bcm2835_bsc.c revision 330897
11553Srgrimes/*-
274532Sru * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
31553Srgrimes *
41553Srgrimes * Copyright (c) 2001 Tsubai Masanari.
580029Sobrien * Copyright (c) 2012 Oleksandr Tymoshenko <gonzo@freebsd.org>
674816Sru * Copyright (c) 2013 Luiz Otavio O Souza <loos@freebsd.org>
71553Srgrimes * Copyright (c) 2017 Ian Lepore <ian@freebsd.org>
81553Srgrimes * All rights reserved.
9207736Smckusick *
10207736Smckusick * Redistribution and use in source and binary forms, with or without
11207736Smckusick * modification, are permitted provided that the following conditions
121553Srgrimes * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 */
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: stable/11/sys/arm/broadcom/bcm2835/bcm2835_bsc.c 330897 2018-03-14 03:19:51Z eadler $");
34
35/*
36 * Driver for bcm2835 i2c-compatible two-wire bus, named 'BSC' on this SoC.
37 *
38 * This controller can only perform complete transfers, it does not provide
39 * low-level control over sending start/repeat-start/stop sequences on the bus.
40 * In addition, bugs in the silicon make it somewhat difficult to perform a
41 * repeat-start, and limit the repeat-start to a read following a write on
42 * the same slave device.  (The i2c protocol allows a repeat start to change
43 * direction or not, and change slave address or not at any time.)
44 *
45 * The repeat-start bug and workaround are described in a problem report at
46 * https://github.com/raspberrypi/linux/issues/254 with the crucial part being
47 * in a comment block from a fragment of a GPU i2c driver, containing this:
48 *
49 * -----------------------------------------------------------------------------
50 * - See i2c.v: The I2C peripheral samples the values for rw_bit and xfer_count
51 * - in the IDLE state if start is set.
52 * -
53 * - We want to generate a ReSTART not a STOP at the end of the TX phase. In
54 * - order to do that we must ensure the state machine goes RACK1 -> RACK2 ->
55 * - SRSTRT1 (not RACK1 -> RACK2 -> SSTOP1).
56 * -
57 * - So, in the RACK2 state when (TX) xfer_count==0 we must therefore have
58 * - already set, ready to be sampled:
59 * -  READ ; rw_bit     <= I2CC bit 0 -- must be "read"
60 * -  ST;    start      <= I2CC bit 7 -- must be "Go" in order to not issue STOP
61 * -  DLEN;  xfer_count <= I2CDLEN    -- must be equal to our read amount
62 * -
63 * - The plan to do this is:
64 * -  1. Start the sub-address write, but don't let it finish
65 * -     (keep xfer_count > 0)
66 * -  2. Populate READ, DLEN and ST in preparation for ReSTART read sequence
67 * -  3. Let TX finish (write the rest of the data)
68 * -  4. Read back data as it arrives
69 * -----------------------------------------------------------------------------
70 *
71 * The transfer function below scans the list of messages passed to it, looking
72 * for a read following a write to the same slave.  When it finds that, it
73 * starts the write without prefilling the tx fifo, which holds xfer_count>0,
74 * then presets the direction, length, and start command for the following read,
75 * as described above.  Then the tx fifo is filled and the rest of the transfer
76 * proceeds as normal, with the controller automatically supplying a
77 * repeat-start on the bus when the write operation finishes.
78 *
79 * XXX I suspect the controller may be able to do a repeat-start on any
80 * write->read or write->write transition, even when the slave addresses differ.
81 * It's unclear whether the slave address can be prestaged along with the
82 * direction and length while the write xfer_count is being held at zero.  In
83 * fact, if it can't do this, then it couldn't be used to read EDID data.
84 */
85
86#include <sys/param.h>
87#include <sys/systm.h>
88#include <sys/kernel.h>
89#include <sys/lock.h>
90#include <sys/module.h>
91#include <sys/mutex.h>
92#include <sys/bus.h>
93#include <machine/resource.h>
94#include <machine/bus.h>
95#include <sys/rman.h>
96#include <sys/sysctl.h>
97
98#include <dev/iicbus/iicbus.h>
99#include <dev/iicbus/iiconf.h>
100#include <dev/ofw/ofw_bus.h>
101#include <dev/ofw/ofw_bus_subr.h>
102
103#include <arm/broadcom/bcm2835/bcm2835_gpio.h>
104#include <arm/broadcom/bcm2835/bcm2835_bscreg.h>
105#include <arm/broadcom/bcm2835/bcm2835_bscvar.h>
106
107#include "iicbus_if.h"
108
109static struct ofw_compat_data compat_data[] = {
110	{"broadcom,bcm2835-bsc",	1},
111	{"brcm,bcm2708-i2c",		1},
112	{NULL,				0}
113};
114
115#define DEVICE_DEBUGF(sc, lvl, fmt, args...) \
116    if ((lvl) <= (sc)->sc_debug) \
117        device_printf((sc)->sc_dev, fmt, ##args)
118
119#define DEBUGF(sc, lvl, fmt, args...) \
120    if ((lvl) <= (sc)->sc_debug) \
121        printf(fmt, ##args)
122
123static void bcm_bsc_intr(void *);
124static int bcm_bsc_detach(device_t);
125
126static void
127bcm_bsc_modifyreg(struct bcm_bsc_softc *sc, uint32_t off, uint32_t mask,
128	uint32_t value)
129{
130	uint32_t reg;
131
132	mtx_assert(&sc->sc_mtx, MA_OWNED);
133	reg = BCM_BSC_READ(sc, off);
134	reg &= ~mask;
135	reg |= value;
136	BCM_BSC_WRITE(sc, off, reg);
137}
138
139static int
140bcm_bsc_clock_proc(SYSCTL_HANDLER_ARGS)
141{
142	struct bcm_bsc_softc *sc;
143	uint32_t clk;
144
145	sc = (struct bcm_bsc_softc *)arg1;
146	BCM_BSC_LOCK(sc);
147	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
148	BCM_BSC_UNLOCK(sc);
149	clk &= 0xffff;
150	if (clk == 0)
151		clk = 32768;
152	clk = BCM_BSC_CORE_CLK / clk;
153
154	return (sysctl_handle_int(oidp, &clk, 0, req));
155}
156
157static int
158bcm_bsc_clkt_proc(SYSCTL_HANDLER_ARGS)
159{
160	struct bcm_bsc_softc *sc;
161	uint32_t clkt;
162	int error;
163
164	sc = (struct bcm_bsc_softc *)arg1;
165
166	BCM_BSC_LOCK(sc);
167	clkt = BCM_BSC_READ(sc, BCM_BSC_CLKT);
168	BCM_BSC_UNLOCK(sc);
169	clkt &= 0xffff;
170	error = sysctl_handle_int(oidp, &clkt, sizeof(clkt), req);
171	if (error != 0 || req->newptr == NULL)
172		return (error);
173
174	BCM_BSC_LOCK(sc);
175	BCM_BSC_WRITE(sc, BCM_BSC_CLKT, clkt & 0xffff);
176	BCM_BSC_UNLOCK(sc);
177
178	return (0);
179}
180
181static int
182bcm_bsc_fall_proc(SYSCTL_HANDLER_ARGS)
183{
184	struct bcm_bsc_softc *sc;
185	uint32_t clk, reg;
186	int error;
187
188	sc = (struct bcm_bsc_softc *)arg1;
189
190	BCM_BSC_LOCK(sc);
191	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
192	BCM_BSC_UNLOCK(sc);
193	reg >>= 16;
194	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
195	if (error != 0 || req->newptr == NULL)
196		return (error);
197
198	BCM_BSC_LOCK(sc);
199	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
200	clk = BCM_BSC_CORE_CLK / clk;
201	if (reg > clk / 2)
202		reg = clk / 2 - 1;
203	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff0000, reg << 16);
204	BCM_BSC_UNLOCK(sc);
205
206	return (0);
207}
208
209static int
210bcm_bsc_rise_proc(SYSCTL_HANDLER_ARGS)
211{
212	struct bcm_bsc_softc *sc;
213	uint32_t clk, reg;
214	int error;
215
216	sc = (struct bcm_bsc_softc *)arg1;
217
218	BCM_BSC_LOCK(sc);
219	reg = BCM_BSC_READ(sc, BCM_BSC_DELAY);
220	BCM_BSC_UNLOCK(sc);
221	reg &= 0xffff;
222	error = sysctl_handle_int(oidp, &reg, sizeof(reg), req);
223	if (error != 0 || req->newptr == NULL)
224		return (error);
225
226	BCM_BSC_LOCK(sc);
227	clk = BCM_BSC_READ(sc, BCM_BSC_CLOCK);
228	clk = BCM_BSC_CORE_CLK / clk;
229	if (reg > clk / 2)
230		reg = clk / 2 - 1;
231	bcm_bsc_modifyreg(sc, BCM_BSC_DELAY, 0xffff, reg);
232	BCM_BSC_UNLOCK(sc);
233
234	return (0);
235}
236
237static void
238bcm_bsc_sysctl_init(struct bcm_bsc_softc *sc)
239{
240	struct sysctl_ctx_list *ctx;
241	struct sysctl_oid *tree_node;
242	struct sysctl_oid_list *tree;
243
244	/*
245	 * Add system sysctl tree/handlers.
246	 */
247	ctx = device_get_sysctl_ctx(sc->sc_dev);
248	tree_node = device_get_sysctl_tree(sc->sc_dev);
249	tree = SYSCTL_CHILDREN(tree_node);
250	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "frequency",
251	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
252	    bcm_bsc_clock_proc, "IU", "I2C BUS clock frequency");
253	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "clock_stretch",
254	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
255	    bcm_bsc_clkt_proc, "IU", "I2C BUS clock stretch timeout");
256	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "fall_edge_delay",
257	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
258	    bcm_bsc_fall_proc, "IU", "I2C BUS falling edge delay");
259	SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "rise_edge_delay",
260	    CTLFLAG_RW | CTLTYPE_UINT, sc, sizeof(*sc),
261	    bcm_bsc_rise_proc, "IU", "I2C BUS rising edge delay");
262	SYSCTL_ADD_INT(ctx, tree, OID_AUTO, "debug",
263	    CTLFLAG_RWTUN, &sc->sc_debug, 0,
264	    "Enable debug; 1=reads/writes, 2=add starts/stops");
265}
266
267static void
268bcm_bsc_reset(struct bcm_bsc_softc *sc)
269{
270
271	/* Enable the BSC Controller, disable interrupts. */
272	BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN);
273	/* Clear pending interrupts. */
274	BCM_BSC_WRITE(sc, BCM_BSC_STATUS, BCM_BSC_STATUS_CLKT |
275	    BCM_BSC_STATUS_ERR | BCM_BSC_STATUS_DONE);
276	/* Clear the FIFO. */
277	bcm_bsc_modifyreg(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_CLEAR0,
278	    BCM_BSC_CTRL_CLEAR0);
279}
280
281static int
282bcm_bsc_probe(device_t dev)
283{
284
285	if (!ofw_bus_status_okay(dev))
286		return (ENXIO);
287
288	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
289		return (ENXIO);
290
291	device_set_desc(dev, "BCM2708/2835 BSC controller");
292
293	return (BUS_PROBE_DEFAULT);
294}
295
296static int
297bcm_bsc_attach(device_t dev)
298{
299	struct bcm_bsc_softc *sc;
300	unsigned long start;
301	device_t gpio;
302	int i, rid;
303
304	sc = device_get_softc(dev);
305	sc->sc_dev = dev;
306
307	rid = 0;
308	sc->sc_mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
309	    RF_ACTIVE);
310	if (!sc->sc_mem_res) {
311		device_printf(dev, "cannot allocate memory window\n");
312		return (ENXIO);
313	}
314
315	sc->sc_bst = rman_get_bustag(sc->sc_mem_res);
316	sc->sc_bsh = rman_get_bushandle(sc->sc_mem_res);
317
318	/* Check the unit we are attaching by its base address. */
319	start = rman_get_start(sc->sc_mem_res);
320	for (i = 0; i < nitems(bcm_bsc_pins); i++) {
321		if (bcm_bsc_pins[i].start == (start & BCM_BSC_BASE_MASK))
322			break;
323	}
324	if (i == nitems(bcm_bsc_pins)) {
325		device_printf(dev, "only bsc0 and bsc1 are supported\n");
326		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
327		return (ENXIO);
328	}
329
330	/*
331	 * Configure the GPIO pins to ALT0 function to enable BSC control
332	 * over the pins.
333	 */
334	gpio = devclass_get_device(devclass_find("gpio"), 0);
335	if (!gpio) {
336		device_printf(dev, "cannot find gpio0\n");
337		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
338		return (ENXIO);
339	}
340	bcm_gpio_set_alternate(gpio, bcm_bsc_pins[i].sda, BCM_GPIO_ALT0);
341	bcm_gpio_set_alternate(gpio, bcm_bsc_pins[i].scl, BCM_GPIO_ALT0);
342
343	rid = 0;
344	sc->sc_irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
345	    RF_ACTIVE | RF_SHAREABLE);
346	if (!sc->sc_irq_res) {
347		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
348		device_printf(dev, "cannot allocate interrupt\n");
349		return (ENXIO);
350	}
351
352	/* Hook up our interrupt handler. */
353	if (bus_setup_intr(dev, sc->sc_irq_res, INTR_TYPE_MISC | INTR_MPSAFE,
354	    NULL, bcm_bsc_intr, sc, &sc->sc_intrhand)) {
355		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
356		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
357		device_printf(dev, "cannot setup the interrupt handler\n");
358		return (ENXIO);
359	}
360
361	mtx_init(&sc->sc_mtx, "bcm_bsc", NULL, MTX_DEF);
362
363	bcm_bsc_sysctl_init(sc);
364
365	/* Enable the BSC controller.  Flush the FIFO. */
366	BCM_BSC_LOCK(sc);
367	bcm_bsc_reset(sc);
368	BCM_BSC_UNLOCK(sc);
369
370	sc->sc_iicbus = device_add_child(dev, "iicbus", -1);
371	if (sc->sc_iicbus == NULL) {
372		bcm_bsc_detach(dev);
373		return (ENXIO);
374	}
375
376	/* Probe and attach the iicbus when interrupts are available. */
377	config_intrhook_oneshot((ich_func_t)bus_generic_attach, dev);
378
379	return (0);
380}
381
382static int
383bcm_bsc_detach(device_t dev)
384{
385	struct bcm_bsc_softc *sc;
386
387	bus_generic_detach(dev);
388
389	sc = device_get_softc(dev);
390	if (sc->sc_iicbus != NULL)
391		device_delete_child(dev, sc->sc_iicbus);
392	mtx_destroy(&sc->sc_mtx);
393	if (sc->sc_intrhand)
394		bus_teardown_intr(dev, sc->sc_irq_res, sc->sc_intrhand);
395	if (sc->sc_irq_res)
396		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq_res);
397	if (sc->sc_mem_res)
398		bus_release_resource(dev, SYS_RES_MEMORY, 0, sc->sc_mem_res);
399
400	return (0);
401}
402
403static void
404bcm_bsc_empty_rx_fifo(struct bcm_bsc_softc *sc)
405{
406	uint32_t status;
407
408	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_RXD is asserted on entry. */
409	do {
410		if (sc->sc_resid == 0) {
411			sc->sc_data  = sc->sc_curmsg->buf;
412			sc->sc_dlen  = sc->sc_curmsg->len;
413			sc->sc_resid = sc->sc_dlen;
414			++sc->sc_curmsg;
415		}
416		do {
417			*sc->sc_data = BCM_BSC_READ(sc, BCM_BSC_DATA);
418			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
419			++sc->sc_data;
420			--sc->sc_resid;
421			--sc->sc_totlen;
422			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
423		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_RXD));
424	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_RXD));
425}
426
427static void
428bcm_bsc_fill_tx_fifo(struct bcm_bsc_softc *sc)
429{
430	uint32_t status;
431
432	/* Assumes sc_totlen > 0 and BCM_BSC_STATUS_TXD is asserted on entry. */
433	do {
434		if (sc->sc_resid == 0) {
435			sc->sc_data  = sc->sc_curmsg->buf;
436			sc->sc_dlen  = sc->sc_curmsg->len;
437			sc->sc_resid = sc->sc_dlen;
438			++sc->sc_curmsg;
439		}
440		do {
441			BCM_BSC_WRITE(sc, BCM_BSC_DATA, *sc->sc_data);
442			DEBUGF(sc, 1, "0x%02x ", *sc->sc_data);
443			++sc->sc_data;
444			--sc->sc_resid;
445			--sc->sc_totlen;
446			status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
447		} while (sc->sc_resid > 0 && (status & BCM_BSC_STATUS_TXD));
448		/*
449		 * If a repeat-start was pending and we just hit the end of a tx
450		 * buffer, see if it's also the end of the writes that preceeded
451		 * the repeat-start.  If so, log the repeat-start and the start
452		 * of the following read, and return because we're not writing
453		 * anymore (and TXD will be true because there's room to write
454		 * in the fifo).
455		 */
456		if (sc->sc_replen > 0 && sc->sc_resid == 0) {
457			sc->sc_replen -= sc->sc_dlen;
458			if (sc->sc_replen == 0) {
459				DEBUGF(sc, 1, " err=0\n");
460				DEVICE_DEBUGF(sc, 2, "rstart 0x%02x\n",
461				    sc->sc_curmsg->slave | 0x01);
462				DEVICE_DEBUGF(sc, 1,
463				    "read   0x%02x len %d: ",
464				    sc->sc_curmsg->slave | 0x01,
465				    sc->sc_totlen);
466				sc->sc_flags |= BCM_I2C_READ;
467				return;
468			}
469		}
470	} while (sc->sc_totlen > 0 && (status & BCM_BSC_STATUS_TXD));
471}
472
473static void
474bcm_bsc_intr(void *arg)
475{
476	struct bcm_bsc_softc *sc;
477	uint32_t status;
478
479	sc = (struct bcm_bsc_softc *)arg;
480
481	BCM_BSC_LOCK(sc);
482
483	/* The I2C interrupt is shared among all the BSC controllers. */
484	if ((sc->sc_flags & BCM_I2C_BUSY) == 0) {
485		BCM_BSC_UNLOCK(sc);
486		return;
487	}
488
489	status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
490	DEBUGF(sc, 4, " <intrstatus=0x%08x> ", status);
491
492	/* RXD and DONE can assert together, empty fifo before checking done. */
493	if ((sc->sc_flags & BCM_I2C_READ) && (status & BCM_BSC_STATUS_RXD))
494		bcm_bsc_empty_rx_fifo(sc);
495
496	/* Check for completion. */
497	if (status & (BCM_BSC_STATUS_ERRBITS | BCM_BSC_STATUS_DONE)) {
498		sc->sc_flags |= BCM_I2C_DONE;
499		if (status & BCM_BSC_STATUS_ERRBITS)
500			sc->sc_flags |= BCM_I2C_ERROR;
501		/* Disable interrupts. */
502		bcm_bsc_reset(sc);
503		wakeup(sc);
504	} else if (!(sc->sc_flags & BCM_I2C_READ)) {
505		/*
506		 * Don't check for TXD until after determining whether the
507		 * transfer is complete; TXD will be asserted along with ERR or
508		 * DONE if there is room in the fifo.
509		 */
510		if ((status & BCM_BSC_STATUS_TXD) && sc->sc_totlen > 0)
511			bcm_bsc_fill_tx_fifo(sc);
512	}
513
514	BCM_BSC_UNLOCK(sc);
515}
516
517static int
518bcm_bsc_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
519{
520	struct bcm_bsc_softc *sc;
521	struct iic_msg *endmsgs, *nxtmsg;
522	uint32_t readctl, status;
523	int err;
524	uint16_t curlen;
525	uint8_t curisread, curslave, nxtisread, nxtslave;
526
527	sc = device_get_softc(dev);
528	BCM_BSC_LOCK(sc);
529
530	/* If the controller is busy wait until it is available. */
531	while (sc->sc_flags & BCM_I2C_BUSY)
532		mtx_sleep(dev, &sc->sc_mtx, 0, "bscbusw", 0);
533
534	/* Now we have control over the BSC controller. */
535	sc->sc_flags = BCM_I2C_BUSY;
536
537	DEVICE_DEBUGF(sc, 3, "Transfer %d msgs\n", nmsgs);
538
539	/* Clear the FIFO and the pending interrupts. */
540	bcm_bsc_reset(sc);
541
542	/*
543	 * Perform all the transfers requested in the array of msgs.  Note that
544	 * it is bcm_bsc_empty_rx_fifo() and bcm_bsc_fill_tx_fifo() that advance
545	 * sc->sc_curmsg through the array of messages, as the data from each
546	 * message is fully consumed, but it is this loop that notices when we
547	 * have no more messages to process.
548	 */
549	err = 0;
550	sc->sc_resid = 0;
551	sc->sc_curmsg = msgs;
552	endmsgs = &msgs[nmsgs];
553	while (sc->sc_curmsg < endmsgs) {
554		readctl = 0;
555		curslave = sc->sc_curmsg->slave >> 1;
556		curisread = sc->sc_curmsg->flags & IIC_M_RD;
557		sc->sc_replen = 0;
558		sc->sc_totlen = sc->sc_curmsg->len;
559		/*
560		 * Scan for scatter/gather IO (same slave and direction) or
561		 * repeat-start (read following write for the same slave).
562		 */
563		for (nxtmsg = sc->sc_curmsg + 1; nxtmsg < endmsgs; ++nxtmsg) {
564			nxtslave = nxtmsg->slave >> 1;
565			if (curslave == nxtslave) {
566				nxtisread = nxtmsg->flags & IIC_M_RD;
567				if (curisread == nxtisread) {
568					/*
569					 * Same slave and direction, this
570					 * message will be part of the same
571					 * transfer as the previous one.
572					 */
573					sc->sc_totlen += nxtmsg->len;
574					continue;
575				} else if (curisread == IIC_M_WR) {
576					/*
577					 * Read after write to same slave means
578					 * repeat-start, remember how many bytes
579					 * come before the repeat-start, switch
580					 * the direction to IIC_M_RD, and gather
581					 * up following reads to the same slave.
582					 */
583					curisread = IIC_M_RD;
584					sc->sc_replen = sc->sc_totlen;
585					sc->sc_totlen += nxtmsg->len;
586					continue;
587				}
588			}
589			break;
590		}
591
592		/*
593		 * curslave and curisread temporaries from above may refer to
594		 * the after-repstart msg, reset them to reflect sc_curmsg.
595		 */
596		curisread = (sc->sc_curmsg->flags & IIC_M_RD) ? 1 : 0;
597		curslave = sc->sc_curmsg->slave | curisread;
598
599		/* Write the slave address. */
600		BCM_BSC_WRITE(sc, BCM_BSC_SLAVE, curslave >> 1);
601
602		DEVICE_DEBUGF(sc, 2, "start  0x%02x\n", curslave);
603
604		/*
605		 * Either set up read length and direction variables for a
606		 * simple transfer or get the hardware started on the first
607		 * piece of a transfer that involves a repeat-start and set up
608		 * the read length and direction vars for the second piece.
609		 */
610		if (sc->sc_replen == 0) {
611			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
612			    (curisread) ? "read" : "write", curslave,
613			    sc->sc_totlen);
614			curlen = sc->sc_totlen;
615			if (curisread) {
616				readctl = BCM_BSC_CTRL_READ;
617				sc->sc_flags |= BCM_I2C_READ;
618			} else {
619				readctl = 0;
620				sc->sc_flags &= ~BCM_I2C_READ;
621			}
622		} else {
623			DEVICE_DEBUGF(sc, 1, "%-6s 0x%02x len %d: ",
624			    (curisread) ? "read" : "write", curslave,
625			    sc->sc_replen);
626
627			/*
628			 * Start the write transfer with an empty fifo and wait
629			 * for the 'transfer active' status bit to light up;
630			 * that indicates that the hardware has latched the
631			 * direction and length for the write, and we can safely
632			 * reload those registers and issue the start for the
633			 * following read; interrupts are not enabled here.
634			 */
635			BCM_BSC_WRITE(sc, BCM_BSC_DLEN, sc->sc_replen);
636			BCM_BSC_WRITE(sc, BCM_BSC_CTRL, BCM_BSC_CTRL_I2CEN |
637			    BCM_BSC_CTRL_ST);
638			do {
639				status = BCM_BSC_READ(sc, BCM_BSC_STATUS);
640				if (status & BCM_BSC_STATUS_ERR) {
641					/* no ACK on slave addr */
642					err = EIO;
643					goto xfer_done;
644				}
645			} while ((status & BCM_BSC_STATUS_TA) == 0);
646			/*
647			 * Set curlen and readctl for the repeat-start read that
648			 * we need to set up below, but set sc_flags to write,
649			 * because that is the operation in progress right now.
650			 */
651			curlen = sc->sc_totlen - sc->sc_replen;
652			readctl = BCM_BSC_CTRL_READ;
653			sc->sc_flags &= ~BCM_I2C_READ;
654		}
655
656		/*
657		 * Start the transfer with interrupts enabled, then if doing a
658		 * write, fill the tx fifo.  Not prefilling the fifo until after
659		 * this start command is the key workaround for making
660		 * repeat-start work, and it's harmless to do it in this order
661		 * for a regular write too.
662		 */
663		BCM_BSC_WRITE(sc, BCM_BSC_DLEN, curlen);
664		BCM_BSC_WRITE(sc, BCM_BSC_CTRL, readctl | BCM_BSC_CTRL_I2CEN |
665		    BCM_BSC_CTRL_ST | BCM_BSC_CTRL_INT_ALL);
666
667		if (!(sc->sc_curmsg->flags & IIC_M_RD)) {
668			bcm_bsc_fill_tx_fifo(sc);
669		}
670
671		/* Wait for the transaction to complete. */
672		while (err == 0 && !(sc->sc_flags & BCM_I2C_DONE)) {
673			err = mtx_sleep(sc, &sc->sc_mtx, 0, "bsciow", hz);
674		}
675		/* Check for errors. */
676		if (err == 0 && (sc->sc_flags & BCM_I2C_ERROR))
677			err = EIO;
678xfer_done:
679		DEBUGF(sc, 1, " err=%d\n", err);
680		DEVICE_DEBUGF(sc, 2, "stop\n");
681		if (err != 0)
682			break;
683	}
684
685	/* Disable interrupts, clean fifo, etc. */
686	bcm_bsc_reset(sc);
687
688	/* Clean the controller flags. */
689	sc->sc_flags = 0;
690
691	/* Wake up the threads waiting for bus. */
692	wakeup(dev);
693
694	BCM_BSC_UNLOCK(sc);
695
696	return (err);
697}
698
699static int
700bcm_bsc_iicbus_reset(device_t dev, u_char speed, u_char addr, u_char *oldaddr)
701{
702	struct bcm_bsc_softc *sc;
703	uint32_t busfreq;
704
705	sc = device_get_softc(dev);
706	BCM_BSC_LOCK(sc);
707	bcm_bsc_reset(sc);
708	if (sc->sc_iicbus == NULL)
709		busfreq = 100000;
710	else
711		busfreq = IICBUS_GET_FREQUENCY(sc->sc_iicbus, speed);
712	BCM_BSC_WRITE(sc, BCM_BSC_CLOCK, BCM_BSC_CORE_CLK / busfreq);
713	BCM_BSC_UNLOCK(sc);
714
715	return (IIC_ENOADDR);
716}
717
718static phandle_t
719bcm_bsc_get_node(device_t bus, device_t dev)
720{
721
722	/* We only have one child, the I2C bus, which needs our own node. */
723	return (ofw_bus_get_node(bus));
724}
725
726static device_method_t bcm_bsc_methods[] = {
727	/* Device interface */
728	DEVMETHOD(device_probe,		bcm_bsc_probe),
729	DEVMETHOD(device_attach,	bcm_bsc_attach),
730	DEVMETHOD(device_detach,	bcm_bsc_detach),
731
732	/* iicbus interface */
733	DEVMETHOD(iicbus_reset,		bcm_bsc_iicbus_reset),
734	DEVMETHOD(iicbus_callback,	iicbus_null_callback),
735	DEVMETHOD(iicbus_transfer,	bcm_bsc_transfer),
736
737	/* ofw_bus interface */
738	DEVMETHOD(ofw_bus_get_node,	bcm_bsc_get_node),
739
740	DEVMETHOD_END
741};
742
743static devclass_t bcm_bsc_devclass;
744
745static driver_t bcm_bsc_driver = {
746	"iichb",
747	bcm_bsc_methods,
748	sizeof(struct bcm_bsc_softc),
749};
750
751DRIVER_MODULE(iicbus, bcm2835_bsc, iicbus_driver, iicbus_devclass, 0, 0);
752DRIVER_MODULE(bcm2835_bsc, simplebus, bcm_bsc_driver, bcm_bsc_devclass, 0, 0);
753