space_map.c revision 332547
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25/*
26 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/dnode.h>
34#include <sys/dsl_pool.h>
35#include <sys/zio.h>
36#include <sys/space_map.h>
37#include <sys/refcount.h>
38#include <sys/zfeature.h>
39
40SYSCTL_DECL(_vfs_zfs);
41
42/*
43 * Note on space map block size:
44 *
45 * The data for a given space map can be kept on blocks of any size.
46 * Larger blocks entail fewer i/o operations, but they also cause the
47 * DMU to keep more data in-core, and also to waste more i/o bandwidth
48 * when only a few blocks have changed since the last transaction group.
49 */
50
51/*
52 * Iterate through the space map, invoking the callback on each (non-debug)
53 * space map entry.
54 */
55int
56space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
57{
58	uint64_t *entry, *entry_map, *entry_map_end;
59	uint64_t bufsize, size, offset, end;
60	int error = 0;
61
62	end = space_map_length(sm);
63
64	bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
65	entry_map = zio_buf_alloc(bufsize);
66
67	if (end > bufsize) {
68		dmu_prefetch(sm->sm_os, space_map_object(sm), 0, bufsize,
69		    end - bufsize, ZIO_PRIORITY_SYNC_READ);
70	}
71
72	for (offset = 0; offset < end && error == 0; offset += bufsize) {
73		size = MIN(end - offset, bufsize);
74		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
75		VERIFY(size != 0);
76		ASSERT3U(sm->sm_blksz, !=, 0);
77
78		dprintf("object=%llu  offset=%llx  size=%llx\n",
79		    space_map_object(sm), offset, size);
80
81		error = dmu_read(sm->sm_os, space_map_object(sm), offset, size,
82		    entry_map, DMU_READ_PREFETCH);
83		if (error != 0)
84			break;
85
86		entry_map_end = entry_map + (size / sizeof (uint64_t));
87		for (entry = entry_map; entry < entry_map_end && error == 0;
88		    entry++) {
89			uint64_t e = *entry;
90			uint64_t offset, size;
91
92			if (SM_DEBUG_DECODE(e))	/* Skip debug entries */
93				continue;
94
95			offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
96			    sm->sm_start;
97			size = SM_RUN_DECODE(e) << sm->sm_shift;
98
99			VERIFY0(P2PHASE(offset, 1ULL << sm->sm_shift));
100			VERIFY0(P2PHASE(size, 1ULL << sm->sm_shift));
101			VERIFY3U(offset, >=, sm->sm_start);
102			VERIFY3U(offset + size, <=, sm->sm_start + sm->sm_size);
103			error = callback(SM_TYPE_DECODE(e), offset, size, arg);
104		}
105	}
106
107	zio_buf_free(entry_map, bufsize);
108	return (error);
109}
110
111/*
112 * Note: This function performs destructive actions - specifically
113 * it deletes entries from the end of the space map. Thus, callers
114 * should ensure that they are holding the appropriate locks for
115 * the space map that they provide.
116 */
117int
118space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
119    dmu_tx_t *tx)
120{
121	uint64_t bufsize, len;
122	uint64_t *entry_map;
123	int error = 0;
124
125	len = space_map_length(sm);
126	bufsize = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
127	entry_map = zio_buf_alloc(bufsize);
128
129	dmu_buf_will_dirty(sm->sm_dbuf, tx);
130
131	/*
132	 * Since we can't move the starting offset of the space map
133	 * (e.g there are reference on-disk pointing to it), we destroy
134	 * its entries incrementally starting from the end.
135	 *
136	 * The logic that follows is basically the same as the one used
137	 * in space_map_iterate() but it traverses the space map
138	 * backwards:
139	 *
140	 * 1] We figure out the size of the buffer that we want to use
141	 *    to read the on-disk space map entries.
142	 * 2] We figure out the offset at the end of the space map where
143	 *    we will start reading entries into our buffer.
144	 * 3] We read the on-disk entries into the buffer.
145	 * 4] We iterate over the entries from end to beginning calling
146	 *    the callback function on each one. As we move from entry
147	 *    to entry we decrease the size of the space map, deleting
148	 *    effectively each entry.
149	 * 5] If there are no more entries in the space map or the
150	 *    callback returns a value other than 0, we stop iterating
151	 *    over the space map. If there are entries remaining and
152	 *    the callback returned zero we go back to step [1].
153	 */
154	uint64_t offset = 0, size = 0;
155	while (len > 0 && error == 0) {
156		size = MIN(bufsize, len);
157
158		VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0);
159		VERIFY3U(size, >, 0);
160		ASSERT3U(sm->sm_blksz, !=, 0);
161
162		offset = len - size;
163
164		IMPLY(bufsize > len, offset == 0);
165		IMPLY(bufsize == len, offset == 0);
166		IMPLY(bufsize < len, offset > 0);
167
168
169		EQUIV(size == len, offset == 0);
170		IMPLY(size < len, bufsize < len);
171
172		dprintf("object=%llu  offset=%llx  size=%llx\n",
173		    space_map_object(sm), offset, size);
174
175		error = dmu_read(sm->sm_os, space_map_object(sm),
176		    offset, size, entry_map, DMU_READ_PREFETCH);
177		if (error != 0)
178			break;
179
180		uint64_t num_entries = size / sizeof (uint64_t);
181
182		ASSERT3U(num_entries, >, 0);
183
184		while (num_entries > 0) {
185			uint64_t e, entry_offset, entry_size;
186			maptype_t type;
187
188			e = entry_map[num_entries - 1];
189
190			ASSERT3U(num_entries, >, 0);
191			ASSERT0(error);
192
193			if (SM_DEBUG_DECODE(e)) {
194				sm->sm_phys->smp_objsize -= sizeof (uint64_t);
195				space_map_update(sm);
196				len -= sizeof (uint64_t);
197				num_entries--;
198				continue;
199			}
200
201			type = SM_TYPE_DECODE(e);
202			entry_offset = (SM_OFFSET_DECODE(e) << sm->sm_shift) +
203			    sm->sm_start;
204			entry_size = SM_RUN_DECODE(e) << sm->sm_shift;
205
206			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
207			VERIFY0(P2PHASE(entry_size, 1ULL << sm->sm_shift));
208			VERIFY3U(entry_offset, >=, sm->sm_start);
209			VERIFY3U(entry_offset + entry_size, <=,
210			    sm->sm_start + sm->sm_size);
211
212			error = callback(type, entry_offset, entry_size, arg);
213			if (error != 0)
214				break;
215
216			if (type == SM_ALLOC)
217				sm->sm_phys->smp_alloc -= entry_size;
218			else
219				sm->sm_phys->smp_alloc += entry_size;
220
221			sm->sm_phys->smp_objsize -= sizeof (uint64_t);
222			space_map_update(sm);
223			len -= sizeof (uint64_t);
224			num_entries--;
225		}
226		IMPLY(error == 0, num_entries == 0);
227		EQUIV(offset == 0 && error == 0, len == 0 && num_entries == 0);
228	}
229
230	if (len == 0) {
231		ASSERT0(error);
232		ASSERT0(offset);
233		ASSERT0(sm->sm_length);
234		ASSERT0(sm->sm_phys->smp_objsize);
235		ASSERT0(sm->sm_alloc);
236	}
237
238	zio_buf_free(entry_map, bufsize);
239	return (error);
240}
241
242typedef struct space_map_load_arg {
243	space_map_t	*smla_sm;
244	range_tree_t	*smla_rt;
245	maptype_t	smla_type;
246} space_map_load_arg_t;
247
248static int
249space_map_load_callback(maptype_t type, uint64_t offset, uint64_t size,
250    void *arg)
251{
252	space_map_load_arg_t *smla = arg;
253	if (type == smla->smla_type) {
254		VERIFY3U(range_tree_space(smla->smla_rt) + size, <=,
255		    smla->smla_sm->sm_size);
256		range_tree_add(smla->smla_rt, offset, size);
257	} else {
258		range_tree_remove(smla->smla_rt, offset, size);
259	}
260
261	return (0);
262}
263
264/*
265 * Load the space map disk into the specified range tree. Segments of maptype
266 * are added to the range tree, other segment types are removed.
267 */
268int
269space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
270{
271	uint64_t space;
272	int err;
273	space_map_load_arg_t smla;
274
275	VERIFY0(range_tree_space(rt));
276	space = space_map_allocated(sm);
277
278	if (maptype == SM_FREE) {
279		range_tree_add(rt, sm->sm_start, sm->sm_size);
280		space = sm->sm_size - space;
281	}
282
283	smla.smla_rt = rt;
284	smla.smla_sm = sm;
285	smla.smla_type = maptype;
286	err = space_map_iterate(sm, space_map_load_callback, &smla);
287
288	if (err == 0) {
289		VERIFY3U(range_tree_space(rt), ==, space);
290	} else {
291		range_tree_vacate(rt, NULL, NULL);
292	}
293
294	return (err);
295}
296
297void
298space_map_histogram_clear(space_map_t *sm)
299{
300	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
301		return;
302
303	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
304}
305
306boolean_t
307space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
308{
309	/*
310	 * Verify that the in-core range tree does not have any
311	 * ranges smaller than our sm_shift size.
312	 */
313	for (int i = 0; i < sm->sm_shift; i++) {
314		if (rt->rt_histogram[i] != 0)
315			return (B_FALSE);
316	}
317	return (B_TRUE);
318}
319
320void
321space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
322{
323	int idx = 0;
324
325	ASSERT(dmu_tx_is_syncing(tx));
326	VERIFY3U(space_map_object(sm), !=, 0);
327
328	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
329		return;
330
331	dmu_buf_will_dirty(sm->sm_dbuf, tx);
332
333	ASSERT(space_map_histogram_verify(sm, rt));
334	/*
335	 * Transfer the content of the range tree histogram to the space
336	 * map histogram. The space map histogram contains 32 buckets ranging
337	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
338	 * however, can represent ranges from 2^0 to 2^63. Since the space
339	 * map only cares about allocatable blocks (minimum of sm_shift) we
340	 * can safely ignore all ranges in the range tree smaller than sm_shift.
341	 */
342	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
343
344		/*
345		 * Since the largest histogram bucket in the space map is
346		 * 2^(32+sm_shift-1), we need to normalize the values in
347		 * the range tree for any bucket larger than that size. For
348		 * example given an sm_shift of 9, ranges larger than 2^40
349		 * would get normalized as if they were 1TB ranges. Assume
350		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
351		 * the calculation below would normalize this to 5 * 2^4 (16).
352		 */
353		ASSERT3U(i, >=, idx + sm->sm_shift);
354		sm->sm_phys->smp_histogram[idx] +=
355		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
356
357		/*
358		 * Increment the space map's index as long as we haven't
359		 * reached the maximum bucket size. Accumulate all ranges
360		 * larger than the max bucket size into the last bucket.
361		 */
362		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
363			ASSERT3U(idx + sm->sm_shift, ==, i);
364			idx++;
365			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
366		}
367	}
368}
369
370uint64_t
371space_map_entries(space_map_t *sm, range_tree_t *rt)
372{
373	avl_tree_t *t = &rt->rt_root;
374	range_seg_t *rs;
375	uint64_t size, entries;
376
377	/*
378	 * All space_maps always have a debug entry so account for it here.
379	 */
380	entries = 1;
381
382	/*
383	 * Traverse the range tree and calculate the number of space map
384	 * entries that would be required to write out the range tree.
385	 */
386	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
387		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
388		entries += howmany(size, SM_RUN_MAX);
389	}
390	return (entries);
391}
392
393void
394space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
395    dmu_tx_t *tx)
396{
397	objset_t *os = sm->sm_os;
398	spa_t *spa = dmu_objset_spa(os);
399	avl_tree_t *t = &rt->rt_root;
400	range_seg_t *rs;
401	uint64_t size, total, rt_space, nodes;
402	uint64_t *entry, *entry_map, *entry_map_end;
403	uint64_t expected_entries, actual_entries = 1;
404
405	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
406	VERIFY3U(space_map_object(sm), !=, 0);
407	dmu_buf_will_dirty(sm->sm_dbuf, tx);
408
409	/*
410	 * This field is no longer necessary since the in-core space map
411	 * now contains the object number but is maintained for backwards
412	 * compatibility.
413	 */
414	sm->sm_phys->smp_object = sm->sm_object;
415
416	if (range_tree_is_empty(rt)) {
417		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
418		return;
419	}
420
421	if (maptype == SM_ALLOC)
422		sm->sm_phys->smp_alloc += range_tree_space(rt);
423	else
424		sm->sm_phys->smp_alloc -= range_tree_space(rt);
425
426	expected_entries = space_map_entries(sm, rt);
427
428	entry_map = zio_buf_alloc(sm->sm_blksz);
429	entry_map_end = entry_map + (sm->sm_blksz / sizeof (uint64_t));
430	entry = entry_map;
431
432	*entry++ = SM_DEBUG_ENCODE(1) |
433	    SM_DEBUG_ACTION_ENCODE(maptype) |
434	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) |
435	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
436
437	total = 0;
438	nodes = avl_numnodes(&rt->rt_root);
439	rt_space = range_tree_space(rt);
440	for (rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
441		uint64_t start;
442
443		size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
444		start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
445
446		total += size << sm->sm_shift;
447
448		while (size != 0) {
449			uint64_t run_len;
450
451			run_len = MIN(size, SM_RUN_MAX);
452
453			if (entry == entry_map_end) {
454				dmu_write(os, space_map_object(sm),
455				    sm->sm_phys->smp_objsize, sm->sm_blksz,
456				    entry_map, tx);
457				sm->sm_phys->smp_objsize += sm->sm_blksz;
458				entry = entry_map;
459			}
460
461			*entry++ = SM_OFFSET_ENCODE(start) |
462			    SM_TYPE_ENCODE(maptype) |
463			    SM_RUN_ENCODE(run_len);
464
465			start += run_len;
466			size -= run_len;
467			actual_entries++;
468		}
469	}
470
471	if (entry != entry_map) {
472		size = (entry - entry_map) * sizeof (uint64_t);
473		dmu_write(os, space_map_object(sm), sm->sm_phys->smp_objsize,
474		    size, entry_map, tx);
475		sm->sm_phys->smp_objsize += size;
476	}
477	ASSERT3U(expected_entries, ==, actual_entries);
478
479	/*
480	 * Ensure that the space_map's accounting wasn't changed
481	 * while we were in the middle of writing it out.
482	 */
483	VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
484	VERIFY3U(range_tree_space(rt), ==, rt_space);
485	VERIFY3U(range_tree_space(rt), ==, total);
486
487	zio_buf_free(entry_map, sm->sm_blksz);
488}
489
490static int
491space_map_open_impl(space_map_t *sm)
492{
493	int error;
494	u_longlong_t blocks;
495
496	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
497	if (error)
498		return (error);
499
500	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
501	sm->sm_phys = sm->sm_dbuf->db_data;
502	return (0);
503}
504
505int
506space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
507    uint64_t start, uint64_t size, uint8_t shift)
508{
509	space_map_t *sm;
510	int error;
511
512	ASSERT(*smp == NULL);
513	ASSERT(os != NULL);
514	ASSERT(object != 0);
515
516	sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
517
518	sm->sm_start = start;
519	sm->sm_size = size;
520	sm->sm_shift = shift;
521	sm->sm_os = os;
522	sm->sm_object = object;
523
524	error = space_map_open_impl(sm);
525	if (error != 0) {
526		space_map_close(sm);
527		return (error);
528	}
529
530	*smp = sm;
531
532	return (0);
533}
534
535void
536space_map_close(space_map_t *sm)
537{
538	if (sm == NULL)
539		return;
540
541	if (sm->sm_dbuf != NULL)
542		dmu_buf_rele(sm->sm_dbuf, sm);
543	sm->sm_dbuf = NULL;
544	sm->sm_phys = NULL;
545
546	kmem_free(sm, sizeof (*sm));
547}
548
549void
550space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
551{
552	objset_t *os = sm->sm_os;
553	spa_t *spa = dmu_objset_spa(os);
554	dmu_object_info_t doi;
555
556	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
557	ASSERT(dmu_tx_is_syncing(tx));
558	VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
559
560	dmu_object_info_from_db(sm->sm_dbuf, &doi);
561
562	/*
563	 * If the space map has the wrong bonus size (because
564	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
565	 * the wrong block size (because space_map_blksz has changed),
566	 * free and re-allocate its object with the updated sizes.
567	 *
568	 * Otherwise, just truncate the current object.
569	 */
570	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
571	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
572	    doi.doi_data_block_size != blocksize) {
573		zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
574		    "object[%llu]: old bonus %u, old blocksz %u",
575		    dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
576		    doi.doi_bonus_size, doi.doi_data_block_size);
577
578		space_map_free(sm, tx);
579		dmu_buf_rele(sm->sm_dbuf, sm);
580
581		sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
582		VERIFY0(space_map_open_impl(sm));
583	} else {
584		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
585
586		/*
587		 * If the spacemap is reallocated, its histogram
588		 * will be reset.  Do the same in the common case so that
589		 * bugs related to the uncommon case do not go unnoticed.
590		 */
591		bzero(sm->sm_phys->smp_histogram,
592		    sizeof (sm->sm_phys->smp_histogram));
593	}
594
595	dmu_buf_will_dirty(sm->sm_dbuf, tx);
596	sm->sm_phys->smp_objsize = 0;
597	sm->sm_phys->smp_alloc = 0;
598}
599
600/*
601 * Update the in-core space_map allocation and length values.
602 */
603void
604space_map_update(space_map_t *sm)
605{
606	if (sm == NULL)
607		return;
608
609	sm->sm_alloc = sm->sm_phys->smp_alloc;
610	sm->sm_length = sm->sm_phys->smp_objsize;
611}
612
613uint64_t
614space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
615{
616	spa_t *spa = dmu_objset_spa(os);
617	uint64_t object;
618	int bonuslen;
619
620	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
621		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
622		bonuslen = sizeof (space_map_phys_t);
623		ASSERT3U(bonuslen, <=, dmu_bonus_max());
624	} else {
625		bonuslen = SPACE_MAP_SIZE_V0;
626	}
627
628	object = dmu_object_alloc(os, DMU_OT_SPACE_MAP, blocksize,
629	    DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
630
631	return (object);
632}
633
634void
635space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
636{
637	spa_t *spa = dmu_objset_spa(os);
638	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
639		dmu_object_info_t doi;
640
641		VERIFY0(dmu_object_info(os, smobj, &doi));
642		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
643			spa_feature_decr(spa,
644			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
645		}
646	}
647
648	VERIFY0(dmu_object_free(os, smobj, tx));
649}
650
651void
652space_map_free(space_map_t *sm, dmu_tx_t *tx)
653{
654	if (sm == NULL)
655		return;
656
657	space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
658	sm->sm_object = 0;
659}
660
661uint64_t
662space_map_object(space_map_t *sm)
663{
664	return (sm != NULL ? sm->sm_object : 0);
665}
666
667/*
668 * Returns the already synced, on-disk allocated space.
669 */
670uint64_t
671space_map_allocated(space_map_t *sm)
672{
673	return (sm != NULL ? sm->sm_alloc : 0);
674}
675
676/*
677 * Returns the already synced, on-disk length;
678 */
679uint64_t
680space_map_length(space_map_t *sm)
681{
682	return (sm != NULL ? sm->sm_length : 0);
683}
684
685/*
686 * Returns the allocated space that is currently syncing.
687 */
688int64_t
689space_map_alloc_delta(space_map_t *sm)
690{
691	if (sm == NULL)
692		return (0);
693	ASSERT(sm->sm_dbuf != NULL);
694	return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
695}
696