vdev.c revision 332547
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2016 Toomas Soome <tsoome@me.com>
29 * Copyright 2017 Joyent, Inc.
30 */
31
32#include <sys/zfs_context.h>
33#include <sys/fm/fs/zfs.h>
34#include <sys/spa.h>
35#include <sys/spa_impl.h>
36#include <sys/bpobj.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/dsl_dir.h>
40#include <sys/vdev_impl.h>
41#include <sys/uberblock_impl.h>
42#include <sys/metaslab.h>
43#include <sys/metaslab_impl.h>
44#include <sys/space_map.h>
45#include <sys/space_reftree.h>
46#include <sys/zio.h>
47#include <sys/zap.h>
48#include <sys/fs/zfs.h>
49#include <sys/arc.h>
50#include <sys/zil.h>
51#include <sys/dsl_scan.h>
52#include <sys/abd.h>
53#include <sys/trim_map.h>
54
55SYSCTL_DECL(_vfs_zfs);
56SYSCTL_NODE(_vfs_zfs, OID_AUTO, vdev, CTLFLAG_RW, 0, "ZFS VDEV");
57
58/*
59 * Virtual device management.
60 */
61
62/*
63 * The limit for ZFS to automatically increase a top-level vdev's ashift
64 * from logical ashift to physical ashift.
65 *
66 * Example: one or more 512B emulation child vdevs
67 *          child->vdev_ashift = 9 (512 bytes)
68 *          child->vdev_physical_ashift = 12 (4096 bytes)
69 *          zfs_max_auto_ashift = 11 (2048 bytes)
70 *          zfs_min_auto_ashift = 9 (512 bytes)
71 *
72 * On pool creation or the addition of a new top-level vdev, ZFS will
73 * increase the ashift of the top-level vdev to 2048 as limited by
74 * zfs_max_auto_ashift.
75 *
76 * Example: one or more 512B emulation child vdevs
77 *          child->vdev_ashift = 9 (512 bytes)
78 *          child->vdev_physical_ashift = 12 (4096 bytes)
79 *          zfs_max_auto_ashift = 13 (8192 bytes)
80 *          zfs_min_auto_ashift = 9 (512 bytes)
81 *
82 * On pool creation or the addition of a new top-level vdev, ZFS will
83 * increase the ashift of the top-level vdev to 4096 to match the
84 * max vdev_physical_ashift.
85 *
86 * Example: one or more 512B emulation child vdevs
87 *          child->vdev_ashift = 9 (512 bytes)
88 *          child->vdev_physical_ashift = 9 (512 bytes)
89 *          zfs_max_auto_ashift = 13 (8192 bytes)
90 *          zfs_min_auto_ashift = 12 (4096 bytes)
91 *
92 * On pool creation or the addition of a new top-level vdev, ZFS will
93 * increase the ashift of the top-level vdev to 4096 to match the
94 * zfs_min_auto_ashift.
95 */
96static uint64_t zfs_max_auto_ashift = SPA_MAXASHIFT;
97static uint64_t zfs_min_auto_ashift = SPA_MINASHIFT;
98
99static int
100sysctl_vfs_zfs_max_auto_ashift(SYSCTL_HANDLER_ARGS)
101{
102	uint64_t val;
103	int err;
104
105	val = zfs_max_auto_ashift;
106	err = sysctl_handle_64(oidp, &val, 0, req);
107	if (err != 0 || req->newptr == NULL)
108		return (err);
109
110	if (val > SPA_MAXASHIFT || val < zfs_min_auto_ashift)
111		return (EINVAL);
112
113	zfs_max_auto_ashift = val;
114
115	return (0);
116}
117SYSCTL_PROC(_vfs_zfs, OID_AUTO, max_auto_ashift,
118    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
119    sysctl_vfs_zfs_max_auto_ashift, "QU",
120    "Max ashift used when optimising for logical -> physical sectors size on "
121    "new top-level vdevs.");
122
123static int
124sysctl_vfs_zfs_min_auto_ashift(SYSCTL_HANDLER_ARGS)
125{
126	uint64_t val;
127	int err;
128
129	val = zfs_min_auto_ashift;
130	err = sysctl_handle_64(oidp, &val, 0, req);
131	if (err != 0 || req->newptr == NULL)
132		return (err);
133
134	if (val < SPA_MINASHIFT || val > zfs_max_auto_ashift)
135		return (EINVAL);
136
137	zfs_min_auto_ashift = val;
138
139	return (0);
140}
141SYSCTL_PROC(_vfs_zfs, OID_AUTO, min_auto_ashift,
142    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
143    sysctl_vfs_zfs_min_auto_ashift, "QU",
144    "Min ashift used when creating new top-level vdevs.");
145
146static vdev_ops_t *vdev_ops_table[] = {
147	&vdev_root_ops,
148	&vdev_raidz_ops,
149	&vdev_mirror_ops,
150	&vdev_replacing_ops,
151	&vdev_spare_ops,
152#ifdef _KERNEL
153	&vdev_geom_ops,
154#else
155	&vdev_disk_ops,
156#endif
157	&vdev_file_ops,
158	&vdev_missing_ops,
159	&vdev_hole_ops,
160	&vdev_indirect_ops,
161	NULL
162};
163
164
165/* maximum number of metaslabs per top-level vdev */
166int vdev_max_ms_count = 200;
167SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, max_ms_count, CTLFLAG_RDTUN,
168    &vdev_max_ms_count, 0,
169    "Maximum number of metaslabs per top-level vdev");
170
171/* minimum amount of metaslabs per top-level vdev */
172int vdev_min_ms_count = 16;
173SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, min_ms_count, CTLFLAG_RDTUN,
174    &vdev_min_ms_count, 0,
175    "Minimum number of metaslabs per top-level vdev");
176
177/* see comment in vdev_metaslab_set_size() */
178int vdev_default_ms_shift = 29;
179SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, default_ms_shift, CTLFLAG_RDTUN,
180    &vdev_default_ms_shift, 0,
181    "Shift between vdev size and number of metaslabs");
182
183boolean_t vdev_validate_skip = B_FALSE;
184
185/*
186 * Since the DTL space map of a vdev is not expected to have a lot of
187 * entries, we default its block size to 4K.
188 */
189int vdev_dtl_sm_blksz = (1 << 12);
190SYSCTL_INT(_vfs_zfs, OID_AUTO, dtl_sm_blksz, CTLFLAG_RDTUN,
191    &vdev_dtl_sm_blksz, 0,
192    "Block size for DTL space map.  Power of 2 and greater than 4096.");
193
194/*
195 * vdev-wide space maps that have lots of entries written to them at
196 * the end of each transaction can benefit from a higher I/O bandwidth
197 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
198 */
199int vdev_standard_sm_blksz = (1 << 17);
200SYSCTL_INT(_vfs_zfs, OID_AUTO, standard_sm_blksz, CTLFLAG_RDTUN,
201    &vdev_standard_sm_blksz, 0,
202    "Block size for standard space map.  Power of 2 and greater than 4096.");
203
204/*PRINTFLIKE2*/
205void
206vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
207{
208	va_list adx;
209	char buf[256];
210
211	va_start(adx, fmt);
212	(void) vsnprintf(buf, sizeof (buf), fmt, adx);
213	va_end(adx);
214
215	if (vd->vdev_path != NULL) {
216		zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
217		    vd->vdev_path, buf);
218	} else {
219		zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
220		    vd->vdev_ops->vdev_op_type,
221		    (u_longlong_t)vd->vdev_id,
222		    (u_longlong_t)vd->vdev_guid, buf);
223	}
224}
225
226void
227vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
228{
229	char state[20];
230
231	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
232		zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
233		    vd->vdev_ops->vdev_op_type);
234		return;
235	}
236
237	switch (vd->vdev_state) {
238	case VDEV_STATE_UNKNOWN:
239		(void) snprintf(state, sizeof (state), "unknown");
240		break;
241	case VDEV_STATE_CLOSED:
242		(void) snprintf(state, sizeof (state), "closed");
243		break;
244	case VDEV_STATE_OFFLINE:
245		(void) snprintf(state, sizeof (state), "offline");
246		break;
247	case VDEV_STATE_REMOVED:
248		(void) snprintf(state, sizeof (state), "removed");
249		break;
250	case VDEV_STATE_CANT_OPEN:
251		(void) snprintf(state, sizeof (state), "can't open");
252		break;
253	case VDEV_STATE_FAULTED:
254		(void) snprintf(state, sizeof (state), "faulted");
255		break;
256	case VDEV_STATE_DEGRADED:
257		(void) snprintf(state, sizeof (state), "degraded");
258		break;
259	case VDEV_STATE_HEALTHY:
260		(void) snprintf(state, sizeof (state), "healthy");
261		break;
262	default:
263		(void) snprintf(state, sizeof (state), "<state %u>",
264		    (uint_t)vd->vdev_state);
265	}
266
267	zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
268	    "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
269	    vd->vdev_islog ? " (log)" : "",
270	    (u_longlong_t)vd->vdev_guid,
271	    vd->vdev_path ? vd->vdev_path : "N/A", state);
272
273	for (uint64_t i = 0; i < vd->vdev_children; i++)
274		vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
275}
276
277/*
278 * Given a vdev type, return the appropriate ops vector.
279 */
280static vdev_ops_t *
281vdev_getops(const char *type)
282{
283	vdev_ops_t *ops, **opspp;
284
285	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
286		if (strcmp(ops->vdev_op_type, type) == 0)
287			break;
288
289	return (ops);
290}
291
292/*
293 * Default asize function: return the MAX of psize with the asize of
294 * all children.  This is what's used by anything other than RAID-Z.
295 */
296uint64_t
297vdev_default_asize(vdev_t *vd, uint64_t psize)
298{
299	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
300	uint64_t csize;
301
302	for (int c = 0; c < vd->vdev_children; c++) {
303		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
304		asize = MAX(asize, csize);
305	}
306
307	return (asize);
308}
309
310/*
311 * Get the minimum allocatable size. We define the allocatable size as
312 * the vdev's asize rounded to the nearest metaslab. This allows us to
313 * replace or attach devices which don't have the same physical size but
314 * can still satisfy the same number of allocations.
315 */
316uint64_t
317vdev_get_min_asize(vdev_t *vd)
318{
319	vdev_t *pvd = vd->vdev_parent;
320
321	/*
322	 * If our parent is NULL (inactive spare or cache) or is the root,
323	 * just return our own asize.
324	 */
325	if (pvd == NULL)
326		return (vd->vdev_asize);
327
328	/*
329	 * The top-level vdev just returns the allocatable size rounded
330	 * to the nearest metaslab.
331	 */
332	if (vd == vd->vdev_top)
333		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
334
335	/*
336	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
337	 * so each child must provide at least 1/Nth of its asize.
338	 */
339	if (pvd->vdev_ops == &vdev_raidz_ops)
340		return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
341		    pvd->vdev_children);
342
343	return (pvd->vdev_min_asize);
344}
345
346void
347vdev_set_min_asize(vdev_t *vd)
348{
349	vd->vdev_min_asize = vdev_get_min_asize(vd);
350
351	for (int c = 0; c < vd->vdev_children; c++)
352		vdev_set_min_asize(vd->vdev_child[c]);
353}
354
355vdev_t *
356vdev_lookup_top(spa_t *spa, uint64_t vdev)
357{
358	vdev_t *rvd = spa->spa_root_vdev;
359
360	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
361
362	if (vdev < rvd->vdev_children) {
363		ASSERT(rvd->vdev_child[vdev] != NULL);
364		return (rvd->vdev_child[vdev]);
365	}
366
367	return (NULL);
368}
369
370vdev_t *
371vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
372{
373	vdev_t *mvd;
374
375	if (vd->vdev_guid == guid)
376		return (vd);
377
378	for (int c = 0; c < vd->vdev_children; c++)
379		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
380		    NULL)
381			return (mvd);
382
383	return (NULL);
384}
385
386static int
387vdev_count_leaves_impl(vdev_t *vd)
388{
389	int n = 0;
390
391	if (vd->vdev_ops->vdev_op_leaf)
392		return (1);
393
394	for (int c = 0; c < vd->vdev_children; c++)
395		n += vdev_count_leaves_impl(vd->vdev_child[c]);
396
397	return (n);
398}
399
400int
401vdev_count_leaves(spa_t *spa)
402{
403	return (vdev_count_leaves_impl(spa->spa_root_vdev));
404}
405
406void
407vdev_add_child(vdev_t *pvd, vdev_t *cvd)
408{
409	size_t oldsize, newsize;
410	uint64_t id = cvd->vdev_id;
411	vdev_t **newchild;
412	spa_t *spa = cvd->vdev_spa;
413
414	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
415	ASSERT(cvd->vdev_parent == NULL);
416
417	cvd->vdev_parent = pvd;
418
419	if (pvd == NULL)
420		return;
421
422	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
423
424	oldsize = pvd->vdev_children * sizeof (vdev_t *);
425	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
426	newsize = pvd->vdev_children * sizeof (vdev_t *);
427
428	newchild = kmem_zalloc(newsize, KM_SLEEP);
429	if (pvd->vdev_child != NULL) {
430		bcopy(pvd->vdev_child, newchild, oldsize);
431		kmem_free(pvd->vdev_child, oldsize);
432	}
433
434	pvd->vdev_child = newchild;
435	pvd->vdev_child[id] = cvd;
436
437	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
438	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
439
440	/*
441	 * Walk up all ancestors to update guid sum.
442	 */
443	for (; pvd != NULL; pvd = pvd->vdev_parent)
444		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
445}
446
447void
448vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
449{
450	int c;
451	uint_t id = cvd->vdev_id;
452
453	ASSERT(cvd->vdev_parent == pvd);
454
455	if (pvd == NULL)
456		return;
457
458	ASSERT(id < pvd->vdev_children);
459	ASSERT(pvd->vdev_child[id] == cvd);
460
461	pvd->vdev_child[id] = NULL;
462	cvd->vdev_parent = NULL;
463
464	for (c = 0; c < pvd->vdev_children; c++)
465		if (pvd->vdev_child[c])
466			break;
467
468	if (c == pvd->vdev_children) {
469		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
470		pvd->vdev_child = NULL;
471		pvd->vdev_children = 0;
472	}
473
474	/*
475	 * Walk up all ancestors to update guid sum.
476	 */
477	for (; pvd != NULL; pvd = pvd->vdev_parent)
478		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
479}
480
481/*
482 * Remove any holes in the child array.
483 */
484void
485vdev_compact_children(vdev_t *pvd)
486{
487	vdev_t **newchild, *cvd;
488	int oldc = pvd->vdev_children;
489	int newc;
490
491	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
492
493	for (int c = newc = 0; c < oldc; c++)
494		if (pvd->vdev_child[c])
495			newc++;
496
497	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
498
499	for (int c = newc = 0; c < oldc; c++) {
500		if ((cvd = pvd->vdev_child[c]) != NULL) {
501			newchild[newc] = cvd;
502			cvd->vdev_id = newc++;
503		}
504	}
505
506	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
507	pvd->vdev_child = newchild;
508	pvd->vdev_children = newc;
509}
510
511/*
512 * Allocate and minimally initialize a vdev_t.
513 */
514vdev_t *
515vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
516{
517	vdev_t *vd;
518	vdev_indirect_config_t *vic;
519
520	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
521	vic = &vd->vdev_indirect_config;
522
523	if (spa->spa_root_vdev == NULL) {
524		ASSERT(ops == &vdev_root_ops);
525		spa->spa_root_vdev = vd;
526		spa->spa_load_guid = spa_generate_guid(NULL);
527	}
528
529	if (guid == 0 && ops != &vdev_hole_ops) {
530		if (spa->spa_root_vdev == vd) {
531			/*
532			 * The root vdev's guid will also be the pool guid,
533			 * which must be unique among all pools.
534			 */
535			guid = spa_generate_guid(NULL);
536		} else {
537			/*
538			 * Any other vdev's guid must be unique within the pool.
539			 */
540			guid = spa_generate_guid(spa);
541		}
542		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
543	}
544
545	vd->vdev_spa = spa;
546	vd->vdev_id = id;
547	vd->vdev_guid = guid;
548	vd->vdev_guid_sum = guid;
549	vd->vdev_ops = ops;
550	vd->vdev_state = VDEV_STATE_CLOSED;
551	vd->vdev_ishole = (ops == &vdev_hole_ops);
552	vic->vic_prev_indirect_vdev = UINT64_MAX;
553
554	rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
555	mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
556	vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
557
558	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
559	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
560	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
561	mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
562	for (int t = 0; t < DTL_TYPES; t++) {
563		vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
564	}
565	txg_list_create(&vd->vdev_ms_list, spa,
566	    offsetof(struct metaslab, ms_txg_node));
567	txg_list_create(&vd->vdev_dtl_list, spa,
568	    offsetof(struct vdev, vdev_dtl_node));
569	vd->vdev_stat.vs_timestamp = gethrtime();
570	vdev_queue_init(vd);
571	vdev_cache_init(vd);
572
573	return (vd);
574}
575
576/*
577 * Allocate a new vdev.  The 'alloctype' is used to control whether we are
578 * creating a new vdev or loading an existing one - the behavior is slightly
579 * different for each case.
580 */
581int
582vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
583    int alloctype)
584{
585	vdev_ops_t *ops;
586	char *type;
587	uint64_t guid = 0, islog, nparity;
588	vdev_t *vd;
589	vdev_indirect_config_t *vic;
590
591	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
592
593	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
594		return (SET_ERROR(EINVAL));
595
596	if ((ops = vdev_getops(type)) == NULL)
597		return (SET_ERROR(EINVAL));
598
599	/*
600	 * If this is a load, get the vdev guid from the nvlist.
601	 * Otherwise, vdev_alloc_common() will generate one for us.
602	 */
603	if (alloctype == VDEV_ALLOC_LOAD) {
604		uint64_t label_id;
605
606		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
607		    label_id != id)
608			return (SET_ERROR(EINVAL));
609
610		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
611			return (SET_ERROR(EINVAL));
612	} else if (alloctype == VDEV_ALLOC_SPARE) {
613		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
614			return (SET_ERROR(EINVAL));
615	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
616		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
617			return (SET_ERROR(EINVAL));
618	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
619		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
620			return (SET_ERROR(EINVAL));
621	}
622
623	/*
624	 * The first allocated vdev must be of type 'root'.
625	 */
626	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
627		return (SET_ERROR(EINVAL));
628
629	/*
630	 * Determine whether we're a log vdev.
631	 */
632	islog = 0;
633	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
634	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
635		return (SET_ERROR(ENOTSUP));
636
637	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
638		return (SET_ERROR(ENOTSUP));
639
640	/*
641	 * Set the nparity property for RAID-Z vdevs.
642	 */
643	nparity = -1ULL;
644	if (ops == &vdev_raidz_ops) {
645		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
646		    &nparity) == 0) {
647			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
648				return (SET_ERROR(EINVAL));
649			/*
650			 * Previous versions could only support 1 or 2 parity
651			 * device.
652			 */
653			if (nparity > 1 &&
654			    spa_version(spa) < SPA_VERSION_RAIDZ2)
655				return (SET_ERROR(ENOTSUP));
656			if (nparity > 2 &&
657			    spa_version(spa) < SPA_VERSION_RAIDZ3)
658				return (SET_ERROR(ENOTSUP));
659		} else {
660			/*
661			 * We require the parity to be specified for SPAs that
662			 * support multiple parity levels.
663			 */
664			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
665				return (SET_ERROR(EINVAL));
666			/*
667			 * Otherwise, we default to 1 parity device for RAID-Z.
668			 */
669			nparity = 1;
670		}
671	} else {
672		nparity = 0;
673	}
674	ASSERT(nparity != -1ULL);
675
676	vd = vdev_alloc_common(spa, id, guid, ops);
677	vic = &vd->vdev_indirect_config;
678
679	vd->vdev_islog = islog;
680	vd->vdev_nparity = nparity;
681
682	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
683		vd->vdev_path = spa_strdup(vd->vdev_path);
684	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
685		vd->vdev_devid = spa_strdup(vd->vdev_devid);
686	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
687	    &vd->vdev_physpath) == 0)
688		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
689	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
690		vd->vdev_fru = spa_strdup(vd->vdev_fru);
691
692	/*
693	 * Set the whole_disk property.  If it's not specified, leave the value
694	 * as -1.
695	 */
696	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
697	    &vd->vdev_wholedisk) != 0)
698		vd->vdev_wholedisk = -1ULL;
699
700	ASSERT0(vic->vic_mapping_object);
701	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
702	    &vic->vic_mapping_object);
703	ASSERT0(vic->vic_births_object);
704	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
705	    &vic->vic_births_object);
706	ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
707	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
708	    &vic->vic_prev_indirect_vdev);
709
710	/*
711	 * Look for the 'not present' flag.  This will only be set if the device
712	 * was not present at the time of import.
713	 */
714	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
715	    &vd->vdev_not_present);
716
717	/*
718	 * Get the alignment requirement.
719	 */
720	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
721
722	/*
723	 * Retrieve the vdev creation time.
724	 */
725	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
726	    &vd->vdev_crtxg);
727
728	/*
729	 * If we're a top-level vdev, try to load the allocation parameters.
730	 */
731	if (parent && !parent->vdev_parent &&
732	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
733		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
734		    &vd->vdev_ms_array);
735		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
736		    &vd->vdev_ms_shift);
737		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
738		    &vd->vdev_asize);
739		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
740		    &vd->vdev_removing);
741		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
742		    &vd->vdev_top_zap);
743	} else {
744		ASSERT0(vd->vdev_top_zap);
745	}
746
747	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
748		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
749		    alloctype == VDEV_ALLOC_ADD ||
750		    alloctype == VDEV_ALLOC_SPLIT ||
751		    alloctype == VDEV_ALLOC_ROOTPOOL);
752		vd->vdev_mg = metaslab_group_create(islog ?
753		    spa_log_class(spa) : spa_normal_class(spa), vd);
754	}
755
756	if (vd->vdev_ops->vdev_op_leaf &&
757	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
758		(void) nvlist_lookup_uint64(nv,
759		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
760	} else {
761		ASSERT0(vd->vdev_leaf_zap);
762	}
763
764	/*
765	 * If we're a leaf vdev, try to load the DTL object and other state.
766	 */
767
768	if (vd->vdev_ops->vdev_op_leaf &&
769	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
770	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
771		if (alloctype == VDEV_ALLOC_LOAD) {
772			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
773			    &vd->vdev_dtl_object);
774			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
775			    &vd->vdev_unspare);
776		}
777
778		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
779			uint64_t spare = 0;
780
781			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
782			    &spare) == 0 && spare)
783				spa_spare_add(vd);
784		}
785
786		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
787		    &vd->vdev_offline);
788
789		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
790		    &vd->vdev_resilver_txg);
791
792		/*
793		 * When importing a pool, we want to ignore the persistent fault
794		 * state, as the diagnosis made on another system may not be
795		 * valid in the current context.  Local vdevs will
796		 * remain in the faulted state.
797		 */
798		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
799			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
800			    &vd->vdev_faulted);
801			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
802			    &vd->vdev_degraded);
803			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
804			    &vd->vdev_removed);
805
806			if (vd->vdev_faulted || vd->vdev_degraded) {
807				char *aux;
808
809				vd->vdev_label_aux =
810				    VDEV_AUX_ERR_EXCEEDED;
811				if (nvlist_lookup_string(nv,
812				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
813				    strcmp(aux, "external") == 0)
814					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
815			}
816		}
817	}
818
819	/*
820	 * Add ourselves to the parent's list of children.
821	 */
822	vdev_add_child(parent, vd);
823
824	*vdp = vd;
825
826	return (0);
827}
828
829void
830vdev_free(vdev_t *vd)
831{
832	spa_t *spa = vd->vdev_spa;
833
834	/*
835	 * vdev_free() implies closing the vdev first.  This is simpler than
836	 * trying to ensure complicated semantics for all callers.
837	 */
838	vdev_close(vd);
839
840	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
841	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
842
843	/*
844	 * Free all children.
845	 */
846	for (int c = 0; c < vd->vdev_children; c++)
847		vdev_free(vd->vdev_child[c]);
848
849	ASSERT(vd->vdev_child == NULL);
850	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
851
852	/*
853	 * Discard allocation state.
854	 */
855	if (vd->vdev_mg != NULL) {
856		vdev_metaslab_fini(vd);
857		metaslab_group_destroy(vd->vdev_mg);
858	}
859
860	ASSERT0(vd->vdev_stat.vs_space);
861	ASSERT0(vd->vdev_stat.vs_dspace);
862	ASSERT0(vd->vdev_stat.vs_alloc);
863
864	/*
865	 * Remove this vdev from its parent's child list.
866	 */
867	vdev_remove_child(vd->vdev_parent, vd);
868
869	ASSERT(vd->vdev_parent == NULL);
870
871	/*
872	 * Clean up vdev structure.
873	 */
874	vdev_queue_fini(vd);
875	vdev_cache_fini(vd);
876
877	if (vd->vdev_path)
878		spa_strfree(vd->vdev_path);
879	if (vd->vdev_devid)
880		spa_strfree(vd->vdev_devid);
881	if (vd->vdev_physpath)
882		spa_strfree(vd->vdev_physpath);
883	if (vd->vdev_fru)
884		spa_strfree(vd->vdev_fru);
885
886	if (vd->vdev_isspare)
887		spa_spare_remove(vd);
888	if (vd->vdev_isl2cache)
889		spa_l2cache_remove(vd);
890
891	txg_list_destroy(&vd->vdev_ms_list);
892	txg_list_destroy(&vd->vdev_dtl_list);
893
894	mutex_enter(&vd->vdev_dtl_lock);
895	space_map_close(vd->vdev_dtl_sm);
896	for (int t = 0; t < DTL_TYPES; t++) {
897		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
898		range_tree_destroy(vd->vdev_dtl[t]);
899	}
900	mutex_exit(&vd->vdev_dtl_lock);
901
902	EQUIV(vd->vdev_indirect_births != NULL,
903	    vd->vdev_indirect_mapping != NULL);
904	if (vd->vdev_indirect_births != NULL) {
905		vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
906		vdev_indirect_births_close(vd->vdev_indirect_births);
907	}
908
909	if (vd->vdev_obsolete_sm != NULL) {
910		ASSERT(vd->vdev_removing ||
911		    vd->vdev_ops == &vdev_indirect_ops);
912		space_map_close(vd->vdev_obsolete_sm);
913		vd->vdev_obsolete_sm = NULL;
914	}
915	range_tree_destroy(vd->vdev_obsolete_segments);
916	rw_destroy(&vd->vdev_indirect_rwlock);
917	mutex_destroy(&vd->vdev_obsolete_lock);
918
919	mutex_destroy(&vd->vdev_queue_lock);
920	mutex_destroy(&vd->vdev_dtl_lock);
921	mutex_destroy(&vd->vdev_stat_lock);
922	mutex_destroy(&vd->vdev_probe_lock);
923
924	if (vd == spa->spa_root_vdev)
925		spa->spa_root_vdev = NULL;
926
927	kmem_free(vd, sizeof (vdev_t));
928}
929
930/*
931 * Transfer top-level vdev state from svd to tvd.
932 */
933static void
934vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
935{
936	spa_t *spa = svd->vdev_spa;
937	metaslab_t *msp;
938	vdev_t *vd;
939	int t;
940
941	ASSERT(tvd == tvd->vdev_top);
942
943	tvd->vdev_ms_array = svd->vdev_ms_array;
944	tvd->vdev_ms_shift = svd->vdev_ms_shift;
945	tvd->vdev_ms_count = svd->vdev_ms_count;
946	tvd->vdev_top_zap = svd->vdev_top_zap;
947
948	svd->vdev_ms_array = 0;
949	svd->vdev_ms_shift = 0;
950	svd->vdev_ms_count = 0;
951	svd->vdev_top_zap = 0;
952
953	if (tvd->vdev_mg)
954		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
955	tvd->vdev_mg = svd->vdev_mg;
956	tvd->vdev_ms = svd->vdev_ms;
957
958	svd->vdev_mg = NULL;
959	svd->vdev_ms = NULL;
960
961	if (tvd->vdev_mg != NULL)
962		tvd->vdev_mg->mg_vd = tvd;
963
964	tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
965	svd->vdev_checkpoint_sm = NULL;
966
967	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
968	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
969	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
970
971	svd->vdev_stat.vs_alloc = 0;
972	svd->vdev_stat.vs_space = 0;
973	svd->vdev_stat.vs_dspace = 0;
974
975	for (t = 0; t < TXG_SIZE; t++) {
976		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
977			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
978		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
979			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
980		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
981			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
982	}
983
984	if (list_link_active(&svd->vdev_config_dirty_node)) {
985		vdev_config_clean(svd);
986		vdev_config_dirty(tvd);
987	}
988
989	if (list_link_active(&svd->vdev_state_dirty_node)) {
990		vdev_state_clean(svd);
991		vdev_state_dirty(tvd);
992	}
993
994	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
995	svd->vdev_deflate_ratio = 0;
996
997	tvd->vdev_islog = svd->vdev_islog;
998	svd->vdev_islog = 0;
999}
1000
1001static void
1002vdev_top_update(vdev_t *tvd, vdev_t *vd)
1003{
1004	if (vd == NULL)
1005		return;
1006
1007	vd->vdev_top = tvd;
1008
1009	for (int c = 0; c < vd->vdev_children; c++)
1010		vdev_top_update(tvd, vd->vdev_child[c]);
1011}
1012
1013/*
1014 * Add a mirror/replacing vdev above an existing vdev.
1015 */
1016vdev_t *
1017vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1018{
1019	spa_t *spa = cvd->vdev_spa;
1020	vdev_t *pvd = cvd->vdev_parent;
1021	vdev_t *mvd;
1022
1023	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1024
1025	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1026
1027	mvd->vdev_asize = cvd->vdev_asize;
1028	mvd->vdev_min_asize = cvd->vdev_min_asize;
1029	mvd->vdev_max_asize = cvd->vdev_max_asize;
1030	mvd->vdev_psize = cvd->vdev_psize;
1031	mvd->vdev_ashift = cvd->vdev_ashift;
1032	mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1033	mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1034	mvd->vdev_state = cvd->vdev_state;
1035	mvd->vdev_crtxg = cvd->vdev_crtxg;
1036
1037	vdev_remove_child(pvd, cvd);
1038	vdev_add_child(pvd, mvd);
1039	cvd->vdev_id = mvd->vdev_children;
1040	vdev_add_child(mvd, cvd);
1041	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1042
1043	if (mvd == mvd->vdev_top)
1044		vdev_top_transfer(cvd, mvd);
1045
1046	return (mvd);
1047}
1048
1049/*
1050 * Remove a 1-way mirror/replacing vdev from the tree.
1051 */
1052void
1053vdev_remove_parent(vdev_t *cvd)
1054{
1055	vdev_t *mvd = cvd->vdev_parent;
1056	vdev_t *pvd = mvd->vdev_parent;
1057
1058	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1059
1060	ASSERT(mvd->vdev_children == 1);
1061	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1062	    mvd->vdev_ops == &vdev_replacing_ops ||
1063	    mvd->vdev_ops == &vdev_spare_ops);
1064	cvd->vdev_ashift = mvd->vdev_ashift;
1065	cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1066	cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1067
1068	vdev_remove_child(mvd, cvd);
1069	vdev_remove_child(pvd, mvd);
1070
1071	/*
1072	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1073	 * Otherwise, we could have detached an offline device, and when we
1074	 * go to import the pool we'll think we have two top-level vdevs,
1075	 * instead of a different version of the same top-level vdev.
1076	 */
1077	if (mvd->vdev_top == mvd) {
1078		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1079		cvd->vdev_orig_guid = cvd->vdev_guid;
1080		cvd->vdev_guid += guid_delta;
1081		cvd->vdev_guid_sum += guid_delta;
1082	}
1083	cvd->vdev_id = mvd->vdev_id;
1084	vdev_add_child(pvd, cvd);
1085	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1086
1087	if (cvd == cvd->vdev_top)
1088		vdev_top_transfer(mvd, cvd);
1089
1090	ASSERT(mvd->vdev_children == 0);
1091	vdev_free(mvd);
1092}
1093
1094int
1095vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1096{
1097	spa_t *spa = vd->vdev_spa;
1098	objset_t *mos = spa->spa_meta_objset;
1099	uint64_t m;
1100	uint64_t oldc = vd->vdev_ms_count;
1101	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1102	metaslab_t **mspp;
1103	int error;
1104
1105	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1106
1107	/*
1108	 * This vdev is not being allocated from yet or is a hole.
1109	 */
1110	if (vd->vdev_ms_shift == 0)
1111		return (0);
1112
1113	ASSERT(!vd->vdev_ishole);
1114
1115	ASSERT(oldc <= newc);
1116
1117	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1118
1119	if (oldc != 0) {
1120		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1121		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1122	}
1123
1124	vd->vdev_ms = mspp;
1125	vd->vdev_ms_count = newc;
1126
1127	for (m = oldc; m < newc; m++) {
1128		uint64_t object = 0;
1129
1130		/*
1131		 * vdev_ms_array may be 0 if we are creating the "fake"
1132		 * metaslabs for an indirect vdev for zdb's leak detection.
1133		 * See zdb_leak_init().
1134		 */
1135		if (txg == 0 && vd->vdev_ms_array != 0) {
1136			error = dmu_read(mos, vd->vdev_ms_array,
1137			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
1138			    DMU_READ_PREFETCH);
1139			if (error != 0) {
1140				vdev_dbgmsg(vd, "unable to read the metaslab "
1141				    "array [error=%d]", error);
1142				return (error);
1143			}
1144		}
1145
1146		error = metaslab_init(vd->vdev_mg, m, object, txg,
1147		    &(vd->vdev_ms[m]));
1148		if (error != 0) {
1149			vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1150			    error);
1151			return (error);
1152		}
1153	}
1154
1155	if (txg == 0)
1156		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1157
1158	/*
1159	 * If the vdev is being removed we don't activate
1160	 * the metaslabs since we want to ensure that no new
1161	 * allocations are performed on this device.
1162	 */
1163	if (oldc == 0 && !vd->vdev_removing)
1164		metaslab_group_activate(vd->vdev_mg);
1165
1166	if (txg == 0)
1167		spa_config_exit(spa, SCL_ALLOC, FTAG);
1168
1169	return (0);
1170}
1171
1172void
1173vdev_metaslab_fini(vdev_t *vd)
1174{
1175	if (vd->vdev_checkpoint_sm != NULL) {
1176		ASSERT(spa_feature_is_active(vd->vdev_spa,
1177		    SPA_FEATURE_POOL_CHECKPOINT));
1178		space_map_close(vd->vdev_checkpoint_sm);
1179		/*
1180		 * Even though we close the space map, we need to set its
1181		 * pointer to NULL. The reason is that vdev_metaslab_fini()
1182		 * may be called multiple times for certain operations
1183		 * (i.e. when destroying a pool) so we need to ensure that
1184		 * this clause never executes twice. This logic is similar
1185		 * to the one used for the vdev_ms clause below.
1186		 */
1187		vd->vdev_checkpoint_sm = NULL;
1188	}
1189
1190	if (vd->vdev_ms != NULL) {
1191		uint64_t count = vd->vdev_ms_count;
1192
1193		metaslab_group_passivate(vd->vdev_mg);
1194		for (uint64_t m = 0; m < count; m++) {
1195			metaslab_t *msp = vd->vdev_ms[m];
1196
1197			if (msp != NULL)
1198				metaslab_fini(msp);
1199		}
1200		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1201		vd->vdev_ms = NULL;
1202
1203		vd->vdev_ms_count = 0;
1204	}
1205	ASSERT0(vd->vdev_ms_count);
1206}
1207
1208typedef struct vdev_probe_stats {
1209	boolean_t	vps_readable;
1210	boolean_t	vps_writeable;
1211	int		vps_flags;
1212} vdev_probe_stats_t;
1213
1214static void
1215vdev_probe_done(zio_t *zio)
1216{
1217	spa_t *spa = zio->io_spa;
1218	vdev_t *vd = zio->io_vd;
1219	vdev_probe_stats_t *vps = zio->io_private;
1220
1221	ASSERT(vd->vdev_probe_zio != NULL);
1222
1223	if (zio->io_type == ZIO_TYPE_READ) {
1224		if (zio->io_error == 0)
1225			vps->vps_readable = 1;
1226		if (zio->io_error == 0 && spa_writeable(spa)) {
1227			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1228			    zio->io_offset, zio->io_size, zio->io_abd,
1229			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1230			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1231		} else {
1232			abd_free(zio->io_abd);
1233		}
1234	} else if (zio->io_type == ZIO_TYPE_WRITE) {
1235		if (zio->io_error == 0)
1236			vps->vps_writeable = 1;
1237		abd_free(zio->io_abd);
1238	} else if (zio->io_type == ZIO_TYPE_NULL) {
1239		zio_t *pio;
1240
1241		vd->vdev_cant_read |= !vps->vps_readable;
1242		vd->vdev_cant_write |= !vps->vps_writeable;
1243
1244		if (vdev_readable(vd) &&
1245		    (vdev_writeable(vd) || !spa_writeable(spa))) {
1246			zio->io_error = 0;
1247		} else {
1248			ASSERT(zio->io_error != 0);
1249			vdev_dbgmsg(vd, "failed probe");
1250			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1251			    spa, vd, NULL, 0, 0);
1252			zio->io_error = SET_ERROR(ENXIO);
1253		}
1254
1255		mutex_enter(&vd->vdev_probe_lock);
1256		ASSERT(vd->vdev_probe_zio == zio);
1257		vd->vdev_probe_zio = NULL;
1258		mutex_exit(&vd->vdev_probe_lock);
1259
1260		zio_link_t *zl = NULL;
1261		while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1262			if (!vdev_accessible(vd, pio))
1263				pio->io_error = SET_ERROR(ENXIO);
1264
1265		kmem_free(vps, sizeof (*vps));
1266	}
1267}
1268
1269/*
1270 * Determine whether this device is accessible.
1271 *
1272 * Read and write to several known locations: the pad regions of each
1273 * vdev label but the first, which we leave alone in case it contains
1274 * a VTOC.
1275 */
1276zio_t *
1277vdev_probe(vdev_t *vd, zio_t *zio)
1278{
1279	spa_t *spa = vd->vdev_spa;
1280	vdev_probe_stats_t *vps = NULL;
1281	zio_t *pio;
1282
1283	ASSERT(vd->vdev_ops->vdev_op_leaf);
1284
1285	/*
1286	 * Don't probe the probe.
1287	 */
1288	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1289		return (NULL);
1290
1291	/*
1292	 * To prevent 'probe storms' when a device fails, we create
1293	 * just one probe i/o at a time.  All zios that want to probe
1294	 * this vdev will become parents of the probe io.
1295	 */
1296	mutex_enter(&vd->vdev_probe_lock);
1297
1298	if ((pio = vd->vdev_probe_zio) == NULL) {
1299		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1300
1301		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1302		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1303		    ZIO_FLAG_TRYHARD;
1304
1305		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1306			/*
1307			 * vdev_cant_read and vdev_cant_write can only
1308			 * transition from TRUE to FALSE when we have the
1309			 * SCL_ZIO lock as writer; otherwise they can only
1310			 * transition from FALSE to TRUE.  This ensures that
1311			 * any zio looking at these values can assume that
1312			 * failures persist for the life of the I/O.  That's
1313			 * important because when a device has intermittent
1314			 * connectivity problems, we want to ensure that
1315			 * they're ascribed to the device (ENXIO) and not
1316			 * the zio (EIO).
1317			 *
1318			 * Since we hold SCL_ZIO as writer here, clear both
1319			 * values so the probe can reevaluate from first
1320			 * principles.
1321			 */
1322			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1323			vd->vdev_cant_read = B_FALSE;
1324			vd->vdev_cant_write = B_FALSE;
1325		}
1326
1327		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1328		    vdev_probe_done, vps,
1329		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1330
1331		/*
1332		 * We can't change the vdev state in this context, so we
1333		 * kick off an async task to do it on our behalf.
1334		 */
1335		if (zio != NULL) {
1336			vd->vdev_probe_wanted = B_TRUE;
1337			spa_async_request(spa, SPA_ASYNC_PROBE);
1338		}
1339	}
1340
1341	if (zio != NULL)
1342		zio_add_child(zio, pio);
1343
1344	mutex_exit(&vd->vdev_probe_lock);
1345
1346	if (vps == NULL) {
1347		ASSERT(zio != NULL);
1348		return (NULL);
1349	}
1350
1351	for (int l = 1; l < VDEV_LABELS; l++) {
1352		zio_nowait(zio_read_phys(pio, vd,
1353		    vdev_label_offset(vd->vdev_psize, l,
1354		    offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1355		    abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1356		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1357		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1358	}
1359
1360	if (zio == NULL)
1361		return (pio);
1362
1363	zio_nowait(pio);
1364	return (NULL);
1365}
1366
1367static void
1368vdev_open_child(void *arg)
1369{
1370	vdev_t *vd = arg;
1371
1372	vd->vdev_open_thread = curthread;
1373	vd->vdev_open_error = vdev_open(vd);
1374	vd->vdev_open_thread = NULL;
1375}
1376
1377boolean_t
1378vdev_uses_zvols(vdev_t *vd)
1379{
1380	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1381	    strlen(ZVOL_DIR)) == 0)
1382		return (B_TRUE);
1383	for (int c = 0; c < vd->vdev_children; c++)
1384		if (vdev_uses_zvols(vd->vdev_child[c]))
1385			return (B_TRUE);
1386	return (B_FALSE);
1387}
1388
1389void
1390vdev_open_children(vdev_t *vd)
1391{
1392	taskq_t *tq;
1393	int children = vd->vdev_children;
1394
1395	/*
1396	 * in order to handle pools on top of zvols, do the opens
1397	 * in a single thread so that the same thread holds the
1398	 * spa_namespace_lock
1399	 */
1400	if (B_TRUE || vdev_uses_zvols(vd)) {
1401		for (int c = 0; c < children; c++)
1402			vd->vdev_child[c]->vdev_open_error =
1403			    vdev_open(vd->vdev_child[c]);
1404		return;
1405	}
1406	tq = taskq_create("vdev_open", children, minclsyspri,
1407	    children, children, TASKQ_PREPOPULATE);
1408
1409	for (int c = 0; c < children; c++)
1410		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1411		    TQ_SLEEP) != 0);
1412
1413	taskq_destroy(tq);
1414}
1415
1416/*
1417 * Compute the raidz-deflation ratio.  Note, we hard-code
1418 * in 128k (1 << 17) because it is the "typical" blocksize.
1419 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1420 * otherwise it would inconsistently account for existing bp's.
1421 */
1422static void
1423vdev_set_deflate_ratio(vdev_t *vd)
1424{
1425	if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1426		vd->vdev_deflate_ratio = (1 << 17) /
1427		    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1428	}
1429}
1430
1431/*
1432 * Prepare a virtual device for access.
1433 */
1434int
1435vdev_open(vdev_t *vd)
1436{
1437	spa_t *spa = vd->vdev_spa;
1438	int error;
1439	uint64_t osize = 0;
1440	uint64_t max_osize = 0;
1441	uint64_t asize, max_asize, psize;
1442	uint64_t logical_ashift = 0;
1443	uint64_t physical_ashift = 0;
1444
1445	ASSERT(vd->vdev_open_thread == curthread ||
1446	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1447	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1448	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1449	    vd->vdev_state == VDEV_STATE_OFFLINE);
1450
1451	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1452	vd->vdev_cant_read = B_FALSE;
1453	vd->vdev_cant_write = B_FALSE;
1454	vd->vdev_notrim = B_FALSE;
1455	vd->vdev_min_asize = vdev_get_min_asize(vd);
1456
1457	/*
1458	 * If this vdev is not removed, check its fault status.  If it's
1459	 * faulted, bail out of the open.
1460	 */
1461	if (!vd->vdev_removed && vd->vdev_faulted) {
1462		ASSERT(vd->vdev_children == 0);
1463		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1464		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1465		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1466		    vd->vdev_label_aux);
1467		return (SET_ERROR(ENXIO));
1468	} else if (vd->vdev_offline) {
1469		ASSERT(vd->vdev_children == 0);
1470		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1471		return (SET_ERROR(ENXIO));
1472	}
1473
1474	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1475	    &logical_ashift, &physical_ashift);
1476
1477	/*
1478	 * Reset the vdev_reopening flag so that we actually close
1479	 * the vdev on error.
1480	 */
1481	vd->vdev_reopening = B_FALSE;
1482	if (zio_injection_enabled && error == 0)
1483		error = zio_handle_device_injection(vd, NULL, ENXIO);
1484
1485	if (error) {
1486		if (vd->vdev_removed &&
1487		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1488			vd->vdev_removed = B_FALSE;
1489
1490		if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1491			vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1492			    vd->vdev_stat.vs_aux);
1493		} else {
1494			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1495			    vd->vdev_stat.vs_aux);
1496		}
1497		return (error);
1498	}
1499
1500	vd->vdev_removed = B_FALSE;
1501
1502	/*
1503	 * Recheck the faulted flag now that we have confirmed that
1504	 * the vdev is accessible.  If we're faulted, bail.
1505	 */
1506	if (vd->vdev_faulted) {
1507		ASSERT(vd->vdev_children == 0);
1508		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1509		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1510		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1511		    vd->vdev_label_aux);
1512		return (SET_ERROR(ENXIO));
1513	}
1514
1515	if (vd->vdev_degraded) {
1516		ASSERT(vd->vdev_children == 0);
1517		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1518		    VDEV_AUX_ERR_EXCEEDED);
1519	} else {
1520		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1521	}
1522
1523	/*
1524	 * For hole or missing vdevs we just return success.
1525	 */
1526	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1527		return (0);
1528
1529	if (zfs_trim_enabled && !vd->vdev_notrim && vd->vdev_ops->vdev_op_leaf)
1530		trim_map_create(vd);
1531
1532	for (int c = 0; c < vd->vdev_children; c++) {
1533		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1534			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1535			    VDEV_AUX_NONE);
1536			break;
1537		}
1538	}
1539
1540	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1541	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1542
1543	if (vd->vdev_children == 0) {
1544		if (osize < SPA_MINDEVSIZE) {
1545			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1546			    VDEV_AUX_TOO_SMALL);
1547			return (SET_ERROR(EOVERFLOW));
1548		}
1549		psize = osize;
1550		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1551		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1552		    VDEV_LABEL_END_SIZE);
1553	} else {
1554		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1555		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1556			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1557			    VDEV_AUX_TOO_SMALL);
1558			return (SET_ERROR(EOVERFLOW));
1559		}
1560		psize = 0;
1561		asize = osize;
1562		max_asize = max_osize;
1563	}
1564
1565	vd->vdev_psize = psize;
1566
1567	/*
1568	 * Make sure the allocatable size hasn't shrunk too much.
1569	 */
1570	if (asize < vd->vdev_min_asize) {
1571		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1572		    VDEV_AUX_BAD_LABEL);
1573		return (SET_ERROR(EINVAL));
1574	}
1575
1576	vd->vdev_physical_ashift =
1577	    MAX(physical_ashift, vd->vdev_physical_ashift);
1578	vd->vdev_logical_ashift = MAX(logical_ashift, vd->vdev_logical_ashift);
1579	vd->vdev_ashift = MAX(vd->vdev_logical_ashift, vd->vdev_ashift);
1580
1581	if (vd->vdev_logical_ashift > SPA_MAXASHIFT) {
1582		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1583		    VDEV_AUX_ASHIFT_TOO_BIG);
1584		return (EINVAL);
1585	}
1586
1587	if (vd->vdev_asize == 0) {
1588		/*
1589		 * This is the first-ever open, so use the computed values.
1590		 * For testing purposes, a higher ashift can be requested.
1591		 */
1592		vd->vdev_asize = asize;
1593		vd->vdev_max_asize = max_asize;
1594	} else {
1595		/*
1596		 * Make sure the alignment requirement hasn't increased.
1597		 */
1598		if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
1599		    vd->vdev_ops->vdev_op_leaf) {
1600			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1601			    VDEV_AUX_BAD_LABEL);
1602			return (EINVAL);
1603		}
1604		vd->vdev_max_asize = max_asize;
1605	}
1606
1607	/*
1608	 * If all children are healthy we update asize if either:
1609	 * The asize has increased, due to a device expansion caused by dynamic
1610	 * LUN growth or vdev replacement, and automatic expansion is enabled;
1611	 * making the additional space available.
1612	 *
1613	 * The asize has decreased, due to a device shrink usually caused by a
1614	 * vdev replace with a smaller device. This ensures that calculations
1615	 * based of max_asize and asize e.g. esize are always valid. It's safe
1616	 * to do this as we've already validated that asize is greater than
1617	 * vdev_min_asize.
1618	 */
1619	if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1620	    ((asize > vd->vdev_asize &&
1621	    (vd->vdev_expanding || spa->spa_autoexpand)) ||
1622	    (asize < vd->vdev_asize)))
1623		vd->vdev_asize = asize;
1624
1625	vdev_set_min_asize(vd);
1626
1627	/*
1628	 * Ensure we can issue some IO before declaring the
1629	 * vdev open for business.
1630	 */
1631	if (vd->vdev_ops->vdev_op_leaf &&
1632	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1633		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1634		    VDEV_AUX_ERR_EXCEEDED);
1635		return (error);
1636	}
1637
1638	/*
1639	 * Track the min and max ashift values for normal data devices.
1640	 */
1641	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1642	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1643		if (vd->vdev_ashift > spa->spa_max_ashift)
1644			spa->spa_max_ashift = vd->vdev_ashift;
1645		if (vd->vdev_ashift < spa->spa_min_ashift)
1646			spa->spa_min_ashift = vd->vdev_ashift;
1647	}
1648
1649	/*
1650	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1651	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1652	 * since this would just restart the scrub we are already doing.
1653	 */
1654	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1655	    vdev_resilver_needed(vd, NULL, NULL))
1656		spa_async_request(spa, SPA_ASYNC_RESILVER);
1657
1658	return (0);
1659}
1660
1661/*
1662 * Called once the vdevs are all opened, this routine validates the label
1663 * contents. This needs to be done before vdev_load() so that we don't
1664 * inadvertently do repair I/Os to the wrong device.
1665 *
1666 * This function will only return failure if one of the vdevs indicates that it
1667 * has since been destroyed or exported.  This is only possible if
1668 * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1669 * will be updated but the function will return 0.
1670 */
1671int
1672vdev_validate(vdev_t *vd)
1673{
1674	spa_t *spa = vd->vdev_spa;
1675	nvlist_t *label;
1676	uint64_t guid = 0, aux_guid = 0, top_guid;
1677	uint64_t state;
1678	nvlist_t *nvl;
1679	uint64_t txg;
1680
1681	if (vdev_validate_skip)
1682		return (0);
1683
1684	for (uint64_t c = 0; c < vd->vdev_children; c++)
1685		if (vdev_validate(vd->vdev_child[c]) != 0)
1686			return (SET_ERROR(EBADF));
1687
1688	/*
1689	 * If the device has already failed, or was marked offline, don't do
1690	 * any further validation.  Otherwise, label I/O will fail and we will
1691	 * overwrite the previous state.
1692	 */
1693	if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1694		return (0);
1695
1696	/*
1697	 * If we are performing an extreme rewind, we allow for a label that
1698	 * was modified at a point after the current txg.
1699	 */
1700	if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0)
1701		txg = UINT64_MAX;
1702	else
1703		txg = spa_last_synced_txg(spa);
1704
1705	if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1706		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1707		    VDEV_AUX_BAD_LABEL);
1708		vdev_dbgmsg(vd, "vdev_validate: failed reading config");
1709		return (0);
1710	}
1711
1712	/*
1713	 * Determine if this vdev has been split off into another
1714	 * pool.  If so, then refuse to open it.
1715	 */
1716	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1717	    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1718		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1719		    VDEV_AUX_SPLIT_POOL);
1720		nvlist_free(label);
1721		vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1722		return (0);
1723	}
1724
1725	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1726		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1727		    VDEV_AUX_CORRUPT_DATA);
1728		nvlist_free(label);
1729		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1730		    ZPOOL_CONFIG_POOL_GUID);
1731		return (0);
1732	}
1733
1734	/*
1735	 * If config is not trusted then ignore the spa guid check. This is
1736	 * necessary because if the machine crashed during a re-guid the new
1737	 * guid might have been written to all of the vdev labels, but not the
1738	 * cached config. The check will be performed again once we have the
1739	 * trusted config from the MOS.
1740	 */
1741	if (spa->spa_trust_config && guid != spa_guid(spa)) {
1742		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1743		    VDEV_AUX_CORRUPT_DATA);
1744		nvlist_free(label);
1745		vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1746		    "match config (%llu != %llu)", (u_longlong_t)guid,
1747		    (u_longlong_t)spa_guid(spa));
1748		return (0);
1749	}
1750
1751	if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1752	    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1753	    &aux_guid) != 0)
1754		aux_guid = 0;
1755
1756	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1757		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1758		    VDEV_AUX_CORRUPT_DATA);
1759		nvlist_free(label);
1760		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1761		    ZPOOL_CONFIG_GUID);
1762		return (0);
1763	}
1764
1765	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1766	    != 0) {
1767		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1768		    VDEV_AUX_CORRUPT_DATA);
1769		nvlist_free(label);
1770		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1771		    ZPOOL_CONFIG_TOP_GUID);
1772		return (0);
1773	}
1774
1775	/*
1776	 * If this vdev just became a top-level vdev because its sibling was
1777	 * detached, it will have adopted the parent's vdev guid -- but the
1778	 * label may or may not be on disk yet. Fortunately, either version
1779	 * of the label will have the same top guid, so if we're a top-level
1780	 * vdev, we can safely compare to that instead.
1781	 * However, if the config comes from a cachefile that failed to update
1782	 * after the detach, a top-level vdev will appear as a non top-level
1783	 * vdev in the config. Also relax the constraints if we perform an
1784	 * extreme rewind.
1785	 *
1786	 * If we split this vdev off instead, then we also check the
1787	 * original pool's guid. We don't want to consider the vdev
1788	 * corrupt if it is partway through a split operation.
1789	 */
1790	if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1791		boolean_t mismatch = B_FALSE;
1792		if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1793			if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1794				mismatch = B_TRUE;
1795		} else {
1796			if (vd->vdev_guid != top_guid &&
1797			    vd->vdev_top->vdev_guid != guid)
1798				mismatch = B_TRUE;
1799		}
1800
1801		if (mismatch) {
1802			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1803			    VDEV_AUX_CORRUPT_DATA);
1804			nvlist_free(label);
1805			vdev_dbgmsg(vd, "vdev_validate: config guid "
1806			    "doesn't match label guid");
1807			vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1808			    (u_longlong_t)vd->vdev_guid,
1809			    (u_longlong_t)vd->vdev_top->vdev_guid);
1810			vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1811			    "aux_guid %llu", (u_longlong_t)guid,
1812			    (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1813			return (0);
1814		}
1815	}
1816
1817	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1818	    &state) != 0) {
1819		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1820		    VDEV_AUX_CORRUPT_DATA);
1821		nvlist_free(label);
1822		vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1823		    ZPOOL_CONFIG_POOL_STATE);
1824		return (0);
1825	}
1826
1827	nvlist_free(label);
1828
1829	/*
1830	 * If this is a verbatim import, no need to check the
1831	 * state of the pool.
1832	 */
1833	if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1834	    spa_load_state(spa) == SPA_LOAD_OPEN &&
1835	    state != POOL_STATE_ACTIVE) {
1836		vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1837		    "for spa %s", (u_longlong_t)state, spa->spa_name);
1838		return (SET_ERROR(EBADF));
1839	}
1840
1841	/*
1842	 * If we were able to open and validate a vdev that was
1843	 * previously marked permanently unavailable, clear that state
1844	 * now.
1845	 */
1846	if (vd->vdev_not_present)
1847		vd->vdev_not_present = 0;
1848
1849	return (0);
1850}
1851
1852static void
1853vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1854{
1855	if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1856		if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1857			zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1858			    "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1859			    dvd->vdev_path, svd->vdev_path);
1860			spa_strfree(dvd->vdev_path);
1861			dvd->vdev_path = spa_strdup(svd->vdev_path);
1862		}
1863	} else if (svd->vdev_path != NULL) {
1864		dvd->vdev_path = spa_strdup(svd->vdev_path);
1865		zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1866		    (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1867	}
1868}
1869
1870/*
1871 * Recursively copy vdev paths from one vdev to another. Source and destination
1872 * vdev trees must have same geometry otherwise return error. Intended to copy
1873 * paths from userland config into MOS config.
1874 */
1875int
1876vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1877{
1878	if ((svd->vdev_ops == &vdev_missing_ops) ||
1879	    (svd->vdev_ishole && dvd->vdev_ishole) ||
1880	    (dvd->vdev_ops == &vdev_indirect_ops))
1881		return (0);
1882
1883	if (svd->vdev_ops != dvd->vdev_ops) {
1884		vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1885		    svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1886		return (SET_ERROR(EINVAL));
1887	}
1888
1889	if (svd->vdev_guid != dvd->vdev_guid) {
1890		vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1891		    "%llu)", (u_longlong_t)svd->vdev_guid,
1892		    (u_longlong_t)dvd->vdev_guid);
1893		return (SET_ERROR(EINVAL));
1894	}
1895
1896	if (svd->vdev_children != dvd->vdev_children) {
1897		vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1898		    "%llu != %llu", (u_longlong_t)svd->vdev_children,
1899		    (u_longlong_t)dvd->vdev_children);
1900		return (SET_ERROR(EINVAL));
1901	}
1902
1903	for (uint64_t i = 0; i < svd->vdev_children; i++) {
1904		int error = vdev_copy_path_strict(svd->vdev_child[i],
1905		    dvd->vdev_child[i]);
1906		if (error != 0)
1907			return (error);
1908	}
1909
1910	if (svd->vdev_ops->vdev_op_leaf)
1911		vdev_copy_path_impl(svd, dvd);
1912
1913	return (0);
1914}
1915
1916static void
1917vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1918{
1919	ASSERT(stvd->vdev_top == stvd);
1920	ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1921
1922	for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1923		vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1924	}
1925
1926	if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1927		return;
1928
1929	/*
1930	 * The idea here is that while a vdev can shift positions within
1931	 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1932	 * step outside of it.
1933	 */
1934	vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1935
1936	if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1937		return;
1938
1939	ASSERT(vd->vdev_ops->vdev_op_leaf);
1940
1941	vdev_copy_path_impl(vd, dvd);
1942}
1943
1944/*
1945 * Recursively copy vdev paths from one root vdev to another. Source and
1946 * destination vdev trees may differ in geometry. For each destination leaf
1947 * vdev, search a vdev with the same guid and top vdev id in the source.
1948 * Intended to copy paths from userland config into MOS config.
1949 */
1950void
1951vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1952{
1953	uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1954	ASSERT(srvd->vdev_ops == &vdev_root_ops);
1955	ASSERT(drvd->vdev_ops == &vdev_root_ops);
1956
1957	for (uint64_t i = 0; i < children; i++) {
1958		vdev_copy_path_search(srvd->vdev_child[i],
1959		    drvd->vdev_child[i]);
1960	}
1961}
1962
1963/*
1964 * Close a virtual device.
1965 */
1966void
1967vdev_close(vdev_t *vd)
1968{
1969	spa_t *spa = vd->vdev_spa;
1970	vdev_t *pvd = vd->vdev_parent;
1971
1972	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1973
1974	/*
1975	 * If our parent is reopening, then we are as well, unless we are
1976	 * going offline.
1977	 */
1978	if (pvd != NULL && pvd->vdev_reopening)
1979		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1980
1981	vd->vdev_ops->vdev_op_close(vd);
1982
1983	vdev_cache_purge(vd);
1984
1985	if (vd->vdev_ops->vdev_op_leaf)
1986		trim_map_destroy(vd);
1987
1988	/*
1989	 * We record the previous state before we close it, so that if we are
1990	 * doing a reopen(), we don't generate FMA ereports if we notice that
1991	 * it's still faulted.
1992	 */
1993	vd->vdev_prevstate = vd->vdev_state;
1994
1995	if (vd->vdev_offline)
1996		vd->vdev_state = VDEV_STATE_OFFLINE;
1997	else
1998		vd->vdev_state = VDEV_STATE_CLOSED;
1999	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2000}
2001
2002void
2003vdev_hold(vdev_t *vd)
2004{
2005	spa_t *spa = vd->vdev_spa;
2006
2007	ASSERT(spa_is_root(spa));
2008	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2009		return;
2010
2011	for (int c = 0; c < vd->vdev_children; c++)
2012		vdev_hold(vd->vdev_child[c]);
2013
2014	if (vd->vdev_ops->vdev_op_leaf)
2015		vd->vdev_ops->vdev_op_hold(vd);
2016}
2017
2018void
2019vdev_rele(vdev_t *vd)
2020{
2021	spa_t *spa = vd->vdev_spa;
2022
2023	ASSERT(spa_is_root(spa));
2024	for (int c = 0; c < vd->vdev_children; c++)
2025		vdev_rele(vd->vdev_child[c]);
2026
2027	if (vd->vdev_ops->vdev_op_leaf)
2028		vd->vdev_ops->vdev_op_rele(vd);
2029}
2030
2031/*
2032 * Reopen all interior vdevs and any unopened leaves.  We don't actually
2033 * reopen leaf vdevs which had previously been opened as they might deadlock
2034 * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2035 * If the leaf has never been opened then open it, as usual.
2036 */
2037void
2038vdev_reopen(vdev_t *vd)
2039{
2040	spa_t *spa = vd->vdev_spa;
2041
2042	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2043
2044	/* set the reopening flag unless we're taking the vdev offline */
2045	vd->vdev_reopening = !vd->vdev_offline;
2046	vdev_close(vd);
2047	(void) vdev_open(vd);
2048
2049	/*
2050	 * Call vdev_validate() here to make sure we have the same device.
2051	 * Otherwise, a device with an invalid label could be successfully
2052	 * opened in response to vdev_reopen().
2053	 */
2054	if (vd->vdev_aux) {
2055		(void) vdev_validate_aux(vd);
2056		if (vdev_readable(vd) && vdev_writeable(vd) &&
2057		    vd->vdev_aux == &spa->spa_l2cache &&
2058		    !l2arc_vdev_present(vd))
2059			l2arc_add_vdev(spa, vd);
2060	} else {
2061		(void) vdev_validate(vd);
2062	}
2063
2064	/*
2065	 * Reassess parent vdev's health.
2066	 */
2067	vdev_propagate_state(vd);
2068}
2069
2070int
2071vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2072{
2073	int error;
2074
2075	/*
2076	 * Normally, partial opens (e.g. of a mirror) are allowed.
2077	 * For a create, however, we want to fail the request if
2078	 * there are any components we can't open.
2079	 */
2080	error = vdev_open(vd);
2081
2082	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2083		vdev_close(vd);
2084		return (error ? error : ENXIO);
2085	}
2086
2087	/*
2088	 * Recursively load DTLs and initialize all labels.
2089	 */
2090	if ((error = vdev_dtl_load(vd)) != 0 ||
2091	    (error = vdev_label_init(vd, txg, isreplacing ?
2092	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2093		vdev_close(vd);
2094		return (error);
2095	}
2096
2097	return (0);
2098}
2099
2100void
2101vdev_metaslab_set_size(vdev_t *vd)
2102{
2103	uint64_t asize = vd->vdev_asize;
2104	uint64_t ms_shift = 0;
2105
2106	/*
2107	 * For vdevs that are bigger than 8G the metaslab size varies in
2108	 * a way that the number of metaslabs increases in powers of two,
2109	 * linearly in terms of vdev_asize, starting from 16 metaslabs.
2110	 * So for vdev_asize of 8G we get 16 metaslabs, for 16G, we get 32,
2111	 * and so on, until we hit the maximum metaslab count limit
2112	 * [vdev_max_ms_count] from which point the metaslab count stays
2113	 * the same.
2114	 */
2115	ms_shift = vdev_default_ms_shift;
2116
2117	if ((asize >> ms_shift) < vdev_min_ms_count) {
2118		/*
2119		 * For devices that are less than 8G we want to have
2120		 * exactly 16 metaslabs. We don't want less as integer
2121		 * division rounds down, so less metaslabs mean more
2122		 * wasted space. We don't want more as these vdevs are
2123		 * small and in the likely event that we are running
2124		 * out of space, the SPA will have a hard time finding
2125		 * space due to fragmentation.
2126		 */
2127		ms_shift = highbit64(asize / vdev_min_ms_count);
2128		ms_shift = MAX(ms_shift, SPA_MAXBLOCKSHIFT);
2129
2130	} else if ((asize >> ms_shift) > vdev_max_ms_count) {
2131		ms_shift = highbit64(asize / vdev_max_ms_count);
2132	}
2133
2134	vd->vdev_ms_shift = ms_shift;
2135	ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2136}
2137
2138/*
2139 * Maximize performance by inflating the configured ashift for top level
2140 * vdevs to be as close to the physical ashift as possible while maintaining
2141 * administrator defined limits and ensuring it doesn't go below the
2142 * logical ashift.
2143 */
2144void
2145vdev_ashift_optimize(vdev_t *vd)
2146{
2147	if (vd == vd->vdev_top) {
2148		if (vd->vdev_ashift < vd->vdev_physical_ashift) {
2149			vd->vdev_ashift = MIN(
2150			    MAX(zfs_max_auto_ashift, vd->vdev_ashift),
2151			    MAX(zfs_min_auto_ashift, vd->vdev_physical_ashift));
2152		} else {
2153			/*
2154			 * Unusual case where logical ashift > physical ashift
2155			 * so we can't cap the calculated ashift based on max
2156			 * ashift as that would cause failures.
2157			 * We still check if we need to increase it to match
2158			 * the min ashift.
2159			 */
2160			vd->vdev_ashift = MAX(zfs_min_auto_ashift,
2161			    vd->vdev_ashift);
2162		}
2163	}
2164}
2165
2166void
2167vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2168{
2169	ASSERT(vd == vd->vdev_top);
2170	/* indirect vdevs don't have metaslabs or dtls */
2171	ASSERT(vdev_is_concrete(vd) || flags == 0);
2172	ASSERT(ISP2(flags));
2173	ASSERT(spa_writeable(vd->vdev_spa));
2174
2175	if (flags & VDD_METASLAB)
2176		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2177
2178	if (flags & VDD_DTL)
2179		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2180
2181	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2182}
2183
2184void
2185vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2186{
2187	for (int c = 0; c < vd->vdev_children; c++)
2188		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2189
2190	if (vd->vdev_ops->vdev_op_leaf)
2191		vdev_dirty(vd->vdev_top, flags, vd, txg);
2192}
2193
2194/*
2195 * DTLs.
2196 *
2197 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2198 * the vdev has less than perfect replication.  There are four kinds of DTL:
2199 *
2200 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2201 *
2202 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2203 *
2204 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2205 *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2206 *	txgs that was scrubbed.
2207 *
2208 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2209 *	persistent errors or just some device being offline.
2210 *	Unlike the other three, the DTL_OUTAGE map is not generally
2211 *	maintained; it's only computed when needed, typically to
2212 *	determine whether a device can be detached.
2213 *
2214 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2215 * either has the data or it doesn't.
2216 *
2217 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2218 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2219 * if any child is less than fully replicated, then so is its parent.
2220 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2221 * comprising only those txgs which appear in 'maxfaults' or more children;
2222 * those are the txgs we don't have enough replication to read.  For example,
2223 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2224 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2225 * two child DTL_MISSING maps.
2226 *
2227 * It should be clear from the above that to compute the DTLs and outage maps
2228 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2229 * Therefore, that is all we keep on disk.  When loading the pool, or after
2230 * a configuration change, we generate all other DTLs from first principles.
2231 */
2232void
2233vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2234{
2235	range_tree_t *rt = vd->vdev_dtl[t];
2236
2237	ASSERT(t < DTL_TYPES);
2238	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2239	ASSERT(spa_writeable(vd->vdev_spa));
2240
2241	mutex_enter(&vd->vdev_dtl_lock);
2242	if (!range_tree_contains(rt, txg, size))
2243		range_tree_add(rt, txg, size);
2244	mutex_exit(&vd->vdev_dtl_lock);
2245}
2246
2247boolean_t
2248vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2249{
2250	range_tree_t *rt = vd->vdev_dtl[t];
2251	boolean_t dirty = B_FALSE;
2252
2253	ASSERT(t < DTL_TYPES);
2254	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2255
2256	/*
2257	 * While we are loading the pool, the DTLs have not been loaded yet.
2258	 * Ignore the DTLs and try all devices.  This avoids a recursive
2259	 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2260	 * when loading the pool (relying on the checksum to ensure that
2261	 * we get the right data -- note that we while loading, we are
2262	 * only reading the MOS, which is always checksummed).
2263	 */
2264	if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2265		return (B_FALSE);
2266
2267	mutex_enter(&vd->vdev_dtl_lock);
2268	if (!range_tree_is_empty(rt))
2269		dirty = range_tree_contains(rt, txg, size);
2270	mutex_exit(&vd->vdev_dtl_lock);
2271
2272	return (dirty);
2273}
2274
2275boolean_t
2276vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2277{
2278	range_tree_t *rt = vd->vdev_dtl[t];
2279	boolean_t empty;
2280
2281	mutex_enter(&vd->vdev_dtl_lock);
2282	empty = range_tree_is_empty(rt);
2283	mutex_exit(&vd->vdev_dtl_lock);
2284
2285	return (empty);
2286}
2287
2288/*
2289 * Returns the lowest txg in the DTL range.
2290 */
2291static uint64_t
2292vdev_dtl_min(vdev_t *vd)
2293{
2294	range_seg_t *rs;
2295
2296	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2297	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2298	ASSERT0(vd->vdev_children);
2299
2300	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2301	return (rs->rs_start - 1);
2302}
2303
2304/*
2305 * Returns the highest txg in the DTL.
2306 */
2307static uint64_t
2308vdev_dtl_max(vdev_t *vd)
2309{
2310	range_seg_t *rs;
2311
2312	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2313	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2314	ASSERT0(vd->vdev_children);
2315
2316	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2317	return (rs->rs_end);
2318}
2319
2320/*
2321 * Determine if a resilvering vdev should remove any DTL entries from
2322 * its range. If the vdev was resilvering for the entire duration of the
2323 * scan then it should excise that range from its DTLs. Otherwise, this
2324 * vdev is considered partially resilvered and should leave its DTL
2325 * entries intact. The comment in vdev_dtl_reassess() describes how we
2326 * excise the DTLs.
2327 */
2328static boolean_t
2329vdev_dtl_should_excise(vdev_t *vd)
2330{
2331	spa_t *spa = vd->vdev_spa;
2332	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2333
2334	ASSERT0(scn->scn_phys.scn_errors);
2335	ASSERT0(vd->vdev_children);
2336
2337	if (vd->vdev_state < VDEV_STATE_DEGRADED)
2338		return (B_FALSE);
2339
2340	if (vd->vdev_resilver_txg == 0 ||
2341	    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2342		return (B_TRUE);
2343
2344	/*
2345	 * When a resilver is initiated the scan will assign the scn_max_txg
2346	 * value to the highest txg value that exists in all DTLs. If this
2347	 * device's max DTL is not part of this scan (i.e. it is not in
2348	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2349	 * for excision.
2350	 */
2351	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2352		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2353		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2354		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2355		return (B_TRUE);
2356	}
2357	return (B_FALSE);
2358}
2359
2360/*
2361 * Reassess DTLs after a config change or scrub completion.
2362 */
2363void
2364vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2365{
2366	spa_t *spa = vd->vdev_spa;
2367	avl_tree_t reftree;
2368	int minref;
2369
2370	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2371
2372	for (int c = 0; c < vd->vdev_children; c++)
2373		vdev_dtl_reassess(vd->vdev_child[c], txg,
2374		    scrub_txg, scrub_done);
2375
2376	if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2377		return;
2378
2379	if (vd->vdev_ops->vdev_op_leaf) {
2380		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2381
2382		mutex_enter(&vd->vdev_dtl_lock);
2383
2384		/*
2385		 * If we've completed a scan cleanly then determine
2386		 * if this vdev should remove any DTLs. We only want to
2387		 * excise regions on vdevs that were available during
2388		 * the entire duration of this scan.
2389		 */
2390		if (scrub_txg != 0 &&
2391		    (spa->spa_scrub_started ||
2392		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2393		    vdev_dtl_should_excise(vd)) {
2394			/*
2395			 * We completed a scrub up to scrub_txg.  If we
2396			 * did it without rebooting, then the scrub dtl
2397			 * will be valid, so excise the old region and
2398			 * fold in the scrub dtl.  Otherwise, leave the
2399			 * dtl as-is if there was an error.
2400			 *
2401			 * There's little trick here: to excise the beginning
2402			 * of the DTL_MISSING map, we put it into a reference
2403			 * tree and then add a segment with refcnt -1 that
2404			 * covers the range [0, scrub_txg).  This means
2405			 * that each txg in that range has refcnt -1 or 0.
2406			 * We then add DTL_SCRUB with a refcnt of 2, so that
2407			 * entries in the range [0, scrub_txg) will have a
2408			 * positive refcnt -- either 1 or 2.  We then convert
2409			 * the reference tree into the new DTL_MISSING map.
2410			 */
2411			space_reftree_create(&reftree);
2412			space_reftree_add_map(&reftree,
2413			    vd->vdev_dtl[DTL_MISSING], 1);
2414			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2415			space_reftree_add_map(&reftree,
2416			    vd->vdev_dtl[DTL_SCRUB], 2);
2417			space_reftree_generate_map(&reftree,
2418			    vd->vdev_dtl[DTL_MISSING], 1);
2419			space_reftree_destroy(&reftree);
2420		}
2421		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2422		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2423		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2424		if (scrub_done)
2425			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2426		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2427		if (!vdev_readable(vd))
2428			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2429		else
2430			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2431			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2432
2433		/*
2434		 * If the vdev was resilvering and no longer has any
2435		 * DTLs then reset its resilvering flag and dirty
2436		 * the top level so that we persist the change.
2437		 */
2438		if (vd->vdev_resilver_txg != 0 &&
2439		    range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2440		    range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2441			vd->vdev_resilver_txg = 0;
2442			vdev_config_dirty(vd->vdev_top);
2443		}
2444
2445		mutex_exit(&vd->vdev_dtl_lock);
2446
2447		if (txg != 0)
2448			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2449		return;
2450	}
2451
2452	mutex_enter(&vd->vdev_dtl_lock);
2453	for (int t = 0; t < DTL_TYPES; t++) {
2454		/* account for child's outage in parent's missing map */
2455		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2456		if (t == DTL_SCRUB)
2457			continue;			/* leaf vdevs only */
2458		if (t == DTL_PARTIAL)
2459			minref = 1;			/* i.e. non-zero */
2460		else if (vd->vdev_nparity != 0)
2461			minref = vd->vdev_nparity + 1;	/* RAID-Z */
2462		else
2463			minref = vd->vdev_children;	/* any kind of mirror */
2464		space_reftree_create(&reftree);
2465		for (int c = 0; c < vd->vdev_children; c++) {
2466			vdev_t *cvd = vd->vdev_child[c];
2467			mutex_enter(&cvd->vdev_dtl_lock);
2468			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2469			mutex_exit(&cvd->vdev_dtl_lock);
2470		}
2471		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2472		space_reftree_destroy(&reftree);
2473	}
2474	mutex_exit(&vd->vdev_dtl_lock);
2475}
2476
2477int
2478vdev_dtl_load(vdev_t *vd)
2479{
2480	spa_t *spa = vd->vdev_spa;
2481	objset_t *mos = spa->spa_meta_objset;
2482	int error = 0;
2483
2484	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2485		ASSERT(vdev_is_concrete(vd));
2486
2487		error = space_map_open(&vd->vdev_dtl_sm, mos,
2488		    vd->vdev_dtl_object, 0, -1ULL, 0);
2489		if (error)
2490			return (error);
2491		ASSERT(vd->vdev_dtl_sm != NULL);
2492
2493		mutex_enter(&vd->vdev_dtl_lock);
2494
2495		/*
2496		 * Now that we've opened the space_map we need to update
2497		 * the in-core DTL.
2498		 */
2499		space_map_update(vd->vdev_dtl_sm);
2500
2501		error = space_map_load(vd->vdev_dtl_sm,
2502		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2503		mutex_exit(&vd->vdev_dtl_lock);
2504
2505		return (error);
2506	}
2507
2508	for (int c = 0; c < vd->vdev_children; c++) {
2509		error = vdev_dtl_load(vd->vdev_child[c]);
2510		if (error != 0)
2511			break;
2512	}
2513
2514	return (error);
2515}
2516
2517void
2518vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2519{
2520	spa_t *spa = vd->vdev_spa;
2521
2522	VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2523	VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2524	    zapobj, tx));
2525}
2526
2527uint64_t
2528vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2529{
2530	spa_t *spa = vd->vdev_spa;
2531	uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2532	    DMU_OT_NONE, 0, tx);
2533
2534	ASSERT(zap != 0);
2535	VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2536	    zap, tx));
2537
2538	return (zap);
2539}
2540
2541void
2542vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2543{
2544	if (vd->vdev_ops != &vdev_hole_ops &&
2545	    vd->vdev_ops != &vdev_missing_ops &&
2546	    vd->vdev_ops != &vdev_root_ops &&
2547	    !vd->vdev_top->vdev_removing) {
2548		if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2549			vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2550		}
2551		if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2552			vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2553		}
2554	}
2555	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2556		vdev_construct_zaps(vd->vdev_child[i], tx);
2557	}
2558}
2559
2560void
2561vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2562{
2563	spa_t *spa = vd->vdev_spa;
2564	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2565	objset_t *mos = spa->spa_meta_objset;
2566	range_tree_t *rtsync;
2567	dmu_tx_t *tx;
2568	uint64_t object = space_map_object(vd->vdev_dtl_sm);
2569
2570	ASSERT(vdev_is_concrete(vd));
2571	ASSERT(vd->vdev_ops->vdev_op_leaf);
2572
2573	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2574
2575	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2576		mutex_enter(&vd->vdev_dtl_lock);
2577		space_map_free(vd->vdev_dtl_sm, tx);
2578		space_map_close(vd->vdev_dtl_sm);
2579		vd->vdev_dtl_sm = NULL;
2580		mutex_exit(&vd->vdev_dtl_lock);
2581
2582		/*
2583		 * We only destroy the leaf ZAP for detached leaves or for
2584		 * removed log devices. Removed data devices handle leaf ZAP
2585		 * cleanup later, once cancellation is no longer possible.
2586		 */
2587		if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2588		    vd->vdev_top->vdev_islog)) {
2589			vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2590			vd->vdev_leaf_zap = 0;
2591		}
2592
2593		dmu_tx_commit(tx);
2594		return;
2595	}
2596
2597	if (vd->vdev_dtl_sm == NULL) {
2598		uint64_t new_object;
2599
2600		new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2601		VERIFY3U(new_object, !=, 0);
2602
2603		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2604		    0, -1ULL, 0));
2605		ASSERT(vd->vdev_dtl_sm != NULL);
2606	}
2607
2608	rtsync = range_tree_create(NULL, NULL);
2609
2610	mutex_enter(&vd->vdev_dtl_lock);
2611	range_tree_walk(rt, range_tree_add, rtsync);
2612	mutex_exit(&vd->vdev_dtl_lock);
2613
2614	space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2615	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2616	range_tree_vacate(rtsync, NULL, NULL);
2617
2618	range_tree_destroy(rtsync);
2619
2620	/*
2621	 * If the object for the space map has changed then dirty
2622	 * the top level so that we update the config.
2623	 */
2624	if (object != space_map_object(vd->vdev_dtl_sm)) {
2625		vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2626		    "new object %llu", (u_longlong_t)txg, spa_name(spa),
2627		    (u_longlong_t)object,
2628		    (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2629		vdev_config_dirty(vd->vdev_top);
2630	}
2631
2632	dmu_tx_commit(tx);
2633
2634	mutex_enter(&vd->vdev_dtl_lock);
2635	space_map_update(vd->vdev_dtl_sm);
2636	mutex_exit(&vd->vdev_dtl_lock);
2637}
2638
2639/*
2640 * Determine whether the specified vdev can be offlined/detached/removed
2641 * without losing data.
2642 */
2643boolean_t
2644vdev_dtl_required(vdev_t *vd)
2645{
2646	spa_t *spa = vd->vdev_spa;
2647	vdev_t *tvd = vd->vdev_top;
2648	uint8_t cant_read = vd->vdev_cant_read;
2649	boolean_t required;
2650
2651	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2652
2653	if (vd == spa->spa_root_vdev || vd == tvd)
2654		return (B_TRUE);
2655
2656	/*
2657	 * Temporarily mark the device as unreadable, and then determine
2658	 * whether this results in any DTL outages in the top-level vdev.
2659	 * If not, we can safely offline/detach/remove the device.
2660	 */
2661	vd->vdev_cant_read = B_TRUE;
2662	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2663	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2664	vd->vdev_cant_read = cant_read;
2665	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2666
2667	if (!required && zio_injection_enabled)
2668		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2669
2670	return (required);
2671}
2672
2673/*
2674 * Determine if resilver is needed, and if so the txg range.
2675 */
2676boolean_t
2677vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2678{
2679	boolean_t needed = B_FALSE;
2680	uint64_t thismin = UINT64_MAX;
2681	uint64_t thismax = 0;
2682
2683	if (vd->vdev_children == 0) {
2684		mutex_enter(&vd->vdev_dtl_lock);
2685		if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2686		    vdev_writeable(vd)) {
2687
2688			thismin = vdev_dtl_min(vd);
2689			thismax = vdev_dtl_max(vd);
2690			needed = B_TRUE;
2691		}
2692		mutex_exit(&vd->vdev_dtl_lock);
2693	} else {
2694		for (int c = 0; c < vd->vdev_children; c++) {
2695			vdev_t *cvd = vd->vdev_child[c];
2696			uint64_t cmin, cmax;
2697
2698			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2699				thismin = MIN(thismin, cmin);
2700				thismax = MAX(thismax, cmax);
2701				needed = B_TRUE;
2702			}
2703		}
2704	}
2705
2706	if (needed && minp) {
2707		*minp = thismin;
2708		*maxp = thismax;
2709	}
2710	return (needed);
2711}
2712
2713/*
2714 * Gets the checkpoint space map object from the vdev's ZAP.
2715 * Returns the spacemap object, or 0 if it wasn't in the ZAP
2716 * or the ZAP doesn't exist yet.
2717 */
2718int
2719vdev_checkpoint_sm_object(vdev_t *vd)
2720{
2721	ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2722	if (vd->vdev_top_zap == 0) {
2723		return (0);
2724	}
2725
2726	uint64_t sm_obj = 0;
2727	int err = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2728	    VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, &sm_obj);
2729
2730	ASSERT(err == 0 || err == ENOENT);
2731
2732	return (sm_obj);
2733}
2734
2735int
2736vdev_load(vdev_t *vd)
2737{
2738	int error = 0;
2739	/*
2740	 * Recursively load all children.
2741	 */
2742	for (int c = 0; c < vd->vdev_children; c++) {
2743		error = vdev_load(vd->vdev_child[c]);
2744		if (error != 0) {
2745			return (error);
2746		}
2747	}
2748
2749	vdev_set_deflate_ratio(vd);
2750
2751	/*
2752	 * If this is a top-level vdev, initialize its metaslabs.
2753	 */
2754	if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2755		if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2756			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2757			    VDEV_AUX_CORRUPT_DATA);
2758			vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2759			    "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2760			    (u_longlong_t)vd->vdev_asize);
2761			return (SET_ERROR(ENXIO));
2762		} else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2763			vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2764			    "[error=%d]", error);
2765			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2766			    VDEV_AUX_CORRUPT_DATA);
2767			return (error);
2768		}
2769
2770		uint64_t checkpoint_sm_obj = vdev_checkpoint_sm_object(vd);
2771		if (checkpoint_sm_obj != 0) {
2772			objset_t *mos = spa_meta_objset(vd->vdev_spa);
2773			ASSERT(vd->vdev_asize != 0);
2774			ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2775
2776			if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2777			    mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2778			    vd->vdev_ashift))) {
2779				vdev_dbgmsg(vd, "vdev_load: space_map_open "
2780				    "failed for checkpoint spacemap (obj %llu) "
2781				    "[error=%d]",
2782				    (u_longlong_t)checkpoint_sm_obj, error);
2783				return (error);
2784			}
2785			ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2786			space_map_update(vd->vdev_checkpoint_sm);
2787
2788			/*
2789			 * Since the checkpoint_sm contains free entries
2790			 * exclusively we can use sm_alloc to indicate the
2791			 * culmulative checkpointed space that has been freed.
2792			 */
2793			vd->vdev_stat.vs_checkpoint_space =
2794			    -vd->vdev_checkpoint_sm->sm_alloc;
2795			vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
2796			    vd->vdev_stat.vs_checkpoint_space;
2797		}
2798	}
2799
2800	/*
2801	 * If this is a leaf vdev, load its DTL.
2802	 */
2803	if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2804		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2805		    VDEV_AUX_CORRUPT_DATA);
2806		vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2807		    "[error=%d]", error);
2808		return (error);
2809	}
2810
2811	uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2812	if (obsolete_sm_object != 0) {
2813		objset_t *mos = vd->vdev_spa->spa_meta_objset;
2814		ASSERT(vd->vdev_asize != 0);
2815		ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
2816
2817		if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2818		    obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2819			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2820			    VDEV_AUX_CORRUPT_DATA);
2821			vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2822			    "obsolete spacemap (obj %llu) [error=%d]",
2823			    (u_longlong_t)obsolete_sm_object, error);
2824			return (error);
2825		}
2826		space_map_update(vd->vdev_obsolete_sm);
2827	}
2828
2829	return (0);
2830}
2831
2832/*
2833 * The special vdev case is used for hot spares and l2cache devices.  Its
2834 * sole purpose it to set the vdev state for the associated vdev.  To do this,
2835 * we make sure that we can open the underlying device, then try to read the
2836 * label, and make sure that the label is sane and that it hasn't been
2837 * repurposed to another pool.
2838 */
2839int
2840vdev_validate_aux(vdev_t *vd)
2841{
2842	nvlist_t *label;
2843	uint64_t guid, version;
2844	uint64_t state;
2845
2846	if (!vdev_readable(vd))
2847		return (0);
2848
2849	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2850		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2851		    VDEV_AUX_CORRUPT_DATA);
2852		return (-1);
2853	}
2854
2855	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2856	    !SPA_VERSION_IS_SUPPORTED(version) ||
2857	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2858	    guid != vd->vdev_guid ||
2859	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2860		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2861		    VDEV_AUX_CORRUPT_DATA);
2862		nvlist_free(label);
2863		return (-1);
2864	}
2865
2866	/*
2867	 * We don't actually check the pool state here.  If it's in fact in
2868	 * use by another pool, we update this fact on the fly when requested.
2869	 */
2870	nvlist_free(label);
2871	return (0);
2872}
2873
2874/*
2875 * Free the objects used to store this vdev's spacemaps, and the array
2876 * that points to them.
2877 */
2878void
2879vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2880{
2881	if (vd->vdev_ms_array == 0)
2882		return;
2883
2884	objset_t *mos = vd->vdev_spa->spa_meta_objset;
2885	uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2886	size_t array_bytes = array_count * sizeof (uint64_t);
2887	uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2888	VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2889	    array_bytes, smobj_array, 0));
2890
2891	for (uint64_t i = 0; i < array_count; i++) {
2892		uint64_t smobj = smobj_array[i];
2893		if (smobj == 0)
2894			continue;
2895
2896		space_map_free_obj(mos, smobj, tx);
2897	}
2898
2899	kmem_free(smobj_array, array_bytes);
2900	VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2901	vd->vdev_ms_array = 0;
2902}
2903
2904static void
2905vdev_remove_empty(vdev_t *vd, uint64_t txg)
2906{
2907	spa_t *spa = vd->vdev_spa;
2908	dmu_tx_t *tx;
2909
2910	ASSERT(vd == vd->vdev_top);
2911	ASSERT3U(txg, ==, spa_syncing_txg(spa));
2912
2913	if (vd->vdev_ms != NULL) {
2914		metaslab_group_t *mg = vd->vdev_mg;
2915
2916		metaslab_group_histogram_verify(mg);
2917		metaslab_class_histogram_verify(mg->mg_class);
2918
2919		for (int m = 0; m < vd->vdev_ms_count; m++) {
2920			metaslab_t *msp = vd->vdev_ms[m];
2921
2922			if (msp == NULL || msp->ms_sm == NULL)
2923				continue;
2924
2925			mutex_enter(&msp->ms_lock);
2926			/*
2927			 * If the metaslab was not loaded when the vdev
2928			 * was removed then the histogram accounting may
2929			 * not be accurate. Update the histogram information
2930			 * here so that we ensure that the metaslab group
2931			 * and metaslab class are up-to-date.
2932			 */
2933			metaslab_group_histogram_remove(mg, msp);
2934
2935			VERIFY0(space_map_allocated(msp->ms_sm));
2936			space_map_close(msp->ms_sm);
2937			msp->ms_sm = NULL;
2938			mutex_exit(&msp->ms_lock);
2939		}
2940
2941		if (vd->vdev_checkpoint_sm != NULL) {
2942			ASSERT(spa_has_checkpoint(spa));
2943			space_map_close(vd->vdev_checkpoint_sm);
2944			vd->vdev_checkpoint_sm = NULL;
2945		}
2946
2947		metaslab_group_histogram_verify(mg);
2948		metaslab_class_histogram_verify(mg->mg_class);
2949		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2950			ASSERT0(mg->mg_histogram[i]);
2951	}
2952
2953	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2954	vdev_destroy_spacemaps(vd, tx);
2955
2956	if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2957		vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2958		vd->vdev_top_zap = 0;
2959	}
2960	dmu_tx_commit(tx);
2961}
2962
2963void
2964vdev_sync_done(vdev_t *vd, uint64_t txg)
2965{
2966	metaslab_t *msp;
2967	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2968
2969	ASSERT(vdev_is_concrete(vd));
2970
2971	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2972		metaslab_sync_done(msp, txg);
2973
2974	if (reassess)
2975		metaslab_sync_reassess(vd->vdev_mg);
2976}
2977
2978void
2979vdev_sync(vdev_t *vd, uint64_t txg)
2980{
2981	spa_t *spa = vd->vdev_spa;
2982	vdev_t *lvd;
2983	metaslab_t *msp;
2984	dmu_tx_t *tx;
2985
2986	if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2987		dmu_tx_t *tx;
2988
2989		ASSERT(vd->vdev_removing ||
2990		    vd->vdev_ops == &vdev_indirect_ops);
2991
2992		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2993		vdev_indirect_sync_obsolete(vd, tx);
2994		dmu_tx_commit(tx);
2995
2996		/*
2997		 * If the vdev is indirect, it can't have dirty
2998		 * metaslabs or DTLs.
2999		 */
3000		if (vd->vdev_ops == &vdev_indirect_ops) {
3001			ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3002			ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3003			return;
3004		}
3005	}
3006
3007	ASSERT(vdev_is_concrete(vd));
3008
3009	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3010	    !vd->vdev_removing) {
3011		ASSERT(vd == vd->vdev_top);
3012		ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3013		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3014		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3015		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3016		ASSERT(vd->vdev_ms_array != 0);
3017		vdev_config_dirty(vd);
3018		dmu_tx_commit(tx);
3019	}
3020
3021	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3022		metaslab_sync(msp, txg);
3023		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3024	}
3025
3026	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3027		vdev_dtl_sync(lvd, txg);
3028
3029	/*
3030	 * Remove the metadata associated with this vdev once it's empty.
3031	 * Note that this is typically used for log/cache device removal;
3032	 * we don't empty toplevel vdevs when removing them.  But if
3033	 * a toplevel happens to be emptied, this is not harmful.
3034	 */
3035	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
3036		vdev_remove_empty(vd, txg);
3037	}
3038
3039	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3040}
3041
3042uint64_t
3043vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3044{
3045	return (vd->vdev_ops->vdev_op_asize(vd, psize));
3046}
3047
3048/*
3049 * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3050 * not be opened, and no I/O is attempted.
3051 */
3052int
3053vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3054{
3055	vdev_t *vd, *tvd;
3056
3057	spa_vdev_state_enter(spa, SCL_NONE);
3058
3059	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3060		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3061
3062	if (!vd->vdev_ops->vdev_op_leaf)
3063		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3064
3065	tvd = vd->vdev_top;
3066
3067	/*
3068	 * We don't directly use the aux state here, but if we do a
3069	 * vdev_reopen(), we need this value to be present to remember why we
3070	 * were faulted.
3071	 */
3072	vd->vdev_label_aux = aux;
3073
3074	/*
3075	 * Faulted state takes precedence over degraded.
3076	 */
3077	vd->vdev_delayed_close = B_FALSE;
3078	vd->vdev_faulted = 1ULL;
3079	vd->vdev_degraded = 0ULL;
3080	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3081
3082	/*
3083	 * If this device has the only valid copy of the data, then
3084	 * back off and simply mark the vdev as degraded instead.
3085	 */
3086	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3087		vd->vdev_degraded = 1ULL;
3088		vd->vdev_faulted = 0ULL;
3089
3090		/*
3091		 * If we reopen the device and it's not dead, only then do we
3092		 * mark it degraded.
3093		 */
3094		vdev_reopen(tvd);
3095
3096		if (vdev_readable(vd))
3097			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3098	}
3099
3100	return (spa_vdev_state_exit(spa, vd, 0));
3101}
3102
3103/*
3104 * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3105 * user that something is wrong.  The vdev continues to operate as normal as far
3106 * as I/O is concerned.
3107 */
3108int
3109vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3110{
3111	vdev_t *vd;
3112
3113	spa_vdev_state_enter(spa, SCL_NONE);
3114
3115	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3116		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3117
3118	if (!vd->vdev_ops->vdev_op_leaf)
3119		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3120
3121	/*
3122	 * If the vdev is already faulted, then don't do anything.
3123	 */
3124	if (vd->vdev_faulted || vd->vdev_degraded)
3125		return (spa_vdev_state_exit(spa, NULL, 0));
3126
3127	vd->vdev_degraded = 1ULL;
3128	if (!vdev_is_dead(vd))
3129		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3130		    aux);
3131
3132	return (spa_vdev_state_exit(spa, vd, 0));
3133}
3134
3135/*
3136 * Online the given vdev.
3137 *
3138 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3139 * spare device should be detached when the device finishes resilvering.
3140 * Second, the online should be treated like a 'test' online case, so no FMA
3141 * events are generated if the device fails to open.
3142 */
3143int
3144vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3145{
3146	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3147	boolean_t wasoffline;
3148	vdev_state_t oldstate;
3149
3150	spa_vdev_state_enter(spa, SCL_NONE);
3151
3152	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3153		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3154
3155	if (!vd->vdev_ops->vdev_op_leaf)
3156		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3157
3158	wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3159	oldstate = vd->vdev_state;
3160
3161	tvd = vd->vdev_top;
3162	vd->vdev_offline = B_FALSE;
3163	vd->vdev_tmpoffline = B_FALSE;
3164	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3165	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3166
3167	/* XXX - L2ARC 1.0 does not support expansion */
3168	if (!vd->vdev_aux) {
3169		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3170			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3171	}
3172
3173	vdev_reopen(tvd);
3174	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3175
3176	if (!vd->vdev_aux) {
3177		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3178			pvd->vdev_expanding = B_FALSE;
3179	}
3180
3181	if (newstate)
3182		*newstate = vd->vdev_state;
3183	if ((flags & ZFS_ONLINE_UNSPARE) &&
3184	    !vdev_is_dead(vd) && vd->vdev_parent &&
3185	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3186	    vd->vdev_parent->vdev_child[0] == vd)
3187		vd->vdev_unspare = B_TRUE;
3188
3189	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3190
3191		/* XXX - L2ARC 1.0 does not support expansion */
3192		if (vd->vdev_aux)
3193			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3194		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3195	}
3196
3197	if (wasoffline ||
3198	    (oldstate < VDEV_STATE_DEGRADED &&
3199	    vd->vdev_state >= VDEV_STATE_DEGRADED))
3200		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3201
3202	return (spa_vdev_state_exit(spa, vd, 0));
3203}
3204
3205static int
3206vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3207{
3208	vdev_t *vd, *tvd;
3209	int error = 0;
3210	uint64_t generation;
3211	metaslab_group_t *mg;
3212
3213top:
3214	spa_vdev_state_enter(spa, SCL_ALLOC);
3215
3216	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3217		return (spa_vdev_state_exit(spa, NULL, ENODEV));
3218
3219	if (!vd->vdev_ops->vdev_op_leaf)
3220		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3221
3222	tvd = vd->vdev_top;
3223	mg = tvd->vdev_mg;
3224	generation = spa->spa_config_generation + 1;
3225
3226	/*
3227	 * If the device isn't already offline, try to offline it.
3228	 */
3229	if (!vd->vdev_offline) {
3230		/*
3231		 * If this device has the only valid copy of some data,
3232		 * don't allow it to be offlined. Log devices are always
3233		 * expendable.
3234		 */
3235		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3236		    vdev_dtl_required(vd))
3237			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3238
3239		/*
3240		 * If the top-level is a slog and it has had allocations
3241		 * then proceed.  We check that the vdev's metaslab group
3242		 * is not NULL since it's possible that we may have just
3243		 * added this vdev but not yet initialized its metaslabs.
3244		 */
3245		if (tvd->vdev_islog && mg != NULL) {
3246			/*
3247			 * Prevent any future allocations.
3248			 */
3249			metaslab_group_passivate(mg);
3250			(void) spa_vdev_state_exit(spa, vd, 0);
3251
3252			error = spa_reset_logs(spa);
3253
3254			/*
3255			 * If the log device was successfully reset but has
3256			 * checkpointed data, do not offline it.
3257			 */
3258			if (error == 0 &&
3259			    tvd->vdev_checkpoint_sm != NULL) {
3260				ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3261				    !=, 0);
3262				error = ZFS_ERR_CHECKPOINT_EXISTS;
3263			}
3264
3265			spa_vdev_state_enter(spa, SCL_ALLOC);
3266
3267			/*
3268			 * Check to see if the config has changed.
3269			 */
3270			if (error || generation != spa->spa_config_generation) {
3271				metaslab_group_activate(mg);
3272				if (error)
3273					return (spa_vdev_state_exit(spa,
3274					    vd, error));
3275				(void) spa_vdev_state_exit(spa, vd, 0);
3276				goto top;
3277			}
3278			ASSERT0(tvd->vdev_stat.vs_alloc);
3279		}
3280
3281		/*
3282		 * Offline this device and reopen its top-level vdev.
3283		 * If the top-level vdev is a log device then just offline
3284		 * it. Otherwise, if this action results in the top-level
3285		 * vdev becoming unusable, undo it and fail the request.
3286		 */
3287		vd->vdev_offline = B_TRUE;
3288		vdev_reopen(tvd);
3289
3290		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3291		    vdev_is_dead(tvd)) {
3292			vd->vdev_offline = B_FALSE;
3293			vdev_reopen(tvd);
3294			return (spa_vdev_state_exit(spa, NULL, EBUSY));
3295		}
3296
3297		/*
3298		 * Add the device back into the metaslab rotor so that
3299		 * once we online the device it's open for business.
3300		 */
3301		if (tvd->vdev_islog && mg != NULL)
3302			metaslab_group_activate(mg);
3303	}
3304
3305	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3306
3307	return (spa_vdev_state_exit(spa, vd, 0));
3308}
3309
3310int
3311vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3312{
3313	int error;
3314
3315	mutex_enter(&spa->spa_vdev_top_lock);
3316	error = vdev_offline_locked(spa, guid, flags);
3317	mutex_exit(&spa->spa_vdev_top_lock);
3318
3319	return (error);
3320}
3321
3322/*
3323 * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3324 * vdev_offline(), we assume the spa config is locked.  We also clear all
3325 * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3326 */
3327void
3328vdev_clear(spa_t *spa, vdev_t *vd)
3329{
3330	vdev_t *rvd = spa->spa_root_vdev;
3331
3332	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3333
3334	if (vd == NULL)
3335		vd = rvd;
3336
3337	vd->vdev_stat.vs_read_errors = 0;
3338	vd->vdev_stat.vs_write_errors = 0;
3339	vd->vdev_stat.vs_checksum_errors = 0;
3340
3341	for (int c = 0; c < vd->vdev_children; c++)
3342		vdev_clear(spa, vd->vdev_child[c]);
3343
3344	if (vd == rvd) {
3345		for (int c = 0; c < spa->spa_l2cache.sav_count; c++)
3346			vdev_clear(spa, spa->spa_l2cache.sav_vdevs[c]);
3347
3348		for (int c = 0; c < spa->spa_spares.sav_count; c++)
3349			vdev_clear(spa, spa->spa_spares.sav_vdevs[c]);
3350	}
3351
3352	/*
3353	 * It makes no sense to "clear" an indirect vdev.
3354	 */
3355	if (!vdev_is_concrete(vd))
3356		return;
3357
3358	/*
3359	 * If we're in the FAULTED state or have experienced failed I/O, then
3360	 * clear the persistent state and attempt to reopen the device.  We
3361	 * also mark the vdev config dirty, so that the new faulted state is
3362	 * written out to disk.
3363	 */
3364	if (vd->vdev_faulted || vd->vdev_degraded ||
3365	    !vdev_readable(vd) || !vdev_writeable(vd)) {
3366
3367		/*
3368		 * When reopening in reponse to a clear event, it may be due to
3369		 * a fmadm repair request.  In this case, if the device is
3370		 * still broken, we want to still post the ereport again.
3371		 */
3372		vd->vdev_forcefault = B_TRUE;
3373
3374		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3375		vd->vdev_cant_read = B_FALSE;
3376		vd->vdev_cant_write = B_FALSE;
3377
3378		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3379
3380		vd->vdev_forcefault = B_FALSE;
3381
3382		if (vd != rvd && vdev_writeable(vd->vdev_top))
3383			vdev_state_dirty(vd->vdev_top);
3384
3385		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3386			spa_async_request(spa, SPA_ASYNC_RESILVER);
3387
3388		spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3389	}
3390
3391	/*
3392	 * When clearing a FMA-diagnosed fault, we always want to
3393	 * unspare the device, as we assume that the original spare was
3394	 * done in response to the FMA fault.
3395	 */
3396	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3397	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3398	    vd->vdev_parent->vdev_child[0] == vd)
3399		vd->vdev_unspare = B_TRUE;
3400}
3401
3402boolean_t
3403vdev_is_dead(vdev_t *vd)
3404{
3405	/*
3406	 * Holes and missing devices are always considered "dead".
3407	 * This simplifies the code since we don't have to check for
3408	 * these types of devices in the various code paths.
3409	 * Instead we rely on the fact that we skip over dead devices
3410	 * before issuing I/O to them.
3411	 */
3412	return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3413	    vd->vdev_ops == &vdev_hole_ops ||
3414	    vd->vdev_ops == &vdev_missing_ops);
3415}
3416
3417boolean_t
3418vdev_readable(vdev_t *vd)
3419{
3420	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3421}
3422
3423boolean_t
3424vdev_writeable(vdev_t *vd)
3425{
3426	return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3427	    vdev_is_concrete(vd));
3428}
3429
3430boolean_t
3431vdev_allocatable(vdev_t *vd)
3432{
3433	uint64_t state = vd->vdev_state;
3434
3435	/*
3436	 * We currently allow allocations from vdevs which may be in the
3437	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3438	 * fails to reopen then we'll catch it later when we're holding
3439	 * the proper locks.  Note that we have to get the vdev state
3440	 * in a local variable because although it changes atomically,
3441	 * we're asking two separate questions about it.
3442	 */
3443	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3444	    !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3445	    vd->vdev_mg->mg_initialized);
3446}
3447
3448boolean_t
3449vdev_accessible(vdev_t *vd, zio_t *zio)
3450{
3451	ASSERT(zio->io_vd == vd);
3452
3453	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3454		return (B_FALSE);
3455
3456	if (zio->io_type == ZIO_TYPE_READ)
3457		return (!vd->vdev_cant_read);
3458
3459	if (zio->io_type == ZIO_TYPE_WRITE)
3460		return (!vd->vdev_cant_write);
3461
3462	return (B_TRUE);
3463}
3464
3465boolean_t
3466vdev_is_spacemap_addressable(vdev_t *vd)
3467{
3468	/*
3469	 * Assuming 47 bits of the space map entry dedicated for the entry's
3470	 * offset (see description in space_map.h), we calculate the maximum
3471	 * address that can be described by a space map entry for the given
3472	 * device.
3473	 */
3474	uint64_t shift = vd->vdev_ashift + 47;
3475
3476	if (shift >= 63) /* detect potential overflow */
3477		return (B_TRUE);
3478
3479	return (vd->vdev_asize < (1ULL << shift));
3480}
3481
3482/*
3483 * Get statistics for the given vdev.
3484 */
3485void
3486vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3487{
3488	spa_t *spa = vd->vdev_spa;
3489	vdev_t *rvd = spa->spa_root_vdev;
3490	vdev_t *tvd = vd->vdev_top;
3491
3492	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
3493
3494	mutex_enter(&vd->vdev_stat_lock);
3495	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3496	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3497	vs->vs_state = vd->vdev_state;
3498	vs->vs_rsize = vdev_get_min_asize(vd);
3499	if (vd->vdev_ops->vdev_op_leaf)
3500		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
3501	/*
3502	 * Report expandable space on top-level, non-auxillary devices only.
3503	 * The expandable space is reported in terms of metaslab sized units
3504	 * since that determines how much space the pool can expand.
3505	 */
3506	if (vd->vdev_aux == NULL && tvd != NULL && vd->vdev_max_asize != 0) {
3507		vs->vs_esize = P2ALIGN(vd->vdev_max_asize - vd->vdev_asize -
3508		    spa->spa_bootsize, 1ULL << tvd->vdev_ms_shift);
3509	}
3510	vs->vs_configured_ashift = vd->vdev_top != NULL
3511	    ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
3512	vs->vs_logical_ashift = vd->vdev_logical_ashift;
3513	vs->vs_physical_ashift = vd->vdev_physical_ashift;
3514	if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3515	    vdev_is_concrete(vd)) {
3516		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3517	}
3518
3519	/*
3520	 * If we're getting stats on the root vdev, aggregate the I/O counts
3521	 * over all top-level vdevs (i.e. the direct children of the root).
3522	 */
3523	if (vd == rvd) {
3524		for (int c = 0; c < rvd->vdev_children; c++) {
3525			vdev_t *cvd = rvd->vdev_child[c];
3526			vdev_stat_t *cvs = &cvd->vdev_stat;
3527
3528			for (int t = 0; t < ZIO_TYPES; t++) {
3529				vs->vs_ops[t] += cvs->vs_ops[t];
3530				vs->vs_bytes[t] += cvs->vs_bytes[t];
3531			}
3532			cvs->vs_scan_removing = cvd->vdev_removing;
3533		}
3534	}
3535	mutex_exit(&vd->vdev_stat_lock);
3536}
3537
3538void
3539vdev_clear_stats(vdev_t *vd)
3540{
3541	mutex_enter(&vd->vdev_stat_lock);
3542	vd->vdev_stat.vs_space = 0;
3543	vd->vdev_stat.vs_dspace = 0;
3544	vd->vdev_stat.vs_alloc = 0;
3545	mutex_exit(&vd->vdev_stat_lock);
3546}
3547
3548void
3549vdev_scan_stat_init(vdev_t *vd)
3550{
3551	vdev_stat_t *vs = &vd->vdev_stat;
3552
3553	for (int c = 0; c < vd->vdev_children; c++)
3554		vdev_scan_stat_init(vd->vdev_child[c]);
3555
3556	mutex_enter(&vd->vdev_stat_lock);
3557	vs->vs_scan_processed = 0;
3558	mutex_exit(&vd->vdev_stat_lock);
3559}
3560
3561void
3562vdev_stat_update(zio_t *zio, uint64_t psize)
3563{
3564	spa_t *spa = zio->io_spa;
3565	vdev_t *rvd = spa->spa_root_vdev;
3566	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3567	vdev_t *pvd;
3568	uint64_t txg = zio->io_txg;
3569	vdev_stat_t *vs = &vd->vdev_stat;
3570	zio_type_t type = zio->io_type;
3571	int flags = zio->io_flags;
3572
3573	/*
3574	 * If this i/o is a gang leader, it didn't do any actual work.
3575	 */
3576	if (zio->io_gang_tree)
3577		return;
3578
3579	if (zio->io_error == 0) {
3580		/*
3581		 * If this is a root i/o, don't count it -- we've already
3582		 * counted the top-level vdevs, and vdev_get_stats() will
3583		 * aggregate them when asked.  This reduces contention on
3584		 * the root vdev_stat_lock and implicitly handles blocks
3585		 * that compress away to holes, for which there is no i/o.
3586		 * (Holes never create vdev children, so all the counters
3587		 * remain zero, which is what we want.)
3588		 *
3589		 * Note: this only applies to successful i/o (io_error == 0)
3590		 * because unlike i/o counts, errors are not additive.
3591		 * When reading a ditto block, for example, failure of
3592		 * one top-level vdev does not imply a root-level error.
3593		 */
3594		if (vd == rvd)
3595			return;
3596
3597		ASSERT(vd == zio->io_vd);
3598
3599		if (flags & ZIO_FLAG_IO_BYPASS)
3600			return;
3601
3602		mutex_enter(&vd->vdev_stat_lock);
3603
3604		if (flags & ZIO_FLAG_IO_REPAIR) {
3605			if (flags & ZIO_FLAG_SCAN_THREAD) {
3606				dsl_scan_phys_t *scn_phys =
3607				    &spa->spa_dsl_pool->dp_scan->scn_phys;
3608				uint64_t *processed = &scn_phys->scn_processed;
3609
3610				/* XXX cleanup? */
3611				if (vd->vdev_ops->vdev_op_leaf)
3612					atomic_add_64(processed, psize);
3613				vs->vs_scan_processed += psize;
3614			}
3615
3616			if (flags & ZIO_FLAG_SELF_HEAL)
3617				vs->vs_self_healed += psize;
3618		}
3619
3620		vs->vs_ops[type]++;
3621		vs->vs_bytes[type] += psize;
3622
3623		mutex_exit(&vd->vdev_stat_lock);
3624		return;
3625	}
3626
3627	if (flags & ZIO_FLAG_SPECULATIVE)
3628		return;
3629
3630	/*
3631	 * If this is an I/O error that is going to be retried, then ignore the
3632	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3633	 * hard errors, when in reality they can happen for any number of
3634	 * innocuous reasons (bus resets, MPxIO link failure, etc).
3635	 */
3636	if (zio->io_error == EIO &&
3637	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3638		return;
3639
3640	/*
3641	 * Intent logs writes won't propagate their error to the root
3642	 * I/O so don't mark these types of failures as pool-level
3643	 * errors.
3644	 */
3645	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3646		return;
3647
3648	mutex_enter(&vd->vdev_stat_lock);
3649	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3650		if (zio->io_error == ECKSUM)
3651			vs->vs_checksum_errors++;
3652		else
3653			vs->vs_read_errors++;
3654	}
3655	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3656		vs->vs_write_errors++;
3657	mutex_exit(&vd->vdev_stat_lock);
3658
3659	if (spa->spa_load_state == SPA_LOAD_NONE &&
3660	    type == ZIO_TYPE_WRITE && txg != 0 &&
3661	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
3662	    (flags & ZIO_FLAG_SCAN_THREAD) ||
3663	    spa->spa_claiming)) {
3664		/*
3665		 * This is either a normal write (not a repair), or it's
3666		 * a repair induced by the scrub thread, or it's a repair
3667		 * made by zil_claim() during spa_load() in the first txg.
3668		 * In the normal case, we commit the DTL change in the same
3669		 * txg as the block was born.  In the scrub-induced repair
3670		 * case, we know that scrubs run in first-pass syncing context,
3671		 * so we commit the DTL change in spa_syncing_txg(spa).
3672		 * In the zil_claim() case, we commit in spa_first_txg(spa).
3673		 *
3674		 * We currently do not make DTL entries for failed spontaneous
3675		 * self-healing writes triggered by normal (non-scrubbing)
3676		 * reads, because we have no transactional context in which to
3677		 * do so -- and it's not clear that it'd be desirable anyway.
3678		 */
3679		if (vd->vdev_ops->vdev_op_leaf) {
3680			uint64_t commit_txg = txg;
3681			if (flags & ZIO_FLAG_SCAN_THREAD) {
3682				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3683				ASSERT(spa_sync_pass(spa) == 1);
3684				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3685				commit_txg = spa_syncing_txg(spa);
3686			} else if (spa->spa_claiming) {
3687				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3688				commit_txg = spa_first_txg(spa);
3689			}
3690			ASSERT(commit_txg >= spa_syncing_txg(spa));
3691			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3692				return;
3693			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3694				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3695			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3696		}
3697		if (vd != rvd)
3698			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3699	}
3700}
3701
3702/*
3703 * Update the in-core space usage stats for this vdev, its metaslab class,
3704 * and the root vdev.
3705 */
3706void
3707vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3708    int64_t space_delta)
3709{
3710	int64_t dspace_delta = space_delta;
3711	spa_t *spa = vd->vdev_spa;
3712	vdev_t *rvd = spa->spa_root_vdev;
3713	metaslab_group_t *mg = vd->vdev_mg;
3714	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3715
3716	ASSERT(vd == vd->vdev_top);
3717
3718	/*
3719	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3720	 * factor.  We must calculate this here and not at the root vdev
3721	 * because the root vdev's psize-to-asize is simply the max of its
3722	 * childrens', thus not accurate enough for us.
3723	 */
3724	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3725	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3726	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3727	    vd->vdev_deflate_ratio;
3728
3729	mutex_enter(&vd->vdev_stat_lock);
3730	vd->vdev_stat.vs_alloc += alloc_delta;
3731	vd->vdev_stat.vs_space += space_delta;
3732	vd->vdev_stat.vs_dspace += dspace_delta;
3733	mutex_exit(&vd->vdev_stat_lock);
3734
3735	if (mc == spa_normal_class(spa)) {
3736		mutex_enter(&rvd->vdev_stat_lock);
3737		rvd->vdev_stat.vs_alloc += alloc_delta;
3738		rvd->vdev_stat.vs_space += space_delta;
3739		rvd->vdev_stat.vs_dspace += dspace_delta;
3740		mutex_exit(&rvd->vdev_stat_lock);
3741	}
3742
3743	if (mc != NULL) {
3744		ASSERT(rvd == vd->vdev_parent);
3745		ASSERT(vd->vdev_ms_count != 0);
3746
3747		metaslab_class_space_update(mc,
3748		    alloc_delta, defer_delta, space_delta, dspace_delta);
3749	}
3750}
3751
3752/*
3753 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3754 * so that it will be written out next time the vdev configuration is synced.
3755 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3756 */
3757void
3758vdev_config_dirty(vdev_t *vd)
3759{
3760	spa_t *spa = vd->vdev_spa;
3761	vdev_t *rvd = spa->spa_root_vdev;
3762	int c;
3763
3764	ASSERT(spa_writeable(spa));
3765
3766	/*
3767	 * If this is an aux vdev (as with l2cache and spare devices), then we
3768	 * update the vdev config manually and set the sync flag.
3769	 */
3770	if (vd->vdev_aux != NULL) {
3771		spa_aux_vdev_t *sav = vd->vdev_aux;
3772		nvlist_t **aux;
3773		uint_t naux;
3774
3775		for (c = 0; c < sav->sav_count; c++) {
3776			if (sav->sav_vdevs[c] == vd)
3777				break;
3778		}
3779
3780		if (c == sav->sav_count) {
3781			/*
3782			 * We're being removed.  There's nothing more to do.
3783			 */
3784			ASSERT(sav->sav_sync == B_TRUE);
3785			return;
3786		}
3787
3788		sav->sav_sync = B_TRUE;
3789
3790		if (nvlist_lookup_nvlist_array(sav->sav_config,
3791		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3792			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3793			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3794		}
3795
3796		ASSERT(c < naux);
3797
3798		/*
3799		 * Setting the nvlist in the middle if the array is a little
3800		 * sketchy, but it will work.
3801		 */
3802		nvlist_free(aux[c]);
3803		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3804
3805		return;
3806	}
3807
3808	/*
3809	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
3810	 * must either hold SCL_CONFIG as writer, or must be the sync thread
3811	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3812	 * so this is sufficient to ensure mutual exclusion.
3813	 */
3814	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3815	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3816	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3817
3818	if (vd == rvd) {
3819		for (c = 0; c < rvd->vdev_children; c++)
3820			vdev_config_dirty(rvd->vdev_child[c]);
3821	} else {
3822		ASSERT(vd == vd->vdev_top);
3823
3824		if (!list_link_active(&vd->vdev_config_dirty_node) &&
3825		    vdev_is_concrete(vd)) {
3826			list_insert_head(&spa->spa_config_dirty_list, vd);
3827		}
3828	}
3829}
3830
3831void
3832vdev_config_clean(vdev_t *vd)
3833{
3834	spa_t *spa = vd->vdev_spa;
3835
3836	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3837	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3838	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
3839
3840	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3841	list_remove(&spa->spa_config_dirty_list, vd);
3842}
3843
3844/*
3845 * Mark a top-level vdev's state as dirty, so that the next pass of
3846 * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3847 * the state changes from larger config changes because they require
3848 * much less locking, and are often needed for administrative actions.
3849 */
3850void
3851vdev_state_dirty(vdev_t *vd)
3852{
3853	spa_t *spa = vd->vdev_spa;
3854
3855	ASSERT(spa_writeable(spa));
3856	ASSERT(vd == vd->vdev_top);
3857
3858	/*
3859	 * The state list is protected by the SCL_STATE lock.  The caller
3860	 * must either hold SCL_STATE as writer, or must be the sync thread
3861	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3862	 * so this is sufficient to ensure mutual exclusion.
3863	 */
3864	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3865	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3866	    spa_config_held(spa, SCL_STATE, RW_READER)));
3867
3868	if (!list_link_active(&vd->vdev_state_dirty_node) &&
3869	    vdev_is_concrete(vd))
3870		list_insert_head(&spa->spa_state_dirty_list, vd);
3871}
3872
3873void
3874vdev_state_clean(vdev_t *vd)
3875{
3876	spa_t *spa = vd->vdev_spa;
3877
3878	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3879	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3880	    spa_config_held(spa, SCL_STATE, RW_READER)));
3881
3882	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3883	list_remove(&spa->spa_state_dirty_list, vd);
3884}
3885
3886/*
3887 * Propagate vdev state up from children to parent.
3888 */
3889void
3890vdev_propagate_state(vdev_t *vd)
3891{
3892	spa_t *spa = vd->vdev_spa;
3893	vdev_t *rvd = spa->spa_root_vdev;
3894	int degraded = 0, faulted = 0;
3895	int corrupted = 0;
3896	vdev_t *child;
3897
3898	if (vd->vdev_children > 0) {
3899		for (int c = 0; c < vd->vdev_children; c++) {
3900			child = vd->vdev_child[c];
3901
3902			/*
3903			 * Don't factor holes or indirect vdevs into the
3904			 * decision.
3905			 */
3906			if (!vdev_is_concrete(child))
3907				continue;
3908
3909			if (!vdev_readable(child) ||
3910			    (!vdev_writeable(child) && spa_writeable(spa))) {
3911				/*
3912				 * Root special: if there is a top-level log
3913				 * device, treat the root vdev as if it were
3914				 * degraded.
3915				 */
3916				if (child->vdev_islog && vd == rvd)
3917					degraded++;
3918				else
3919					faulted++;
3920			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3921				degraded++;
3922			}
3923
3924			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3925				corrupted++;
3926		}
3927
3928		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3929
3930		/*
3931		 * Root special: if there is a top-level vdev that cannot be
3932		 * opened due to corrupted metadata, then propagate the root
3933		 * vdev's aux state as 'corrupt' rather than 'insufficient
3934		 * replicas'.
3935		 */
3936		if (corrupted && vd == rvd &&
3937		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3938			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3939			    VDEV_AUX_CORRUPT_DATA);
3940	}
3941
3942	if (vd->vdev_parent)
3943		vdev_propagate_state(vd->vdev_parent);
3944}
3945
3946/*
3947 * Set a vdev's state.  If this is during an open, we don't update the parent
3948 * state, because we're in the process of opening children depth-first.
3949 * Otherwise, we propagate the change to the parent.
3950 *
3951 * If this routine places a device in a faulted state, an appropriate ereport is
3952 * generated.
3953 */
3954void
3955vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3956{
3957	uint64_t save_state;
3958	spa_t *spa = vd->vdev_spa;
3959
3960	if (state == vd->vdev_state) {
3961		vd->vdev_stat.vs_aux = aux;
3962		return;
3963	}
3964
3965	save_state = vd->vdev_state;
3966
3967	vd->vdev_state = state;
3968	vd->vdev_stat.vs_aux = aux;
3969
3970	/*
3971	 * If we are setting the vdev state to anything but an open state, then
3972	 * always close the underlying device unless the device has requested
3973	 * a delayed close (i.e. we're about to remove or fault the device).
3974	 * Otherwise, we keep accessible but invalid devices open forever.
3975	 * We don't call vdev_close() itself, because that implies some extra
3976	 * checks (offline, etc) that we don't want here.  This is limited to
3977	 * leaf devices, because otherwise closing the device will affect other
3978	 * children.
3979	 */
3980	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3981	    vd->vdev_ops->vdev_op_leaf)
3982		vd->vdev_ops->vdev_op_close(vd);
3983
3984	if (vd->vdev_removed &&
3985	    state == VDEV_STATE_CANT_OPEN &&
3986	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3987		/*
3988		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3989		 * device was previously marked removed and someone attempted to
3990		 * reopen it.  If this failed due to a nonexistent device, then
3991		 * keep the device in the REMOVED state.  We also let this be if
3992		 * it is one of our special test online cases, which is only
3993		 * attempting to online the device and shouldn't generate an FMA
3994		 * fault.
3995		 */
3996		vd->vdev_state = VDEV_STATE_REMOVED;
3997		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3998	} else if (state == VDEV_STATE_REMOVED) {
3999		vd->vdev_removed = B_TRUE;
4000	} else if (state == VDEV_STATE_CANT_OPEN) {
4001		/*
4002		 * If we fail to open a vdev during an import or recovery, we
4003		 * mark it as "not available", which signifies that it was
4004		 * never there to begin with.  Failure to open such a device
4005		 * is not considered an error.
4006		 */
4007		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4008		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4009		    vd->vdev_ops->vdev_op_leaf)
4010			vd->vdev_not_present = 1;
4011
4012		/*
4013		 * Post the appropriate ereport.  If the 'prevstate' field is
4014		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4015		 * that this is part of a vdev_reopen().  In this case, we don't
4016		 * want to post the ereport if the device was already in the
4017		 * CANT_OPEN state beforehand.
4018		 *
4019		 * If the 'checkremove' flag is set, then this is an attempt to
4020		 * online the device in response to an insertion event.  If we
4021		 * hit this case, then we have detected an insertion event for a
4022		 * faulted or offline device that wasn't in the removed state.
4023		 * In this scenario, we don't post an ereport because we are
4024		 * about to replace the device, or attempt an online with
4025		 * vdev_forcefault, which will generate the fault for us.
4026		 */
4027		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4028		    !vd->vdev_not_present && !vd->vdev_checkremove &&
4029		    vd != spa->spa_root_vdev) {
4030			const char *class;
4031
4032			switch (aux) {
4033			case VDEV_AUX_OPEN_FAILED:
4034				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4035				break;
4036			case VDEV_AUX_CORRUPT_DATA:
4037				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4038				break;
4039			case VDEV_AUX_NO_REPLICAS:
4040				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4041				break;
4042			case VDEV_AUX_BAD_GUID_SUM:
4043				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4044				break;
4045			case VDEV_AUX_TOO_SMALL:
4046				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4047				break;
4048			case VDEV_AUX_BAD_LABEL:
4049				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4050				break;
4051			default:
4052				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4053			}
4054
4055			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
4056		}
4057
4058		/* Erase any notion of persistent removed state */
4059		vd->vdev_removed = B_FALSE;
4060	} else {
4061		vd->vdev_removed = B_FALSE;
4062	}
4063
4064	/*
4065	* Notify the fmd of the state change.  Be verbose and post
4066	* notifications even for stuff that's not important; the fmd agent can
4067	* sort it out.  Don't emit state change events for non-leaf vdevs since
4068	* they can't change state on their own.  The FMD can check their state
4069	* if it wants to when it sees that a leaf vdev had a state change.
4070	*/
4071	if (vd->vdev_ops->vdev_op_leaf)
4072		zfs_post_state_change(spa, vd);
4073
4074	if (!isopen && vd->vdev_parent)
4075		vdev_propagate_state(vd->vdev_parent);
4076}
4077
4078boolean_t
4079vdev_children_are_offline(vdev_t *vd)
4080{
4081	ASSERT(!vd->vdev_ops->vdev_op_leaf);
4082
4083	for (uint64_t i = 0; i < vd->vdev_children; i++) {
4084		if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4085			return (B_FALSE);
4086	}
4087
4088	return (B_TRUE);
4089}
4090
4091/*
4092 * Check the vdev configuration to ensure that it's capable of supporting
4093 * a root pool. We do not support partial configuration.
4094 * In addition, only a single top-level vdev is allowed.
4095 *
4096 * FreeBSD does not have above limitations.
4097 */
4098boolean_t
4099vdev_is_bootable(vdev_t *vd)
4100{
4101#ifdef illumos
4102	if (!vd->vdev_ops->vdev_op_leaf) {
4103		char *vdev_type = vd->vdev_ops->vdev_op_type;
4104
4105		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
4106		    vd->vdev_children > 1) {
4107			return (B_FALSE);
4108		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4109		    strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4110			return (B_FALSE);
4111		}
4112	}
4113
4114	for (int c = 0; c < vd->vdev_children; c++) {
4115		if (!vdev_is_bootable(vd->vdev_child[c]))
4116			return (B_FALSE);
4117	}
4118#endif	/* illumos */
4119	return (B_TRUE);
4120}
4121
4122boolean_t
4123vdev_is_concrete(vdev_t *vd)
4124{
4125	vdev_ops_t *ops = vd->vdev_ops;
4126	if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4127	    ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4128		return (B_FALSE);
4129	} else {
4130		return (B_TRUE);
4131	}
4132}
4133
4134/*
4135 * Determine if a log device has valid content.  If the vdev was
4136 * removed or faulted in the MOS config then we know that
4137 * the content on the log device has already been written to the pool.
4138 */
4139boolean_t
4140vdev_log_state_valid(vdev_t *vd)
4141{
4142	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4143	    !vd->vdev_removed)
4144		return (B_TRUE);
4145
4146	for (int c = 0; c < vd->vdev_children; c++)
4147		if (vdev_log_state_valid(vd->vdev_child[c]))
4148			return (B_TRUE);
4149
4150	return (B_FALSE);
4151}
4152
4153/*
4154 * Expand a vdev if possible.
4155 */
4156void
4157vdev_expand(vdev_t *vd, uint64_t txg)
4158{
4159	ASSERT(vd->vdev_top == vd);
4160	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4161
4162	vdev_set_deflate_ratio(vd);
4163
4164	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4165	    vdev_is_concrete(vd)) {
4166		VERIFY(vdev_metaslab_init(vd, txg) == 0);
4167		vdev_config_dirty(vd);
4168	}
4169}
4170
4171/*
4172 * Split a vdev.
4173 */
4174void
4175vdev_split(vdev_t *vd)
4176{
4177	vdev_t *cvd, *pvd = vd->vdev_parent;
4178
4179	vdev_remove_child(pvd, vd);
4180	vdev_compact_children(pvd);
4181
4182	cvd = pvd->vdev_child[0];
4183	if (pvd->vdev_children == 1) {
4184		vdev_remove_parent(cvd);
4185		cvd->vdev_splitting = B_TRUE;
4186	}
4187	vdev_propagate_state(cvd);
4188}
4189
4190void
4191vdev_deadman(vdev_t *vd)
4192{
4193	for (int c = 0; c < vd->vdev_children; c++) {
4194		vdev_t *cvd = vd->vdev_child[c];
4195
4196		vdev_deadman(cvd);
4197	}
4198
4199	if (vd->vdev_ops->vdev_op_leaf) {
4200		vdev_queue_t *vq = &vd->vdev_queue;
4201
4202		mutex_enter(&vq->vq_lock);
4203		if (avl_numnodes(&vq->vq_active_tree) > 0) {
4204			spa_t *spa = vd->vdev_spa;
4205			zio_t *fio;
4206			uint64_t delta;
4207
4208			/*
4209			 * Look at the head of all the pending queues,
4210			 * if any I/O has been outstanding for longer than
4211			 * the spa_deadman_synctime we panic the system.
4212			 */
4213			fio = avl_first(&vq->vq_active_tree);
4214			delta = gethrtime() - fio->io_timestamp;
4215			if (delta > spa_deadman_synctime(spa)) {
4216				vdev_dbgmsg(vd, "SLOW IO: zio timestamp "
4217				    "%lluns, delta %lluns, last io %lluns",
4218				    fio->io_timestamp, (u_longlong_t)delta,
4219				    vq->vq_io_complete_ts);
4220				fm_panic("I/O to pool '%s' appears to be "
4221				    "hung on vdev guid %llu at '%s'.",
4222				    spa_name(spa),
4223				    (long long unsigned int) vd->vdev_guid,
4224				    vd->vdev_path);
4225			}
4226		}
4227		mutex_exit(&vq->vq_lock);
4228	}
4229}
4230