at91_machdep.c revision 317004
1/*-
2 * Copyright (c) 1994-1998 Mark Brinicombe.
3 * Copyright (c) 1994 Brini.
4 * All rights reserved.
5 *
6 * This code is derived from software written for Brini by Mark Brinicombe
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *      This product includes software developed by Brini.
19 * 4. The name of the company nor the name of the author may be used to
20 *    endorse or promote products derived from this software without specific
21 *    prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
24 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
25 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
27 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
28 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
29 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * RiscBSD kernel project
36 *
37 * machdep.c
38 *
39 * Machine dependent functions for kernel setup
40 *
41 * This file needs a lot of work.
42 *
43 * Created      : 17/09/94
44 */
45
46#include "opt_kstack_pages.h"
47#include "opt_platform.h"
48
49#include <sys/cdefs.h>
50__FBSDID("$FreeBSD: stable/11/sys/arm/at91/at91_machdep.c 317004 2017-04-16 07:21:20Z mmel $");
51
52#define _ARM32_BUS_DMA_PRIVATE
53#include <sys/param.h>
54#include <sys/systm.h>
55#include <sys/sysproto.h>
56#include <sys/signalvar.h>
57#include <sys/imgact.h>
58#include <sys/kernel.h>
59#include <sys/ktr.h>
60#include <sys/linker.h>
61#include <sys/lock.h>
62#include <sys/malloc.h>
63#include <sys/mutex.h>
64#include <sys/pcpu.h>
65#include <sys/proc.h>
66#include <sys/ptrace.h>
67#include <sys/cons.h>
68#include <sys/bio.h>
69#include <sys/bus.h>
70#include <sys/buf.h>
71#include <sys/exec.h>
72#include <sys/kdb.h>
73#include <sys/msgbuf.h>
74#include <sys/devmap.h>
75#include <machine/physmem.h>
76#include <machine/reg.h>
77#include <machine/cpu.h>
78#include <machine/board.h>
79
80#include <vm/vm.h>
81#include <vm/pmap.h>
82#include <vm/vm_object.h>
83#include <vm/vm_page.h>
84#include <vm/vm_map.h>
85#include <machine/vmparam.h>
86#include <machine/pcb.h>
87#include <machine/undefined.h>
88#include <machine/machdep.h>
89#include <machine/metadata.h>
90#include <machine/armreg.h>
91#include <machine/bus.h>
92#include <sys/reboot.h>
93
94#include <arm/at91/at91board.h>
95#include <arm/at91/at91var.h>
96#include <arm/at91/at91soc.h>
97#include <arm/at91/at91_usartreg.h>
98#include <arm/at91/at91rm92reg.h>
99#include <arm/at91/at91sam9g20reg.h>
100#include <arm/at91/at91sam9g45reg.h>
101
102#ifndef MAXCPU
103#define MAXCPU 1
104#endif
105
106/* Page table for mapping proc0 zero page */
107#define KERNEL_PT_SYS		0
108#define KERNEL_PT_KERN		1
109#define KERNEL_PT_KERN_NUM	22
110/* L2 table for mapping after kernel */
111#define KERNEL_PT_AFKERNEL	KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
112#define	KERNEL_PT_AFKERNEL_NUM	5
113
114/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
115#define NUM_KERNEL_PTS		(KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
116
117struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
118
119/* Static device mappings. */
120const struct devmap_entry at91_devmap[] = {
121	/*
122	 * Map the critical on-board devices. The interrupt vector at
123	 * 0xffff0000 makes it impossible to map them PA == VA, so we map all
124	 * 0xfffxxxxx addresses to 0xdffxxxxx. This covers all critical devices
125	 * on all members of the AT91SAM9 and AT91RM9200 families.
126	 */
127	{
128		0xdff00000,
129		0xfff00000,
130		0x00100000,
131	},
132	/* There's a notion that we should do the rest of these lazily. */
133	/*
134	 * We can't just map the OHCI registers VA == PA, because
135	 * AT91xx_xxx_BASE belongs to the userland address space.
136	 * We could just choose a different virtual address, but a better
137	 * solution would probably be to just use pmap_mapdev() to allocate
138	 * KVA, as we don't need the OHCI controller before the vm
139	 * initialization is done. However, the AT91 resource allocation
140	 * system doesn't know how to use pmap_mapdev() yet.
141	 * Care must be taken to ensure PA and VM address do not overlap
142	 * between entries.
143	 */
144	{
145		/*
146		 * Add the ohci controller, and anything else that might be
147		 * on this chip select for a VA/PA mapping.
148		 */
149		/* Internal Memory 1MB  */
150		AT91RM92_OHCI_VA_BASE,
151		AT91RM92_OHCI_BASE,
152		0x00100000,
153	},
154	{
155		/* CompactFlash controller. Portion of EBI CS4 1MB */
156		AT91RM92_CF_VA_BASE,
157		AT91RM92_CF_BASE,
158		0x00100000,
159	},
160	/*
161	 * The next two should be good for the 9260, 9261 and 9G20 since
162	 * addresses mapping is the same.
163	 */
164	{
165		/* Internal Memory 1MB  */
166		AT91SAM9G20_OHCI_VA_BASE,
167		AT91SAM9G20_OHCI_BASE,
168		0x00100000,
169	},
170	{
171		/* EBI CS3 256MB */
172		AT91SAM9G20_NAND_VA_BASE,
173		AT91SAM9G20_NAND_BASE,
174		AT91SAM9G20_NAND_SIZE,
175	},
176	/*
177	 * The next should be good for the 9G45.
178	 */
179	{
180		/* Internal Memory 1MB  */
181		AT91SAM9G45_OHCI_VA_BASE,
182		AT91SAM9G45_OHCI_BASE,
183		0x00100000,
184	},
185	{ 0, 0, 0, }
186};
187
188#ifdef LINUX_BOOT_ABI
189static int membanks;
190static int memsize[];
191#endif
192
193long
194at91_ramsize(void)
195{
196	uint32_t cr, mdr, mr, *SDRAMC;
197	int banks, rows, cols, bw;
198#ifdef LINUX_BOOT_ABI
199	/*
200	 * If we found any ATAGs that were for memory, return the first bank.
201	 */
202	if (membanks > 0)
203		return (memsize[0]);
204#endif
205
206	if (at91_is_rm92()) {
207		SDRAMC = (uint32_t *)(AT91_BASE + AT91RM92_SDRAMC_BASE);
208		cr = SDRAMC[AT91RM92_SDRAMC_CR / 4];
209		mr = SDRAMC[AT91RM92_SDRAMC_MR / 4];
210		banks = (cr & AT91RM92_SDRAMC_CR_NB_4) ? 2 : 1;
211		rows = ((cr & AT91RM92_SDRAMC_CR_NR_MASK) >> 2) + 11;
212		cols = (cr & AT91RM92_SDRAMC_CR_NC_MASK) + 8;
213		bw = (mr & AT91RM92_SDRAMC_MR_DBW_16) ? 1 : 2;
214	} else if (at91_cpu_is(AT91_T_SAM9G45)) {
215		SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G45_DDRSDRC0_BASE);
216		cr = SDRAMC[AT91SAM9G45_DDRSDRC_CR / 4];
217		mdr = SDRAMC[AT91SAM9G45_DDRSDRC_MDR / 4];
218		banks = 0;
219		rows = ((cr & AT91SAM9G45_DDRSDRC_CR_NR_MASK) >> 2) + 11;
220		cols = (cr & AT91SAM9G45_DDRSDRC_CR_NC_MASK) + 8;
221		bw = (mdr & AT91SAM9G45_DDRSDRC_MDR_DBW_16) ? 1 : 2;
222
223		/* Fix the calculation for DDR memory */
224		mdr &= AT91SAM9G45_DDRSDRC_MDR_MASK;
225		if (mdr & AT91SAM9G45_DDRSDRC_MDR_LPDDR1 ||
226		    mdr & AT91SAM9G45_DDRSDRC_MDR_DDR2) {
227			/* The cols value is 1 higher for DDR */
228			cols += 1;
229			/* DDR has 4 internal banks. */
230			banks = 2;
231		}
232	} else {
233		/*
234		 * This should be good for the 9260, 9261, 9G20, 9G35 and 9X25
235		 * as addresses and registers are the same.
236		 */
237		SDRAMC = (uint32_t *)(AT91_BASE + AT91SAM9G20_SDRAMC_BASE);
238		cr = SDRAMC[AT91SAM9G20_SDRAMC_CR / 4];
239		mr = SDRAMC[AT91SAM9G20_SDRAMC_MR / 4];
240		banks = (cr & AT91SAM9G20_SDRAMC_CR_NB_4) ? 2 : 1;
241		rows = ((cr & AT91SAM9G20_SDRAMC_CR_NR_MASK) >> 2) + 11;
242		cols = (cr & AT91SAM9G20_SDRAMC_CR_NC_MASK) + 8;
243		bw = (cr & AT91SAM9G20_SDRAMC_CR_DBW_16) ? 1 : 2;
244	}
245
246	return (1 << (cols + rows + banks + bw));
247}
248
249static const char *soc_type_name[] = {
250	[AT91_T_CAP9] = "at91cap9",
251	[AT91_T_RM9200] = "at91rm9200",
252	[AT91_T_SAM9260] = "at91sam9260",
253	[AT91_T_SAM9261] = "at91sam9261",
254	[AT91_T_SAM9263] = "at91sam9263",
255	[AT91_T_SAM9G10] = "at91sam9g10",
256	[AT91_T_SAM9G20] = "at91sam9g20",
257	[AT91_T_SAM9G45] = "at91sam9g45",
258	[AT91_T_SAM9N12] = "at91sam9n12",
259	[AT91_T_SAM9RL] = "at91sam9rl",
260	[AT91_T_SAM9X5] = "at91sam9x5",
261	[AT91_T_NONE] = "UNKNOWN"
262};
263
264static const char *soc_subtype_name[] = {
265	[AT91_ST_NONE] = "UNKNOWN",
266	[AT91_ST_RM9200_BGA] = "at91rm9200_bga",
267	[AT91_ST_RM9200_PQFP] = "at91rm9200_pqfp",
268	[AT91_ST_SAM9XE] = "at91sam9xe",
269	[AT91_ST_SAM9G45] = "at91sam9g45",
270	[AT91_ST_SAM9M10] = "at91sam9m10",
271	[AT91_ST_SAM9G46] = "at91sam9g46",
272	[AT91_ST_SAM9M11] = "at91sam9m11",
273	[AT91_ST_SAM9G15] = "at91sam9g15",
274	[AT91_ST_SAM9G25] = "at91sam9g25",
275	[AT91_ST_SAM9G35] = "at91sam9g35",
276	[AT91_ST_SAM9X25] = "at91sam9x25",
277	[AT91_ST_SAM9X35] = "at91sam9x35",
278};
279
280struct at91_soc_info soc_info;
281
282/*
283 * Read the SoC ID from the CIDR register and try to match it against the
284 * values we know.  If we find a good one, we return true.  If not, we
285 * return false.  When we find a good one, we also find the subtype
286 * and CPU family.
287 */
288static int
289at91_try_id(uint32_t dbgu_base)
290{
291	uint32_t socid;
292
293	soc_info.cidr = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
294	    DBGU_C1R);
295	socid = soc_info.cidr & ~AT91_CPU_VERSION_MASK;
296
297	soc_info.type = AT91_T_NONE;
298	soc_info.subtype = AT91_ST_NONE;
299	soc_info.family = (soc_info.cidr & AT91_CPU_FAMILY_MASK) >> 20;
300	soc_info.exid = *(volatile uint32_t *)(AT91_BASE + dbgu_base +
301	    DBGU_C2R);
302
303	switch (socid) {
304	case AT91_CPU_CAP9:
305		soc_info.type = AT91_T_CAP9;
306		break;
307	case AT91_CPU_RM9200:
308		soc_info.type = AT91_T_RM9200;
309		break;
310	case AT91_CPU_SAM9XE128:
311	case AT91_CPU_SAM9XE256:
312	case AT91_CPU_SAM9XE512:
313	case AT91_CPU_SAM9260:
314		soc_info.type = AT91_T_SAM9260;
315		if (soc_info.family == AT91_FAMILY_SAM9XE)
316			soc_info.subtype = AT91_ST_SAM9XE;
317		break;
318	case AT91_CPU_SAM9261:
319		soc_info.type = AT91_T_SAM9261;
320		break;
321	case AT91_CPU_SAM9263:
322		soc_info.type = AT91_T_SAM9263;
323		break;
324	case AT91_CPU_SAM9G10:
325		soc_info.type = AT91_T_SAM9G10;
326		break;
327	case AT91_CPU_SAM9G20:
328		soc_info.type = AT91_T_SAM9G20;
329		break;
330	case AT91_CPU_SAM9G45:
331		soc_info.type = AT91_T_SAM9G45;
332		break;
333	case AT91_CPU_SAM9N12:
334		soc_info.type = AT91_T_SAM9N12;
335		break;
336	case AT91_CPU_SAM9RL64:
337		soc_info.type = AT91_T_SAM9RL;
338		break;
339	case AT91_CPU_SAM9X5:
340		soc_info.type = AT91_T_SAM9X5;
341		break;
342	default:
343		return (0);
344	}
345
346	switch (soc_info.type) {
347	case AT91_T_SAM9G45:
348		switch (soc_info.exid) {
349		case AT91_EXID_SAM9G45:
350			soc_info.subtype = AT91_ST_SAM9G45;
351			break;
352		case AT91_EXID_SAM9G46:
353			soc_info.subtype = AT91_ST_SAM9G46;
354			break;
355		case AT91_EXID_SAM9M10:
356			soc_info.subtype = AT91_ST_SAM9M10;
357			break;
358		case AT91_EXID_SAM9M11:
359			soc_info.subtype = AT91_ST_SAM9M11;
360			break;
361		}
362		break;
363	case AT91_T_SAM9X5:
364		switch (soc_info.exid) {
365		case AT91_EXID_SAM9G15:
366			soc_info.subtype = AT91_ST_SAM9G15;
367			break;
368		case AT91_EXID_SAM9G25:
369			soc_info.subtype = AT91_ST_SAM9G25;
370			break;
371		case AT91_EXID_SAM9G35:
372			soc_info.subtype = AT91_ST_SAM9G35;
373			break;
374		case AT91_EXID_SAM9X25:
375			soc_info.subtype = AT91_ST_SAM9X25;
376			break;
377		case AT91_EXID_SAM9X35:
378			soc_info.subtype = AT91_ST_SAM9X35;
379			break;
380		}
381		break;
382	default:
383		break;
384	}
385	/*
386	 * Disable interrupts in the DBGU unit...
387	 */
388	*(volatile uint32_t *)(AT91_BASE + dbgu_base + USART_IDR) = 0xffffffff;
389
390	/*
391	 * Save the name for later...
392	 */
393	snprintf(soc_info.name, sizeof(soc_info.name), "%s%s%s",
394	    soc_type_name[soc_info.type],
395	    soc_info.subtype == AT91_ST_NONE ? "" : " subtype ",
396	    soc_info.subtype == AT91_ST_NONE ? "" :
397	    soc_subtype_name[soc_info.subtype]);
398
399        /*
400         * try to get the matching CPU support.
401         */
402        soc_info.soc_data = at91_match_soc(soc_info.type, soc_info.subtype);
403        soc_info.dbgu_base = AT91_BASE + dbgu_base;
404
405	return (1);
406}
407
408void
409at91_soc_id(void)
410{
411
412	if (!at91_try_id(AT91_DBGU0))
413		at91_try_id(AT91_DBGU1);
414}
415
416#ifdef ARM_MANY_BOARD
417/* likely belongs in arm/arm/machdep.c, but since board_init is still at91 only... */
418SET_DECLARE(arm_board_set, const struct arm_board);
419
420/* Not yet fully functional, but enough to build ATMEL config */
421static long
422board_init(void)
423{
424	return -1;
425}
426#endif
427
428#ifndef FDT
429/* Physical and virtual addresses for some global pages */
430
431struct pv_addr msgbufpv;
432struct pv_addr kernelstack;
433struct pv_addr systempage;
434struct pv_addr irqstack;
435struct pv_addr abtstack;
436struct pv_addr undstack;
437
438void *
439initarm(struct arm_boot_params *abp)
440{
441	struct pv_addr  kernel_l1pt;
442	struct pv_addr  dpcpu;
443	int i;
444	u_int l1pagetable;
445	vm_offset_t freemempos;
446	vm_offset_t afterkern;
447	uint32_t memsize;
448	vm_offset_t lastaddr;
449
450	lastaddr = parse_boot_param(abp);
451	arm_physmem_kernaddr = abp->abp_physaddr;
452	set_cpufuncs();
453	pcpu0_init();
454
455	/* Do basic tuning, hz etc */
456	init_param1();
457
458	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
459	/* Define a macro to simplify memory allocation */
460#define valloc_pages(var, np)						\
461	alloc_pages((var).pv_va, (np));					\
462	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
463
464#define alloc_pages(var, np)						\
465	(var) = freemempos;						\
466	freemempos += (np * PAGE_SIZE);					\
467	memset((char *)(var), 0, ((np) * PAGE_SIZE));
468
469	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
470		freemempos += PAGE_SIZE;
471	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
472	for (i = 0; i < NUM_KERNEL_PTS; ++i) {
473		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
474			valloc_pages(kernel_pt_table[i],
475			    L2_TABLE_SIZE / PAGE_SIZE);
476		} else {
477			kernel_pt_table[i].pv_va = freemempos -
478			    (i % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
479			    L2_TABLE_SIZE_REAL;
480			kernel_pt_table[i].pv_pa =
481			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
482			    abp->abp_physaddr;
483		}
484	}
485	/*
486	 * Allocate a page for the system page mapped to 0x00000000
487	 * or 0xffff0000. This page will just contain the system vectors
488	 * and can be shared by all processes.
489	 */
490	valloc_pages(systempage, 1);
491
492	/* Allocate dynamic per-cpu area. */
493	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
494	dpcpu_init((void *)dpcpu.pv_va, 0);
495
496	/* Allocate stacks for all modes */
497	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
498	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
499	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
500	valloc_pages(kernelstack, kstack_pages * MAXCPU);
501	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
502
503	/*
504	 * Now we start construction of the L1 page table
505	 * We start by mapping the L2 page tables into the L1.
506	 * This means that we can replace L1 mappings later on if necessary
507	 */
508	l1pagetable = kernel_l1pt.pv_va;
509
510	/* Map the L2 pages tables in the L1 page table */
511	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
512	    &kernel_pt_table[KERNEL_PT_SYS]);
513	for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
514		pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
515		    &kernel_pt_table[KERNEL_PT_KERN + i]);
516	pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
517	   rounddown2(((uint32_t)lastaddr - KERNBASE) + PAGE_SIZE, PAGE_SIZE),
518	   VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
519	afterkern = round_page(rounddown2(lastaddr + L1_S_SIZE, L1_S_SIZE));
520	for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
521		pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
522		    &kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
523	}
524
525	/* Map the vector page. */
526	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
527	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
528
529	/* Map the DPCPU pages */
530	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa, DPCPU_SIZE,
531	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
532
533	/* Map the stack pages */
534	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
535	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
536	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
537	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
538	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
539	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
540	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
541	    kstack_pages * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
542
543	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
544	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
545	pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
546	    msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
547
548	for (i = 0; i < NUM_KERNEL_PTS; ++i) {
549		pmap_map_chunk(l1pagetable, kernel_pt_table[i].pv_va,
550		    kernel_pt_table[i].pv_pa, L2_TABLE_SIZE,
551		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
552	}
553
554	devmap_bootstrap(l1pagetable, at91_devmap);
555	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
556	cpu_setttb(kernel_l1pt.pv_pa);
557	cpu_tlb_flushID();
558	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
559
560	at91_soc_id();
561
562	/*
563	 * Initialize all the clocks, so that the console can work.  We can only
564	 * do this if at91_soc_id() was able to fill in the support data.  Even
565	 * if we can't init the clocks, still try to do a console init so we can
566	 * try to print the error message about missing soc support.  There's a
567	 * chance the printf will work if the bootloader set up the DBGU.
568	 */
569	if (soc_info.soc_data != NULL) {
570		soc_info.soc_data->soc_clock_init();
571		at91_pmc_init_clock();
572	}
573
574	cninit();
575
576	if (soc_info.soc_data == NULL)
577		printf("Warning: No soc support for %s found.\n", soc_info.name);
578
579	memsize = board_init();
580	if (memsize == -1) {
581		printf("board_init() failed, cannot determine ram size; "
582		    "assuming 16MB\n");
583		memsize = 16 * 1024 * 1024;
584	}
585
586	/* Enable MMU (set SCTLR), and do other cpu-specific setup. */
587	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
588	cpu_setup();
589
590	/*
591	 * Pages were allocated during the secondary bootstrap for the
592	 * stacks for different CPU modes.
593	 * We must now set the r13 registers in the different CPU modes to
594	 * point to these stacks.
595	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
596	 * of the stack memory.
597	 */
598	set_stackptrs(0);
599
600	/*
601	 * We must now clean the cache again....
602	 * Cleaning may be done by reading new data to displace any
603	 * dirty data in the cache. This will have happened in cpu_setttb()
604	 * but since we are boot strapping the addresses used for the read
605	 * may have just been remapped and thus the cache could be out
606	 * of sync. A re-clean after the switch will cure this.
607	 * After booting there are no gross relocations of the kernel thus
608	 * this problem will not occur after initarm().
609	 */
610	cpu_idcache_wbinv_all();
611
612	undefined_init();
613
614	init_proc0(kernelstack.pv_va);
615
616	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
617
618	pmap_curmaxkvaddr = afterkern + L1_S_SIZE * (KERNEL_PT_KERN_NUM - 1);
619	/* Always use the 256MB of KVA we have available between the kernel and devices */
620	vm_max_kernel_address = KERNVIRTADDR + (256 << 20);
621	pmap_bootstrap(freemempos, &kernel_l1pt);
622	msgbufp = (void*)msgbufpv.pv_va;
623	msgbufinit(msgbufp, msgbufsize);
624	mutex_init();
625
626	/*
627	 * Add the physical ram we have available.
628	 *
629	 * Exclude the kernel, and all the things we allocated which immediately
630	 * follow the kernel, from the VM allocation pool but not from crash
631	 * dumps.  virtual_avail is a global variable which tracks the kva we've
632	 * "allocated" while setting up pmaps.
633	 *
634	 * Prepare the list of physical memory available to the vm subsystem.
635	 */
636	arm_physmem_hardware_region(PHYSADDR, memsize);
637	arm_physmem_exclude_region(abp->abp_physaddr,
638	    virtual_avail - KERNVIRTADDR, EXFLAG_NOALLOC);
639	arm_physmem_init_kernel_globals();
640
641	init_param2(physmem);
642	kdb_init();
643	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
644	    sizeof(struct pcb)));
645}
646#endif
647
648/*
649 * These functions are handled elsewhere, so make them nops here.
650 */
651void
652cpu_startprofclock(void)
653{
654
655}
656
657void
658cpu_stopprofclock(void)
659{
660
661}
662
663void
664cpu_initclocks(void)
665{
666
667}
668
669void
670DELAY(int n)
671{
672
673	if (soc_info.soc_data)
674		soc_info.soc_data->soc_delay(n);
675}
676
677void
678cpu_reset(void)
679{
680
681	if (soc_info.soc_data)
682		soc_info.soc_data->soc_reset();
683	while (1)
684		continue;
685}
686