arc.c revision 332525
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.  All rights reserved.
27 */
28
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory.  This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about.  Our cache is not so simple.  At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them.  Blocks are only evictable
44 * when there are no external references active.  This makes
45 * eviction far more problematic:  we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space.  In these circumstances we are unable to adjust the cache
50 * size.  To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss.  Our model has a variable sized cache.  It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size.  So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict.  In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes).  We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also:  "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists.  The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2.  We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table.  It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state.  When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock.  Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Note that the majority of the performance stats are manipulated
103 * with atomic operations.
104 *
105 * The L2ARC uses the l2ad_mtx on each vdev for the following:
106 *
107 *	- L2ARC buflist creation
108 *	- L2ARC buflist eviction
109 *	- L2ARC write completion, which walks L2ARC buflists
110 *	- ARC header destruction, as it removes from L2ARC buflists
111 *	- ARC header release, as it removes from L2ARC buflists
112 */
113
114/*
115 * ARC operation:
116 *
117 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
118 * This structure can point either to a block that is still in the cache or to
119 * one that is only accessible in an L2 ARC device, or it can provide
120 * information about a block that was recently evicted. If a block is
121 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
122 * information to retrieve it from the L2ARC device. This information is
123 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
124 * that is in this state cannot access the data directly.
125 *
126 * Blocks that are actively being referenced or have not been evicted
127 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
128 * the arc_buf_hdr_t that will point to the data block in memory. A block can
129 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
130 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
131 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
132 *
133 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
134 * ability to store the physical data (b_pabd) associated with the DVA of the
135 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
136 * it will match its on-disk compression characteristics. This behavior can be
137 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
138 * compressed ARC functionality is disabled, the b_pabd will point to an
139 * uncompressed version of the on-disk data.
140 *
141 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
142 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
143 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
144 * consumer. The ARC will provide references to this data and will keep it
145 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
146 * data block and will evict any arc_buf_t that is no longer referenced. The
147 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
148 * "overhead_size" kstat.
149 *
150 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
151 * compressed form. The typical case is that consumers will want uncompressed
152 * data, and when that happens a new data buffer is allocated where the data is
153 * decompressed for them to use. Currently the only consumer who wants
154 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
155 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
156 * with the arc_buf_hdr_t.
157 *
158 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
159 * first one is owned by a compressed send consumer (and therefore references
160 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
161 * used by any other consumer (and has its own uncompressed copy of the data
162 * buffer).
163 *
164 *   arc_buf_hdr_t
165 *   +-----------+
166 *   | fields    |
167 *   | common to |
168 *   | L1- and   |
169 *   | L2ARC     |
170 *   +-----------+
171 *   | l2arc_buf_hdr_t
172 *   |           |
173 *   +-----------+
174 *   | l1arc_buf_hdr_t
175 *   |           |              arc_buf_t
176 *   | b_buf     +------------>+-----------+      arc_buf_t
177 *   | b_pabd    +-+           |b_next     +---->+-----------+
178 *   +-----------+ |           |-----------|     |b_next     +-->NULL
179 *                 |           |b_comp = T |     +-----------+
180 *                 |           |b_data     +-+   |b_comp = F |
181 *                 |           +-----------+ |   |b_data     +-+
182 *                 +->+------+               |   +-----------+ |
183 *        compressed  |      |               |                 |
184 *           data     |      |<--------------+                 | uncompressed
185 *                    +------+          compressed,            |     data
186 *                                        shared               +-->+------+
187 *                                         data                    |      |
188 *                                                                 |      |
189 *                                                                 +------+
190 *
191 * When a consumer reads a block, the ARC must first look to see if the
192 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
193 * arc_buf_t and either copies uncompressed data into a new data buffer from an
194 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
195 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
196 * hdr is compressed and the desired compression characteristics of the
197 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
198 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
199 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
200 * be anywhere in the hdr's list.
201 *
202 * The diagram below shows an example of an uncompressed ARC hdr that is
203 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
204 * the last element in the buf list):
205 *
206 *                arc_buf_hdr_t
207 *                +-----------+
208 *                |           |
209 *                |           |
210 *                |           |
211 *                +-----------+
212 * l2arc_buf_hdr_t|           |
213 *                |           |
214 *                +-----------+
215 * l1arc_buf_hdr_t|           |
216 *                |           |                 arc_buf_t    (shared)
217 *                |    b_buf  +------------>+---------+      arc_buf_t
218 *                |           |             |b_next   +---->+---------+
219 *                |  b_pabd   +-+           |---------|     |b_next   +-->NULL
220 *                +-----------+ |           |         |     +---------+
221 *                              |           |b_data   +-+   |         |
222 *                              |           +---------+ |   |b_data   +-+
223 *                              +->+------+             |   +---------+ |
224 *                                 |      |             |               |
225 *                   uncompressed  |      |             |               |
226 *                        data     +------+             |               |
227 *                                    ^                 +->+------+     |
228 *                                    |       uncompressed |      |     |
229 *                                    |           data     |      |     |
230 *                                    |                    +------+     |
231 *                                    +---------------------------------+
232 *
233 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
234 * since the physical block is about to be rewritten. The new data contents
235 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
236 * it may compress the data before writing it to disk. The ARC will be called
237 * with the transformed data and will bcopy the transformed on-disk block into
238 * a newly allocated b_pabd. Writes are always done into buffers which have
239 * either been loaned (and hence are new and don't have other readers) or
240 * buffers which have been released (and hence have their own hdr, if there
241 * were originally other readers of the buf's original hdr). This ensures that
242 * the ARC only needs to update a single buf and its hdr after a write occurs.
243 *
244 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
245 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
246 * that when compressed ARC is enabled that the L2ARC blocks are identical
247 * to the on-disk block in the main data pool. This provides a significant
248 * advantage since the ARC can leverage the bp's checksum when reading from the
249 * L2ARC to determine if the contents are valid. However, if the compressed
250 * ARC is disabled, then the L2ARC's block must be transformed to look
251 * like the physical block in the main data pool before comparing the
252 * checksum and determining its validity.
253 */
254
255#include <sys/spa.h>
256#include <sys/zio.h>
257#include <sys/spa_impl.h>
258#include <sys/zio_compress.h>
259#include <sys/zio_checksum.h>
260#include <sys/zfs_context.h>
261#include <sys/arc.h>
262#include <sys/refcount.h>
263#include <sys/vdev.h>
264#include <sys/vdev_impl.h>
265#include <sys/dsl_pool.h>
266#include <sys/zio_checksum.h>
267#include <sys/multilist.h>
268#include <sys/abd.h>
269#ifdef _KERNEL
270#include <sys/dnlc.h>
271#include <sys/racct.h>
272#endif
273#include <sys/callb.h>
274#include <sys/kstat.h>
275#include <sys/trim_map.h>
276#include <zfs_fletcher.h>
277#include <sys/sdt.h>
278
279#include <machine/vmparam.h>
280
281#ifdef illumos
282#ifndef _KERNEL
283/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
284boolean_t arc_watch = B_FALSE;
285int arc_procfd;
286#endif
287#endif /* illumos */
288
289static kmutex_t		arc_reclaim_lock;
290static kcondvar_t	arc_reclaim_thread_cv;
291static boolean_t	arc_reclaim_thread_exit;
292static kcondvar_t	arc_reclaim_waiters_cv;
293
294static kmutex_t		arc_dnlc_evicts_lock;
295static kcondvar_t	arc_dnlc_evicts_cv;
296static boolean_t	arc_dnlc_evicts_thread_exit;
297
298uint_t arc_reduce_dnlc_percent = 3;
299
300/*
301 * The number of headers to evict in arc_evict_state_impl() before
302 * dropping the sublist lock and evicting from another sublist. A lower
303 * value means we're more likely to evict the "correct" header (i.e. the
304 * oldest header in the arc state), but comes with higher overhead
305 * (i.e. more invocations of arc_evict_state_impl()).
306 */
307int zfs_arc_evict_batch_limit = 10;
308
309/* number of seconds before growing cache again */
310static int		arc_grow_retry = 60;
311
312/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
313int		zfs_arc_overflow_shift = 8;
314
315/* shift of arc_c for calculating both min and max arc_p */
316static int		arc_p_min_shift = 4;
317
318/* log2(fraction of arc to reclaim) */
319static int		arc_shrink_shift = 7;
320
321/*
322 * log2(fraction of ARC which must be free to allow growing).
323 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
324 * when reading a new block into the ARC, we will evict an equal-sized block
325 * from the ARC.
326 *
327 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
328 * we will still not allow it to grow.
329 */
330int			arc_no_grow_shift = 5;
331
332
333/*
334 * minimum lifespan of a prefetch block in clock ticks
335 * (initialized in arc_init())
336 */
337static int		arc_min_prefetch_lifespan;
338
339/*
340 * If this percent of memory is free, don't throttle.
341 */
342int arc_lotsfree_percent = 10;
343
344static int arc_dead;
345extern boolean_t zfs_prefetch_disable;
346
347/*
348 * The arc has filled available memory and has now warmed up.
349 */
350static boolean_t arc_warm;
351
352/*
353 * log2 fraction of the zio arena to keep free.
354 */
355int arc_zio_arena_free_shift = 2;
356
357/*
358 * These tunables are for performance analysis.
359 */
360uint64_t zfs_arc_max;
361uint64_t zfs_arc_min;
362uint64_t zfs_arc_meta_limit = 0;
363uint64_t zfs_arc_meta_min = 0;
364int zfs_arc_grow_retry = 0;
365int zfs_arc_shrink_shift = 0;
366int zfs_arc_no_grow_shift = 0;
367int zfs_arc_p_min_shift = 0;
368uint64_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
369u_int zfs_arc_free_target = 0;
370
371/* Absolute min for arc min / max is 16MB. */
372static uint64_t arc_abs_min = 16 << 20;
373
374boolean_t zfs_compressed_arc_enabled = B_TRUE;
375
376static int sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS);
377static int sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS);
378static int sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS);
379static int sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS);
380static int sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS);
381
382#if defined(__FreeBSD__) && defined(_KERNEL)
383static void
384arc_free_target_init(void *unused __unused)
385{
386
387	zfs_arc_free_target = vm_pageout_wakeup_thresh;
388}
389SYSINIT(arc_free_target_init, SI_SUB_KTHREAD_PAGE, SI_ORDER_ANY,
390    arc_free_target_init, NULL);
391
392TUNABLE_QUAD("vfs.zfs.arc_meta_limit", &zfs_arc_meta_limit);
393TUNABLE_QUAD("vfs.zfs.arc_meta_min", &zfs_arc_meta_min);
394TUNABLE_INT("vfs.zfs.arc_shrink_shift", &zfs_arc_shrink_shift);
395TUNABLE_INT("vfs.zfs.arc_grow_retry", &zfs_arc_grow_retry);
396TUNABLE_INT("vfs.zfs.arc_no_grow_shift", &zfs_arc_no_grow_shift);
397SYSCTL_DECL(_vfs_zfs);
398SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_max, CTLTYPE_U64 | CTLFLAG_RWTUN,
399    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_max, "QU", "Maximum ARC size");
400SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_min, CTLTYPE_U64 | CTLFLAG_RWTUN,
401    0, sizeof(uint64_t), sysctl_vfs_zfs_arc_min, "QU", "Minimum ARC size");
402SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_no_grow_shift, CTLTYPE_U32 | CTLFLAG_RWTUN,
403    0, sizeof(uint32_t), sysctl_vfs_zfs_arc_no_grow_shift, "U",
404    "log2(fraction of ARC which must be free to allow growing)");
405SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, arc_average_blocksize, CTLFLAG_RDTUN,
406    &zfs_arc_average_blocksize, 0,
407    "ARC average blocksize");
408SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_shrink_shift, CTLFLAG_RW,
409    &arc_shrink_shift, 0,
410    "log2(fraction of arc to reclaim)");
411SYSCTL_INT(_vfs_zfs, OID_AUTO, arc_grow_retry, CTLFLAG_RW,
412    &arc_grow_retry, 0,
413    "Wait in seconds before considering growing ARC");
414SYSCTL_INT(_vfs_zfs, OID_AUTO, compressed_arc_enabled, CTLFLAG_RDTUN,
415    &zfs_compressed_arc_enabled, 0, "Enable compressed ARC");
416
417/*
418 * We don't have a tunable for arc_free_target due to the dependency on
419 * pagedaemon initialisation.
420 */
421SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_free_target,
422    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(u_int),
423    sysctl_vfs_zfs_arc_free_target, "IU",
424    "Desired number of free pages below which ARC triggers reclaim");
425
426static int
427sysctl_vfs_zfs_arc_free_target(SYSCTL_HANDLER_ARGS)
428{
429	u_int val;
430	int err;
431
432	val = zfs_arc_free_target;
433	err = sysctl_handle_int(oidp, &val, 0, req);
434	if (err != 0 || req->newptr == NULL)
435		return (err);
436
437	if (val < minfree)
438		return (EINVAL);
439	if (val > vm_cnt.v_page_count)
440		return (EINVAL);
441
442	zfs_arc_free_target = val;
443
444	return (0);
445}
446
447/*
448 * Must be declared here, before the definition of corresponding kstat
449 * macro which uses the same names will confuse the compiler.
450 */
451SYSCTL_PROC(_vfs_zfs, OID_AUTO, arc_meta_limit,
452    CTLTYPE_U64 | CTLFLAG_MPSAFE | CTLFLAG_RW, 0, sizeof(uint64_t),
453    sysctl_vfs_zfs_arc_meta_limit, "QU",
454    "ARC metadata limit");
455#endif
456
457/*
458 * Note that buffers can be in one of 6 states:
459 *	ARC_anon	- anonymous (discussed below)
460 *	ARC_mru		- recently used, currently cached
461 *	ARC_mru_ghost	- recentely used, no longer in cache
462 *	ARC_mfu		- frequently used, currently cached
463 *	ARC_mfu_ghost	- frequently used, no longer in cache
464 *	ARC_l2c_only	- exists in L2ARC but not other states
465 * When there are no active references to the buffer, they are
466 * are linked onto a list in one of these arc states.  These are
467 * the only buffers that can be evicted or deleted.  Within each
468 * state there are multiple lists, one for meta-data and one for
469 * non-meta-data.  Meta-data (indirect blocks, blocks of dnodes,
470 * etc.) is tracked separately so that it can be managed more
471 * explicitly: favored over data, limited explicitly.
472 *
473 * Anonymous buffers are buffers that are not associated with
474 * a DVA.  These are buffers that hold dirty block copies
475 * before they are written to stable storage.  By definition,
476 * they are "ref'd" and are considered part of arc_mru
477 * that cannot be freed.  Generally, they will aquire a DVA
478 * as they are written and migrate onto the arc_mru list.
479 *
480 * The ARC_l2c_only state is for buffers that are in the second
481 * level ARC but no longer in any of the ARC_m* lists.  The second
482 * level ARC itself may also contain buffers that are in any of
483 * the ARC_m* states - meaning that a buffer can exist in two
484 * places.  The reason for the ARC_l2c_only state is to keep the
485 * buffer header in the hash table, so that reads that hit the
486 * second level ARC benefit from these fast lookups.
487 */
488
489typedef struct arc_state {
490	/*
491	 * list of evictable buffers
492	 */
493	multilist_t *arcs_list[ARC_BUFC_NUMTYPES];
494	/*
495	 * total amount of evictable data in this state
496	 */
497	refcount_t arcs_esize[ARC_BUFC_NUMTYPES];
498	/*
499	 * total amount of data in this state; this includes: evictable,
500	 * non-evictable, ARC_BUFC_DATA, and ARC_BUFC_METADATA.
501	 */
502	refcount_t arcs_size;
503} arc_state_t;
504
505/* The 6 states: */
506static arc_state_t ARC_anon;
507static arc_state_t ARC_mru;
508static arc_state_t ARC_mru_ghost;
509static arc_state_t ARC_mfu;
510static arc_state_t ARC_mfu_ghost;
511static arc_state_t ARC_l2c_only;
512
513typedef struct arc_stats {
514	kstat_named_t arcstat_hits;
515	kstat_named_t arcstat_misses;
516	kstat_named_t arcstat_demand_data_hits;
517	kstat_named_t arcstat_demand_data_misses;
518	kstat_named_t arcstat_demand_metadata_hits;
519	kstat_named_t arcstat_demand_metadata_misses;
520	kstat_named_t arcstat_prefetch_data_hits;
521	kstat_named_t arcstat_prefetch_data_misses;
522	kstat_named_t arcstat_prefetch_metadata_hits;
523	kstat_named_t arcstat_prefetch_metadata_misses;
524	kstat_named_t arcstat_mru_hits;
525	kstat_named_t arcstat_mru_ghost_hits;
526	kstat_named_t arcstat_mfu_hits;
527	kstat_named_t arcstat_mfu_ghost_hits;
528	kstat_named_t arcstat_allocated;
529	kstat_named_t arcstat_deleted;
530	/*
531	 * Number of buffers that could not be evicted because the hash lock
532	 * was held by another thread.  The lock may not necessarily be held
533	 * by something using the same buffer, since hash locks are shared
534	 * by multiple buffers.
535	 */
536	kstat_named_t arcstat_mutex_miss;
537	/*
538	 * Number of buffers skipped because they have I/O in progress, are
539	 * indrect prefetch buffers that have not lived long enough, or are
540	 * not from the spa we're trying to evict from.
541	 */
542	kstat_named_t arcstat_evict_skip;
543	/*
544	 * Number of times arc_evict_state() was unable to evict enough
545	 * buffers to reach it's target amount.
546	 */
547	kstat_named_t arcstat_evict_not_enough;
548	kstat_named_t arcstat_evict_l2_cached;
549	kstat_named_t arcstat_evict_l2_eligible;
550	kstat_named_t arcstat_evict_l2_ineligible;
551	kstat_named_t arcstat_evict_l2_skip;
552	kstat_named_t arcstat_hash_elements;
553	kstat_named_t arcstat_hash_elements_max;
554	kstat_named_t arcstat_hash_collisions;
555	kstat_named_t arcstat_hash_chains;
556	kstat_named_t arcstat_hash_chain_max;
557	kstat_named_t arcstat_p;
558	kstat_named_t arcstat_c;
559	kstat_named_t arcstat_c_min;
560	kstat_named_t arcstat_c_max;
561	kstat_named_t arcstat_size;
562	/*
563	 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
564	 * Note that the compressed bytes may match the uncompressed bytes
565	 * if the block is either not compressed or compressed arc is disabled.
566	 */
567	kstat_named_t arcstat_compressed_size;
568	/*
569	 * Uncompressed size of the data stored in b_pabd. If compressed
570	 * arc is disabled then this value will be identical to the stat
571	 * above.
572	 */
573	kstat_named_t arcstat_uncompressed_size;
574	/*
575	 * Number of bytes stored in all the arc_buf_t's. This is classified
576	 * as "overhead" since this data is typically short-lived and will
577	 * be evicted from the arc when it becomes unreferenced unless the
578	 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
579	 * values have been set (see comment in dbuf.c for more information).
580	 */
581	kstat_named_t arcstat_overhead_size;
582	/*
583	 * Number of bytes consumed by internal ARC structures necessary
584	 * for tracking purposes; these structures are not actually
585	 * backed by ARC buffers. This includes arc_buf_hdr_t structures
586	 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
587	 * caches), and arc_buf_t structures (allocated via arc_buf_t
588	 * cache).
589	 */
590	kstat_named_t arcstat_hdr_size;
591	/*
592	 * Number of bytes consumed by ARC buffers of type equal to
593	 * ARC_BUFC_DATA. This is generally consumed by buffers backing
594	 * on disk user data (e.g. plain file contents).
595	 */
596	kstat_named_t arcstat_data_size;
597	/*
598	 * Number of bytes consumed by ARC buffers of type equal to
599	 * ARC_BUFC_METADATA. This is generally consumed by buffers
600	 * backing on disk data that is used for internal ZFS
601	 * structures (e.g. ZAP, dnode, indirect blocks, etc).
602	 */
603	kstat_named_t arcstat_metadata_size;
604	/*
605	 * Number of bytes consumed by various buffers and structures
606	 * not actually backed with ARC buffers. This includes bonus
607	 * buffers (allocated directly via zio_buf_* functions),
608	 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
609	 * cache), and dnode_t structures (allocated via dnode_t cache).
610	 */
611	kstat_named_t arcstat_other_size;
612	/*
613	 * Total number of bytes consumed by ARC buffers residing in the
614	 * arc_anon state. This includes *all* buffers in the arc_anon
615	 * state; e.g. data, metadata, evictable, and unevictable buffers
616	 * are all included in this value.
617	 */
618	kstat_named_t arcstat_anon_size;
619	/*
620	 * Number of bytes consumed by ARC buffers that meet the
621	 * following criteria: backing buffers of type ARC_BUFC_DATA,
622	 * residing in the arc_anon state, and are eligible for eviction
623	 * (e.g. have no outstanding holds on the buffer).
624	 */
625	kstat_named_t arcstat_anon_evictable_data;
626	/*
627	 * Number of bytes consumed by ARC buffers that meet the
628	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
629	 * residing in the arc_anon state, and are eligible for eviction
630	 * (e.g. have no outstanding holds on the buffer).
631	 */
632	kstat_named_t arcstat_anon_evictable_metadata;
633	/*
634	 * Total number of bytes consumed by ARC buffers residing in the
635	 * arc_mru state. This includes *all* buffers in the arc_mru
636	 * state; e.g. data, metadata, evictable, and unevictable buffers
637	 * are all included in this value.
638	 */
639	kstat_named_t arcstat_mru_size;
640	/*
641	 * Number of bytes consumed by ARC buffers that meet the
642	 * following criteria: backing buffers of type ARC_BUFC_DATA,
643	 * residing in the arc_mru state, and are eligible for eviction
644	 * (e.g. have no outstanding holds on the buffer).
645	 */
646	kstat_named_t arcstat_mru_evictable_data;
647	/*
648	 * Number of bytes consumed by ARC buffers that meet the
649	 * following criteria: backing buffers of type ARC_BUFC_METADATA,
650	 * residing in the arc_mru state, and are eligible for eviction
651	 * (e.g. have no outstanding holds on the buffer).
652	 */
653	kstat_named_t arcstat_mru_evictable_metadata;
654	/*
655	 * Total number of bytes that *would have been* consumed by ARC
656	 * buffers in the arc_mru_ghost state. The key thing to note
657	 * here, is the fact that this size doesn't actually indicate
658	 * RAM consumption. The ghost lists only consist of headers and
659	 * don't actually have ARC buffers linked off of these headers.
660	 * Thus, *if* the headers had associated ARC buffers, these
661	 * buffers *would have* consumed this number of bytes.
662	 */
663	kstat_named_t arcstat_mru_ghost_size;
664	/*
665	 * Number of bytes that *would have been* consumed by ARC
666	 * buffers that are eligible for eviction, of type
667	 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
668	 */
669	kstat_named_t arcstat_mru_ghost_evictable_data;
670	/*
671	 * Number of bytes that *would have been* consumed by ARC
672	 * buffers that are eligible for eviction, of type
673	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
674	 */
675	kstat_named_t arcstat_mru_ghost_evictable_metadata;
676	/*
677	 * Total number of bytes consumed by ARC buffers residing in the
678	 * arc_mfu state. This includes *all* buffers in the arc_mfu
679	 * state; e.g. data, metadata, evictable, and unevictable buffers
680	 * are all included in this value.
681	 */
682	kstat_named_t arcstat_mfu_size;
683	/*
684	 * Number of bytes consumed by ARC buffers that are eligible for
685	 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
686	 * state.
687	 */
688	kstat_named_t arcstat_mfu_evictable_data;
689	/*
690	 * Number of bytes consumed by ARC buffers that are eligible for
691	 * eviction, of type ARC_BUFC_METADATA, and reside in the
692	 * arc_mfu state.
693	 */
694	kstat_named_t arcstat_mfu_evictable_metadata;
695	/*
696	 * Total number of bytes that *would have been* consumed by ARC
697	 * buffers in the arc_mfu_ghost state. See the comment above
698	 * arcstat_mru_ghost_size for more details.
699	 */
700	kstat_named_t arcstat_mfu_ghost_size;
701	/*
702	 * Number of bytes that *would have been* consumed by ARC
703	 * buffers that are eligible for eviction, of type
704	 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
705	 */
706	kstat_named_t arcstat_mfu_ghost_evictable_data;
707	/*
708	 * Number of bytes that *would have been* consumed by ARC
709	 * buffers that are eligible for eviction, of type
710	 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
711	 */
712	kstat_named_t arcstat_mfu_ghost_evictable_metadata;
713	kstat_named_t arcstat_l2_hits;
714	kstat_named_t arcstat_l2_misses;
715	kstat_named_t arcstat_l2_feeds;
716	kstat_named_t arcstat_l2_rw_clash;
717	kstat_named_t arcstat_l2_read_bytes;
718	kstat_named_t arcstat_l2_write_bytes;
719	kstat_named_t arcstat_l2_writes_sent;
720	kstat_named_t arcstat_l2_writes_done;
721	kstat_named_t arcstat_l2_writes_error;
722	kstat_named_t arcstat_l2_writes_lock_retry;
723	kstat_named_t arcstat_l2_evict_lock_retry;
724	kstat_named_t arcstat_l2_evict_reading;
725	kstat_named_t arcstat_l2_evict_l1cached;
726	kstat_named_t arcstat_l2_free_on_write;
727	kstat_named_t arcstat_l2_abort_lowmem;
728	kstat_named_t arcstat_l2_cksum_bad;
729	kstat_named_t arcstat_l2_io_error;
730	kstat_named_t arcstat_l2_lsize;
731	kstat_named_t arcstat_l2_psize;
732	kstat_named_t arcstat_l2_hdr_size;
733	kstat_named_t arcstat_l2_write_trylock_fail;
734	kstat_named_t arcstat_l2_write_passed_headroom;
735	kstat_named_t arcstat_l2_write_spa_mismatch;
736	kstat_named_t arcstat_l2_write_in_l2;
737	kstat_named_t arcstat_l2_write_hdr_io_in_progress;
738	kstat_named_t arcstat_l2_write_not_cacheable;
739	kstat_named_t arcstat_l2_write_full;
740	kstat_named_t arcstat_l2_write_buffer_iter;
741	kstat_named_t arcstat_l2_write_pios;
742	kstat_named_t arcstat_l2_write_buffer_bytes_scanned;
743	kstat_named_t arcstat_l2_write_buffer_list_iter;
744	kstat_named_t arcstat_l2_write_buffer_list_null_iter;
745	kstat_named_t arcstat_memory_throttle_count;
746	kstat_named_t arcstat_meta_used;
747	kstat_named_t arcstat_meta_limit;
748	kstat_named_t arcstat_meta_max;
749	kstat_named_t arcstat_meta_min;
750	kstat_named_t arcstat_sync_wait_for_async;
751	kstat_named_t arcstat_demand_hit_predictive_prefetch;
752} arc_stats_t;
753
754static arc_stats_t arc_stats = {
755	{ "hits",			KSTAT_DATA_UINT64 },
756	{ "misses",			KSTAT_DATA_UINT64 },
757	{ "demand_data_hits",		KSTAT_DATA_UINT64 },
758	{ "demand_data_misses",		KSTAT_DATA_UINT64 },
759	{ "demand_metadata_hits",	KSTAT_DATA_UINT64 },
760	{ "demand_metadata_misses",	KSTAT_DATA_UINT64 },
761	{ "prefetch_data_hits",		KSTAT_DATA_UINT64 },
762	{ "prefetch_data_misses",	KSTAT_DATA_UINT64 },
763	{ "prefetch_metadata_hits",	KSTAT_DATA_UINT64 },
764	{ "prefetch_metadata_misses",	KSTAT_DATA_UINT64 },
765	{ "mru_hits",			KSTAT_DATA_UINT64 },
766	{ "mru_ghost_hits",		KSTAT_DATA_UINT64 },
767	{ "mfu_hits",			KSTAT_DATA_UINT64 },
768	{ "mfu_ghost_hits",		KSTAT_DATA_UINT64 },
769	{ "allocated",			KSTAT_DATA_UINT64 },
770	{ "deleted",			KSTAT_DATA_UINT64 },
771	{ "mutex_miss",			KSTAT_DATA_UINT64 },
772	{ "evict_skip",			KSTAT_DATA_UINT64 },
773	{ "evict_not_enough",		KSTAT_DATA_UINT64 },
774	{ "evict_l2_cached",		KSTAT_DATA_UINT64 },
775	{ "evict_l2_eligible",		KSTAT_DATA_UINT64 },
776	{ "evict_l2_ineligible",	KSTAT_DATA_UINT64 },
777	{ "evict_l2_skip",		KSTAT_DATA_UINT64 },
778	{ "hash_elements",		KSTAT_DATA_UINT64 },
779	{ "hash_elements_max",		KSTAT_DATA_UINT64 },
780	{ "hash_collisions",		KSTAT_DATA_UINT64 },
781	{ "hash_chains",		KSTAT_DATA_UINT64 },
782	{ "hash_chain_max",		KSTAT_DATA_UINT64 },
783	{ "p",				KSTAT_DATA_UINT64 },
784	{ "c",				KSTAT_DATA_UINT64 },
785	{ "c_min",			KSTAT_DATA_UINT64 },
786	{ "c_max",			KSTAT_DATA_UINT64 },
787	{ "size",			KSTAT_DATA_UINT64 },
788	{ "compressed_size",		KSTAT_DATA_UINT64 },
789	{ "uncompressed_size",		KSTAT_DATA_UINT64 },
790	{ "overhead_size",		KSTAT_DATA_UINT64 },
791	{ "hdr_size",			KSTAT_DATA_UINT64 },
792	{ "data_size",			KSTAT_DATA_UINT64 },
793	{ "metadata_size",		KSTAT_DATA_UINT64 },
794	{ "other_size",			KSTAT_DATA_UINT64 },
795	{ "anon_size",			KSTAT_DATA_UINT64 },
796	{ "anon_evictable_data",	KSTAT_DATA_UINT64 },
797	{ "anon_evictable_metadata",	KSTAT_DATA_UINT64 },
798	{ "mru_size",			KSTAT_DATA_UINT64 },
799	{ "mru_evictable_data",		KSTAT_DATA_UINT64 },
800	{ "mru_evictable_metadata",	KSTAT_DATA_UINT64 },
801	{ "mru_ghost_size",		KSTAT_DATA_UINT64 },
802	{ "mru_ghost_evictable_data",	KSTAT_DATA_UINT64 },
803	{ "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
804	{ "mfu_size",			KSTAT_DATA_UINT64 },
805	{ "mfu_evictable_data",		KSTAT_DATA_UINT64 },
806	{ "mfu_evictable_metadata",	KSTAT_DATA_UINT64 },
807	{ "mfu_ghost_size",		KSTAT_DATA_UINT64 },
808	{ "mfu_ghost_evictable_data",	KSTAT_DATA_UINT64 },
809	{ "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
810	{ "l2_hits",			KSTAT_DATA_UINT64 },
811	{ "l2_misses",			KSTAT_DATA_UINT64 },
812	{ "l2_feeds",			KSTAT_DATA_UINT64 },
813	{ "l2_rw_clash",		KSTAT_DATA_UINT64 },
814	{ "l2_read_bytes",		KSTAT_DATA_UINT64 },
815	{ "l2_write_bytes",		KSTAT_DATA_UINT64 },
816	{ "l2_writes_sent",		KSTAT_DATA_UINT64 },
817	{ "l2_writes_done",		KSTAT_DATA_UINT64 },
818	{ "l2_writes_error",		KSTAT_DATA_UINT64 },
819	{ "l2_writes_lock_retry",	KSTAT_DATA_UINT64 },
820	{ "l2_evict_lock_retry",	KSTAT_DATA_UINT64 },
821	{ "l2_evict_reading",		KSTAT_DATA_UINT64 },
822	{ "l2_evict_l1cached",		KSTAT_DATA_UINT64 },
823	{ "l2_free_on_write",		KSTAT_DATA_UINT64 },
824	{ "l2_abort_lowmem",		KSTAT_DATA_UINT64 },
825	{ "l2_cksum_bad",		KSTAT_DATA_UINT64 },
826	{ "l2_io_error",		KSTAT_DATA_UINT64 },
827	{ "l2_size",			KSTAT_DATA_UINT64 },
828	{ "l2_asize",			KSTAT_DATA_UINT64 },
829	{ "l2_hdr_size",		KSTAT_DATA_UINT64 },
830	{ "l2_write_trylock_fail",	KSTAT_DATA_UINT64 },
831	{ "l2_write_passed_headroom",	KSTAT_DATA_UINT64 },
832	{ "l2_write_spa_mismatch",	KSTAT_DATA_UINT64 },
833	{ "l2_write_in_l2",		KSTAT_DATA_UINT64 },
834	{ "l2_write_io_in_progress",	KSTAT_DATA_UINT64 },
835	{ "l2_write_not_cacheable",	KSTAT_DATA_UINT64 },
836	{ "l2_write_full",		KSTAT_DATA_UINT64 },
837	{ "l2_write_buffer_iter",	KSTAT_DATA_UINT64 },
838	{ "l2_write_pios",		KSTAT_DATA_UINT64 },
839	{ "l2_write_buffer_bytes_scanned", KSTAT_DATA_UINT64 },
840	{ "l2_write_buffer_list_iter",	KSTAT_DATA_UINT64 },
841	{ "l2_write_buffer_list_null_iter", KSTAT_DATA_UINT64 },
842	{ "memory_throttle_count",	KSTAT_DATA_UINT64 },
843	{ "arc_meta_used",		KSTAT_DATA_UINT64 },
844	{ "arc_meta_limit",		KSTAT_DATA_UINT64 },
845	{ "arc_meta_max",		KSTAT_DATA_UINT64 },
846	{ "arc_meta_min",		KSTAT_DATA_UINT64 },
847	{ "sync_wait_for_async",	KSTAT_DATA_UINT64 },
848	{ "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
849};
850
851#define	ARCSTAT(stat)	(arc_stats.stat.value.ui64)
852
853#define	ARCSTAT_INCR(stat, val) \
854	atomic_add_64(&arc_stats.stat.value.ui64, (val))
855
856#define	ARCSTAT_BUMP(stat)	ARCSTAT_INCR(stat, 1)
857#define	ARCSTAT_BUMPDOWN(stat)	ARCSTAT_INCR(stat, -1)
858
859#define	ARCSTAT_MAX(stat, val) {					\
860	uint64_t m;							\
861	while ((val) > (m = arc_stats.stat.value.ui64) &&		\
862	    (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val))))	\
863		continue;						\
864}
865
866#define	ARCSTAT_MAXSTAT(stat) \
867	ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
868
869/*
870 * We define a macro to allow ARC hits/misses to be easily broken down by
871 * two separate conditions, giving a total of four different subtypes for
872 * each of hits and misses (so eight statistics total).
873 */
874#define	ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
875	if (cond1) {							\
876		if (cond2) {						\
877			ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
878		} else {						\
879			ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
880		}							\
881	} else {							\
882		if (cond2) {						\
883			ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
884		} else {						\
885			ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
886		}							\
887	}
888
889kstat_t			*arc_ksp;
890static arc_state_t	*arc_anon;
891static arc_state_t	*arc_mru;
892static arc_state_t	*arc_mru_ghost;
893static arc_state_t	*arc_mfu;
894static arc_state_t	*arc_mfu_ghost;
895static arc_state_t	*arc_l2c_only;
896
897/*
898 * There are several ARC variables that are critical to export as kstats --
899 * but we don't want to have to grovel around in the kstat whenever we wish to
900 * manipulate them.  For these variables, we therefore define them to be in
901 * terms of the statistic variable.  This assures that we are not introducing
902 * the possibility of inconsistency by having shadow copies of the variables,
903 * while still allowing the code to be readable.
904 */
905#define	arc_size	ARCSTAT(arcstat_size)	/* actual total arc size */
906#define	arc_p		ARCSTAT(arcstat_p)	/* target size of MRU */
907#define	arc_c		ARCSTAT(arcstat_c)	/* target size of cache */
908#define	arc_c_min	ARCSTAT(arcstat_c_min)	/* min target cache size */
909#define	arc_c_max	ARCSTAT(arcstat_c_max)	/* max target cache size */
910#define	arc_meta_limit	ARCSTAT(arcstat_meta_limit) /* max size for metadata */
911#define	arc_meta_min	ARCSTAT(arcstat_meta_min) /* min size for metadata */
912#define	arc_meta_used	ARCSTAT(arcstat_meta_used) /* size of metadata */
913#define	arc_meta_max	ARCSTAT(arcstat_meta_max) /* max size of metadata */
914
915/* compressed size of entire arc */
916#define	arc_compressed_size	ARCSTAT(arcstat_compressed_size)
917/* uncompressed size of entire arc */
918#define	arc_uncompressed_size	ARCSTAT(arcstat_uncompressed_size)
919/* number of bytes in the arc from arc_buf_t's */
920#define	arc_overhead_size	ARCSTAT(arcstat_overhead_size)
921
922static int		arc_no_grow;	/* Don't try to grow cache size */
923static uint64_t		arc_tempreserve;
924static uint64_t		arc_loaned_bytes;
925
926typedef struct arc_callback arc_callback_t;
927
928struct arc_callback {
929	void			*acb_private;
930	arc_done_func_t		*acb_done;
931	arc_buf_t		*acb_buf;
932	boolean_t		acb_compressed;
933	zio_t			*acb_zio_dummy;
934	arc_callback_t		*acb_next;
935};
936
937typedef struct arc_write_callback arc_write_callback_t;
938
939struct arc_write_callback {
940	void		*awcb_private;
941	arc_done_func_t	*awcb_ready;
942	arc_done_func_t	*awcb_children_ready;
943	arc_done_func_t	*awcb_physdone;
944	arc_done_func_t	*awcb_done;
945	arc_buf_t	*awcb_buf;
946};
947
948/*
949 * ARC buffers are separated into multiple structs as a memory saving measure:
950 *   - Common fields struct, always defined, and embedded within it:
951 *       - L2-only fields, always allocated but undefined when not in L2ARC
952 *       - L1-only fields, only allocated when in L1ARC
953 *
954 *           Buffer in L1                     Buffer only in L2
955 *    +------------------------+          +------------------------+
956 *    | arc_buf_hdr_t          |          | arc_buf_hdr_t          |
957 *    |                        |          |                        |
958 *    |                        |          |                        |
959 *    |                        |          |                        |
960 *    +------------------------+          +------------------------+
961 *    | l2arc_buf_hdr_t        |          | l2arc_buf_hdr_t        |
962 *    | (undefined if L1-only) |          |                        |
963 *    +------------------------+          +------------------------+
964 *    | l1arc_buf_hdr_t        |
965 *    |                        |
966 *    |                        |
967 *    |                        |
968 *    |                        |
969 *    +------------------------+
970 *
971 * Because it's possible for the L2ARC to become extremely large, we can wind
972 * up eating a lot of memory in L2ARC buffer headers, so the size of a header
973 * is minimized by only allocating the fields necessary for an L1-cached buffer
974 * when a header is actually in the L1 cache. The sub-headers (l1arc_buf_hdr and
975 * l2arc_buf_hdr) are embedded rather than allocated separately to save a couple
976 * words in pointers. arc_hdr_realloc() is used to switch a header between
977 * these two allocation states.
978 */
979typedef struct l1arc_buf_hdr {
980	kmutex_t		b_freeze_lock;
981	zio_cksum_t		*b_freeze_cksum;
982#ifdef ZFS_DEBUG
983	/*
984	 * Used for debugging with kmem_flags - by allocating and freeing
985	 * b_thawed when the buffer is thawed, we get a record of the stack
986	 * trace that thawed it.
987	 */
988	void			*b_thawed;
989#endif
990
991	arc_buf_t		*b_buf;
992	uint32_t		b_bufcnt;
993	/* for waiting on writes to complete */
994	kcondvar_t		b_cv;
995	uint8_t			b_byteswap;
996
997	/* protected by arc state mutex */
998	arc_state_t		*b_state;
999	multilist_node_t	b_arc_node;
1000
1001	/* updated atomically */
1002	clock_t			b_arc_access;
1003
1004	/* self protecting */
1005	refcount_t		b_refcnt;
1006
1007	arc_callback_t		*b_acb;
1008	abd_t			*b_pabd;
1009} l1arc_buf_hdr_t;
1010
1011typedef struct l2arc_dev l2arc_dev_t;
1012
1013typedef struct l2arc_buf_hdr {
1014	/* protected by arc_buf_hdr mutex */
1015	l2arc_dev_t		*b_dev;		/* L2ARC device */
1016	uint64_t		b_daddr;	/* disk address, offset byte */
1017
1018	list_node_t		b_l2node;
1019} l2arc_buf_hdr_t;
1020
1021struct arc_buf_hdr {
1022	/* protected by hash lock */
1023	dva_t			b_dva;
1024	uint64_t		b_birth;
1025
1026	arc_buf_contents_t	b_type;
1027	arc_buf_hdr_t		*b_hash_next;
1028	arc_flags_t		b_flags;
1029
1030	/*
1031	 * This field stores the size of the data buffer after
1032	 * compression, and is set in the arc's zio completion handlers.
1033	 * It is in units of SPA_MINBLOCKSIZE (e.g. 1 == 512 bytes).
1034	 *
1035	 * While the block pointers can store up to 32MB in their psize
1036	 * field, we can only store up to 32MB minus 512B. This is due
1037	 * to the bp using a bias of 1, whereas we use a bias of 0 (i.e.
1038	 * a field of zeros represents 512B in the bp). We can't use a
1039	 * bias of 1 since we need to reserve a psize of zero, here, to
1040	 * represent holes and embedded blocks.
1041	 *
1042	 * This isn't a problem in practice, since the maximum size of a
1043	 * buffer is limited to 16MB, so we never need to store 32MB in
1044	 * this field. Even in the upstream illumos code base, the
1045	 * maximum size of a buffer is limited to 16MB.
1046	 */
1047	uint16_t		b_psize;
1048
1049	/*
1050	 * This field stores the size of the data buffer before
1051	 * compression, and cannot change once set. It is in units
1052	 * of SPA_MINBLOCKSIZE (e.g. 2 == 1024 bytes)
1053	 */
1054	uint16_t		b_lsize;	/* immutable */
1055	uint64_t		b_spa;		/* immutable */
1056
1057	/* L2ARC fields. Undefined when not in L2ARC. */
1058	l2arc_buf_hdr_t		b_l2hdr;
1059	/* L1ARC fields. Undefined when in l2arc_only state */
1060	l1arc_buf_hdr_t		b_l1hdr;
1061};
1062
1063#if defined(__FreeBSD__) && defined(_KERNEL)
1064static int
1065sysctl_vfs_zfs_arc_meta_limit(SYSCTL_HANDLER_ARGS)
1066{
1067	uint64_t val;
1068	int err;
1069
1070	val = arc_meta_limit;
1071	err = sysctl_handle_64(oidp, &val, 0, req);
1072	if (err != 0 || req->newptr == NULL)
1073		return (err);
1074
1075        if (val <= 0 || val > arc_c_max)
1076		return (EINVAL);
1077
1078	arc_meta_limit = val;
1079	return (0);
1080}
1081
1082static int
1083sysctl_vfs_zfs_arc_no_grow_shift(SYSCTL_HANDLER_ARGS)
1084{
1085	uint32_t val;
1086	int err;
1087
1088	val = arc_no_grow_shift;
1089	err = sysctl_handle_32(oidp, &val, 0, req);
1090	if (err != 0 || req->newptr == NULL)
1091		return (err);
1092
1093        if (val >= arc_shrink_shift)
1094		return (EINVAL);
1095
1096	arc_no_grow_shift = val;
1097	return (0);
1098}
1099
1100static int
1101sysctl_vfs_zfs_arc_max(SYSCTL_HANDLER_ARGS)
1102{
1103	uint64_t val;
1104	int err;
1105
1106	val = zfs_arc_max;
1107	err = sysctl_handle_64(oidp, &val, 0, req);
1108	if (err != 0 || req->newptr == NULL)
1109		return (err);
1110
1111	if (zfs_arc_max == 0) {
1112		/* Loader tunable so blindly set */
1113		zfs_arc_max = val;
1114		return (0);
1115	}
1116
1117	if (val < arc_abs_min || val > kmem_size())
1118		return (EINVAL);
1119	if (val < arc_c_min)
1120		return (EINVAL);
1121	if (zfs_arc_meta_limit > 0 && val < zfs_arc_meta_limit)
1122		return (EINVAL);
1123
1124	arc_c_max = val;
1125
1126	arc_c = arc_c_max;
1127        arc_p = (arc_c >> 1);
1128
1129	if (zfs_arc_meta_limit == 0) {
1130		/* limit meta-data to 1/4 of the arc capacity */
1131		arc_meta_limit = arc_c_max / 4;
1132	}
1133
1134	/* if kmem_flags are set, lets try to use less memory */
1135	if (kmem_debugging())
1136		arc_c = arc_c / 2;
1137
1138	zfs_arc_max = arc_c;
1139
1140	return (0);
1141}
1142
1143static int
1144sysctl_vfs_zfs_arc_min(SYSCTL_HANDLER_ARGS)
1145{
1146	uint64_t val;
1147	int err;
1148
1149	val = zfs_arc_min;
1150	err = sysctl_handle_64(oidp, &val, 0, req);
1151	if (err != 0 || req->newptr == NULL)
1152		return (err);
1153
1154	if (zfs_arc_min == 0) {
1155		/* Loader tunable so blindly set */
1156		zfs_arc_min = val;
1157		return (0);
1158	}
1159
1160	if (val < arc_abs_min || val > arc_c_max)
1161		return (EINVAL);
1162
1163	arc_c_min = val;
1164
1165	if (zfs_arc_meta_min == 0)
1166                arc_meta_min = arc_c_min / 2;
1167
1168	if (arc_c < arc_c_min)
1169                arc_c = arc_c_min;
1170
1171	zfs_arc_min = arc_c_min;
1172
1173	return (0);
1174}
1175#endif
1176
1177#define	GHOST_STATE(state)	\
1178	((state) == arc_mru_ghost || (state) == arc_mfu_ghost ||	\
1179	(state) == arc_l2c_only)
1180
1181#define	HDR_IN_HASH_TABLE(hdr)	((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
1182#define	HDR_IO_IN_PROGRESS(hdr)	((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
1183#define	HDR_IO_ERROR(hdr)	((hdr)->b_flags & ARC_FLAG_IO_ERROR)
1184#define	HDR_PREFETCH(hdr)	((hdr)->b_flags & ARC_FLAG_PREFETCH)
1185#define	HDR_COMPRESSION_ENABLED(hdr)	\
1186	((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
1187
1188#define	HDR_L2CACHE(hdr)	((hdr)->b_flags & ARC_FLAG_L2CACHE)
1189#define	HDR_L2_READING(hdr)	\
1190	(((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) &&	\
1191	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
1192#define	HDR_L2_WRITING(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITING)
1193#define	HDR_L2_EVICTED(hdr)	((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
1194#define	HDR_L2_WRITE_HEAD(hdr)	((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
1195#define	HDR_SHARED_DATA(hdr)	((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
1196
1197#define	HDR_ISTYPE_METADATA(hdr)	\
1198	((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
1199#define	HDR_ISTYPE_DATA(hdr)	(!HDR_ISTYPE_METADATA(hdr))
1200
1201#define	HDR_HAS_L1HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
1202#define	HDR_HAS_L2HDR(hdr)	((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
1203
1204/* For storing compression mode in b_flags */
1205#define	HDR_COMPRESS_OFFSET	(highbit64(ARC_FLAG_COMPRESS_0) - 1)
1206
1207#define	HDR_GET_COMPRESS(hdr)	((enum zio_compress)BF32_GET((hdr)->b_flags, \
1208	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
1209#define	HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
1210	HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
1211
1212#define	ARC_BUF_LAST(buf)	((buf)->b_next == NULL)
1213#define	ARC_BUF_SHARED(buf)	((buf)->b_flags & ARC_BUF_FLAG_SHARED)
1214#define	ARC_BUF_COMPRESSED(buf)	((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
1215
1216/*
1217 * Other sizes
1218 */
1219
1220#define	HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
1221#define	HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
1222
1223/*
1224 * Hash table routines
1225 */
1226
1227#define	HT_LOCK_PAD	CACHE_LINE_SIZE
1228
1229struct ht_lock {
1230	kmutex_t	ht_lock;
1231#ifdef _KERNEL
1232	unsigned char	pad[(HT_LOCK_PAD - sizeof (kmutex_t))];
1233#endif
1234};
1235
1236#define	BUF_LOCKS 256
1237typedef struct buf_hash_table {
1238	uint64_t ht_mask;
1239	arc_buf_hdr_t **ht_table;
1240	struct ht_lock ht_locks[BUF_LOCKS] __aligned(CACHE_LINE_SIZE);
1241} buf_hash_table_t;
1242
1243static buf_hash_table_t buf_hash_table;
1244
1245#define	BUF_HASH_INDEX(spa, dva, birth) \
1246	(buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1247#define	BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1248#define	BUF_HASH_LOCK(idx)	(&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
1249#define	HDR_LOCK(hdr) \
1250	(BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
1251
1252uint64_t zfs_crc64_table[256];
1253
1254/*
1255 * Level 2 ARC
1256 */
1257
1258#define	L2ARC_WRITE_SIZE	(8 * 1024 * 1024)	/* initial write max */
1259#define	L2ARC_HEADROOM		2			/* num of writes */
1260/*
1261 * If we discover during ARC scan any buffers to be compressed, we boost
1262 * our headroom for the next scanning cycle by this percentage multiple.
1263 */
1264#define	L2ARC_HEADROOM_BOOST	200
1265#define	L2ARC_FEED_SECS		1		/* caching interval secs */
1266#define	L2ARC_FEED_MIN_MS	200		/* min caching interval ms */
1267
1268#define	l2arc_writes_sent	ARCSTAT(arcstat_l2_writes_sent)
1269#define	l2arc_writes_done	ARCSTAT(arcstat_l2_writes_done)
1270
1271/* L2ARC Performance Tunables */
1272uint64_t l2arc_write_max = L2ARC_WRITE_SIZE;	/* default max write size */
1273uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE;	/* extra write during warmup */
1274uint64_t l2arc_headroom = L2ARC_HEADROOM;	/* number of dev writes */
1275uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
1276uint64_t l2arc_feed_secs = L2ARC_FEED_SECS;	/* interval seconds */
1277uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS;	/* min interval milliseconds */
1278boolean_t l2arc_noprefetch = B_TRUE;		/* don't cache prefetch bufs */
1279boolean_t l2arc_feed_again = B_TRUE;		/* turbo warmup */
1280boolean_t l2arc_norw = B_TRUE;			/* no reads during writes */
1281
1282SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_max, CTLFLAG_RW,
1283    &l2arc_write_max, 0, "max write size");
1284SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_write_boost, CTLFLAG_RW,
1285    &l2arc_write_boost, 0, "extra write during warmup");
1286SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_headroom, CTLFLAG_RW,
1287    &l2arc_headroom, 0, "number of dev writes");
1288SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_secs, CTLFLAG_RW,
1289    &l2arc_feed_secs, 0, "interval seconds");
1290SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2arc_feed_min_ms, CTLFLAG_RW,
1291    &l2arc_feed_min_ms, 0, "min interval milliseconds");
1292
1293SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_noprefetch, CTLFLAG_RW,
1294    &l2arc_noprefetch, 0, "don't cache prefetch bufs");
1295SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_feed_again, CTLFLAG_RW,
1296    &l2arc_feed_again, 0, "turbo warmup");
1297SYSCTL_INT(_vfs_zfs, OID_AUTO, l2arc_norw, CTLFLAG_RW,
1298    &l2arc_norw, 0, "no reads during writes");
1299
1300SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_size, CTLFLAG_RD,
1301    &ARC_anon.arcs_size.rc_count, 0, "size of anonymous state");
1302SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_metadata_esize, CTLFLAG_RD,
1303    &ARC_anon.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1304    "size of anonymous state");
1305SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, anon_data_esize, CTLFLAG_RD,
1306    &ARC_anon.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1307    "size of anonymous state");
1308
1309SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_size, CTLFLAG_RD,
1310    &ARC_mru.arcs_size.rc_count, 0, "size of mru state");
1311SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_metadata_esize, CTLFLAG_RD,
1312    &ARC_mru.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1313    "size of metadata in mru state");
1314SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_data_esize, CTLFLAG_RD,
1315    &ARC_mru.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1316    "size of data in mru state");
1317
1318SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_size, CTLFLAG_RD,
1319    &ARC_mru_ghost.arcs_size.rc_count, 0, "size of mru ghost state");
1320SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_metadata_esize, CTLFLAG_RD,
1321    &ARC_mru_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1322    "size of metadata in mru ghost state");
1323SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mru_ghost_data_esize, CTLFLAG_RD,
1324    &ARC_mru_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1325    "size of data in mru ghost state");
1326
1327SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_size, CTLFLAG_RD,
1328    &ARC_mfu.arcs_size.rc_count, 0, "size of mfu state");
1329SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_metadata_esize, CTLFLAG_RD,
1330    &ARC_mfu.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1331    "size of metadata in mfu state");
1332SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_data_esize, CTLFLAG_RD,
1333    &ARC_mfu.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1334    "size of data in mfu state");
1335
1336SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_size, CTLFLAG_RD,
1337    &ARC_mfu_ghost.arcs_size.rc_count, 0, "size of mfu ghost state");
1338SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_metadata_esize, CTLFLAG_RD,
1339    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_METADATA].rc_count, 0,
1340    "size of metadata in mfu ghost state");
1341SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, mfu_ghost_data_esize, CTLFLAG_RD,
1342    &ARC_mfu_ghost.arcs_esize[ARC_BUFC_DATA].rc_count, 0,
1343    "size of data in mfu ghost state");
1344
1345SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, l2c_only_size, CTLFLAG_RD,
1346    &ARC_l2c_only.arcs_size.rc_count, 0, "size of mru state");
1347
1348/*
1349 * L2ARC Internals
1350 */
1351struct l2arc_dev {
1352	vdev_t			*l2ad_vdev;	/* vdev */
1353	spa_t			*l2ad_spa;	/* spa */
1354	uint64_t		l2ad_hand;	/* next write location */
1355	uint64_t		l2ad_start;	/* first addr on device */
1356	uint64_t		l2ad_end;	/* last addr on device */
1357	boolean_t		l2ad_first;	/* first sweep through */
1358	boolean_t		l2ad_writing;	/* currently writing */
1359	kmutex_t		l2ad_mtx;	/* lock for buffer list */
1360	list_t			l2ad_buflist;	/* buffer list */
1361	list_node_t		l2ad_node;	/* device list node */
1362	refcount_t		l2ad_alloc;	/* allocated bytes */
1363};
1364
1365static list_t L2ARC_dev_list;			/* device list */
1366static list_t *l2arc_dev_list;			/* device list pointer */
1367static kmutex_t l2arc_dev_mtx;			/* device list mutex */
1368static l2arc_dev_t *l2arc_dev_last;		/* last device used */
1369static list_t L2ARC_free_on_write;		/* free after write buf list */
1370static list_t *l2arc_free_on_write;		/* free after write list ptr */
1371static kmutex_t l2arc_free_on_write_mtx;	/* mutex for list */
1372static uint64_t l2arc_ndev;			/* number of devices */
1373
1374typedef struct l2arc_read_callback {
1375	arc_buf_hdr_t		*l2rcb_hdr;		/* read header */
1376	blkptr_t		l2rcb_bp;		/* original blkptr */
1377	zbookmark_phys_t	l2rcb_zb;		/* original bookmark */
1378	int			l2rcb_flags;		/* original flags */
1379	abd_t			*l2rcb_abd;		/* temporary buffer */
1380} l2arc_read_callback_t;
1381
1382typedef struct l2arc_write_callback {
1383	l2arc_dev_t	*l2wcb_dev;		/* device info */
1384	arc_buf_hdr_t	*l2wcb_head;		/* head of write buflist */
1385} l2arc_write_callback_t;
1386
1387typedef struct l2arc_data_free {
1388	/* protected by l2arc_free_on_write_mtx */
1389	abd_t		*l2df_abd;
1390	size_t		l2df_size;
1391	arc_buf_contents_t l2df_type;
1392	list_node_t	l2df_list_node;
1393} l2arc_data_free_t;
1394
1395static kmutex_t l2arc_feed_thr_lock;
1396static kcondvar_t l2arc_feed_thr_cv;
1397static uint8_t l2arc_thread_exit;
1398
1399static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
1400static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
1401static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1402static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
1403static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
1404static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
1405static void arc_hdr_free_pabd(arc_buf_hdr_t *);
1406static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
1407static void arc_access(arc_buf_hdr_t *, kmutex_t *);
1408static boolean_t arc_is_overflowing();
1409static void arc_buf_watch(arc_buf_t *);
1410
1411static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1412static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1413static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1414static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1415
1416static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1417static void l2arc_read_done(zio_t *);
1418
1419static void
1420l2arc_trim(const arc_buf_hdr_t *hdr)
1421{
1422	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
1423
1424	ASSERT(HDR_HAS_L2HDR(hdr));
1425	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
1426
1427	if (HDR_GET_PSIZE(hdr) != 0) {
1428		trim_map_free(dev->l2ad_vdev, hdr->b_l2hdr.b_daddr,
1429		    HDR_GET_PSIZE(hdr), 0);
1430	}
1431}
1432
1433static uint64_t
1434buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1435{
1436	uint8_t *vdva = (uint8_t *)dva;
1437	uint64_t crc = -1ULL;
1438	int i;
1439
1440	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1441
1442	for (i = 0; i < sizeof (dva_t); i++)
1443		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1444
1445	crc ^= (spa>>8) ^ birth;
1446
1447	return (crc);
1448}
1449
1450#define	HDR_EMPTY(hdr)						\
1451	((hdr)->b_dva.dva_word[0] == 0 &&			\
1452	(hdr)->b_dva.dva_word[1] == 0)
1453
1454#define	HDR_EQUAL(spa, dva, birth, hdr)				\
1455	((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) &&	\
1456	((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) &&	\
1457	((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1458
1459static void
1460buf_discard_identity(arc_buf_hdr_t *hdr)
1461{
1462	hdr->b_dva.dva_word[0] = 0;
1463	hdr->b_dva.dva_word[1] = 0;
1464	hdr->b_birth = 0;
1465}
1466
1467static arc_buf_hdr_t *
1468buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1469{
1470	const dva_t *dva = BP_IDENTITY(bp);
1471	uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1472	uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1473	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1474	arc_buf_hdr_t *hdr;
1475
1476	mutex_enter(hash_lock);
1477	for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1478	    hdr = hdr->b_hash_next) {
1479		if (HDR_EQUAL(spa, dva, birth, hdr)) {
1480			*lockp = hash_lock;
1481			return (hdr);
1482		}
1483	}
1484	mutex_exit(hash_lock);
1485	*lockp = NULL;
1486	return (NULL);
1487}
1488
1489/*
1490 * Insert an entry into the hash table.  If there is already an element
1491 * equal to elem in the hash table, then the already existing element
1492 * will be returned and the new element will not be inserted.
1493 * Otherwise returns NULL.
1494 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1495 */
1496static arc_buf_hdr_t *
1497buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1498{
1499	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1500	kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1501	arc_buf_hdr_t *fhdr;
1502	uint32_t i;
1503
1504	ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1505	ASSERT(hdr->b_birth != 0);
1506	ASSERT(!HDR_IN_HASH_TABLE(hdr));
1507
1508	if (lockp != NULL) {
1509		*lockp = hash_lock;
1510		mutex_enter(hash_lock);
1511	} else {
1512		ASSERT(MUTEX_HELD(hash_lock));
1513	}
1514
1515	for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1516	    fhdr = fhdr->b_hash_next, i++) {
1517		if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1518			return (fhdr);
1519	}
1520
1521	hdr->b_hash_next = buf_hash_table.ht_table[idx];
1522	buf_hash_table.ht_table[idx] = hdr;
1523	arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1524
1525	/* collect some hash table performance data */
1526	if (i > 0) {
1527		ARCSTAT_BUMP(arcstat_hash_collisions);
1528		if (i == 1)
1529			ARCSTAT_BUMP(arcstat_hash_chains);
1530
1531		ARCSTAT_MAX(arcstat_hash_chain_max, i);
1532	}
1533
1534	ARCSTAT_BUMP(arcstat_hash_elements);
1535	ARCSTAT_MAXSTAT(arcstat_hash_elements);
1536
1537	return (NULL);
1538}
1539
1540static void
1541buf_hash_remove(arc_buf_hdr_t *hdr)
1542{
1543	arc_buf_hdr_t *fhdr, **hdrp;
1544	uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1545
1546	ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1547	ASSERT(HDR_IN_HASH_TABLE(hdr));
1548
1549	hdrp = &buf_hash_table.ht_table[idx];
1550	while ((fhdr = *hdrp) != hdr) {
1551		ASSERT3P(fhdr, !=, NULL);
1552		hdrp = &fhdr->b_hash_next;
1553	}
1554	*hdrp = hdr->b_hash_next;
1555	hdr->b_hash_next = NULL;
1556	arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1557
1558	/* collect some hash table performance data */
1559	ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1560
1561	if (buf_hash_table.ht_table[idx] &&
1562	    buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1563		ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1564}
1565
1566/*
1567 * Global data structures and functions for the buf kmem cache.
1568 */
1569static kmem_cache_t *hdr_full_cache;
1570static kmem_cache_t *hdr_l2only_cache;
1571static kmem_cache_t *buf_cache;
1572
1573static void
1574buf_fini(void)
1575{
1576	int i;
1577
1578	kmem_free(buf_hash_table.ht_table,
1579	    (buf_hash_table.ht_mask + 1) * sizeof (void *));
1580	for (i = 0; i < BUF_LOCKS; i++)
1581		mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1582	kmem_cache_destroy(hdr_full_cache);
1583	kmem_cache_destroy(hdr_l2only_cache);
1584	kmem_cache_destroy(buf_cache);
1585}
1586
1587/*
1588 * Constructor callback - called when the cache is empty
1589 * and a new buf is requested.
1590 */
1591/* ARGSUSED */
1592static int
1593hdr_full_cons(void *vbuf, void *unused, int kmflag)
1594{
1595	arc_buf_hdr_t *hdr = vbuf;
1596
1597	bzero(hdr, HDR_FULL_SIZE);
1598	cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1599	refcount_create(&hdr->b_l1hdr.b_refcnt);
1600	mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1601	multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1602	arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1603
1604	return (0);
1605}
1606
1607/* ARGSUSED */
1608static int
1609hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1610{
1611	arc_buf_hdr_t *hdr = vbuf;
1612
1613	bzero(hdr, HDR_L2ONLY_SIZE);
1614	arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1615
1616	return (0);
1617}
1618
1619/* ARGSUSED */
1620static int
1621buf_cons(void *vbuf, void *unused, int kmflag)
1622{
1623	arc_buf_t *buf = vbuf;
1624
1625	bzero(buf, sizeof (arc_buf_t));
1626	mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1627	arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1628
1629	return (0);
1630}
1631
1632/*
1633 * Destructor callback - called when a cached buf is
1634 * no longer required.
1635 */
1636/* ARGSUSED */
1637static void
1638hdr_full_dest(void *vbuf, void *unused)
1639{
1640	arc_buf_hdr_t *hdr = vbuf;
1641
1642	ASSERT(HDR_EMPTY(hdr));
1643	cv_destroy(&hdr->b_l1hdr.b_cv);
1644	refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1645	mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1646	ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1647	arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1648}
1649
1650/* ARGSUSED */
1651static void
1652hdr_l2only_dest(void *vbuf, void *unused)
1653{
1654	arc_buf_hdr_t *hdr = vbuf;
1655
1656	ASSERT(HDR_EMPTY(hdr));
1657	arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1658}
1659
1660/* ARGSUSED */
1661static void
1662buf_dest(void *vbuf, void *unused)
1663{
1664	arc_buf_t *buf = vbuf;
1665
1666	mutex_destroy(&buf->b_evict_lock);
1667	arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1668}
1669
1670/*
1671 * Reclaim callback -- invoked when memory is low.
1672 */
1673/* ARGSUSED */
1674static void
1675hdr_recl(void *unused)
1676{
1677	dprintf("hdr_recl called\n");
1678	/*
1679	 * umem calls the reclaim func when we destroy the buf cache,
1680	 * which is after we do arc_fini().
1681	 */
1682	if (!arc_dead)
1683		cv_signal(&arc_reclaim_thread_cv);
1684}
1685
1686static void
1687buf_init(void)
1688{
1689	uint64_t *ct;
1690	uint64_t hsize = 1ULL << 12;
1691	int i, j;
1692
1693	/*
1694	 * The hash table is big enough to fill all of physical memory
1695	 * with an average block size of zfs_arc_average_blocksize (default 8K).
1696	 * By default, the table will take up
1697	 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1698	 */
1699	while (hsize * zfs_arc_average_blocksize < (uint64_t)physmem * PAGESIZE)
1700		hsize <<= 1;
1701retry:
1702	buf_hash_table.ht_mask = hsize - 1;
1703	buf_hash_table.ht_table =
1704	    kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1705	if (buf_hash_table.ht_table == NULL) {
1706		ASSERT(hsize > (1ULL << 8));
1707		hsize >>= 1;
1708		goto retry;
1709	}
1710
1711	hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1712	    0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1713	hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1714	    HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1715	    NULL, NULL, 0);
1716	buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1717	    0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1718
1719	for (i = 0; i < 256; i++)
1720		for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1721			*ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1722
1723	for (i = 0; i < BUF_LOCKS; i++) {
1724		mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1725		    NULL, MUTEX_DEFAULT, NULL);
1726	}
1727}
1728
1729/*
1730 * This is the size that the buf occupies in memory. If the buf is compressed,
1731 * it will correspond to the compressed size. You should use this method of
1732 * getting the buf size unless you explicitly need the logical size.
1733 */
1734int32_t
1735arc_buf_size(arc_buf_t *buf)
1736{
1737	return (ARC_BUF_COMPRESSED(buf) ?
1738	    HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1739}
1740
1741int32_t
1742arc_buf_lsize(arc_buf_t *buf)
1743{
1744	return (HDR_GET_LSIZE(buf->b_hdr));
1745}
1746
1747enum zio_compress
1748arc_get_compression(arc_buf_t *buf)
1749{
1750	return (ARC_BUF_COMPRESSED(buf) ?
1751	    HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1752}
1753
1754#define	ARC_MINTIME	(hz>>4) /* 62 ms */
1755
1756static inline boolean_t
1757arc_buf_is_shared(arc_buf_t *buf)
1758{
1759	boolean_t shared = (buf->b_data != NULL &&
1760	    buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1761	    abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1762	    buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1763	IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1764	IMPLY(shared, ARC_BUF_SHARED(buf));
1765	IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1766
1767	/*
1768	 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1769	 * already being shared" requirement prevents us from doing that.
1770	 */
1771
1772	return (shared);
1773}
1774
1775/*
1776 * Free the checksum associated with this header. If there is no checksum, this
1777 * is a no-op.
1778 */
1779static inline void
1780arc_cksum_free(arc_buf_hdr_t *hdr)
1781{
1782	ASSERT(HDR_HAS_L1HDR(hdr));
1783	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1784	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1785		kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1786		hdr->b_l1hdr.b_freeze_cksum = NULL;
1787	}
1788	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1789}
1790
1791/*
1792 * Return true iff at least one of the bufs on hdr is not compressed.
1793 */
1794static boolean_t
1795arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1796{
1797	for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1798		if (!ARC_BUF_COMPRESSED(b)) {
1799			return (B_TRUE);
1800		}
1801	}
1802	return (B_FALSE);
1803}
1804
1805/*
1806 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1807 * matches the checksum that is stored in the hdr. If there is no checksum,
1808 * or if the buf is compressed, this is a no-op.
1809 */
1810static void
1811arc_cksum_verify(arc_buf_t *buf)
1812{
1813	arc_buf_hdr_t *hdr = buf->b_hdr;
1814	zio_cksum_t zc;
1815
1816	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1817		return;
1818
1819	if (ARC_BUF_COMPRESSED(buf)) {
1820		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1821		    arc_hdr_has_uncompressed_buf(hdr));
1822		return;
1823	}
1824
1825	ASSERT(HDR_HAS_L1HDR(hdr));
1826
1827	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1828	if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1829		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1830		return;
1831	}
1832
1833	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1834	if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1835		panic("buffer modified while frozen!");
1836	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1837}
1838
1839static boolean_t
1840arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1841{
1842	enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1843	boolean_t valid_cksum;
1844
1845	ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1846	VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1847
1848	/*
1849	 * We rely on the blkptr's checksum to determine if the block
1850	 * is valid or not. When compressed arc is enabled, the l2arc
1851	 * writes the block to the l2arc just as it appears in the pool.
1852	 * This allows us to use the blkptr's checksum to validate the
1853	 * data that we just read off of the l2arc without having to store
1854	 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1855	 * arc is disabled, then the data written to the l2arc is always
1856	 * uncompressed and won't match the block as it exists in the main
1857	 * pool. When this is the case, we must first compress it if it is
1858	 * compressed on the main pool before we can validate the checksum.
1859	 */
1860	if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1861		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1862		uint64_t lsize = HDR_GET_LSIZE(hdr);
1863		uint64_t csize;
1864
1865		abd_t *cdata = abd_alloc_linear(HDR_GET_PSIZE(hdr), B_TRUE);
1866		csize = zio_compress_data(compress, zio->io_abd,
1867		    abd_to_buf(cdata), lsize);
1868
1869		ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1870		if (csize < HDR_GET_PSIZE(hdr)) {
1871			/*
1872			 * Compressed blocks are always a multiple of the
1873			 * smallest ashift in the pool. Ideally, we would
1874			 * like to round up the csize to the next
1875			 * spa_min_ashift but that value may have changed
1876			 * since the block was last written. Instead,
1877			 * we rely on the fact that the hdr's psize
1878			 * was set to the psize of the block when it was
1879			 * last written. We set the csize to that value
1880			 * and zero out any part that should not contain
1881			 * data.
1882			 */
1883			abd_zero_off(cdata, csize, HDR_GET_PSIZE(hdr) - csize);
1884			csize = HDR_GET_PSIZE(hdr);
1885		}
1886		zio_push_transform(zio, cdata, csize, HDR_GET_PSIZE(hdr), NULL);
1887	}
1888
1889	/*
1890	 * Block pointers always store the checksum for the logical data.
1891	 * If the block pointer has the gang bit set, then the checksum
1892	 * it represents is for the reconstituted data and not for an
1893	 * individual gang member. The zio pipeline, however, must be able to
1894	 * determine the checksum of each of the gang constituents so it
1895	 * treats the checksum comparison differently than what we need
1896	 * for l2arc blocks. This prevents us from using the
1897	 * zio_checksum_error() interface directly. Instead we must call the
1898	 * zio_checksum_error_impl() so that we can ensure the checksum is
1899	 * generated using the correct checksum algorithm and accounts for the
1900	 * logical I/O size and not just a gang fragment.
1901	 */
1902	valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1903	    BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1904	    zio->io_offset, NULL) == 0);
1905	zio_pop_transforms(zio);
1906	return (valid_cksum);
1907}
1908
1909/*
1910 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1911 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1912 * isn't modified later on. If buf is compressed or there is already a checksum
1913 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1914 */
1915static void
1916arc_cksum_compute(arc_buf_t *buf)
1917{
1918	arc_buf_hdr_t *hdr = buf->b_hdr;
1919
1920	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1921		return;
1922
1923	ASSERT(HDR_HAS_L1HDR(hdr));
1924
1925	mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1926	if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1927		ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1928		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1929		return;
1930	} else if (ARC_BUF_COMPRESSED(buf)) {
1931		mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1932		return;
1933	}
1934
1935	ASSERT(!ARC_BUF_COMPRESSED(buf));
1936	hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1937	    KM_SLEEP);
1938	fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1939	    hdr->b_l1hdr.b_freeze_cksum);
1940	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1941#ifdef illumos
1942	arc_buf_watch(buf);
1943#endif
1944}
1945
1946#ifdef illumos
1947#ifndef _KERNEL
1948typedef struct procctl {
1949	long cmd;
1950	prwatch_t prwatch;
1951} procctl_t;
1952#endif
1953
1954/* ARGSUSED */
1955static void
1956arc_buf_unwatch(arc_buf_t *buf)
1957{
1958#ifndef _KERNEL
1959	if (arc_watch) {
1960		int result;
1961		procctl_t ctl;
1962		ctl.cmd = PCWATCH;
1963		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1964		ctl.prwatch.pr_size = 0;
1965		ctl.prwatch.pr_wflags = 0;
1966		result = write(arc_procfd, &ctl, sizeof (ctl));
1967		ASSERT3U(result, ==, sizeof (ctl));
1968	}
1969#endif
1970}
1971
1972/* ARGSUSED */
1973static void
1974arc_buf_watch(arc_buf_t *buf)
1975{
1976#ifndef _KERNEL
1977	if (arc_watch) {
1978		int result;
1979		procctl_t ctl;
1980		ctl.cmd = PCWATCH;
1981		ctl.prwatch.pr_vaddr = (uintptr_t)buf->b_data;
1982		ctl.prwatch.pr_size = arc_buf_size(buf);
1983		ctl.prwatch.pr_wflags = WA_WRITE;
1984		result = write(arc_procfd, &ctl, sizeof (ctl));
1985		ASSERT3U(result, ==, sizeof (ctl));
1986	}
1987#endif
1988}
1989#endif /* illumos */
1990
1991static arc_buf_contents_t
1992arc_buf_type(arc_buf_hdr_t *hdr)
1993{
1994	arc_buf_contents_t type;
1995	if (HDR_ISTYPE_METADATA(hdr)) {
1996		type = ARC_BUFC_METADATA;
1997	} else {
1998		type = ARC_BUFC_DATA;
1999	}
2000	VERIFY3U(hdr->b_type, ==, type);
2001	return (type);
2002}
2003
2004boolean_t
2005arc_is_metadata(arc_buf_t *buf)
2006{
2007	return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
2008}
2009
2010static uint32_t
2011arc_bufc_to_flags(arc_buf_contents_t type)
2012{
2013	switch (type) {
2014	case ARC_BUFC_DATA:
2015		/* metadata field is 0 if buffer contains normal data */
2016		return (0);
2017	case ARC_BUFC_METADATA:
2018		return (ARC_FLAG_BUFC_METADATA);
2019	default:
2020		break;
2021	}
2022	panic("undefined ARC buffer type!");
2023	return ((uint32_t)-1);
2024}
2025
2026void
2027arc_buf_thaw(arc_buf_t *buf)
2028{
2029	arc_buf_hdr_t *hdr = buf->b_hdr;
2030
2031	ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2032	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2033
2034	arc_cksum_verify(buf);
2035
2036	/*
2037	 * Compressed buffers do not manipulate the b_freeze_cksum or
2038	 * allocate b_thawed.
2039	 */
2040	if (ARC_BUF_COMPRESSED(buf)) {
2041		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2042		    arc_hdr_has_uncompressed_buf(hdr));
2043		return;
2044	}
2045
2046	ASSERT(HDR_HAS_L1HDR(hdr));
2047	arc_cksum_free(hdr);
2048
2049	mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
2050#ifdef ZFS_DEBUG
2051	if (zfs_flags & ZFS_DEBUG_MODIFY) {
2052		if (hdr->b_l1hdr.b_thawed != NULL)
2053			kmem_free(hdr->b_l1hdr.b_thawed, 1);
2054		hdr->b_l1hdr.b_thawed = kmem_alloc(1, KM_SLEEP);
2055	}
2056#endif
2057
2058	mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
2059
2060#ifdef illumos
2061	arc_buf_unwatch(buf);
2062#endif
2063}
2064
2065void
2066arc_buf_freeze(arc_buf_t *buf)
2067{
2068	arc_buf_hdr_t *hdr = buf->b_hdr;
2069	kmutex_t *hash_lock;
2070
2071	if (!(zfs_flags & ZFS_DEBUG_MODIFY))
2072		return;
2073
2074	if (ARC_BUF_COMPRESSED(buf)) {
2075		ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
2076		    arc_hdr_has_uncompressed_buf(hdr));
2077		return;
2078	}
2079
2080	hash_lock = HDR_LOCK(hdr);
2081	mutex_enter(hash_lock);
2082
2083	ASSERT(HDR_HAS_L1HDR(hdr));
2084	ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
2085	    hdr->b_l1hdr.b_state == arc_anon);
2086	arc_cksum_compute(buf);
2087	mutex_exit(hash_lock);
2088}
2089
2090/*
2091 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
2092 * the following functions should be used to ensure that the flags are
2093 * updated in a thread-safe way. When manipulating the flags either
2094 * the hash_lock must be held or the hdr must be undiscoverable. This
2095 * ensures that we're not racing with any other threads when updating
2096 * the flags.
2097 */
2098static inline void
2099arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2100{
2101	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2102	hdr->b_flags |= flags;
2103}
2104
2105static inline void
2106arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
2107{
2108	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2109	hdr->b_flags &= ~flags;
2110}
2111
2112/*
2113 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
2114 * done in a special way since we have to clear and set bits
2115 * at the same time. Consumers that wish to set the compression bits
2116 * must use this function to ensure that the flags are updated in
2117 * thread-safe manner.
2118 */
2119static void
2120arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
2121{
2122	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2123
2124	/*
2125	 * Holes and embedded blocks will always have a psize = 0 so
2126	 * we ignore the compression of the blkptr and set the
2127	 * arc_buf_hdr_t's compression to ZIO_COMPRESS_OFF.
2128	 * Holes and embedded blocks remain anonymous so we don't
2129	 * want to uncompress them. Mark them as uncompressed.
2130	 */
2131	if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
2132		arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2133		HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
2134		ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
2135		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
2136	} else {
2137		arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
2138		HDR_SET_COMPRESS(hdr, cmp);
2139		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
2140		ASSERT(HDR_COMPRESSION_ENABLED(hdr));
2141	}
2142}
2143
2144/*
2145 * Looks for another buf on the same hdr which has the data decompressed, copies
2146 * from it, and returns true. If no such buf exists, returns false.
2147 */
2148static boolean_t
2149arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
2150{
2151	arc_buf_hdr_t *hdr = buf->b_hdr;
2152	boolean_t copied = B_FALSE;
2153
2154	ASSERT(HDR_HAS_L1HDR(hdr));
2155	ASSERT3P(buf->b_data, !=, NULL);
2156	ASSERT(!ARC_BUF_COMPRESSED(buf));
2157
2158	for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
2159	    from = from->b_next) {
2160		/* can't use our own data buffer */
2161		if (from == buf) {
2162			continue;
2163		}
2164
2165		if (!ARC_BUF_COMPRESSED(from)) {
2166			bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
2167			copied = B_TRUE;
2168			break;
2169		}
2170	}
2171
2172	/*
2173	 * There were no decompressed bufs, so there should not be a
2174	 * checksum on the hdr either.
2175	 */
2176	EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
2177
2178	return (copied);
2179}
2180
2181/*
2182 * Given a buf that has a data buffer attached to it, this function will
2183 * efficiently fill the buf with data of the specified compression setting from
2184 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2185 * are already sharing a data buf, no copy is performed.
2186 *
2187 * If the buf is marked as compressed but uncompressed data was requested, this
2188 * will allocate a new data buffer for the buf, remove that flag, and fill the
2189 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2190 * uncompressed data, and (since we haven't added support for it yet) if you
2191 * want compressed data your buf must already be marked as compressed and have
2192 * the correct-sized data buffer.
2193 */
2194static int
2195arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
2196{
2197	arc_buf_hdr_t *hdr = buf->b_hdr;
2198	boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2199	dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2200
2201	ASSERT3P(buf->b_data, !=, NULL);
2202	IMPLY(compressed, hdr_compressed);
2203	IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2204
2205	if (hdr_compressed == compressed) {
2206		if (!arc_buf_is_shared(buf)) {
2207			abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2208			    arc_buf_size(buf));
2209		}
2210	} else {
2211		ASSERT(hdr_compressed);
2212		ASSERT(!compressed);
2213		ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2214
2215		/*
2216		 * If the buf is sharing its data with the hdr, unlink it and
2217		 * allocate a new data buffer for the buf.
2218		 */
2219		if (arc_buf_is_shared(buf)) {
2220			ASSERT(ARC_BUF_COMPRESSED(buf));
2221
2222			/* We need to give the buf it's own b_data */
2223			buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2224			buf->b_data =
2225			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2226			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2227
2228			/* Previously overhead was 0; just add new overhead */
2229			ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2230		} else if (ARC_BUF_COMPRESSED(buf)) {
2231			/* We need to reallocate the buf's b_data */
2232			arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2233			    buf);
2234			buf->b_data =
2235			    arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2236
2237			/* We increased the size of b_data; update overhead */
2238			ARCSTAT_INCR(arcstat_overhead_size,
2239			    HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2240		}
2241
2242		/*
2243		 * Regardless of the buf's previous compression settings, it
2244		 * should not be compressed at the end of this function.
2245		 */
2246		buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2247
2248		/*
2249		 * Try copying the data from another buf which already has a
2250		 * decompressed version. If that's not possible, it's time to
2251		 * bite the bullet and decompress the data from the hdr.
2252		 */
2253		if (arc_buf_try_copy_decompressed_data(buf)) {
2254			/* Skip byteswapping and checksumming (already done) */
2255			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2256			return (0);
2257		} else {
2258			int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2259			    hdr->b_l1hdr.b_pabd, buf->b_data,
2260			    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2261
2262			/*
2263			 * Absent hardware errors or software bugs, this should
2264			 * be impossible, but log it anyway so we can debug it.
2265			 */
2266			if (error != 0) {
2267				zfs_dbgmsg(
2268				    "hdr %p, compress %d, psize %d, lsize %d",
2269				    hdr, HDR_GET_COMPRESS(hdr),
2270				    HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2271				return (SET_ERROR(EIO));
2272			}
2273		}
2274	}
2275
2276	/* Byteswap the buf's data if necessary */
2277	if (bswap != DMU_BSWAP_NUMFUNCS) {
2278		ASSERT(!HDR_SHARED_DATA(hdr));
2279		ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2280		dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2281	}
2282
2283	/* Compute the hdr's checksum if necessary */
2284	arc_cksum_compute(buf);
2285
2286	return (0);
2287}
2288
2289int
2290arc_decompress(arc_buf_t *buf)
2291{
2292	return (arc_buf_fill(buf, B_FALSE));
2293}
2294
2295/*
2296 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
2297 */
2298static uint64_t
2299arc_hdr_size(arc_buf_hdr_t *hdr)
2300{
2301	uint64_t size;
2302
2303	if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2304	    HDR_GET_PSIZE(hdr) > 0) {
2305		size = HDR_GET_PSIZE(hdr);
2306	} else {
2307		ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
2308		size = HDR_GET_LSIZE(hdr);
2309	}
2310	return (size);
2311}
2312
2313/*
2314 * Increment the amount of evictable space in the arc_state_t's refcount.
2315 * We account for the space used by the hdr and the arc buf individually
2316 * so that we can add and remove them from the refcount individually.
2317 */
2318static void
2319arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2320{
2321	arc_buf_contents_t type = arc_buf_type(hdr);
2322
2323	ASSERT(HDR_HAS_L1HDR(hdr));
2324
2325	if (GHOST_STATE(state)) {
2326		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2327		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2328		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2329		(void) refcount_add_many(&state->arcs_esize[type],
2330		    HDR_GET_LSIZE(hdr), hdr);
2331		return;
2332	}
2333
2334	ASSERT(!GHOST_STATE(state));
2335	if (hdr->b_l1hdr.b_pabd != NULL) {
2336		(void) refcount_add_many(&state->arcs_esize[type],
2337		    arc_hdr_size(hdr), hdr);
2338	}
2339	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2340	    buf = buf->b_next) {
2341		if (arc_buf_is_shared(buf))
2342			continue;
2343		(void) refcount_add_many(&state->arcs_esize[type],
2344		    arc_buf_size(buf), buf);
2345	}
2346}
2347
2348/*
2349 * Decrement the amount of evictable space in the arc_state_t's refcount.
2350 * We account for the space used by the hdr and the arc buf individually
2351 * so that we can add and remove them from the refcount individually.
2352 */
2353static void
2354arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2355{
2356	arc_buf_contents_t type = arc_buf_type(hdr);
2357
2358	ASSERT(HDR_HAS_L1HDR(hdr));
2359
2360	if (GHOST_STATE(state)) {
2361		ASSERT0(hdr->b_l1hdr.b_bufcnt);
2362		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2363		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2364		(void) refcount_remove_many(&state->arcs_esize[type],
2365		    HDR_GET_LSIZE(hdr), hdr);
2366		return;
2367	}
2368
2369	ASSERT(!GHOST_STATE(state));
2370	if (hdr->b_l1hdr.b_pabd != NULL) {
2371		(void) refcount_remove_many(&state->arcs_esize[type],
2372		    arc_hdr_size(hdr), hdr);
2373	}
2374	for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2375	    buf = buf->b_next) {
2376		if (arc_buf_is_shared(buf))
2377			continue;
2378		(void) refcount_remove_many(&state->arcs_esize[type],
2379		    arc_buf_size(buf), buf);
2380	}
2381}
2382
2383/*
2384 * Add a reference to this hdr indicating that someone is actively
2385 * referencing that memory. When the refcount transitions from 0 to 1,
2386 * we remove it from the respective arc_state_t list to indicate that
2387 * it is not evictable.
2388 */
2389static void
2390add_reference(arc_buf_hdr_t *hdr, void *tag)
2391{
2392	ASSERT(HDR_HAS_L1HDR(hdr));
2393	if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2394		ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2395		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2396		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2397	}
2398
2399	arc_state_t *state = hdr->b_l1hdr.b_state;
2400
2401	if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2402	    (state != arc_anon)) {
2403		/* We don't use the L2-only state list. */
2404		if (state != arc_l2c_only) {
2405			multilist_remove(state->arcs_list[arc_buf_type(hdr)],
2406			    hdr);
2407			arc_evictable_space_decrement(hdr, state);
2408		}
2409		/* remove the prefetch flag if we get a reference */
2410		arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2411	}
2412}
2413
2414/*
2415 * Remove a reference from this hdr. When the reference transitions from
2416 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2417 * list making it eligible for eviction.
2418 */
2419static int
2420remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
2421{
2422	int cnt;
2423	arc_state_t *state = hdr->b_l1hdr.b_state;
2424
2425	ASSERT(HDR_HAS_L1HDR(hdr));
2426	ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2427	ASSERT(!GHOST_STATE(state));
2428
2429	/*
2430	 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2431	 * check to prevent usage of the arc_l2c_only list.
2432	 */
2433	if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2434	    (state != arc_anon)) {
2435		multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2436		ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2437		arc_evictable_space_increment(hdr, state);
2438	}
2439	return (cnt);
2440}
2441
2442/*
2443 * Move the supplied buffer to the indicated state. The hash lock
2444 * for the buffer must be held by the caller.
2445 */
2446static void
2447arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2448    kmutex_t *hash_lock)
2449{
2450	arc_state_t *old_state;
2451	int64_t refcnt;
2452	uint32_t bufcnt;
2453	boolean_t update_old, update_new;
2454	arc_buf_contents_t buftype = arc_buf_type(hdr);
2455
2456	/*
2457	 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2458	 * in arc_read() when bringing a buffer out of the L2ARC.  However, the
2459	 * L1 hdr doesn't always exist when we change state to arc_anon before
2460	 * destroying a header, in which case reallocating to add the L1 hdr is
2461	 * pointless.
2462	 */
2463	if (HDR_HAS_L1HDR(hdr)) {
2464		old_state = hdr->b_l1hdr.b_state;
2465		refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2466		bufcnt = hdr->b_l1hdr.b_bufcnt;
2467		update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2468	} else {
2469		old_state = arc_l2c_only;
2470		refcnt = 0;
2471		bufcnt = 0;
2472		update_old = B_FALSE;
2473	}
2474	update_new = update_old;
2475
2476	ASSERT(MUTEX_HELD(hash_lock));
2477	ASSERT3P(new_state, !=, old_state);
2478	ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2479	ASSERT(old_state != arc_anon || bufcnt <= 1);
2480
2481	/*
2482	 * If this buffer is evictable, transfer it from the
2483	 * old state list to the new state list.
2484	 */
2485	if (refcnt == 0) {
2486		if (old_state != arc_anon && old_state != arc_l2c_only) {
2487			ASSERT(HDR_HAS_L1HDR(hdr));
2488			multilist_remove(old_state->arcs_list[buftype], hdr);
2489
2490			if (GHOST_STATE(old_state)) {
2491				ASSERT0(bufcnt);
2492				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2493				update_old = B_TRUE;
2494			}
2495			arc_evictable_space_decrement(hdr, old_state);
2496		}
2497		if (new_state != arc_anon && new_state != arc_l2c_only) {
2498
2499			/*
2500			 * An L1 header always exists here, since if we're
2501			 * moving to some L1-cached state (i.e. not l2c_only or
2502			 * anonymous), we realloc the header to add an L1hdr
2503			 * beforehand.
2504			 */
2505			ASSERT(HDR_HAS_L1HDR(hdr));
2506			multilist_insert(new_state->arcs_list[buftype], hdr);
2507
2508			if (GHOST_STATE(new_state)) {
2509				ASSERT0(bufcnt);
2510				ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2511				update_new = B_TRUE;
2512			}
2513			arc_evictable_space_increment(hdr, new_state);
2514		}
2515	}
2516
2517	ASSERT(!HDR_EMPTY(hdr));
2518	if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2519		buf_hash_remove(hdr);
2520
2521	/* adjust state sizes (ignore arc_l2c_only) */
2522
2523	if (update_new && new_state != arc_l2c_only) {
2524		ASSERT(HDR_HAS_L1HDR(hdr));
2525		if (GHOST_STATE(new_state)) {
2526			ASSERT0(bufcnt);
2527
2528			/*
2529			 * When moving a header to a ghost state, we first
2530			 * remove all arc buffers. Thus, we'll have a
2531			 * bufcnt of zero, and no arc buffer to use for
2532			 * the reference. As a result, we use the arc
2533			 * header pointer for the reference.
2534			 */
2535			(void) refcount_add_many(&new_state->arcs_size,
2536			    HDR_GET_LSIZE(hdr), hdr);
2537			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2538		} else {
2539			uint32_t buffers = 0;
2540
2541			/*
2542			 * Each individual buffer holds a unique reference,
2543			 * thus we must remove each of these references one
2544			 * at a time.
2545			 */
2546			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2547			    buf = buf->b_next) {
2548				ASSERT3U(bufcnt, !=, 0);
2549				buffers++;
2550
2551				/*
2552				 * When the arc_buf_t is sharing the data
2553				 * block with the hdr, the owner of the
2554				 * reference belongs to the hdr. Only
2555				 * add to the refcount if the arc_buf_t is
2556				 * not shared.
2557				 */
2558				if (arc_buf_is_shared(buf))
2559					continue;
2560
2561				(void) refcount_add_many(&new_state->arcs_size,
2562				    arc_buf_size(buf), buf);
2563			}
2564			ASSERT3U(bufcnt, ==, buffers);
2565
2566			if (hdr->b_l1hdr.b_pabd != NULL) {
2567				(void) refcount_add_many(&new_state->arcs_size,
2568				    arc_hdr_size(hdr), hdr);
2569			} else {
2570				ASSERT(GHOST_STATE(old_state));
2571			}
2572		}
2573	}
2574
2575	if (update_old && old_state != arc_l2c_only) {
2576		ASSERT(HDR_HAS_L1HDR(hdr));
2577		if (GHOST_STATE(old_state)) {
2578			ASSERT0(bufcnt);
2579			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2580
2581			/*
2582			 * When moving a header off of a ghost state,
2583			 * the header will not contain any arc buffers.
2584			 * We use the arc header pointer for the reference
2585			 * which is exactly what we did when we put the
2586			 * header on the ghost state.
2587			 */
2588
2589			(void) refcount_remove_many(&old_state->arcs_size,
2590			    HDR_GET_LSIZE(hdr), hdr);
2591		} else {
2592			uint32_t buffers = 0;
2593
2594			/*
2595			 * Each individual buffer holds a unique reference,
2596			 * thus we must remove each of these references one
2597			 * at a time.
2598			 */
2599			for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2600			    buf = buf->b_next) {
2601				ASSERT3U(bufcnt, !=, 0);
2602				buffers++;
2603
2604				/*
2605				 * When the arc_buf_t is sharing the data
2606				 * block with the hdr, the owner of the
2607				 * reference belongs to the hdr. Only
2608				 * add to the refcount if the arc_buf_t is
2609				 * not shared.
2610				 */
2611				if (arc_buf_is_shared(buf))
2612					continue;
2613
2614				(void) refcount_remove_many(
2615				    &old_state->arcs_size, arc_buf_size(buf),
2616				    buf);
2617			}
2618			ASSERT3U(bufcnt, ==, buffers);
2619			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2620			(void) refcount_remove_many(
2621			    &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2622		}
2623	}
2624
2625	if (HDR_HAS_L1HDR(hdr))
2626		hdr->b_l1hdr.b_state = new_state;
2627
2628	/*
2629	 * L2 headers should never be on the L2 state list since they don't
2630	 * have L1 headers allocated.
2631	 */
2632	ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2633	    multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2634}
2635
2636void
2637arc_space_consume(uint64_t space, arc_space_type_t type)
2638{
2639	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2640
2641	switch (type) {
2642	case ARC_SPACE_DATA:
2643		ARCSTAT_INCR(arcstat_data_size, space);
2644		break;
2645	case ARC_SPACE_META:
2646		ARCSTAT_INCR(arcstat_metadata_size, space);
2647		break;
2648	case ARC_SPACE_OTHER:
2649		ARCSTAT_INCR(arcstat_other_size, space);
2650		break;
2651	case ARC_SPACE_HDRS:
2652		ARCSTAT_INCR(arcstat_hdr_size, space);
2653		break;
2654	case ARC_SPACE_L2HDRS:
2655		ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2656		break;
2657	}
2658
2659	if (type != ARC_SPACE_DATA)
2660		ARCSTAT_INCR(arcstat_meta_used, space);
2661
2662	atomic_add_64(&arc_size, space);
2663}
2664
2665void
2666arc_space_return(uint64_t space, arc_space_type_t type)
2667{
2668	ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2669
2670	switch (type) {
2671	case ARC_SPACE_DATA:
2672		ARCSTAT_INCR(arcstat_data_size, -space);
2673		break;
2674	case ARC_SPACE_META:
2675		ARCSTAT_INCR(arcstat_metadata_size, -space);
2676		break;
2677	case ARC_SPACE_OTHER:
2678		ARCSTAT_INCR(arcstat_other_size, -space);
2679		break;
2680	case ARC_SPACE_HDRS:
2681		ARCSTAT_INCR(arcstat_hdr_size, -space);
2682		break;
2683	case ARC_SPACE_L2HDRS:
2684		ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2685		break;
2686	}
2687
2688	if (type != ARC_SPACE_DATA) {
2689		ASSERT(arc_meta_used >= space);
2690		if (arc_meta_max < arc_meta_used)
2691			arc_meta_max = arc_meta_used;
2692		ARCSTAT_INCR(arcstat_meta_used, -space);
2693	}
2694
2695	ASSERT(arc_size >= space);
2696	atomic_add_64(&arc_size, -space);
2697}
2698
2699/*
2700 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2701 * with the hdr's b_pabd.
2702 */
2703static boolean_t
2704arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2705{
2706	/*
2707	 * The criteria for sharing a hdr's data are:
2708	 * 1. the hdr's compression matches the buf's compression
2709	 * 2. the hdr doesn't need to be byteswapped
2710	 * 3. the hdr isn't already being shared
2711	 * 4. the buf is either compressed or it is the last buf in the hdr list
2712	 *
2713	 * Criterion #4 maintains the invariant that shared uncompressed
2714	 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2715	 * might ask, "if a compressed buf is allocated first, won't that be the
2716	 * last thing in the list?", but in that case it's impossible to create
2717	 * a shared uncompressed buf anyway (because the hdr must be compressed
2718	 * to have the compressed buf). You might also think that #3 is
2719	 * sufficient to make this guarantee, however it's possible
2720	 * (specifically in the rare L2ARC write race mentioned in
2721	 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2722	 * is sharable, but wasn't at the time of its allocation. Rather than
2723	 * allow a new shared uncompressed buf to be created and then shuffle
2724	 * the list around to make it the last element, this simply disallows
2725	 * sharing if the new buf isn't the first to be added.
2726	 */
2727	ASSERT3P(buf->b_hdr, ==, hdr);
2728	boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2729	boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2730	return (buf_compressed == hdr_compressed &&
2731	    hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2732	    !HDR_SHARED_DATA(hdr) &&
2733	    (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2734}
2735
2736/*
2737 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2738 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2739 * copy was made successfully, or an error code otherwise.
2740 */
2741static int
2742arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2743    boolean_t fill, arc_buf_t **ret)
2744{
2745	arc_buf_t *buf;
2746
2747	ASSERT(HDR_HAS_L1HDR(hdr));
2748	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2749	VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2750	    hdr->b_type == ARC_BUFC_METADATA);
2751	ASSERT3P(ret, !=, NULL);
2752	ASSERT3P(*ret, ==, NULL);
2753
2754	buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2755	buf->b_hdr = hdr;
2756	buf->b_data = NULL;
2757	buf->b_next = hdr->b_l1hdr.b_buf;
2758	buf->b_flags = 0;
2759
2760	add_reference(hdr, tag);
2761
2762	/*
2763	 * We're about to change the hdr's b_flags. We must either
2764	 * hold the hash_lock or be undiscoverable.
2765	 */
2766	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2767
2768	/*
2769	 * Only honor requests for compressed bufs if the hdr is actually
2770	 * compressed.
2771	 */
2772	if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2773		buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2774
2775	/*
2776	 * If the hdr's data can be shared then we share the data buffer and
2777	 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2778	 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2779	 * buffer to store the buf's data.
2780	 *
2781	 * There are two additional restrictions here because we're sharing
2782	 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2783	 * actively involved in an L2ARC write, because if this buf is used by
2784	 * an arc_write() then the hdr's data buffer will be released when the
2785	 * write completes, even though the L2ARC write might still be using it.
2786	 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2787	 * need to be ABD-aware.
2788	 */
2789	boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2790	    abd_is_linear(hdr->b_l1hdr.b_pabd);
2791
2792	/* Set up b_data and sharing */
2793	if (can_share) {
2794		buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2795		buf->b_flags |= ARC_BUF_FLAG_SHARED;
2796		arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2797	} else {
2798		buf->b_data =
2799		    arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2800		ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2801	}
2802	VERIFY3P(buf->b_data, !=, NULL);
2803
2804	hdr->b_l1hdr.b_buf = buf;
2805	hdr->b_l1hdr.b_bufcnt += 1;
2806
2807	/*
2808	 * If the user wants the data from the hdr, we need to either copy or
2809	 * decompress the data.
2810	 */
2811	if (fill) {
2812		return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2813	}
2814
2815	return (0);
2816}
2817
2818static char *arc_onloan_tag = "onloan";
2819
2820static inline void
2821arc_loaned_bytes_update(int64_t delta)
2822{
2823	atomic_add_64(&arc_loaned_bytes, delta);
2824
2825	/* assert that it did not wrap around */
2826	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2827}
2828
2829/*
2830 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2831 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2832 * buffers must be returned to the arc before they can be used by the DMU or
2833 * freed.
2834 */
2835arc_buf_t *
2836arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2837{
2838	arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2839	    is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2840
2841	arc_loaned_bytes_update(size);
2842
2843	return (buf);
2844}
2845
2846arc_buf_t *
2847arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2848    enum zio_compress compression_type)
2849{
2850	arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2851	    psize, lsize, compression_type);
2852
2853	arc_loaned_bytes_update(psize);
2854
2855	return (buf);
2856}
2857
2858
2859/*
2860 * Return a loaned arc buffer to the arc.
2861 */
2862void
2863arc_return_buf(arc_buf_t *buf, void *tag)
2864{
2865	arc_buf_hdr_t *hdr = buf->b_hdr;
2866
2867	ASSERT3P(buf->b_data, !=, NULL);
2868	ASSERT(HDR_HAS_L1HDR(hdr));
2869	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2870	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2871
2872	arc_loaned_bytes_update(-arc_buf_size(buf));
2873}
2874
2875/* Detach an arc_buf from a dbuf (tag) */
2876void
2877arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2878{
2879	arc_buf_hdr_t *hdr = buf->b_hdr;
2880
2881	ASSERT3P(buf->b_data, !=, NULL);
2882	ASSERT(HDR_HAS_L1HDR(hdr));
2883	(void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2884	(void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2885
2886	arc_loaned_bytes_update(arc_buf_size(buf));
2887}
2888
2889static void
2890l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2891{
2892	l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2893
2894	df->l2df_abd = abd;
2895	df->l2df_size = size;
2896	df->l2df_type = type;
2897	mutex_enter(&l2arc_free_on_write_mtx);
2898	list_insert_head(l2arc_free_on_write, df);
2899	mutex_exit(&l2arc_free_on_write_mtx);
2900}
2901
2902static void
2903arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2904{
2905	arc_state_t *state = hdr->b_l1hdr.b_state;
2906	arc_buf_contents_t type = arc_buf_type(hdr);
2907	uint64_t size = arc_hdr_size(hdr);
2908
2909	/* protected by hash lock, if in the hash table */
2910	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2911		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2912		ASSERT(state != arc_anon && state != arc_l2c_only);
2913
2914		(void) refcount_remove_many(&state->arcs_esize[type],
2915		    size, hdr);
2916	}
2917	(void) refcount_remove_many(&state->arcs_size, size, hdr);
2918	if (type == ARC_BUFC_METADATA) {
2919		arc_space_return(size, ARC_SPACE_META);
2920	} else {
2921		ASSERT(type == ARC_BUFC_DATA);
2922		arc_space_return(size, ARC_SPACE_DATA);
2923	}
2924
2925	l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2926}
2927
2928/*
2929 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2930 * data buffer, we transfer the refcount ownership to the hdr and update
2931 * the appropriate kstats.
2932 */
2933static void
2934arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2935{
2936	arc_state_t *state = hdr->b_l1hdr.b_state;
2937
2938	ASSERT(arc_can_share(hdr, buf));
2939	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2940	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2941
2942	/*
2943	 * Start sharing the data buffer. We transfer the
2944	 * refcount ownership to the hdr since it always owns
2945	 * the refcount whenever an arc_buf_t is shared.
2946	 */
2947	refcount_transfer_ownership(&state->arcs_size, buf, hdr);
2948	hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2949	abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2950	    HDR_ISTYPE_METADATA(hdr));
2951	arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2952	buf->b_flags |= ARC_BUF_FLAG_SHARED;
2953
2954	/*
2955	 * Since we've transferred ownership to the hdr we need
2956	 * to increment its compressed and uncompressed kstats and
2957	 * decrement the overhead size.
2958	 */
2959	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2960	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2961	ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2962}
2963
2964static void
2965arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2966{
2967	arc_state_t *state = hdr->b_l1hdr.b_state;
2968
2969	ASSERT(arc_buf_is_shared(buf));
2970	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2971	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2972
2973	/*
2974	 * We are no longer sharing this buffer so we need
2975	 * to transfer its ownership to the rightful owner.
2976	 */
2977	refcount_transfer_ownership(&state->arcs_size, hdr, buf);
2978	arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2979	abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2980	abd_put(hdr->b_l1hdr.b_pabd);
2981	hdr->b_l1hdr.b_pabd = NULL;
2982	buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2983
2984	/*
2985	 * Since the buffer is no longer shared between
2986	 * the arc buf and the hdr, count it as overhead.
2987	 */
2988	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2989	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2990	ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2991}
2992
2993/*
2994 * Remove an arc_buf_t from the hdr's buf list and return the last
2995 * arc_buf_t on the list. If no buffers remain on the list then return
2996 * NULL.
2997 */
2998static arc_buf_t *
2999arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3000{
3001	ASSERT(HDR_HAS_L1HDR(hdr));
3002	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3003
3004	arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3005	arc_buf_t *lastbuf = NULL;
3006
3007	/*
3008	 * Remove the buf from the hdr list and locate the last
3009	 * remaining buffer on the list.
3010	 */
3011	while (*bufp != NULL) {
3012		if (*bufp == buf)
3013			*bufp = buf->b_next;
3014
3015		/*
3016		 * If we've removed a buffer in the middle of
3017		 * the list then update the lastbuf and update
3018		 * bufp.
3019		 */
3020		if (*bufp != NULL) {
3021			lastbuf = *bufp;
3022			bufp = &(*bufp)->b_next;
3023		}
3024	}
3025	buf->b_next = NULL;
3026	ASSERT3P(lastbuf, !=, buf);
3027	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3028	IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3029	IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3030
3031	return (lastbuf);
3032}
3033
3034/*
3035 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3036 * list and free it.
3037 */
3038static void
3039arc_buf_destroy_impl(arc_buf_t *buf)
3040{
3041	arc_buf_hdr_t *hdr = buf->b_hdr;
3042
3043	/*
3044	 * Free up the data associated with the buf but only if we're not
3045	 * sharing this with the hdr. If we are sharing it with the hdr, the
3046	 * hdr is responsible for doing the free.
3047	 */
3048	if (buf->b_data != NULL) {
3049		/*
3050		 * We're about to change the hdr's b_flags. We must either
3051		 * hold the hash_lock or be undiscoverable.
3052		 */
3053		ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3054
3055		arc_cksum_verify(buf);
3056#ifdef illumos
3057		arc_buf_unwatch(buf);
3058#endif
3059
3060		if (arc_buf_is_shared(buf)) {
3061			arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3062		} else {
3063			uint64_t size = arc_buf_size(buf);
3064			arc_free_data_buf(hdr, buf->b_data, size, buf);
3065			ARCSTAT_INCR(arcstat_overhead_size, -size);
3066		}
3067		buf->b_data = NULL;
3068
3069		ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3070		hdr->b_l1hdr.b_bufcnt -= 1;
3071	}
3072
3073	arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3074
3075	if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3076		/*
3077		 * If the current arc_buf_t is sharing its data buffer with the
3078		 * hdr, then reassign the hdr's b_pabd to share it with the new
3079		 * buffer at the end of the list. The shared buffer is always
3080		 * the last one on the hdr's buffer list.
3081		 *
3082		 * There is an equivalent case for compressed bufs, but since
3083		 * they aren't guaranteed to be the last buf in the list and
3084		 * that is an exceedingly rare case, we just allow that space be
3085		 * wasted temporarily.
3086		 */
3087		if (lastbuf != NULL) {
3088			/* Only one buf can be shared at once */
3089			VERIFY(!arc_buf_is_shared(lastbuf));
3090			/* hdr is uncompressed so can't have compressed buf */
3091			VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3092
3093			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3094			arc_hdr_free_pabd(hdr);
3095
3096			/*
3097			 * We must setup a new shared block between the
3098			 * last buffer and the hdr. The data would have
3099			 * been allocated by the arc buf so we need to transfer
3100			 * ownership to the hdr since it's now being shared.
3101			 */
3102			arc_share_buf(hdr, lastbuf);
3103		}
3104	} else if (HDR_SHARED_DATA(hdr)) {
3105		/*
3106		 * Uncompressed shared buffers are always at the end
3107		 * of the list. Compressed buffers don't have the
3108		 * same requirements. This makes it hard to
3109		 * simply assert that the lastbuf is shared so
3110		 * we rely on the hdr's compression flags to determine
3111		 * if we have a compressed, shared buffer.
3112		 */
3113		ASSERT3P(lastbuf, !=, NULL);
3114		ASSERT(arc_buf_is_shared(lastbuf) ||
3115		    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
3116	}
3117
3118	/*
3119	 * Free the checksum if we're removing the last uncompressed buf from
3120	 * this hdr.
3121	 */
3122	if (!arc_hdr_has_uncompressed_buf(hdr)) {
3123		arc_cksum_free(hdr);
3124	}
3125
3126	/* clean up the buf */
3127	buf->b_hdr = NULL;
3128	kmem_cache_free(buf_cache, buf);
3129}
3130
3131static void
3132arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
3133{
3134	ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3135	ASSERT(HDR_HAS_L1HDR(hdr));
3136	ASSERT(!HDR_SHARED_DATA(hdr));
3137
3138	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3139	hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
3140	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3141	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3142
3143	ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3144	ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3145}
3146
3147static void
3148arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
3149{
3150	ASSERT(HDR_HAS_L1HDR(hdr));
3151	ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3152
3153	/*
3154	 * If the hdr is currently being written to the l2arc then
3155	 * we defer freeing the data by adding it to the l2arc_free_on_write
3156	 * list. The l2arc will free the data once it's finished
3157	 * writing it to the l2arc device.
3158	 */
3159	if (HDR_L2_WRITING(hdr)) {
3160		arc_hdr_free_on_write(hdr);
3161		ARCSTAT_BUMP(arcstat_l2_free_on_write);
3162	} else {
3163		arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
3164		    arc_hdr_size(hdr), hdr);
3165	}
3166	hdr->b_l1hdr.b_pabd = NULL;
3167	hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3168
3169	ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3170	ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3171}
3172
3173static arc_buf_hdr_t *
3174arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3175    enum zio_compress compression_type, arc_buf_contents_t type)
3176{
3177	arc_buf_hdr_t *hdr;
3178
3179	VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3180
3181	hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3182	ASSERT(HDR_EMPTY(hdr));
3183	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3184	ASSERT3P(hdr->b_l1hdr.b_thawed, ==, NULL);
3185	HDR_SET_PSIZE(hdr, psize);
3186	HDR_SET_LSIZE(hdr, lsize);
3187	hdr->b_spa = spa;
3188	hdr->b_type = type;
3189	hdr->b_flags = 0;
3190	arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3191	arc_hdr_set_compress(hdr, compression_type);
3192
3193	hdr->b_l1hdr.b_state = arc_anon;
3194	hdr->b_l1hdr.b_arc_access = 0;
3195	hdr->b_l1hdr.b_bufcnt = 0;
3196	hdr->b_l1hdr.b_buf = NULL;
3197
3198	/*
3199	 * Allocate the hdr's buffer. This will contain either
3200	 * the compressed or uncompressed data depending on the block
3201	 * it references and compressed arc enablement.
3202	 */
3203	arc_hdr_alloc_pabd(hdr);
3204	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3205
3206	return (hdr);
3207}
3208
3209/*
3210 * Transition between the two allocation states for the arc_buf_hdr struct.
3211 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3212 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3213 * version is used when a cache buffer is only in the L2ARC in order to reduce
3214 * memory usage.
3215 */
3216static arc_buf_hdr_t *
3217arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3218{
3219	ASSERT(HDR_HAS_L2HDR(hdr));
3220
3221	arc_buf_hdr_t *nhdr;
3222	l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3223
3224	ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3225	    (old == hdr_l2only_cache && new == hdr_full_cache));
3226
3227	nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3228
3229	ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3230	buf_hash_remove(hdr);
3231
3232	bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3233
3234	if (new == hdr_full_cache) {
3235		arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3236		/*
3237		 * arc_access and arc_change_state need to be aware that a
3238		 * header has just come out of L2ARC, so we set its state to
3239		 * l2c_only even though it's about to change.
3240		 */
3241		nhdr->b_l1hdr.b_state = arc_l2c_only;
3242
3243		/* Verify previous threads set to NULL before freeing */
3244		ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3245	} else {
3246		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3247		ASSERT0(hdr->b_l1hdr.b_bufcnt);
3248		ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3249
3250		/*
3251		 * If we've reached here, We must have been called from
3252		 * arc_evict_hdr(), as such we should have already been
3253		 * removed from any ghost list we were previously on
3254		 * (which protects us from racing with arc_evict_state),
3255		 * thus no locking is needed during this check.
3256		 */
3257		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3258
3259		/*
3260		 * A buffer must not be moved into the arc_l2c_only
3261		 * state if it's not finished being written out to the
3262		 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3263		 * might try to be accessed, even though it was removed.
3264		 */
3265		VERIFY(!HDR_L2_WRITING(hdr));
3266		VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3267
3268#ifdef ZFS_DEBUG
3269		if (hdr->b_l1hdr.b_thawed != NULL) {
3270			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3271			hdr->b_l1hdr.b_thawed = NULL;
3272		}
3273#endif
3274
3275		arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3276	}
3277	/*
3278	 * The header has been reallocated so we need to re-insert it into any
3279	 * lists it was on.
3280	 */
3281	(void) buf_hash_insert(nhdr, NULL);
3282
3283	ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3284
3285	mutex_enter(&dev->l2ad_mtx);
3286
3287	/*
3288	 * We must place the realloc'ed header back into the list at
3289	 * the same spot. Otherwise, if it's placed earlier in the list,
3290	 * l2arc_write_buffers() could find it during the function's
3291	 * write phase, and try to write it out to the l2arc.
3292	 */
3293	list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3294	list_remove(&dev->l2ad_buflist, hdr);
3295
3296	mutex_exit(&dev->l2ad_mtx);
3297
3298	/*
3299	 * Since we're using the pointer address as the tag when
3300	 * incrementing and decrementing the l2ad_alloc refcount, we
3301	 * must remove the old pointer (that we're about to destroy) and
3302	 * add the new pointer to the refcount. Otherwise we'd remove
3303	 * the wrong pointer address when calling arc_hdr_destroy() later.
3304	 */
3305
3306	(void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3307	(void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3308
3309	buf_discard_identity(hdr);
3310	kmem_cache_free(old, hdr);
3311
3312	return (nhdr);
3313}
3314
3315/*
3316 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3317 * The buf is returned thawed since we expect the consumer to modify it.
3318 */
3319arc_buf_t *
3320arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
3321{
3322	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3323	    ZIO_COMPRESS_OFF, type);
3324	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3325
3326	arc_buf_t *buf = NULL;
3327	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
3328	arc_buf_thaw(buf);
3329
3330	return (buf);
3331}
3332
3333/*
3334 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3335 * for bufs containing metadata.
3336 */
3337arc_buf_t *
3338arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3339    enum zio_compress compression_type)
3340{
3341	ASSERT3U(lsize, >, 0);
3342	ASSERT3U(lsize, >=, psize);
3343	ASSERT(compression_type > ZIO_COMPRESS_OFF);
3344	ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
3345
3346	arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3347	    compression_type, ARC_BUFC_DATA);
3348	ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3349
3350	arc_buf_t *buf = NULL;
3351	VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
3352	arc_buf_thaw(buf);
3353	ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3354
3355	if (!arc_buf_is_shared(buf)) {
3356		/*
3357		 * To ensure that the hdr has the correct data in it if we call
3358		 * arc_decompress() on this buf before it's been written to
3359		 * disk, it's easiest if we just set up sharing between the
3360		 * buf and the hdr.
3361		 */
3362		ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
3363		arc_hdr_free_pabd(hdr);
3364		arc_share_buf(hdr, buf);
3365	}
3366
3367	return (buf);
3368}
3369
3370static void
3371arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3372{
3373	l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3374	l2arc_dev_t *dev = l2hdr->b_dev;
3375	uint64_t psize = arc_hdr_size(hdr);
3376
3377	ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3378	ASSERT(HDR_HAS_L2HDR(hdr));
3379
3380	list_remove(&dev->l2ad_buflist, hdr);
3381
3382	ARCSTAT_INCR(arcstat_l2_psize, -psize);
3383	ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3384
3385	vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3386
3387	(void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3388	arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3389}
3390
3391static void
3392arc_hdr_destroy(arc_buf_hdr_t *hdr)
3393{
3394	if (HDR_HAS_L1HDR(hdr)) {
3395		ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3396		    hdr->b_l1hdr.b_bufcnt > 0);
3397		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3398		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3399	}
3400	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3401	ASSERT(!HDR_IN_HASH_TABLE(hdr));
3402
3403	if (!HDR_EMPTY(hdr))
3404		buf_discard_identity(hdr);
3405
3406	if (HDR_HAS_L2HDR(hdr)) {
3407		l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3408		boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3409
3410		if (!buflist_held)
3411			mutex_enter(&dev->l2ad_mtx);
3412
3413		/*
3414		 * Even though we checked this conditional above, we
3415		 * need to check this again now that we have the
3416		 * l2ad_mtx. This is because we could be racing with
3417		 * another thread calling l2arc_evict() which might have
3418		 * destroyed this header's L2 portion as we were waiting
3419		 * to acquire the l2ad_mtx. If that happens, we don't
3420		 * want to re-destroy the header's L2 portion.
3421		 */
3422		if (HDR_HAS_L2HDR(hdr)) {
3423			l2arc_trim(hdr);
3424			arc_hdr_l2hdr_destroy(hdr);
3425		}
3426
3427		if (!buflist_held)
3428			mutex_exit(&dev->l2ad_mtx);
3429	}
3430
3431	if (HDR_HAS_L1HDR(hdr)) {
3432		arc_cksum_free(hdr);
3433
3434		while (hdr->b_l1hdr.b_buf != NULL)
3435			arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3436
3437#ifdef ZFS_DEBUG
3438		if (hdr->b_l1hdr.b_thawed != NULL) {
3439			kmem_free(hdr->b_l1hdr.b_thawed, 1);
3440			hdr->b_l1hdr.b_thawed = NULL;
3441		}
3442#endif
3443
3444		if (hdr->b_l1hdr.b_pabd != NULL) {
3445			arc_hdr_free_pabd(hdr);
3446		}
3447	}
3448
3449	ASSERT3P(hdr->b_hash_next, ==, NULL);
3450	if (HDR_HAS_L1HDR(hdr)) {
3451		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3452		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3453		kmem_cache_free(hdr_full_cache, hdr);
3454	} else {
3455		kmem_cache_free(hdr_l2only_cache, hdr);
3456	}
3457}
3458
3459void
3460arc_buf_destroy(arc_buf_t *buf, void* tag)
3461{
3462	arc_buf_hdr_t *hdr = buf->b_hdr;
3463	kmutex_t *hash_lock = HDR_LOCK(hdr);
3464
3465	if (hdr->b_l1hdr.b_state == arc_anon) {
3466		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3467		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3468		VERIFY0(remove_reference(hdr, NULL, tag));
3469		arc_hdr_destroy(hdr);
3470		return;
3471	}
3472
3473	mutex_enter(hash_lock);
3474	ASSERT3P(hdr, ==, buf->b_hdr);
3475	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3476	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3477	ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3478	ASSERT3P(buf->b_data, !=, NULL);
3479
3480	(void) remove_reference(hdr, hash_lock, tag);
3481	arc_buf_destroy_impl(buf);
3482	mutex_exit(hash_lock);
3483}
3484
3485/*
3486 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3487 * state of the header is dependent on it's state prior to entering this
3488 * function. The following transitions are possible:
3489 *
3490 *    - arc_mru -> arc_mru_ghost
3491 *    - arc_mfu -> arc_mfu_ghost
3492 *    - arc_mru_ghost -> arc_l2c_only
3493 *    - arc_mru_ghost -> deleted
3494 *    - arc_mfu_ghost -> arc_l2c_only
3495 *    - arc_mfu_ghost -> deleted
3496 */
3497static int64_t
3498arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3499{
3500	arc_state_t *evicted_state, *state;
3501	int64_t bytes_evicted = 0;
3502
3503	ASSERT(MUTEX_HELD(hash_lock));
3504	ASSERT(HDR_HAS_L1HDR(hdr));
3505
3506	state = hdr->b_l1hdr.b_state;
3507	if (GHOST_STATE(state)) {
3508		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3509		ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3510
3511		/*
3512		 * l2arc_write_buffers() relies on a header's L1 portion
3513		 * (i.e. its b_pabd field) during it's write phase.
3514		 * Thus, we cannot push a header onto the arc_l2c_only
3515		 * state (removing it's L1 piece) until the header is
3516		 * done being written to the l2arc.
3517		 */
3518		if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3519			ARCSTAT_BUMP(arcstat_evict_l2_skip);
3520			return (bytes_evicted);
3521		}
3522
3523		ARCSTAT_BUMP(arcstat_deleted);
3524		bytes_evicted += HDR_GET_LSIZE(hdr);
3525
3526		DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3527
3528		ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3529		if (HDR_HAS_L2HDR(hdr)) {
3530			/*
3531			 * This buffer is cached on the 2nd Level ARC;
3532			 * don't destroy the header.
3533			 */
3534			arc_change_state(arc_l2c_only, hdr, hash_lock);
3535			/*
3536			 * dropping from L1+L2 cached to L2-only,
3537			 * realloc to remove the L1 header.
3538			 */
3539			hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3540			    hdr_l2only_cache);
3541		} else {
3542			arc_change_state(arc_anon, hdr, hash_lock);
3543			arc_hdr_destroy(hdr);
3544		}
3545		return (bytes_evicted);
3546	}
3547
3548	ASSERT(state == arc_mru || state == arc_mfu);
3549	evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3550
3551	/* prefetch buffers have a minimum lifespan */
3552	if (HDR_IO_IN_PROGRESS(hdr) ||
3553	    ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3554	    ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3555	    arc_min_prefetch_lifespan)) {
3556		ARCSTAT_BUMP(arcstat_evict_skip);
3557		return (bytes_evicted);
3558	}
3559
3560	ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3561	while (hdr->b_l1hdr.b_buf) {
3562		arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3563		if (!mutex_tryenter(&buf->b_evict_lock)) {
3564			ARCSTAT_BUMP(arcstat_mutex_miss);
3565			break;
3566		}
3567		if (buf->b_data != NULL)
3568			bytes_evicted += HDR_GET_LSIZE(hdr);
3569		mutex_exit(&buf->b_evict_lock);
3570		arc_buf_destroy_impl(buf);
3571	}
3572
3573	if (HDR_HAS_L2HDR(hdr)) {
3574		ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3575	} else {
3576		if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3577			ARCSTAT_INCR(arcstat_evict_l2_eligible,
3578			    HDR_GET_LSIZE(hdr));
3579		} else {
3580			ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3581			    HDR_GET_LSIZE(hdr));
3582		}
3583	}
3584
3585	if (hdr->b_l1hdr.b_bufcnt == 0) {
3586		arc_cksum_free(hdr);
3587
3588		bytes_evicted += arc_hdr_size(hdr);
3589
3590		/*
3591		 * If this hdr is being evicted and has a compressed
3592		 * buffer then we discard it here before we change states.
3593		 * This ensures that the accounting is updated correctly
3594		 * in arc_free_data_impl().
3595		 */
3596		arc_hdr_free_pabd(hdr);
3597
3598		arc_change_state(evicted_state, hdr, hash_lock);
3599		ASSERT(HDR_IN_HASH_TABLE(hdr));
3600		arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3601		DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3602	}
3603
3604	return (bytes_evicted);
3605}
3606
3607static uint64_t
3608arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3609    uint64_t spa, int64_t bytes)
3610{
3611	multilist_sublist_t *mls;
3612	uint64_t bytes_evicted = 0;
3613	arc_buf_hdr_t *hdr;
3614	kmutex_t *hash_lock;
3615	int evict_count = 0;
3616
3617	ASSERT3P(marker, !=, NULL);
3618	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3619
3620	mls = multilist_sublist_lock(ml, idx);
3621
3622	for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3623	    hdr = multilist_sublist_prev(mls, marker)) {
3624		if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3625		    (evict_count >= zfs_arc_evict_batch_limit))
3626			break;
3627
3628		/*
3629		 * To keep our iteration location, move the marker
3630		 * forward. Since we're not holding hdr's hash lock, we
3631		 * must be very careful and not remove 'hdr' from the
3632		 * sublist. Otherwise, other consumers might mistake the
3633		 * 'hdr' as not being on a sublist when they call the
3634		 * multilist_link_active() function (they all rely on
3635		 * the hash lock protecting concurrent insertions and
3636		 * removals). multilist_sublist_move_forward() was
3637		 * specifically implemented to ensure this is the case
3638		 * (only 'marker' will be removed and re-inserted).
3639		 */
3640		multilist_sublist_move_forward(mls, marker);
3641
3642		/*
3643		 * The only case where the b_spa field should ever be
3644		 * zero, is the marker headers inserted by
3645		 * arc_evict_state(). It's possible for multiple threads
3646		 * to be calling arc_evict_state() concurrently (e.g.
3647		 * dsl_pool_close() and zio_inject_fault()), so we must
3648		 * skip any markers we see from these other threads.
3649		 */
3650		if (hdr->b_spa == 0)
3651			continue;
3652
3653		/* we're only interested in evicting buffers of a certain spa */
3654		if (spa != 0 && hdr->b_spa != spa) {
3655			ARCSTAT_BUMP(arcstat_evict_skip);
3656			continue;
3657		}
3658
3659		hash_lock = HDR_LOCK(hdr);
3660
3661		/*
3662		 * We aren't calling this function from any code path
3663		 * that would already be holding a hash lock, so we're
3664		 * asserting on this assumption to be defensive in case
3665		 * this ever changes. Without this check, it would be
3666		 * possible to incorrectly increment arcstat_mutex_miss
3667		 * below (e.g. if the code changed such that we called
3668		 * this function with a hash lock held).
3669		 */
3670		ASSERT(!MUTEX_HELD(hash_lock));
3671
3672		if (mutex_tryenter(hash_lock)) {
3673			uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3674			mutex_exit(hash_lock);
3675
3676			bytes_evicted += evicted;
3677
3678			/*
3679			 * If evicted is zero, arc_evict_hdr() must have
3680			 * decided to skip this header, don't increment
3681			 * evict_count in this case.
3682			 */
3683			if (evicted != 0)
3684				evict_count++;
3685
3686			/*
3687			 * If arc_size isn't overflowing, signal any
3688			 * threads that might happen to be waiting.
3689			 *
3690			 * For each header evicted, we wake up a single
3691			 * thread. If we used cv_broadcast, we could
3692			 * wake up "too many" threads causing arc_size
3693			 * to significantly overflow arc_c; since
3694			 * arc_get_data_impl() doesn't check for overflow
3695			 * when it's woken up (it doesn't because it's
3696			 * possible for the ARC to be overflowing while
3697			 * full of un-evictable buffers, and the
3698			 * function should proceed in this case).
3699			 *
3700			 * If threads are left sleeping, due to not
3701			 * using cv_broadcast, they will be woken up
3702			 * just before arc_reclaim_thread() sleeps.
3703			 */
3704			mutex_enter(&arc_reclaim_lock);
3705			if (!arc_is_overflowing())
3706				cv_signal(&arc_reclaim_waiters_cv);
3707			mutex_exit(&arc_reclaim_lock);
3708		} else {
3709			ARCSTAT_BUMP(arcstat_mutex_miss);
3710		}
3711	}
3712
3713	multilist_sublist_unlock(mls);
3714
3715	return (bytes_evicted);
3716}
3717
3718/*
3719 * Evict buffers from the given arc state, until we've removed the
3720 * specified number of bytes. Move the removed buffers to the
3721 * appropriate evict state.
3722 *
3723 * This function makes a "best effort". It skips over any buffers
3724 * it can't get a hash_lock on, and so, may not catch all candidates.
3725 * It may also return without evicting as much space as requested.
3726 *
3727 * If bytes is specified using the special value ARC_EVICT_ALL, this
3728 * will evict all available (i.e. unlocked and evictable) buffers from
3729 * the given arc state; which is used by arc_flush().
3730 */
3731static uint64_t
3732arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3733    arc_buf_contents_t type)
3734{
3735	uint64_t total_evicted = 0;
3736	multilist_t *ml = state->arcs_list[type];
3737	int num_sublists;
3738	arc_buf_hdr_t **markers;
3739
3740	IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3741
3742	num_sublists = multilist_get_num_sublists(ml);
3743
3744	/*
3745	 * If we've tried to evict from each sublist, made some
3746	 * progress, but still have not hit the target number of bytes
3747	 * to evict, we want to keep trying. The markers allow us to
3748	 * pick up where we left off for each individual sublist, rather
3749	 * than starting from the tail each time.
3750	 */
3751	markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3752	for (int i = 0; i < num_sublists; i++) {
3753		markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3754
3755		/*
3756		 * A b_spa of 0 is used to indicate that this header is
3757		 * a marker. This fact is used in arc_adjust_type() and
3758		 * arc_evict_state_impl().
3759		 */
3760		markers[i]->b_spa = 0;
3761
3762		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3763		multilist_sublist_insert_tail(mls, markers[i]);
3764		multilist_sublist_unlock(mls);
3765	}
3766
3767	/*
3768	 * While we haven't hit our target number of bytes to evict, or
3769	 * we're evicting all available buffers.
3770	 */
3771	while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3772		/*
3773		 * Start eviction using a randomly selected sublist,
3774		 * this is to try and evenly balance eviction across all
3775		 * sublists. Always starting at the same sublist
3776		 * (e.g. index 0) would cause evictions to favor certain
3777		 * sublists over others.
3778		 */
3779		int sublist_idx = multilist_get_random_index(ml);
3780		uint64_t scan_evicted = 0;
3781
3782		for (int i = 0; i < num_sublists; i++) {
3783			uint64_t bytes_remaining;
3784			uint64_t bytes_evicted;
3785
3786			if (bytes == ARC_EVICT_ALL)
3787				bytes_remaining = ARC_EVICT_ALL;
3788			else if (total_evicted < bytes)
3789				bytes_remaining = bytes - total_evicted;
3790			else
3791				break;
3792
3793			bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3794			    markers[sublist_idx], spa, bytes_remaining);
3795
3796			scan_evicted += bytes_evicted;
3797			total_evicted += bytes_evicted;
3798
3799			/* we've reached the end, wrap to the beginning */
3800			if (++sublist_idx >= num_sublists)
3801				sublist_idx = 0;
3802		}
3803
3804		/*
3805		 * If we didn't evict anything during this scan, we have
3806		 * no reason to believe we'll evict more during another
3807		 * scan, so break the loop.
3808		 */
3809		if (scan_evicted == 0) {
3810			/* This isn't possible, let's make that obvious */
3811			ASSERT3S(bytes, !=, 0);
3812
3813			/*
3814			 * When bytes is ARC_EVICT_ALL, the only way to
3815			 * break the loop is when scan_evicted is zero.
3816			 * In that case, we actually have evicted enough,
3817			 * so we don't want to increment the kstat.
3818			 */
3819			if (bytes != ARC_EVICT_ALL) {
3820				ASSERT3S(total_evicted, <, bytes);
3821				ARCSTAT_BUMP(arcstat_evict_not_enough);
3822			}
3823
3824			break;
3825		}
3826	}
3827
3828	for (int i = 0; i < num_sublists; i++) {
3829		multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3830		multilist_sublist_remove(mls, markers[i]);
3831		multilist_sublist_unlock(mls);
3832
3833		kmem_cache_free(hdr_full_cache, markers[i]);
3834	}
3835	kmem_free(markers, sizeof (*markers) * num_sublists);
3836
3837	return (total_evicted);
3838}
3839
3840/*
3841 * Flush all "evictable" data of the given type from the arc state
3842 * specified. This will not evict any "active" buffers (i.e. referenced).
3843 *
3844 * When 'retry' is set to B_FALSE, the function will make a single pass
3845 * over the state and evict any buffers that it can. Since it doesn't
3846 * continually retry the eviction, it might end up leaving some buffers
3847 * in the ARC due to lock misses.
3848 *
3849 * When 'retry' is set to B_TRUE, the function will continually retry the
3850 * eviction until *all* evictable buffers have been removed from the
3851 * state. As a result, if concurrent insertions into the state are
3852 * allowed (e.g. if the ARC isn't shutting down), this function might
3853 * wind up in an infinite loop, continually trying to evict buffers.
3854 */
3855static uint64_t
3856arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3857    boolean_t retry)
3858{
3859	uint64_t evicted = 0;
3860
3861	while (refcount_count(&state->arcs_esize[type]) != 0) {
3862		evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3863
3864		if (!retry)
3865			break;
3866	}
3867
3868	return (evicted);
3869}
3870
3871/*
3872 * Evict the specified number of bytes from the state specified,
3873 * restricting eviction to the spa and type given. This function
3874 * prevents us from trying to evict more from a state's list than
3875 * is "evictable", and to skip evicting altogether when passed a
3876 * negative value for "bytes". In contrast, arc_evict_state() will
3877 * evict everything it can, when passed a negative value for "bytes".
3878 */
3879static uint64_t
3880arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3881    arc_buf_contents_t type)
3882{
3883	int64_t delta;
3884
3885	if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3886		delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3887		return (arc_evict_state(state, spa, delta, type));
3888	}
3889
3890	return (0);
3891}
3892
3893/*
3894 * Evict metadata buffers from the cache, such that arc_meta_used is
3895 * capped by the arc_meta_limit tunable.
3896 */
3897static uint64_t
3898arc_adjust_meta(void)
3899{
3900	uint64_t total_evicted = 0;
3901	int64_t target;
3902
3903	/*
3904	 * If we're over the meta limit, we want to evict enough
3905	 * metadata to get back under the meta limit. We don't want to
3906	 * evict so much that we drop the MRU below arc_p, though. If
3907	 * we're over the meta limit more than we're over arc_p, we
3908	 * evict some from the MRU here, and some from the MFU below.
3909	 */
3910	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3911	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
3912	    refcount_count(&arc_mru->arcs_size) - arc_p));
3913
3914	total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3915
3916	/*
3917	 * Similar to the above, we want to evict enough bytes to get us
3918	 * below the meta limit, but not so much as to drop us below the
3919	 * space allotted to the MFU (which is defined as arc_c - arc_p).
3920	 */
3921	target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3922	    (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3923
3924	total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3925
3926	return (total_evicted);
3927}
3928
3929/*
3930 * Return the type of the oldest buffer in the given arc state
3931 *
3932 * This function will select a random sublist of type ARC_BUFC_DATA and
3933 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3934 * is compared, and the type which contains the "older" buffer will be
3935 * returned.
3936 */
3937static arc_buf_contents_t
3938arc_adjust_type(arc_state_t *state)
3939{
3940	multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3941	multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3942	int data_idx = multilist_get_random_index(data_ml);
3943	int meta_idx = multilist_get_random_index(meta_ml);
3944	multilist_sublist_t *data_mls;
3945	multilist_sublist_t *meta_mls;
3946	arc_buf_contents_t type;
3947	arc_buf_hdr_t *data_hdr;
3948	arc_buf_hdr_t *meta_hdr;
3949
3950	/*
3951	 * We keep the sublist lock until we're finished, to prevent
3952	 * the headers from being destroyed via arc_evict_state().
3953	 */
3954	data_mls = multilist_sublist_lock(data_ml, data_idx);
3955	meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3956
3957	/*
3958	 * These two loops are to ensure we skip any markers that
3959	 * might be at the tail of the lists due to arc_evict_state().
3960	 */
3961
3962	for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3963	    data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3964		if (data_hdr->b_spa != 0)
3965			break;
3966	}
3967
3968	for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3969	    meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3970		if (meta_hdr->b_spa != 0)
3971			break;
3972	}
3973
3974	if (data_hdr == NULL && meta_hdr == NULL) {
3975		type = ARC_BUFC_DATA;
3976	} else if (data_hdr == NULL) {
3977		ASSERT3P(meta_hdr, !=, NULL);
3978		type = ARC_BUFC_METADATA;
3979	} else if (meta_hdr == NULL) {
3980		ASSERT3P(data_hdr, !=, NULL);
3981		type = ARC_BUFC_DATA;
3982	} else {
3983		ASSERT3P(data_hdr, !=, NULL);
3984		ASSERT3P(meta_hdr, !=, NULL);
3985
3986		/* The headers can't be on the sublist without an L1 header */
3987		ASSERT(HDR_HAS_L1HDR(data_hdr));
3988		ASSERT(HDR_HAS_L1HDR(meta_hdr));
3989
3990		if (data_hdr->b_l1hdr.b_arc_access <
3991		    meta_hdr->b_l1hdr.b_arc_access) {
3992			type = ARC_BUFC_DATA;
3993		} else {
3994			type = ARC_BUFC_METADATA;
3995		}
3996	}
3997
3998	multilist_sublist_unlock(meta_mls);
3999	multilist_sublist_unlock(data_mls);
4000
4001	return (type);
4002}
4003
4004/*
4005 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4006 */
4007static uint64_t
4008arc_adjust(void)
4009{
4010	uint64_t total_evicted = 0;
4011	uint64_t bytes;
4012	int64_t target;
4013
4014	/*
4015	 * If we're over arc_meta_limit, we want to correct that before
4016	 * potentially evicting data buffers below.
4017	 */
4018	total_evicted += arc_adjust_meta();
4019
4020	/*
4021	 * Adjust MRU size
4022	 *
4023	 * If we're over the target cache size, we want to evict enough
4024	 * from the list to get back to our target size. We don't want
4025	 * to evict too much from the MRU, such that it drops below
4026	 * arc_p. So, if we're over our target cache size more than
4027	 * the MRU is over arc_p, we'll evict enough to get back to
4028	 * arc_p here, and then evict more from the MFU below.
4029	 */
4030	target = MIN((int64_t)(arc_size - arc_c),
4031	    (int64_t)(refcount_count(&arc_anon->arcs_size) +
4032	    refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
4033
4034	/*
4035	 * If we're below arc_meta_min, always prefer to evict data.
4036	 * Otherwise, try to satisfy the requested number of bytes to
4037	 * evict from the type which contains older buffers; in an
4038	 * effort to keep newer buffers in the cache regardless of their
4039	 * type. If we cannot satisfy the number of bytes from this
4040	 * type, spill over into the next type.
4041	 */
4042	if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4043	    arc_meta_used > arc_meta_min) {
4044		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4045		total_evicted += bytes;
4046
4047		/*
4048		 * If we couldn't evict our target number of bytes from
4049		 * metadata, we try to get the rest from data.
4050		 */
4051		target -= bytes;
4052
4053		total_evicted +=
4054		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4055	} else {
4056		bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4057		total_evicted += bytes;
4058
4059		/*
4060		 * If we couldn't evict our target number of bytes from
4061		 * data, we try to get the rest from metadata.
4062		 */
4063		target -= bytes;
4064
4065		total_evicted +=
4066		    arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4067	}
4068
4069	/*
4070	 * Adjust MFU size
4071	 *
4072	 * Now that we've tried to evict enough from the MRU to get its
4073	 * size back to arc_p, if we're still above the target cache
4074	 * size, we evict the rest from the MFU.
4075	 */
4076	target = arc_size - arc_c;
4077
4078	if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
4079	    arc_meta_used > arc_meta_min) {
4080		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4081		total_evicted += bytes;
4082
4083		/*
4084		 * If we couldn't evict our target number of bytes from
4085		 * metadata, we try to get the rest from data.
4086		 */
4087		target -= bytes;
4088
4089		total_evicted +=
4090		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4091	} else {
4092		bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4093		total_evicted += bytes;
4094
4095		/*
4096		 * If we couldn't evict our target number of bytes from
4097		 * data, we try to get the rest from data.
4098		 */
4099		target -= bytes;
4100
4101		total_evicted +=
4102		    arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4103	}
4104
4105	/*
4106	 * Adjust ghost lists
4107	 *
4108	 * In addition to the above, the ARC also defines target values
4109	 * for the ghost lists. The sum of the mru list and mru ghost
4110	 * list should never exceed the target size of the cache, and
4111	 * the sum of the mru list, mfu list, mru ghost list, and mfu
4112	 * ghost list should never exceed twice the target size of the
4113	 * cache. The following logic enforces these limits on the ghost
4114	 * caches, and evicts from them as needed.
4115	 */
4116	target = refcount_count(&arc_mru->arcs_size) +
4117	    refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4118
4119	bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4120	total_evicted += bytes;
4121
4122	target -= bytes;
4123
4124	total_evicted +=
4125	    arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4126
4127	/*
4128	 * We assume the sum of the mru list and mfu list is less than
4129	 * or equal to arc_c (we enforced this above), which means we
4130	 * can use the simpler of the two equations below:
4131	 *
4132	 *	mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4133	 *		    mru ghost + mfu ghost <= arc_c
4134	 */
4135	target = refcount_count(&arc_mru_ghost->arcs_size) +
4136	    refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4137
4138	bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4139	total_evicted += bytes;
4140
4141	target -= bytes;
4142
4143	total_evicted +=
4144	    arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4145
4146	return (total_evicted);
4147}
4148
4149void
4150arc_flush(spa_t *spa, boolean_t retry)
4151{
4152	uint64_t guid = 0;
4153
4154	/*
4155	 * If retry is B_TRUE, a spa must not be specified since we have
4156	 * no good way to determine if all of a spa's buffers have been
4157	 * evicted from an arc state.
4158	 */
4159	ASSERT(!retry || spa == 0);
4160
4161	if (spa != NULL)
4162		guid = spa_load_guid(spa);
4163
4164	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4165	(void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4166
4167	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4168	(void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4169
4170	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4171	(void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4172
4173	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4174	(void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4175}
4176
4177void
4178arc_shrink(int64_t to_free)
4179{
4180	if (arc_c > arc_c_min) {
4181		DTRACE_PROBE4(arc__shrink, uint64_t, arc_c, uint64_t,
4182			arc_c_min, uint64_t, arc_p, uint64_t, to_free);
4183		if (arc_c > arc_c_min + to_free)
4184			atomic_add_64(&arc_c, -to_free);
4185		else
4186			arc_c = arc_c_min;
4187
4188		atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4189		if (arc_c > arc_size)
4190			arc_c = MAX(arc_size, arc_c_min);
4191		if (arc_p > arc_c)
4192			arc_p = (arc_c >> 1);
4193
4194		DTRACE_PROBE2(arc__shrunk, uint64_t, arc_c, uint64_t,
4195			arc_p);
4196
4197		ASSERT(arc_c >= arc_c_min);
4198		ASSERT((int64_t)arc_p >= 0);
4199	}
4200
4201	if (arc_size > arc_c) {
4202		DTRACE_PROBE2(arc__shrink_adjust, uint64_t, arc_size,
4203			uint64_t, arc_c);
4204		(void) arc_adjust();
4205	}
4206}
4207
4208typedef enum free_memory_reason_t {
4209	FMR_UNKNOWN,
4210	FMR_NEEDFREE,
4211	FMR_LOTSFREE,
4212	FMR_SWAPFS_MINFREE,
4213	FMR_PAGES_PP_MAXIMUM,
4214	FMR_HEAP_ARENA,
4215	FMR_ZIO_ARENA,
4216	FMR_ZIO_FRAG,
4217} free_memory_reason_t;
4218
4219int64_t last_free_memory;
4220free_memory_reason_t last_free_reason;
4221
4222/*
4223 * Additional reserve of pages for pp_reserve.
4224 */
4225int64_t arc_pages_pp_reserve = 64;
4226
4227/*
4228 * Additional reserve of pages for swapfs.
4229 */
4230int64_t arc_swapfs_reserve = 64;
4231
4232/*
4233 * Return the amount of memory that can be consumed before reclaim will be
4234 * needed.  Positive if there is sufficient free memory, negative indicates
4235 * the amount of memory that needs to be freed up.
4236 */
4237static int64_t
4238arc_available_memory(void)
4239{
4240	int64_t lowest = INT64_MAX;
4241	int64_t n;
4242	free_memory_reason_t r = FMR_UNKNOWN;
4243
4244#ifdef _KERNEL
4245#ifdef __FreeBSD__
4246	/*
4247	 * Cooperate with pagedaemon when it's time for it to scan
4248	 * and reclaim some pages.
4249	 */
4250	n = PAGESIZE * ((int64_t)freemem - zfs_arc_free_target);
4251	if (n < lowest) {
4252		lowest = n;
4253		r = FMR_LOTSFREE;
4254	}
4255
4256#else
4257	if (needfree > 0) {
4258		n = PAGESIZE * (-needfree);
4259		if (n < lowest) {
4260			lowest = n;
4261			r = FMR_NEEDFREE;
4262		}
4263	}
4264
4265	/*
4266	 * check that we're out of range of the pageout scanner.  It starts to
4267	 * schedule paging if freemem is less than lotsfree and needfree.
4268	 * lotsfree is the high-water mark for pageout, and needfree is the
4269	 * number of needed free pages.  We add extra pages here to make sure
4270	 * the scanner doesn't start up while we're freeing memory.
4271	 */
4272	n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4273	if (n < lowest) {
4274		lowest = n;
4275		r = FMR_LOTSFREE;
4276	}
4277
4278	/*
4279	 * check to make sure that swapfs has enough space so that anon
4280	 * reservations can still succeed. anon_resvmem() checks that the
4281	 * availrmem is greater than swapfs_minfree, and the number of reserved
4282	 * swap pages.  We also add a bit of extra here just to prevent
4283	 * circumstances from getting really dire.
4284	 */
4285	n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4286	    desfree - arc_swapfs_reserve);
4287	if (n < lowest) {
4288		lowest = n;
4289		r = FMR_SWAPFS_MINFREE;
4290	}
4291
4292
4293	/*
4294	 * Check that we have enough availrmem that memory locking (e.g., via
4295	 * mlock(3C) or memcntl(2)) can still succeed.  (pages_pp_maximum
4296	 * stores the number of pages that cannot be locked; when availrmem
4297	 * drops below pages_pp_maximum, page locking mechanisms such as
4298	 * page_pp_lock() will fail.)
4299	 */
4300	n = PAGESIZE * (availrmem - pages_pp_maximum -
4301	    arc_pages_pp_reserve);
4302	if (n < lowest) {
4303		lowest = n;
4304		r = FMR_PAGES_PP_MAXIMUM;
4305	}
4306
4307#endif	/* __FreeBSD__ */
4308#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
4309	/*
4310	 * If we're on an i386 platform, it's possible that we'll exhaust the
4311	 * kernel heap space before we ever run out of available physical
4312	 * memory.  Most checks of the size of the heap_area compare against
4313	 * tune.t_minarmem, which is the minimum available real memory that we
4314	 * can have in the system.  However, this is generally fixed at 25 pages
4315	 * which is so low that it's useless.  In this comparison, we seek to
4316	 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4317	 * heap is allocated.  (Or, in the calculation, if less than 1/4th is
4318	 * free)
4319	 */
4320	n = (int64_t)vmem_size(heap_arena, VMEM_FREE) -
4321	    (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4322	if (n < lowest) {
4323		lowest = n;
4324		r = FMR_HEAP_ARENA;
4325	}
4326#define	zio_arena	NULL
4327#else
4328#define	zio_arena	heap_arena
4329#endif
4330
4331	/*
4332	 * If zio data pages are being allocated out of a separate heap segment,
4333	 * then enforce that the size of available vmem for this arena remains
4334	 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4335	 *
4336	 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4337	 * memory (in the zio_arena) free, which can avoid memory
4338	 * fragmentation issues.
4339	 */
4340	if (zio_arena != NULL) {
4341		n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4342		    (vmem_size(zio_arena, VMEM_ALLOC) >>
4343		    arc_zio_arena_free_shift);
4344		if (n < lowest) {
4345			lowest = n;
4346			r = FMR_ZIO_ARENA;
4347		}
4348	}
4349
4350	/*
4351	 * Above limits know nothing about real level of KVA fragmentation.
4352	 * Start aggressive reclamation if too little sequential KVA left.
4353	 */
4354	if (lowest > 0) {
4355		n = (vmem_size(heap_arena, VMEM_MAXFREE) < SPA_MAXBLOCKSIZE) ?
4356		    -((int64_t)vmem_size(heap_arena, VMEM_ALLOC) >> 4) :
4357		    INT64_MAX;
4358		if (n < lowest) {
4359			lowest = n;
4360			r = FMR_ZIO_FRAG;
4361		}
4362	}
4363
4364#else	/* _KERNEL */
4365	/* Every 100 calls, free a small amount */
4366	if (spa_get_random(100) == 0)
4367		lowest = -1024;
4368#endif	/* _KERNEL */
4369
4370	last_free_memory = lowest;
4371	last_free_reason = r;
4372	DTRACE_PROBE2(arc__available_memory, int64_t, lowest, int, r);
4373	return (lowest);
4374}
4375
4376
4377/*
4378 * Determine if the system is under memory pressure and is asking
4379 * to reclaim memory. A return value of B_TRUE indicates that the system
4380 * is under memory pressure and that the arc should adjust accordingly.
4381 */
4382static boolean_t
4383arc_reclaim_needed(void)
4384{
4385	return (arc_available_memory() < 0);
4386}
4387
4388extern kmem_cache_t	*zio_buf_cache[];
4389extern kmem_cache_t	*zio_data_buf_cache[];
4390extern kmem_cache_t	*range_seg_cache;
4391extern kmem_cache_t	*abd_chunk_cache;
4392
4393static __noinline void
4394arc_kmem_reap_now(void)
4395{
4396	size_t			i;
4397	kmem_cache_t		*prev_cache = NULL;
4398	kmem_cache_t		*prev_data_cache = NULL;
4399
4400	DTRACE_PROBE(arc__kmem_reap_start);
4401#ifdef _KERNEL
4402	if (arc_meta_used >= arc_meta_limit) {
4403		/*
4404		 * We are exceeding our meta-data cache limit.
4405		 * Purge some DNLC entries to release holds on meta-data.
4406		 */
4407		dnlc_reduce_cache((void *)(uintptr_t)arc_reduce_dnlc_percent);
4408	}
4409#if defined(__i386)
4410	/*
4411	 * Reclaim unused memory from all kmem caches.
4412	 */
4413	kmem_reap();
4414#endif
4415#endif
4416
4417	for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4418		if (zio_buf_cache[i] != prev_cache) {
4419			prev_cache = zio_buf_cache[i];
4420			kmem_cache_reap_now(zio_buf_cache[i]);
4421		}
4422		if (zio_data_buf_cache[i] != prev_data_cache) {
4423			prev_data_cache = zio_data_buf_cache[i];
4424			kmem_cache_reap_now(zio_data_buf_cache[i]);
4425		}
4426	}
4427	kmem_cache_reap_now(abd_chunk_cache);
4428	kmem_cache_reap_now(buf_cache);
4429	kmem_cache_reap_now(hdr_full_cache);
4430	kmem_cache_reap_now(hdr_l2only_cache);
4431	kmem_cache_reap_now(range_seg_cache);
4432
4433#ifdef illumos
4434	if (zio_arena != NULL) {
4435		/*
4436		 * Ask the vmem arena to reclaim unused memory from its
4437		 * quantum caches.
4438		 */
4439		vmem_qcache_reap(zio_arena);
4440	}
4441#endif
4442	DTRACE_PROBE(arc__kmem_reap_end);
4443}
4444
4445/*
4446 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4447 * enough data and signal them to proceed. When this happens, the threads in
4448 * arc_get_data_impl() are sleeping while holding the hash lock for their
4449 * particular arc header. Thus, we must be careful to never sleep on a
4450 * hash lock in this thread. This is to prevent the following deadlock:
4451 *
4452 *  - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4453 *    waiting for the reclaim thread to signal it.
4454 *
4455 *  - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4456 *    fails, and goes to sleep forever.
4457 *
4458 * This possible deadlock is avoided by always acquiring a hash lock
4459 * using mutex_tryenter() from arc_reclaim_thread().
4460 */
4461/* ARGSUSED */
4462static void
4463arc_reclaim_thread(void *unused __unused)
4464{
4465	hrtime_t		growtime = 0;
4466	callb_cpr_t		cpr;
4467
4468	CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4469
4470	mutex_enter(&arc_reclaim_lock);
4471	while (!arc_reclaim_thread_exit) {
4472		uint64_t evicted = 0;
4473
4474		/*
4475		 * This is necessary in order for the mdb ::arc dcmd to
4476		 * show up to date information. Since the ::arc command
4477		 * does not call the kstat's update function, without
4478		 * this call, the command may show stale stats for the
4479		 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4480		 * with this change, the data might be up to 1 second
4481		 * out of date; but that should suffice. The arc_state_t
4482		 * structures can be queried directly if more accurate
4483		 * information is needed.
4484		 */
4485		if (arc_ksp != NULL)
4486			arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4487
4488		mutex_exit(&arc_reclaim_lock);
4489
4490		/*
4491		 * We call arc_adjust() before (possibly) calling
4492		 * arc_kmem_reap_now(), so that we can wake up
4493		 * arc_get_data_impl() sooner.
4494		 */
4495		evicted = arc_adjust();
4496
4497		int64_t free_memory = arc_available_memory();
4498		if (free_memory < 0) {
4499
4500			arc_no_grow = B_TRUE;
4501			arc_warm = B_TRUE;
4502
4503			/*
4504			 * Wait at least zfs_grow_retry (default 60) seconds
4505			 * before considering growing.
4506			 */
4507			growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4508
4509			arc_kmem_reap_now();
4510
4511			/*
4512			 * If we are still low on memory, shrink the ARC
4513			 * so that we have arc_shrink_min free space.
4514			 */
4515			free_memory = arc_available_memory();
4516
4517			int64_t to_free =
4518			    (arc_c >> arc_shrink_shift) - free_memory;
4519			if (to_free > 0) {
4520#ifdef _KERNEL
4521#ifdef illumos
4522				to_free = MAX(to_free, ptob(needfree));
4523#endif
4524#endif
4525				arc_shrink(to_free);
4526			}
4527		} else if (free_memory < arc_c >> arc_no_grow_shift) {
4528			arc_no_grow = B_TRUE;
4529		} else if (gethrtime() >= growtime) {
4530			arc_no_grow = B_FALSE;
4531		}
4532
4533		mutex_enter(&arc_reclaim_lock);
4534
4535		/*
4536		 * If evicted is zero, we couldn't evict anything via
4537		 * arc_adjust(). This could be due to hash lock
4538		 * collisions, but more likely due to the majority of
4539		 * arc buffers being unevictable. Therefore, even if
4540		 * arc_size is above arc_c, another pass is unlikely to
4541		 * be helpful and could potentially cause us to enter an
4542		 * infinite loop.
4543		 */
4544		if (arc_size <= arc_c || evicted == 0) {
4545			/*
4546			 * We're either no longer overflowing, or we
4547			 * can't evict anything more, so we should wake
4548			 * up any threads before we go to sleep.
4549			 */
4550			cv_broadcast(&arc_reclaim_waiters_cv);
4551
4552			/*
4553			 * Block until signaled, or after one second (we
4554			 * might need to perform arc_kmem_reap_now()
4555			 * even if we aren't being signalled)
4556			 */
4557			CALLB_CPR_SAFE_BEGIN(&cpr);
4558			(void) cv_timedwait_hires(&arc_reclaim_thread_cv,
4559			    &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4560			CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4561		}
4562	}
4563
4564	arc_reclaim_thread_exit = B_FALSE;
4565	cv_broadcast(&arc_reclaim_thread_cv);
4566	CALLB_CPR_EXIT(&cpr);		/* drops arc_reclaim_lock */
4567	thread_exit();
4568}
4569
4570static u_int arc_dnlc_evicts_arg;
4571extern struct vfsops zfs_vfsops;
4572
4573static void
4574arc_dnlc_evicts_thread(void *dummy __unused)
4575{
4576	callb_cpr_t cpr;
4577	u_int percent;
4578
4579	CALLB_CPR_INIT(&cpr, &arc_dnlc_evicts_lock, callb_generic_cpr, FTAG);
4580
4581	mutex_enter(&arc_dnlc_evicts_lock);
4582	while (!arc_dnlc_evicts_thread_exit) {
4583		CALLB_CPR_SAFE_BEGIN(&cpr);
4584		(void) cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
4585		CALLB_CPR_SAFE_END(&cpr, &arc_dnlc_evicts_lock);
4586		if (arc_dnlc_evicts_arg != 0) {
4587			percent = arc_dnlc_evicts_arg;
4588			mutex_exit(&arc_dnlc_evicts_lock);
4589#ifdef _KERNEL
4590			vnlru_free(desiredvnodes * percent / 100, &zfs_vfsops);
4591#endif
4592			mutex_enter(&arc_dnlc_evicts_lock);
4593			/*
4594			 * Clear our token only after vnlru_free()
4595			 * pass is done, to avoid false queueing of
4596			 * the requests.
4597			 */
4598			arc_dnlc_evicts_arg = 0;
4599		}
4600	}
4601	arc_dnlc_evicts_thread_exit = FALSE;
4602	cv_broadcast(&arc_dnlc_evicts_cv);
4603	CALLB_CPR_EXIT(&cpr);
4604	thread_exit();
4605}
4606
4607void
4608dnlc_reduce_cache(void *arg)
4609{
4610	u_int percent;
4611
4612	percent = (u_int)(uintptr_t)arg;
4613	mutex_enter(&arc_dnlc_evicts_lock);
4614	if (arc_dnlc_evicts_arg == 0) {
4615		arc_dnlc_evicts_arg = percent;
4616		cv_broadcast(&arc_dnlc_evicts_cv);
4617	}
4618	mutex_exit(&arc_dnlc_evicts_lock);
4619}
4620
4621/*
4622 * Adapt arc info given the number of bytes we are trying to add and
4623 * the state that we are comming from.  This function is only called
4624 * when we are adding new content to the cache.
4625 */
4626static void
4627arc_adapt(int bytes, arc_state_t *state)
4628{
4629	int mult;
4630	uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4631	int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4632	int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4633
4634	if (state == arc_l2c_only)
4635		return;
4636
4637	ASSERT(bytes > 0);
4638	/*
4639	 * Adapt the target size of the MRU list:
4640	 *	- if we just hit in the MRU ghost list, then increase
4641	 *	  the target size of the MRU list.
4642	 *	- if we just hit in the MFU ghost list, then increase
4643	 *	  the target size of the MFU list by decreasing the
4644	 *	  target size of the MRU list.
4645	 */
4646	if (state == arc_mru_ghost) {
4647		mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4648		mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4649
4650		arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4651	} else if (state == arc_mfu_ghost) {
4652		uint64_t delta;
4653
4654		mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4655		mult = MIN(mult, 10);
4656
4657		delta = MIN(bytes * mult, arc_p);
4658		arc_p = MAX(arc_p_min, arc_p - delta);
4659	}
4660	ASSERT((int64_t)arc_p >= 0);
4661
4662	if (arc_reclaim_needed()) {
4663		cv_signal(&arc_reclaim_thread_cv);
4664		return;
4665	}
4666
4667	if (arc_no_grow)
4668		return;
4669
4670	if (arc_c >= arc_c_max)
4671		return;
4672
4673	/*
4674	 * If we're within (2 * maxblocksize) bytes of the target
4675	 * cache size, increment the target cache size
4676	 */
4677	if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4678		DTRACE_PROBE1(arc__inc_adapt, int, bytes);
4679		atomic_add_64(&arc_c, (int64_t)bytes);
4680		if (arc_c > arc_c_max)
4681			arc_c = arc_c_max;
4682		else if (state == arc_anon)
4683			atomic_add_64(&arc_p, (int64_t)bytes);
4684		if (arc_p > arc_c)
4685			arc_p = arc_c;
4686	}
4687	ASSERT((int64_t)arc_p >= 0);
4688}
4689
4690/*
4691 * Check if arc_size has grown past our upper threshold, determined by
4692 * zfs_arc_overflow_shift.
4693 */
4694static boolean_t
4695arc_is_overflowing(void)
4696{
4697	/* Always allow at least one block of overflow */
4698	uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4699	    arc_c >> zfs_arc_overflow_shift);
4700
4701	return (arc_size >= arc_c + overflow);
4702}
4703
4704static abd_t *
4705arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4706{
4707	arc_buf_contents_t type = arc_buf_type(hdr);
4708
4709	arc_get_data_impl(hdr, size, tag);
4710	if (type == ARC_BUFC_METADATA) {
4711		return (abd_alloc(size, B_TRUE));
4712	} else {
4713		ASSERT(type == ARC_BUFC_DATA);
4714		return (abd_alloc(size, B_FALSE));
4715	}
4716}
4717
4718static void *
4719arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4720{
4721	arc_buf_contents_t type = arc_buf_type(hdr);
4722
4723	arc_get_data_impl(hdr, size, tag);
4724	if (type == ARC_BUFC_METADATA) {
4725		return (zio_buf_alloc(size));
4726	} else {
4727		ASSERT(type == ARC_BUFC_DATA);
4728		return (zio_data_buf_alloc(size));
4729	}
4730}
4731
4732/*
4733 * Allocate a block and return it to the caller. If we are hitting the
4734 * hard limit for the cache size, we must sleep, waiting for the eviction
4735 * thread to catch up. If we're past the target size but below the hard
4736 * limit, we'll only signal the reclaim thread and continue on.
4737 */
4738static void
4739arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4740{
4741	arc_state_t *state = hdr->b_l1hdr.b_state;
4742	arc_buf_contents_t type = arc_buf_type(hdr);
4743
4744	arc_adapt(size, state);
4745
4746	/*
4747	 * If arc_size is currently overflowing, and has grown past our
4748	 * upper limit, we must be adding data faster than the evict
4749	 * thread can evict. Thus, to ensure we don't compound the
4750	 * problem by adding more data and forcing arc_size to grow even
4751	 * further past it's target size, we halt and wait for the
4752	 * eviction thread to catch up.
4753	 *
4754	 * It's also possible that the reclaim thread is unable to evict
4755	 * enough buffers to get arc_size below the overflow limit (e.g.
4756	 * due to buffers being un-evictable, or hash lock collisions).
4757	 * In this case, we want to proceed regardless if we're
4758	 * overflowing; thus we don't use a while loop here.
4759	 */
4760	if (arc_is_overflowing()) {
4761		mutex_enter(&arc_reclaim_lock);
4762
4763		/*
4764		 * Now that we've acquired the lock, we may no longer be
4765		 * over the overflow limit, lets check.
4766		 *
4767		 * We're ignoring the case of spurious wake ups. If that
4768		 * were to happen, it'd let this thread consume an ARC
4769		 * buffer before it should have (i.e. before we're under
4770		 * the overflow limit and were signalled by the reclaim
4771		 * thread). As long as that is a rare occurrence, it
4772		 * shouldn't cause any harm.
4773		 */
4774		if (arc_is_overflowing()) {
4775			cv_signal(&arc_reclaim_thread_cv);
4776			cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4777		}
4778
4779		mutex_exit(&arc_reclaim_lock);
4780	}
4781
4782	VERIFY3U(hdr->b_type, ==, type);
4783	if (type == ARC_BUFC_METADATA) {
4784		arc_space_consume(size, ARC_SPACE_META);
4785	} else {
4786		arc_space_consume(size, ARC_SPACE_DATA);
4787	}
4788
4789	/*
4790	 * Update the state size.  Note that ghost states have a
4791	 * "ghost size" and so don't need to be updated.
4792	 */
4793	if (!GHOST_STATE(state)) {
4794
4795		(void) refcount_add_many(&state->arcs_size, size, tag);
4796
4797		/*
4798		 * If this is reached via arc_read, the link is
4799		 * protected by the hash lock. If reached via
4800		 * arc_buf_alloc, the header should not be accessed by
4801		 * any other thread. And, if reached via arc_read_done,
4802		 * the hash lock will protect it if it's found in the
4803		 * hash table; otherwise no other thread should be
4804		 * trying to [add|remove]_reference it.
4805		 */
4806		if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4807			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4808			(void) refcount_add_many(&state->arcs_esize[type],
4809			    size, tag);
4810		}
4811
4812		/*
4813		 * If we are growing the cache, and we are adding anonymous
4814		 * data, and we have outgrown arc_p, update arc_p
4815		 */
4816		if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4817		    (refcount_count(&arc_anon->arcs_size) +
4818		    refcount_count(&arc_mru->arcs_size) > arc_p))
4819			arc_p = MIN(arc_c, arc_p + size);
4820	}
4821	ARCSTAT_BUMP(arcstat_allocated);
4822}
4823
4824static void
4825arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4826{
4827	arc_free_data_impl(hdr, size, tag);
4828	abd_free(abd);
4829}
4830
4831static void
4832arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4833{
4834	arc_buf_contents_t type = arc_buf_type(hdr);
4835
4836	arc_free_data_impl(hdr, size, tag);
4837	if (type == ARC_BUFC_METADATA) {
4838		zio_buf_free(buf, size);
4839	} else {
4840		ASSERT(type == ARC_BUFC_DATA);
4841		zio_data_buf_free(buf, size);
4842	}
4843}
4844
4845/*
4846 * Free the arc data buffer.
4847 */
4848static void
4849arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4850{
4851	arc_state_t *state = hdr->b_l1hdr.b_state;
4852	arc_buf_contents_t type = arc_buf_type(hdr);
4853
4854	/* protected by hash lock, if in the hash table */
4855	if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4856		ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4857		ASSERT(state != arc_anon && state != arc_l2c_only);
4858
4859		(void) refcount_remove_many(&state->arcs_esize[type],
4860		    size, tag);
4861	}
4862	(void) refcount_remove_many(&state->arcs_size, size, tag);
4863
4864	VERIFY3U(hdr->b_type, ==, type);
4865	if (type == ARC_BUFC_METADATA) {
4866		arc_space_return(size, ARC_SPACE_META);
4867	} else {
4868		ASSERT(type == ARC_BUFC_DATA);
4869		arc_space_return(size, ARC_SPACE_DATA);
4870	}
4871}
4872
4873/*
4874 * This routine is called whenever a buffer is accessed.
4875 * NOTE: the hash lock is dropped in this function.
4876 */
4877static void
4878arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4879{
4880	clock_t now;
4881
4882	ASSERT(MUTEX_HELD(hash_lock));
4883	ASSERT(HDR_HAS_L1HDR(hdr));
4884
4885	if (hdr->b_l1hdr.b_state == arc_anon) {
4886		/*
4887		 * This buffer is not in the cache, and does not
4888		 * appear in our "ghost" list.  Add the new buffer
4889		 * to the MRU state.
4890		 */
4891
4892		ASSERT0(hdr->b_l1hdr.b_arc_access);
4893		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4894		DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4895		arc_change_state(arc_mru, hdr, hash_lock);
4896
4897	} else if (hdr->b_l1hdr.b_state == arc_mru) {
4898		now = ddi_get_lbolt();
4899
4900		/*
4901		 * If this buffer is here because of a prefetch, then either:
4902		 * - clear the flag if this is a "referencing" read
4903		 *   (any subsequent access will bump this into the MFU state).
4904		 * or
4905		 * - move the buffer to the head of the list if this is
4906		 *   another prefetch (to make it less likely to be evicted).
4907		 */
4908		if (HDR_PREFETCH(hdr)) {
4909			if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4910				/* link protected by hash lock */
4911				ASSERT(multilist_link_active(
4912				    &hdr->b_l1hdr.b_arc_node));
4913			} else {
4914				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4915				ARCSTAT_BUMP(arcstat_mru_hits);
4916			}
4917			hdr->b_l1hdr.b_arc_access = now;
4918			return;
4919		}
4920
4921		/*
4922		 * This buffer has been "accessed" only once so far,
4923		 * but it is still in the cache. Move it to the MFU
4924		 * state.
4925		 */
4926		if (now > hdr->b_l1hdr.b_arc_access + ARC_MINTIME) {
4927			/*
4928			 * More than 125ms have passed since we
4929			 * instantiated this buffer.  Move it to the
4930			 * most frequently used state.
4931			 */
4932			hdr->b_l1hdr.b_arc_access = now;
4933			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4934			arc_change_state(arc_mfu, hdr, hash_lock);
4935		}
4936		ARCSTAT_BUMP(arcstat_mru_hits);
4937	} else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4938		arc_state_t	*new_state;
4939		/*
4940		 * This buffer has been "accessed" recently, but
4941		 * was evicted from the cache.  Move it to the
4942		 * MFU state.
4943		 */
4944
4945		if (HDR_PREFETCH(hdr)) {
4946			new_state = arc_mru;
4947			if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4948				arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4949			DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4950		} else {
4951			new_state = arc_mfu;
4952			DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4953		}
4954
4955		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4956		arc_change_state(new_state, hdr, hash_lock);
4957
4958		ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4959	} else if (hdr->b_l1hdr.b_state == arc_mfu) {
4960		/*
4961		 * This buffer has been accessed more than once and is
4962		 * still in the cache.  Keep it in the MFU state.
4963		 *
4964		 * NOTE: an add_reference() that occurred when we did
4965		 * the arc_read() will have kicked this off the list.
4966		 * If it was a prefetch, we will explicitly move it to
4967		 * the head of the list now.
4968		 */
4969		if ((HDR_PREFETCH(hdr)) != 0) {
4970			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4971			/* link protected by hash_lock */
4972			ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4973		}
4974		ARCSTAT_BUMP(arcstat_mfu_hits);
4975		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4976	} else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4977		arc_state_t	*new_state = arc_mfu;
4978		/*
4979		 * This buffer has been accessed more than once but has
4980		 * been evicted from the cache.  Move it back to the
4981		 * MFU state.
4982		 */
4983
4984		if (HDR_PREFETCH(hdr)) {
4985			/*
4986			 * This is a prefetch access...
4987			 * move this block back to the MRU state.
4988			 */
4989			ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4990			new_state = arc_mru;
4991		}
4992
4993		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4994		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4995		arc_change_state(new_state, hdr, hash_lock);
4996
4997		ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4998	} else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4999		/*
5000		 * This buffer is on the 2nd Level ARC.
5001		 */
5002
5003		hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5004		DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5005		arc_change_state(arc_mfu, hdr, hash_lock);
5006	} else {
5007		ASSERT(!"invalid arc state");
5008	}
5009}
5010
5011/* a generic arc_done_func_t which you can use */
5012/* ARGSUSED */
5013void
5014arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
5015{
5016	if (zio == NULL || zio->io_error == 0)
5017		bcopy(buf->b_data, arg, arc_buf_size(buf));
5018	arc_buf_destroy(buf, arg);
5019}
5020
5021/* a generic arc_done_func_t */
5022void
5023arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
5024{
5025	arc_buf_t **bufp = arg;
5026	if (zio && zio->io_error) {
5027		arc_buf_destroy(buf, arg);
5028		*bufp = NULL;
5029	} else {
5030		*bufp = buf;
5031		ASSERT(buf->b_data);
5032	}
5033}
5034
5035static void
5036arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5037{
5038	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5039		ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5040		ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
5041	} else {
5042		if (HDR_COMPRESSION_ENABLED(hdr)) {
5043			ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
5044			    BP_GET_COMPRESS(bp));
5045		}
5046		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5047		ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5048	}
5049}
5050
5051static void
5052arc_read_done(zio_t *zio)
5053{
5054	arc_buf_hdr_t	*hdr = zio->io_private;
5055	kmutex_t	*hash_lock = NULL;
5056	arc_callback_t	*callback_list;
5057	arc_callback_t	*acb;
5058	boolean_t	freeable = B_FALSE;
5059	boolean_t	no_zio_error = (zio->io_error == 0);
5060
5061	/*
5062	 * The hdr was inserted into hash-table and removed from lists
5063	 * prior to starting I/O.  We should find this header, since
5064	 * it's in the hash table, and it should be legit since it's
5065	 * not possible to evict it during the I/O.  The only possible
5066	 * reason for it not to be found is if we were freed during the
5067	 * read.
5068	 */
5069	if (HDR_IN_HASH_TABLE(hdr)) {
5070		ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5071		ASSERT3U(hdr->b_dva.dva_word[0], ==,
5072		    BP_IDENTITY(zio->io_bp)->dva_word[0]);
5073		ASSERT3U(hdr->b_dva.dva_word[1], ==,
5074		    BP_IDENTITY(zio->io_bp)->dva_word[1]);
5075
5076		arc_buf_hdr_t *found = buf_hash_find(hdr->b_spa, zio->io_bp,
5077		    &hash_lock);
5078
5079		ASSERT((found == hdr &&
5080		    DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5081		    (found == hdr && HDR_L2_READING(hdr)));
5082		ASSERT3P(hash_lock, !=, NULL);
5083	}
5084
5085	if (no_zio_error) {
5086		/* byteswap if necessary */
5087		if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5088			if (BP_GET_LEVEL(zio->io_bp) > 0) {
5089				hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5090			} else {
5091				hdr->b_l1hdr.b_byteswap =
5092				    DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5093			}
5094		} else {
5095			hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5096		}
5097	}
5098
5099	arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5100	if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5101		arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5102
5103	callback_list = hdr->b_l1hdr.b_acb;
5104	ASSERT3P(callback_list, !=, NULL);
5105
5106	if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5107		/*
5108		 * Only call arc_access on anonymous buffers.  This is because
5109		 * if we've issued an I/O for an evicted buffer, we've already
5110		 * called arc_access (to prevent any simultaneous readers from
5111		 * getting confused).
5112		 */
5113		arc_access(hdr, hash_lock);
5114	}
5115
5116	/*
5117	 * If a read request has a callback (i.e. acb_done is not NULL), then we
5118	 * make a buf containing the data according to the parameters which were
5119	 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5120	 * aren't needlessly decompressing the data multiple times.
5121	 */
5122	int callback_cnt = 0;
5123	for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5124		if (!acb->acb_done)
5125			continue;
5126
5127		/* This is a demand read since prefetches don't use callbacks */
5128		callback_cnt++;
5129
5130		int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5131		    acb->acb_compressed, no_zio_error, &acb->acb_buf);
5132		if (no_zio_error) {
5133			zio->io_error = error;
5134		}
5135	}
5136	hdr->b_l1hdr.b_acb = NULL;
5137	arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5138	if (callback_cnt == 0) {
5139		ASSERT(HDR_PREFETCH(hdr));
5140		ASSERT0(hdr->b_l1hdr.b_bufcnt);
5141		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5142	}
5143
5144	ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5145	    callback_list != NULL);
5146
5147	if (no_zio_error) {
5148		arc_hdr_verify(hdr, zio->io_bp);
5149	} else {
5150		arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5151		if (hdr->b_l1hdr.b_state != arc_anon)
5152			arc_change_state(arc_anon, hdr, hash_lock);
5153		if (HDR_IN_HASH_TABLE(hdr))
5154			buf_hash_remove(hdr);
5155		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5156	}
5157
5158	/*
5159	 * Broadcast before we drop the hash_lock to avoid the possibility
5160	 * that the hdr (and hence the cv) might be freed before we get to
5161	 * the cv_broadcast().
5162	 */
5163	cv_broadcast(&hdr->b_l1hdr.b_cv);
5164
5165	if (hash_lock != NULL) {
5166		mutex_exit(hash_lock);
5167	} else {
5168		/*
5169		 * This block was freed while we waited for the read to
5170		 * complete.  It has been removed from the hash table and
5171		 * moved to the anonymous state (so that it won't show up
5172		 * in the cache).
5173		 */
5174		ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5175		freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5176	}
5177
5178	/* execute each callback and free its structure */
5179	while ((acb = callback_list) != NULL) {
5180		if (acb->acb_done)
5181			acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5182
5183		if (acb->acb_zio_dummy != NULL) {
5184			acb->acb_zio_dummy->io_error = zio->io_error;
5185			zio_nowait(acb->acb_zio_dummy);
5186		}
5187
5188		callback_list = acb->acb_next;
5189		kmem_free(acb, sizeof (arc_callback_t));
5190	}
5191
5192	if (freeable)
5193		arc_hdr_destroy(hdr);
5194}
5195
5196/*
5197 * "Read" the block at the specified DVA (in bp) via the
5198 * cache.  If the block is found in the cache, invoke the provided
5199 * callback immediately and return.  Note that the `zio' parameter
5200 * in the callback will be NULL in this case, since no IO was
5201 * required.  If the block is not in the cache pass the read request
5202 * on to the spa with a substitute callback function, so that the
5203 * requested block will be added to the cache.
5204 *
5205 * If a read request arrives for a block that has a read in-progress,
5206 * either wait for the in-progress read to complete (and return the
5207 * results); or, if this is a read with a "done" func, add a record
5208 * to the read to invoke the "done" func when the read completes,
5209 * and return; or just return.
5210 *
5211 * arc_read_done() will invoke all the requested "done" functions
5212 * for readers of this block.
5213 */
5214int
5215arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
5216    void *private, zio_priority_t priority, int zio_flags,
5217    arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5218{
5219	arc_buf_hdr_t *hdr = NULL;
5220	kmutex_t *hash_lock = NULL;
5221	zio_t *rzio;
5222	uint64_t guid = spa_load_guid(spa);
5223	boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5224
5225	ASSERT(!BP_IS_EMBEDDED(bp) ||
5226	    BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5227
5228top:
5229	if (!BP_IS_EMBEDDED(bp)) {
5230		/*
5231		 * Embedded BP's have no DVA and require no I/O to "read".
5232		 * Create an anonymous arc buf to back it.
5233		 */
5234		hdr = buf_hash_find(guid, bp, &hash_lock);
5235	}
5236
5237	if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5238		arc_buf_t *buf = NULL;
5239		*arc_flags |= ARC_FLAG_CACHED;
5240
5241		if (HDR_IO_IN_PROGRESS(hdr)) {
5242
5243			if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5244			    priority == ZIO_PRIORITY_SYNC_READ) {
5245				/*
5246				 * This sync read must wait for an
5247				 * in-progress async read (e.g. a predictive
5248				 * prefetch).  Async reads are queued
5249				 * separately at the vdev_queue layer, so
5250				 * this is a form of priority inversion.
5251				 * Ideally, we would "inherit" the demand
5252				 * i/o's priority by moving the i/o from
5253				 * the async queue to the synchronous queue,
5254				 * but there is currently no mechanism to do
5255				 * so.  Track this so that we can evaluate
5256				 * the magnitude of this potential performance
5257				 * problem.
5258				 *
5259				 * Note that if the prefetch i/o is already
5260				 * active (has been issued to the device),
5261				 * the prefetch improved performance, because
5262				 * we issued it sooner than we would have
5263				 * without the prefetch.
5264				 */
5265				DTRACE_PROBE1(arc__sync__wait__for__async,
5266				    arc_buf_hdr_t *, hdr);
5267				ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5268			}
5269			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5270				arc_hdr_clear_flags(hdr,
5271				    ARC_FLAG_PREDICTIVE_PREFETCH);
5272			}
5273
5274			if (*arc_flags & ARC_FLAG_WAIT) {
5275				cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5276				mutex_exit(hash_lock);
5277				goto top;
5278			}
5279			ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5280
5281			if (done) {
5282				arc_callback_t *acb = NULL;
5283
5284				acb = kmem_zalloc(sizeof (arc_callback_t),
5285				    KM_SLEEP);
5286				acb->acb_done = done;
5287				acb->acb_private = private;
5288				acb->acb_compressed = compressed_read;
5289				if (pio != NULL)
5290					acb->acb_zio_dummy = zio_null(pio,
5291					    spa, NULL, NULL, NULL, zio_flags);
5292
5293				ASSERT3P(acb->acb_done, !=, NULL);
5294				acb->acb_next = hdr->b_l1hdr.b_acb;
5295				hdr->b_l1hdr.b_acb = acb;
5296				mutex_exit(hash_lock);
5297				return (0);
5298			}
5299			mutex_exit(hash_lock);
5300			return (0);
5301		}
5302
5303		ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5304		    hdr->b_l1hdr.b_state == arc_mfu);
5305
5306		if (done) {
5307			if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5308				/*
5309				 * This is a demand read which does not have to
5310				 * wait for i/o because we did a predictive
5311				 * prefetch i/o for it, which has completed.
5312				 */
5313				DTRACE_PROBE1(
5314				    arc__demand__hit__predictive__prefetch,
5315				    arc_buf_hdr_t *, hdr);
5316				ARCSTAT_BUMP(
5317				    arcstat_demand_hit_predictive_prefetch);
5318				arc_hdr_clear_flags(hdr,
5319				    ARC_FLAG_PREDICTIVE_PREFETCH);
5320			}
5321			ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5322
5323			/* Get a buf with the desired data in it. */
5324			VERIFY0(arc_buf_alloc_impl(hdr, private,
5325			    compressed_read, B_TRUE, &buf));
5326		} else if (*arc_flags & ARC_FLAG_PREFETCH &&
5327		    refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5328			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5329		}
5330		DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5331		arc_access(hdr, hash_lock);
5332		if (*arc_flags & ARC_FLAG_L2CACHE)
5333			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5334		mutex_exit(hash_lock);
5335		ARCSTAT_BUMP(arcstat_hits);
5336		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5337		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5338		    data, metadata, hits);
5339
5340		if (done)
5341			done(NULL, buf, private);
5342	} else {
5343		uint64_t lsize = BP_GET_LSIZE(bp);
5344		uint64_t psize = BP_GET_PSIZE(bp);
5345		arc_callback_t *acb;
5346		vdev_t *vd = NULL;
5347		uint64_t addr = 0;
5348		boolean_t devw = B_FALSE;
5349		uint64_t size;
5350
5351		if (hdr == NULL) {
5352			/* this block is not in the cache */
5353			arc_buf_hdr_t *exists = NULL;
5354			arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5355			hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5356			    BP_GET_COMPRESS(bp), type);
5357
5358			if (!BP_IS_EMBEDDED(bp)) {
5359				hdr->b_dva = *BP_IDENTITY(bp);
5360				hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5361				exists = buf_hash_insert(hdr, &hash_lock);
5362			}
5363			if (exists != NULL) {
5364				/* somebody beat us to the hash insert */
5365				mutex_exit(hash_lock);
5366				buf_discard_identity(hdr);
5367				arc_hdr_destroy(hdr);
5368				goto top; /* restart the IO request */
5369			}
5370		} else {
5371			/*
5372			 * This block is in the ghost cache. If it was L2-only
5373			 * (and thus didn't have an L1 hdr), we realloc the
5374			 * header to add an L1 hdr.
5375			 */
5376			if (!HDR_HAS_L1HDR(hdr)) {
5377				hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5378				    hdr_full_cache);
5379			}
5380			ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5381			ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5382			ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5383			ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5384			ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5385			ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5386
5387			/*
5388			 * This is a delicate dance that we play here.
5389			 * This hdr is in the ghost list so we access it
5390			 * to move it out of the ghost list before we
5391			 * initiate the read. If it's a prefetch then
5392			 * it won't have a callback so we'll remove the
5393			 * reference that arc_buf_alloc_impl() created. We
5394			 * do this after we've called arc_access() to
5395			 * avoid hitting an assert in remove_reference().
5396			 */
5397			arc_access(hdr, hash_lock);
5398			arc_hdr_alloc_pabd(hdr);
5399		}
5400		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5401		size = arc_hdr_size(hdr);
5402
5403		/*
5404		 * If compression is enabled on the hdr, then will do
5405		 * RAW I/O and will store the compressed data in the hdr's
5406		 * data block. Otherwise, the hdr's data block will contain
5407		 * the uncompressed data.
5408		 */
5409		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5410			zio_flags |= ZIO_FLAG_RAW;
5411		}
5412
5413		if (*arc_flags & ARC_FLAG_PREFETCH)
5414			arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5415		if (*arc_flags & ARC_FLAG_L2CACHE)
5416			arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5417		if (BP_GET_LEVEL(bp) > 0)
5418			arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5419		if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5420			arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5421		ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5422
5423		acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5424		acb->acb_done = done;
5425		acb->acb_private = private;
5426		acb->acb_compressed = compressed_read;
5427
5428		ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5429		hdr->b_l1hdr.b_acb = acb;
5430		arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5431
5432		if (HDR_HAS_L2HDR(hdr) &&
5433		    (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5434			devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5435			addr = hdr->b_l2hdr.b_daddr;
5436			/*
5437			 * Lock out L2ARC device removal.
5438			 */
5439			if (vdev_is_dead(vd) ||
5440			    !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5441				vd = NULL;
5442		}
5443
5444		if (priority == ZIO_PRIORITY_ASYNC_READ)
5445			arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5446		else
5447			arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5448
5449		if (hash_lock != NULL)
5450			mutex_exit(hash_lock);
5451
5452		/*
5453		 * At this point, we have a level 1 cache miss.  Try again in
5454		 * L2ARC if possible.
5455		 */
5456		ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5457
5458		DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5459		    uint64_t, lsize, zbookmark_phys_t *, zb);
5460		ARCSTAT_BUMP(arcstat_misses);
5461		ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5462		    demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5463		    data, metadata, misses);
5464#ifdef _KERNEL
5465#ifdef RACCT
5466		if (racct_enable) {
5467			PROC_LOCK(curproc);
5468			racct_add_force(curproc, RACCT_READBPS, size);
5469			racct_add_force(curproc, RACCT_READIOPS, 1);
5470			PROC_UNLOCK(curproc);
5471		}
5472#endif /* RACCT */
5473		curthread->td_ru.ru_inblock++;
5474#endif
5475
5476		if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5477			/*
5478			 * Read from the L2ARC if the following are true:
5479			 * 1. The L2ARC vdev was previously cached.
5480			 * 2. This buffer still has L2ARC metadata.
5481			 * 3. This buffer isn't currently writing to the L2ARC.
5482			 * 4. The L2ARC entry wasn't evicted, which may
5483			 *    also have invalidated the vdev.
5484			 * 5. This isn't prefetch and l2arc_noprefetch is set.
5485			 */
5486			if (HDR_HAS_L2HDR(hdr) &&
5487			    !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5488			    !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5489				l2arc_read_callback_t *cb;
5490				abd_t *abd;
5491				uint64_t asize;
5492
5493				DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5494				ARCSTAT_BUMP(arcstat_l2_hits);
5495
5496				cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5497				    KM_SLEEP);
5498				cb->l2rcb_hdr = hdr;
5499				cb->l2rcb_bp = *bp;
5500				cb->l2rcb_zb = *zb;
5501				cb->l2rcb_flags = zio_flags;
5502
5503				asize = vdev_psize_to_asize(vd, size);
5504				if (asize != size) {
5505					abd = abd_alloc_for_io(asize,
5506					    HDR_ISTYPE_METADATA(hdr));
5507					cb->l2rcb_abd = abd;
5508				} else {
5509					abd = hdr->b_l1hdr.b_pabd;
5510				}
5511
5512				ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5513				    addr + asize <= vd->vdev_psize -
5514				    VDEV_LABEL_END_SIZE);
5515
5516				/*
5517				 * l2arc read.  The SCL_L2ARC lock will be
5518				 * released by l2arc_read_done().
5519				 * Issue a null zio if the underlying buffer
5520				 * was squashed to zero size by compression.
5521				 */
5522				ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5523				    ZIO_COMPRESS_EMPTY);
5524				rzio = zio_read_phys(pio, vd, addr,
5525				    asize, abd,
5526				    ZIO_CHECKSUM_OFF,
5527				    l2arc_read_done, cb, priority,
5528				    zio_flags | ZIO_FLAG_DONT_CACHE |
5529				    ZIO_FLAG_CANFAIL |
5530				    ZIO_FLAG_DONT_PROPAGATE |
5531				    ZIO_FLAG_DONT_RETRY, B_FALSE);
5532				DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5533				    zio_t *, rzio);
5534				ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5535
5536				if (*arc_flags & ARC_FLAG_NOWAIT) {
5537					zio_nowait(rzio);
5538					return (0);
5539				}
5540
5541				ASSERT(*arc_flags & ARC_FLAG_WAIT);
5542				if (zio_wait(rzio) == 0)
5543					return (0);
5544
5545				/* l2arc read error; goto zio_read() */
5546			} else {
5547				DTRACE_PROBE1(l2arc__miss,
5548				    arc_buf_hdr_t *, hdr);
5549				ARCSTAT_BUMP(arcstat_l2_misses);
5550				if (HDR_L2_WRITING(hdr))
5551					ARCSTAT_BUMP(arcstat_l2_rw_clash);
5552				spa_config_exit(spa, SCL_L2ARC, vd);
5553			}
5554		} else {
5555			if (vd != NULL)
5556				spa_config_exit(spa, SCL_L2ARC, vd);
5557			if (l2arc_ndev != 0) {
5558				DTRACE_PROBE1(l2arc__miss,
5559				    arc_buf_hdr_t *, hdr);
5560				ARCSTAT_BUMP(arcstat_l2_misses);
5561			}
5562		}
5563
5564		rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5565		    arc_read_done, hdr, priority, zio_flags, zb);
5566
5567		if (*arc_flags & ARC_FLAG_WAIT)
5568			return (zio_wait(rzio));
5569
5570		ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5571		zio_nowait(rzio);
5572	}
5573	return (0);
5574}
5575
5576/*
5577 * Notify the arc that a block was freed, and thus will never be used again.
5578 */
5579void
5580arc_freed(spa_t *spa, const blkptr_t *bp)
5581{
5582	arc_buf_hdr_t *hdr;
5583	kmutex_t *hash_lock;
5584	uint64_t guid = spa_load_guid(spa);
5585
5586	ASSERT(!BP_IS_EMBEDDED(bp));
5587
5588	hdr = buf_hash_find(guid, bp, &hash_lock);
5589	if (hdr == NULL)
5590		return;
5591
5592	/*
5593	 * We might be trying to free a block that is still doing I/O
5594	 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5595	 * dmu_sync-ed block). If this block is being prefetched, then it
5596	 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5597	 * until the I/O completes. A block may also have a reference if it is
5598	 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5599	 * have written the new block to its final resting place on disk but
5600	 * without the dedup flag set. This would have left the hdr in the MRU
5601	 * state and discoverable. When the txg finally syncs it detects that
5602	 * the block was overridden in open context and issues an override I/O.
5603	 * Since this is a dedup block, the override I/O will determine if the
5604	 * block is already in the DDT. If so, then it will replace the io_bp
5605	 * with the bp from the DDT and allow the I/O to finish. When the I/O
5606	 * reaches the done callback, dbuf_write_override_done, it will
5607	 * check to see if the io_bp and io_bp_override are identical.
5608	 * If they are not, then it indicates that the bp was replaced with
5609	 * the bp in the DDT and the override bp is freed. This allows
5610	 * us to arrive here with a reference on a block that is being
5611	 * freed. So if we have an I/O in progress, or a reference to
5612	 * this hdr, then we don't destroy the hdr.
5613	 */
5614	if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5615	    refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5616		arc_change_state(arc_anon, hdr, hash_lock);
5617		arc_hdr_destroy(hdr);
5618		mutex_exit(hash_lock);
5619	} else {
5620		mutex_exit(hash_lock);
5621	}
5622
5623}
5624
5625/*
5626 * Release this buffer from the cache, making it an anonymous buffer.  This
5627 * must be done after a read and prior to modifying the buffer contents.
5628 * If the buffer has more than one reference, we must make
5629 * a new hdr for the buffer.
5630 */
5631void
5632arc_release(arc_buf_t *buf, void *tag)
5633{
5634	arc_buf_hdr_t *hdr = buf->b_hdr;
5635
5636	/*
5637	 * It would be nice to assert that if it's DMU metadata (level >
5638	 * 0 || it's the dnode file), then it must be syncing context.
5639	 * But we don't know that information at this level.
5640	 */
5641
5642	mutex_enter(&buf->b_evict_lock);
5643
5644	ASSERT(HDR_HAS_L1HDR(hdr));
5645
5646	/*
5647	 * We don't grab the hash lock prior to this check, because if
5648	 * the buffer's header is in the arc_anon state, it won't be
5649	 * linked into the hash table.
5650	 */
5651	if (hdr->b_l1hdr.b_state == arc_anon) {
5652		mutex_exit(&buf->b_evict_lock);
5653		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5654		ASSERT(!HDR_IN_HASH_TABLE(hdr));
5655		ASSERT(!HDR_HAS_L2HDR(hdr));
5656		ASSERT(HDR_EMPTY(hdr));
5657		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5658		ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5659		ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5660
5661		hdr->b_l1hdr.b_arc_access = 0;
5662
5663		/*
5664		 * If the buf is being overridden then it may already
5665		 * have a hdr that is not empty.
5666		 */
5667		buf_discard_identity(hdr);
5668		arc_buf_thaw(buf);
5669
5670		return;
5671	}
5672
5673	kmutex_t *hash_lock = HDR_LOCK(hdr);
5674	mutex_enter(hash_lock);
5675
5676	/*
5677	 * This assignment is only valid as long as the hash_lock is
5678	 * held, we must be careful not to reference state or the
5679	 * b_state field after dropping the lock.
5680	 */
5681	arc_state_t *state = hdr->b_l1hdr.b_state;
5682	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5683	ASSERT3P(state, !=, arc_anon);
5684
5685	/* this buffer is not on any list */
5686	ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5687
5688	if (HDR_HAS_L2HDR(hdr)) {
5689		mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5690
5691		/*
5692		 * We have to recheck this conditional again now that
5693		 * we're holding the l2ad_mtx to prevent a race with
5694		 * another thread which might be concurrently calling
5695		 * l2arc_evict(). In that case, l2arc_evict() might have
5696		 * destroyed the header's L2 portion as we were waiting
5697		 * to acquire the l2ad_mtx.
5698		 */
5699		if (HDR_HAS_L2HDR(hdr)) {
5700			l2arc_trim(hdr);
5701			arc_hdr_l2hdr_destroy(hdr);
5702		}
5703
5704		mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5705	}
5706
5707	/*
5708	 * Do we have more than one buf?
5709	 */
5710	if (hdr->b_l1hdr.b_bufcnt > 1) {
5711		arc_buf_hdr_t *nhdr;
5712		uint64_t spa = hdr->b_spa;
5713		uint64_t psize = HDR_GET_PSIZE(hdr);
5714		uint64_t lsize = HDR_GET_LSIZE(hdr);
5715		enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5716		arc_buf_contents_t type = arc_buf_type(hdr);
5717		VERIFY3U(hdr->b_type, ==, type);
5718
5719		ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5720		(void) remove_reference(hdr, hash_lock, tag);
5721
5722		if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5723			ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5724			ASSERT(ARC_BUF_LAST(buf));
5725		}
5726
5727		/*
5728		 * Pull the data off of this hdr and attach it to
5729		 * a new anonymous hdr. Also find the last buffer
5730		 * in the hdr's buffer list.
5731		 */
5732		arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5733		ASSERT3P(lastbuf, !=, NULL);
5734
5735		/*
5736		 * If the current arc_buf_t and the hdr are sharing their data
5737		 * buffer, then we must stop sharing that block.
5738		 */
5739		if (arc_buf_is_shared(buf)) {
5740			VERIFY(!arc_buf_is_shared(lastbuf));
5741
5742			/*
5743			 * First, sever the block sharing relationship between
5744			 * buf and the arc_buf_hdr_t.
5745			 */
5746			arc_unshare_buf(hdr, buf);
5747
5748			/*
5749			 * Now we need to recreate the hdr's b_pabd. Since we
5750			 * have lastbuf handy, we try to share with it, but if
5751			 * we can't then we allocate a new b_pabd and copy the
5752			 * data from buf into it.
5753			 */
5754			if (arc_can_share(hdr, lastbuf)) {
5755				arc_share_buf(hdr, lastbuf);
5756			} else {
5757				arc_hdr_alloc_pabd(hdr);
5758				abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5759				    buf->b_data, psize);
5760			}
5761			VERIFY3P(lastbuf->b_data, !=, NULL);
5762		} else if (HDR_SHARED_DATA(hdr)) {
5763			/*
5764			 * Uncompressed shared buffers are always at the end
5765			 * of the list. Compressed buffers don't have the
5766			 * same requirements. This makes it hard to
5767			 * simply assert that the lastbuf is shared so
5768			 * we rely on the hdr's compression flags to determine
5769			 * if we have a compressed, shared buffer.
5770			 */
5771			ASSERT(arc_buf_is_shared(lastbuf) ||
5772			    HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5773			ASSERT(!ARC_BUF_SHARED(buf));
5774		}
5775		ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5776		ASSERT3P(state, !=, arc_l2c_only);
5777
5778		(void) refcount_remove_many(&state->arcs_size,
5779		    arc_buf_size(buf), buf);
5780
5781		if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5782			ASSERT3P(state, !=, arc_l2c_only);
5783			(void) refcount_remove_many(&state->arcs_esize[type],
5784			    arc_buf_size(buf), buf);
5785		}
5786
5787		hdr->b_l1hdr.b_bufcnt -= 1;
5788		arc_cksum_verify(buf);
5789#ifdef illumos
5790		arc_buf_unwatch(buf);
5791#endif
5792
5793		mutex_exit(hash_lock);
5794
5795		/*
5796		 * Allocate a new hdr. The new hdr will contain a b_pabd
5797		 * buffer which will be freed in arc_write().
5798		 */
5799		nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5800		ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5801		ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5802		ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5803		VERIFY3U(nhdr->b_type, ==, type);
5804		ASSERT(!HDR_SHARED_DATA(nhdr));
5805
5806		nhdr->b_l1hdr.b_buf = buf;
5807		nhdr->b_l1hdr.b_bufcnt = 1;
5808		(void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5809		buf->b_hdr = nhdr;
5810
5811		mutex_exit(&buf->b_evict_lock);
5812		(void) refcount_add_many(&arc_anon->arcs_size,
5813		    arc_buf_size(buf), buf);
5814	} else {
5815		mutex_exit(&buf->b_evict_lock);
5816		ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5817		/* protected by hash lock, or hdr is on arc_anon */
5818		ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5819		ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5820		arc_change_state(arc_anon, hdr, hash_lock);
5821		hdr->b_l1hdr.b_arc_access = 0;
5822		mutex_exit(hash_lock);
5823
5824		buf_discard_identity(hdr);
5825		arc_buf_thaw(buf);
5826	}
5827}
5828
5829int
5830arc_released(arc_buf_t *buf)
5831{
5832	int released;
5833
5834	mutex_enter(&buf->b_evict_lock);
5835	released = (buf->b_data != NULL &&
5836	    buf->b_hdr->b_l1hdr.b_state == arc_anon);
5837	mutex_exit(&buf->b_evict_lock);
5838	return (released);
5839}
5840
5841#ifdef ZFS_DEBUG
5842int
5843arc_referenced(arc_buf_t *buf)
5844{
5845	int referenced;
5846
5847	mutex_enter(&buf->b_evict_lock);
5848	referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5849	mutex_exit(&buf->b_evict_lock);
5850	return (referenced);
5851}
5852#endif
5853
5854static void
5855arc_write_ready(zio_t *zio)
5856{
5857	arc_write_callback_t *callback = zio->io_private;
5858	arc_buf_t *buf = callback->awcb_buf;
5859	arc_buf_hdr_t *hdr = buf->b_hdr;
5860	uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5861
5862	ASSERT(HDR_HAS_L1HDR(hdr));
5863	ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5864	ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5865
5866	/*
5867	 * If we're reexecuting this zio because the pool suspended, then
5868	 * cleanup any state that was previously set the first time the
5869	 * callback was invoked.
5870	 */
5871	if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5872		arc_cksum_free(hdr);
5873#ifdef illumos
5874		arc_buf_unwatch(buf);
5875#endif
5876		if (hdr->b_l1hdr.b_pabd != NULL) {
5877			if (arc_buf_is_shared(buf)) {
5878				arc_unshare_buf(hdr, buf);
5879			} else {
5880				arc_hdr_free_pabd(hdr);
5881			}
5882		}
5883	}
5884	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5885	ASSERT(!HDR_SHARED_DATA(hdr));
5886	ASSERT(!arc_buf_is_shared(buf));
5887
5888	callback->awcb_ready(zio, buf, callback->awcb_private);
5889
5890	if (HDR_IO_IN_PROGRESS(hdr))
5891		ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5892
5893	arc_cksum_compute(buf);
5894	arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5895
5896	enum zio_compress compress;
5897	if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5898		compress = ZIO_COMPRESS_OFF;
5899	} else {
5900		ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5901		compress = BP_GET_COMPRESS(zio->io_bp);
5902	}
5903	HDR_SET_PSIZE(hdr, psize);
5904	arc_hdr_set_compress(hdr, compress);
5905
5906
5907	/*
5908	 * Fill the hdr with data. If the hdr is compressed, the data we want
5909	 * is available from the zio, otherwise we can take it from the buf.
5910	 *
5911	 * We might be able to share the buf's data with the hdr here. However,
5912	 * doing so would cause the ARC to be full of linear ABDs if we write a
5913	 * lot of shareable data. As a compromise, we check whether scattered
5914	 * ABDs are allowed, and assume that if they are then the user wants
5915	 * the ARC to be primarily filled with them regardless of the data being
5916	 * written. Therefore, if they're allowed then we allocate one and copy
5917	 * the data into it; otherwise, we share the data directly if we can.
5918	 */
5919	if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5920		arc_hdr_alloc_pabd(hdr);
5921
5922		/*
5923		 * Ideally, we would always copy the io_abd into b_pabd, but the
5924		 * user may have disabled compressed ARC, thus we must check the
5925		 * hdr's compression setting rather than the io_bp's.
5926		 */
5927		if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5928			ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5929			    ZIO_COMPRESS_OFF);
5930			ASSERT3U(psize, >, 0);
5931
5932			abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5933		} else {
5934			ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5935
5936			abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5937			    arc_buf_size(buf));
5938		}
5939	} else {
5940		ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5941		ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5942		ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5943
5944		arc_share_buf(hdr, buf);
5945	}
5946
5947	arc_hdr_verify(hdr, zio->io_bp);
5948}
5949
5950static void
5951arc_write_children_ready(zio_t *zio)
5952{
5953	arc_write_callback_t *callback = zio->io_private;
5954	arc_buf_t *buf = callback->awcb_buf;
5955
5956	callback->awcb_children_ready(zio, buf, callback->awcb_private);
5957}
5958
5959/*
5960 * The SPA calls this callback for each physical write that happens on behalf
5961 * of a logical write.  See the comment in dbuf_write_physdone() for details.
5962 */
5963static void
5964arc_write_physdone(zio_t *zio)
5965{
5966	arc_write_callback_t *cb = zio->io_private;
5967	if (cb->awcb_physdone != NULL)
5968		cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5969}
5970
5971static void
5972arc_write_done(zio_t *zio)
5973{
5974	arc_write_callback_t *callback = zio->io_private;
5975	arc_buf_t *buf = callback->awcb_buf;
5976	arc_buf_hdr_t *hdr = buf->b_hdr;
5977
5978	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5979
5980	if (zio->io_error == 0) {
5981		arc_hdr_verify(hdr, zio->io_bp);
5982
5983		if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5984			buf_discard_identity(hdr);
5985		} else {
5986			hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5987			hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
5988		}
5989	} else {
5990		ASSERT(HDR_EMPTY(hdr));
5991	}
5992
5993	/*
5994	 * If the block to be written was all-zero or compressed enough to be
5995	 * embedded in the BP, no write was performed so there will be no
5996	 * dva/birth/checksum.  The buffer must therefore remain anonymous
5997	 * (and uncached).
5998	 */
5999	if (!HDR_EMPTY(hdr)) {
6000		arc_buf_hdr_t *exists;
6001		kmutex_t *hash_lock;
6002
6003		ASSERT3U(zio->io_error, ==, 0);
6004
6005		arc_cksum_verify(buf);
6006
6007		exists = buf_hash_insert(hdr, &hash_lock);
6008		if (exists != NULL) {
6009			/*
6010			 * This can only happen if we overwrite for
6011			 * sync-to-convergence, because we remove
6012			 * buffers from the hash table when we arc_free().
6013			 */
6014			if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6015				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6016					panic("bad overwrite, hdr=%p exists=%p",
6017					    (void *)hdr, (void *)exists);
6018				ASSERT(refcount_is_zero(
6019				    &exists->b_l1hdr.b_refcnt));
6020				arc_change_state(arc_anon, exists, hash_lock);
6021				mutex_exit(hash_lock);
6022				arc_hdr_destroy(exists);
6023				exists = buf_hash_insert(hdr, &hash_lock);
6024				ASSERT3P(exists, ==, NULL);
6025			} else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6026				/* nopwrite */
6027				ASSERT(zio->io_prop.zp_nopwrite);
6028				if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6029					panic("bad nopwrite, hdr=%p exists=%p",
6030					    (void *)hdr, (void *)exists);
6031			} else {
6032				/* Dedup */
6033				ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6034				ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6035				ASSERT(BP_GET_DEDUP(zio->io_bp));
6036				ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6037			}
6038		}
6039		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6040		/* if it's not anon, we are doing a scrub */
6041		if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6042			arc_access(hdr, hash_lock);
6043		mutex_exit(hash_lock);
6044	} else {
6045		arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6046	}
6047
6048	ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6049	callback->awcb_done(zio, buf, callback->awcb_private);
6050
6051	abd_put(zio->io_abd);
6052	kmem_free(callback, sizeof (arc_write_callback_t));
6053}
6054
6055zio_t *
6056arc_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, arc_buf_t *buf,
6057    boolean_t l2arc, const zio_prop_t *zp, arc_done_func_t *ready,
6058    arc_done_func_t *children_ready, arc_done_func_t *physdone,
6059    arc_done_func_t *done, void *private, zio_priority_t priority,
6060    int zio_flags, const zbookmark_phys_t *zb)
6061{
6062	arc_buf_hdr_t *hdr = buf->b_hdr;
6063	arc_write_callback_t *callback;
6064	zio_t *zio;
6065	zio_prop_t localprop = *zp;
6066
6067	ASSERT3P(ready, !=, NULL);
6068	ASSERT3P(done, !=, NULL);
6069	ASSERT(!HDR_IO_ERROR(hdr));
6070	ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6071	ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6072	ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6073	if (l2arc)
6074		arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6075	if (ARC_BUF_COMPRESSED(buf)) {
6076		/*
6077		 * We're writing a pre-compressed buffer.  Make the
6078		 * compression algorithm requested by the zio_prop_t match
6079		 * the pre-compressed buffer's compression algorithm.
6080		 */
6081		localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6082
6083		ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6084		zio_flags |= ZIO_FLAG_RAW;
6085	}
6086	callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6087	callback->awcb_ready = ready;
6088	callback->awcb_children_ready = children_ready;
6089	callback->awcb_physdone = physdone;
6090	callback->awcb_done = done;
6091	callback->awcb_private = private;
6092	callback->awcb_buf = buf;
6093
6094	/*
6095	 * The hdr's b_pabd is now stale, free it now. A new data block
6096	 * will be allocated when the zio pipeline calls arc_write_ready().
6097	 */
6098	if (hdr->b_l1hdr.b_pabd != NULL) {
6099		/*
6100		 * If the buf is currently sharing the data block with
6101		 * the hdr then we need to break that relationship here.
6102		 * The hdr will remain with a NULL data pointer and the
6103		 * buf will take sole ownership of the block.
6104		 */
6105		if (arc_buf_is_shared(buf)) {
6106			arc_unshare_buf(hdr, buf);
6107		} else {
6108			arc_hdr_free_pabd(hdr);
6109		}
6110		VERIFY3P(buf->b_data, !=, NULL);
6111		arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6112	}
6113	ASSERT(!arc_buf_is_shared(buf));
6114	ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6115
6116	zio = zio_write(pio, spa, txg, bp,
6117	    abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6118	    HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6119	    (children_ready != NULL) ? arc_write_children_ready : NULL,
6120	    arc_write_physdone, arc_write_done, callback,
6121	    priority, zio_flags, zb);
6122
6123	return (zio);
6124}
6125
6126static int
6127arc_memory_throttle(uint64_t reserve, uint64_t txg)
6128{
6129#ifdef _KERNEL
6130	uint64_t available_memory = ptob(freemem);
6131	static uint64_t page_load = 0;
6132	static uint64_t last_txg = 0;
6133
6134#if defined(__i386) || !defined(UMA_MD_SMALL_ALLOC)
6135	available_memory =
6136	    MIN(available_memory, ptob(vmem_size(heap_arena, VMEM_FREE)));
6137#endif
6138
6139	if (freemem > (uint64_t)physmem * arc_lotsfree_percent / 100)
6140		return (0);
6141
6142	if (txg > last_txg) {
6143		last_txg = txg;
6144		page_load = 0;
6145	}
6146	/*
6147	 * If we are in pageout, we know that memory is already tight,
6148	 * the arc is already going to be evicting, so we just want to
6149	 * continue to let page writes occur as quickly as possible.
6150	 */
6151	if (curproc == pageproc) {
6152		if (page_load > MAX(ptob(minfree), available_memory) / 4)
6153			return (SET_ERROR(ERESTART));
6154		/* Note: reserve is inflated, so we deflate */
6155		page_load += reserve / 8;
6156		return (0);
6157	} else if (page_load > 0 && arc_reclaim_needed()) {
6158		/* memory is low, delay before restarting */
6159		ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6160		return (SET_ERROR(EAGAIN));
6161	}
6162	page_load = 0;
6163#endif
6164	return (0);
6165}
6166
6167void
6168arc_tempreserve_clear(uint64_t reserve)
6169{
6170	atomic_add_64(&arc_tempreserve, -reserve);
6171	ASSERT((int64_t)arc_tempreserve >= 0);
6172}
6173
6174int
6175arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6176{
6177	int error;
6178	uint64_t anon_size;
6179
6180	if (reserve > arc_c/4 && !arc_no_grow) {
6181		arc_c = MIN(arc_c_max, reserve * 4);
6182		DTRACE_PROBE1(arc__set_reserve, uint64_t, arc_c);
6183	}
6184	if (reserve > arc_c)
6185		return (SET_ERROR(ENOMEM));
6186
6187	/*
6188	 * Don't count loaned bufs as in flight dirty data to prevent long
6189	 * network delays from blocking transactions that are ready to be
6190	 * assigned to a txg.
6191	 */
6192
6193	/* assert that it has not wrapped around */
6194	ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6195
6196	anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6197	    arc_loaned_bytes), 0);
6198
6199	/*
6200	 * Writes will, almost always, require additional memory allocations
6201	 * in order to compress/encrypt/etc the data.  We therefore need to
6202	 * make sure that there is sufficient available memory for this.
6203	 */
6204	error = arc_memory_throttle(reserve, txg);
6205	if (error != 0)
6206		return (error);
6207
6208	/*
6209	 * Throttle writes when the amount of dirty data in the cache
6210	 * gets too large.  We try to keep the cache less than half full
6211	 * of dirty blocks so that our sync times don't grow too large.
6212	 * Note: if two requests come in concurrently, we might let them
6213	 * both succeed, when one of them should fail.  Not a huge deal.
6214	 */
6215
6216	if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6217	    anon_size > arc_c / 4) {
6218		uint64_t meta_esize =
6219		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6220		uint64_t data_esize =
6221		    refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6222		dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6223		    "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6224		    arc_tempreserve >> 10, meta_esize >> 10,
6225		    data_esize >> 10, reserve >> 10, arc_c >> 10);
6226		return (SET_ERROR(ERESTART));
6227	}
6228	atomic_add_64(&arc_tempreserve, reserve);
6229	return (0);
6230}
6231
6232static void
6233arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6234    kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6235{
6236	size->value.ui64 = refcount_count(&state->arcs_size);
6237	evict_data->value.ui64 =
6238	    refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6239	evict_metadata->value.ui64 =
6240	    refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6241}
6242
6243static int
6244arc_kstat_update(kstat_t *ksp, int rw)
6245{
6246	arc_stats_t *as = ksp->ks_data;
6247
6248	if (rw == KSTAT_WRITE) {
6249		return (EACCES);
6250	} else {
6251		arc_kstat_update_state(arc_anon,
6252		    &as->arcstat_anon_size,
6253		    &as->arcstat_anon_evictable_data,
6254		    &as->arcstat_anon_evictable_metadata);
6255		arc_kstat_update_state(arc_mru,
6256		    &as->arcstat_mru_size,
6257		    &as->arcstat_mru_evictable_data,
6258		    &as->arcstat_mru_evictable_metadata);
6259		arc_kstat_update_state(arc_mru_ghost,
6260		    &as->arcstat_mru_ghost_size,
6261		    &as->arcstat_mru_ghost_evictable_data,
6262		    &as->arcstat_mru_ghost_evictable_metadata);
6263		arc_kstat_update_state(arc_mfu,
6264		    &as->arcstat_mfu_size,
6265		    &as->arcstat_mfu_evictable_data,
6266		    &as->arcstat_mfu_evictable_metadata);
6267		arc_kstat_update_state(arc_mfu_ghost,
6268		    &as->arcstat_mfu_ghost_size,
6269		    &as->arcstat_mfu_ghost_evictable_data,
6270		    &as->arcstat_mfu_ghost_evictable_metadata);
6271	}
6272
6273	return (0);
6274}
6275
6276/*
6277 * This function *must* return indices evenly distributed between all
6278 * sublists of the multilist. This is needed due to how the ARC eviction
6279 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6280 * distributed between all sublists and uses this assumption when
6281 * deciding which sublist to evict from and how much to evict from it.
6282 */
6283unsigned int
6284arc_state_multilist_index_func(multilist_t *ml, void *obj)
6285{
6286	arc_buf_hdr_t *hdr = obj;
6287
6288	/*
6289	 * We rely on b_dva to generate evenly distributed index
6290	 * numbers using buf_hash below. So, as an added precaution,
6291	 * let's make sure we never add empty buffers to the arc lists.
6292	 */
6293	ASSERT(!HDR_EMPTY(hdr));
6294
6295	/*
6296	 * The assumption here, is the hash value for a given
6297	 * arc_buf_hdr_t will remain constant throughout it's lifetime
6298	 * (i.e. it's b_spa, b_dva, and b_birth fields don't change).
6299	 * Thus, we don't need to store the header's sublist index
6300	 * on insertion, as this index can be recalculated on removal.
6301	 *
6302	 * Also, the low order bits of the hash value are thought to be
6303	 * distributed evenly. Otherwise, in the case that the multilist
6304	 * has a power of two number of sublists, each sublists' usage
6305	 * would not be evenly distributed.
6306	 */
6307	return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6308	    multilist_get_num_sublists(ml));
6309}
6310
6311#ifdef _KERNEL
6312static eventhandler_tag arc_event_lowmem = NULL;
6313
6314static void
6315arc_lowmem(void *arg __unused, int howto __unused)
6316{
6317
6318	mutex_enter(&arc_reclaim_lock);
6319	DTRACE_PROBE1(arc__needfree, int64_t, ((int64_t)freemem - zfs_arc_free_target) * PAGESIZE);
6320	cv_signal(&arc_reclaim_thread_cv);
6321
6322	/*
6323	 * It is unsafe to block here in arbitrary threads, because we can come
6324	 * here from ARC itself and may hold ARC locks and thus risk a deadlock
6325	 * with ARC reclaim thread.
6326	 */
6327	if (curproc == pageproc)
6328		(void) cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
6329	mutex_exit(&arc_reclaim_lock);
6330}
6331#endif
6332
6333static void
6334arc_state_init(void)
6335{
6336	arc_anon = &ARC_anon;
6337	arc_mru = &ARC_mru;
6338	arc_mru_ghost = &ARC_mru_ghost;
6339	arc_mfu = &ARC_mfu;
6340	arc_mfu_ghost = &ARC_mfu_ghost;
6341	arc_l2c_only = &ARC_l2c_only;
6342
6343	arc_mru->arcs_list[ARC_BUFC_METADATA] =
6344	    multilist_create(sizeof (arc_buf_hdr_t),
6345	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6346	    arc_state_multilist_index_func);
6347	arc_mru->arcs_list[ARC_BUFC_DATA] =
6348	    multilist_create(sizeof (arc_buf_hdr_t),
6349	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6350	    arc_state_multilist_index_func);
6351	arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6352	    multilist_create(sizeof (arc_buf_hdr_t),
6353	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6354	    arc_state_multilist_index_func);
6355	arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6356	    multilist_create(sizeof (arc_buf_hdr_t),
6357	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6358	    arc_state_multilist_index_func);
6359	arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6360	    multilist_create(sizeof (arc_buf_hdr_t),
6361	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6362	    arc_state_multilist_index_func);
6363	arc_mfu->arcs_list[ARC_BUFC_DATA] =
6364	    multilist_create(sizeof (arc_buf_hdr_t),
6365	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6366	    arc_state_multilist_index_func);
6367	arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6368	    multilist_create(sizeof (arc_buf_hdr_t),
6369	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6370	    arc_state_multilist_index_func);
6371	arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6372	    multilist_create(sizeof (arc_buf_hdr_t),
6373	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6374	    arc_state_multilist_index_func);
6375	arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6376	    multilist_create(sizeof (arc_buf_hdr_t),
6377	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6378	    arc_state_multilist_index_func);
6379	arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6380	    multilist_create(sizeof (arc_buf_hdr_t),
6381	    offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6382	    arc_state_multilist_index_func);
6383
6384	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6385	refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6386	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6387	refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6388	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6389	refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6390	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6391	refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6392	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6393	refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6394	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6395	refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6396
6397	refcount_create(&arc_anon->arcs_size);
6398	refcount_create(&arc_mru->arcs_size);
6399	refcount_create(&arc_mru_ghost->arcs_size);
6400	refcount_create(&arc_mfu->arcs_size);
6401	refcount_create(&arc_mfu_ghost->arcs_size);
6402	refcount_create(&arc_l2c_only->arcs_size);
6403}
6404
6405static void
6406arc_state_fini(void)
6407{
6408	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6409	refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6410	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6411	refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6412	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6413	refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6414	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6415	refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6416	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6417	refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6418	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6419	refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6420
6421	refcount_destroy(&arc_anon->arcs_size);
6422	refcount_destroy(&arc_mru->arcs_size);
6423	refcount_destroy(&arc_mru_ghost->arcs_size);
6424	refcount_destroy(&arc_mfu->arcs_size);
6425	refcount_destroy(&arc_mfu_ghost->arcs_size);
6426	refcount_destroy(&arc_l2c_only->arcs_size);
6427
6428	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6429	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6430	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6431	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6432	multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6433	multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6434	multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6435	multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6436}
6437
6438uint64_t
6439arc_max_bytes(void)
6440{
6441	return (arc_c_max);
6442}
6443
6444void
6445arc_init(void)
6446{
6447	int i, prefetch_tunable_set = 0;
6448
6449	/*
6450	 * allmem is "all memory that we could possibly use".
6451	 */
6452#ifdef illumos
6453#ifdef _KERNEL
6454	uint64_t allmem = ptob(physmem - swapfs_minfree);
6455#else
6456	uint64_t allmem = (physmem * PAGESIZE) / 2;
6457#endif
6458#else
6459	uint64_t allmem = kmem_size();
6460#endif
6461
6462
6463	mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6464	cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6465	cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6466
6467	mutex_init(&arc_dnlc_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
6468	cv_init(&arc_dnlc_evicts_cv, NULL, CV_DEFAULT, NULL);
6469
6470	/* Convert seconds to clock ticks */
6471	arc_min_prefetch_lifespan = 1 * hz;
6472
6473	/* set min cache to 1/32 of all memory, or arc_abs_min, whichever is more */
6474	arc_c_min = MAX(allmem / 32, arc_abs_min);
6475	/* set max to 5/8 of all memory, or all but 1GB, whichever is more */
6476	if (allmem >= 1 << 30)
6477		arc_c_max = allmem - (1 << 30);
6478	else
6479		arc_c_max = arc_c_min;
6480	arc_c_max = MAX(allmem * 5 / 8, arc_c_max);
6481
6482	/*
6483	 * In userland, there's only the memory pressure that we artificially
6484	 * create (see arc_available_memory()).  Don't let arc_c get too
6485	 * small, because it can cause transactions to be larger than
6486	 * arc_c, causing arc_tempreserve_space() to fail.
6487	 */
6488#ifndef _KERNEL
6489	arc_c_min = arc_c_max / 2;
6490#endif
6491
6492#ifdef _KERNEL
6493	/*
6494	 * Allow the tunables to override our calculations if they are
6495	 * reasonable.
6496	 */
6497	if (zfs_arc_max > arc_abs_min && zfs_arc_max < allmem) {
6498		arc_c_max = zfs_arc_max;
6499		arc_c_min = MIN(arc_c_min, arc_c_max);
6500	}
6501	if (zfs_arc_min > arc_abs_min && zfs_arc_min <= arc_c_max)
6502		arc_c_min = zfs_arc_min;
6503#endif
6504
6505	arc_c = arc_c_max;
6506	arc_p = (arc_c >> 1);
6507	arc_size = 0;
6508
6509	/* limit meta-data to 1/4 of the arc capacity */
6510	arc_meta_limit = arc_c_max / 4;
6511
6512#ifdef _KERNEL
6513	/*
6514	 * Metadata is stored in the kernel's heap.  Don't let us
6515	 * use more than half the heap for the ARC.
6516	 */
6517	arc_meta_limit = MIN(arc_meta_limit,
6518	    vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 2);
6519#endif
6520
6521	/* Allow the tunable to override if it is reasonable */
6522	if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
6523		arc_meta_limit = zfs_arc_meta_limit;
6524
6525	if (arc_c_min < arc_meta_limit / 2 && zfs_arc_min == 0)
6526		arc_c_min = arc_meta_limit / 2;
6527
6528	if (zfs_arc_meta_min > 0) {
6529		arc_meta_min = zfs_arc_meta_min;
6530	} else {
6531		arc_meta_min = arc_c_min / 2;
6532	}
6533
6534	if (zfs_arc_grow_retry > 0)
6535		arc_grow_retry = zfs_arc_grow_retry;
6536
6537	if (zfs_arc_shrink_shift > 0)
6538		arc_shrink_shift = zfs_arc_shrink_shift;
6539
6540	if (zfs_arc_no_grow_shift > 0)
6541		arc_no_grow_shift = zfs_arc_no_grow_shift;
6542	/*
6543	 * Ensure that arc_no_grow_shift is less than arc_shrink_shift.
6544	 */
6545	if (arc_no_grow_shift >= arc_shrink_shift)
6546		arc_no_grow_shift = arc_shrink_shift - 1;
6547
6548	if (zfs_arc_p_min_shift > 0)
6549		arc_p_min_shift = zfs_arc_p_min_shift;
6550
6551	/* if kmem_flags are set, lets try to use less memory */
6552	if (kmem_debugging())
6553		arc_c = arc_c / 2;
6554	if (arc_c < arc_c_min)
6555		arc_c = arc_c_min;
6556
6557	zfs_arc_min = arc_c_min;
6558	zfs_arc_max = arc_c_max;
6559
6560	arc_state_init();
6561	buf_init();
6562
6563	arc_reclaim_thread_exit = B_FALSE;
6564	arc_dnlc_evicts_thread_exit = FALSE;
6565
6566	arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6567	    sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6568
6569	if (arc_ksp != NULL) {
6570		arc_ksp->ks_data = &arc_stats;
6571		arc_ksp->ks_update = arc_kstat_update;
6572		kstat_install(arc_ksp);
6573	}
6574
6575	(void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6576	    TS_RUN, minclsyspri);
6577
6578#ifdef _KERNEL
6579	arc_event_lowmem = EVENTHANDLER_REGISTER(vm_lowmem, arc_lowmem, NULL,
6580	    EVENTHANDLER_PRI_FIRST);
6581#endif
6582
6583	(void) thread_create(NULL, 0, arc_dnlc_evicts_thread, NULL, 0, &p0,
6584	    TS_RUN, minclsyspri);
6585
6586	arc_dead = B_FALSE;
6587	arc_warm = B_FALSE;
6588
6589	/*
6590	 * Calculate maximum amount of dirty data per pool.
6591	 *
6592	 * If it has been set by /etc/system, take that.
6593	 * Otherwise, use a percentage of physical memory defined by
6594	 * zfs_dirty_data_max_percent (default 10%) with a cap at
6595	 * zfs_dirty_data_max_max (default 4GB).
6596	 */
6597	if (zfs_dirty_data_max == 0) {
6598		zfs_dirty_data_max = ptob(physmem) *
6599		    zfs_dirty_data_max_percent / 100;
6600		zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6601		    zfs_dirty_data_max_max);
6602	}
6603
6604#ifdef _KERNEL
6605	if (TUNABLE_INT_FETCH("vfs.zfs.prefetch_disable", &zfs_prefetch_disable))
6606		prefetch_tunable_set = 1;
6607
6608#ifdef __i386__
6609	if (prefetch_tunable_set == 0) {
6610		printf("ZFS NOTICE: Prefetch is disabled by default on i386 "
6611		    "-- to enable,\n");
6612		printf("            add \"vfs.zfs.prefetch_disable=0\" "
6613		    "to /boot/loader.conf.\n");
6614		zfs_prefetch_disable = 1;
6615	}
6616#else
6617	if ((((uint64_t)physmem * PAGESIZE) < (1ULL << 32)) &&
6618	    prefetch_tunable_set == 0) {
6619		printf("ZFS NOTICE: Prefetch is disabled by default if less "
6620		    "than 4GB of RAM is present;\n"
6621		    "            to enable, add \"vfs.zfs.prefetch_disable=0\" "
6622		    "to /boot/loader.conf.\n");
6623		zfs_prefetch_disable = 1;
6624	}
6625#endif
6626	/* Warn about ZFS memory and address space requirements. */
6627	if (((uint64_t)physmem * PAGESIZE) < (256 + 128 + 64) * (1 << 20)) {
6628		printf("ZFS WARNING: Recommended minimum RAM size is 512MB; "
6629		    "expect unstable behavior.\n");
6630	}
6631	if (allmem < 512 * (1 << 20)) {
6632		printf("ZFS WARNING: Recommended minimum kmem_size is 512MB; "
6633		    "expect unstable behavior.\n");
6634		printf("             Consider tuning vm.kmem_size and "
6635		    "vm.kmem_size_max\n");
6636		printf("             in /boot/loader.conf.\n");
6637	}
6638#endif
6639}
6640
6641void
6642arc_fini(void)
6643{
6644#ifdef _KERNEL
6645	if (arc_event_lowmem != NULL)
6646		EVENTHANDLER_DEREGISTER(vm_lowmem, arc_event_lowmem);
6647#endif
6648
6649	mutex_enter(&arc_reclaim_lock);
6650	arc_reclaim_thread_exit = B_TRUE;
6651	/*
6652	 * The reclaim thread will set arc_reclaim_thread_exit back to
6653	 * B_FALSE when it is finished exiting; we're waiting for that.
6654	 */
6655	while (arc_reclaim_thread_exit) {
6656		cv_signal(&arc_reclaim_thread_cv);
6657		cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6658	}
6659	mutex_exit(&arc_reclaim_lock);
6660
6661	/* Use B_TRUE to ensure *all* buffers are evicted */
6662	arc_flush(NULL, B_TRUE);
6663
6664	mutex_enter(&arc_dnlc_evicts_lock);
6665	arc_dnlc_evicts_thread_exit = TRUE;
6666	/*
6667	 * The user evicts thread will set arc_user_evicts_thread_exit
6668	 * to FALSE when it is finished exiting; we're waiting for that.
6669	 */
6670	while (arc_dnlc_evicts_thread_exit) {
6671		cv_signal(&arc_dnlc_evicts_cv);
6672		cv_wait(&arc_dnlc_evicts_cv, &arc_dnlc_evicts_lock);
6673	}
6674	mutex_exit(&arc_dnlc_evicts_lock);
6675
6676	arc_dead = B_TRUE;
6677
6678	if (arc_ksp != NULL) {
6679		kstat_delete(arc_ksp);
6680		arc_ksp = NULL;
6681	}
6682
6683	mutex_destroy(&arc_reclaim_lock);
6684	cv_destroy(&arc_reclaim_thread_cv);
6685	cv_destroy(&arc_reclaim_waiters_cv);
6686
6687	mutex_destroy(&arc_dnlc_evicts_lock);
6688	cv_destroy(&arc_dnlc_evicts_cv);
6689
6690	arc_state_fini();
6691	buf_fini();
6692
6693	ASSERT0(arc_loaned_bytes);
6694}
6695
6696/*
6697 * Level 2 ARC
6698 *
6699 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6700 * It uses dedicated storage devices to hold cached data, which are populated
6701 * using large infrequent writes.  The main role of this cache is to boost
6702 * the performance of random read workloads.  The intended L2ARC devices
6703 * include short-stroked disks, solid state disks, and other media with
6704 * substantially faster read latency than disk.
6705 *
6706 *                 +-----------------------+
6707 *                 |         ARC           |
6708 *                 +-----------------------+
6709 *                    |         ^     ^
6710 *                    |         |     |
6711 *      l2arc_feed_thread()    arc_read()
6712 *                    |         |     |
6713 *                    |  l2arc read   |
6714 *                    V         |     |
6715 *               +---------------+    |
6716 *               |     L2ARC     |    |
6717 *               +---------------+    |
6718 *                   |    ^           |
6719 *          l2arc_write() |           |
6720 *                   |    |           |
6721 *                   V    |           |
6722 *                 +-------+      +-------+
6723 *                 | vdev  |      | vdev  |
6724 *                 | cache |      | cache |
6725 *                 +-------+      +-------+
6726 *                 +=========+     .-----.
6727 *                 :  L2ARC  :    |-_____-|
6728 *                 : devices :    | Disks |
6729 *                 +=========+    `-_____-'
6730 *
6731 * Read requests are satisfied from the following sources, in order:
6732 *
6733 *	1) ARC
6734 *	2) vdev cache of L2ARC devices
6735 *	3) L2ARC devices
6736 *	4) vdev cache of disks
6737 *	5) disks
6738 *
6739 * Some L2ARC device types exhibit extremely slow write performance.
6740 * To accommodate for this there are some significant differences between
6741 * the L2ARC and traditional cache design:
6742 *
6743 * 1. There is no eviction path from the ARC to the L2ARC.  Evictions from
6744 * the ARC behave as usual, freeing buffers and placing headers on ghost
6745 * lists.  The ARC does not send buffers to the L2ARC during eviction as
6746 * this would add inflated write latencies for all ARC memory pressure.
6747 *
6748 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6749 * It does this by periodically scanning buffers from the eviction-end of
6750 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6751 * not already there. It scans until a headroom of buffers is satisfied,
6752 * which itself is a buffer for ARC eviction. If a compressible buffer is
6753 * found during scanning and selected for writing to an L2ARC device, we
6754 * temporarily boost scanning headroom during the next scan cycle to make
6755 * sure we adapt to compression effects (which might significantly reduce
6756 * the data volume we write to L2ARC). The thread that does this is
6757 * l2arc_feed_thread(), illustrated below; example sizes are included to
6758 * provide a better sense of ratio than this diagram:
6759 *
6760 *	       head -->                        tail
6761 *	        +---------------------+----------+
6762 *	ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->.   # already on L2ARC
6763 *	        +---------------------+----------+   |   o L2ARC eligible
6764 *	ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->|   : ARC buffer
6765 *	        +---------------------+----------+   |
6766 *	             15.9 Gbytes      ^ 32 Mbytes    |
6767 *	                           headroom          |
6768 *	                                      l2arc_feed_thread()
6769 *	                                             |
6770 *	                 l2arc write hand <--[oooo]--'
6771 *	                         |           8 Mbyte
6772 *	                         |          write max
6773 *	                         V
6774 *		  +==============================+
6775 *	L2ARC dev |####|#|###|###|    |####| ... |
6776 *	          +==============================+
6777 *	                     32 Gbytes
6778 *
6779 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6780 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6781 * needed to, potentially wasting L2ARC device bandwidth and storage.  It is
6782 * safe to say that this is an uncommon case, since buffers at the end of
6783 * the ARC lists have moved there due to inactivity.
6784 *
6785 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6786 * then the L2ARC simply misses copying some buffers.  This serves as a
6787 * pressure valve to prevent heavy read workloads from both stalling the ARC
6788 * with waits and clogging the L2ARC with writes.  This also helps prevent
6789 * the potential for the L2ARC to churn if it attempts to cache content too
6790 * quickly, such as during backups of the entire pool.
6791 *
6792 * 5. After system boot and before the ARC has filled main memory, there are
6793 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6794 * lists can remain mostly static.  Instead of searching from tail of these
6795 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6796 * for eligible buffers, greatly increasing its chance of finding them.
6797 *
6798 * The L2ARC device write speed is also boosted during this time so that
6799 * the L2ARC warms up faster.  Since there have been no ARC evictions yet,
6800 * there are no L2ARC reads, and no fear of degrading read performance
6801 * through increased writes.
6802 *
6803 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6804 * the vdev queue can aggregate them into larger and fewer writes.  Each
6805 * device is written to in a rotor fashion, sweeping writes through
6806 * available space then repeating.
6807 *
6808 * 7. The L2ARC does not store dirty content.  It never needs to flush
6809 * write buffers back to disk based storage.
6810 *
6811 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6812 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6813 *
6814 * The performance of the L2ARC can be tweaked by a number of tunables, which
6815 * may be necessary for different workloads:
6816 *
6817 *	l2arc_write_max		max write bytes per interval
6818 *	l2arc_write_boost	extra write bytes during device warmup
6819 *	l2arc_noprefetch	skip caching prefetched buffers
6820 *	l2arc_headroom		number of max device writes to precache
6821 *	l2arc_headroom_boost	when we find compressed buffers during ARC
6822 *				scanning, we multiply headroom by this
6823 *				percentage factor for the next scan cycle,
6824 *				since more compressed buffers are likely to
6825 *				be present
6826 *	l2arc_feed_secs		seconds between L2ARC writing
6827 *
6828 * Tunables may be removed or added as future performance improvements are
6829 * integrated, and also may become zpool properties.
6830 *
6831 * There are three key functions that control how the L2ARC warms up:
6832 *
6833 *	l2arc_write_eligible()	check if a buffer is eligible to cache
6834 *	l2arc_write_size()	calculate how much to write
6835 *	l2arc_write_interval()	calculate sleep delay between writes
6836 *
6837 * These three functions determine what to write, how much, and how quickly
6838 * to send writes.
6839 */
6840
6841static boolean_t
6842l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6843{
6844	/*
6845	 * A buffer is *not* eligible for the L2ARC if it:
6846	 * 1. belongs to a different spa.
6847	 * 2. is already cached on the L2ARC.
6848	 * 3. has an I/O in progress (it may be an incomplete read).
6849	 * 4. is flagged not eligible (zfs property).
6850	 */
6851	if (hdr->b_spa != spa_guid) {
6852		ARCSTAT_BUMP(arcstat_l2_write_spa_mismatch);
6853		return (B_FALSE);
6854	}
6855	if (HDR_HAS_L2HDR(hdr)) {
6856		ARCSTAT_BUMP(arcstat_l2_write_in_l2);
6857		return (B_FALSE);
6858	}
6859	if (HDR_IO_IN_PROGRESS(hdr)) {
6860		ARCSTAT_BUMP(arcstat_l2_write_hdr_io_in_progress);
6861		return (B_FALSE);
6862	}
6863	if (!HDR_L2CACHE(hdr)) {
6864		ARCSTAT_BUMP(arcstat_l2_write_not_cacheable);
6865		return (B_FALSE);
6866	}
6867
6868	return (B_TRUE);
6869}
6870
6871static uint64_t
6872l2arc_write_size(void)
6873{
6874	uint64_t size;
6875
6876	/*
6877	 * Make sure our globals have meaningful values in case the user
6878	 * altered them.
6879	 */
6880	size = l2arc_write_max;
6881	if (size == 0) {
6882		cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6883		    "be greater than zero, resetting it to the default (%d)",
6884		    L2ARC_WRITE_SIZE);
6885		size = l2arc_write_max = L2ARC_WRITE_SIZE;
6886	}
6887
6888	if (arc_warm == B_FALSE)
6889		size += l2arc_write_boost;
6890
6891	return (size);
6892
6893}
6894
6895static clock_t
6896l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6897{
6898	clock_t interval, next, now;
6899
6900	/*
6901	 * If the ARC lists are busy, increase our write rate; if the
6902	 * lists are stale, idle back.  This is achieved by checking
6903	 * how much we previously wrote - if it was more than half of
6904	 * what we wanted, schedule the next write much sooner.
6905	 */
6906	if (l2arc_feed_again && wrote > (wanted / 2))
6907		interval = (hz * l2arc_feed_min_ms) / 1000;
6908	else
6909		interval = hz * l2arc_feed_secs;
6910
6911	now = ddi_get_lbolt();
6912	next = MAX(now, MIN(now + interval, began + interval));
6913
6914	return (next);
6915}
6916
6917/*
6918 * Cycle through L2ARC devices.  This is how L2ARC load balances.
6919 * If a device is returned, this also returns holding the spa config lock.
6920 */
6921static l2arc_dev_t *
6922l2arc_dev_get_next(void)
6923{
6924	l2arc_dev_t *first, *next = NULL;
6925
6926	/*
6927	 * Lock out the removal of spas (spa_namespace_lock), then removal
6928	 * of cache devices (l2arc_dev_mtx).  Once a device has been selected,
6929	 * both locks will be dropped and a spa config lock held instead.
6930	 */
6931	mutex_enter(&spa_namespace_lock);
6932	mutex_enter(&l2arc_dev_mtx);
6933
6934	/* if there are no vdevs, there is nothing to do */
6935	if (l2arc_ndev == 0)
6936		goto out;
6937
6938	first = NULL;
6939	next = l2arc_dev_last;
6940	do {
6941		/* loop around the list looking for a non-faulted vdev */
6942		if (next == NULL) {
6943			next = list_head(l2arc_dev_list);
6944		} else {
6945			next = list_next(l2arc_dev_list, next);
6946			if (next == NULL)
6947				next = list_head(l2arc_dev_list);
6948		}
6949
6950		/* if we have come back to the start, bail out */
6951		if (first == NULL)
6952			first = next;
6953		else if (next == first)
6954			break;
6955
6956	} while (vdev_is_dead(next->l2ad_vdev));
6957
6958	/* if we were unable to find any usable vdevs, return NULL */
6959	if (vdev_is_dead(next->l2ad_vdev))
6960		next = NULL;
6961
6962	l2arc_dev_last = next;
6963
6964out:
6965	mutex_exit(&l2arc_dev_mtx);
6966
6967	/*
6968	 * Grab the config lock to prevent the 'next' device from being
6969	 * removed while we are writing to it.
6970	 */
6971	if (next != NULL)
6972		spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6973	mutex_exit(&spa_namespace_lock);
6974
6975	return (next);
6976}
6977
6978/*
6979 * Free buffers that were tagged for destruction.
6980 */
6981static void
6982l2arc_do_free_on_write()
6983{
6984	list_t *buflist;
6985	l2arc_data_free_t *df, *df_prev;
6986
6987	mutex_enter(&l2arc_free_on_write_mtx);
6988	buflist = l2arc_free_on_write;
6989
6990	for (df = list_tail(buflist); df; df = df_prev) {
6991		df_prev = list_prev(buflist, df);
6992		ASSERT3P(df->l2df_abd, !=, NULL);
6993		abd_free(df->l2df_abd);
6994		list_remove(buflist, df);
6995		kmem_free(df, sizeof (l2arc_data_free_t));
6996	}
6997
6998	mutex_exit(&l2arc_free_on_write_mtx);
6999}
7000
7001/*
7002 * A write to a cache device has completed.  Update all headers to allow
7003 * reads from these buffers to begin.
7004 */
7005static void
7006l2arc_write_done(zio_t *zio)
7007{
7008	l2arc_write_callback_t *cb;
7009	l2arc_dev_t *dev;
7010	list_t *buflist;
7011	arc_buf_hdr_t *head, *hdr, *hdr_prev;
7012	kmutex_t *hash_lock;
7013	int64_t bytes_dropped = 0;
7014
7015	cb = zio->io_private;
7016	ASSERT3P(cb, !=, NULL);
7017	dev = cb->l2wcb_dev;
7018	ASSERT3P(dev, !=, NULL);
7019	head = cb->l2wcb_head;
7020	ASSERT3P(head, !=, NULL);
7021	buflist = &dev->l2ad_buflist;
7022	ASSERT3P(buflist, !=, NULL);
7023	DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7024	    l2arc_write_callback_t *, cb);
7025
7026	if (zio->io_error != 0)
7027		ARCSTAT_BUMP(arcstat_l2_writes_error);
7028
7029	/*
7030	 * All writes completed, or an error was hit.
7031	 */
7032top:
7033	mutex_enter(&dev->l2ad_mtx);
7034	for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7035		hdr_prev = list_prev(buflist, hdr);
7036
7037		hash_lock = HDR_LOCK(hdr);
7038
7039		/*
7040		 * We cannot use mutex_enter or else we can deadlock
7041		 * with l2arc_write_buffers (due to swapping the order
7042		 * the hash lock and l2ad_mtx are taken).
7043		 */
7044		if (!mutex_tryenter(hash_lock)) {
7045			/*
7046			 * Missed the hash lock. We must retry so we
7047			 * don't leave the ARC_FLAG_L2_WRITING bit set.
7048			 */
7049			ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7050
7051			/*
7052			 * We don't want to rescan the headers we've
7053			 * already marked as having been written out, so
7054			 * we reinsert the head node so we can pick up
7055			 * where we left off.
7056			 */
7057			list_remove(buflist, head);
7058			list_insert_after(buflist, hdr, head);
7059
7060			mutex_exit(&dev->l2ad_mtx);
7061
7062			/*
7063			 * We wait for the hash lock to become available
7064			 * to try and prevent busy waiting, and increase
7065			 * the chance we'll be able to acquire the lock
7066			 * the next time around.
7067			 */
7068			mutex_enter(hash_lock);
7069			mutex_exit(hash_lock);
7070			goto top;
7071		}
7072
7073		/*
7074		 * We could not have been moved into the arc_l2c_only
7075		 * state while in-flight due to our ARC_FLAG_L2_WRITING
7076		 * bit being set. Let's just ensure that's being enforced.
7077		 */
7078		ASSERT(HDR_HAS_L1HDR(hdr));
7079
7080		if (zio->io_error != 0) {
7081			/*
7082			 * Error - drop L2ARC entry.
7083			 */
7084			list_remove(buflist, hdr);
7085			l2arc_trim(hdr);
7086			arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7087
7088			ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7089			ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7090
7091			bytes_dropped += arc_hdr_size(hdr);
7092			(void) refcount_remove_many(&dev->l2ad_alloc,
7093			    arc_hdr_size(hdr), hdr);
7094		}
7095
7096		/*
7097		 * Allow ARC to begin reads and ghost list evictions to
7098		 * this L2ARC entry.
7099		 */
7100		arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7101
7102		mutex_exit(hash_lock);
7103	}
7104
7105	atomic_inc_64(&l2arc_writes_done);
7106	list_remove(buflist, head);
7107	ASSERT(!HDR_HAS_L1HDR(head));
7108	kmem_cache_free(hdr_l2only_cache, head);
7109	mutex_exit(&dev->l2ad_mtx);
7110
7111	vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7112
7113	l2arc_do_free_on_write();
7114
7115	kmem_free(cb, sizeof (l2arc_write_callback_t));
7116}
7117
7118/*
7119 * A read to a cache device completed.  Validate buffer contents before
7120 * handing over to the regular ARC routines.
7121 */
7122static void
7123l2arc_read_done(zio_t *zio)
7124{
7125	l2arc_read_callback_t *cb;
7126	arc_buf_hdr_t *hdr;
7127	kmutex_t *hash_lock;
7128	boolean_t valid_cksum;
7129
7130	ASSERT3P(zio->io_vd, !=, NULL);
7131	ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7132
7133	spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7134
7135	cb = zio->io_private;
7136	ASSERT3P(cb, !=, NULL);
7137	hdr = cb->l2rcb_hdr;
7138	ASSERT3P(hdr, !=, NULL);
7139
7140	hash_lock = HDR_LOCK(hdr);
7141	mutex_enter(hash_lock);
7142	ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7143
7144	/*
7145	 * If the data was read into a temporary buffer,
7146	 * move it and free the buffer.
7147	 */
7148	if (cb->l2rcb_abd != NULL) {
7149		ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7150		if (zio->io_error == 0) {
7151			abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7152			    arc_hdr_size(hdr));
7153		}
7154
7155		/*
7156		 * The following must be done regardless of whether
7157		 * there was an error:
7158		 * - free the temporary buffer
7159		 * - point zio to the real ARC buffer
7160		 * - set zio size accordingly
7161		 * These are required because zio is either re-used for
7162		 * an I/O of the block in the case of the error
7163		 * or the zio is passed to arc_read_done() and it
7164		 * needs real data.
7165		 */
7166		abd_free(cb->l2rcb_abd);
7167		zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7168		zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7169	}
7170
7171	ASSERT3P(zio->io_abd, !=, NULL);
7172
7173	/*
7174	 * Check this survived the L2ARC journey.
7175	 */
7176	ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7177	zio->io_bp_copy = cb->l2rcb_bp;	/* XXX fix in L2ARC 2.0	*/
7178	zio->io_bp = &zio->io_bp_copy;	/* XXX fix in L2ARC 2.0	*/
7179
7180	valid_cksum = arc_cksum_is_equal(hdr, zio);
7181	if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7182		mutex_exit(hash_lock);
7183		zio->io_private = hdr;
7184		arc_read_done(zio);
7185	} else {
7186		mutex_exit(hash_lock);
7187		/*
7188		 * Buffer didn't survive caching.  Increment stats and
7189		 * reissue to the original storage device.
7190		 */
7191		if (zio->io_error != 0) {
7192			ARCSTAT_BUMP(arcstat_l2_io_error);
7193		} else {
7194			zio->io_error = SET_ERROR(EIO);
7195		}
7196		if (!valid_cksum)
7197			ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7198
7199		/*
7200		 * If there's no waiter, issue an async i/o to the primary
7201		 * storage now.  If there *is* a waiter, the caller must
7202		 * issue the i/o in a context where it's OK to block.
7203		 */
7204		if (zio->io_waiter == NULL) {
7205			zio_t *pio = zio_unique_parent(zio);
7206
7207			ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7208
7209			zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7210			    hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7211			    hdr, zio->io_priority, cb->l2rcb_flags,
7212			    &cb->l2rcb_zb));
7213		}
7214	}
7215
7216	kmem_free(cb, sizeof (l2arc_read_callback_t));
7217}
7218
7219/*
7220 * This is the list priority from which the L2ARC will search for pages to
7221 * cache.  This is used within loops (0..3) to cycle through lists in the
7222 * desired order.  This order can have a significant effect on cache
7223 * performance.
7224 *
7225 * Currently the metadata lists are hit first, MFU then MRU, followed by
7226 * the data lists.  This function returns a locked list, and also returns
7227 * the lock pointer.
7228 */
7229static multilist_sublist_t *
7230l2arc_sublist_lock(int list_num)
7231{
7232	multilist_t *ml = NULL;
7233	unsigned int idx;
7234
7235	ASSERT(list_num >= 0 && list_num <= 3);
7236
7237	switch (list_num) {
7238	case 0:
7239		ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7240		break;
7241	case 1:
7242		ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7243		break;
7244	case 2:
7245		ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7246		break;
7247	case 3:
7248		ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7249		break;
7250	}
7251
7252	/*
7253	 * Return a randomly-selected sublist. This is acceptable
7254	 * because the caller feeds only a little bit of data for each
7255	 * call (8MB). Subsequent calls will result in different
7256	 * sublists being selected.
7257	 */
7258	idx = multilist_get_random_index(ml);
7259	return (multilist_sublist_lock(ml, idx));
7260}
7261
7262/*
7263 * Evict buffers from the device write hand to the distance specified in
7264 * bytes.  This distance may span populated buffers, it may span nothing.
7265 * This is clearing a region on the L2ARC device ready for writing.
7266 * If the 'all' boolean is set, every buffer is evicted.
7267 */
7268static void
7269l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7270{
7271	list_t *buflist;
7272	arc_buf_hdr_t *hdr, *hdr_prev;
7273	kmutex_t *hash_lock;
7274	uint64_t taddr;
7275
7276	buflist = &dev->l2ad_buflist;
7277
7278	if (!all && dev->l2ad_first) {
7279		/*
7280		 * This is the first sweep through the device.  There is
7281		 * nothing to evict.
7282		 */
7283		return;
7284	}
7285
7286	if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7287		/*
7288		 * When nearing the end of the device, evict to the end
7289		 * before the device write hand jumps to the start.
7290		 */
7291		taddr = dev->l2ad_end;
7292	} else {
7293		taddr = dev->l2ad_hand + distance;
7294	}
7295	DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7296	    uint64_t, taddr, boolean_t, all);
7297
7298top:
7299	mutex_enter(&dev->l2ad_mtx);
7300	for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7301		hdr_prev = list_prev(buflist, hdr);
7302
7303		hash_lock = HDR_LOCK(hdr);
7304
7305		/*
7306		 * We cannot use mutex_enter or else we can deadlock
7307		 * with l2arc_write_buffers (due to swapping the order
7308		 * the hash lock and l2ad_mtx are taken).
7309		 */
7310		if (!mutex_tryenter(hash_lock)) {
7311			/*
7312			 * Missed the hash lock.  Retry.
7313			 */
7314			ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7315			mutex_exit(&dev->l2ad_mtx);
7316			mutex_enter(hash_lock);
7317			mutex_exit(hash_lock);
7318			goto top;
7319		}
7320
7321		/*
7322		 * A header can't be on this list if it doesn't have L2 header.
7323		 */
7324		ASSERT(HDR_HAS_L2HDR(hdr));
7325
7326		/* Ensure this header has finished being written. */
7327		ASSERT(!HDR_L2_WRITING(hdr));
7328		ASSERT(!HDR_L2_WRITE_HEAD(hdr));
7329
7330		if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
7331		    hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7332			/*
7333			 * We've evicted to the target address,
7334			 * or the end of the device.
7335			 */
7336			mutex_exit(hash_lock);
7337			break;
7338		}
7339
7340		if (!HDR_HAS_L1HDR(hdr)) {
7341			ASSERT(!HDR_L2_READING(hdr));
7342			/*
7343			 * This doesn't exist in the ARC.  Destroy.
7344			 * arc_hdr_destroy() will call list_remove()
7345			 * and decrement arcstat_l2_lsize.
7346			 */
7347			arc_change_state(arc_anon, hdr, hash_lock);
7348			arc_hdr_destroy(hdr);
7349		} else {
7350			ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7351			ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7352			/*
7353			 * Invalidate issued or about to be issued
7354			 * reads, since we may be about to write
7355			 * over this location.
7356			 */
7357			if (HDR_L2_READING(hdr)) {
7358				ARCSTAT_BUMP(arcstat_l2_evict_reading);
7359				arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7360			}
7361
7362			arc_hdr_l2hdr_destroy(hdr);
7363		}
7364		mutex_exit(hash_lock);
7365	}
7366	mutex_exit(&dev->l2ad_mtx);
7367}
7368
7369/*
7370 * Find and write ARC buffers to the L2ARC device.
7371 *
7372 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7373 * for reading until they have completed writing.
7374 * The headroom_boost is an in-out parameter used to maintain headroom boost
7375 * state between calls to this function.
7376 *
7377 * Returns the number of bytes actually written (which may be smaller than
7378 * the delta by which the device hand has changed due to alignment).
7379 */
7380static uint64_t
7381l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7382{
7383	arc_buf_hdr_t *hdr, *hdr_prev, *head;
7384	uint64_t write_asize, write_psize, write_lsize, headroom;
7385	boolean_t full;
7386	l2arc_write_callback_t *cb;
7387	zio_t *pio, *wzio;
7388	uint64_t guid = spa_load_guid(spa);
7389	int try;
7390
7391	ASSERT3P(dev->l2ad_vdev, !=, NULL);
7392
7393	pio = NULL;
7394	write_lsize = write_asize = write_psize = 0;
7395	full = B_FALSE;
7396	head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7397	arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7398
7399	ARCSTAT_BUMP(arcstat_l2_write_buffer_iter);
7400	/*
7401	 * Copy buffers for L2ARC writing.
7402	 */
7403	for (try = 0; try <= 3; try++) {
7404		multilist_sublist_t *mls = l2arc_sublist_lock(try);
7405		uint64_t passed_sz = 0;
7406
7407		ARCSTAT_BUMP(arcstat_l2_write_buffer_list_iter);
7408
7409		/*
7410		 * L2ARC fast warmup.
7411		 *
7412		 * Until the ARC is warm and starts to evict, read from the
7413		 * head of the ARC lists rather than the tail.
7414		 */
7415		if (arc_warm == B_FALSE)
7416			hdr = multilist_sublist_head(mls);
7417		else
7418			hdr = multilist_sublist_tail(mls);
7419		if (hdr == NULL)
7420			ARCSTAT_BUMP(arcstat_l2_write_buffer_list_null_iter);
7421
7422		headroom = target_sz * l2arc_headroom;
7423		if (zfs_compressed_arc_enabled)
7424			headroom = (headroom * l2arc_headroom_boost) / 100;
7425
7426		for (; hdr; hdr = hdr_prev) {
7427			kmutex_t *hash_lock;
7428
7429			if (arc_warm == B_FALSE)
7430				hdr_prev = multilist_sublist_next(mls, hdr);
7431			else
7432				hdr_prev = multilist_sublist_prev(mls, hdr);
7433			ARCSTAT_INCR(arcstat_l2_write_buffer_bytes_scanned,
7434			    HDR_GET_LSIZE(hdr));
7435
7436			hash_lock = HDR_LOCK(hdr);
7437			if (!mutex_tryenter(hash_lock)) {
7438				ARCSTAT_BUMP(arcstat_l2_write_trylock_fail);
7439				/*
7440				 * Skip this buffer rather than waiting.
7441				 */
7442				continue;
7443			}
7444
7445			passed_sz += HDR_GET_LSIZE(hdr);
7446			if (passed_sz > headroom) {
7447				/*
7448				 * Searched too far.
7449				 */
7450				mutex_exit(hash_lock);
7451				ARCSTAT_BUMP(arcstat_l2_write_passed_headroom);
7452				break;
7453			}
7454
7455			if (!l2arc_write_eligible(guid, hdr)) {
7456				mutex_exit(hash_lock);
7457				continue;
7458			}
7459
7460			/*
7461			 * We rely on the L1 portion of the header below, so
7462			 * it's invalid for this header to have been evicted out
7463			 * of the ghost cache, prior to being written out. The
7464			 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7465			 */
7466			ASSERT(HDR_HAS_L1HDR(hdr));
7467
7468			ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7469			ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7470			ASSERT3U(arc_hdr_size(hdr), >, 0);
7471			uint64_t psize = arc_hdr_size(hdr);
7472			uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7473			    psize);
7474
7475			if ((write_asize + asize) > target_sz) {
7476				full = B_TRUE;
7477				mutex_exit(hash_lock);
7478				ARCSTAT_BUMP(arcstat_l2_write_full);
7479				break;
7480			}
7481
7482			if (pio == NULL) {
7483				/*
7484				 * Insert a dummy header on the buflist so
7485				 * l2arc_write_done() can find where the
7486				 * write buffers begin without searching.
7487				 */
7488				mutex_enter(&dev->l2ad_mtx);
7489				list_insert_head(&dev->l2ad_buflist, head);
7490				mutex_exit(&dev->l2ad_mtx);
7491
7492				cb = kmem_alloc(
7493				    sizeof (l2arc_write_callback_t), KM_SLEEP);
7494				cb->l2wcb_dev = dev;
7495				cb->l2wcb_head = head;
7496				pio = zio_root(spa, l2arc_write_done, cb,
7497				    ZIO_FLAG_CANFAIL);
7498				ARCSTAT_BUMP(arcstat_l2_write_pios);
7499			}
7500
7501			hdr->b_l2hdr.b_dev = dev;
7502			hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7503			arc_hdr_set_flags(hdr,
7504			    ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7505
7506			mutex_enter(&dev->l2ad_mtx);
7507			list_insert_head(&dev->l2ad_buflist, hdr);
7508			mutex_exit(&dev->l2ad_mtx);
7509
7510			(void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7511
7512			/*
7513			 * Normally the L2ARC can use the hdr's data, but if
7514			 * we're sharing data between the hdr and one of its
7515			 * bufs, L2ARC needs its own copy of the data so that
7516			 * the ZIO below can't race with the buf consumer.
7517			 * Another case where we need to create a copy of the
7518			 * data is when the buffer size is not device-aligned
7519			 * and we need to pad the block to make it such.
7520			 * That also keeps the clock hand suitably aligned.
7521			 *
7522			 * To ensure that the copy will be available for the
7523			 * lifetime of the ZIO and be cleaned up afterwards, we
7524			 * add it to the l2arc_free_on_write queue.
7525			 */
7526			abd_t *to_write;
7527			if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7528				to_write = hdr->b_l1hdr.b_pabd;
7529			} else {
7530				to_write = abd_alloc_for_io(asize,
7531				    HDR_ISTYPE_METADATA(hdr));
7532				abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7533				if (asize != psize) {
7534					abd_zero_off(to_write, psize,
7535					    asize - psize);
7536				}
7537				l2arc_free_abd_on_write(to_write, asize,
7538				    arc_buf_type(hdr));
7539			}
7540			wzio = zio_write_phys(pio, dev->l2ad_vdev,
7541			    hdr->b_l2hdr.b_daddr, asize, to_write,
7542			    ZIO_CHECKSUM_OFF, NULL, hdr,
7543			    ZIO_PRIORITY_ASYNC_WRITE,
7544			    ZIO_FLAG_CANFAIL, B_FALSE);
7545
7546			write_lsize += HDR_GET_LSIZE(hdr);
7547			DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7548			    zio_t *, wzio);
7549
7550			write_psize += psize;
7551			write_asize += asize;
7552			dev->l2ad_hand += asize;
7553
7554			mutex_exit(hash_lock);
7555
7556			(void) zio_nowait(wzio);
7557		}
7558
7559		multilist_sublist_unlock(mls);
7560
7561		if (full == B_TRUE)
7562			break;
7563	}
7564
7565	/* No buffers selected for writing? */
7566	if (pio == NULL) {
7567		ASSERT0(write_lsize);
7568		ASSERT(!HDR_HAS_L1HDR(head));
7569		kmem_cache_free(hdr_l2only_cache, head);
7570		return (0);
7571	}
7572
7573	ASSERT3U(write_psize, <=, target_sz);
7574	ARCSTAT_BUMP(arcstat_l2_writes_sent);
7575	ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7576	ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7577	ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7578	vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7579
7580	/*
7581	 * Bump device hand to the device start if it is approaching the end.
7582	 * l2arc_evict() will already have evicted ahead for this case.
7583	 */
7584	if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7585		dev->l2ad_hand = dev->l2ad_start;
7586		dev->l2ad_first = B_FALSE;
7587	}
7588
7589	dev->l2ad_writing = B_TRUE;
7590	(void) zio_wait(pio);
7591	dev->l2ad_writing = B_FALSE;
7592
7593	return (write_asize);
7594}
7595
7596/*
7597 * This thread feeds the L2ARC at regular intervals.  This is the beating
7598 * heart of the L2ARC.
7599 */
7600/* ARGSUSED */
7601static void
7602l2arc_feed_thread(void *unused __unused)
7603{
7604	callb_cpr_t cpr;
7605	l2arc_dev_t *dev;
7606	spa_t *spa;
7607	uint64_t size, wrote;
7608	clock_t begin, next = ddi_get_lbolt();
7609
7610	CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7611
7612	mutex_enter(&l2arc_feed_thr_lock);
7613
7614	while (l2arc_thread_exit == 0) {
7615		CALLB_CPR_SAFE_BEGIN(&cpr);
7616		(void) cv_timedwait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock,
7617		    next - ddi_get_lbolt());
7618		CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7619		next = ddi_get_lbolt() + hz;
7620
7621		/*
7622		 * Quick check for L2ARC devices.
7623		 */
7624		mutex_enter(&l2arc_dev_mtx);
7625		if (l2arc_ndev == 0) {
7626			mutex_exit(&l2arc_dev_mtx);
7627			continue;
7628		}
7629		mutex_exit(&l2arc_dev_mtx);
7630		begin = ddi_get_lbolt();
7631
7632		/*
7633		 * This selects the next l2arc device to write to, and in
7634		 * doing so the next spa to feed from: dev->l2ad_spa.   This
7635		 * will return NULL if there are now no l2arc devices or if
7636		 * they are all faulted.
7637		 *
7638		 * If a device is returned, its spa's config lock is also
7639		 * held to prevent device removal.  l2arc_dev_get_next()
7640		 * will grab and release l2arc_dev_mtx.
7641		 */
7642		if ((dev = l2arc_dev_get_next()) == NULL)
7643			continue;
7644
7645		spa = dev->l2ad_spa;
7646		ASSERT3P(spa, !=, NULL);
7647
7648		/*
7649		 * If the pool is read-only then force the feed thread to
7650		 * sleep a little longer.
7651		 */
7652		if (!spa_writeable(spa)) {
7653			next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7654			spa_config_exit(spa, SCL_L2ARC, dev);
7655			continue;
7656		}
7657
7658		/*
7659		 * Avoid contributing to memory pressure.
7660		 */
7661		if (arc_reclaim_needed()) {
7662			ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7663			spa_config_exit(spa, SCL_L2ARC, dev);
7664			continue;
7665		}
7666
7667		ARCSTAT_BUMP(arcstat_l2_feeds);
7668
7669		size = l2arc_write_size();
7670
7671		/*
7672		 * Evict L2ARC buffers that will be overwritten.
7673		 */
7674		l2arc_evict(dev, size, B_FALSE);
7675
7676		/*
7677		 * Write ARC buffers.
7678		 */
7679		wrote = l2arc_write_buffers(spa, dev, size);
7680
7681		/*
7682		 * Calculate interval between writes.
7683		 */
7684		next = l2arc_write_interval(begin, size, wrote);
7685		spa_config_exit(spa, SCL_L2ARC, dev);
7686	}
7687
7688	l2arc_thread_exit = 0;
7689	cv_broadcast(&l2arc_feed_thr_cv);
7690	CALLB_CPR_EXIT(&cpr);		/* drops l2arc_feed_thr_lock */
7691	thread_exit();
7692}
7693
7694boolean_t
7695l2arc_vdev_present(vdev_t *vd)
7696{
7697	l2arc_dev_t *dev;
7698
7699	mutex_enter(&l2arc_dev_mtx);
7700	for (dev = list_head(l2arc_dev_list); dev != NULL;
7701	    dev = list_next(l2arc_dev_list, dev)) {
7702		if (dev->l2ad_vdev == vd)
7703			break;
7704	}
7705	mutex_exit(&l2arc_dev_mtx);
7706
7707	return (dev != NULL);
7708}
7709
7710/*
7711 * Add a vdev for use by the L2ARC.  By this point the spa has already
7712 * validated the vdev and opened it.
7713 */
7714void
7715l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7716{
7717	l2arc_dev_t *adddev;
7718
7719	ASSERT(!l2arc_vdev_present(vd));
7720
7721	vdev_ashift_optimize(vd);
7722
7723	/*
7724	 * Create a new l2arc device entry.
7725	 */
7726	adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7727	adddev->l2ad_spa = spa;
7728	adddev->l2ad_vdev = vd;
7729	adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7730	adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7731	adddev->l2ad_hand = adddev->l2ad_start;
7732	adddev->l2ad_first = B_TRUE;
7733	adddev->l2ad_writing = B_FALSE;
7734
7735	mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7736	/*
7737	 * This is a list of all ARC buffers that are still valid on the
7738	 * device.
7739	 */
7740	list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7741	    offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7742
7743	vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7744	refcount_create(&adddev->l2ad_alloc);
7745
7746	/*
7747	 * Add device to global list
7748	 */
7749	mutex_enter(&l2arc_dev_mtx);
7750	list_insert_head(l2arc_dev_list, adddev);
7751	atomic_inc_64(&l2arc_ndev);
7752	mutex_exit(&l2arc_dev_mtx);
7753}
7754
7755/*
7756 * Remove a vdev from the L2ARC.
7757 */
7758void
7759l2arc_remove_vdev(vdev_t *vd)
7760{
7761	l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7762
7763	/*
7764	 * Find the device by vdev
7765	 */
7766	mutex_enter(&l2arc_dev_mtx);
7767	for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7768		nextdev = list_next(l2arc_dev_list, dev);
7769		if (vd == dev->l2ad_vdev) {
7770			remdev = dev;
7771			break;
7772		}
7773	}
7774	ASSERT3P(remdev, !=, NULL);
7775
7776	/*
7777	 * Remove device from global list
7778	 */
7779	list_remove(l2arc_dev_list, remdev);
7780	l2arc_dev_last = NULL;		/* may have been invalidated */
7781	atomic_dec_64(&l2arc_ndev);
7782	mutex_exit(&l2arc_dev_mtx);
7783
7784	/*
7785	 * Clear all buflists and ARC references.  L2ARC device flush.
7786	 */
7787	l2arc_evict(remdev, 0, B_TRUE);
7788	list_destroy(&remdev->l2ad_buflist);
7789	mutex_destroy(&remdev->l2ad_mtx);
7790	refcount_destroy(&remdev->l2ad_alloc);
7791	kmem_free(remdev, sizeof (l2arc_dev_t));
7792}
7793
7794void
7795l2arc_init(void)
7796{
7797	l2arc_thread_exit = 0;
7798	l2arc_ndev = 0;
7799	l2arc_writes_sent = 0;
7800	l2arc_writes_done = 0;
7801
7802	mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7803	cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7804	mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7805	mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7806
7807	l2arc_dev_list = &L2ARC_dev_list;
7808	l2arc_free_on_write = &L2ARC_free_on_write;
7809	list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7810	    offsetof(l2arc_dev_t, l2ad_node));
7811	list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7812	    offsetof(l2arc_data_free_t, l2df_list_node));
7813}
7814
7815void
7816l2arc_fini(void)
7817{
7818	/*
7819	 * This is called from dmu_fini(), which is called from spa_fini();
7820	 * Because of this, we can assume that all l2arc devices have
7821	 * already been removed when the pools themselves were removed.
7822	 */
7823
7824	l2arc_do_free_on_write();
7825
7826	mutex_destroy(&l2arc_feed_thr_lock);
7827	cv_destroy(&l2arc_feed_thr_cv);
7828	mutex_destroy(&l2arc_dev_mtx);
7829	mutex_destroy(&l2arc_free_on_write_mtx);
7830
7831	list_destroy(l2arc_dev_list);
7832	list_destroy(l2arc_free_on_write);
7833}
7834
7835void
7836l2arc_start(void)
7837{
7838	if (!(spa_mode_global & FWRITE))
7839		return;
7840
7841	(void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7842	    TS_RUN, minclsyspri);
7843}
7844
7845void
7846l2arc_stop(void)
7847{
7848	if (!(spa_mode_global & FWRITE))
7849		return;
7850
7851	mutex_enter(&l2arc_feed_thr_lock);
7852	cv_signal(&l2arc_feed_thr_cv);	/* kick thread out of startup */
7853	l2arc_thread_exit = 1;
7854	while (l2arc_thread_exit != 0)
7855		cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7856	mutex_exit(&l2arc_feed_thr_lock);
7857}
7858