if_cpsw.c revision 310855
1/*-
2 * Copyright (c) 2012 Damjan Marion <dmarion@Freebsd.org>
3 * Copyright (c) 2016 Rubicon Communications, LLC (Netgate)
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * TI Common Platform Ethernet Switch (CPSW) Driver
30 * Found in TI8148 "DaVinci" and AM335x "Sitara" SoCs.
31 *
32 * This controller is documented in the AM335x Technical Reference
33 * Manual, in the TMS320DM814x DaVinci Digital Video Processors TRM
34 * and in the TMS320C6452 3 Port Switch Ethernet Subsystem TRM.
35 *
36 * It is basically a single Ethernet port (port 0) wired internally to
37 * a 3-port store-and-forward switch connected to two independent
38 * "sliver" controllers (port 1 and port 2).  You can operate the
39 * controller in a variety of different ways by suitably configuring
40 * the slivers and the Address Lookup Engine (ALE) that routes packets
41 * between the ports.
42 *
43 * This code was developed and tested on a BeagleBone with
44 * an AM335x SoC.
45 */
46
47#include <sys/cdefs.h>
48__FBSDID("$FreeBSD: stable/11/sys/arm/ti/cpsw/if_cpsw.c 310855 2016-12-30 20:18:50Z loos $");
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/endian.h>
53#include <sys/mbuf.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/module.h>
58#include <sys/socket.h>
59#include <sys/sysctl.h>
60
61#include <net/ethernet.h>
62#include <net/bpf.h>
63#include <net/if.h>
64#include <net/if_arp.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_var.h>
69#include <net/if_vlan_var.h>
70
71#include <netinet/in_systm.h>
72#include <netinet/in.h>
73#include <netinet/ip.h>
74
75#include <sys/sockio.h>
76#include <sys/bus.h>
77#include <machine/bus.h>
78#include <sys/rman.h>
79#include <machine/resource.h>
80
81#include <arm/ti/ti_scm.h>
82#include <arm/ti/am335x/am335x_scm.h>
83
84#include <dev/mii/mii.h>
85#include <dev/mii/miivar.h>
86
87#include <dev/fdt/fdt_common.h>
88#include <dev/ofw/ofw_bus.h>
89#include <dev/ofw/ofw_bus_subr.h>
90
91#include "if_cpswreg.h"
92#include "if_cpswvar.h"
93
94#include "miibus_if.h"
95
96/* Device probe/attach/detach. */
97static int cpsw_probe(device_t);
98static int cpsw_attach(device_t);
99static int cpsw_detach(device_t);
100static int cpswp_probe(device_t);
101static int cpswp_attach(device_t);
102static int cpswp_detach(device_t);
103
104static phandle_t cpsw_get_node(device_t, device_t);
105
106/* Device Init/shutdown. */
107static int cpsw_shutdown(device_t);
108static void cpswp_init(void *);
109static void cpswp_init_locked(void *);
110static void cpswp_stop_locked(struct cpswp_softc *);
111
112/* Device Suspend/Resume. */
113static int cpsw_suspend(device_t);
114static int cpsw_resume(device_t);
115
116/* Ioctl. */
117static int cpswp_ioctl(struct ifnet *, u_long command, caddr_t data);
118
119static int cpswp_miibus_readreg(device_t, int phy, int reg);
120static int cpswp_miibus_writereg(device_t, int phy, int reg, int value);
121static void cpswp_miibus_statchg(device_t);
122
123/* Send/Receive packets. */
124static void cpsw_intr_rx(void *arg);
125static struct mbuf *cpsw_rx_dequeue(struct cpsw_softc *);
126static void cpsw_rx_enqueue(struct cpsw_softc *);
127static void cpswp_start(struct ifnet *);
128static void cpswp_tx_enqueue(struct cpswp_softc *);
129static int cpsw_tx_dequeue(struct cpsw_softc *);
130
131/* Misc interrupts and watchdog. */
132static void cpsw_intr_rx_thresh(void *);
133static void cpsw_intr_misc(void *);
134static void cpswp_tick(void *);
135static void cpswp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
136static int cpswp_ifmedia_upd(struct ifnet *);
137static void cpsw_tx_watchdog(void *);
138
139/* ALE support */
140static void cpsw_ale_read_entry(struct cpsw_softc *, uint16_t, uint32_t *);
141static void cpsw_ale_write_entry(struct cpsw_softc *, uint16_t, uint32_t *);
142static int cpsw_ale_mc_entry_set(struct cpsw_softc *, uint8_t, int, uint8_t *);
143static void cpsw_ale_dump_table(struct cpsw_softc *);
144static int cpsw_ale_update_vlan_table(struct cpsw_softc *, int, int, int, int,
145	int);
146static int cpswp_ale_update_addresses(struct cpswp_softc *, int);
147
148/* Statistics and sysctls. */
149static void cpsw_add_sysctls(struct cpsw_softc *);
150static void cpsw_stats_collect(struct cpsw_softc *);
151static int cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS);
152
153/*
154 * Arbitrary limit on number of segments in an mbuf to be transmitted.
155 * Packets with more segments than this will be defragmented before
156 * they are queued.
157 */
158#define	CPSW_TXFRAGS		16
159
160/* Shared resources. */
161static device_method_t cpsw_methods[] = {
162	/* Device interface */
163	DEVMETHOD(device_probe,		cpsw_probe),
164	DEVMETHOD(device_attach,	cpsw_attach),
165	DEVMETHOD(device_detach,	cpsw_detach),
166	DEVMETHOD(device_shutdown,	cpsw_shutdown),
167	DEVMETHOD(device_suspend,	cpsw_suspend),
168	DEVMETHOD(device_resume,	cpsw_resume),
169	/* OFW methods */
170	DEVMETHOD(ofw_bus_get_node,	cpsw_get_node),
171	DEVMETHOD_END
172};
173
174static driver_t cpsw_driver = {
175	"cpswss",
176	cpsw_methods,
177	sizeof(struct cpsw_softc),
178};
179
180static devclass_t cpsw_devclass;
181
182DRIVER_MODULE(cpswss, simplebus, cpsw_driver, cpsw_devclass, 0, 0);
183
184/* Port/Slave resources. */
185static device_method_t cpswp_methods[] = {
186	/* Device interface */
187	DEVMETHOD(device_probe,		cpswp_probe),
188	DEVMETHOD(device_attach,	cpswp_attach),
189	DEVMETHOD(device_detach,	cpswp_detach),
190	/* MII interface */
191	DEVMETHOD(miibus_readreg,	cpswp_miibus_readreg),
192	DEVMETHOD(miibus_writereg,	cpswp_miibus_writereg),
193	DEVMETHOD(miibus_statchg,	cpswp_miibus_statchg),
194	DEVMETHOD_END
195};
196
197static driver_t cpswp_driver = {
198	"cpsw",
199	cpswp_methods,
200	sizeof(struct cpswp_softc),
201};
202
203static devclass_t cpswp_devclass;
204
205DRIVER_MODULE(cpsw, cpswss, cpswp_driver, cpswp_devclass, 0, 0);
206DRIVER_MODULE(miibus, cpsw, miibus_driver, miibus_devclass, 0, 0);
207MODULE_DEPEND(cpsw, ether, 1, 1, 1);
208MODULE_DEPEND(cpsw, miibus, 1, 1, 1);
209
210static uint32_t slave_mdio_addr[] = { 0x4a100200, 0x4a100300 };
211
212static struct resource_spec irq_res_spec[] = {
213	{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
214	{ SYS_RES_IRQ, 1, RF_ACTIVE | RF_SHAREABLE },
215	{ SYS_RES_IRQ, 2, RF_ACTIVE | RF_SHAREABLE },
216	{ SYS_RES_IRQ, 3, RF_ACTIVE | RF_SHAREABLE },
217	{ -1, 0 }
218};
219
220/* Number of entries here must match size of stats
221 * array in struct cpswp_softc. */
222static struct cpsw_stat {
223	int	reg;
224	char *oid;
225} cpsw_stat_sysctls[CPSW_SYSCTL_COUNT] = {
226	{0x00, "GoodRxFrames"},
227	{0x04, "BroadcastRxFrames"},
228	{0x08, "MulticastRxFrames"},
229	{0x0C, "PauseRxFrames"},
230	{0x10, "RxCrcErrors"},
231	{0x14, "RxAlignErrors"},
232	{0x18, "OversizeRxFrames"},
233	{0x1c, "RxJabbers"},
234	{0x20, "ShortRxFrames"},
235	{0x24, "RxFragments"},
236	{0x30, "RxOctets"},
237	{0x34, "GoodTxFrames"},
238	{0x38, "BroadcastTxFrames"},
239	{0x3c, "MulticastTxFrames"},
240	{0x40, "PauseTxFrames"},
241	{0x44, "DeferredTxFrames"},
242	{0x48, "CollisionsTxFrames"},
243	{0x4c, "SingleCollisionTxFrames"},
244	{0x50, "MultipleCollisionTxFrames"},
245	{0x54, "ExcessiveCollisions"},
246	{0x58, "LateCollisions"},
247	{0x5c, "TxUnderrun"},
248	{0x60, "CarrierSenseErrors"},
249	{0x64, "TxOctets"},
250	{0x68, "RxTx64OctetFrames"},
251	{0x6c, "RxTx65to127OctetFrames"},
252	{0x70, "RxTx128to255OctetFrames"},
253	{0x74, "RxTx256to511OctetFrames"},
254	{0x78, "RxTx512to1024OctetFrames"},
255	{0x7c, "RxTx1024upOctetFrames"},
256	{0x80, "NetOctets"},
257	{0x84, "RxStartOfFrameOverruns"},
258	{0x88, "RxMiddleOfFrameOverruns"},
259	{0x8c, "RxDmaOverruns"}
260};
261
262/*
263 * Basic debug support.
264 */
265
266#define	IF_DEBUG(_sc)		if ((_sc)->if_flags & IFF_DEBUG)
267
268static void
269cpsw_debugf_head(const char *funcname)
270{
271	int t = (int)(time_second % (24 * 60 * 60));
272
273	printf("%02d:%02d:%02d %s ", t / (60 * 60), (t / 60) % 60, t % 60, funcname);
274}
275
276#include <machine/stdarg.h>
277static void
278cpsw_debugf(const char *fmt, ...)
279{
280	va_list ap;
281
282	va_start(ap, fmt);
283	vprintf(fmt, ap);
284	va_end(ap);
285	printf("\n");
286
287}
288
289#define	CPSW_DEBUGF(_sc, a) do {					\
290	if (sc->debug) {						\
291		cpsw_debugf_head(__func__);				\
292		cpsw_debugf a;						\
293	}								\
294} while (0)
295
296#define	CPSWP_DEBUGF(_sc, a) do {					\
297	IF_DEBUG((_sc)) {						\
298		cpsw_debugf_head(__func__);				\
299		cpsw_debugf a;						\
300	}								\
301} while (0)
302
303
304/*
305 * Locking macros
306 */
307#define	CPSW_TX_LOCK(sc) do {						\
308		mtx_assert(&(sc)->rx.lock, MA_NOTOWNED);		\
309		mtx_lock(&(sc)->tx.lock);				\
310} while (0)
311
312#define	CPSW_TX_UNLOCK(sc)	mtx_unlock(&(sc)->tx.lock)
313#define	CPSW_TX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->tx.lock, MA_OWNED)
314
315#define	CPSW_RX_LOCK(sc) do {						\
316		mtx_assert(&(sc)->tx.lock, MA_NOTOWNED);		\
317		mtx_lock(&(sc)->rx.lock);				\
318} while (0)
319
320#define	CPSW_RX_UNLOCK(sc)		mtx_unlock(&(sc)->rx.lock)
321#define	CPSW_RX_LOCK_ASSERT(sc)	mtx_assert(&(sc)->rx.lock, MA_OWNED)
322
323#define	CPSW_GLOBAL_LOCK(sc) do {					\
324		if ((mtx_owned(&(sc)->tx.lock) ? 1 : 0) !=		\
325		    (mtx_owned(&(sc)->rx.lock) ? 1 : 0)) {		\
326			panic("cpsw deadlock possibility detection!");	\
327		}							\
328		mtx_lock(&(sc)->tx.lock);				\
329		mtx_lock(&(sc)->rx.lock);				\
330} while (0)
331
332#define	CPSW_GLOBAL_UNLOCK(sc) do {					\
333		CPSW_RX_UNLOCK(sc);					\
334		CPSW_TX_UNLOCK(sc);					\
335} while (0)
336
337#define	CPSW_GLOBAL_LOCK_ASSERT(sc) do {				\
338		CPSW_TX_LOCK_ASSERT(sc);				\
339		CPSW_RX_LOCK_ASSERT(sc);				\
340} while (0)
341
342#define CPSW_PORT_LOCK(_sc) do {					\
343		mtx_assert(&(_sc)->lock, MA_NOTOWNED);			\
344		mtx_lock(&(_sc)->lock);					\
345} while (0)
346
347#define	CPSW_PORT_UNLOCK(_sc)	mtx_unlock(&(_sc)->lock)
348#define	CPSW_PORT_LOCK_ASSERT(_sc)	mtx_assert(&(_sc)->lock, MA_OWNED)
349
350/*
351 * Read/Write macros
352 */
353#define	cpsw_read_4(_sc, _reg)		bus_read_4((_sc)->mem_res, (_reg))
354#define	cpsw_write_4(_sc, _reg, _val)					\
355	bus_write_4((_sc)->mem_res, (_reg), (_val))
356
357#define	cpsw_cpdma_bd_offset(i)	(CPSW_CPPI_RAM_OFFSET + ((i)*16))
358
359#define	cpsw_cpdma_bd_paddr(sc, slot)					\
360	BUS_SPACE_PHYSADDR(sc->mem_res, slot->bd_offset)
361#define	cpsw_cpdma_read_bd(sc, slot, val)				\
362	bus_read_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
363#define	cpsw_cpdma_write_bd(sc, slot, val)				\
364	bus_write_region_4(sc->mem_res, slot->bd_offset, (uint32_t *) val, 4)
365#define	cpsw_cpdma_write_bd_next(sc, slot, next_slot)			\
366	cpsw_write_4(sc, slot->bd_offset, cpsw_cpdma_bd_paddr(sc, next_slot))
367#define	cpsw_cpdma_read_bd_flags(sc, slot)				\
368	bus_read_2(sc->mem_res, slot->bd_offset + 14)
369#define	cpsw_write_hdp_slot(sc, queue, slot)				\
370	cpsw_write_4(sc, (queue)->hdp_offset, cpsw_cpdma_bd_paddr(sc, slot))
371#define	CP_OFFSET (CPSW_CPDMA_TX_CP(0) - CPSW_CPDMA_TX_HDP(0))
372#define	cpsw_read_cp(sc, queue)						\
373	cpsw_read_4(sc, (queue)->hdp_offset + CP_OFFSET)
374#define	cpsw_write_cp(sc, queue, val)					\
375	cpsw_write_4(sc, (queue)->hdp_offset + CP_OFFSET, (val))
376#define	cpsw_write_cp_slot(sc, queue, slot)				\
377	cpsw_write_cp(sc, queue, cpsw_cpdma_bd_paddr(sc, slot))
378
379#if 0
380/* XXX temporary function versions for debugging. */
381static void
382cpsw_write_hdp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
383{
384	uint32_t reg = queue->hdp_offset;
385	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
386	CPSW_DEBUGF(("HDP <=== 0x%08x (was 0x%08x)", v, cpsw_read_4(sc, reg)));
387	cpsw_write_4(sc, reg, v);
388}
389
390static void
391cpsw_write_cp_slotX(struct cpsw_softc *sc, struct cpsw_queue *queue, struct cpsw_slot *slot)
392{
393	uint32_t v = cpsw_cpdma_bd_paddr(sc, slot);
394	CPSW_DEBUGF(("CP <=== 0x%08x (expecting 0x%08x)", v, cpsw_read_cp(sc, queue)));
395	cpsw_write_cp(sc, queue, v);
396}
397#endif
398
399/*
400 * Expanded dump routines for verbose debugging.
401 */
402static void
403cpsw_dump_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
404{
405	static const char *flags[] = {"SOP", "EOP", "Owner", "EOQ",
406	    "TDownCmplt", "PassCRC", "Long", "Short", "MacCtl", "Overrun",
407	    "PktErr1", "PortEn/PktErr0", "RxVlanEncap", "Port2", "Port1",
408	    "Port0"};
409	struct cpsw_cpdma_bd bd;
410	const char *sep;
411	int i;
412
413	cpsw_cpdma_read_bd(sc, slot, &bd);
414	printf("BD Addr: 0x%08x   Next: 0x%08x\n", cpsw_cpdma_bd_paddr(sc, slot), bd.next);
415	printf("  BufPtr: 0x%08x   BufLen: 0x%08x\n", bd.bufptr, bd.buflen);
416	printf("  BufOff: 0x%08x   PktLen: 0x%08x\n", bd.bufoff, bd.pktlen);
417	printf("  Flags: ");
418	sep = "";
419	for (i = 0; i < 16; ++i) {
420		if (bd.flags & (1 << (15 - i))) {
421			printf("%s%s", sep, flags[i]);
422			sep = ",";
423		}
424	}
425	printf("\n");
426	if (slot->mbuf) {
427		printf("  Ether:  %14D\n",
428		    (char *)(slot->mbuf->m_data), " ");
429		printf("  Packet: %16D\n",
430		    (char *)(slot->mbuf->m_data) + 14, " ");
431	}
432}
433
434#define	CPSW_DUMP_SLOT(cs, slot) do {				\
435	IF_DEBUG(sc) {						\
436		cpsw_dump_slot(sc, slot);			\
437	}							\
438} while (0)
439
440static void
441cpsw_dump_queue(struct cpsw_softc *sc, struct cpsw_slots *q)
442{
443	struct cpsw_slot *slot;
444	int i = 0;
445	int others = 0;
446
447	STAILQ_FOREACH(slot, q, next) {
448		if (i > 4)
449			++others;
450		else
451			cpsw_dump_slot(sc, slot);
452		++i;
453	}
454	if (others)
455		printf(" ... and %d more.\n", others);
456	printf("\n");
457}
458
459#define CPSW_DUMP_QUEUE(sc, q) do {				\
460	IF_DEBUG(sc) {						\
461		cpsw_dump_queue(sc, q);				\
462	}							\
463} while (0)
464
465static void
466cpsw_init_slots(struct cpsw_softc *sc)
467{
468	struct cpsw_slot *slot;
469	int i;
470
471	STAILQ_INIT(&sc->avail);
472
473	/* Put the slot descriptors onto the global avail list. */
474	for (i = 0; i < nitems(sc->_slots); i++) {
475		slot = &sc->_slots[i];
476		slot->bd_offset = cpsw_cpdma_bd_offset(i);
477		STAILQ_INSERT_TAIL(&sc->avail, slot, next);
478	}
479}
480
481static int
482cpsw_add_slots(struct cpsw_softc *sc, struct cpsw_queue *queue, int requested)
483{
484	const int max_slots = nitems(sc->_slots);
485	struct cpsw_slot *slot;
486	int i;
487
488	if (requested < 0)
489		requested = max_slots;
490
491	for (i = 0; i < requested; ++i) {
492		slot = STAILQ_FIRST(&sc->avail);
493		if (slot == NULL)
494			return (0);
495		if (bus_dmamap_create(sc->mbuf_dtag, 0, &slot->dmamap)) {
496			device_printf(sc->dev, "failed to create dmamap\n");
497			return (ENOMEM);
498		}
499		STAILQ_REMOVE_HEAD(&sc->avail, next);
500		STAILQ_INSERT_TAIL(&queue->avail, slot, next);
501		++queue->avail_queue_len;
502		++queue->queue_slots;
503	}
504	return (0);
505}
506
507static void
508cpsw_free_slot(struct cpsw_softc *sc, struct cpsw_slot *slot)
509{
510	int error;
511
512	if (slot->dmamap) {
513		if (slot->mbuf)
514			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
515		error = bus_dmamap_destroy(sc->mbuf_dtag, slot->dmamap);
516		KASSERT(error == 0, ("Mapping still active"));
517		slot->dmamap = NULL;
518	}
519	if (slot->mbuf) {
520		m_freem(slot->mbuf);
521		slot->mbuf = NULL;
522	}
523}
524
525static void
526cpsw_reset(struct cpsw_softc *sc)
527{
528	int i;
529
530	callout_stop(&sc->watchdog.callout);
531
532	/* Reset RMII/RGMII wrapper. */
533	cpsw_write_4(sc, CPSW_WR_SOFT_RESET, 1);
534	while (cpsw_read_4(sc, CPSW_WR_SOFT_RESET) & 1)
535		;
536
537	/* Disable TX and RX interrupts for all cores. */
538	for (i = 0; i < 3; ++i) {
539		cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(i), 0x00);
540		cpsw_write_4(sc, CPSW_WR_C_TX_EN(i), 0x00);
541		cpsw_write_4(sc, CPSW_WR_C_RX_EN(i), 0x00);
542		cpsw_write_4(sc, CPSW_WR_C_MISC_EN(i), 0x00);
543	}
544
545	/* Reset CPSW subsystem. */
546	cpsw_write_4(sc, CPSW_SS_SOFT_RESET, 1);
547	while (cpsw_read_4(sc, CPSW_SS_SOFT_RESET) & 1)
548		;
549
550	/* Reset Sliver port 1 and 2 */
551	for (i = 0; i < 2; i++) {
552		/* Reset */
553		cpsw_write_4(sc, CPSW_SL_SOFT_RESET(i), 1);
554		while (cpsw_read_4(sc, CPSW_SL_SOFT_RESET(i)) & 1)
555			;
556	}
557
558	/* Reset DMA controller. */
559	cpsw_write_4(sc, CPSW_CPDMA_SOFT_RESET, 1);
560	while (cpsw_read_4(sc, CPSW_CPDMA_SOFT_RESET) & 1)
561		;
562
563	/* Disable TX & RX DMA */
564	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 0);
565	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 0);
566
567	/* Clear all queues. */
568	for (i = 0; i < 8; i++) {
569		cpsw_write_4(sc, CPSW_CPDMA_TX_HDP(i), 0);
570		cpsw_write_4(sc, CPSW_CPDMA_RX_HDP(i), 0);
571		cpsw_write_4(sc, CPSW_CPDMA_TX_CP(i), 0);
572		cpsw_write_4(sc, CPSW_CPDMA_RX_CP(i), 0);
573	}
574
575	/* Clear all interrupt Masks */
576	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_CLEAR, 0xFFFFFFFF);
577	cpsw_write_4(sc, CPSW_CPDMA_TX_INTMASK_CLEAR, 0xFFFFFFFF);
578}
579
580static void
581cpsw_init(struct cpsw_softc *sc)
582{
583	struct cpsw_slot *slot;
584	uint32_t reg;
585
586	/* Clear ALE */
587	cpsw_write_4(sc, CPSW_ALE_CONTROL, CPSW_ALE_CTL_CLEAR_TBL);
588
589	/* Enable ALE */
590	reg = CPSW_ALE_CTL_ENABLE;
591	if (sc->dualemac)
592		reg |= CPSW_ALE_CTL_VLAN_AWARE;
593	cpsw_write_4(sc, CPSW_ALE_CONTROL, reg);
594
595	/* Set Host Port Mapping. */
596	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_TX_PRI_MAP, 0x76543210);
597	cpsw_write_4(sc, CPSW_PORT_P0_CPDMA_RX_CH_MAP, 0);
598
599	/* Initialize ALE: set host port to forwarding(3). */
600	cpsw_write_4(sc, CPSW_ALE_PORTCTL(0), 3);
601
602	cpsw_write_4(sc, CPSW_SS_PTYPE, 0);
603
604	/* Enable statistics for ports 0, 1 and 2 */
605	cpsw_write_4(sc, CPSW_SS_STAT_PORT_EN, 7);
606
607	/* Experiment:  Turn off flow control */
608	/* This seems to fix the watchdog resets that have plagued
609	   earlier versions of this driver; I'm not yet sure if there
610	   are negative effects yet. */
611	cpsw_write_4(sc, CPSW_SS_FLOW_CONTROL, 0);
612
613	/* Make IP hdr aligned with 4 */
614	cpsw_write_4(sc, CPSW_CPDMA_RX_BUFFER_OFFSET, 2);
615
616	/* Initialize RX Buffer Descriptors */
617	cpsw_write_4(sc, CPSW_CPDMA_RX_FREEBUFFER(0), 0);
618
619	/* Enable TX & RX DMA */
620	cpsw_write_4(sc, CPSW_CPDMA_TX_CONTROL, 1);
621	cpsw_write_4(sc, CPSW_CPDMA_RX_CONTROL, 1);
622
623	/* Enable Interrupts for core 0 */
624	cpsw_write_4(sc, CPSW_WR_C_RX_THRESH_EN(0), 0xFF);
625	cpsw_write_4(sc, CPSW_WR_C_RX_EN(0), 0xFF);
626	cpsw_write_4(sc, CPSW_WR_C_MISC_EN(0), 0x1F);
627
628	/* Enable host Error Interrupt */
629	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_SET, 3);
630
631	/* Enable interrupts for RX Channel 0 */
632	cpsw_write_4(sc, CPSW_CPDMA_RX_INTMASK_SET, 1);
633
634	/* Initialze MDIO - ENABLE, PREAMBLE=0, FAULTENB, CLKDIV=0xFF */
635	/* TODO Calculate MDCLK=CLK/(CLKDIV+1) */
636	cpsw_write_4(sc, MDIOCONTROL, MDIOCTL_ENABLE | MDIOCTL_FAULTENB | 0xff);
637
638	/* Select MII in GMII_SEL, Internal Delay mode */
639	//ti_scm_reg_write_4(0x650, 0);
640
641	/* Initialize active queues. */
642	slot = STAILQ_FIRST(&sc->tx.active);
643	if (slot != NULL)
644		cpsw_write_hdp_slot(sc, &sc->tx, slot);
645	slot = STAILQ_FIRST(&sc->rx.active);
646	if (slot != NULL)
647		cpsw_write_hdp_slot(sc, &sc->rx, slot);
648	cpsw_rx_enqueue(sc);
649
650	/* Activate network interface. */
651	sc->rx.running = 1;
652	sc->tx.running = 1;
653	sc->watchdog.timer = 0;
654	callout_init(&sc->watchdog.callout, 0);
655	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
656}
657
658/*
659 *
660 * Device Probe, Attach, Detach.
661 *
662 */
663
664static int
665cpsw_probe(device_t dev)
666{
667
668	if (!ofw_bus_status_okay(dev))
669		return (ENXIO);
670
671	if (!ofw_bus_is_compatible(dev, "ti,cpsw"))
672		return (ENXIO);
673
674	device_set_desc(dev, "3-port Switch Ethernet Subsystem");
675	return (BUS_PROBE_DEFAULT);
676}
677
678static int
679cpsw_intr_attach(struct cpsw_softc *sc)
680{
681
682	/* Note: We don't use sc->irq_res[2] (TX interrupt) */
683	if (bus_setup_intr(sc->dev, sc->irq_res[0],
684	    INTR_TYPE_NET | INTR_MPSAFE, NULL, cpsw_intr_rx_thresh,
685	    sc, &sc->ih_cookie[0]) != 0) {
686		return (-1);
687	}
688	if (bus_setup_intr(sc->dev, sc->irq_res[1],
689	    INTR_TYPE_NET | INTR_MPSAFE, NULL, cpsw_intr_rx,
690	    sc, &sc->ih_cookie[1]) != 0) {
691		return (-1);
692	}
693	if (bus_setup_intr(sc->dev, sc->irq_res[3],
694	    INTR_TYPE_NET | INTR_MPSAFE, NULL, cpsw_intr_misc,
695	    sc, &sc->ih_cookie[3]) != 0) {
696		return (-1);
697	}
698
699	return (0);
700}
701
702static void
703cpsw_intr_detach(struct cpsw_softc *sc)
704{
705	int i;
706
707	for (i = 0; i < CPSW_INTR_COUNT; i++) {
708		if (sc->ih_cookie[i]) {
709			bus_teardown_intr(sc->dev, sc->irq_res[i],
710			    sc->ih_cookie[i]);
711		}
712	}
713}
714
715static int
716cpsw_get_fdt_data(struct cpsw_softc *sc, int port)
717{
718	char *name;
719	int len, phy, vlan;
720	pcell_t phy_id[3], vlan_id;
721	phandle_t child;
722	unsigned long mdio_child_addr;
723
724	/* Find any slave with phy_id */
725	phy = -1;
726	vlan = -1;
727	for (child = OF_child(sc->node); child != 0; child = OF_peer(child)) {
728		if (OF_getprop_alloc(child, "name", 1, (void **)&name) < 0)
729			continue;
730		if (sscanf(name, "slave@%x", &mdio_child_addr) != 1) {
731			OF_prop_free(name);
732			continue;
733		}
734		OF_prop_free(name);
735		if (mdio_child_addr != slave_mdio_addr[port])
736			continue;
737
738		len = OF_getproplen(child, "phy_id");
739		if (len / sizeof(pcell_t) == 2) {
740			/* Get phy address from fdt */
741			if (OF_getencprop(child, "phy_id", phy_id, len) > 0)
742				phy = phy_id[1];
743		}
744
745		len = OF_getproplen(child, "dual_emac_res_vlan");
746		if (len / sizeof(pcell_t) == 1) {
747			/* Get phy address from fdt */
748			if (OF_getencprop(child, "dual_emac_res_vlan",
749			    &vlan_id, len) > 0) {
750				vlan = vlan_id;
751			}
752		}
753
754		break;
755	}
756	if (phy == -1)
757		return (ENXIO);
758	sc->port[port].phy = phy;
759	sc->port[port].vlan = vlan;
760
761	return (0);
762}
763
764static int
765cpsw_attach(device_t dev)
766{
767	bus_dma_segment_t segs[1];
768	int error, i, nsegs;
769	struct cpsw_softc *sc;
770	uint32_t reg;
771
772	sc = device_get_softc(dev);
773	sc->dev = dev;
774	sc->node = ofw_bus_get_node(dev);
775	getbinuptime(&sc->attach_uptime);
776
777	if (OF_getencprop(sc->node, "active_slave", &sc->active_slave,
778	    sizeof(sc->active_slave)) <= 0) {
779		sc->active_slave = 0;
780	}
781	if (sc->active_slave > 1)
782		sc->active_slave = 1;
783
784	if (OF_hasprop(sc->node, "dual_emac"))
785		sc->dualemac = 1;
786
787	for (i = 0; i < CPSW_PORTS; i++) {
788		if (!sc->dualemac && i != sc->active_slave)
789			continue;
790		if (cpsw_get_fdt_data(sc, i) != 0) {
791			device_printf(dev,
792			    "failed to get PHY address from FDT\n");
793			return (ENXIO);
794		}
795	}
796
797	/* Initialize mutexes */
798	mtx_init(&sc->tx.lock, device_get_nameunit(dev),
799	    "cpsw TX lock", MTX_DEF);
800	mtx_init(&sc->rx.lock, device_get_nameunit(dev),
801	    "cpsw RX lock", MTX_DEF);
802
803	/* Allocate IRQ resources */
804	error = bus_alloc_resources(dev, irq_res_spec, sc->irq_res);
805	if (error) {
806		device_printf(dev, "could not allocate IRQ resources\n");
807		cpsw_detach(dev);
808		return (ENXIO);
809	}
810
811	sc->mem_rid = 0;
812	sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
813	    &sc->mem_rid, RF_ACTIVE);
814	if (sc->mem_res == NULL) {
815		device_printf(sc->dev, "failed to allocate memory resource\n");
816		cpsw_detach(dev);
817		return (ENXIO);
818	}
819
820	reg = cpsw_read_4(sc, CPSW_SS_IDVER);
821	device_printf(dev, "CPSW SS Version %d.%d (%d)\n", (reg >> 8 & 0x7),
822		reg & 0xFF, (reg >> 11) & 0x1F);
823
824	cpsw_add_sysctls(sc);
825
826	/* Allocate a busdma tag and DMA safe memory for mbufs. */
827	error = bus_dma_tag_create(
828		bus_get_dma_tag(sc->dev),	/* parent */
829		1, 0,				/* alignment, boundary */
830		BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
831		BUS_SPACE_MAXADDR,		/* highaddr */
832		NULL, NULL,			/* filtfunc, filtfuncarg */
833		MCLBYTES, CPSW_TXFRAGS,		/* maxsize, nsegments */
834		MCLBYTES, 0,			/* maxsegsz, flags */
835		NULL, NULL,			/* lockfunc, lockfuncarg */
836		&sc->mbuf_dtag);		/* dmatag */
837	if (error) {
838		device_printf(dev, "bus_dma_tag_create failed\n");
839		cpsw_detach(dev);
840		return (error);
841	}
842
843	/* Allocate the null mbuf and pre-sync it. */
844	sc->null_mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
845	memset(sc->null_mbuf->m_data, 0, sc->null_mbuf->m_ext.ext_size);
846	bus_dmamap_create(sc->mbuf_dtag, 0, &sc->null_mbuf_dmamap);
847	bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, sc->null_mbuf_dmamap,
848	    sc->null_mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
849	bus_dmamap_sync(sc->mbuf_dtag, sc->null_mbuf_dmamap,
850	    BUS_DMASYNC_PREWRITE);
851	sc->null_mbuf_paddr = segs[0].ds_addr;
852
853	cpsw_init_slots(sc);
854
855	/* Allocate slots to TX and RX queues. */
856	STAILQ_INIT(&sc->rx.avail);
857	STAILQ_INIT(&sc->rx.active);
858	STAILQ_INIT(&sc->tx.avail);
859	STAILQ_INIT(&sc->tx.active);
860	// For now:  128 slots to TX, rest to RX.
861	// XXX TODO: start with 32/64 and grow dynamically based on demand.
862	if (cpsw_add_slots(sc, &sc->tx, 128) ||
863	    cpsw_add_slots(sc, &sc->rx, -1)) {
864		device_printf(dev, "failed to allocate dmamaps\n");
865		cpsw_detach(dev);
866		return (ENOMEM);
867	}
868	device_printf(dev, "Initial queue size TX=%d RX=%d\n",
869	    sc->tx.queue_slots, sc->rx.queue_slots);
870
871	sc->tx.hdp_offset = CPSW_CPDMA_TX_HDP(0);
872	sc->rx.hdp_offset = CPSW_CPDMA_RX_HDP(0);
873
874	if (cpsw_intr_attach(sc) == -1) {
875		device_printf(dev, "failed to setup interrupts\n");
876		cpsw_detach(dev);
877		return (ENXIO);
878	}
879
880	/* Reset the controller. */
881	cpsw_reset(sc);
882	cpsw_init(sc);
883
884	for (i = 0; i < CPSW_PORTS; i++) {
885		if (!sc->dualemac && i != sc->active_slave)
886			continue;
887		sc->port[i].dev = device_add_child(dev, "cpsw", i);
888		if (sc->port[i].dev == NULL) {
889			cpsw_detach(dev);
890			return (ENXIO);
891		}
892	}
893	bus_generic_attach(dev);
894
895	return (0);
896}
897
898static int
899cpsw_detach(device_t dev)
900{
901	struct cpsw_softc *sc;
902	int error, i;
903
904	bus_generic_detach(dev);
905 	sc = device_get_softc(dev);
906
907	for (i = 0; i < CPSW_PORTS; i++) {
908		if (sc->port[i].dev)
909			device_delete_child(dev, sc->port[i].dev);
910	}
911
912	if (device_is_attached(dev)) {
913		callout_stop(&sc->watchdog.callout);
914		callout_drain(&sc->watchdog.callout);
915	}
916
917	/* Stop and release all interrupts */
918	cpsw_intr_detach(sc);
919
920	/* Free dmamaps and mbufs */
921	for (i = 0; i < nitems(sc->_slots); ++i)
922		cpsw_free_slot(sc, &sc->_slots[i]);
923
924	/* Free null mbuf. */
925	if (sc->null_mbuf_dmamap) {
926		bus_dmamap_unload(sc->mbuf_dtag, sc->null_mbuf_dmamap);
927		error = bus_dmamap_destroy(sc->mbuf_dtag, sc->null_mbuf_dmamap);
928		KASSERT(error == 0, ("Mapping still active"));
929		m_freem(sc->null_mbuf);
930	}
931
932	/* Free DMA tag */
933	if (sc->mbuf_dtag) {
934		error = bus_dma_tag_destroy(sc->mbuf_dtag);
935		KASSERT(error == 0, ("Unable to destroy DMA tag"));
936	}
937
938	/* Free IO memory handler */
939	if (sc->mem_res != NULL)
940		bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem_res);
941	bus_release_resources(dev, irq_res_spec, sc->irq_res);
942
943	/* Destroy mutexes */
944	mtx_destroy(&sc->rx.lock);
945	mtx_destroy(&sc->tx.lock);
946
947	return (0);
948}
949
950static phandle_t
951cpsw_get_node(device_t bus, device_t dev)
952{
953
954	/* Share controller node with port device. */
955	return (ofw_bus_get_node(bus));
956}
957
958static int
959cpswp_probe(device_t dev)
960{
961
962	if (device_get_unit(dev) > 1) {
963		device_printf(dev, "Only two ports are supported.\n");
964		return (ENXIO);
965	}
966	device_set_desc(dev, "Ethernet Switch Port");
967
968	return (BUS_PROBE_DEFAULT);
969}
970
971static int
972cpswp_attach(device_t dev)
973{
974	int error;
975	struct ifnet *ifp;
976	struct cpswp_softc *sc;
977	uint32_t reg;
978	uint8_t mac_addr[ETHER_ADDR_LEN];
979
980	sc = device_get_softc(dev);
981	sc->dev = dev;
982	sc->pdev = device_get_parent(dev);
983	sc->swsc = device_get_softc(sc->pdev);
984	sc->unit = device_get_unit(dev);
985	sc->phy = sc->swsc->port[sc->unit].phy;
986	sc->vlan = sc->swsc->port[sc->unit].vlan;
987	if (sc->swsc->dualemac && sc->vlan == -1)
988		sc->vlan = sc->unit + 1;
989
990	if (sc->unit == 0) {
991		sc->physel = MDIOUSERPHYSEL0;
992		sc->phyaccess = MDIOUSERACCESS0;
993	} else {
994		sc->physel = MDIOUSERPHYSEL1;
995		sc->phyaccess = MDIOUSERACCESS1;
996	}
997
998	mtx_init(&sc->lock, device_get_nameunit(dev), "cpsw port lock",
999	    MTX_DEF);
1000
1001	/* Allocate network interface */
1002	ifp = sc->ifp = if_alloc(IFT_ETHER);
1003	if (ifp == NULL) {
1004		cpswp_detach(dev);
1005		return (ENXIO);
1006	}
1007
1008	if_initname(ifp, device_get_name(sc->dev), sc->unit);
1009	ifp->if_softc = sc;
1010	ifp->if_flags = IFF_SIMPLEX | IFF_MULTICAST | IFF_BROADCAST;
1011	ifp->if_capabilities = IFCAP_VLAN_MTU | IFCAP_HWCSUM; //FIXME VLAN?
1012	ifp->if_capenable = ifp->if_capabilities;
1013
1014	ifp->if_init = cpswp_init;
1015	ifp->if_start = cpswp_start;
1016	ifp->if_ioctl = cpswp_ioctl;
1017
1018	ifp->if_snd.ifq_drv_maxlen = sc->swsc->tx.queue_slots;
1019	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
1020	IFQ_SET_READY(&ifp->if_snd);
1021
1022	/* Get high part of MAC address from control module (mac_id[0|1]_hi) */
1023	ti_scm_reg_read_4(SCM_MAC_ID0_HI + sc->unit * 8, &reg);
1024	mac_addr[0] = reg & 0xFF;
1025	mac_addr[1] = (reg >>  8) & 0xFF;
1026	mac_addr[2] = (reg >> 16) & 0xFF;
1027	mac_addr[3] = (reg >> 24) & 0xFF;
1028
1029	/* Get low part of MAC address from control module (mac_id[0|1]_lo) */
1030	ti_scm_reg_read_4(SCM_MAC_ID0_LO + sc->unit * 8, &reg);
1031	mac_addr[4] = reg & 0xFF;
1032	mac_addr[5] = (reg >>  8) & 0xFF;
1033
1034	error = mii_attach(dev, &sc->miibus, ifp, cpswp_ifmedia_upd,
1035	    cpswp_ifmedia_sts, BMSR_DEFCAPMASK, sc->phy, MII_OFFSET_ANY, 0);
1036	if (error) {
1037		device_printf(dev, "attaching PHYs failed\n");
1038		cpswp_detach(dev);
1039		return (error);
1040	}
1041	sc->mii = device_get_softc(sc->miibus);
1042
1043	/* Select PHY and enable interrupts */
1044	cpsw_write_4(sc->swsc, sc->physel,
1045	    MDIO_PHYSEL_LINKINTENB | (sc->phy & 0x1F));
1046
1047	ether_ifattach(sc->ifp, mac_addr);
1048	callout_init(&sc->mii_callout, 0);
1049
1050	return (0);
1051}
1052
1053static int
1054cpswp_detach(device_t dev)
1055{
1056	struct cpswp_softc *sc;
1057
1058	sc = device_get_softc(dev);
1059	CPSWP_DEBUGF(sc, (""));
1060	if (device_is_attached(dev)) {
1061		ether_ifdetach(sc->ifp);
1062		CPSW_PORT_LOCK(sc);
1063		cpswp_stop_locked(sc);
1064		CPSW_PORT_UNLOCK(sc);
1065		callout_drain(&sc->mii_callout);
1066	}
1067
1068	bus_generic_detach(dev);
1069
1070	if_free(sc->ifp);
1071	mtx_destroy(&sc->lock);
1072
1073	return (0);
1074}
1075
1076/*
1077 *
1078 * Init/Shutdown.
1079 *
1080 */
1081
1082static int
1083cpsw_ports_down(struct cpsw_softc *sc)
1084{
1085	struct cpswp_softc *psc;
1086	struct ifnet *ifp1, *ifp2;
1087
1088	if (!sc->dualemac)
1089		return (1);
1090	psc = device_get_softc(sc->port[0].dev);
1091	ifp1 = psc->ifp;
1092	psc = device_get_softc(sc->port[1].dev);
1093	ifp2 = psc->ifp;
1094	if ((ifp1->if_flags & IFF_UP) == 0 && (ifp2->if_flags & IFF_UP) == 0)
1095		return (1);
1096
1097	return (0);
1098}
1099
1100static void
1101cpswp_init(void *arg)
1102{
1103	struct cpswp_softc *sc = arg;
1104
1105	CPSWP_DEBUGF(sc, (""));
1106	CPSW_PORT_LOCK(sc);
1107	cpswp_init_locked(arg);
1108	CPSW_PORT_UNLOCK(sc);
1109}
1110
1111static void
1112cpswp_init_locked(void *arg)
1113{
1114	struct cpswp_softc *sc = arg;
1115	struct ifnet *ifp;
1116	uint32_t reg;
1117
1118	CPSWP_DEBUGF(sc, (""));
1119	CPSW_PORT_LOCK_ASSERT(sc);
1120	ifp = sc->ifp;
1121	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1122		return;
1123
1124	getbinuptime(&sc->init_uptime);
1125
1126	if (!sc->swsc->rx.running && !sc->swsc->tx.running) {
1127		/* Reset the controller. */
1128		cpsw_reset(sc->swsc);
1129		cpsw_init(sc->swsc);
1130	}
1131
1132	/* Set Slave Mapping. */
1133	cpsw_write_4(sc->swsc, CPSW_SL_RX_PRI_MAP(sc->unit), 0x76543210);
1134	cpsw_write_4(sc->swsc, CPSW_PORT_P_TX_PRI_MAP(sc->unit + 1),
1135	    0x33221100);
1136	cpsw_write_4(sc->swsc, CPSW_SL_RX_MAXLEN(sc->unit), 0x5f2);
1137	/* Enable MAC RX/TX modules. */
1138	/* TODO: Docs claim that IFCTL_B and IFCTL_A do the same thing? */
1139	/* Huh?  Docs call bit 0 "Loopback" some places, "FullDuplex" others. */
1140	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1141	reg |= CPSW_SL_MACTL_GMII_ENABLE;
1142	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1143
1144	/* Initialize ALE: set port to forwarding(3), initialize addrs */
1145	cpsw_write_4(sc->swsc, CPSW_ALE_PORTCTL(sc->unit + 1), 3);
1146	cpswp_ale_update_addresses(sc, 1);
1147
1148	if (sc->swsc->dualemac) {
1149		/* Set Port VID. */
1150		cpsw_write_4(sc->swsc, CPSW_PORT_P_VLAN(sc->unit + 1),
1151		    sc->vlan & 0xfff);
1152		cpsw_ale_update_vlan_table(sc->swsc, sc->vlan,
1153		    (1 << (sc->unit + 1)) | (1 << 0), /* Member list */
1154		    (1 << (sc->unit + 1)) | (1 << 0), /* Untagged egress */
1155		    (1 << (sc->unit + 1)) | (1 << 0), 0); /* mcast reg flood */
1156	}
1157
1158	mii_mediachg(sc->mii);
1159	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
1160	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1161	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1162}
1163
1164static int
1165cpsw_shutdown(device_t dev)
1166{
1167	struct cpsw_softc *sc;
1168	struct cpswp_softc *psc;
1169	int i;
1170
1171 	sc = device_get_softc(dev);
1172	CPSW_DEBUGF(sc, (""));
1173	for (i = 0; i < CPSW_PORTS; i++) {
1174		if (!sc->dualemac && i != sc->active_slave)
1175			continue;
1176		psc = device_get_softc(sc->port[i].dev);
1177		CPSW_PORT_LOCK(psc);
1178		cpswp_stop_locked(psc);
1179		CPSW_PORT_UNLOCK(psc);
1180	}
1181
1182	return (0);
1183}
1184
1185static void
1186cpsw_rx_teardown_locked(struct cpsw_softc *sc)
1187{
1188	struct ifnet *ifp;
1189	struct mbuf *received, *next;
1190	int i = 0;
1191
1192	CPSW_DEBUGF(sc, ("starting RX teardown"));
1193	cpsw_write_4(sc, CPSW_CPDMA_RX_TEARDOWN, 0);
1194	for (;;) {
1195		received = cpsw_rx_dequeue(sc);
1196		CPSW_GLOBAL_UNLOCK(sc);
1197		while (received != NULL) {
1198			next = received->m_nextpkt;
1199			received->m_nextpkt = NULL;
1200			ifp = received->m_pkthdr.rcvif;
1201			(*ifp->if_input)(ifp, received);
1202			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1203			received = next;
1204		}
1205		CPSW_GLOBAL_LOCK(sc);
1206		if (!sc->rx.running) {
1207			CPSW_DEBUGF(sc,
1208			    ("finished RX teardown (%d retries)", i));
1209			return;
1210		}
1211		if (++i > 10) {
1212			device_printf(sc->dev,
1213			    "Unable to cleanly shutdown receiver\n");
1214			return;
1215		}
1216		DELAY(10);
1217	}
1218}
1219
1220static void
1221cpsw_tx_teardown_locked(struct cpsw_softc *sc)
1222{
1223	int i = 0;
1224
1225	CPSW_DEBUGF(sc, ("starting TX teardown"));
1226	cpsw_write_4(sc, CPSW_CPDMA_TX_TEARDOWN, 0);
1227	cpsw_tx_dequeue(sc);
1228	while (sc->tx.running && ++i < 10) {
1229		DELAY(10);
1230		cpsw_tx_dequeue(sc);
1231	}
1232	if (sc->tx.running) {
1233		device_printf(sc->dev,
1234		    "Unable to cleanly shutdown transmitter\n");
1235	}
1236	CPSW_DEBUGF(sc, ("finished TX teardown (%d retries, %d idle buffers)",
1237	    i, sc->tx.active_queue_len));
1238}
1239
1240static void
1241cpswp_stop_locked(struct cpswp_softc *sc)
1242{
1243	struct ifnet *ifp;
1244	uint32_t reg;
1245
1246	ifp = sc->ifp;
1247	CPSWP_DEBUGF(sc, (""));
1248	CPSW_PORT_LOCK_ASSERT(sc);
1249
1250	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1251		return;
1252
1253	/* Disable interface */
1254	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1255	ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1256
1257	/* Stop ticker */
1258	callout_stop(&sc->mii_callout);
1259
1260	/* Tear down the RX/TX queues. */
1261	if (cpsw_ports_down(sc->swsc)) {
1262		CPSW_GLOBAL_LOCK(sc->swsc);
1263		cpsw_rx_teardown_locked(sc->swsc);
1264		cpsw_tx_teardown_locked(sc->swsc);
1265		CPSW_GLOBAL_UNLOCK(sc->swsc);
1266	}
1267
1268	/* Stop MAC RX/TX modules. */
1269	reg = cpsw_read_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit));
1270	reg &= ~CPSW_SL_MACTL_GMII_ENABLE;
1271	cpsw_write_4(sc->swsc, CPSW_SL_MACCONTROL(sc->unit), reg);
1272
1273	if (cpsw_ports_down(sc->swsc)) {
1274		/* Capture stats before we reset controller. */
1275		cpsw_stats_collect(sc->swsc);
1276
1277		cpsw_reset(sc->swsc);
1278		cpsw_init(sc->swsc);
1279	}
1280}
1281
1282/*
1283 *  Suspend/Resume.
1284 */
1285
1286static int
1287cpsw_suspend(device_t dev)
1288{
1289	struct cpsw_softc *sc;
1290	struct cpswp_softc *psc;
1291	int i;
1292
1293	sc = device_get_softc(dev);
1294	CPSW_DEBUGF(sc, (""));
1295	for (i = 0; i < CPSW_PORTS; i++) {
1296		if (!sc->dualemac && i != sc->active_slave)
1297			continue;
1298		psc = device_get_softc(sc->port[i].dev);
1299		CPSW_PORT_LOCK(psc);
1300		cpswp_stop_locked(psc);
1301		CPSW_PORT_UNLOCK(psc);
1302	}
1303
1304	return (0);
1305}
1306
1307static int
1308cpsw_resume(device_t dev)
1309{
1310	struct cpsw_softc *sc;
1311
1312	sc  = device_get_softc(dev);
1313	CPSW_DEBUGF(sc, ("UNIMPLEMENTED"));
1314
1315	return (0);
1316}
1317
1318/*
1319 *
1320 *  IOCTL
1321 *
1322 */
1323
1324static void
1325cpsw_set_promisc(struct cpswp_softc *sc, int set)
1326{
1327	uint32_t reg;
1328
1329	/*
1330	 * Enabling promiscuous mode requires ALE_BYPASS to be enabled.
1331	 * That disables the ALE forwarding logic and causes every
1332	 * packet to be sent only to the host port.  In bypass mode,
1333	 * the ALE processes host port transmit packets the same as in
1334	 * normal mode.
1335	 */
1336	reg = cpsw_read_4(sc->swsc, CPSW_ALE_CONTROL);
1337	reg &= ~CPSW_ALE_CTL_BYPASS;
1338	if (set)
1339		reg |= CPSW_ALE_CTL_BYPASS;
1340	cpsw_write_4(sc->swsc, CPSW_ALE_CONTROL, reg);
1341}
1342
1343static void
1344cpsw_set_allmulti(struct cpswp_softc *sc, int set)
1345{
1346	if (set) {
1347		printf("All-multicast mode unimplemented\n");
1348	}
1349}
1350
1351static int
1352cpswp_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1353{
1354	struct cpswp_softc *sc;
1355	struct ifreq *ifr;
1356	int error;
1357	uint32_t changed;
1358
1359	error = 0;
1360	sc = ifp->if_softc;
1361	ifr = (struct ifreq *)data;
1362
1363	switch (command) {
1364	case SIOCSIFFLAGS:
1365		CPSW_PORT_LOCK(sc);
1366		if (ifp->if_flags & IFF_UP) {
1367			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1368				changed = ifp->if_flags ^ sc->if_flags;
1369				CPSWP_DEBUGF(sc,
1370				    ("SIOCSIFFLAGS: UP & RUNNING (changed=0x%x)",
1371				    changed));
1372				if (changed & IFF_PROMISC)
1373					cpsw_set_promisc(sc,
1374					    ifp->if_flags & IFF_PROMISC);
1375				if (changed & IFF_ALLMULTI)
1376					cpsw_set_allmulti(sc,
1377					    ifp->if_flags & IFF_ALLMULTI);
1378			} else {
1379				CPSWP_DEBUGF(sc,
1380				    ("SIOCSIFFLAGS: UP but not RUNNING; starting up"));
1381				cpswp_init_locked(sc);
1382			}
1383		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1384			CPSWP_DEBUGF(sc,
1385			    ("SIOCSIFFLAGS: not UP but RUNNING; shutting down"));
1386			cpswp_stop_locked(sc);
1387		}
1388
1389		sc->if_flags = ifp->if_flags;
1390		CPSW_PORT_UNLOCK(sc);
1391		break;
1392	case SIOCADDMULTI:
1393		cpswp_ale_update_addresses(sc, 0);
1394		break;
1395	case SIOCDELMULTI:
1396		/* Ugh.  DELMULTI doesn't provide the specific address
1397		   being removed, so the best we can do is remove
1398		   everything and rebuild it all. */
1399		cpswp_ale_update_addresses(sc, 1);
1400		break;
1401	case SIOCGIFMEDIA:
1402	case SIOCSIFMEDIA:
1403		error = ifmedia_ioctl(ifp, ifr, &sc->mii->mii_media, command);
1404		break;
1405	default:
1406		error = ether_ioctl(ifp, command, data);
1407	}
1408	return (error);
1409}
1410
1411/*
1412 *
1413 * MIIBUS
1414 *
1415 */
1416static int
1417cpswp_miibus_ready(struct cpsw_softc *sc, uint32_t reg)
1418{
1419	uint32_t r, retries = CPSW_MIIBUS_RETRIES;
1420
1421	while (--retries) {
1422		r = cpsw_read_4(sc, reg);
1423		if ((r & MDIO_PHYACCESS_GO) == 0)
1424			return (1);
1425		DELAY(CPSW_MIIBUS_DELAY);
1426	}
1427
1428	return (0);
1429}
1430
1431static int
1432cpswp_miibus_readreg(device_t dev, int phy, int reg)
1433{
1434	struct cpswp_softc *sc;
1435	uint32_t cmd, r;
1436
1437	sc = device_get_softc(dev);
1438	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1439		device_printf(dev, "MDIO not ready to read\n");
1440		return (0);
1441	}
1442
1443	/* Set GO, reg, phy */
1444	cmd = MDIO_PHYACCESS_GO | (reg & 0x1F) << 21 | (phy & 0x1F) << 16;
1445	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1446
1447	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1448		device_printf(dev, "MDIO timed out during read\n");
1449		return (0);
1450	}
1451
1452	r = cpsw_read_4(sc->swsc, sc->phyaccess);
1453	if ((r & MDIO_PHYACCESS_ACK) == 0) {
1454		device_printf(dev, "Failed to read from PHY.\n");
1455		r = 0;
1456	}
1457	return (r & 0xFFFF);
1458}
1459
1460static int
1461cpswp_miibus_writereg(device_t dev, int phy, int reg, int value)
1462{
1463	struct cpswp_softc *sc;
1464	uint32_t cmd;
1465
1466	sc = device_get_softc(dev);
1467	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1468		device_printf(dev, "MDIO not ready to write\n");
1469		return (0);
1470	}
1471
1472	/* Set GO, WRITE, reg, phy, and value */
1473	cmd = MDIO_PHYACCESS_GO | MDIO_PHYACCESS_WRITE |
1474	    (reg & 0x1F) << 21 | (phy & 0x1F) << 16 | (value & 0xFFFF);
1475	cpsw_write_4(sc->swsc, sc->phyaccess, cmd);
1476
1477	if (!cpswp_miibus_ready(sc->swsc, sc->phyaccess)) {
1478		device_printf(dev, "MDIO timed out during write\n");
1479		return (0);
1480	}
1481
1482	if ((cpsw_read_4(sc->swsc, sc->phyaccess) & MDIO_PHYACCESS_ACK) == 0)
1483		device_printf(dev, "Failed to write to PHY.\n");
1484
1485	return (0);
1486}
1487
1488static void
1489cpswp_miibus_statchg(device_t dev)
1490{
1491	struct cpswp_softc *sc;
1492	uint32_t mac_control, reg;
1493
1494	sc = device_get_softc(dev);
1495	CPSWP_DEBUGF(sc, (""));
1496
1497	reg = CPSW_SL_MACCONTROL(sc->unit);
1498	mac_control = cpsw_read_4(sc->swsc, reg);
1499	mac_control &= ~(CPSW_SL_MACTL_GIG | CPSW_SL_MACTL_IFCTL_A |
1500	    CPSW_SL_MACTL_IFCTL_B | CPSW_SL_MACTL_FULLDUPLEX);
1501
1502	switch(IFM_SUBTYPE(sc->mii->mii_media_active)) {
1503	case IFM_1000_SX:
1504	case IFM_1000_LX:
1505	case IFM_1000_CX:
1506	case IFM_1000_T:
1507		mac_control |= CPSW_SL_MACTL_GIG;
1508		break;
1509
1510	case IFM_100_TX:
1511		mac_control |= CPSW_SL_MACTL_IFCTL_A;
1512		break;
1513	}
1514	if (sc->mii->mii_media_active & IFM_FDX)
1515		mac_control |= CPSW_SL_MACTL_FULLDUPLEX;
1516
1517	cpsw_write_4(sc->swsc, reg, mac_control);
1518}
1519
1520/*
1521 *
1522 * Transmit/Receive Packets.
1523 *
1524 */
1525static void
1526cpsw_intr_rx(void *arg)
1527{
1528	struct cpsw_softc *sc = arg;
1529	struct ifnet *ifp;
1530	struct mbuf *received, *next;
1531
1532	CPSW_RX_LOCK(sc);
1533	received = cpsw_rx_dequeue(sc);
1534	cpsw_rx_enqueue(sc);
1535	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 1);
1536	CPSW_RX_UNLOCK(sc);
1537
1538	while (received != NULL) {
1539		next = received->m_nextpkt;
1540		received->m_nextpkt = NULL;
1541		ifp = received->m_pkthdr.rcvif;
1542		(*ifp->if_input)(ifp, received);
1543		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1544		received = next;
1545	}
1546}
1547
1548static struct mbuf *
1549cpsw_rx_dequeue(struct cpsw_softc *sc)
1550{
1551	struct cpsw_cpdma_bd bd;
1552	struct cpsw_slot *slot;
1553	struct cpswp_softc *psc;
1554	struct mbuf *mb_head, *mb_tail;
1555	int port, removed = 0;
1556
1557	mb_head = mb_tail = NULL;
1558
1559	/* Pull completed packets off hardware RX queue. */
1560	while ((slot = STAILQ_FIRST(&sc->rx.active)) != NULL) {
1561		cpsw_cpdma_read_bd(sc, slot, &bd);
1562		if (bd.flags & CPDMA_BD_OWNER)
1563			break; /* Still in use by hardware */
1564
1565		CPSW_DEBUGF(sc, ("Removing received packet from RX queue"));
1566		++removed;
1567		STAILQ_REMOVE_HEAD(&sc->rx.active, next);
1568		STAILQ_INSERT_TAIL(&sc->rx.avail, slot, next);
1569
1570		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTREAD);
1571		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1572
1573		if (bd.flags & CPDMA_BD_TDOWNCMPLT) {
1574			CPSW_DEBUGF(sc, ("RX teardown in progress"));
1575			m_freem(slot->mbuf);
1576			slot->mbuf = NULL;
1577			cpsw_write_cp(sc, &sc->rx, 0xfffffffc);
1578			sc->rx.running = 0;
1579			break;
1580		}
1581
1582		cpsw_write_cp_slot(sc, &sc->rx, slot);
1583
1584		port = (bd.flags & CPDMA_BD_PORT_MASK) - 1;
1585		KASSERT(port >= 0 && port <= 1,
1586		    ("patcket received with invalid port: %d", port));
1587		psc = device_get_softc(sc->port[port].dev);
1588
1589		/* Set up mbuf */
1590		/* TODO: track SOP/EOP bits to assemble a full mbuf
1591		   out of received fragments. */
1592		slot->mbuf->m_data += bd.bufoff;
1593		slot->mbuf->m_len = bd.pktlen - 4;
1594		slot->mbuf->m_pkthdr.len = bd.pktlen - 4;
1595		slot->mbuf->m_flags |= M_PKTHDR;
1596		slot->mbuf->m_pkthdr.rcvif = psc->ifp;
1597		slot->mbuf->m_nextpkt = NULL;
1598
1599		if ((psc->ifp->if_capenable & IFCAP_RXCSUM) != 0) {
1600			/* check for valid CRC by looking into pkt_err[5:4] */
1601			if ((bd.flags & CPDMA_BD_PKT_ERR_MASK) == 0) {
1602				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1603				slot->mbuf->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1604				slot->mbuf->m_pkthdr.csum_data = 0xffff;
1605			}
1606		}
1607
1608		/* Add mbuf to packet list to be returned. */
1609		if (mb_tail) {
1610			mb_tail->m_nextpkt = slot->mbuf;
1611		} else {
1612			mb_head = slot->mbuf;
1613		}
1614		mb_tail = slot->mbuf;
1615		slot->mbuf = NULL;
1616	}
1617
1618	if (removed != 0) {
1619		sc->rx.queue_removes += removed;
1620		sc->rx.active_queue_len -= removed;
1621		sc->rx.avail_queue_len += removed;
1622		if (sc->rx.avail_queue_len > sc->rx.max_avail_queue_len)
1623			sc->rx.max_avail_queue_len = sc->rx.avail_queue_len;
1624	}
1625	return (mb_head);
1626}
1627
1628static void
1629cpsw_rx_enqueue(struct cpsw_softc *sc)
1630{
1631	bus_dma_segment_t seg[1];
1632	struct cpsw_cpdma_bd bd;
1633	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1634	struct cpsw_slot *slot, *prev_slot = NULL;
1635	struct cpsw_slot *last_old_slot, *first_new_slot;
1636	int error, nsegs, added = 0;
1637
1638	/* Register new mbufs with hardware. */
1639	while ((slot = STAILQ_FIRST(&sc->rx.avail)) != NULL) {
1640		if (slot->mbuf == NULL) {
1641			slot->mbuf = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1642			if (slot->mbuf == NULL) {
1643				device_printf(sc->dev,
1644				    "Unable to fill RX queue\n");
1645				break;
1646			}
1647			slot->mbuf->m_len =
1648			    slot->mbuf->m_pkthdr.len =
1649			    slot->mbuf->m_ext.ext_size;
1650		}
1651
1652		error = bus_dmamap_load_mbuf_sg(sc->mbuf_dtag, slot->dmamap,
1653		    slot->mbuf, seg, &nsegs, BUS_DMA_NOWAIT);
1654
1655		KASSERT(nsegs == 1, ("More than one segment (nsegs=%d)", nsegs));
1656		KASSERT(error == 0, ("DMA error (error=%d)", error));
1657		if (error != 0 || nsegs != 1) {
1658			device_printf(sc->dev,
1659			    "%s: Can't prep RX buf for DMA (nsegs=%d, error=%d)\n",
1660			    __func__, nsegs, error);
1661			bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1662			m_freem(slot->mbuf);
1663			slot->mbuf = NULL;
1664			break;
1665		}
1666
1667		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_PREREAD);
1668
1669		/* Create and submit new rx descriptor*/
1670		bd.next = 0;
1671		bd.bufptr = seg->ds_addr;
1672		bd.bufoff = 0;
1673		bd.buflen = MCLBYTES - 1;
1674		bd.pktlen = bd.buflen;
1675		bd.flags = CPDMA_BD_OWNER;
1676		cpsw_cpdma_write_bd(sc, slot, &bd);
1677		++added;
1678
1679		if (prev_slot != NULL)
1680			cpsw_cpdma_write_bd_next(sc, prev_slot, slot);
1681		prev_slot = slot;
1682		STAILQ_REMOVE_HEAD(&sc->rx.avail, next);
1683		sc->rx.avail_queue_len--;
1684		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1685	}
1686
1687	if (added == 0)
1688		return;
1689
1690	CPSW_DEBUGF(sc, ("Adding %d buffers to RX queue", added));
1691
1692	/* Link new entries to hardware RX queue. */
1693	last_old_slot = STAILQ_LAST(&sc->rx.active, cpsw_slot, next);
1694	first_new_slot = STAILQ_FIRST(&tmpqueue);
1695	STAILQ_CONCAT(&sc->rx.active, &tmpqueue);
1696	if (first_new_slot == NULL) {
1697		return;
1698	} else if (last_old_slot == NULL) {
1699		/* Start a fresh queue. */
1700		cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1701	} else {
1702		/* Add buffers to end of current queue. */
1703		cpsw_cpdma_write_bd_next(sc, last_old_slot, first_new_slot);
1704		/* If underrun, restart queue. */
1705		if (cpsw_cpdma_read_bd_flags(sc, last_old_slot) & CPDMA_BD_EOQ) {
1706			cpsw_write_hdp_slot(sc, &sc->rx, first_new_slot);
1707		}
1708	}
1709	sc->rx.queue_adds += added;
1710	sc->rx.active_queue_len += added;
1711	if (sc->rx.active_queue_len > sc->rx.max_active_queue_len) {
1712		sc->rx.max_active_queue_len = sc->rx.active_queue_len;
1713	}
1714}
1715
1716static void
1717cpswp_start(struct ifnet *ifp)
1718{
1719	struct cpswp_softc *sc = ifp->if_softc;
1720
1721	CPSW_TX_LOCK(sc->swsc);
1722	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && sc->swsc->tx.running) {
1723		cpswp_tx_enqueue(sc);
1724		cpsw_tx_dequeue(sc->swsc);
1725	}
1726	CPSW_TX_UNLOCK(sc->swsc);
1727}
1728
1729static void
1730cpswp_tx_enqueue(struct cpswp_softc *sc)
1731{
1732	bus_dma_segment_t segs[CPSW_TXFRAGS];
1733	struct cpsw_cpdma_bd bd;
1734	struct cpsw_slots tmpqueue = STAILQ_HEAD_INITIALIZER(tmpqueue);
1735	struct cpsw_slot *slot, *prev_slot = NULL;
1736	struct cpsw_slot *last_old_slot, *first_new_slot;
1737	struct mbuf *m0;
1738	int error, flags, nsegs, seg, added = 0, padlen;
1739
1740	flags = 0;
1741	if (sc->swsc->dualemac) {
1742		flags = CPDMA_BD_TO_PORT |
1743		    ((sc->unit + 1) & CPDMA_BD_PORT_MASK);
1744	}
1745	/* Pull pending packets from IF queue and prep them for DMA. */
1746	while ((slot = STAILQ_FIRST(&sc->swsc->tx.avail)) != NULL) {
1747		IF_DEQUEUE(&sc->ifp->if_snd, m0);
1748		if (m0 == NULL)
1749			break;
1750
1751		slot->mbuf = m0;
1752		padlen = ETHER_MIN_LEN - slot->mbuf->m_pkthdr.len;
1753		if (padlen < 0)
1754			padlen = 0;
1755
1756		/* Create mapping in DMA memory */
1757		error = bus_dmamap_load_mbuf_sg(sc->swsc->mbuf_dtag,
1758		    slot->dmamap, slot->mbuf, segs, &nsegs, BUS_DMA_NOWAIT);
1759		/* If the packet is too fragmented, try to simplify. */
1760		if (error == EFBIG ||
1761		    (error == 0 &&
1762		    nsegs + (padlen > 0 ? 1 : 0) > sc->swsc->tx.avail_queue_len)) {
1763			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1764			if (padlen > 0) /* May as well add padding. */
1765				m_append(slot->mbuf, padlen,
1766				    sc->swsc->null_mbuf->m_data);
1767			m0 = m_defrag(slot->mbuf, M_NOWAIT);
1768			if (m0 == NULL) {
1769				device_printf(sc->dev,
1770				    "Can't defragment packet; dropping\n");
1771				m_freem(slot->mbuf);
1772			} else {
1773				CPSWP_DEBUGF(sc,
1774				    ("Requeueing defragmented packet"));
1775				IF_PREPEND(&sc->ifp->if_snd, m0);
1776			}
1777			slot->mbuf = NULL;
1778			continue;
1779		}
1780		if (error != 0) {
1781			device_printf(sc->dev,
1782			    "%s: Can't setup DMA (error=%d), dropping packet\n",
1783			    __func__, error);
1784			bus_dmamap_unload(sc->swsc->mbuf_dtag, slot->dmamap);
1785			m_freem(slot->mbuf);
1786			slot->mbuf = NULL;
1787			break;
1788		}
1789
1790		bus_dmamap_sync(sc->swsc->mbuf_dtag, slot->dmamap,
1791				BUS_DMASYNC_PREWRITE);
1792
1793		CPSWP_DEBUGF(sc,
1794		    ("Queueing TX packet: %d segments + %d pad bytes",
1795		    nsegs, padlen));
1796
1797		slot->ifp = sc->ifp;
1798		/* If there is only one segment, the for() loop
1799		 * gets skipped and the single buffer gets set up
1800		 * as both SOP and EOP. */
1801		/* Start by setting up the first buffer */
1802		bd.next = 0;
1803		bd.bufptr = segs[0].ds_addr;
1804		bd.bufoff = 0;
1805		bd.buflen = segs[0].ds_len;
1806		bd.pktlen = m_length(slot->mbuf, NULL) + padlen;
1807		bd.flags =  CPDMA_BD_SOP | CPDMA_BD_OWNER | flags;
1808		for (seg = 1; seg < nsegs; ++seg) {
1809			/* Save the previous buffer (which isn't EOP) */
1810			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1811			if (prev_slot != NULL) {
1812				cpsw_cpdma_write_bd_next(sc->swsc, prev_slot,
1813				    slot);
1814			}
1815			prev_slot = slot;
1816			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1817			sc->swsc->tx.avail_queue_len--;
1818			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1819			++added;
1820			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1821
1822			/* Setup next buffer (which isn't SOP) */
1823			bd.next = 0;
1824			bd.bufptr = segs[seg].ds_addr;
1825			bd.bufoff = 0;
1826			bd.buflen = segs[seg].ds_len;
1827			bd.pktlen = 0;
1828			bd.flags = CPDMA_BD_OWNER | flags;
1829		}
1830		/* Save the final buffer. */
1831		if (padlen <= 0)
1832			bd.flags |= CPDMA_BD_EOP;
1833		cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1834		if (prev_slot != NULL)
1835			cpsw_cpdma_write_bd_next(sc->swsc, prev_slot, slot);
1836		prev_slot = slot;
1837		STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1838		sc->swsc->tx.avail_queue_len--;
1839		STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1840		++added;
1841
1842		if (padlen > 0) {
1843			slot = STAILQ_FIRST(&sc->swsc->tx.avail);
1844			STAILQ_REMOVE_HEAD(&sc->swsc->tx.avail, next);
1845			sc->swsc->tx.avail_queue_len--;
1846			STAILQ_INSERT_TAIL(&tmpqueue, slot, next);
1847			++added;
1848
1849			/* Setup buffer of null pad bytes (definitely EOP) */
1850			cpsw_cpdma_write_bd_next(sc->swsc, prev_slot, slot);
1851			prev_slot = slot;
1852			bd.next = 0;
1853			bd.bufptr = sc->swsc->null_mbuf_paddr;
1854			bd.bufoff = 0;
1855			bd.buflen = padlen;
1856			bd.pktlen = 0;
1857			bd.flags = CPDMA_BD_EOP | CPDMA_BD_OWNER | flags;
1858			cpsw_cpdma_write_bd(sc->swsc, slot, &bd);
1859			++nsegs;
1860		}
1861
1862		if (nsegs > sc->swsc->tx.longest_chain)
1863			sc->swsc->tx.longest_chain = nsegs;
1864
1865		// TODO: Should we defer the BPF tap until
1866		// after all packets are queued?
1867		BPF_MTAP(sc->ifp, m0);
1868	}
1869
1870	/* Attach the list of new buffers to the hardware TX queue. */
1871	last_old_slot = STAILQ_LAST(&sc->swsc->tx.active, cpsw_slot, next);
1872	first_new_slot = STAILQ_FIRST(&tmpqueue);
1873	STAILQ_CONCAT(&sc->swsc->tx.active, &tmpqueue);
1874	if (first_new_slot == NULL) {
1875		return;
1876	} else if (last_old_slot == NULL) {
1877		/* Start a fresh queue. */
1878		sc->swsc->last_hdp = cpsw_cpdma_bd_paddr(sc->swsc, first_new_slot);
1879		cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx, first_new_slot);
1880	} else {
1881		/* Add buffers to end of current queue. */
1882		cpsw_cpdma_write_bd_next(sc->swsc, last_old_slot,
1883		    first_new_slot);
1884		/* If underrun, restart queue. */
1885		if (cpsw_cpdma_read_bd_flags(sc->swsc, last_old_slot) &
1886		    CPDMA_BD_EOQ) {
1887			sc->swsc->last_hdp = cpsw_cpdma_bd_paddr(sc->swsc, first_new_slot);
1888			cpsw_write_hdp_slot(sc->swsc, &sc->swsc->tx,
1889			    first_new_slot);
1890		}
1891	}
1892	sc->swsc->tx.queue_adds += added;
1893	sc->swsc->tx.active_queue_len += added;
1894	if (sc->swsc->tx.active_queue_len > sc->swsc->tx.max_active_queue_len) {
1895		sc->swsc->tx.max_active_queue_len = sc->swsc->tx.active_queue_len;
1896	}
1897}
1898
1899static int
1900cpsw_tx_dequeue(struct cpsw_softc *sc)
1901{
1902	struct cpsw_slot *slot, *last_removed_slot = NULL;
1903	struct cpsw_cpdma_bd bd;
1904	uint32_t flags, removed = 0;
1905
1906	slot = STAILQ_FIRST(&sc->tx.active);
1907	if (slot == NULL && cpsw_read_cp(sc, &sc->tx) == 0xfffffffc) {
1908		CPSW_DEBUGF(sc, ("TX teardown of an empty queue"));
1909		cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1910		sc->tx.running = 0;
1911		return (0);
1912	}
1913
1914	/* Pull completed buffers off the hardware TX queue. */
1915	while (slot != NULL) {
1916		flags = cpsw_cpdma_read_bd_flags(sc, slot);
1917		if (flags & CPDMA_BD_OWNER)
1918			break; /* Hardware is still using this packet. */
1919
1920		CPSW_DEBUGF(sc, ("TX removing completed packet"));
1921		bus_dmamap_sync(sc->mbuf_dtag, slot->dmamap, BUS_DMASYNC_POSTWRITE);
1922		bus_dmamap_unload(sc->mbuf_dtag, slot->dmamap);
1923		m_freem(slot->mbuf);
1924		slot->mbuf = NULL;
1925		if (slot->ifp)
1926			if_inc_counter(slot->ifp, IFCOUNTER_OPACKETS, 1);
1927
1928		/* Dequeue any additional buffers used by this packet. */
1929		while (slot != NULL && slot->mbuf == NULL) {
1930			STAILQ_REMOVE_HEAD(&sc->tx.active, next);
1931			STAILQ_INSERT_TAIL(&sc->tx.avail, slot, next);
1932			++removed;
1933			last_removed_slot = slot;
1934			slot = STAILQ_FIRST(&sc->tx.active);
1935		}
1936
1937		/* TearDown complete is only marked on the SOP for the packet. */
1938		if ((flags & (CPDMA_BD_SOP | CPDMA_BD_TDOWNCMPLT)) ==
1939		    (CPDMA_BD_EOP | CPDMA_BD_TDOWNCMPLT)) {
1940			CPSW_DEBUGF(sc, ("TX teardown in progress"));
1941			cpsw_write_cp(sc, &sc->tx, 0xfffffffc);
1942			// TODO: Increment a count of dropped TX packets
1943			sc->tx.running = 0;
1944			break;
1945		}
1946
1947		if ((flags & CPDMA_BD_EOP) == 0)
1948			flags = cpsw_cpdma_read_bd_flags(sc, last_removed_slot);
1949		if ((flags & (CPDMA_BD_EOP | CPDMA_BD_EOQ)) ==
1950		    (CPDMA_BD_EOP | CPDMA_BD_EOQ)) {
1951			cpsw_cpdma_read_bd(sc, last_removed_slot, &bd);
1952			if (bd.next != 0 && bd.next != sc->last_hdp) {
1953				/* Restart the queue. */
1954				sc->last_hdp = bd.next;
1955				cpsw_write_4(sc, sc->tx.hdp_offset, bd.next);
1956			}
1957		}
1958	}
1959
1960	if (removed != 0) {
1961		cpsw_write_cp_slot(sc, &sc->tx, last_removed_slot);
1962		sc->tx.queue_removes += removed;
1963		sc->tx.active_queue_len -= removed;
1964		sc->tx.avail_queue_len += removed;
1965		if (sc->tx.avail_queue_len > sc->tx.max_avail_queue_len)
1966			sc->tx.max_avail_queue_len = sc->tx.avail_queue_len;
1967	}
1968	return (removed);
1969}
1970
1971/*
1972 *
1973 * Miscellaneous interrupts.
1974 *
1975 */
1976
1977static void
1978cpsw_intr_rx_thresh(void *arg)
1979{
1980	struct cpsw_softc *sc = arg;
1981	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_RX_THRESH_STAT(0));
1982
1983	CPSW_DEBUGF(sc, ("stat=%x", stat));
1984	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 0);
1985}
1986
1987static void
1988cpsw_intr_misc_host_error(struct cpsw_softc *sc)
1989{
1990	uint32_t intstat;
1991	uint32_t dmastat;
1992	int txerr, rxerr, txchan, rxchan;
1993
1994	printf("\n\n");
1995	device_printf(sc->dev,
1996	    "HOST ERROR:  PROGRAMMING ERROR DETECTED BY HARDWARE\n");
1997	printf("\n\n");
1998	intstat = cpsw_read_4(sc, CPSW_CPDMA_DMA_INTSTAT_MASKED);
1999	device_printf(sc->dev, "CPSW_CPDMA_DMA_INTSTAT_MASKED=0x%x\n", intstat);
2000	dmastat = cpsw_read_4(sc, CPSW_CPDMA_DMASTATUS);
2001	device_printf(sc->dev, "CPSW_CPDMA_DMASTATUS=0x%x\n", dmastat);
2002
2003	txerr = (dmastat >> 20) & 15;
2004	txchan = (dmastat >> 16) & 7;
2005	rxerr = (dmastat >> 12) & 15;
2006	rxchan = (dmastat >> 8) & 7;
2007
2008	switch (txerr) {
2009	case 0: break;
2010	case 1:	printf("SOP error on TX channel %d\n", txchan);
2011		break;
2012	case 2:	printf("Ownership bit not set on SOP buffer on TX channel %d\n", txchan);
2013		break;
2014	case 3:	printf("Zero Next Buffer but not EOP on TX channel %d\n", txchan);
2015		break;
2016	case 4:	printf("Zero Buffer Pointer on TX channel %d\n", txchan);
2017		break;
2018	case 5:	printf("Zero Buffer Length on TX channel %d\n", txchan);
2019		break;
2020	case 6:	printf("Packet length error on TX channel %d\n", txchan);
2021		break;
2022	default: printf("Unknown error on TX channel %d\n", txchan);
2023		break;
2024	}
2025
2026	if (txerr != 0) {
2027		printf("CPSW_CPDMA_TX%d_HDP=0x%x\n",
2028		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_HDP(txchan)));
2029		printf("CPSW_CPDMA_TX%d_CP=0x%x\n",
2030		    txchan, cpsw_read_4(sc, CPSW_CPDMA_TX_CP(txchan)));
2031		cpsw_dump_queue(sc, &sc->tx.active);
2032	}
2033
2034	switch (rxerr) {
2035	case 0: break;
2036	case 2:	printf("Ownership bit not set on RX channel %d\n", rxchan);
2037		break;
2038	case 4:	printf("Zero Buffer Pointer on RX channel %d\n", rxchan);
2039		break;
2040	case 5:	printf("Zero Buffer Length on RX channel %d\n", rxchan);
2041		break;
2042	case 6:	printf("Buffer offset too big on RX channel %d\n", rxchan);
2043		break;
2044	default: printf("Unknown RX error on RX channel %d\n", rxchan);
2045		break;
2046	}
2047
2048	if (rxerr != 0) {
2049		printf("CPSW_CPDMA_RX%d_HDP=0x%x\n",
2050		    rxchan, cpsw_read_4(sc,CPSW_CPDMA_RX_HDP(rxchan)));
2051		printf("CPSW_CPDMA_RX%d_CP=0x%x\n",
2052		    rxchan, cpsw_read_4(sc, CPSW_CPDMA_RX_CP(rxchan)));
2053		cpsw_dump_queue(sc, &sc->rx.active);
2054	}
2055
2056	printf("\nALE Table\n");
2057	cpsw_ale_dump_table(sc);
2058
2059	// XXX do something useful here??
2060	panic("CPSW HOST ERROR INTERRUPT");
2061
2062	// Suppress this interrupt in the future.
2063	cpsw_write_4(sc, CPSW_CPDMA_DMA_INTMASK_CLEAR, intstat);
2064	printf("XXX HOST ERROR INTERRUPT SUPPRESSED\n");
2065	// The watchdog will probably reset the controller
2066	// in a little while.  It will probably fail again.
2067}
2068
2069static void
2070cpsw_intr_misc(void *arg)
2071{
2072	struct cpsw_softc *sc = arg;
2073	uint32_t stat = cpsw_read_4(sc, CPSW_WR_C_MISC_STAT(0));
2074
2075	if (stat & CPSW_WR_C_MISC_EVNT_PEND)
2076		CPSW_DEBUGF(sc, ("Time sync event interrupt unimplemented"));
2077	if (stat & CPSW_WR_C_MISC_STAT_PEND)
2078		cpsw_stats_collect(sc);
2079	if (stat & CPSW_WR_C_MISC_HOST_PEND)
2080		cpsw_intr_misc_host_error(sc);
2081	if (stat & CPSW_WR_C_MISC_MDIOLINK) {
2082		cpsw_write_4(sc, MDIOLINKINTMASKED,
2083		    cpsw_read_4(sc, MDIOLINKINTMASKED));
2084	}
2085	if (stat & CPSW_WR_C_MISC_MDIOUSER) {
2086		CPSW_DEBUGF(sc,
2087		    ("MDIO operation completed interrupt unimplemented"));
2088	}
2089	cpsw_write_4(sc, CPSW_CPDMA_CPDMA_EOI_VECTOR, 3);
2090}
2091
2092/*
2093 *
2094 * Periodic Checks and Watchdog.
2095 *
2096 */
2097
2098static void
2099cpswp_tick(void *msc)
2100{
2101	struct cpswp_softc *sc = msc;
2102
2103	/* Check for media type change */
2104	mii_tick(sc->mii);
2105	if (sc->media_status != sc->mii->mii_media.ifm_media) {
2106		printf("%s: media type changed (ifm_media=%x)\n", __func__,
2107			sc->mii->mii_media.ifm_media);
2108		cpswp_ifmedia_upd(sc->ifp);
2109	}
2110
2111	/* Schedule another timeout one second from now */
2112	callout_reset(&sc->mii_callout, hz, cpswp_tick, sc);
2113}
2114
2115static void
2116cpswp_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2117{
2118	struct cpswp_softc *sc;
2119	struct mii_data *mii;
2120
2121	sc = ifp->if_softc;
2122	CPSWP_DEBUGF(sc, (""));
2123	CPSW_PORT_LOCK(sc);
2124
2125	mii = sc->mii;
2126	mii_pollstat(mii);
2127
2128	ifmr->ifm_active = mii->mii_media_active;
2129	ifmr->ifm_status = mii->mii_media_status;
2130	CPSW_PORT_UNLOCK(sc);
2131}
2132
2133static int
2134cpswp_ifmedia_upd(struct ifnet *ifp)
2135{
2136	struct cpswp_softc *sc;
2137
2138	sc = ifp->if_softc;
2139	CPSWP_DEBUGF(sc, (""));
2140	CPSW_PORT_LOCK(sc);
2141	mii_mediachg(sc->mii);
2142	sc->media_status = sc->mii->mii_media.ifm_media;
2143	CPSW_PORT_UNLOCK(sc);
2144
2145	return (0);
2146}
2147
2148static void
2149cpsw_tx_watchdog_full_reset(struct cpsw_softc *sc)
2150{
2151	struct cpswp_softc *psc;
2152	int i;
2153
2154	cpsw_debugf_head("CPSW watchdog");
2155	device_printf(sc->dev, "watchdog timeout\n");
2156	for (i = 0; i < CPSW_PORTS; i++) {
2157		if (!sc->dualemac && i != sc->active_slave)
2158			continue;
2159		psc = device_get_softc(sc->port[i].dev);
2160		CPSW_PORT_LOCK(psc);
2161		cpswp_stop_locked(psc);
2162		CPSW_PORT_UNLOCK(psc);
2163	}
2164}
2165
2166static void
2167cpsw_tx_watchdog(void *msc)
2168{
2169	struct cpsw_softc *sc;
2170
2171	sc = msc;
2172	CPSW_GLOBAL_LOCK(sc);
2173	if (sc->tx.active_queue_len == 0 || !sc->tx.running) {
2174		sc->watchdog.timer = 0; /* Nothing to do. */
2175	} else if (sc->tx.queue_removes > sc->tx.queue_removes_at_last_tick) {
2176		sc->watchdog.timer = 0;  /* Stuff done while we weren't looking. */
2177	} else if (cpsw_tx_dequeue(sc) > 0) {
2178		sc->watchdog.timer = 0;  /* We just did something. */
2179	} else {
2180		/* There was something to do but it didn't get done. */
2181		++sc->watchdog.timer;
2182		if (sc->watchdog.timer > 5) {
2183			sc->watchdog.timer = 0;
2184			++sc->watchdog.resets;
2185			cpsw_tx_watchdog_full_reset(sc);
2186		}
2187	}
2188	sc->tx.queue_removes_at_last_tick = sc->tx.queue_removes;
2189	CPSW_GLOBAL_UNLOCK(sc);
2190
2191	/* Schedule another timeout one second from now */
2192	callout_reset(&sc->watchdog.callout, hz, cpsw_tx_watchdog, sc);
2193}
2194
2195/*
2196 *
2197 * ALE support routines.
2198 *
2199 */
2200
2201static void
2202cpsw_ale_read_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2203{
2204	cpsw_write_4(sc, CPSW_ALE_TBLCTL, idx & 1023);
2205	ale_entry[0] = cpsw_read_4(sc, CPSW_ALE_TBLW0);
2206	ale_entry[1] = cpsw_read_4(sc, CPSW_ALE_TBLW1);
2207	ale_entry[2] = cpsw_read_4(sc, CPSW_ALE_TBLW2);
2208}
2209
2210static void
2211cpsw_ale_write_entry(struct cpsw_softc *sc, uint16_t idx, uint32_t *ale_entry)
2212{
2213	cpsw_write_4(sc, CPSW_ALE_TBLW0, ale_entry[0]);
2214	cpsw_write_4(sc, CPSW_ALE_TBLW1, ale_entry[1]);
2215	cpsw_write_4(sc, CPSW_ALE_TBLW2, ale_entry[2]);
2216	cpsw_write_4(sc, CPSW_ALE_TBLCTL, 1 << 31 | (idx & 1023));
2217}
2218
2219static void
2220cpsw_ale_remove_all_mc_entries(struct cpsw_softc *sc)
2221{
2222	int i;
2223	uint32_t ale_entry[3];
2224
2225	/* First four entries are link address and broadcast. */
2226	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2227		cpsw_ale_read_entry(sc, i, ale_entry);
2228		if ((ALE_TYPE(ale_entry) == ALE_TYPE_ADDR ||
2229		    ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR) &&
2230		    ALE_MCAST(ale_entry)  == 1) { /* MCast link addr */
2231			ale_entry[0] = ale_entry[1] = ale_entry[2] = 0;
2232			cpsw_ale_write_entry(sc, i, ale_entry);
2233		}
2234	}
2235}
2236
2237static int
2238cpsw_ale_mc_entry_set(struct cpsw_softc *sc, uint8_t portmap, int vlan,
2239	uint8_t *mac)
2240{
2241	int free_index = -1, matching_index = -1, i;
2242	uint32_t ale_entry[3], ale_type;
2243
2244	/* Find a matching entry or a free entry. */
2245	for (i = 10; i < CPSW_MAX_ALE_ENTRIES; i++) {
2246		cpsw_ale_read_entry(sc, i, ale_entry);
2247
2248		/* Entry Type[61:60] is 0 for free entry */
2249		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2250			free_index = i;
2251
2252		if ((((ale_entry[1] >> 8) & 0xFF) == mac[0]) &&
2253		    (((ale_entry[1] >> 0) & 0xFF) == mac[1]) &&
2254		    (((ale_entry[0] >>24) & 0xFF) == mac[2]) &&
2255		    (((ale_entry[0] >>16) & 0xFF) == mac[3]) &&
2256		    (((ale_entry[0] >> 8) & 0xFF) == mac[4]) &&
2257		    (((ale_entry[0] >> 0) & 0xFF) == mac[5])) {
2258			matching_index = i;
2259			break;
2260		}
2261	}
2262
2263	if (matching_index < 0) {
2264		if (free_index < 0)
2265			return (ENOMEM);
2266		i = free_index;
2267	}
2268
2269	if (vlan != -1)
2270		ale_type = ALE_TYPE_VLAN_ADDR << 28 | vlan << 16;
2271	else
2272		ale_type = ALE_TYPE_ADDR << 28;
2273
2274	/* Set MAC address */
2275	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2276	ale_entry[1] = mac[0] << 8 | mac[1];
2277
2278	/* Entry type[61:60] and Mcast fwd state[63:62] is fw(3). */
2279	ale_entry[1] |= ALE_MCAST_FWD | ale_type;
2280
2281	/* Set portmask [68:66] */
2282	ale_entry[2] = (portmap & 7) << 2;
2283
2284	cpsw_ale_write_entry(sc, i, ale_entry);
2285
2286	return 0;
2287}
2288
2289static void
2290cpsw_ale_dump_table(struct cpsw_softc *sc) {
2291	int i;
2292	uint32_t ale_entry[3];
2293	for (i = 0; i < CPSW_MAX_ALE_ENTRIES; i++) {
2294		cpsw_ale_read_entry(sc, i, ale_entry);
2295		switch (ALE_TYPE(ale_entry)) {
2296		case ALE_TYPE_VLAN:
2297			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2298				ale_entry[1], ale_entry[0]);
2299			printf("type: %u ", ALE_TYPE(ale_entry));
2300			printf("vlan: %u ", ALE_VLAN(ale_entry));
2301			printf("untag: %u ", ALE_VLAN_UNTAG(ale_entry));
2302			printf("reg flood: %u ", ALE_VLAN_REGFLOOD(ale_entry));
2303			printf("unreg flood: %u ", ALE_VLAN_UNREGFLOOD(ale_entry));
2304			printf("members: %u ", ALE_VLAN_MEMBERS(ale_entry));
2305			printf("\n");
2306			break;
2307		case ALE_TYPE_ADDR:
2308		case ALE_TYPE_VLAN_ADDR:
2309			printf("ALE[%4u] %08x %08x %08x ", i, ale_entry[2],
2310				ale_entry[1], ale_entry[0]);
2311			printf("type: %u ", ALE_TYPE(ale_entry));
2312			printf("mac: %02x:%02x:%02x:%02x:%02x:%02x ",
2313				(ale_entry[1] >> 8) & 0xFF,
2314				(ale_entry[1] >> 0) & 0xFF,
2315				(ale_entry[0] >>24) & 0xFF,
2316				(ale_entry[0] >>16) & 0xFF,
2317				(ale_entry[0] >> 8) & 0xFF,
2318				(ale_entry[0] >> 0) & 0xFF);
2319			printf(ALE_MCAST(ale_entry) ? "mcast " : "ucast ");
2320			if (ALE_TYPE(ale_entry) == ALE_TYPE_VLAN_ADDR)
2321				printf("vlan: %u ", ALE_VLAN(ale_entry));
2322			printf("port: %u ", ALE_PORTS(ale_entry));
2323			printf("\n");
2324			break;
2325		}
2326	}
2327	printf("\n");
2328}
2329
2330static int
2331cpswp_ale_update_addresses(struct cpswp_softc *sc, int purge)
2332{
2333	uint8_t *mac;
2334	uint32_t ale_entry[3], ale_type, portmask;
2335	struct ifmultiaddr *ifma;
2336
2337	if (sc->swsc->dualemac) {
2338		ale_type = ALE_TYPE_VLAN_ADDR << 28 | sc->vlan << 16;
2339		portmask = 1 << (sc->unit + 1) | 1 << 0;
2340	} else {
2341		ale_type = ALE_TYPE_ADDR << 28;
2342		portmask = 7;
2343	}
2344
2345	/*
2346	 * Route incoming packets for our MAC address to Port 0 (host).
2347	 * For simplicity, keep this entry at table index 0 for port 1 and
2348	 * at index 2 for port 2 in the ALE.
2349	 */
2350        if_addr_rlock(sc->ifp);
2351	mac = LLADDR((struct sockaddr_dl *)sc->ifp->if_addr->ifa_addr);
2352	ale_entry[0] = mac[2] << 24 | mac[3] << 16 | mac[4] << 8 | mac[5];
2353	ale_entry[1] = ale_type | mac[0] << 8 | mac[1]; /* addr entry + mac */
2354	ale_entry[2] = 0; /* port = 0 */
2355	cpsw_ale_write_entry(sc->swsc, 0 + 2 * sc->unit, ale_entry);
2356
2357	/* Set outgoing MAC Address for slave port. */
2358	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_HI(sc->unit + 1),
2359	    mac[3] << 24 | mac[2] << 16 | mac[1] << 8 | mac[0]);
2360	cpsw_write_4(sc->swsc, CPSW_PORT_P_SA_LO(sc->unit + 1),
2361	    mac[5] << 8 | mac[4]);
2362        if_addr_runlock(sc->ifp);
2363
2364	/* Keep the broadcast address at table entry 1 (or 3). */
2365	ale_entry[0] = 0xffffffff; /* Lower 32 bits of MAC */
2366	/* ALE_MCAST_FWD, Addr type, upper 16 bits of Mac */
2367	ale_entry[1] = ALE_MCAST_FWD | ale_type | 0xffff;
2368	ale_entry[2] = portmask << 2;
2369	cpsw_ale_write_entry(sc->swsc, 1 + 2 * sc->unit, ale_entry);
2370
2371	/* SIOCDELMULTI doesn't specify the particular address
2372	   being removed, so we have to remove all and rebuild. */
2373	if (purge)
2374		cpsw_ale_remove_all_mc_entries(sc->swsc);
2375
2376        /* Set other multicast addrs desired. */
2377        if_maddr_rlock(sc->ifp);
2378        TAILQ_FOREACH(ifma, &sc->ifp->if_multiaddrs, ifma_link) {
2379                if (ifma->ifma_addr->sa_family != AF_LINK)
2380                        continue;
2381		cpsw_ale_mc_entry_set(sc->swsc, portmask, sc->vlan,
2382		    LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
2383        }
2384        if_maddr_runlock(sc->ifp);
2385
2386	return (0);
2387}
2388
2389static int
2390cpsw_ale_update_vlan_table(struct cpsw_softc *sc, int vlan, int ports,
2391	int untag, int mcregflood, int mcunregflood)
2392{
2393	int free_index, i, matching_index;
2394	uint32_t ale_entry[3];
2395
2396	free_index = matching_index = -1;
2397	/* Find a matching entry or a free entry. */
2398	for (i = 5; i < CPSW_MAX_ALE_ENTRIES; i++) {
2399		cpsw_ale_read_entry(sc, i, ale_entry);
2400
2401		/* Entry Type[61:60] is 0 for free entry */
2402		if (free_index < 0 && ALE_TYPE(ale_entry) == 0)
2403			free_index = i;
2404
2405		if (ALE_VLAN(ale_entry) == vlan) {
2406			matching_index = i;
2407			break;
2408		}
2409	}
2410
2411	if (matching_index < 0) {
2412		if (free_index < 0)
2413			return (-1);
2414		i = free_index;
2415	}
2416
2417	ale_entry[0] = (untag & 7) << 24 | (mcregflood & 7) << 16 |
2418	    (mcunregflood & 7) << 8 | (ports & 7);
2419	ale_entry[1] = ALE_TYPE_VLAN << 28 | vlan << 16;
2420	ale_entry[2] = 0;
2421	cpsw_ale_write_entry(sc, i, ale_entry);
2422
2423	return (0);
2424}
2425
2426/*
2427 *
2428 * Statistics and Sysctls.
2429 *
2430 */
2431
2432#if 0
2433static void
2434cpsw_stats_dump(struct cpsw_softc *sc)
2435{
2436	int i;
2437	uint32_t r;
2438
2439	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2440		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2441		    cpsw_stat_sysctls[i].reg);
2442		CPSW_DEBUGF(sc, ("%s: %ju + %u = %ju", cpsw_stat_sysctls[i].oid,
2443		    (intmax_t)sc->shadow_stats[i], r,
2444		    (intmax_t)sc->shadow_stats[i] + r));
2445	}
2446}
2447#endif
2448
2449static void
2450cpsw_stats_collect(struct cpsw_softc *sc)
2451{
2452	int i;
2453	uint32_t r;
2454
2455	CPSW_DEBUGF(sc, ("Controller shadow statistics updated."));
2456
2457	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2458		r = cpsw_read_4(sc, CPSW_STATS_OFFSET +
2459		    cpsw_stat_sysctls[i].reg);
2460		sc->shadow_stats[i] += r;
2461		cpsw_write_4(sc, CPSW_STATS_OFFSET + cpsw_stat_sysctls[i].reg,
2462		    r);
2463	}
2464}
2465
2466static int
2467cpsw_stats_sysctl(SYSCTL_HANDLER_ARGS)
2468{
2469	struct cpsw_softc *sc;
2470	struct cpsw_stat *stat;
2471	uint64_t result;
2472
2473	sc = (struct cpsw_softc *)arg1;
2474	stat = &cpsw_stat_sysctls[oidp->oid_number];
2475	result = sc->shadow_stats[oidp->oid_number];
2476	result += cpsw_read_4(sc, CPSW_STATS_OFFSET + stat->reg);
2477	return (sysctl_handle_64(oidp, &result, 0, req));
2478}
2479
2480static int
2481cpsw_stat_attached(SYSCTL_HANDLER_ARGS)
2482{
2483	struct cpsw_softc *sc;
2484	struct bintime t;
2485	unsigned result;
2486
2487	sc = (struct cpsw_softc *)arg1;
2488	getbinuptime(&t);
2489	bintime_sub(&t, &sc->attach_uptime);
2490	result = t.sec;
2491	return (sysctl_handle_int(oidp, &result, 0, req));
2492}
2493
2494static int
2495cpsw_stat_uptime(SYSCTL_HANDLER_ARGS)
2496{
2497	struct cpsw_softc *swsc;
2498	struct cpswp_softc *sc;
2499	struct bintime t;
2500	unsigned result;
2501
2502	swsc = arg1;
2503	sc = device_get_softc(swsc->port[arg2].dev);
2504	if (sc->ifp->if_drv_flags & IFF_DRV_RUNNING) {
2505		getbinuptime(&t);
2506		bintime_sub(&t, &sc->init_uptime);
2507		result = t.sec;
2508	} else
2509		result = 0;
2510	return (sysctl_handle_int(oidp, &result, 0, req));
2511}
2512
2513static void
2514cpsw_add_queue_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2515	struct cpsw_queue *queue)
2516{
2517	struct sysctl_oid_list *parent;
2518
2519	parent = SYSCTL_CHILDREN(node);
2520	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "totalBuffers",
2521	    CTLFLAG_RD, &queue->queue_slots, 0,
2522	    "Total buffers currently assigned to this queue");
2523	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "activeBuffers",
2524	    CTLFLAG_RD, &queue->active_queue_len, 0,
2525	    "Buffers currently registered with hardware controller");
2526	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxActiveBuffers",
2527	    CTLFLAG_RD, &queue->max_active_queue_len, 0,
2528	    "Max value of activeBuffers since last driver reset");
2529	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "availBuffers",
2530	    CTLFLAG_RD, &queue->avail_queue_len, 0,
2531	    "Buffers allocated to this queue but not currently "
2532	    "registered with hardware controller");
2533	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "maxAvailBuffers",
2534	    CTLFLAG_RD, &queue->max_avail_queue_len, 0,
2535	    "Max value of availBuffers since last driver reset");
2536	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalEnqueued",
2537	    CTLFLAG_RD, &queue->queue_adds, 0,
2538	    "Total buffers added to queue");
2539	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "totalDequeued",
2540	    CTLFLAG_RD, &queue->queue_removes, 0,
2541	    "Total buffers removed from queue");
2542	SYSCTL_ADD_UINT(ctx, parent, OID_AUTO, "longestChain",
2543	    CTLFLAG_RD, &queue->longest_chain, 0,
2544	    "Max buffers used for a single packet");
2545}
2546
2547static void
2548cpsw_add_watchdog_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *node,
2549	struct cpsw_softc *sc)
2550{
2551	struct sysctl_oid_list *parent;
2552
2553	parent = SYSCTL_CHILDREN(node);
2554	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "resets",
2555	    CTLFLAG_RD, &sc->watchdog.resets, 0,
2556	    "Total number of watchdog resets");
2557}
2558
2559static void
2560cpsw_add_sysctls(struct cpsw_softc *sc)
2561{
2562	struct sysctl_ctx_list *ctx;
2563	struct sysctl_oid *stats_node, *queue_node, *node;
2564	struct sysctl_oid_list *parent, *stats_parent, *queue_parent;
2565	struct sysctl_oid_list *ports_parent, *port_parent;
2566	char port[16];
2567	int i;
2568
2569	ctx = device_get_sysctl_ctx(sc->dev);
2570	parent = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev));
2571
2572	SYSCTL_ADD_INT(ctx, parent, OID_AUTO, "debug",
2573	    CTLFLAG_RW, &sc->debug, 0, "Enable switch debug messages");
2574
2575	SYSCTL_ADD_PROC(ctx, parent, OID_AUTO, "attachedSecs",
2576	    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, cpsw_stat_attached, "IU",
2577	    "Time since driver attach");
2578
2579	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "ports",
2580	    CTLFLAG_RD, NULL, "CPSW Ports Statistics");
2581	ports_parent = SYSCTL_CHILDREN(node);
2582	for (i = 0; i < CPSW_PORTS; i++) {
2583		if (!sc->dualemac && i != sc->active_slave)
2584			continue;
2585		port[0] = '0' + i;
2586		port[1] = '\0';
2587		node = SYSCTL_ADD_NODE(ctx, ports_parent, OID_AUTO,
2588		    port, CTLFLAG_RD, NULL, "CPSW Port Statistics");
2589		port_parent = SYSCTL_CHILDREN(node);
2590		SYSCTL_ADD_PROC(ctx, port_parent, OID_AUTO, "uptime",
2591		    CTLTYPE_UINT | CTLFLAG_RD, sc, i,
2592		    cpsw_stat_uptime, "IU", "Seconds since driver init");
2593	}
2594
2595	stats_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "stats",
2596				     CTLFLAG_RD, NULL, "CPSW Statistics");
2597	stats_parent = SYSCTL_CHILDREN(stats_node);
2598	for (i = 0; i < CPSW_SYSCTL_COUNT; ++i) {
2599		SYSCTL_ADD_PROC(ctx, stats_parent, i,
2600				cpsw_stat_sysctls[i].oid,
2601				CTLTYPE_U64 | CTLFLAG_RD, sc, 0,
2602				cpsw_stats_sysctl, "IU",
2603				cpsw_stat_sysctls[i].oid);
2604	}
2605
2606	queue_node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "queue",
2607	    CTLFLAG_RD, NULL, "CPSW Queue Statistics");
2608	queue_parent = SYSCTL_CHILDREN(queue_node);
2609
2610	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "tx",
2611	    CTLFLAG_RD, NULL, "TX Queue Statistics");
2612	cpsw_add_queue_sysctls(ctx, node, &sc->tx);
2613
2614	node = SYSCTL_ADD_NODE(ctx, queue_parent, OID_AUTO, "rx",
2615	    CTLFLAG_RD, NULL, "RX Queue Statistics");
2616	cpsw_add_queue_sysctls(ctx, node, &sc->rx);
2617
2618	node = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "watchdog",
2619	    CTLFLAG_RD, NULL, "Watchdog Statistics");
2620	cpsw_add_watchdog_sysctls(ctx, node, sc);
2621}
2622