svr_vdev_id = vd->vdev_id;
174
175	for (int i = 0; i < TXG_SIZE; i++) {
176		svr->svr_frees[i] = range_tree_create(NULL, NULL);
177		list_create(&svr->svr_new_segments[i],
178		    sizeof (vdev_indirect_mapping_entry_t),
179		    offsetof(vdev_indirect_mapping_entry_t, vime_node));
180	}
181
182	return (svr);
183}
184
185void
186spa_vdev_removal_destroy(spa_vdev_removal_t *svr)
187{
188	for (int i = 0; i < TXG_SIZE; i++) {
189		ASSERT0(svr->svr_bytes_done[i]);
190		ASSERT0(svr->svr_max_offset_to_sync[i]);
191		range_tree_destroy(svr->svr_frees[i]);
192		list_destroy(&svr->svr_new_segments[i]);
193	}
194
195	range_tree_destroy(svr->svr_allocd_segs);
196	mutex_destroy(&svr->svr_lock);
197	cv_destroy(&svr->svr_cv);
198	kmem_free(svr, sizeof (*svr));
199}
200
201/*
202 * This is called as a synctask in the txg in which we will mark this vdev
203 * as removing (in the config stored in the MOS).
204 *
205 * It begins the evacuation of a toplevel vdev by:
206 * - initializing the spa_removing_phys which tracks this removal
207 * - computing the amount of space to remove for accounting purposes
208 * - dirtying all dbufs in the spa_config_object
209 * - creating the spa_vdev_removal
210 * - starting the spa_vdev_remove_thread
211 */
212static void
213vdev_remove_initiate_sync(void *arg, dmu_tx_t *tx)
214{
215	int vdev_id = (uintptr_t)arg;
216	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
217	vdev_t *vd = vdev_lookup_top(spa, vdev_id);
218	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
219	objset_t *mos = spa->spa_dsl_pool->dp_meta_objset;
220	spa_vdev_removal_t *svr = NULL;
221	uint64_t txg = dmu_tx_get_txg(tx);
222
223	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
224	svr = spa_vdev_removal_create(vd);
225
226	ASSERT(vd->vdev_removing);
227	ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
228
229	spa_feature_incr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
230	if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
231		/*
232		 * By activating the OBSOLETE_COUNTS feature, we prevent
233		 * the pool from being downgraded and ensure that the
234		 * refcounts are precise.
235		 */
236		spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
237		uint64_t one = 1;
238		VERIFY0(zap_add(spa->spa_meta_objset, vd->vdev_top_zap,
239		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (one), 1,
240		    &one, tx));
241		ASSERT3U(vdev_obsolete_counts_are_precise(vd), !=, 0);
242	}
243
244	vic->vic_mapping_object = vdev_indirect_mapping_alloc(mos, tx);
245	vd->vdev_indirect_mapping =
246	    vdev_indirect_mapping_open(mos, vic->vic_mapping_object);
247	vic->vic_births_object = vdev_indirect_births_alloc(mos, tx);
248	vd->vdev_indirect_births =
249	    vdev_indirect_births_open(mos, vic->vic_births_object);
250	spa->spa_removing_phys.sr_removing_vdev = vd->vdev_id;
251	spa->spa_removing_phys.sr_start_time = gethrestime_sec();
252	spa->spa_removing_phys.sr_end_time = 0;
253	spa->spa_removing_phys.sr_state = DSS_SCANNING;
254	spa->spa_removing_phys.sr_to_copy = 0;
255	spa->spa_removing_phys.sr_copied = 0;
256
257	/*
258	 * Note: We can't use vdev_stat's vs_alloc for sr_to_copy, because
259	 * there may be space in the defer tree, which is free, but still
260	 * counted in vs_alloc.
261	 */
262	for (uint64_t i = 0; i < vd->vdev_ms_count; i++) {
263		metaslab_t *ms = vd->vdev_ms[i];
264		if (ms->ms_sm == NULL)
265			continue;
266
267		/*
268		 * Sync tasks happen before metaslab_sync(), therefore
269		 * smp_alloc and sm_alloc must be the same.
270		 */
271		ASSERT3U(space_map_allocated(ms->ms_sm), ==,
272		    ms->ms_sm->sm_phys->smp_alloc);
273
274		spa->spa_removing_phys.sr_to_copy +=
275		    space_map_allocated(ms->ms_sm);
276
277		/*
278		 * Space which we are freeing this txg does not need to
279		 * be copied.
280		 */
281		spa->spa_removing_phys.sr_to_copy -=
282		    range_tree_space(ms->ms_freeing);
283
284		ASSERT0(range_tree_space(ms->ms_freed));
285		for (int t = 0; t < TXG_SIZE; t++)
286			ASSERT0(range_tree_space(ms->ms_allocating[t]));
287	}
288
289	/*
290	 * Sync tasks are called before metaslab_sync(), so there should
291	 * be no already-synced metaslabs in the TXG_CLEAN list.
292	 */
293	ASSERT3P(txg_list_head(&vd->vdev_ms_list, TXG_CLEAN(txg)), ==, NULL);
294
295	spa_sync_removing_state(spa, tx);
296
297	/*
298	 * All blocks that we need to read the most recent mapping must be
299	 * stored on concrete vdevs.  Therefore, we must dirty anything that
300	 * is read before spa_remove_init().  Specifically, the
301	 * spa_config_object.  (Note that although we already modified the
302	 * spa_config_object in spa_sync_removing_state, that may not have
303	 * modified all blocks of the object.)
304	 */
305	dmu_object_info_t doi;
306	VERIFY0(dmu_object_info(mos, DMU_POOL_DIRECTORY_OBJECT, &doi));
307	for (uint64_t offset = 0; offset < doi.doi_max_offset; ) {
308		dmu_buf_t *dbuf;
309		VERIFY0(dmu_buf_hold(mos, DMU_POOL_DIRECTORY_OBJECT,
310		    offset, FTAG, &dbuf, 0));
311		dmu_buf_will_dirty(dbuf, tx);
312		offset += dbuf->db_size;
313		dmu_buf_rele(dbuf, FTAG);
314	}
315
316	/*
317	 * Now that we've allocated the im_object, dirty the vdev to ensure
318	 * that the object gets written to the config on disk.
319	 */
320	vdev_config_dirty(vd);
321
322	zfs_dbgmsg("starting removal thread for vdev %llu (%p) in txg %llu "
323	    "im_obj=%llu", vd->vdev_id, vd, dmu_tx_get_txg(tx),
324	    vic->vic_mapping_object);
325
326	spa_history_log_internal(spa, "vdev remove started", tx,
327	    "%s vdev %llu %s", spa_name(spa), vd->vdev_id,
328	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
329	/*
330	 * Setting spa_vdev_removal causes subsequent frees to call
331	 * free_from_removing_vdev().  Note that we don't need any locking
332	 * because we are the sync thread, and metaslab_free_impl() is only
333	 * called from syncing context (potentially from a zio taskq thread,
334	 * but in any case only when there are outstanding free i/os, which
335	 * there are not).
336	 */
337	ASSERT3P(spa->spa_vdev_removal, ==, NULL);
338	spa->spa_vdev_removal = svr;
339	svr->svr_thread = thread_create(NULL, 0,
340	    spa_vdev_remove_thread, spa, 0, &p0, TS_RUN, minclsyspri);
341}
342
343/*
344 * When we are opening a pool, we must read the mapping for each
345 * indirect vdev in order from most recently removed to least
346 * recently removed.  We do this because the blocks for the mapping
347 * of older indirect vdevs may be stored on more recently removed vdevs.
348 * In order to read each indirect mapping object, we must have
349 * initialized all more recently removed vdevs.
350 */
351int
352spa_remove_init(spa_t *spa)
353{
354	int error;
355
356	error = zap_lookup(spa->spa_dsl_pool->dp_meta_objset,
357	    DMU_POOL_DIRECTORY_OBJECT,
358	    DMU_POOL_REMOVING, sizeof (uint64_t),
359	    sizeof (spa->spa_removing_phys) / sizeof (uint64_t),
360	    &spa->spa_removing_phys);
361
362	if (error == ENOENT) {
363		spa->spa_removing_phys.sr_state = DSS_NONE;
364		spa->spa_removing_phys.sr_removing_vdev = -1;
365		spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
366		spa->spa_indirect_vdevs_loaded = B_TRUE;
367		return (0);
368	} else if (error != 0) {
369		return (error);
370	}
371
372	if (spa->spa_removing_phys.sr_state == DSS_SCANNING) {
373		/*
374		 * We are currently removing a vdev.  Create and
375		 * initialize a spa_vdev_removal_t from the bonus
376		 * buffer of the removing vdevs vdev_im_object, and
377		 * initialize its partial mapping.
378		 */
379		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
380		vdev_t *vd = vdev_lookup_top(spa,
381		    spa->spa_removing_phys.sr_removing_vdev);
382
383		if (vd == NULL) {
384			spa_config_exit(spa, SCL_STATE, FTAG);
385			return (EINVAL);
386		}
387
388		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
389
390		ASSERT(vdev_is_concrete(vd));
391		spa_vdev_removal_t *svr = spa_vdev_removal_create(vd);
392		ASSERT3U(svr->svr_vdev_id, ==, vd->vdev_id);
393		ASSERT(vd->vdev_removing);
394
395		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
396		    spa->spa_meta_objset, vic->vic_mapping_object);
397		vd->vdev_indirect_births = vdev_indirect_births_open(
398		    spa->spa_meta_objset, vic->vic_births_object);
399		spa_config_exit(spa, SCL_STATE, FTAG);
400
401		spa->spa_vdev_removal = svr;
402	}
403
404	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
405	uint64_t indirect_vdev_id =
406	    spa->spa_removing_phys.sr_prev_indirect_vdev;
407	while (indirect_vdev_id != UINT64_MAX) {
408		vdev_t *vd = vdev_lookup_top(spa, indirect_vdev_id);
409		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
410
411		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
412		vd->vdev_indirect_mapping = vdev_indirect_mapping_open(
413		    spa->spa_meta_objset, vic->vic_mapping_object);
414		vd->vdev_indirect_births = vdev_indirect_births_open(
415		    spa->spa_meta_objset, vic->vic_births_object);
416
417		indirect_vdev_id = vic->vic_prev_indirect_vdev;
418	}
419	spa_config_exit(spa, SCL_STATE, FTAG);
420
421	/*
422	 * Now that we've loaded all the indirect mappings, we can allow
423	 * reads from other blocks (e.g. via predictive prefetch).
424	 */
425	spa->spa_indirect_vdevs_loaded = B_TRUE;
426	return (0);
427}
428
429void
430spa_restart_removal(spa_t *spa)
431{
432	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
433
434	if (svr == NULL)
435		return;
436
437	/*
438	 * In general when this function is called there is no
439	 * removal thread running. The only scenario where this
440	 * is not true is during spa_import() where this function
441	 * is called twice [once from spa_import_impl() and
442	 * spa_async_resume()]. Thus, in the scenario where we
443	 * import a pool that has an ongoing removal we don't
444	 * want to spawn a second thread.
445	 */
446	if (svr->svr_thread != NULL)
447		return;
448
449	if (!spa_writeable(spa))
450		return;
451
452	zfs_dbgmsg("restarting removal of %llu", svr->svr_vdev_id);
453	svr->svr_thread = thread_create(NULL, 0, spa_vdev_remove_thread, spa,
454	    0, &p0, TS_RUN, minclsyspri);
455}
456
457/*
458 * Process freeing from a device which is in the middle of being removed.
459 * We must handle this carefully so that we attempt to copy freed data,
460 * and we correctly free already-copied data.
461 */
462void
463free_from_removing_vdev(vdev_t *vd, uint64_t offset, uint64_t size)
464{
465	spa_t *spa = vd->vdev_spa;
466	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
467	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
468	uint64_t txg = spa_syncing_txg(spa);
469	uint64_t max_offset_yet = 0;
470
471	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
472	ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, ==,
473	    vdev_indirect_mapping_object(vim));
474	ASSERT3U(vd->vdev_id, ==, svr->svr_vdev_id);
475
476	mutex_enter(&svr->svr_lock);
477
478	/*
479	 * Remove the segment from the removing vdev's spacemap.  This
480	 * ensures that we will not attempt to copy this space (if the
481	 * removal thread has not yet visited it), and also ensures
482	 * that we know what is actually allocated on the new vdevs
483	 * (needed if we cancel the removal).
484	 *
485	 * Note: we must do the metaslab_free_concrete() with the svr_lock
486	 * held, so that the remove_thread can not load this metaslab and then
487	 * visit this offset between the time that we metaslab_free_concrete()
488	 * and when we check to see if it has been visited.
489	 *
490	 * Note: The checkpoint flag is set to false as having/taking
491	 * a checkpoint and removing a device can't happen at the same
492	 * time.
493	 */
494	ASSERT(!spa_has_checkpoint(spa));
495	metaslab_free_concrete(vd, offset, size, B_FALSE);
496
497	uint64_t synced_size = 0;
498	uint64_t synced_offset = 0;
499	uint64_t max_offset_synced = vdev_indirect_mapping_max_offset(vim);
500	if (offset < max_offset_synced) {
501		/*
502		 * The mapping for this offset is already on disk.
503		 * Free from the new location.
504		 *
505		 * Note that we use svr_max_synced_offset because it is
506		 * updated atomically with respect to the in-core mapping.
507		 * By contrast, vim_max_offset is not.
508		 *
509		 * This block may be split between a synced entry and an
510		 * in-flight or unvisited entry.  Only process the synced
511		 * portion of it here.
512		 */
513		synced_size = MIN(size, max_offset_synced - offset);
514		synced_offset = offset;
515
516		ASSERT3U(max_offset_yet, <=, max_offset_synced);
517		max_offset_yet = max_offset_synced;
518
519		DTRACE_PROBE3(remove__free__synced,
520		    spa_t *, spa,
521		    uint64_t, offset,
522		    uint64_t, synced_size);
523
524		size -= synced_size;
525		offset += synced_size;
526	}
527
528	/*
529	 * Look at all in-flight txgs starting from the currently syncing one
530	 * and see if a section of this free is being copied. By starting from
531	 * this txg and iterating forward, we might find that this region
532	 * was copied in two different txgs and handle it appropriately.
533	 */
534	for (int i = 0; i < TXG_CONCURRENT_STATES; i++) {
535		int txgoff = (txg + i) & TXG_MASK;
536		if (size > 0 && offset < svr->svr_max_offset_to_sync[txgoff]) {
537			/*
538			 * The mapping for this offset is in flight, and
539			 * will be synced in txg+i.
540			 */
541			uint64_t inflight_size = MIN(size,
542			    svr->svr_max_offset_to_sync[txgoff] - offset);
543
544			DTRACE_PROBE4(remove__free__inflight,
545			    spa_t *, spa,
546			    uint64_t, offset,
547			    uint64_t, inflight_size,
548			    uint64_t, txg + i);
549
550			/*
551			 * We copy data in order of increasing offset.
552			 * Therefore the max_offset_to_sync[] must increase
553			 * (or be zero, indicating that nothing is being
554			 * copied in that txg).
555			 */
556			if (svr->svr_max_offset_to_sync[txgoff] != 0) {
557				ASSERT3U(svr->svr_max_offset_to_sync[txgoff],
558				    >=, max_offset_yet);
559				max_offset_yet =
560				    svr->svr_max_offset_to_sync[txgoff];
561			}
562
563			/*
564			 * We've already committed to copying this segment:
565			 * we have allocated space elsewhere in the pool for
566			 * it and have an IO outstanding to copy the data. We
567			 * cannot free the space before the copy has
568			 * completed, or else the copy IO might overwrite any
569			 * new data. To free that space, we record the
570			 * segment in the appropriate svr_frees tree and free
571			 * the mapped space later, in the txg where we have
572			 * completed the copy and synced the mapping (see
573			 * vdev_mapping_sync).
574			 */
575			range_tree_add(svr->svr_frees[txgoff],
576			    offset, inflight_size);
577			size -= inflight_size;
578			offset += inflight_size;
579
580			/*
581			 * This space is already accounted for as being
582			 * done, because it is being copied in txg+i.
583			 * However, if i!=0, then it is being copied in
584			 * a future txg.  If we crash after this txg
585			 * syncs but before txg+i syncs, then the space
586			 * will be free.  Therefore we must account
587			 * for the space being done in *this* txg
588			 * (when it is freed) rather than the future txg
589			 * (when it will be copied).
590			 */
591			ASSERT3U(svr->svr_bytes_done[txgoff], >=,
592			    inflight_size);
593			svr->svr_bytes_done[txgoff] -= inflight_size;
594			svr->svr_bytes_done[txg & TXG_MASK] += inflight_size;
595		}
596	}
597	ASSERT0(svr->svr_max_offset_to_sync[TXG_CLEAN(txg) & TXG_MASK]);
598
599	if (size > 0) {
600		/*
601		 * The copy thread has not yet visited this offset.  Ensure
602		 * that it doesn't.
603		 */
604
605		DTRACE_PROBE3(remove__free__unvisited,
606		    spa_t *, spa,
607		    uint64_t, offset,
608		    uint64_t, size);
609
610		if (svr->svr_allocd_segs != NULL)
611			range_tree_clear(svr->svr_allocd_segs, offset, size);
612
613		/*
614		 * Since we now do not need to copy this data, for
615		 * accounting purposes we have done our job and can count
616		 * it as completed.
617		 */
618		svr->svr_bytes_done[txg & TXG_MASK] += size;
619	}
620	mutex_exit(&svr->svr_lock);
621
622	/*
623	 * Now that we have dropped svr_lock, process the synced portion
624	 * of this free.
625	 */
626	if (synced_size > 0) {
627		vdev_indirect_mark_obsolete(vd, synced_offset, synced_size);
628
629		/*
630		 * Note: this can only be called from syncing context,
631		 * and the vdev_indirect_mapping is only changed from the
632		 * sync thread, so we don't need svr_lock while doing
633		 * metaslab_free_impl_cb.
634		 */
635		boolean_t checkpoint = B_FALSE;
636		vdev_indirect_ops.vdev_op_remap(vd, synced_offset, synced_size,
637		    metaslab_free_impl_cb, &checkpoint);
638	}
639}
640
641/*
642 * Stop an active removal and update the spa_removing phys.
643 */
644static void
645spa_finish_removal(spa_t *spa, dsl_scan_state_t state, dmu_tx_t *tx)
646{
647	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
648	ASSERT3U(dmu_tx_get_txg(tx), ==, spa_syncing_txg(spa));
649
650	/* Ensure the removal thread has completed before we free the svr. */
651	spa_vdev_remove_suspend(spa);
652
653	ASSERT(state == DSS_FINISHED || state == DSS_CANCELED);
654
655	if (state == DSS_FINISHED) {
656		spa_removing_phys_t *srp = &spa->spa_removing_phys;
657		vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
658		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
659
660		if (srp->sr_prev_indirect_vdev != UINT64_MAX) {
661			vdev_t *pvd = vdev_lookup_top(spa,
662			    srp->sr_prev_indirect_vdev);
663			ASSERT3P(pvd->vdev_ops, ==, &vdev_indirect_ops);
664		}
665
666		vic->vic_prev_indirect_vdev = srp->sr_prev_indirect_vdev;
667		srp->sr_prev_indirect_vdev = vd->vdev_id;
668	}
669	spa->spa_removing_phys.sr_state = state;
670	spa->spa_removing_phys.sr_end_time = gethrestime_sec();
671
672	spa->spa_vdev_removal = NULL;
673	spa_vdev_removal_destroy(svr);
674
675	spa_sync_removing_state(spa, tx);
676
677	vdev_config_dirty(spa->spa_root_vdev);
678}
679
680static void
681free_mapped_segment_cb(void *arg, uint64_t offset, uint64_t size)
682{
683	vdev_t *vd = arg;
684	vdev_indirect_mark_obsolete(vd, offset, size);
685	boolean_t checkpoint = B_FALSE;
686	vdev_indirect_ops.vdev_op_remap(vd, offset, size,
687	    metaslab_free_impl_cb, &checkpoint);
688}
689
690/*
691 * On behalf of the removal thread, syncs an incremental bit more of
692 * the indirect mapping to disk and updates the in-memory mapping.
693 * Called as a sync task in every txg that the removal thread makes progress.
694 */
695static void
696vdev_mapping_sync(void *arg, dmu_tx_t *tx)
697{
698	spa_vdev_removal_t *svr = arg;
699	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
700	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
701	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
702	uint64_t txg = dmu_tx_get_txg(tx);
703	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
704
705	ASSERT(vic->vic_mapping_object != 0);
706	ASSERT3U(txg, ==, spa_syncing_txg(spa));
707
708	vdev_indirect_mapping_add_entries(vim,
709	    &svr->svr_new_segments[txg & TXG_MASK], tx);
710	vdev_indirect_births_add_entry(vd->vdev_indirect_births,
711	    vdev_indirect_mapping_max_offset(vim), dmu_tx_get_txg(tx), tx);
712
713	/*
714	 * Free the copied data for anything that was freed while the
715	 * mapping entries were in flight.
716	 */
717	mutex_enter(&svr->svr_lock);
718	range_tree_vacate(svr->svr_frees[txg & TXG_MASK],
719	    free_mapped_segment_cb, vd);
720	ASSERT3U(svr->svr_max_offset_to_sync[txg & TXG_MASK], >=,
721	    vdev_indirect_mapping_max_offset(vim));
722	svr->svr_max_offset_to_sync[txg & TXG_MASK] = 0;
723	mutex_exit(&svr->svr_lock);
724
725	spa_sync_removing_state(spa, tx);
726}
727
728/*
729 * All reads and writes associated with a call to spa_vdev_copy_segment()
730 * are done.
731 */
732static void
733spa_vdev_copy_nullzio_done(zio_t *zio)
734{
735	spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
736}
737
738/*
739 * The write of the new location is done.
740 */
741static void
742spa_vdev_copy_segment_write_done(zio_t *zio)
743{
744	vdev_copy_arg_t *vca = zio->io_private;
745
746	abd_free(zio->io_abd);
747
748	mutex_enter(&vca->vca_lock);
749	vca->vca_outstanding_bytes -= zio->io_size;
750	cv_signal(&vca->vca_cv);
751	mutex_exit(&vca->vca_lock);
752}
753
754/*
755 * The read of the old location is done.  The parent zio is the write to
756 * the new location.  Allow it to start.
757 */
758static void
759spa_vdev_copy_segment_read_done(zio_t *zio)
760{
761	zio_nowait(zio_unique_parent(zio));
762}
763
764/*
765 * If the old and new vdevs are mirrors, we will read both sides of the old
766 * mirror, and write each copy to the corresponding side of the new mirror.
767 * If the old and new vdevs have a different number of children, we will do
768 * this as best as possible.  Since we aren't verifying checksums, this
769 * ensures that as long as there's a good copy of the data, we'll have a
770 * good copy after the removal, even if there's silent damage to one side
771 * of the mirror. If we're removing a mirror that has some silent damage,
772 * we'll have exactly the same damage in the new location (assuming that
773 * the new location is also a mirror).
774 *
775 * We accomplish this by creating a tree of zio_t's, with as many writes as
776 * there are "children" of the new vdev (a non-redundant vdev counts as one
777 * child, a 2-way mirror has 2 children, etc). Each write has an associated
778 * read from a child of the old vdev. Typically there will be the same
779 * number of children of the old and new vdevs.  However, if there are more
780 * children of the new vdev, some child(ren) of the old vdev will be issued
781 * multiple reads.  If there are more children of the old vdev, some copies
782 * will be dropped.
783 *
784 * For example, the tree of zio_t's for a 2-way mirror is:
785 *
786 *                            null
787 *                           /    \
788 *    write(new vdev, child 0)      write(new vdev, child 1)
789 *      |                             |
790 *    read(old vdev, child 0)       read(old vdev, child 1)
791 *
792 * Child zio's complete before their parents complete.  However, zio's
793 * created with zio_vdev_child_io() may be issued before their children
794 * complete.  In this case we need to make sure that the children (reads)
795 * complete before the parents (writes) are *issued*.  We do this by not
796 * calling zio_nowait() on each write until its corresponding read has
797 * completed.
798 *
799 * The spa_config_lock must be held while zio's created by
800 * zio_vdev_child_io() are in progress, to ensure that the vdev tree does
801 * not change (e.g. due to a concurrent "zpool attach/detach"). The "null"
802 * zio is needed to release the spa_config_lock after all the reads and
803 * writes complete. (Note that we can't grab the config lock for each read,
804 * because it is not reentrant - we could deadlock with a thread waiting
805 * for a write lock.)
806 */
807static void
808spa_vdev_copy_one_child(vdev_copy_arg_t *vca, zio_t *nzio,
809    vdev_t *source_vd, uint64_t source_offset,
810    vdev_t *dest_child_vd, uint64_t dest_offset, int dest_id, uint64_t size)
811{
812	ASSERT3U(spa_config_held(nzio->io_spa, SCL_ALL, RW_READER), !=, 0);
813
814	mutex_enter(&vca->vca_lock);
815	vca->vca_outstanding_bytes += size;
816	mutex_exit(&vca->vca_lock);
817
818	abd_t *abd = abd_alloc_for_io(size, B_FALSE);
819
820	vdev_t *source_child_vd;
821	if (source_vd->vdev_ops == &vdev_mirror_ops && dest_id != -1) {
822		/*
823		 * Source and dest are both mirrors.  Copy from the same
824		 * child id as we are copying to (wrapping around if there
825		 * are more dest children than source children).
826		 */
827		source_child_vd =
828		    source_vd->vdev_child[dest_id % source_vd->vdev_children];
829	} else {
830		source_child_vd = source_vd;
831	}
832
833	zio_t *write_zio = zio_vdev_child_io(nzio, NULL,
834	    dest_child_vd, dest_offset, abd, size,
835	    ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
836	    ZIO_FLAG_CANFAIL,
837	    spa_vdev_copy_segment_write_done, vca);
838
839	zio_nowait(zio_vdev_child_io(write_zio, NULL,
840	    source_child_vd, source_offset, abd, size,
841	    ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
842	    ZIO_FLAG_CANFAIL,
843	    spa_vdev_copy_segment_read_done, vca));
844}
845
846/*
847 * Allocate a new location for this segment, and create the zio_t's to
848 * read from the old location and write to the new location.
849 */
850static int
851spa_vdev_copy_segment(vdev_t *vd, uint64_t start, uint64_t size, uint64_t txg,
852    vdev_copy_arg_t *vca, zio_alloc_list_t *zal)
853{
854	metaslab_group_t *mg = vd->vdev_mg;
855	spa_t *spa = vd->vdev_spa;
856	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
857	vdev_indirect_mapping_entry_t *entry;
858	dva_t dst = { 0 };
859
860	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
861
862	/*
863	 * We use allocator 0 for this I/O because we don't expect device remap
864	 * to be the steady state of the system, so parallelizing is not as
865	 * critical as it is for other allocation types. We also want to ensure
866	 * that the IOs are allocated together as much as possible, to reduce
867	 * mapping sizes.
868	 */
869	int error = metaslab_alloc_dva(spa, mg->mg_class, size,
870	    &dst, 0, NULL, txg, 0, zal, 0);
871	if (error != 0)
872		return (error);
873
874	/*
875	 * We can't have any padding of the allocated size, otherwise we will
876	 * misunderstand what's allocated, and the size of the mapping.
877	 * The caller ensures this will be true by passing in a size that is
878	 * aligned to the worst (highest) ashift in the pool.
879	 */
880	ASSERT3U(DVA_GET_ASIZE(&dst), ==, size);
881
882	entry = kmem_zalloc(sizeof (vdev_indirect_mapping_entry_t), KM_SLEEP);
883	DVA_MAPPING_SET_SRC_OFFSET(&entry->vime_mapping, start);
884	entry->vime_mapping.vimep_dst = dst;
885
886	/*
887	 * See comment before spa_vdev_copy_one_child().
888	 */
889	spa_config_enter(spa, SCL_STATE, spa, RW_READER);
890	zio_t *nzio = zio_null(spa->spa_txg_zio[txg & TXG_MASK], spa, NULL,
891	    spa_vdev_copy_nullzio_done, NULL, 0);
892	vdev_t *dest_vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dst));
893	if (dest_vd->vdev_ops == &vdev_mirror_ops) {
894		for (int i = 0; i < dest_vd->vdev_children; i++) {
895			vdev_t *child = dest_vd->vdev_child[i];
896			spa_vdev_copy_one_child(vca, nzio, vd, start,
897			    child, DVA_GET_OFFSET(&dst), i, size);
898		}
899	} else {
900		spa_vdev_copy_one_child(vca, nzio, vd, start,
901		    dest_vd, DVA_GET_OFFSET(&dst), -1, size);
902	}
903	zio_nowait(nzio);
904
905	list_insert_tail(&svr->svr_new_segments[txg & TXG_MASK], entry);
906	ASSERT3U(start + size, <=, vd->vdev_ms_count << vd->vdev_ms_shift);
907	vdev_dirty(vd, 0, NULL, txg);
908
909	return (0);
910}
911
912/*
913 * Complete the removal of a toplevel vdev. This is called as a
914 * synctask in the same txg that we will sync out the new config (to the
915 * MOS object) which indicates that this vdev is indirect.
916 */
917static void
918vdev_remove_complete_sync(void *arg, dmu_tx_t *tx)
919{
920	spa_vdev_removal_t *svr = arg;
921	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
922	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
923
924	ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
925
926	for (int i = 0; i < TXG_SIZE; i++) {
927		ASSERT0(svr->svr_bytes_done[i]);
928	}
929
930	ASSERT3U(spa->spa_removing_phys.sr_copied, ==,
931	    spa->spa_removing_phys.sr_to_copy);
932
933	vdev_destroy_spacemaps(vd, tx);
934
935	/* destroy leaf zaps, if any */
936	ASSERT3P(svr->svr_zaplist, !=, NULL);
937	for (nvpair_t *pair = nvlist_next_nvpair(svr->svr_zaplist, NULL);
938	    pair != NULL;
939	    pair = nvlist_next_nvpair(svr->svr_zaplist, pair)) {
940		vdev_destroy_unlink_zap(vd, fnvpair_value_uint64(pair), tx);
941	}
942	fnvlist_free(svr->svr_zaplist);
943
944	spa_finish_removal(dmu_tx_pool(tx)->dp_spa, DSS_FINISHED, tx);
945	/* vd->vdev_path is not available here */
946	spa_history_log_internal(spa, "vdev remove completed",  tx,
947	    "%s vdev %llu", spa_name(spa), vd->vdev_id);
948}
949
950static void
951vdev_remove_enlist_zaps(vdev_t *vd, nvlist_t *zlist)
952{
953	ASSERT3P(zlist, !=, NULL);
954	ASSERT3P(vd->vdev_ops, !=, &vdev_raidz_ops);
955
956	if (vd->vdev_leaf_zap != 0) {
957		char zkey[32];
958		(void) snprintf(zkey, sizeof (zkey), "%s-%ju",
959		    VDEV_REMOVAL_ZAP_OBJS, (uintmax_t)vd->vdev_leaf_zap);
960		fnvlist_add_uint64(zlist, zkey, vd->vdev_leaf_zap);
961	}
962
963	for (uint64_t id = 0; id < vd->vdev_children; id++) {
964		vdev_remove_enlist_zaps(vd->vdev_child[id], zlist);
965	}
966}
967
968static void
969vdev_remove_replace_with_indirect(vdev_t *vd, uint64_t txg)
970{
971	vdev_t *ivd;
972	dmu_tx_t *tx;
973	spa_t *spa = vd->vdev_spa;
974	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
975
976	/*
977	 * First, build a list of leaf zaps to be destroyed.
978	 * This is passed to the sync context thread,
979	 * which does the actual unlinking.
980	 */
981	svr->svr_zaplist = fnvlist_alloc();
982	vdev_remove_enlist_zaps(vd, svr->svr_zaplist);
983
984	ivd = vdev_add_parent(vd, &vdev_indirect_ops);
985	ivd->vdev_removing = 0;
986
987	vd->vdev_leaf_zap = 0;
988
989	vdev_remove_child(ivd, vd);
990	vdev_compact_children(ivd);
991
992	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
993
994	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
995	dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_remove_complete_sync, svr,
996	    0, ZFS_SPACE_CHECK_NONE, tx);
997	dmu_tx_commit(tx);
998
999	/*
1000	 * Indicate that this thread has exited.
1001	 * After this, we can not use svr.
1002	 */
1003	mutex_enter(&svr->svr_lock);
1004	svr->svr_thread = NULL;
1005	cv_broadcast(&svr->svr_cv);
1006	mutex_exit(&svr->svr_lock);
1007}
1008
1009/*
1010 * Complete the removal of a toplevel vdev. This is called in open
1011 * context by the removal thread after we have copied all vdev's data.
1012 */
1013static void
1014vdev_remove_complete(spa_t *spa)
1015{
1016	uint64_t txg;
1017
1018	/*
1019	 * Wait for any deferred frees to be synced before we call
1020	 * vdev_metaslab_fini()
1021	 */
1022	txg_wait_synced(spa->spa_dsl_pool, 0);
1023	txg = spa_vdev_enter(spa);
1024	vdev_t *vd = vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1025
1026	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1027	    ESC_ZFS_VDEV_REMOVE_DEV);
1028
1029	zfs_dbgmsg("finishing device removal for vdev %llu in txg %llu",
1030	    vd->vdev_id, txg);
1031
1032	/*
1033	 * Discard allocation state.
1034	 */
1035	if (vd->vdev_mg != NULL) {
1036		vdev_metaslab_fini(vd);
1037		metaslab_group_destroy(vd->vdev_mg);
1038		vd->vdev_mg = NULL;
1039	}
1040	ASSERT0(vd->vdev_stat.vs_space);
1041	ASSERT0(vd->vdev_stat.vs_dspace);
1042
1043	vdev_remove_replace_with_indirect(vd, txg);
1044
1045	/*
1046	 * We now release the locks, allowing spa_sync to run and finish the
1047	 * removal via vdev_remove_complete_sync in syncing context.
1048	 *
1049	 * Note that we hold on to the vdev_t that has been replaced.  Since
1050	 * it isn't part of the vdev tree any longer, it can't be concurrently
1051	 * manipulated, even while we don't have the config lock.
1052	 */
1053	(void) spa_vdev_exit(spa, NULL, txg, 0);
1054
1055	/*
1056	 * Top ZAP should have been transferred to the indirect vdev in
1057	 * vdev_remove_replace_with_indirect.
1058	 */
1059	ASSERT0(vd->vdev_top_zap);
1060
1061	/*
1062	 * Leaf ZAP should have been moved in vdev_remove_replace_with_indirect.
1063	 */
1064	ASSERT0(vd->vdev_leaf_zap);
1065
1066	txg = spa_vdev_enter(spa);
1067	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1068	/*
1069	 * Request to update the config and the config cachefile.
1070	 */
1071	vdev_config_dirty(spa->spa_root_vdev);
1072	(void) spa_vdev_exit(spa, vd, txg, 0);
1073
1074	spa_event_post(ev);
1075}
1076
1077/*
1078 * Evacuates a segment of size at most max_alloc from the vdev
1079 * via repeated calls to spa_vdev_copy_segment. If an allocation
1080 * fails, the pool is probably too fragmented to handle such a
1081 * large size, so decrease max_alloc so that the caller will not try
1082 * this size again this txg.
1083 */
1084static void
1085spa_vdev_copy_impl(vdev_t *vd, spa_vdev_removal_t *svr, vdev_copy_arg_t *vca,
1086    uint64_t *max_alloc, dmu_tx_t *tx)
1087{
1088	uint64_t txg = dmu_tx_get_txg(tx);
1089	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1090
1091	mutex_enter(&svr->svr_lock);
1092
1093	range_seg_t *rs = avl_first(&svr->svr_allocd_segs->rt_root);
1094	if (rs == NULL) {
1095		mutex_exit(&svr->svr_lock);
1096		return;
1097	}
1098	uint64_t offset = rs->rs_start;
1099	uint64_t length = MIN(rs->rs_end - rs->rs_start, *max_alloc);
1100
1101	range_tree_remove(svr->svr_allocd_segs, offset, length);
1102
1103	if (svr->svr_max_offset_to_sync[txg & TXG_MASK] == 0) {
1104		dsl_sync_task_nowait(dmu_tx_pool(tx), vdev_mapping_sync,
1105		    svr, 0, ZFS_SPACE_CHECK_NONE, tx);
1106	}
1107
1108	svr->svr_max_offset_to_sync[txg & TXG_MASK] = offset + length;
1109
1110	/*
1111	 * Note: this is the amount of *allocated* space
1112	 * that we are taking care of each txg.
1113	 */
1114	svr->svr_bytes_done[txg & TXG_MASK] += length;
1115
1116	mutex_exit(&svr->svr_lock);
1117
1118	zio_alloc_list_t zal;
1119	metaslab_trace_init(&zal);
1120	uint64_t thismax = *max_alloc;
1121	while (length > 0) {
1122		uint64_t mylen = MIN(length, thismax);
1123
1124		int error = spa_vdev_copy_segment(vd,
1125		    offset, mylen, txg, vca, &zal);
1126
1127		if (error == ENOSPC) {
1128			/*
1129			 * Cut our segment in half, and don't try this
1130			 * segment size again this txg.  Note that the
1131			 * allocation size must be aligned to the highest
1132			 * ashift in the pool, so that the allocation will
1133			 * not be padded out to a multiple of the ashift,
1134			 * which could cause us to think that this mapping
1135			 * is larger than we intended.
1136			 */
1137			ASSERT3U(spa->spa_max_ashift, >=, SPA_MINBLOCKSHIFT);
1138			ASSERT3U(spa->spa_max_ashift, ==, spa->spa_min_ashift);
1139			thismax = P2ROUNDUP(mylen / 2,
1140			    1 << spa->spa_max_ashift);
1141			ASSERT3U(thismax, <, mylen);
1142			/*
1143			 * The minimum-size allocation can not fail.
1144			 */
1145			ASSERT3U(mylen, >, 1 << spa->spa_max_ashift);
1146			*max_alloc = mylen - (1 << spa->spa_max_ashift);
1147		} else {
1148			ASSERT0(error);
1149			length -= mylen;
1150			offset += mylen;
1151
1152			/*
1153			 * We've performed an allocation, so reset the
1154			 * alloc trace list.
1155			 */
1156			metaslab_trace_fini(&zal);
1157			metaslab_trace_init(&zal);
1158		}
1159	}
1160	metaslab_trace_fini(&zal);
1161}
1162
1163/*
1164 * The removal thread operates in open context.  It iterates over all
1165 * allocated space in the vdev, by loading each metaslab's spacemap.
1166 * For each contiguous segment of allocated space (capping the segment
1167 * size at SPA_MAXBLOCKSIZE), we:
1168 *    - Allocate space for it on another vdev.
1169 *    - Create a new mapping from the old location to the new location
1170 *      (as a record in svr_new_segments).
1171 *    - Initiate a logical read zio to get the data off the removing disk.
1172 *    - In the read zio's done callback, initiate a logical write zio to
1173 *      write it to the new vdev.
1174 * Note that all of this will take effect when a particular TXG syncs.
1175 * The sync thread ensures that all the phys reads and writes for the syncing
1176 * TXG have completed (see spa_txg_zio) and writes the new mappings to disk
1177 * (see vdev_mapping_sync()).
1178 */
1179static void
1180spa_vdev_remove_thread(void *arg)
1181{
1182	spa_t *spa = arg;
1183	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1184	vdev_copy_arg_t vca;
1185	uint64_t max_alloc = zfs_remove_max_segment;
1186	uint64_t last_txg = 0;
1187
1188	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1189	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1190	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1191	uint64_t start_offset = vdev_indirect_mapping_max_offset(vim);
1192
1193	ASSERT3P(vd->vdev_ops, !=, &vdev_indirect_ops);
1194	ASSERT(vdev_is_concrete(vd));
1195	ASSERT(vd->vdev_removing);
1196	ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
1197	ASSERT(vim != NULL);
1198
1199	mutex_init(&vca.vca_lock, NULL, MUTEX_DEFAULT, NULL);
1200	cv_init(&vca.vca_cv, NULL, CV_DEFAULT, NULL);
1201	vca.vca_outstanding_bytes = 0;
1202
1203	mutex_enter(&svr->svr_lock);
1204
1205	/*
1206	 * Start from vim_max_offset so we pick up where we left off
1207	 * if we are restarting the removal after opening the pool.
1208	 */
1209	uint64_t msi;
1210	for (msi = start_offset >> vd->vdev_ms_shift;
1211	    msi < vd->vdev_ms_count && !svr->svr_thread_exit; msi++) {
1212		metaslab_t *msp = vd->vdev_ms[msi];
1213		ASSERT3U(msi, <=, vd->vdev_ms_count);
1214
1215		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1216
1217		mutex_enter(&msp->ms_sync_lock);
1218		mutex_enter(&msp->ms_lock);
1219
1220		/*
1221		 * Assert nothing in flight -- ms_*tree is empty.
1222		 */
1223		for (int i = 0; i < TXG_SIZE; i++) {
1224			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1225		}
1226
1227		/*
1228		 * If the metaslab has ever been allocated from (ms_sm!=NULL),
1229		 * read the allocated segments from the space map object
1230		 * into svr_allocd_segs. Since we do this while holding
1231		 * svr_lock and ms_sync_lock, concurrent frees (which
1232		 * would have modified the space map) will wait for us
1233		 * to finish loading the spacemap, and then take the
1234		 * appropriate action (see free_from_removing_vdev()).
1235		 */
1236		if (msp->ms_sm != NULL) {
1237			space_map_t *sm = NULL;
1238
1239			/*
1240			 * We have to open a new space map here, because
1241			 * ms_sm's sm_length and sm_alloc may not reflect
1242			 * what's in the object contents, if we are in between
1243			 * metaslab_sync() and metaslab_sync_done().
1244			 */
1245			VERIFY0(space_map_open(&sm,
1246			    spa->spa_dsl_pool->dp_meta_objset,
1247			    msp->ms_sm->sm_object, msp->ms_sm->sm_start,
1248			    msp->ms_sm->sm_size, msp->ms_sm->sm_shift));
1249			space_map_update(sm);
1250			VERIFY0(space_map_load(sm, svr->svr_allocd_segs,
1251			    SM_ALLOC));
1252			space_map_close(sm);
1253
1254			range_tree_walk(msp->ms_freeing,
1255			    range_tree_remove, svr->svr_allocd_segs);
1256
1257			/*
1258			 * When we are resuming from a paused removal (i.e.
1259			 * when importing a pool with a removal in progress),
1260			 * discard any state that we have already processed.
1261			 */
1262			range_tree_clear(svr->svr_allocd_segs, 0, start_offset);
1263		}
1264		mutex_exit(&msp->ms_lock);
1265		mutex_exit(&msp->ms_sync_lock);
1266
1267		vca.vca_msp = msp;
1268		zfs_dbgmsg("copying %llu segments for metaslab %llu",
1269		    avl_numnodes(&svr->svr_allocd_segs->rt_root),
1270		    msp->ms_id);
1271
1272		while (!svr->svr_thread_exit &&
1273		    !range_tree_is_empty(svr->svr_allocd_segs)) {
1274
1275			mutex_exit(&svr->svr_lock);
1276
1277			/*
1278			 * We need to periodically drop the config lock so that
1279			 * writers can get in.  Additionally, we can't wait
1280			 * for a txg to sync while holding a config lock
1281			 * (since a waiting writer could cause a 3-way deadlock
1282			 * with the sync thread, which also gets a config
1283			 * lock for reader).  So we can't hold the config lock
1284			 * while calling dmu_tx_assign().
1285			 */
1286			spa_config_exit(spa, SCL_CONFIG, FTAG);
1287
1288			/*
1289			 * This delay will pause the removal around the point
1290			 * specified by zfs_remove_max_bytes_pause. We do this
1291			 * solely from the test suite or during debugging.
1292			 */
1293			uint64_t bytes_copied =
1294			    spa->spa_removing_phys.sr_copied;
1295			for (int i = 0; i < TXG_SIZE; i++)
1296				bytes_copied += svr->svr_bytes_done[i];
1297			while (zfs_remove_max_bytes_pause <= bytes_copied &&
1298			    !svr->svr_thread_exit)
1299				delay(hz);
1300
1301			mutex_enter(&vca.vca_lock);
1302			while (vca.vca_outstanding_bytes >
1303			    zfs_remove_max_copy_bytes) {
1304				cv_wait(&vca.vca_cv, &vca.vca_lock);
1305			}
1306			mutex_exit(&vca.vca_lock);
1307
1308			dmu_tx_t *tx =
1309			    dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1310
1311			VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1312			uint64_t txg = dmu_tx_get_txg(tx);
1313
1314			/*
1315			 * Reacquire the vdev_config lock.  The vdev_t
1316			 * that we're removing may have changed, e.g. due
1317			 * to a vdev_attach or vdev_detach.
1318			 */
1319			spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
1320			vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1321
1322			if (txg != last_txg)
1323				max_alloc = zfs_remove_max_segment;
1324			last_txg = txg;
1325
1326			spa_vdev_copy_impl(vd, svr, &vca, &max_alloc, tx);
1327
1328			dmu_tx_commit(tx);
1329			mutex_enter(&svr->svr_lock);
1330		}
1331	}
1332
1333	mutex_exit(&svr->svr_lock);
1334
1335	spa_config_exit(spa, SCL_CONFIG, FTAG);
1336
1337	/*
1338	 * Wait for all copies to finish before cleaning up the vca.
1339	 */
1340	txg_wait_synced(spa->spa_dsl_pool, 0);
1341	ASSERT0(vca.vca_outstanding_bytes);
1342
1343	mutex_destroy(&vca.vca_lock);
1344	cv_destroy(&vca.vca_cv);
1345
1346	if (svr->svr_thread_exit) {
1347		mutex_enter(&svr->svr_lock);
1348		range_tree_vacate(svr->svr_allocd_segs, NULL, NULL);
1349		svr->svr_thread = NULL;
1350		cv_broadcast(&svr->svr_cv);
1351		mutex_exit(&svr->svr_lock);
1352	} else {
1353		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1354		vdev_remove_complete(spa);
1355	}
1356	thread_exit();
1357}
1358
1359void
1360spa_vdev_remove_suspend(spa_t *spa)
1361{
1362	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1363
1364	if (svr == NULL)
1365		return;
1366
1367	mutex_enter(&svr->svr_lock);
1368	svr->svr_thread_exit = B_TRUE;
1369	while (svr->svr_thread != NULL)
1370		cv_wait(&svr->svr_cv, &svr->svr_lock);
1371	svr->svr_thread_exit = B_FALSE;
1372	mutex_exit(&svr->svr_lock);
1373}
1374
1375/* ARGSUSED */
1376static int
1377spa_vdev_remove_cancel_check(void *arg, dmu_tx_t *tx)
1378{
1379	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1380
1381	if (spa->spa_vdev_removal == NULL)
1382		return (ESRCH);
1383	return (0);
1384}
1385
1386/*
1387 * Cancel a removal by freeing all entries from the partial mapping
1388 * and marking the vdev as no longer being removing.
1389 */
1390/* ARGSUSED */
1391static void
1392spa_vdev_remove_cancel_sync(void *arg, dmu_tx_t *tx)
1393{
1394	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1395	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1396	vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
1397	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1398	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1399	objset_t *mos = spa->spa_meta_objset;
1400
1401	ASSERT3P(svr->svr_thread, ==, NULL);
1402
1403	spa_feature_decr(spa, SPA_FEATURE_DEVICE_REMOVAL, tx);
1404	if (vdev_obsolete_counts_are_precise(vd)) {
1405		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1406		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1407		    VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, tx));
1408	}
1409
1410	if (vdev_obsolete_sm_object(vd) != 0) {
1411		ASSERT(vd->vdev_obsolete_sm != NULL);
1412		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
1413		    space_map_object(vd->vdev_obsolete_sm));
1414
1415		space_map_free(vd->vdev_obsolete_sm, tx);
1416		VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
1417		    VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
1418		space_map_close(vd->vdev_obsolete_sm);
1419		vd->vdev_obsolete_sm = NULL;
1420		spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
1421	}
1422	for (int i = 0; i < TXG_SIZE; i++) {
1423		ASSERT(list_is_empty(&svr->svr_new_segments[i]));
1424		ASSERT3U(svr->svr_max_offset_to_sync[i], <=,
1425		    vdev_indirect_mapping_max_offset(vim));
1426	}
1427
1428	for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
1429		metaslab_t *msp = vd->vdev_ms[msi];
1430
1431		if (msp->ms_start >= vdev_indirect_mapping_max_offset(vim))
1432			break;
1433
1434		ASSERT0(range_tree_space(svr->svr_allocd_segs));
1435
1436		mutex_enter(&msp->ms_lock);
1437
1438		/*
1439		 * Assert nothing in flight -- ms_*tree is empty.
1440		 */
1441		for (int i = 0; i < TXG_SIZE; i++)
1442			ASSERT0(range_tree_space(msp->ms_allocating[i]));
1443		for (int i = 0; i < TXG_DEFER_SIZE; i++)
1444			ASSERT0(range_tree_space(msp->ms_defer[i]));
1445		ASSERT0(range_tree_space(msp->ms_freed));
1446
1447		if (msp->ms_sm != NULL) {
1448			/*
1449			 * Assert that the in-core spacemap has the same
1450			 * length as the on-disk one, so we can use the
1451			 * existing in-core spacemap to load it from disk.
1452			 */
1453			ASSERT3U(msp->ms_sm->sm_alloc, ==,
1454			    msp->ms_sm->sm_phys->smp_alloc);
1455			ASSERT3U(msp->ms_sm->sm_length, ==,
1456			    msp->ms_sm->sm_phys->smp_objsize);
1457
1458			mutex_enter(&svr->svr_lock);
1459			VERIFY0(space_map_load(msp->ms_sm,
1460			    svr->svr_allocd_segs, SM_ALLOC));
1461			range_tree_walk(msp->ms_freeing,
1462			    range_tree_remove, svr->svr_allocd_segs);
1463
1464			/*
1465			 * Clear everything past what has been synced,
1466			 * because we have not allocated mappings for it yet.
1467			 */
1468			uint64_t syncd = vdev_indirect_mapping_max_offset(vim);
1469			uint64_t sm_end = msp->ms_sm->sm_start +
1470			    msp->ms_sm->sm_size;
1471			if (sm_end > syncd)
1472				range_tree_clear(svr->svr_allocd_segs,
1473				    syncd, sm_end - syncd);
1474
1475			mutex_exit(&svr->svr_lock);
1476		}
1477		mutex_exit(&msp->ms_lock);
1478
1479		mutex_enter(&svr->svr_lock);
1480		range_tree_vacate(svr->svr_allocd_segs,
1481		    free_mapped_segment_cb, vd);
1482		mutex_exit(&svr->svr_lock);
1483	}
1484
1485	/*
1486	 * Note: this must happen after we invoke free_mapped_segment_cb,
1487	 * because it adds to the obsolete_segments.
1488	 */
1489	range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
1490
1491	ASSERT3U(vic->vic_mapping_object, ==,
1492	    vdev_indirect_mapping_object(vd->vdev_indirect_mapping));
1493	vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1494	vd->vdev_indirect_mapping = NULL;
1495	vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
1496	vic->vic_mapping_object = 0;
1497
1498	ASSERT3U(vic->vic_births_object, ==,
1499	    vdev_indirect_births_object(vd->vdev_indirect_births));
1500	vdev_indirect_births_close(vd->vdev_indirect_births);
1501	vd->vdev_indirect_births = NULL;
1502	vdev_indirect_births_free(mos, vic->vic_births_object, tx);
1503	vic->vic_births_object = 0;
1504
1505	/*
1506	 * We may have processed some frees from the removing vdev in this
1507	 * txg, thus increasing svr_bytes_done; discard that here to
1508	 * satisfy the assertions in spa_vdev_removal_destroy().
1509	 * Note that future txg's can not have any bytes_done, because
1510	 * future TXG's are only modified from open context, and we have
1511	 * already shut down the copying thread.
1512	 */
1513	svr->svr_bytes_done[dmu_tx_get_txg(tx) & TXG_MASK] = 0;
1514	spa_finish_removal(spa, DSS_CANCELED, tx);
1515
1516	vd->vdev_removing = B_FALSE;
1517	vdev_config_dirty(vd);
1518
1519	zfs_dbgmsg("canceled device removal for vdev %llu in %llu",
1520	    vd->vdev_id, dmu_tx_get_txg(tx));
1521	spa_history_log_internal(spa, "vdev remove canceled", tx,
1522	    "%s vdev %llu %s", spa_name(spa),
1523	    vd->vdev_id, (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1524}
1525
1526int
1527spa_vdev_remove_cancel(spa_t *spa)
1528{
1529	spa_vdev_remove_suspend(spa);
1530
1531	if (spa->spa_vdev_removal == NULL)
1532		return (ESRCH);
1533
1534	uint64_t vdid = spa->spa_vdev_removal->svr_vdev_id;
1535
1536	int error = dsl_sync_task(spa->spa_name, spa_vdev_remove_cancel_check,
1537	    spa_vdev_remove_cancel_sync, NULL, 0,
1538	    ZFS_SPACE_CHECK_EXTRA_RESERVED);
1539
1540	if (error == 0) {
1541		spa_config_enter(spa, SCL_ALLOC | SCL_VDEV, FTAG, RW_WRITER);
1542		vdev_t *vd = vdev_lookup_top(spa, vdid);
1543		metaslab_group_activate(vd->vdev_mg);
1544		spa_config_exit(spa, SCL_ALLOC | SCL_VDEV, FTAG);
1545	}
1546
1547	return (error);
1548}
1549
1550/*
1551 * Called every sync pass of every txg if there's a svr.
1552 */
1553void
1554svr_sync(spa_t *spa, dmu_tx_t *tx)
1555{
1556	spa_vdev_removal_t *svr = spa->spa_vdev_removal;
1557	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1558
1559	/*
1560	 * This check is necessary so that we do not dirty the
1561	 * DIRECTORY_OBJECT via spa_sync_removing_state() when there
1562	 * is nothing to do.  Dirtying it every time would prevent us
1563	 * from syncing-to-convergence.
1564	 */
1565	if (svr->svr_bytes_done[txgoff] == 0)
1566		return;
1567
1568	/*
1569	 * Update progress accounting.
1570	 */
1571	spa->spa_removing_phys.sr_copied += svr->svr_bytes_done[txgoff];
1572	svr->svr_bytes_done[txgoff] = 0;
1573
1574	spa_sync_removing_state(spa, tx);
1575}
1576
1577static void
1578vdev_remove_make_hole_and_free(vdev_t *vd)
1579{
1580	uint64_t id = vd->vdev_id;
1581	spa_t *spa = vd->vdev_spa;
1582	vdev_t *rvd = spa->spa_root_vdev;
1583	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
1584
1585	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1586	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1587
1588	vdev_free(vd);
1589
1590	if (last_vdev) {
1591		vdev_compact_children(rvd);
1592	} else {
1593		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
1594		vdev_add_child(rvd, vd);
1595	}
1596	vdev_config_dirty(rvd);
1597
1598	/*
1599	 * Reassess the health of our root vdev.
1600	 */
1601	vdev_reopen(rvd);
1602}
1603
1604/*
1605 * Remove a log device.  The config lock is held for the specified TXG.
1606 */
1607static int
1608spa_vdev_remove_log(vdev_t *vd, uint64_t *txg)
1609{
1610	metaslab_group_t *mg = vd->vdev_mg;
1611	spa_t *spa = vd->vdev_spa;
1612	int error = 0;
1613
1614	ASSERT(vd->vdev_islog);
1615	ASSERT(vd == vd->vdev_top);
1616
1617	/*
1618	 * Stop allocating from this vdev.
1619	 */
1620	metaslab_group_passivate(mg);
1621
1622	/*
1623	 * Wait for the youngest allocations and frees to sync,
1624	 * and then wait for the deferral of those frees to finish.
1625	 */
1626	spa_vdev_config_exit(spa, NULL,
1627	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1628
1629	/*
1630	 * Evacuate the device.  We don't hold the config lock as writer
1631	 * since we need to do I/O but we do keep the
1632	 * spa_namespace_lock held.  Once this completes the device
1633	 * should no longer have any blocks allocated on it.
1634	 */
1635	if (vd->vdev_islog) {
1636		if (vd->vdev_stat.vs_alloc != 0)
1637			error = spa_reset_logs(spa);
1638	}
1639
1640	*txg = spa_vdev_config_enter(spa);
1641
1642	if (error != 0) {
1643		metaslab_group_activate(mg);
1644		return (error);
1645	}
1646	ASSERT0(vd->vdev_stat.vs_alloc);
1647
1648	/*
1649	 * The evacuation succeeded.  Remove any remaining MOS metadata
1650	 * associated with this vdev, and wait for these changes to sync.
1651	 */
1652	vd->vdev_removing = B_TRUE;
1653
1654	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1655	vdev_config_dirty(vd);
1656
1657	spa_history_log_internal(spa, "vdev remove", NULL,
1658	    "%s vdev %llu (log) %s", spa_name(spa), vd->vdev_id,
1659	    (vd->vdev_path != NULL) ? vd->vdev_path : "-");
1660
1661	/* Make sure these changes are sync'ed */
1662	spa_vdev_config_exit(spa, NULL, *txg, 0, FTAG);
1663
1664	*txg = spa_vdev_config_enter(spa);
1665
1666	sysevent_t *ev = spa_event_create(spa, vd, NULL,
1667	    ESC_ZFS_VDEV_REMOVE_DEV);
1668	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1669	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1670
1671	/* The top ZAP should have been destroyed by vdev_remove_empty. */
1672	ASSERT0(vd->vdev_top_zap);
1673	/* The leaf ZAP should have been destroyed by vdev_dtl_sync. */
1674	ASSERT0(vd->vdev_leaf_zap);
1675
1676	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1677
1678	if (list_link_active(&vd->vdev_state_dirty_node))
1679		vdev_state_clean(vd);
1680	if (list_link_active(&vd->vdev_config_dirty_node))
1681		vdev_config_clean(vd);
1682
1683	/*
1684	 * Clean up the vdev namespace.
1685	 */
1686	vdev_remove_make_hole_and_free(vd);
1687
1688	if (ev != NULL)
1689		spa_event_post(ev);
1690
1691	return (0);
1692}
1693
1694static int
1695spa_vdev_remove_top_check(vdev_t *vd)
1696{
1697	spa_t *spa = vd->vdev_spa;
1698
1699	if (vd != vd->vdev_top)
1700		return (SET_ERROR(ENOTSUP));
1701
1702	if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REMOVAL))
1703		return (SET_ERROR(ENOTSUP));
1704
1705	/*
1706	 * There has to be enough free space to remove the
1707	 * device and leave double the "slop" space (i.e. we
1708	 * must leave at least 3% of the pool free, in addition to
1709	 * the normal slop space).
1710	 */
1711	if (dsl_dir_space_available(spa->spa_dsl_pool->dp_root_dir,
1712	    NULL, 0, B_TRUE) <
1713	    vd->vdev_stat.vs_dspace + spa_get_slop_space(spa)) {
1714		return (SET_ERROR(ENOSPC));
1715	}
1716
1717	/*
1718	 * There can not be a removal in progress.
1719	 */
1720	if (spa->spa_removing_phys.sr_state == DSS_SCANNING)
1721		return (SET_ERROR(EBUSY));
1722
1723	/*
1724	 * The device must have all its data.
1725	 */
1726	if (!vdev_dtl_empty(vd, DTL_MISSING) ||
1727	    !vdev_dtl_empty(vd, DTL_OUTAGE))
1728		return (SET_ERROR(EBUSY));
1729
1730	/*
1731	 * The device must be healthy.
1732	 */
1733	if (!vdev_readable(vd))
1734		return (SET_ERROR(EIO));
1735
1736	/*
1737	 * All vdevs in normal class must have the same ashift.
1738	 */
1739	if (spa->spa_max_ashift != spa->spa_min_ashift) {
1740		return (SET_ERROR(EINVAL));
1741	}
1742
1743	/*
1744	 * All vdevs in normal class must have the same ashift
1745	 * and not be raidz.
1746	 */
1747	vdev_t *rvd = spa->spa_root_vdev;
1748	int num_indirect = 0;
1749	for (uint64_t id = 0; id < rvd->vdev_children; id++) {
1750		vdev_t *cvd = rvd->vdev_child[id];
1751		if (cvd->vdev_ashift != 0 && !cvd->vdev_islog)
1752			ASSERT3U(cvd->vdev_ashift, ==, spa->spa_max_ashift);
1753		if (cvd->vdev_ops == &vdev_indirect_ops)
1754			num_indirect++;
1755		if (!vdev_is_concrete(cvd))
1756			continue;
1757		if (cvd->vdev_ops == &vdev_raidz_ops)
1758			return (SET_ERROR(EINVAL));
1759		/*
1760		 * Need the mirror to be mirror of leaf vdevs only
1761		 */
1762		if (cvd->vdev_ops == &vdev_mirror_ops) {
1763			for (uint64_t cid = 0;
1764			    cid < cvd->vdev_children; cid++) {
1765				vdev_t *tmp = cvd->vdev_child[cid];
1766				if (!tmp->vdev_ops->vdev_op_leaf)
1767					return (SET_ERROR(EINVAL));
1768			}
1769		}
1770	}
1771
1772	return (0);
1773}
1774
1775/*
1776 * Initiate removal of a top-level vdev, reducing the total space in the pool.
1777 * The config lock is held for the specified TXG.  Once initiated,
1778 * evacuation of all allocated space (copying it to other vdevs) happens
1779 * in the background (see spa_vdev_remove_thread()), and can be canceled
1780 * (see spa_vdev_remove_cancel()).  If successful, the vdev will
1781 * be transformed to an indirect vdev (see spa_vdev_remove_complete()).
1782 */
1783static int
1784spa_vdev_remove_top(vdev_t *vd, uint64_t *txg)
1785{
1786	spa_t *spa = vd->vdev_spa;
1787	int error;
1788
1789	/*
1790	 * Check for errors up-front, so that we don't waste time
1791	 * passivating the metaslab group and clearing the ZIL if there
1792	 * are errors.
1793	 */
1794	error = spa_vdev_remove_top_check(vd);
1795	if (error != 0)
1796		return (error);
1797
1798	/*
1799	 * Stop allocating from this vdev.  Note that we must check
1800	 * that this is not the only device in the pool before
1801	 * passivating, otherwise we will not be able to make
1802	 * progress because we can't allocate from any vdevs.
1803	 * The above check for sufficient free space serves this
1804	 * purpose.
1805	 */
1806	metaslab_group_t *mg = vd->vdev_mg;
1807	metaslab_group_passivate(mg);
1808
1809	/*
1810	 * Wait for the youngest allocations and frees to sync,
1811	 * and then wait for the deferral of those frees to finish.
1812	 */
1813	spa_vdev_config_exit(spa, NULL,
1814	    *txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
1815
1816	/*
1817	 * We must ensure that no "stubby" log blocks are allocated
1818	 * on the device to be removed.  These blocks could be
1819	 * written at any time, including while we are in the middle
1820	 * of copying them.
1821	 */
1822	error = spa_reset_logs(spa);
1823
1824	*txg = spa_vdev_config_enter(spa);
1825
1826	/*
1827	 * Things might have changed while the config lock was dropped
1828	 * (e.g. space usage).  Check for errors again.
1829	 */
1830	if (error == 0)
1831		error = spa_vdev_remove_top_check(vd);
1832
1833	if (error != 0) {
1834		metaslab_group_activate(mg);
1835		return (error);
1836	}
1837
1838	vd->vdev_removing = B_TRUE;
1839
1840	vdev_dirty_leaves(vd, VDD_DTL, *txg);
1841	vdev_config_dirty(vd);
1842	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, *txg);
1843	dsl_sync_task_nowait(spa->spa_dsl_pool,
1844	    vdev_remove_initiate_sync,
1845	    (void *)(uintptr_t)vd->vdev_id, 0, ZFS_SPACE_CHECK_NONE, tx);
1846	dmu_tx_commit(tx);
1847
1848	return (0);
1849}
1850
1851/*
1852 * Remove a device from the pool.
1853 *
1854 * Removing a device from the vdev namespace requires several steps
1855 * and can take a significant amount of time.  As a result we use
1856 * the spa_vdev_config_[enter/exit] functions which allow us to
1857 * grab and release the spa_config_lock while still holding the namespace
1858 * lock.  During each step the configuration is synced out.
1859 */
1860int
1861spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1862{
1863	vdev_t *vd;
1864	nvlist_t **spares, **l2cache, *nv;
1865	uint64_t txg = 0;
1866	uint_t nspares, nl2cache;
1867	int error = 0;
1868	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
1869	sysevent_t *ev = NULL;
1870
1871	ASSERT(spa_writeable(spa));
1872
1873	if (!locked)
1874		txg = spa_vdev_enter(spa);
1875
1876	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1877	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
1878		error = (spa_has_checkpoint(spa)) ?
1879		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
1880
1881		if (!locked)
1882			return (spa_vdev_exit(spa, NULL, txg, error));
1883
1884		return (error);
1885	}
1886
1887	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1888
1889	if (spa->spa_spares.sav_vdevs != NULL &&
1890	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1891	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
1892	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
1893		/*
1894		 * Only remove the hot spare if it's not currently in use
1895		 * in this pool.
1896		 */
1897		if (vd == NULL || unspare) {
1898			char *nvstr = fnvlist_lookup_string(nv,
1899			    ZPOOL_CONFIG_PATH);
1900			spa_history_log_internal(spa, "vdev remove", NULL,
1901			    "%s vdev (%s) %s", spa_name(spa),
1902			    VDEV_TYPE_SPARE, nvstr);
1903			if (vd == NULL)
1904				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1905			ev = spa_event_create(spa, vd, NULL,
1906			    ESC_ZFS_VDEV_REMOVE_AUX);
1907			spa_vdev_remove_aux(spa->spa_spares.sav_config,
1908			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
1909			spa_load_spares(spa);
1910			spa->spa_spares.sav_sync = B_TRUE;
1911		} else {
1912			error = SET_ERROR(EBUSY);
1913		}
1914	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
1915	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1916	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
1917	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
1918		char *nvstr = fnvlist_lookup_string(nv, ZPOOL_CONFIG_PATH);
1919		spa_history_log_internal(spa, "vdev remove", NULL,
1920		    "%s vdev (%s) %s", spa_name(spa), VDEV_TYPE_L2CACHE, nvstr);
1921		/*
1922		 * Cache devices can always be removed.
1923		 */
1924		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
1925		ev = spa_event_create(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE_AUX);
1926		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
1927		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
1928		spa_load_l2cache(spa);
1929		spa->spa_l2cache.sav_sync = B_TRUE;
1930	} else if (vd != NULL && vd->vdev_islog) {
1931		ASSERT(!locked);
1932		error = spa_vdev_remove_log(vd, &txg);
1933	} else if (vd != NULL) {
1934		ASSERT(!locked);
1935		error = spa_vdev_remove_top(vd, &txg);
1936	} else {
1937		/*
1938		 * There is no vdev of any kind with the specified guid.
1939		 */
1940		error = SET_ERROR(ENOENT);
1941	}
1942
1943	if (!locked)
1944		error = spa_vdev_exit(spa, NULL, txg, error);
1945
1946	if (ev != NULL) {
1947		if (error != 0) {
1948			spa_event_discard(ev);
1949		} else {
1950			spa_event_post(ev);
1951		}
1952	}
1953
1954	return (error);
1955}
1956
1957int
1958spa_removal_get_stats(spa_t *spa, pool_removal_stat_t *prs)
1959{
1960	prs->prs_state = spa->spa_removing_phys.sr_state;
1961
1962	if (prs->prs_state == DSS_NONE)
1963		return (SET_ERROR(ENOENT));
1964
1965	prs->prs_removing_vdev = spa->spa_removing_phys.sr_removing_vdev;
1966	prs->prs_start_time = spa->spa_removing_phys.sr_start_time;
1967	prs->prs_end_time = spa->spa_removing_phys.sr_end_time;
1968	prs->prs_to_copy = spa->spa_removing_phys.sr_to_copy;
1969	prs->prs_copied = spa->spa_removing_phys.sr_copied;
1970
1971	if (spa->spa_vdev_removal != NULL) {
1972		for (int i = 0; i < TXG_SIZE; i++) {
1973			prs->prs_copied +=
1974			    spa->spa_vdev_removal->svr_bytes_done[i];
1975		}
1976	}
1977
1978	prs->prs_mapping_memory = 0;
1979	uint64_t indirect_vdev_id =
1980	    spa->spa_removing_phys.sr_prev_indirect_vdev;
1981	while (indirect_vdev_id != -1) {
1982		vdev_t *vd = spa->spa_root_vdev->vdev_child[indirect_vdev_id];
1983		vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1984		vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1985
1986		ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
1987		prs->prs_mapping_memory += vdev_indirect_mapping_size(vim);
1988		indirect_vdev_id = vic->vic_prev_indirect_vdev;
1989	}
1990
1991	return (0);
1992}
1993