zfsimpl.h revision 321519
1/*-
2 * Copyright (c) 2002 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Marshall
6 * Kirk McKusick and McAfee Research,, the Security Research Division of
7 * McAfee, Inc. under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as
8 * part of the DARPA CHATS research program
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31/*
32 * CDDL HEADER START
33 *
34 * The contents of this file are subject to the terms of the
35 * Common Development and Distribution License (the "License").
36 * You may not use this file except in compliance with the License.
37 *
38 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
39 * or http://www.opensolaris.org/os/licensing.
40 * See the License for the specific language governing permissions
41 * and limitations under the License.
42 *
43 * When distributing Covered Code, include this CDDL HEADER in each
44 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
45 * If applicable, add the following below this CDDL HEADER, with the
46 * fields enclosed by brackets "[]" replaced with your own identifying
47 * information: Portions Copyright [yyyy] [name of copyright owner]
48 *
49 * CDDL HEADER END
50 */
51/*
52 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
53 * Use is subject to license terms.
54 */
55/*
56 * Copyright 2013 by Saso Kiselkov. All rights reserved.
57 */
58/*
59 * Copyright (c) 2013 by Delphix. All rights reserved.
60 */
61
62#define	MAXNAMELEN	256
63
64#define _NOTE(s)
65
66typedef enum { B_FALSE, B_TRUE } boolean_t;
67
68/* CRC64 table */
69#define	ZFS_CRC64_POLY	0xC96C5795D7870F42ULL	/* ECMA-182, reflected form */
70
71/*
72 * Macros for various sorts of alignment and rounding when the alignment
73 * is known to be a power of 2.
74 */
75#define	P2ALIGN(x, align)		((x) & -(align))
76#define	P2PHASE(x, align)		((x) & ((align) - 1))
77#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
78#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
79#define	P2END(x, align)			(-(~(x) & -(align)))
80#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
81#define	P2BOUNDARY(off, len, align)	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
82
83/*
84 * General-purpose 32-bit and 64-bit bitfield encodings.
85 */
86#define	BF32_DECODE(x, low, len)	P2PHASE((x) >> (low), 1U << (len))
87#define	BF64_DECODE(x, low, len)	P2PHASE((x) >> (low), 1ULL << (len))
88#define	BF32_ENCODE(x, low, len)	(P2PHASE((x), 1U << (len)) << (low))
89#define	BF64_ENCODE(x, low, len)	(P2PHASE((x), 1ULL << (len)) << (low))
90
91#define	BF32_GET(x, low, len)		BF32_DECODE(x, low, len)
92#define	BF64_GET(x, low, len)		BF64_DECODE(x, low, len)
93
94#define	BF32_SET(x, low, len, val)	\
95	((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
96#define	BF64_SET(x, low, len, val)	\
97	((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
98
99#define	BF32_GET_SB(x, low, len, shift, bias)	\
100	((BF32_GET(x, low, len) + (bias)) << (shift))
101#define	BF64_GET_SB(x, low, len, shift, bias)	\
102	((BF64_GET(x, low, len) + (bias)) << (shift))
103
104#define	BF32_SET_SB(x, low, len, shift, bias, val)	\
105	BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
106#define	BF64_SET_SB(x, low, len, shift, bias, val)	\
107	BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
108
109/*
110 * Macros to reverse byte order
111 */
112#define	BSWAP_8(x)	((x) & 0xff)
113#define	BSWAP_16(x)	((BSWAP_8(x) << 8) | BSWAP_8((x) >> 8))
114#define	BSWAP_32(x)	((BSWAP_16(x) << 16) | BSWAP_16((x) >> 16))
115#define	BSWAP_64(x)	((BSWAP_32(x) << 32) | BSWAP_32((x) >> 32))
116
117/*
118 * Note: the boot loader can't actually read blocks larger than 128KB,
119 * due to lack of memory.  Therefore its SPA_MAXBLOCKSIZE is still 128KB.
120 */
121#define	SPA_MINBLOCKSHIFT	9
122#define	SPA_MAXBLOCKSHIFT	17
123#define	SPA_MINBLOCKSIZE	(1ULL << SPA_MINBLOCKSHIFT)
124#define	SPA_MAXBLOCKSIZE	(1ULL << SPA_MAXBLOCKSHIFT)
125
126/*
127 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
128 * The ASIZE encoding should be at least 64 times larger (6 more bits)
129 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
130 * overhead, three DVAs per bp, plus one more bit in case we do anything
131 * else that expands the ASIZE.
132 */
133#define	SPA_LSIZEBITS		16	/* LSIZE up to 32M (2^16 * 512)	*/
134#define	SPA_PSIZEBITS		16	/* PSIZE up to 32M (2^16 * 512)	*/
135#define	SPA_ASIZEBITS		24	/* ASIZE up to 64 times larger	*/
136
137/*
138 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
139 * The members of the dva_t should be considered opaque outside the SPA.
140 */
141typedef struct dva {
142	uint64_t	dva_word[2];
143} dva_t;
144
145/*
146 * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
147 */
148typedef struct zio_cksum {
149	uint64_t	zc_word[4];
150} zio_cksum_t;
151
152/*
153 * Each block is described by its DVAs, time of birth, checksum, etc.
154 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
155 *
156 *	64	56	48	40	32	24	16	8	0
157 *	+-------+-------+-------+-------+-------+-------+-------+-------+
158 * 0	|		vdev1		| GRID  |	  ASIZE		|
159 *	+-------+-------+-------+-------+-------+-------+-------+-------+
160 * 1	|G|			 offset1				|
161 *	+-------+-------+-------+-------+-------+-------+-------+-------+
162 * 2	|		vdev2		| GRID  |	  ASIZE		|
163 *	+-------+-------+-------+-------+-------+-------+-------+-------+
164 * 3	|G|			 offset2				|
165 *	+-------+-------+-------+-------+-------+-------+-------+-------+
166 * 4	|		vdev3		| GRID  |	  ASIZE		|
167 *	+-------+-------+-------+-------+-------+-------+-------+-------+
168 * 5	|G|			 offset3				|
169 *	+-------+-------+-------+-------+-------+-------+-------+-------+
170 * 6	|BDX|lvl| type	| cksum |E| comp|    PSIZE	|     LSIZE	|
171 *	+-------+-------+-------+-------+-------+-------+-------+-------+
172 * 7	|			padding					|
173 *	+-------+-------+-------+-------+-------+-------+-------+-------+
174 * 8	|			padding					|
175 *	+-------+-------+-------+-------+-------+-------+-------+-------+
176 * 9	|			physical birth txg			|
177 *	+-------+-------+-------+-------+-------+-------+-------+-------+
178 * a	|			logical birth txg			|
179 *	+-------+-------+-------+-------+-------+-------+-------+-------+
180 * b	|			fill count				|
181 *	+-------+-------+-------+-------+-------+-------+-------+-------+
182 * c	|			checksum[0]				|
183 *	+-------+-------+-------+-------+-------+-------+-------+-------+
184 * d	|			checksum[1]				|
185 *	+-------+-------+-------+-------+-------+-------+-------+-------+
186 * e	|			checksum[2]				|
187 *	+-------+-------+-------+-------+-------+-------+-------+-------+
188 * f	|			checksum[3]				|
189 *	+-------+-------+-------+-------+-------+-------+-------+-------+
190 *
191 * Legend:
192 *
193 * vdev		virtual device ID
194 * offset	offset into virtual device
195 * LSIZE	logical size
196 * PSIZE	physical size (after compression)
197 * ASIZE	allocated size (including RAID-Z parity and gang block headers)
198 * GRID		RAID-Z layout information (reserved for future use)
199 * cksum	checksum function
200 * comp		compression function
201 * G		gang block indicator
202 * B		byteorder (endianness)
203 * D		dedup
204 * X		encryption (on version 30, which is not supported)
205 * E		blkptr_t contains embedded data (see below)
206 * lvl		level of indirection
207 * type		DMU object type
208 * phys birth	txg of block allocation; zero if same as logical birth txg
209 * log. birth	transaction group in which the block was logically born
210 * fill count	number of non-zero blocks under this bp
211 * checksum[4]	256-bit checksum of the data this bp describes
212 */
213
214/*
215 * "Embedded" blkptr_t's don't actually point to a block, instead they
216 * have a data payload embedded in the blkptr_t itself.  See the comment
217 * in blkptr.c for more details.
218 *
219 * The blkptr_t is laid out as follows:
220 *
221 *	64	56	48	40	32	24	16	8	0
222 *	+-------+-------+-------+-------+-------+-------+-------+-------+
223 * 0	|      payload                                                  |
224 * 1	|      payload                                                  |
225 * 2	|      payload                                                  |
226 * 3	|      payload                                                  |
227 * 4	|      payload                                                  |
228 * 5	|      payload                                                  |
229 *	+-------+-------+-------+-------+-------+-------+-------+-------+
230 * 6	|BDX|lvl| type	| etype |E| comp| PSIZE|              LSIZE	|
231 *	+-------+-------+-------+-------+-------+-------+-------+-------+
232 * 7	|      payload                                                  |
233 * 8	|      payload                                                  |
234 * 9	|      payload                                                  |
235 *	+-------+-------+-------+-------+-------+-------+-------+-------+
236 * a	|			logical birth txg			|
237 *	+-------+-------+-------+-------+-------+-------+-------+-------+
238 * b	|      payload                                                  |
239 * c	|      payload                                                  |
240 * d	|      payload                                                  |
241 * e	|      payload                                                  |
242 * f	|      payload                                                  |
243 *	+-------+-------+-------+-------+-------+-------+-------+-------+
244 *
245 * Legend:
246 *
247 * payload		contains the embedded data
248 * B (byteorder)	byteorder (endianness)
249 * D (dedup)		padding (set to zero)
250 * X			encryption (set to zero; see above)
251 * E (embedded)		set to one
252 * lvl			indirection level
253 * type			DMU object type
254 * etype		how to interpret embedded data (BP_EMBEDDED_TYPE_*)
255 * comp			compression function of payload
256 * PSIZE		size of payload after compression, in bytes
257 * LSIZE		logical size of payload, in bytes
258 *			note that 25 bits is enough to store the largest
259 *			"normal" BP's LSIZE (2^16 * 2^9) in bytes
260 * log. birth		transaction group in which the block was logically born
261 *
262 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
263 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
264 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
265 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
266 * BP's so the BP_SET_* macros can be used with them.  etype, PSIZE, LSIZE must
267 * be set with the BPE_SET_* macros.  BP_SET_EMBEDDED() should be called before
268 * other macros, as they assert that they are only used on BP's of the correct
269 * "embedded-ness".
270 */
271
272#define	BPE_GET_ETYPE(bp)	\
273	(ASSERT(BP_IS_EMBEDDED(bp)), \
274	BF64_GET((bp)->blk_prop, 40, 8))
275#define	BPE_SET_ETYPE(bp, t)	do { \
276	ASSERT(BP_IS_EMBEDDED(bp)); \
277	BF64_SET((bp)->blk_prop, 40, 8, t); \
278_NOTE(CONSTCOND) } while (0)
279
280#define	BPE_GET_LSIZE(bp)	\
281	(ASSERT(BP_IS_EMBEDDED(bp)), \
282	BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
283#define	BPE_SET_LSIZE(bp, x)	do { \
284	ASSERT(BP_IS_EMBEDDED(bp)); \
285	BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
286_NOTE(CONSTCOND) } while (0)
287
288#define	BPE_GET_PSIZE(bp)	\
289	(ASSERT(BP_IS_EMBEDDED(bp)), \
290	BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
291#define	BPE_SET_PSIZE(bp, x)	do { \
292	ASSERT(BP_IS_EMBEDDED(bp)); \
293	BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
294_NOTE(CONSTCOND) } while (0)
295
296typedef enum bp_embedded_type {
297	BP_EMBEDDED_TYPE_DATA,
298	BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
299	NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
300} bp_embedded_type_t;
301
302#define	BPE_NUM_WORDS 14
303#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
304#define	BPE_IS_PAYLOADWORD(bp, wp) \
305	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
306
307#define	SPA_BLKPTRSHIFT	7		/* blkptr_t is 128 bytes	*/
308#define	SPA_DVAS_PER_BP	3		/* Number of DVAs in a bp	*/
309
310typedef struct blkptr {
311	dva_t		blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
312	uint64_t	blk_prop;	/* size, compression, type, etc	    */
313	uint64_t	blk_pad[2];	/* Extra space for the future	    */
314	uint64_t	blk_phys_birth;	/* txg when block was allocated	    */
315	uint64_t	blk_birth;	/* transaction group at birth	    */
316	uint64_t	blk_fill;	/* fill count			    */
317	zio_cksum_t	blk_cksum;	/* 256-bit checksum		    */
318} blkptr_t;
319
320/*
321 * Macros to get and set fields in a bp or DVA.
322 */
323#define	DVA_GET_ASIZE(dva)	\
324	BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
325#define	DVA_SET_ASIZE(dva, x)	\
326	BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
327	SPA_MINBLOCKSHIFT, 0, x)
328
329#define	DVA_GET_GRID(dva)	BF64_GET((dva)->dva_word[0], 24, 8)
330#define	DVA_SET_GRID(dva, x)	BF64_SET((dva)->dva_word[0], 24, 8, x)
331
332#define	DVA_GET_VDEV(dva)	BF64_GET((dva)->dva_word[0], 32, 32)
333#define	DVA_SET_VDEV(dva, x)	BF64_SET((dva)->dva_word[0], 32, 32, x)
334
335#define	DVA_GET_OFFSET(dva)	\
336	BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
337#define	DVA_SET_OFFSET(dva, x)	\
338	BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
339
340#define	DVA_GET_GANG(dva)	BF64_GET((dva)->dva_word[1], 63, 1)
341#define	DVA_SET_GANG(dva, x)	BF64_SET((dva)->dva_word[1], 63, 1, x)
342
343#define	BP_GET_LSIZE(bp)	\
344	(BP_IS_EMBEDDED(bp) ?	\
345	(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
346	BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
347#define	BP_SET_LSIZE(bp, x)	do { \
348	ASSERT(!BP_IS_EMBEDDED(bp)); \
349	BF64_SET_SB((bp)->blk_prop, \
350	    0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
351_NOTE(CONSTCOND) } while (0)
352
353#define	BP_GET_PSIZE(bp)	\
354	BF64_GET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1)
355#define	BP_SET_PSIZE(bp, x)	\
356	BF64_SET_SB((bp)->blk_prop, 16, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x)
357
358#define	BP_GET_COMPRESS(bp)	BF64_GET((bp)->blk_prop, 32, 7)
359#define	BP_SET_COMPRESS(bp, x)	BF64_SET((bp)->blk_prop, 32, 7, x)
360
361#define	BP_GET_CHECKSUM(bp)	BF64_GET((bp)->blk_prop, 40, 8)
362#define	BP_SET_CHECKSUM(bp, x)	BF64_SET((bp)->blk_prop, 40, 8, x)
363
364#define	BP_GET_TYPE(bp)		BF64_GET((bp)->blk_prop, 48, 8)
365#define	BP_SET_TYPE(bp, x)	BF64_SET((bp)->blk_prop, 48, 8, x)
366
367#define	BP_GET_LEVEL(bp)	BF64_GET((bp)->blk_prop, 56, 5)
368#define	BP_SET_LEVEL(bp, x)	BF64_SET((bp)->blk_prop, 56, 5, x)
369
370#define	BP_IS_EMBEDDED(bp)	BF64_GET((bp)->blk_prop, 39, 1)
371
372#define	BP_GET_DEDUP(bp)	BF64_GET((bp)->blk_prop, 62, 1)
373#define	BP_SET_DEDUP(bp, x)	BF64_SET((bp)->blk_prop, 62, 1, x)
374
375#define	BP_GET_BYTEORDER(bp)	BF64_GET((bp)->blk_prop, 63, 1)
376#define	BP_SET_BYTEORDER(bp, x)	BF64_SET((bp)->blk_prop, 63, 1, x)
377
378#define	BP_PHYSICAL_BIRTH(bp)		\
379	((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
380
381#define	BP_GET_ASIZE(bp)	\
382	(DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
383		DVA_GET_ASIZE(&(bp)->blk_dva[2]))
384
385#define	BP_GET_UCSIZE(bp) \
386	((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
387	BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
388
389#define	BP_GET_NDVAS(bp)	\
390	(!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
391	!!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
392	!!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
393
394#define	DVA_EQUAL(dva1, dva2)	\
395	((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
396	(dva1)->dva_word[0] == (dva2)->dva_word[0])
397
398#define	ZIO_CHECKSUM_EQUAL(zc1, zc2) \
399	(0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
400	((zc1).zc_word[1] - (zc2).zc_word[1]) | \
401	((zc1).zc_word[2] - (zc2).zc_word[2]) | \
402	((zc1).zc_word[3] - (zc2).zc_word[3])))
403
404
405#define	DVA_IS_VALID(dva)	(DVA_GET_ASIZE(dva) != 0)
406
407#define	ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3)	\
408{						\
409	(zcp)->zc_word[0] = w0;			\
410	(zcp)->zc_word[1] = w1;			\
411	(zcp)->zc_word[2] = w2;			\
412	(zcp)->zc_word[3] = w3;			\
413}
414
415#define	BP_IDENTITY(bp)		(&(bp)->blk_dva[0])
416#define	BP_IS_GANG(bp)		DVA_GET_GANG(BP_IDENTITY(bp))
417#define	DVA_IS_EMPTY(dva)	((dva)->dva_word[0] == 0ULL &&  \
418	(dva)->dva_word[1] == 0ULL)
419#define	BP_IS_HOLE(bp)		DVA_IS_EMPTY(BP_IDENTITY(bp))
420#define	BP_IS_OLDER(bp, txg)	(!BP_IS_HOLE(bp) && (bp)->blk_birth < (txg))
421
422#define	BP_ZERO(bp)				\
423{						\
424	(bp)->blk_dva[0].dva_word[0] = 0;	\
425	(bp)->blk_dva[0].dva_word[1] = 0;	\
426	(bp)->blk_dva[1].dva_word[0] = 0;	\
427	(bp)->blk_dva[1].dva_word[1] = 0;	\
428	(bp)->blk_dva[2].dva_word[0] = 0;	\
429	(bp)->blk_dva[2].dva_word[1] = 0;	\
430	(bp)->blk_prop = 0;			\
431	(bp)->blk_pad[0] = 0;			\
432	(bp)->blk_pad[1] = 0;			\
433	(bp)->blk_phys_birth = 0;		\
434	(bp)->blk_birth = 0;			\
435	(bp)->blk_fill = 0;			\
436	ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0);	\
437}
438
439#define	BPE_NUM_WORDS 14
440#define	BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
441#define	BPE_IS_PAYLOADWORD(bp, wp) \
442	((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
443
444/*
445 * Embedded checksum
446 */
447#define	ZEC_MAGIC	0x210da7ab10c7a11ULL
448
449typedef struct zio_eck {
450	uint64_t	zec_magic;	/* for validation, endianness	*/
451	zio_cksum_t	zec_cksum;	/* 256-bit checksum		*/
452} zio_eck_t;
453
454/*
455 * Gang block headers are self-checksumming and contain an array
456 * of block pointers.
457 */
458#define	SPA_GANGBLOCKSIZE	SPA_MINBLOCKSIZE
459#define	SPA_GBH_NBLKPTRS	((SPA_GANGBLOCKSIZE - \
460	sizeof (zio_eck_t)) / sizeof (blkptr_t))
461#define	SPA_GBH_FILLER		((SPA_GANGBLOCKSIZE - \
462	sizeof (zio_eck_t) - \
463	(SPA_GBH_NBLKPTRS * sizeof (blkptr_t))) /\
464	sizeof (uint64_t))
465
466typedef struct zio_gbh {
467	blkptr_t		zg_blkptr[SPA_GBH_NBLKPTRS];
468	uint64_t		zg_filler[SPA_GBH_FILLER];
469	zio_eck_t		zg_tail;
470} zio_gbh_phys_t;
471
472#define	VDEV_RAIDZ_MAXPARITY	3
473
474#define	VDEV_PAD_SIZE		(8 << 10)
475/* 2 padding areas (vl_pad1 and vl_pad2) to skip */
476#define	VDEV_SKIP_SIZE		VDEV_PAD_SIZE * 2
477#define	VDEV_PHYS_SIZE		(112 << 10)
478#define	VDEV_UBERBLOCK_RING	(128 << 10)
479
480#define	VDEV_UBERBLOCK_SHIFT(vd)	\
481	MAX((vd)->v_top->v_ashift, UBERBLOCK_SHIFT)
482#define	VDEV_UBERBLOCK_COUNT(vd)	\
483	(VDEV_UBERBLOCK_RING >> VDEV_UBERBLOCK_SHIFT(vd))
484#define	VDEV_UBERBLOCK_OFFSET(vd, n)	\
485	offsetof(vdev_label_t, vl_uberblock[(n) << VDEV_UBERBLOCK_SHIFT(vd)])
486#define	VDEV_UBERBLOCK_SIZE(vd)		(1ULL << VDEV_UBERBLOCK_SHIFT(vd))
487
488typedef struct vdev_phys {
489	char		vp_nvlist[VDEV_PHYS_SIZE - sizeof (zio_eck_t)];
490	zio_eck_t	vp_zbt;
491} vdev_phys_t;
492
493typedef struct vdev_label {
494	char		vl_pad1[VDEV_PAD_SIZE];			/*  8K  */
495	char		vl_pad2[VDEV_PAD_SIZE];			/*  8K  */
496	vdev_phys_t	vl_vdev_phys;				/* 112K	*/
497	char		vl_uberblock[VDEV_UBERBLOCK_RING];	/* 128K	*/
498} vdev_label_t;							/* 256K total */
499
500/*
501 * vdev_dirty() flags
502 */
503#define	VDD_METASLAB	0x01
504#define	VDD_DTL		0x02
505
506/*
507 * Size and offset of embedded boot loader region on each label.
508 * The total size of the first two labels plus the boot area is 4MB.
509 */
510#define	VDEV_BOOT_OFFSET	(2 * sizeof (vdev_label_t))
511#define	VDEV_BOOT_SIZE		(7ULL << 19)			/* 3.5M	*/
512
513/*
514 * Size of label regions at the start and end of each leaf device.
515 */
516#define	VDEV_LABEL_START_SIZE	(2 * sizeof (vdev_label_t) + VDEV_BOOT_SIZE)
517#define	VDEV_LABEL_END_SIZE	(2 * sizeof (vdev_label_t))
518#define	VDEV_LABELS		4
519
520enum zio_checksum {
521	ZIO_CHECKSUM_INHERIT = 0,
522	ZIO_CHECKSUM_ON,
523	ZIO_CHECKSUM_OFF,
524	ZIO_CHECKSUM_LABEL,
525	ZIO_CHECKSUM_GANG_HEADER,
526	ZIO_CHECKSUM_ZILOG,
527	ZIO_CHECKSUM_FLETCHER_2,
528	ZIO_CHECKSUM_FLETCHER_4,
529	ZIO_CHECKSUM_SHA256,
530	ZIO_CHECKSUM_ZILOG2,
531	ZIO_CHECKSUM_FUNCTIONS
532};
533
534#define	ZIO_CHECKSUM_ON_VALUE	ZIO_CHECKSUM_FLETCHER_4
535#define	ZIO_CHECKSUM_DEFAULT	ZIO_CHECKSUM_ON
536
537enum zio_compress {
538	ZIO_COMPRESS_INHERIT = 0,
539	ZIO_COMPRESS_ON,
540	ZIO_COMPRESS_OFF,
541	ZIO_COMPRESS_LZJB,
542	ZIO_COMPRESS_EMPTY,
543	ZIO_COMPRESS_GZIP_1,
544	ZIO_COMPRESS_GZIP_2,
545	ZIO_COMPRESS_GZIP_3,
546	ZIO_COMPRESS_GZIP_4,
547	ZIO_COMPRESS_GZIP_5,
548	ZIO_COMPRESS_GZIP_6,
549	ZIO_COMPRESS_GZIP_7,
550	ZIO_COMPRESS_GZIP_8,
551	ZIO_COMPRESS_GZIP_9,
552	ZIO_COMPRESS_ZLE,
553	ZIO_COMPRESS_LZ4,
554	ZIO_COMPRESS_FUNCTIONS
555};
556
557#define	ZIO_COMPRESS_ON_VALUE	ZIO_COMPRESS_LZJB
558#define	ZIO_COMPRESS_DEFAULT	ZIO_COMPRESS_OFF
559
560/* nvlist pack encoding */
561#define	NV_ENCODE_NATIVE	0
562#define	NV_ENCODE_XDR		1
563
564typedef enum {
565	DATA_TYPE_UNKNOWN = 0,
566	DATA_TYPE_BOOLEAN,
567	DATA_TYPE_BYTE,
568	DATA_TYPE_INT16,
569	DATA_TYPE_UINT16,
570	DATA_TYPE_INT32,
571	DATA_TYPE_UINT32,
572	DATA_TYPE_INT64,
573	DATA_TYPE_UINT64,
574	DATA_TYPE_STRING,
575	DATA_TYPE_BYTE_ARRAY,
576	DATA_TYPE_INT16_ARRAY,
577	DATA_TYPE_UINT16_ARRAY,
578	DATA_TYPE_INT32_ARRAY,
579	DATA_TYPE_UINT32_ARRAY,
580	DATA_TYPE_INT64_ARRAY,
581	DATA_TYPE_UINT64_ARRAY,
582	DATA_TYPE_STRING_ARRAY,
583	DATA_TYPE_HRTIME,
584	DATA_TYPE_NVLIST,
585	DATA_TYPE_NVLIST_ARRAY,
586	DATA_TYPE_BOOLEAN_VALUE,
587	DATA_TYPE_INT8,
588	DATA_TYPE_UINT8,
589	DATA_TYPE_BOOLEAN_ARRAY,
590	DATA_TYPE_INT8_ARRAY,
591	DATA_TYPE_UINT8_ARRAY
592} data_type_t;
593
594/*
595 * On-disk version number.
596 */
597#define	SPA_VERSION_1			1ULL
598#define	SPA_VERSION_2			2ULL
599#define	SPA_VERSION_3			3ULL
600#define	SPA_VERSION_4			4ULL
601#define	SPA_VERSION_5			5ULL
602#define	SPA_VERSION_6			6ULL
603#define	SPA_VERSION_7			7ULL
604#define	SPA_VERSION_8			8ULL
605#define	SPA_VERSION_9			9ULL
606#define	SPA_VERSION_10			10ULL
607#define	SPA_VERSION_11			11ULL
608#define	SPA_VERSION_12			12ULL
609#define	SPA_VERSION_13			13ULL
610#define	SPA_VERSION_14			14ULL
611#define	SPA_VERSION_15			15ULL
612#define	SPA_VERSION_16			16ULL
613#define	SPA_VERSION_17			17ULL
614#define	SPA_VERSION_18			18ULL
615#define	SPA_VERSION_19			19ULL
616#define	SPA_VERSION_20			20ULL
617#define	SPA_VERSION_21			21ULL
618#define	SPA_VERSION_22			22ULL
619#define	SPA_VERSION_23			23ULL
620#define	SPA_VERSION_24			24ULL
621#define	SPA_VERSION_25			25ULL
622#define	SPA_VERSION_26			26ULL
623#define	SPA_VERSION_27			27ULL
624#define	SPA_VERSION_28			28ULL
625#define	SPA_VERSION_5000		5000ULL
626
627/*
628 * When bumping up SPA_VERSION, make sure GRUB ZFS understands the on-disk
629 * format change. Go to usr/src/grub/grub-0.97/stage2/{zfs-include/, fsys_zfs*},
630 * and do the appropriate changes.  Also bump the version number in
631 * usr/src/grub/capability.
632 */
633#define	SPA_VERSION			SPA_VERSION_5000
634#define	SPA_VERSION_STRING		"5000"
635
636/*
637 * Symbolic names for the changes that caused a SPA_VERSION switch.
638 * Used in the code when checking for presence or absence of a feature.
639 * Feel free to define multiple symbolic names for each version if there
640 * were multiple changes to on-disk structures during that version.
641 *
642 * NOTE: When checking the current SPA_VERSION in your code, be sure
643 *       to use spa_version() since it reports the version of the
644 *       last synced uberblock.  Checking the in-flight version can
645 *       be dangerous in some cases.
646 */
647#define	SPA_VERSION_INITIAL		SPA_VERSION_1
648#define	SPA_VERSION_DITTO_BLOCKS	SPA_VERSION_2
649#define	SPA_VERSION_SPARES		SPA_VERSION_3
650#define	SPA_VERSION_RAID6		SPA_VERSION_3
651#define	SPA_VERSION_BPLIST_ACCOUNT	SPA_VERSION_3
652#define	SPA_VERSION_RAIDZ_DEFLATE	SPA_VERSION_3
653#define	SPA_VERSION_DNODE_BYTES		SPA_VERSION_3
654#define	SPA_VERSION_ZPOOL_HISTORY	SPA_VERSION_4
655#define	SPA_VERSION_GZIP_COMPRESSION	SPA_VERSION_5
656#define	SPA_VERSION_BOOTFS		SPA_VERSION_6
657#define	SPA_VERSION_SLOGS		SPA_VERSION_7
658#define	SPA_VERSION_DELEGATED_PERMS	SPA_VERSION_8
659#define	SPA_VERSION_FUID		SPA_VERSION_9
660#define	SPA_VERSION_REFRESERVATION	SPA_VERSION_9
661#define	SPA_VERSION_REFQUOTA		SPA_VERSION_9
662#define	SPA_VERSION_UNIQUE_ACCURATE	SPA_VERSION_9
663#define	SPA_VERSION_L2CACHE		SPA_VERSION_10
664#define	SPA_VERSION_NEXT_CLONES		SPA_VERSION_11
665#define	SPA_VERSION_ORIGIN		SPA_VERSION_11
666#define	SPA_VERSION_DSL_SCRUB		SPA_VERSION_11
667#define	SPA_VERSION_SNAP_PROPS		SPA_VERSION_12
668#define	SPA_VERSION_USED_BREAKDOWN	SPA_VERSION_13
669#define	SPA_VERSION_PASSTHROUGH_X	SPA_VERSION_14
670#define SPA_VERSION_USERSPACE		SPA_VERSION_15
671#define	SPA_VERSION_STMF_PROP		SPA_VERSION_16
672#define	SPA_VERSION_RAIDZ3		SPA_VERSION_17
673#define	SPA_VERSION_USERREFS		SPA_VERSION_18
674#define	SPA_VERSION_HOLES		SPA_VERSION_19
675#define	SPA_VERSION_ZLE_COMPRESSION	SPA_VERSION_20
676#define	SPA_VERSION_DEDUP		SPA_VERSION_21
677#define	SPA_VERSION_RECVD_PROPS		SPA_VERSION_22
678#define	SPA_VERSION_SLIM_ZIL		SPA_VERSION_23
679#define	SPA_VERSION_SA			SPA_VERSION_24
680#define	SPA_VERSION_SCAN		SPA_VERSION_25
681#define	SPA_VERSION_DIR_CLONES		SPA_VERSION_26
682#define	SPA_VERSION_DEADLISTS		SPA_VERSION_26
683#define	SPA_VERSION_FAST_SNAP		SPA_VERSION_27
684#define	SPA_VERSION_MULTI_REPLACE	SPA_VERSION_28
685#define	SPA_VERSION_BEFORE_FEATURES	SPA_VERSION_28
686#define	SPA_VERSION_FEATURES		SPA_VERSION_5000
687
688#define	SPA_VERSION_IS_SUPPORTED(v) \
689	(((v) >= SPA_VERSION_INITIAL && (v) <= SPA_VERSION_BEFORE_FEATURES) || \
690	((v) >= SPA_VERSION_FEATURES && (v) <= SPA_VERSION))
691
692/*
693 * The following are configuration names used in the nvlist describing a pool's
694 * configuration.
695 */
696#define	ZPOOL_CONFIG_VERSION		"version"
697#define	ZPOOL_CONFIG_POOL_NAME		"name"
698#define	ZPOOL_CONFIG_POOL_STATE		"state"
699#define	ZPOOL_CONFIG_POOL_TXG		"txg"
700#define	ZPOOL_CONFIG_POOL_GUID		"pool_guid"
701#define	ZPOOL_CONFIG_CREATE_TXG		"create_txg"
702#define	ZPOOL_CONFIG_TOP_GUID		"top_guid"
703#define	ZPOOL_CONFIG_VDEV_TREE		"vdev_tree"
704#define	ZPOOL_CONFIG_TYPE		"type"
705#define	ZPOOL_CONFIG_CHILDREN		"children"
706#define	ZPOOL_CONFIG_ID			"id"
707#define	ZPOOL_CONFIG_GUID		"guid"
708#define	ZPOOL_CONFIG_PATH		"path"
709#define	ZPOOL_CONFIG_DEVID		"devid"
710#define	ZPOOL_CONFIG_METASLAB_ARRAY	"metaslab_array"
711#define	ZPOOL_CONFIG_METASLAB_SHIFT	"metaslab_shift"
712#define	ZPOOL_CONFIG_ASHIFT		"ashift"
713#define	ZPOOL_CONFIG_ASIZE		"asize"
714#define	ZPOOL_CONFIG_DTL		"DTL"
715#define	ZPOOL_CONFIG_STATS		"stats"
716#define	ZPOOL_CONFIG_WHOLE_DISK		"whole_disk"
717#define	ZPOOL_CONFIG_ERRCOUNT		"error_count"
718#define	ZPOOL_CONFIG_NOT_PRESENT	"not_present"
719#define	ZPOOL_CONFIG_SPARES		"spares"
720#define	ZPOOL_CONFIG_IS_SPARE		"is_spare"
721#define	ZPOOL_CONFIG_NPARITY		"nparity"
722#define	ZPOOL_CONFIG_HOSTID		"hostid"
723#define	ZPOOL_CONFIG_HOSTNAME		"hostname"
724#define	ZPOOL_CONFIG_IS_LOG		"is_log"
725#define	ZPOOL_CONFIG_TIMESTAMP		"timestamp" /* not stored on disk */
726#define	ZPOOL_CONFIG_FEATURES_FOR_READ	"features_for_read"
727
728/*
729 * The persistent vdev state is stored as separate values rather than a single
730 * 'vdev_state' entry.  This is because a device can be in multiple states, such
731 * as offline and degraded.
732 */
733#define	ZPOOL_CONFIG_OFFLINE            "offline"
734#define	ZPOOL_CONFIG_FAULTED            "faulted"
735#define	ZPOOL_CONFIG_DEGRADED           "degraded"
736#define	ZPOOL_CONFIG_REMOVED            "removed"
737#define	ZPOOL_CONFIG_FRU		"fru"
738#define	ZPOOL_CONFIG_AUX_STATE		"aux_state"
739
740#define	VDEV_TYPE_ROOT			"root"
741#define	VDEV_TYPE_MIRROR		"mirror"
742#define	VDEV_TYPE_REPLACING		"replacing"
743#define	VDEV_TYPE_RAIDZ			"raidz"
744#define	VDEV_TYPE_DISK			"disk"
745#define	VDEV_TYPE_FILE			"file"
746#define	VDEV_TYPE_MISSING		"missing"
747#define	VDEV_TYPE_HOLE			"hole"
748#define	VDEV_TYPE_SPARE			"spare"
749#define	VDEV_TYPE_LOG			"log"
750#define	VDEV_TYPE_L2CACHE		"l2cache"
751
752/*
753 * This is needed in userland to report the minimum necessary device size.
754 */
755#define	SPA_MINDEVSIZE		(64ULL << 20)
756
757/*
758 * The location of the pool configuration repository, shared between kernel and
759 * userland.
760 */
761#define	ZPOOL_CACHE		"/boot/zfs/zpool.cache"
762
763/*
764 * vdev states are ordered from least to most healthy.
765 * A vdev that's CANT_OPEN or below is considered unusable.
766 */
767typedef enum vdev_state {
768	VDEV_STATE_UNKNOWN = 0,	/* Uninitialized vdev			*/
769	VDEV_STATE_CLOSED,	/* Not currently open			*/
770	VDEV_STATE_OFFLINE,	/* Not allowed to open			*/
771	VDEV_STATE_REMOVED,	/* Explicitly removed from system	*/
772	VDEV_STATE_CANT_OPEN,	/* Tried to open, but failed		*/
773	VDEV_STATE_FAULTED,	/* External request to fault device	*/
774	VDEV_STATE_DEGRADED,	/* Replicated vdev with unhealthy kids	*/
775	VDEV_STATE_HEALTHY	/* Presumed good			*/
776} vdev_state_t;
777
778/*
779 * vdev aux states.  When a vdev is in the CANT_OPEN state, the aux field
780 * of the vdev stats structure uses these constants to distinguish why.
781 */
782typedef enum vdev_aux {
783	VDEV_AUX_NONE,		/* no error				*/
784	VDEV_AUX_OPEN_FAILED,	/* ldi_open_*() or vn_open() failed	*/
785	VDEV_AUX_CORRUPT_DATA,	/* bad label or disk contents		*/
786	VDEV_AUX_NO_REPLICAS,	/* insufficient number of replicas	*/
787	VDEV_AUX_BAD_GUID_SUM,	/* vdev guid sum doesn't match		*/
788	VDEV_AUX_TOO_SMALL,	/* vdev size is too small		*/
789	VDEV_AUX_BAD_LABEL,	/* the label is OK but invalid		*/
790	VDEV_AUX_VERSION_NEWER,	/* on-disk version is too new		*/
791	VDEV_AUX_VERSION_OLDER,	/* on-disk version is too old		*/
792	VDEV_AUX_SPARED		/* hot spare used in another pool	*/
793} vdev_aux_t;
794
795/*
796 * pool state.  The following states are written to disk as part of the normal
797 * SPA lifecycle: ACTIVE, EXPORTED, DESTROYED, SPARE.  The remaining states are
798 * software abstractions used at various levels to communicate pool state.
799 */
800typedef enum pool_state {
801	POOL_STATE_ACTIVE = 0,		/* In active use		*/
802	POOL_STATE_EXPORTED,		/* Explicitly exported		*/
803	POOL_STATE_DESTROYED,		/* Explicitly destroyed		*/
804	POOL_STATE_SPARE,		/* Reserved for hot spare use	*/
805	POOL_STATE_UNINITIALIZED,	/* Internal spa_t state		*/
806	POOL_STATE_UNAVAIL,		/* Internal libzfs state	*/
807	POOL_STATE_POTENTIALLY_ACTIVE	/* Internal libzfs state	*/
808} pool_state_t;
809
810/*
811 * The uberblock version is incremented whenever an incompatible on-disk
812 * format change is made to the SPA, DMU, or ZAP.
813 *
814 * Note: the first two fields should never be moved.  When a storage pool
815 * is opened, the uberblock must be read off the disk before the version
816 * can be checked.  If the ub_version field is moved, we may not detect
817 * version mismatch.  If the ub_magic field is moved, applications that
818 * expect the magic number in the first word won't work.
819 */
820#define	UBERBLOCK_MAGIC		0x00bab10c		/* oo-ba-bloc!	*/
821#define	UBERBLOCK_SHIFT		10			/* up to 1K	*/
822
823struct uberblock {
824	uint64_t	ub_magic;	/* UBERBLOCK_MAGIC		*/
825	uint64_t	ub_version;	/* SPA_VERSION			*/
826	uint64_t	ub_txg;		/* txg of last sync		*/
827	uint64_t	ub_guid_sum;	/* sum of all vdev guids	*/
828	uint64_t	ub_timestamp;	/* UTC time of last sync	*/
829	blkptr_t	ub_rootbp;	/* MOS objset_phys_t		*/
830};
831
832/*
833 * Flags.
834 */
835#define	DNODE_MUST_BE_ALLOCATED	1
836#define	DNODE_MUST_BE_FREE	2
837
838/*
839 * Fixed constants.
840 */
841#define	DNODE_SHIFT		9	/* 512 bytes */
842#define	DN_MIN_INDBLKSHIFT	12	/* 4k */
843#define	DN_MAX_INDBLKSHIFT	14	/* 16k */
844#define	DNODE_BLOCK_SHIFT	14	/* 16k */
845#define	DNODE_CORE_SIZE		64	/* 64 bytes for dnode sans blkptrs */
846#define	DN_MAX_OBJECT_SHIFT	48	/* 256 trillion (zfs_fid_t limit) */
847#define	DN_MAX_OFFSET_SHIFT	64	/* 2^64 bytes in a dnode */
848
849/*
850 * Derived constants.
851 */
852#define	DNODE_SIZE	(1 << DNODE_SHIFT)
853#define	DN_MAX_NBLKPTR	((DNODE_SIZE - DNODE_CORE_SIZE) >> SPA_BLKPTRSHIFT)
854#define	DN_MAX_BONUSLEN	(DNODE_SIZE - DNODE_CORE_SIZE - (1 << SPA_BLKPTRSHIFT))
855#define	DN_MAX_OBJECT	(1ULL << DN_MAX_OBJECT_SHIFT)
856
857#define	DNODES_PER_BLOCK_SHIFT	(DNODE_BLOCK_SHIFT - DNODE_SHIFT)
858#define	DNODES_PER_BLOCK	(1ULL << DNODES_PER_BLOCK_SHIFT)
859#define	DNODES_PER_LEVEL_SHIFT	(DN_MAX_INDBLKSHIFT - SPA_BLKPTRSHIFT)
860
861/* The +2 here is a cheesy way to round up */
862#define	DN_MAX_LEVELS	(2 + ((DN_MAX_OFFSET_SHIFT - SPA_MINBLOCKSHIFT) / \
863	(DN_MIN_INDBLKSHIFT - SPA_BLKPTRSHIFT)))
864
865#define	DN_BONUS(dnp)	((void*)((dnp)->dn_bonus + \
866	(((dnp)->dn_nblkptr - 1) * sizeof (blkptr_t))))
867
868#define	DN_USED_BYTES(dnp) (((dnp)->dn_flags & DNODE_FLAG_USED_BYTES) ? \
869	(dnp)->dn_used : (dnp)->dn_used << SPA_MINBLOCKSHIFT)
870
871#define	EPB(blkshift, typeshift)	(1 << (blkshift - typeshift))
872
873/* Is dn_used in bytes?  if not, it's in multiples of SPA_MINBLOCKSIZE */
874#define	DNODE_FLAG_USED_BYTES		(1<<0)
875#define	DNODE_FLAG_USERUSED_ACCOUNTED	(1<<1)
876
877/* Does dnode have a SA spill blkptr in bonus? */
878#define	DNODE_FLAG_SPILL_BLKPTR	(1<<2)
879
880typedef struct dnode_phys {
881	uint8_t dn_type;		/* dmu_object_type_t */
882	uint8_t dn_indblkshift;		/* ln2(indirect block size) */
883	uint8_t dn_nlevels;		/* 1=dn_blkptr->data blocks */
884	uint8_t dn_nblkptr;		/* length of dn_blkptr */
885	uint8_t dn_bonustype;		/* type of data in bonus buffer */
886	uint8_t	dn_checksum;		/* ZIO_CHECKSUM type */
887	uint8_t	dn_compress;		/* ZIO_COMPRESS type */
888	uint8_t dn_flags;		/* DNODE_FLAG_* */
889	uint16_t dn_datablkszsec;	/* data block size in 512b sectors */
890	uint16_t dn_bonuslen;		/* length of dn_bonus */
891	uint8_t dn_pad2[4];
892
893	/* accounting is protected by dn_dirty_mtx */
894	uint64_t dn_maxblkid;		/* largest allocated block ID */
895	uint64_t dn_used;		/* bytes (or sectors) of disk space */
896
897	uint64_t dn_pad3[4];
898
899	blkptr_t dn_blkptr[1];
900	uint8_t dn_bonus[DN_MAX_BONUSLEN - sizeof (blkptr_t)];
901	blkptr_t dn_spill;
902} dnode_phys_t;
903
904typedef enum dmu_object_byteswap {
905	DMU_BSWAP_UINT8,
906	DMU_BSWAP_UINT16,
907	DMU_BSWAP_UINT32,
908	DMU_BSWAP_UINT64,
909	DMU_BSWAP_ZAP,
910	DMU_BSWAP_DNODE,
911	DMU_BSWAP_OBJSET,
912	DMU_BSWAP_ZNODE,
913	DMU_BSWAP_OLDACL,
914	DMU_BSWAP_ACL,
915	/*
916	 * Allocating a new byteswap type number makes the on-disk format
917	 * incompatible with any other format that uses the same number.
918	 *
919	 * Data can usually be structured to work with one of the
920	 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
921	 */
922	DMU_BSWAP_NUMFUNCS
923} dmu_object_byteswap_t;
924
925#define	DMU_OT_NEWTYPE 0x80
926#define	DMU_OT_METADATA 0x40
927#define	DMU_OT_BYTESWAP_MASK 0x3f
928
929/*
930 * Defines a uint8_t object type. Object types specify if the data
931 * in the object is metadata (boolean) and how to byteswap the data
932 * (dmu_object_byteswap_t).
933 */
934#define	DMU_OT(byteswap, metadata) \
935	(DMU_OT_NEWTYPE | \
936	((metadata) ? DMU_OT_METADATA : 0) | \
937	((byteswap) & DMU_OT_BYTESWAP_MASK))
938
939typedef enum dmu_object_type {
940	DMU_OT_NONE,
941	/* general: */
942	DMU_OT_OBJECT_DIRECTORY,	/* ZAP */
943	DMU_OT_OBJECT_ARRAY,		/* UINT64 */
944	DMU_OT_PACKED_NVLIST,		/* UINT8 (XDR by nvlist_pack/unpack) */
945	DMU_OT_PACKED_NVLIST_SIZE,	/* UINT64 */
946	DMU_OT_BPLIST,			/* UINT64 */
947	DMU_OT_BPLIST_HDR,		/* UINT64 */
948	/* spa: */
949	DMU_OT_SPACE_MAP_HEADER,	/* UINT64 */
950	DMU_OT_SPACE_MAP,		/* UINT64 */
951	/* zil: */
952	DMU_OT_INTENT_LOG,		/* UINT64 */
953	/* dmu: */
954	DMU_OT_DNODE,			/* DNODE */
955	DMU_OT_OBJSET,			/* OBJSET */
956	/* dsl: */
957	DMU_OT_DSL_DIR,			/* UINT64 */
958	DMU_OT_DSL_DIR_CHILD_MAP,	/* ZAP */
959	DMU_OT_DSL_DS_SNAP_MAP,		/* ZAP */
960	DMU_OT_DSL_PROPS,		/* ZAP */
961	DMU_OT_DSL_DATASET,		/* UINT64 */
962	/* zpl: */
963	DMU_OT_ZNODE,			/* ZNODE */
964	DMU_OT_OLDACL,			/* Old ACL */
965	DMU_OT_PLAIN_FILE_CONTENTS,	/* UINT8 */
966	DMU_OT_DIRECTORY_CONTENTS,	/* ZAP */
967	DMU_OT_MASTER_NODE,		/* ZAP */
968	DMU_OT_UNLINKED_SET,		/* ZAP */
969	/* zvol: */
970	DMU_OT_ZVOL,			/* UINT8 */
971	DMU_OT_ZVOL_PROP,		/* ZAP */
972	/* other; for testing only! */
973	DMU_OT_PLAIN_OTHER,		/* UINT8 */
974	DMU_OT_UINT64_OTHER,		/* UINT64 */
975	DMU_OT_ZAP_OTHER,		/* ZAP */
976	/* new object types: */
977	DMU_OT_ERROR_LOG,		/* ZAP */
978	DMU_OT_SPA_HISTORY,		/* UINT8 */
979	DMU_OT_SPA_HISTORY_OFFSETS,	/* spa_his_phys_t */
980	DMU_OT_POOL_PROPS,		/* ZAP */
981	DMU_OT_DSL_PERMS,		/* ZAP */
982	DMU_OT_ACL,			/* ACL */
983	DMU_OT_SYSACL,			/* SYSACL */
984	DMU_OT_FUID,			/* FUID table (Packed NVLIST UINT8) */
985	DMU_OT_FUID_SIZE,		/* FUID table size UINT64 */
986	DMU_OT_NEXT_CLONES,		/* ZAP */
987	DMU_OT_SCAN_QUEUE,		/* ZAP */
988	DMU_OT_USERGROUP_USED,		/* ZAP */
989	DMU_OT_USERGROUP_QUOTA,		/* ZAP */
990	DMU_OT_USERREFS,		/* ZAP */
991	DMU_OT_DDT_ZAP,			/* ZAP */
992	DMU_OT_DDT_STATS,		/* ZAP */
993	DMU_OT_SA,			/* System attr */
994	DMU_OT_SA_MASTER_NODE,		/* ZAP */
995	DMU_OT_SA_ATTR_REGISTRATION,	/* ZAP */
996	DMU_OT_SA_ATTR_LAYOUTS,		/* ZAP */
997	DMU_OT_SCAN_XLATE,		/* ZAP */
998	DMU_OT_DEDUP,			/* fake dedup BP from ddt_bp_create() */
999	DMU_OT_NUMTYPES,
1000
1001	/*
1002	 * Names for valid types declared with DMU_OT().
1003	 */
1004	DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
1005	DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
1006	DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
1007	DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
1008	DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
1009	DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
1010	DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
1011	DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
1012	DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
1013	DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE)
1014} dmu_object_type_t;
1015
1016typedef enum dmu_objset_type {
1017	DMU_OST_NONE,
1018	DMU_OST_META,
1019	DMU_OST_ZFS,
1020	DMU_OST_ZVOL,
1021	DMU_OST_OTHER,			/* For testing only! */
1022	DMU_OST_ANY,			/* Be careful! */
1023	DMU_OST_NUMTYPES
1024} dmu_objset_type_t;
1025
1026/*
1027 * header for all bonus and spill buffers.
1028 * The header has a fixed portion with a variable number
1029 * of "lengths" depending on the number of variable sized
1030 * attribues which are determined by the "layout number"
1031 */
1032
1033#define	SA_MAGIC	0x2F505A  /* ZFS SA */
1034typedef struct sa_hdr_phys {
1035	uint32_t sa_magic;
1036	uint16_t sa_layout_info;  /* Encoded with hdrsize and layout number */
1037	uint16_t sa_lengths[1];	/* optional sizes for variable length attrs */
1038	/* ... Data follows the lengths.  */
1039} sa_hdr_phys_t;
1040
1041/*
1042 * sa_hdr_phys -> sa_layout_info
1043 *
1044 * 16      10       0
1045 * +--------+-------+
1046 * | hdrsz  |layout |
1047 * +--------+-------+
1048 *
1049 * Bits 0-10 are the layout number
1050 * Bits 11-16 are the size of the header.
1051 * The hdrsize is the number * 8
1052 *
1053 * For example.
1054 * hdrsz of 1 ==> 8 byte header
1055 *          2 ==> 16 byte header
1056 *
1057 */
1058
1059#define	SA_HDR_LAYOUT_NUM(hdr) BF32_GET(hdr->sa_layout_info, 0, 10)
1060#define	SA_HDR_SIZE(hdr) BF32_GET_SB(hdr->sa_layout_info, 10, 16, 3, 0)
1061#define	SA_HDR_LAYOUT_INFO_ENCODE(x, num, size) \
1062{ \
1063	BF32_SET_SB(x, 10, 6, 3, 0, size); \
1064	BF32_SET(x, 0, 10, num); \
1065}
1066
1067#define	SA_MODE_OFFSET		0
1068#define	SA_SIZE_OFFSET		8
1069#define	SA_GEN_OFFSET		16
1070#define	SA_UID_OFFSET		24
1071#define	SA_GID_OFFSET		32
1072#define	SA_PARENT_OFFSET	40
1073
1074/*
1075 * Intent log header - this on disk structure holds fields to manage
1076 * the log.  All fields are 64 bit to easily handle cross architectures.
1077 */
1078typedef struct zil_header {
1079	uint64_t zh_claim_txg;	/* txg in which log blocks were claimed */
1080	uint64_t zh_replay_seq;	/* highest replayed sequence number */
1081	blkptr_t zh_log;	/* log chain */
1082	uint64_t zh_claim_seq;	/* highest claimed sequence number */
1083	uint64_t zh_pad[5];
1084} zil_header_t;
1085
1086#define	OBJSET_PHYS_SIZE 2048
1087
1088typedef struct objset_phys {
1089	dnode_phys_t os_meta_dnode;
1090	zil_header_t os_zil_header;
1091	uint64_t os_type;
1092	uint64_t os_flags;
1093	char os_pad[OBJSET_PHYS_SIZE - sizeof (dnode_phys_t)*3 -
1094	    sizeof (zil_header_t) - sizeof (uint64_t)*2];
1095	dnode_phys_t os_userused_dnode;
1096	dnode_phys_t os_groupused_dnode;
1097} objset_phys_t;
1098
1099typedef struct dsl_dir_phys {
1100	uint64_t dd_creation_time; /* not actually used */
1101	uint64_t dd_head_dataset_obj;
1102	uint64_t dd_parent_obj;
1103	uint64_t dd_clone_parent_obj;
1104	uint64_t dd_child_dir_zapobj;
1105	/*
1106	 * how much space our children are accounting for; for leaf
1107	 * datasets, == physical space used by fs + snaps
1108	 */
1109	uint64_t dd_used_bytes;
1110	uint64_t dd_compressed_bytes;
1111	uint64_t dd_uncompressed_bytes;
1112	/* Administrative quota setting */
1113	uint64_t dd_quota;
1114	/* Administrative reservation setting */
1115	uint64_t dd_reserved;
1116	uint64_t dd_props_zapobj;
1117	uint64_t dd_pad[21]; /* pad out to 256 bytes for good measure */
1118} dsl_dir_phys_t;
1119
1120typedef struct dsl_dataset_phys {
1121	uint64_t ds_dir_obj;
1122	uint64_t ds_prev_snap_obj;
1123	uint64_t ds_prev_snap_txg;
1124	uint64_t ds_next_snap_obj;
1125	uint64_t ds_snapnames_zapobj;	/* zap obj of snaps; ==0 for snaps */
1126	uint64_t ds_num_children;	/* clone/snap children; ==0 for head */
1127	uint64_t ds_creation_time;	/* seconds since 1970 */
1128	uint64_t ds_creation_txg;
1129	uint64_t ds_deadlist_obj;
1130	uint64_t ds_used_bytes;
1131	uint64_t ds_compressed_bytes;
1132	uint64_t ds_uncompressed_bytes;
1133	uint64_t ds_unique_bytes;	/* only relevant to snapshots */
1134	/*
1135	 * The ds_fsid_guid is a 56-bit ID that can change to avoid
1136	 * collisions.  The ds_guid is a 64-bit ID that will never
1137	 * change, so there is a small probability that it will collide.
1138	 */
1139	uint64_t ds_fsid_guid;
1140	uint64_t ds_guid;
1141	uint64_t ds_flags;
1142	blkptr_t ds_bp;
1143	uint64_t ds_pad[8]; /* pad out to 320 bytes for good measure */
1144} dsl_dataset_phys_t;
1145
1146/*
1147 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
1148 */
1149#define	DMU_POOL_DIRECTORY_OBJECT	1
1150#define	DMU_POOL_CONFIG			"config"
1151#define	DMU_POOL_FEATURES_FOR_READ	"features_for_read"
1152#define	DMU_POOL_ROOT_DATASET		"root_dataset"
1153#define	DMU_POOL_SYNC_BPLIST		"sync_bplist"
1154#define	DMU_POOL_ERRLOG_SCRUB		"errlog_scrub"
1155#define	DMU_POOL_ERRLOG_LAST		"errlog_last"
1156#define	DMU_POOL_SPARES			"spares"
1157#define	DMU_POOL_DEFLATE		"deflate"
1158#define	DMU_POOL_HISTORY		"history"
1159#define	DMU_POOL_PROPS			"pool_props"
1160
1161#define	ZAP_MAGIC 0x2F52AB2ABULL
1162
1163#define	FZAP_BLOCK_SHIFT(zap)	((zap)->zap_block_shift)
1164
1165#define	ZAP_MAXCD		(uint32_t)(-1)
1166#define	ZAP_HASHBITS		28
1167#define	MZAP_ENT_LEN		64
1168#define	MZAP_NAME_LEN		(MZAP_ENT_LEN - 8 - 4 - 2)
1169#define	MZAP_MAX_BLKSHIFT	SPA_MAXBLOCKSHIFT
1170#define	MZAP_MAX_BLKSZ		(1 << MZAP_MAX_BLKSHIFT)
1171
1172typedef struct mzap_ent_phys {
1173	uint64_t mze_value;
1174	uint32_t mze_cd;
1175	uint16_t mze_pad;	/* in case we want to chain them someday */
1176	char mze_name[MZAP_NAME_LEN];
1177} mzap_ent_phys_t;
1178
1179typedef struct mzap_phys {
1180	uint64_t mz_block_type;	/* ZBT_MICRO */
1181	uint64_t mz_salt;
1182	uint64_t mz_pad[6];
1183	mzap_ent_phys_t mz_chunk[1];
1184	/* actually variable size depending on block size */
1185} mzap_phys_t;
1186
1187/*
1188 * The (fat) zap is stored in one object. It is an array of
1189 * 1<<FZAP_BLOCK_SHIFT byte blocks. The layout looks like one of:
1190 *
1191 * ptrtbl fits in first block:
1192 * 	[zap_phys_t zap_ptrtbl_shift < 6] [zap_leaf_t] ...
1193 *
1194 * ptrtbl too big for first block:
1195 * 	[zap_phys_t zap_ptrtbl_shift >= 6] [zap_leaf_t] [ptrtbl] ...
1196 *
1197 */
1198
1199#define	ZBT_LEAF		((1ULL << 63) + 0)
1200#define	ZBT_HEADER		((1ULL << 63) + 1)
1201#define	ZBT_MICRO		((1ULL << 63) + 3)
1202/* any other values are ptrtbl blocks */
1203
1204/*
1205 * the embedded pointer table takes up half a block:
1206 * block size / entry size (2^3) / 2
1207 */
1208#define	ZAP_EMBEDDED_PTRTBL_SHIFT(zap) (FZAP_BLOCK_SHIFT(zap) - 3 - 1)
1209
1210/*
1211 * The embedded pointer table starts half-way through the block.  Since
1212 * the pointer table itself is half the block, it starts at (64-bit)
1213 * word number (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)).
1214 */
1215#define	ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) \
1216	((uint64_t *)(zap)->zap_phys) \
1217	[(idx) + (1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap))]
1218
1219/*
1220 * TAKE NOTE:
1221 * If zap_phys_t is modified, zap_byteswap() must be modified.
1222 */
1223typedef struct zap_phys {
1224	uint64_t zap_block_type;	/* ZBT_HEADER */
1225	uint64_t zap_magic;		/* ZAP_MAGIC */
1226
1227	struct zap_table_phys {
1228		uint64_t zt_blk;	/* starting block number */
1229		uint64_t zt_numblks;	/* number of blocks */
1230		uint64_t zt_shift;	/* bits to index it */
1231		uint64_t zt_nextblk;	/* next (larger) copy start block */
1232		uint64_t zt_blks_copied; /* number source blocks copied */
1233	} zap_ptrtbl;
1234
1235	uint64_t zap_freeblk;		/* the next free block */
1236	uint64_t zap_num_leafs;		/* number of leafs */
1237	uint64_t zap_num_entries;	/* number of entries */
1238	uint64_t zap_salt;		/* salt to stir into hash function */
1239	/*
1240	 * This structure is followed by padding, and then the embedded
1241	 * pointer table.  The embedded pointer table takes up second
1242	 * half of the block.  It is accessed using the
1243	 * ZAP_EMBEDDED_PTRTBL_ENT() macro.
1244	 */
1245} zap_phys_t;
1246
1247typedef struct zap_table_phys zap_table_phys_t;
1248
1249typedef struct fat_zap {
1250	int zap_block_shift;			/* block size shift */
1251	zap_phys_t *zap_phys;
1252} fat_zap_t;
1253
1254#define	ZAP_LEAF_MAGIC 0x2AB1EAF
1255
1256/* chunk size = 24 bytes */
1257#define	ZAP_LEAF_CHUNKSIZE 24
1258
1259/*
1260 * The amount of space available for chunks is:
1261 * block size (1<<l->l_bs) - hash entry size (2) * number of hash
1262 * entries - header space (2*chunksize)
1263 */
1264#define	ZAP_LEAF_NUMCHUNKS(l) \
1265	(((1<<(l)->l_bs) - 2*ZAP_LEAF_HASH_NUMENTRIES(l)) / \
1266	ZAP_LEAF_CHUNKSIZE - 2)
1267
1268/*
1269 * The amount of space within the chunk available for the array is:
1270 * chunk size - space for type (1) - space for next pointer (2)
1271 */
1272#define	ZAP_LEAF_ARRAY_BYTES (ZAP_LEAF_CHUNKSIZE - 3)
1273
1274#define	ZAP_LEAF_ARRAY_NCHUNKS(bytes) \
1275	(((bytes)+ZAP_LEAF_ARRAY_BYTES-1)/ZAP_LEAF_ARRAY_BYTES)
1276
1277/*
1278 * Low water mark:  when there are only this many chunks free, start
1279 * growing the ptrtbl.  Ideally, this should be larger than a
1280 * "reasonably-sized" entry.  20 chunks is more than enough for the
1281 * largest directory entry (MAXNAMELEN (256) byte name, 8-byte value),
1282 * while still being only around 3% for 16k blocks.
1283 */
1284#define	ZAP_LEAF_LOW_WATER (20)
1285
1286/*
1287 * The leaf hash table has block size / 2^5 (32) number of entries,
1288 * which should be more than enough for the maximum number of entries,
1289 * which is less than block size / CHUNKSIZE (24) / minimum number of
1290 * chunks per entry (3).
1291 */
1292#define	ZAP_LEAF_HASH_SHIFT(l) ((l)->l_bs - 5)
1293#define	ZAP_LEAF_HASH_NUMENTRIES(l) (1 << ZAP_LEAF_HASH_SHIFT(l))
1294
1295/*
1296 * The chunks start immediately after the hash table.  The end of the
1297 * hash table is at l_hash + HASH_NUMENTRIES, which we simply cast to a
1298 * chunk_t.
1299 */
1300#define	ZAP_LEAF_CHUNK(l, idx) \
1301	((zap_leaf_chunk_t *) \
1302	((l)->l_phys->l_hash + ZAP_LEAF_HASH_NUMENTRIES(l)))[idx]
1303#define	ZAP_LEAF_ENTRY(l, idx) (&ZAP_LEAF_CHUNK(l, idx).l_entry)
1304
1305typedef enum zap_chunk_type {
1306	ZAP_CHUNK_FREE = 253,
1307	ZAP_CHUNK_ENTRY = 252,
1308	ZAP_CHUNK_ARRAY = 251,
1309	ZAP_CHUNK_TYPE_MAX = 250
1310} zap_chunk_type_t;
1311
1312/*
1313 * TAKE NOTE:
1314 * If zap_leaf_phys_t is modified, zap_leaf_byteswap() must be modified.
1315 */
1316typedef struct zap_leaf_phys {
1317	struct zap_leaf_header {
1318		uint64_t lh_block_type;		/* ZBT_LEAF */
1319		uint64_t lh_pad1;
1320		uint64_t lh_prefix;		/* hash prefix of this leaf */
1321		uint32_t lh_magic;		/* ZAP_LEAF_MAGIC */
1322		uint16_t lh_nfree;		/* number free chunks */
1323		uint16_t lh_nentries;		/* number of entries */
1324		uint16_t lh_prefix_len;		/* num bits used to id this */
1325
1326/* above is accessable to zap, below is zap_leaf private */
1327
1328		uint16_t lh_freelist;		/* chunk head of free list */
1329		uint8_t lh_pad2[12];
1330	} l_hdr; /* 2 24-byte chunks */
1331
1332	/*
1333	 * The header is followed by a hash table with
1334	 * ZAP_LEAF_HASH_NUMENTRIES(zap) entries.  The hash table is
1335	 * followed by an array of ZAP_LEAF_NUMCHUNKS(zap)
1336	 * zap_leaf_chunk structures.  These structures are accessed
1337	 * with the ZAP_LEAF_CHUNK() macro.
1338	 */
1339
1340	uint16_t l_hash[1];
1341} zap_leaf_phys_t;
1342
1343typedef union zap_leaf_chunk {
1344	struct zap_leaf_entry {
1345		uint8_t le_type; 		/* always ZAP_CHUNK_ENTRY */
1346		uint8_t le_value_intlen;	/* size of ints */
1347		uint16_t le_next;		/* next entry in hash chain */
1348		uint16_t le_name_chunk;		/* first chunk of the name */
1349		uint16_t le_name_numints;	/* bytes in name, incl null */
1350		uint16_t le_value_chunk;	/* first chunk of the value */
1351		uint16_t le_value_numints;	/* value length in ints */
1352		uint32_t le_cd;			/* collision differentiator */
1353		uint64_t le_hash;		/* hash value of the name */
1354	} l_entry;
1355	struct zap_leaf_array {
1356		uint8_t la_type;		/* always ZAP_CHUNK_ARRAY */
1357		uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
1358		uint16_t la_next;		/* next blk or CHAIN_END */
1359	} l_array;
1360	struct zap_leaf_free {
1361		uint8_t lf_type;		/* always ZAP_CHUNK_FREE */
1362		uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
1363		uint16_t lf_next;	/* next in free list, or CHAIN_END */
1364	} l_free;
1365} zap_leaf_chunk_t;
1366
1367typedef struct zap_leaf {
1368	int l_bs;			/* block size shift */
1369	zap_leaf_phys_t *l_phys;
1370} zap_leaf_t;
1371
1372/*
1373 * Define special zfs pflags
1374 */
1375#define	ZFS_XATTR	0x1		/* is an extended attribute */
1376#define	ZFS_INHERIT_ACE	0x2		/* ace has inheritable ACEs */
1377#define	ZFS_ACL_TRIVIAL 0x4		/* files ACL is trivial */
1378
1379#define	MASTER_NODE_OBJ	1
1380
1381/*
1382 * special attributes for master node.
1383 */
1384
1385#define	ZFS_FSID		"FSID"
1386#define	ZFS_UNLINKED_SET	"DELETE_QUEUE"
1387#define	ZFS_ROOT_OBJ		"ROOT"
1388#define	ZPL_VERSION_OBJ		"VERSION"
1389#define	ZFS_PROP_BLOCKPERPAGE	"BLOCKPERPAGE"
1390#define	ZFS_PROP_NOGROWBLOCKS	"NOGROWBLOCKS"
1391
1392#define	ZFS_FLAG_BLOCKPERPAGE	0x1
1393#define	ZFS_FLAG_NOGROWBLOCKS	0x2
1394
1395/*
1396 * ZPL version - rev'd whenever an incompatible on-disk format change
1397 * occurs.  Independent of SPA/DMU/ZAP versioning.
1398 */
1399
1400#define	ZPL_VERSION		1ULL
1401
1402/*
1403 * The directory entry has the type (currently unused on Solaris) in the
1404 * top 4 bits, and the object number in the low 48 bits.  The "middle"
1405 * 12 bits are unused.
1406 */
1407#define	ZFS_DIRENT_TYPE(de) BF64_GET(de, 60, 4)
1408#define	ZFS_DIRENT_OBJ(de) BF64_GET(de, 0, 48)
1409#define	ZFS_DIRENT_MAKE(type, obj) (((uint64_t)type << 60) | obj)
1410
1411typedef struct ace {
1412	uid_t		a_who;		/* uid or gid */
1413	uint32_t	a_access_mask;	/* read,write,... */
1414	uint16_t	a_flags;	/* see below */
1415	uint16_t	a_type;		/* allow or deny */
1416} ace_t;
1417
1418#define ACE_SLOT_CNT	6
1419
1420typedef struct zfs_znode_acl {
1421	uint64_t	z_acl_extern_obj;	  /* ext acl pieces */
1422	uint32_t	z_acl_count;		  /* Number of ACEs */
1423	uint16_t	z_acl_version;		  /* acl version */
1424	uint16_t	z_acl_pad;		  /* pad */
1425	ace_t		z_ace_data[ACE_SLOT_CNT]; /* 6 standard ACEs */
1426} zfs_znode_acl_t;
1427
1428/*
1429 * This is the persistent portion of the znode.  It is stored
1430 * in the "bonus buffer" of the file.  Short symbolic links
1431 * are also stored in the bonus buffer.
1432 */
1433typedef struct znode_phys {
1434	uint64_t zp_atime[2];		/*  0 - last file access time */
1435	uint64_t zp_mtime[2];		/* 16 - last file modification time */
1436	uint64_t zp_ctime[2];		/* 32 - last file change time */
1437	uint64_t zp_crtime[2];		/* 48 - creation time */
1438	uint64_t zp_gen;		/* 64 - generation (txg of creation) */
1439	uint64_t zp_mode;		/* 72 - file mode bits */
1440	uint64_t zp_size;		/* 80 - size of file */
1441	uint64_t zp_parent;		/* 88 - directory parent (`..') */
1442	uint64_t zp_links;		/* 96 - number of links to file */
1443	uint64_t zp_xattr;		/* 104 - DMU object for xattrs */
1444	uint64_t zp_rdev;		/* 112 - dev_t for VBLK & VCHR files */
1445	uint64_t zp_flags;		/* 120 - persistent flags */
1446	uint64_t zp_uid;		/* 128 - file owner */
1447	uint64_t zp_gid;		/* 136 - owning group */
1448	uint64_t zp_pad[4];		/* 144 - future */
1449	zfs_znode_acl_t zp_acl;		/* 176 - 263 ACL */
1450	/*
1451	 * Data may pad out any remaining bytes in the znode buffer, eg:
1452	 *
1453	 * |<---------------------- dnode_phys (512) ------------------------>|
1454	 * |<-- dnode (192) --->|<----------- "bonus" buffer (320) ---------->|
1455	 *			|<---- znode (264) ---->|<---- data (56) ---->|
1456	 *
1457	 * At present, we only use this space to store symbolic links.
1458	 */
1459} znode_phys_t;
1460
1461/*
1462 * In-core vdev representation.
1463 */
1464struct vdev;
1465typedef int vdev_phys_read_t(struct vdev *vdev, void *priv,
1466    off_t offset, void *buf, size_t bytes);
1467typedef int vdev_read_t(struct vdev *vdev, const blkptr_t *bp,
1468    void *buf, off_t offset, size_t bytes);
1469
1470typedef STAILQ_HEAD(vdev_list, vdev) vdev_list_t;
1471
1472typedef struct vdev {
1473	STAILQ_ENTRY(vdev) v_childlink;	/* link in parent's child list */
1474	STAILQ_ENTRY(vdev) v_alllink;	/* link in global vdev list */
1475	vdev_list_t	v_children;	/* children of this vdev */
1476	const char	*v_name;	/* vdev name */
1477	uint64_t	v_guid;		/* vdev guid */
1478	int		v_id;		/* index in parent */
1479	int		v_ashift;	/* offset to block shift */
1480	int		v_nparity;	/* # parity for raidz */
1481	struct vdev	*v_top;		/* parent vdev */
1482	int		v_nchildren;	/* # children */
1483	vdev_state_t	v_state;	/* current state */
1484	vdev_phys_read_t *v_phys_read;	/* read from raw leaf vdev */
1485	vdev_read_t	*v_read;	/* read from vdev */
1486	void		*v_read_priv;	/* private data for read function */
1487} vdev_t;
1488
1489/*
1490 * In-core pool representation.
1491 */
1492typedef STAILQ_HEAD(spa_list, spa) spa_list_t;
1493
1494typedef struct spa {
1495	STAILQ_ENTRY(spa) spa_link;	/* link in global pool list */
1496	char		*spa_name;	/* pool name */
1497	uint64_t	spa_guid;	/* pool guid */
1498	uint64_t	spa_txg;	/* most recent transaction */
1499	struct uberblock spa_uberblock;	/* best uberblock so far */
1500	vdev_list_t	spa_vdevs;	/* list of all toplevel vdevs */
1501	objset_phys_t	spa_mos;	/* MOS for this pool */
1502	int		spa_inited;	/* initialized */
1503} spa_t;
1504
1505static void decode_embedded_bp_compressed(const blkptr_t *, void *);
1506