pmap-v6.c revision 325238
1/*-
2 * Copyright (c) 1991 Regents of the University of California.
3 * Copyright (c) 1994 John S. Dyson
4 * Copyright (c) 1994 David Greenman
5 * Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
6 * Copyright (c) 2014-2016 Svatopluk Kraus <skra@FreeBSD.org>
7 * Copyright (c) 2014-2016 Michal Meloun <mmel@FreeBSD.org>
8 * All rights reserved.
9 *
10 * This code is derived from software contributed to Berkeley by
11 * the Systems Programming Group of the University of Utah Computer
12 * Science Department and William Jolitz of UUNET Technologies Inc.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 *    notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 *    notice, this list of conditions and the following disclaimer in the
21 *    documentation and/or other materials provided with the distribution.
22 * 3. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	from:	@(#)pmap.c	7.7 (Berkeley)	5/12/91
39 */
40/*-
41 * Copyright (c) 2003 Networks Associates Technology, Inc.
42 * All rights reserved.
43 *
44 * This software was developed for the FreeBSD Project by Jake Burkholder,
45 * Safeport Network Services, and Network Associates Laboratories, the
46 * Security Research Division of Network Associates, Inc. under
47 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
48 * CHATS research program.
49 *
50 * Redistribution and use in source and binary forms, with or without
51 * modification, are permitted provided that the following conditions
52 * are met:
53 * 1. Redistributions of source code must retain the above copyright
54 *    notice, this list of conditions and the following disclaimer.
55 * 2. Redistributions in binary form must reproduce the above copyright
56 *    notice, this list of conditions and the following disclaimer in the
57 *    documentation and/or other materials provided with the distribution.
58 *
59 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 */
71
72#include <sys/cdefs.h>
73__FBSDID("$FreeBSD: stable/11/sys/arm/arm/pmap-v6.c 325238 2017-10-31 15:06:26Z markj $");
74
75/*
76 *	Manages physical address maps.
77 *
78 *	Since the information managed by this module is
79 *	also stored by the logical address mapping module,
80 *	this module may throw away valid virtual-to-physical
81 *	mappings at almost any time.  However, invalidations
82 *	of virtual-to-physical mappings must be done as
83 *	requested.
84 *
85 *	In order to cope with hardware architectures which
86 *	make virtual-to-physical map invalidates expensive,
87 *	this module may delay invalidate or reduced protection
88 *	operations until such time as they are actually
89 *	necessary.  This module is given full information as
90 *	to which processors are currently using which maps,
91 *	and to when physical maps must be made correct.
92 */
93
94#include "opt_vm.h"
95#include "opt_pmap.h"
96#include "opt_ddb.h"
97
98#include <sys/param.h>
99#include <sys/systm.h>
100#include <sys/kernel.h>
101#include <sys/ktr.h>
102#include <sys/lock.h>
103#include <sys/proc.h>
104#include <sys/rwlock.h>
105#include <sys/malloc.h>
106#include <sys/vmmeter.h>
107#include <sys/malloc.h>
108#include <sys/mman.h>
109#include <sys/sf_buf.h>
110#include <sys/smp.h>
111#include <sys/sched.h>
112#include <sys/sysctl.h>
113
114#ifdef DDB
115#include <ddb/ddb.h>
116#endif
117
118#include <machine/physmem.h>
119
120#include <vm/vm.h>
121#include <vm/uma.h>
122#include <vm/pmap.h>
123#include <vm/vm_param.h>
124#include <vm/vm_kern.h>
125#include <vm/vm_object.h>
126#include <vm/vm_map.h>
127#include <vm/vm_page.h>
128#include <vm/vm_pageout.h>
129#include <vm/vm_phys.h>
130#include <vm/vm_extern.h>
131#include <vm/vm_reserv.h>
132#include <sys/lock.h>
133#include <sys/mutex.h>
134
135#include <machine/md_var.h>
136#include <machine/pmap_var.h>
137#include <machine/cpu.h>
138#include <machine/pcb.h>
139#include <machine/sf_buf.h>
140#ifdef SMP
141#include <machine/smp.h>
142#endif
143
144#ifndef PMAP_SHPGPERPROC
145#define PMAP_SHPGPERPROC 200
146#endif
147
148#ifndef DIAGNOSTIC
149#define PMAP_INLINE	__inline
150#else
151#define PMAP_INLINE
152#endif
153
154#ifdef PMAP_DEBUG
155static void pmap_zero_page_check(vm_page_t m);
156void pmap_debug(int level);
157int pmap_pid_dump(int pid);
158
159#define PDEBUG(_lev_,_stat_) \
160	if (pmap_debug_level >= (_lev_)) \
161		((_stat_))
162#define dprintf printf
163int pmap_debug_level = 1;
164#else   /* PMAP_DEBUG */
165#define PDEBUG(_lev_,_stat_) /* Nothing */
166#define dprintf(x, arg...)
167#endif  /* PMAP_DEBUG */
168
169/*
170 *  Level 2 page tables map definion ('max' is excluded).
171 */
172
173#define PT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
174#define PT2V_MAX_ADDRESS	((vm_offset_t)PT2MAP + PT2MAP_SIZE)
175
176#define UPT2V_MIN_ADDRESS	((vm_offset_t)PT2MAP)
177#define UPT2V_MAX_ADDRESS \
178    ((vm_offset_t)(PT2MAP + (KERNBASE >> PT2MAP_SHIFT)))
179
180/*
181 *  Promotion to a 1MB (PTE1) page mapping requires that the corresponding
182 *  4KB (PTE2) page mappings have identical settings for the following fields:
183 */
184#define PTE2_PROMOTE	(PTE2_V | PTE2_A | PTE2_NM | PTE2_S | PTE2_NG |	\
185			 PTE2_NX | PTE2_RO | PTE2_U | PTE2_W |		\
186			 PTE2_ATTR_MASK)
187
188#define PTE1_PROMOTE	(PTE1_V | PTE1_A | PTE1_NM | PTE1_S | PTE1_NG |	\
189			 PTE1_NX | PTE1_RO | PTE1_U | PTE1_W |		\
190			 PTE1_ATTR_MASK)
191
192#define ATTR_TO_L1(l2_attr)	((((l2_attr) & L2_TEX0) ? L1_S_TEX0 : 0) | \
193				 (((l2_attr) & L2_C)    ? L1_S_C    : 0) | \
194				 (((l2_attr) & L2_B)    ? L1_S_B    : 0) | \
195				 (((l2_attr) & PTE2_A)  ? PTE1_A    : 0) | \
196				 (((l2_attr) & PTE2_NM) ? PTE1_NM   : 0) | \
197				 (((l2_attr) & PTE2_S)  ? PTE1_S    : 0) | \
198				 (((l2_attr) & PTE2_NG) ? PTE1_NG   : 0) | \
199				 (((l2_attr) & PTE2_NX) ? PTE1_NX   : 0) | \
200				 (((l2_attr) & PTE2_RO) ? PTE1_RO   : 0) | \
201				 (((l2_attr) & PTE2_U)  ? PTE1_U    : 0) | \
202				 (((l2_attr) & PTE2_W)  ? PTE1_W    : 0))
203
204#define ATTR_TO_L2(l1_attr)	((((l1_attr) & L1_S_TEX0) ? L2_TEX0 : 0) | \
205				 (((l1_attr) & L1_S_C)    ? L2_C    : 0) | \
206				 (((l1_attr) & L1_S_B)    ? L2_B    : 0) | \
207				 (((l1_attr) & PTE1_A)    ? PTE2_A  : 0) | \
208				 (((l1_attr) & PTE1_NM)   ? PTE2_NM : 0) | \
209				 (((l1_attr) & PTE1_S)    ? PTE2_S  : 0) | \
210				 (((l1_attr) & PTE1_NG)   ? PTE2_NG : 0) | \
211				 (((l1_attr) & PTE1_NX)   ? PTE2_NX : 0) | \
212				 (((l1_attr) & PTE1_RO)   ? PTE2_RO : 0) | \
213				 (((l1_attr) & PTE1_U)    ? PTE2_U  : 0) | \
214				 (((l1_attr) & PTE1_W)    ? PTE2_W  : 0))
215
216/*
217 *  PTE2 descriptors creation macros.
218 */
219#define PTE2_ATTR_DEFAULT	vm_memattr_to_pte2(VM_MEMATTR_DEFAULT)
220#define PTE2_ATTR_PT		vm_memattr_to_pte2(pt_memattr)
221
222#define PTE2_KPT(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
223#define PTE2_KPT_NG(pa)	PTE2_KERN_NG(pa, PTE2_AP_KRW, PTE2_ATTR_PT)
224
225#define PTE2_KRW(pa)	PTE2_KERN(pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT)
226#define PTE2_KRO(pa)	PTE2_KERN(pa, PTE2_AP_KR, PTE2_ATTR_DEFAULT)
227
228#define PV_STATS
229#ifdef PV_STATS
230#define PV_STAT(x)	do { x ; } while (0)
231#else
232#define PV_STAT(x)	do { } while (0)
233#endif
234
235/*
236 *  The boot_pt1 is used temporary in very early boot stage as L1 page table.
237 *  We can init many things with no memory allocation thanks to its static
238 *  allocation and this brings two main advantages:
239 *  (1) other cores can be started very simply,
240 *  (2) various boot loaders can be supported as its arguments can be processed
241 *      in virtual address space and can be moved to safe location before
242 *      first allocation happened.
243 *  Only disadvantage is that boot_pt1 is used only in very early boot stage.
244 *  However, the table is uninitialized and so lays in bss. Therefore kernel
245 *  image size is not influenced.
246 *
247 *  QQQ: In the future, maybe, boot_pt1 can be used for soft reset and
248 *       CPU suspend/resume game.
249 */
250extern pt1_entry_t boot_pt1[];
251
252vm_paddr_t base_pt1;
253pt1_entry_t *kern_pt1;
254pt2_entry_t *kern_pt2tab;
255pt2_entry_t *PT2MAP;
256
257static uint32_t ttb_flags;
258static vm_memattr_t pt_memattr;
259ttb_entry_t pmap_kern_ttb;
260
261struct pmap kernel_pmap_store;
262LIST_HEAD(pmaplist, pmap);
263static struct pmaplist allpmaps;
264static struct mtx allpmaps_lock;
265
266vm_offset_t virtual_avail;	/* VA of first avail page (after kernel bss) */
267vm_offset_t virtual_end;	/* VA of last avail page (end of kernel AS) */
268
269static vm_offset_t kernel_vm_end_new;
270vm_offset_t kernel_vm_end = KERNBASE + NKPT2PG * NPT2_IN_PG * PTE1_SIZE;
271vm_offset_t vm_max_kernel_address;
272vm_paddr_t kernel_l1pa;
273
274static struct rwlock __aligned(CACHE_LINE_SIZE) pvh_global_lock;
275
276/*
277 *  Data for the pv entry allocation mechanism
278 */
279static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
280static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
281static struct md_page *pv_table; /* XXX: Is it used only the list in md_page? */
282static int shpgperproc = PMAP_SHPGPERPROC;
283
284struct pv_chunk *pv_chunkbase;		/* KVA block for pv_chunks */
285int pv_maxchunks;			/* How many chunks we have KVA for */
286vm_offset_t pv_vafree;			/* freelist stored in the PTE */
287
288vm_paddr_t first_managed_pa;
289#define	pa_to_pvh(pa)	(&pv_table[pte1_index(pa - first_managed_pa)])
290
291/*
292 *  All those kernel PT submaps that BSD is so fond of
293 */
294static pt2_entry_t *CMAP3;
295static caddr_t CADDR3;
296caddr_t _tmppt = 0;
297
298struct msgbuf *msgbufp = NULL; /* XXX move it to machdep.c */
299
300/*
301 *  Crashdump maps.
302 */
303static caddr_t crashdumpmap;
304
305static pt2_entry_t *PMAP1 = NULL, *PMAP2;
306static pt2_entry_t *PADDR1 = NULL, *PADDR2;
307#ifdef DDB
308static pt2_entry_t *PMAP3;
309static pt2_entry_t *PADDR3;
310static int PMAP3cpu __unused; /* for SMP only */
311#endif
312#ifdef SMP
313static int PMAP1cpu;
314static int PMAP1changedcpu;
315SYSCTL_INT(_debug, OID_AUTO, PMAP1changedcpu, CTLFLAG_RD,
316    &PMAP1changedcpu, 0,
317    "Number of times pmap_pte2_quick changed CPU with same PMAP1");
318#endif
319static int PMAP1changed;
320SYSCTL_INT(_debug, OID_AUTO, PMAP1changed, CTLFLAG_RD,
321    &PMAP1changed, 0,
322    "Number of times pmap_pte2_quick changed PMAP1");
323static int PMAP1unchanged;
324SYSCTL_INT(_debug, OID_AUTO, PMAP1unchanged, CTLFLAG_RD,
325    &PMAP1unchanged, 0,
326    "Number of times pmap_pte2_quick didn't change PMAP1");
327static struct mtx PMAP2mutex;
328
329static __inline void pt2_wirecount_init(vm_page_t m);
330static boolean_t pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p,
331    vm_offset_t va);
332void cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size);
333
334/*
335 *  Function to set the debug level of the pmap code.
336 */
337#ifdef PMAP_DEBUG
338void
339pmap_debug(int level)
340{
341
342	pmap_debug_level = level;
343	dprintf("pmap_debug: level=%d\n", pmap_debug_level);
344}
345#endif /* PMAP_DEBUG */
346
347/*
348 *  This table must corespond with memory attribute configuration in vm.h.
349 *  First entry is used for normal system mapping.
350 *
351 *  Device memory is always marked as shared.
352 *  Normal memory is shared only in SMP .
353 *  Not outer shareable bits are not used yet.
354 *  Class 6 cannot be used on ARM11.
355 */
356#define TEXDEF_TYPE_SHIFT	0
357#define TEXDEF_TYPE_MASK	0x3
358#define TEXDEF_INNER_SHIFT	2
359#define TEXDEF_INNER_MASK	0x3
360#define TEXDEF_OUTER_SHIFT	4
361#define TEXDEF_OUTER_MASK	0x3
362#define TEXDEF_NOS_SHIFT	6
363#define TEXDEF_NOS_MASK		0x1
364
365#define TEX(t, i, o, s) 			\
366		((t) << TEXDEF_TYPE_SHIFT) |	\
367		((i) << TEXDEF_INNER_SHIFT) |	\
368		((o) << TEXDEF_OUTER_SHIFT | 	\
369		((s) << TEXDEF_NOS_SHIFT))
370
371static uint32_t tex_class[8] = {
372/*	    type      inner cache outer cache */
373	TEX(PRRR_MEM, NMRR_WB_WA, NMRR_WB_WA, 0),  /* 0 - ATTR_WB_WA	*/
374	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 1 - ATTR_NOCACHE	*/
375	TEX(PRRR_DEV, NMRR_NC,	  NMRR_NC,    0),  /* 2 - ATTR_DEVICE	*/
376	TEX(PRRR_SO,  NMRR_NC,	  NMRR_NC,    0),  /* 3 - ATTR_SO	*/
377	TEX(PRRR_MEM, NMRR_WT,	  NMRR_WT,    0),  /* 4 - ATTR_WT	*/
378	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 5 - NOT USED YET	*/
379	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 6 - NOT USED YET	*/
380	TEX(PRRR_MEM, NMRR_NC,	  NMRR_NC,    0),  /* 7 - NOT USED YET	*/
381};
382#undef TEX
383
384static uint32_t pte2_attr_tab[8] = {
385	PTE2_ATTR_WB_WA,	/* 0 - VM_MEMATTR_WB_WA */
386	PTE2_ATTR_NOCACHE,	/* 1 - VM_MEMATTR_NOCACHE */
387	PTE2_ATTR_DEVICE,	/* 2 - VM_MEMATTR_DEVICE */
388	PTE2_ATTR_SO,		/* 3 - VM_MEMATTR_SO */
389	PTE2_ATTR_WT,		/* 4 - VM_MEMATTR_WRITE_THROUGH */
390	0,			/* 5 - NOT USED YET */
391	0,			/* 6 - NOT USED YET */
392	0			/* 7 - NOT USED YET */
393};
394CTASSERT(VM_MEMATTR_WB_WA == 0);
395CTASSERT(VM_MEMATTR_NOCACHE == 1);
396CTASSERT(VM_MEMATTR_DEVICE == 2);
397CTASSERT(VM_MEMATTR_SO == 3);
398CTASSERT(VM_MEMATTR_WRITE_THROUGH == 4);
399
400static inline uint32_t
401vm_memattr_to_pte2(vm_memattr_t ma)
402{
403
404	KASSERT((u_int)ma < 5, ("%s: bad vm_memattr_t %d", __func__, ma));
405	return (pte2_attr_tab[(u_int)ma]);
406}
407
408static inline uint32_t
409vm_page_pte2_attr(vm_page_t m)
410{
411
412	return (vm_memattr_to_pte2(m->md.pat_mode));
413}
414
415/*
416 * Convert TEX definition entry to TTB flags.
417 */
418static uint32_t
419encode_ttb_flags(int idx)
420{
421	uint32_t inner, outer, nos, reg;
422
423	inner = (tex_class[idx] >> TEXDEF_INNER_SHIFT) &
424		TEXDEF_INNER_MASK;
425	outer = (tex_class[idx] >> TEXDEF_OUTER_SHIFT) &
426		TEXDEF_OUTER_MASK;
427	nos = (tex_class[idx] >> TEXDEF_NOS_SHIFT) &
428		TEXDEF_NOS_MASK;
429
430	reg = nos << 5;
431	reg |= outer << 3;
432	if (cpuinfo.coherent_walk)
433		reg |= (inner & 0x1) << 6;
434	reg |= (inner & 0x2) >> 1;
435#ifdef SMP
436	reg |= 1 << 1;
437#endif
438	return reg;
439}
440
441/*
442 *  Set TEX remapping registers in current CPU.
443 */
444void
445pmap_set_tex(void)
446{
447	uint32_t prrr, nmrr;
448	uint32_t type, inner, outer, nos;
449	int i;
450
451#ifdef PMAP_PTE_NOCACHE
452	/* XXX fixme */
453	if (cpuinfo.coherent_walk) {
454		pt_memattr = VM_MEMATTR_WB_WA;
455		ttb_flags = encode_ttb_flags(0);
456	}
457	else {
458		pt_memattr = VM_MEMATTR_NOCACHE;
459		ttb_flags = encode_ttb_flags(1);
460	}
461#else
462	pt_memattr = VM_MEMATTR_WB_WA;
463	ttb_flags = encode_ttb_flags(0);
464#endif
465
466	prrr = 0;
467	nmrr = 0;
468
469	/* Build remapping register from TEX classes. */
470	for (i = 0; i < 8; i++) {
471		type = (tex_class[i] >> TEXDEF_TYPE_SHIFT) &
472			TEXDEF_TYPE_MASK;
473		inner = (tex_class[i] >> TEXDEF_INNER_SHIFT) &
474			TEXDEF_INNER_MASK;
475		outer = (tex_class[i] >> TEXDEF_OUTER_SHIFT) &
476			TEXDEF_OUTER_MASK;
477		nos = (tex_class[i] >> TEXDEF_NOS_SHIFT) &
478			TEXDEF_NOS_MASK;
479
480		prrr |= type  << (i * 2);
481		prrr |= nos   << (i + 24);
482		nmrr |= inner << (i * 2);
483		nmrr |= outer << (i * 2 + 16);
484	}
485	/* Add shareable bits for device memory. */
486	prrr |= PRRR_DS0 | PRRR_DS1;
487
488	/* Add shareable bits for normal memory in SMP case. */
489#ifdef SMP
490	prrr |= PRRR_NS1;
491#endif
492	cp15_prrr_set(prrr);
493	cp15_nmrr_set(nmrr);
494
495	/* Caches are disabled, so full TLB flush should be enough. */
496	tlb_flush_all_local();
497}
498
499/*
500 * Remap one vm_meattr class to another one. This can be useful as
501 * workaround for SOC errata, e.g. if devices must be accessed using
502 * SO memory class.
503 *
504 * !!! Please note that this function is absolutely last resort thing.
505 * It should not be used under normal circumstances. !!!
506 *
507 * Usage rules:
508 * - it shall be called after pmap_bootstrap_prepare() and before
509 *   cpu_mp_start() (thus only on boot CPU). In practice, it's expected
510 *   to be called from platform_attach() or platform_late_init().
511 *
512 * - if remapping doesn't change caching mode, or until uncached class
513 *   is remapped to any kind of cached one, then no other restriction exists.
514 *
515 * - if pmap_remap_vm_attr() changes caching mode, but both (original and
516 *   remapped) remain cached, then caller is resposible for calling
517 *   of dcache_wbinv_poc_all().
518 *
519 * - remapping of any kind of cached class to uncached is not permitted.
520 */
521void
522pmap_remap_vm_attr(vm_memattr_t old_attr, vm_memattr_t new_attr)
523{
524	int old_idx, new_idx;
525
526	/* Map VM memattrs to indexes to tex_class table. */
527	old_idx = pte2_attr_tab[(int)old_attr];
528	new_idx = pte2_attr_tab[(int)new_attr];
529
530	/* Replace TEX attribute and apply it. */
531	tex_class[old_idx] = tex_class[new_idx];
532	pmap_set_tex();
533}
534
535/*
536 * KERNBASE must be multiple of NPT2_IN_PG * PTE1_SIZE. In other words,
537 * KERNBASE is mapped by first L2 page table in L2 page table page. It
538 * meets same constrain due to PT2MAP being placed just under KERNBASE.
539 */
540CTASSERT((KERNBASE & (NPT2_IN_PG * PTE1_SIZE - 1)) == 0);
541CTASSERT((KERNBASE - VM_MAXUSER_ADDRESS) >= PT2MAP_SIZE);
542
543/*
544 *  In crazy dreams, PAGE_SIZE could be a multiple of PTE2_SIZE in general.
545 *  For now, anyhow, the following check must be fulfilled.
546 */
547CTASSERT(PAGE_SIZE == PTE2_SIZE);
548/*
549 *  We don't want to mess up MI code with all MMU and PMAP definitions,
550 *  so some things, which depend on other ones, are defined independently.
551 *  Now, it is time to check that we don't screw up something.
552 */
553CTASSERT(PDRSHIFT == PTE1_SHIFT);
554/*
555 *  Check L1 and L2 page table entries definitions consistency.
556 */
557CTASSERT(NB_IN_PT1 == (sizeof(pt1_entry_t) * NPTE1_IN_PT1));
558CTASSERT(NB_IN_PT2 == (sizeof(pt2_entry_t) * NPTE2_IN_PT2));
559/*
560 *  Check L2 page tables page consistency.
561 */
562CTASSERT(PAGE_SIZE == (NPT2_IN_PG * NB_IN_PT2));
563CTASSERT((1 << PT2PG_SHIFT) == NPT2_IN_PG);
564/*
565 *  Check PT2TAB consistency.
566 *  PT2TAB_ENTRIES is defined as a division of NPTE1_IN_PT1 by NPT2_IN_PG.
567 *  This should be done without remainder.
568 */
569CTASSERT(NPTE1_IN_PT1 == (PT2TAB_ENTRIES * NPT2_IN_PG));
570
571/*
572 *	A PT2MAP magic.
573 *
574 *  All level 2 page tables (PT2s) are mapped continuously and accordingly
575 *  into PT2MAP address space. As PT2 size is less than PAGE_SIZE, this can
576 *  be done only if PAGE_SIZE is a multiple of PT2 size. All PT2s in one page
577 *  must be used together, but not necessary at once. The first PT2 in a page
578 *  must map things on correctly aligned address and the others must follow
579 *  in right order.
580 */
581#define NB_IN_PT2TAB	(PT2TAB_ENTRIES * sizeof(pt2_entry_t))
582#define NPT2_IN_PT2TAB	(NB_IN_PT2TAB / NB_IN_PT2)
583#define NPG_IN_PT2TAB	(NB_IN_PT2TAB / PAGE_SIZE)
584
585/*
586 *  Check PT2TAB consistency.
587 *  NPT2_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by NB_IN_PT2.
588 *  NPG_IN_PT2TAB is defined as a division of NB_IN_PT2TAB by PAGE_SIZE.
589 *  The both should be done without remainder.
590 */
591CTASSERT(NB_IN_PT2TAB == (NPT2_IN_PT2TAB * NB_IN_PT2));
592CTASSERT(NB_IN_PT2TAB == (NPG_IN_PT2TAB * PAGE_SIZE));
593/*
594 *  The implementation was made general, however, with the assumption
595 *  bellow in mind. In case of another value of NPG_IN_PT2TAB,
596 *  the code should be once more rechecked.
597 */
598CTASSERT(NPG_IN_PT2TAB == 1);
599
600/*
601 *  Get offset of PT2 in a page
602 *  associated with given PT1 index.
603 */
604static __inline u_int
605page_pt2off(u_int pt1_idx)
606{
607
608	return ((pt1_idx & PT2PG_MASK) * NB_IN_PT2);
609}
610
611/*
612 *  Get physical address of PT2
613 *  associated with given PT2s page and PT1 index.
614 */
615static __inline vm_paddr_t
616page_pt2pa(vm_paddr_t pgpa, u_int pt1_idx)
617{
618
619	return (pgpa + page_pt2off(pt1_idx));
620}
621
622/*
623 *  Get first entry of PT2
624 *  associated with given PT2s page and PT1 index.
625 */
626static __inline pt2_entry_t *
627page_pt2(vm_offset_t pgva, u_int pt1_idx)
628{
629
630	return ((pt2_entry_t *)(pgva + page_pt2off(pt1_idx)));
631}
632
633/*
634 *  Get virtual address of PT2s page (mapped in PT2MAP)
635 *  which holds PT2 which holds entry which maps given virtual address.
636 */
637static __inline vm_offset_t
638pt2map_pt2pg(vm_offset_t va)
639{
640
641	va &= ~(NPT2_IN_PG * PTE1_SIZE - 1);
642	return ((vm_offset_t)pt2map_entry(va));
643}
644
645/*****************************************************************************
646 *
647 *     THREE pmap initialization milestones exist:
648 *
649 *  locore.S
650 *    -> fundamental init (including MMU) in ASM
651 *
652 *  initarm()
653 *    -> fundamental init continues in C
654 *    -> first available physical address is known
655 *
656 *    pmap_bootstrap_prepare() -> FIRST PMAP MILESTONE (first epoch begins)
657 *      -> basic (safe) interface for physical address allocation is made
658 *      -> basic (safe) interface for virtual mapping is made
659 *      -> limited not SMP coherent work is possible
660 *
661 *    -> more fundamental init continues in C
662 *    -> locks and some more things are available
663 *    -> all fundamental allocations and mappings are done
664 *
665 *    pmap_bootstrap() -> SECOND PMAP MILESTONE (second epoch begins)
666 *      -> phys_avail[] and virtual_avail is set
667 *      -> control is passed to vm subsystem
668 *      -> physical and virtual address allocation are off limit
669 *      -> low level mapping functions, some SMP coherent,
670 *         are available, which cannot be used before vm subsystem
671 *         is being inited
672 *
673 *  mi_startup()
674 *    -> vm subsystem is being inited
675 *
676 *      pmap_init() -> THIRD PMAP MILESTONE (third epoch begins)
677 *        -> pmap is fully inited
678 *
679 *****************************************************************************/
680
681/*****************************************************************************
682 *
683 *	PMAP first stage initialization and utility functions
684 *	for pre-bootstrap epoch.
685 *
686 *  After pmap_bootstrap_prepare() is called, the following functions
687 *  can be used:
688 *
689 *  (1) strictly only for this stage functions for physical page allocations,
690 *      virtual space allocations, and mappings:
691 *
692 *  vm_paddr_t pmap_preboot_get_pages(u_int num);
693 *  void pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num);
694 *  vm_offset_t pmap_preboot_reserve_pages(u_int num);
695 *  vm_offset_t pmap_preboot_get_vpages(u_int num);
696 *  void pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
697 *      vm_prot_t prot, vm_memattr_t attr);
698 *
699 *  (2) for all stages:
700 *
701 *  vm_paddr_t pmap_kextract(vm_offset_t va);
702 *
703 *  NOTE: This is not SMP coherent stage.
704 *
705 *****************************************************************************/
706
707#define KERNEL_P2V(pa) \
708    ((vm_offset_t)((pa) - arm_physmem_kernaddr + KERNVIRTADDR))
709#define KERNEL_V2P(va) \
710    ((vm_paddr_t)((va) - KERNVIRTADDR + arm_physmem_kernaddr))
711
712static vm_paddr_t last_paddr;
713
714/*
715 *  Pre-bootstrap epoch page allocator.
716 */
717vm_paddr_t
718pmap_preboot_get_pages(u_int num)
719{
720	vm_paddr_t ret;
721
722	ret = last_paddr;
723	last_paddr += num * PAGE_SIZE;
724
725	return (ret);
726}
727
728/*
729 *	The fundamental initialization of PMAP stuff.
730 *
731 *  Some things already happened in locore.S and some things could happen
732 *  before pmap_bootstrap_prepare() is called, so let's recall what is done:
733 *  1. Caches are disabled.
734 *  2. We are running on virtual addresses already with 'boot_pt1'
735 *     as L1 page table.
736 *  3. So far, all virtual addresses can be converted to physical ones and
737 *     vice versa by the following macros:
738 *       KERNEL_P2V(pa) .... physical to virtual ones,
739 *       KERNEL_V2P(va) .... virtual to physical ones.
740 *
741 *  What is done herein:
742 *  1. The 'boot_pt1' is replaced by real kernel L1 page table 'kern_pt1'.
743 *  2. PT2MAP magic is brought to live.
744 *  3. Basic preboot functions for page allocations and mappings can be used.
745 *  4. Everything is prepared for L1 cache enabling.
746 *
747 *  Variations:
748 *  1. To use second TTB register, so kernel and users page tables will be
749 *     separated. This way process forking - pmap_pinit() - could be faster,
750 *     it saves physical pages and KVA per a process, and it's simple change.
751 *     However, it will lead, due to hardware matter, to the following:
752 *     (a) 2G space for kernel and 2G space for users.
753 *     (b) 1G space for kernel in low addresses and 3G for users above it.
754 *     A question is: Is the case (b) really an option? Note that case (b)
755 *     does save neither physical memory and KVA.
756 */
757void
758pmap_bootstrap_prepare(vm_paddr_t last)
759{
760	vm_paddr_t pt2pg_pa, pt2tab_pa, pa, size;
761	vm_offset_t pt2pg_va;
762	pt1_entry_t *pte1p;
763	pt2_entry_t *pte2p;
764	u_int i;
765	uint32_t actlr_mask, actlr_set, l1_attr;
766
767	/*
768	 * Now, we are going to make real kernel mapping. Note that we are
769	 * already running on some mapping made in locore.S and we expect
770	 * that it's large enough to ensure nofault access to physical memory
771	 * allocated herein before switch.
772	 *
773	 * As kernel image and everything needed before are and will be mapped
774	 * by section mappings, we align last physical address to PTE1_SIZE.
775	 */
776	last_paddr = pte1_roundup(last);
777
778	/*
779	 * Allocate and zero page(s) for kernel L1 page table.
780	 *
781	 * Note that it's first allocation on space which was PTE1_SIZE
782	 * aligned and as such base_pt1 is aligned to NB_IN_PT1 too.
783	 */
784	base_pt1 = pmap_preboot_get_pages(NPG_IN_PT1);
785	kern_pt1 = (pt1_entry_t *)KERNEL_P2V(base_pt1);
786	bzero((void*)kern_pt1, NB_IN_PT1);
787	pte1_sync_range(kern_pt1, NB_IN_PT1);
788
789	/* Allocate and zero page(s) for kernel PT2TAB. */
790	pt2tab_pa = pmap_preboot_get_pages(NPG_IN_PT2TAB);
791	kern_pt2tab = (pt2_entry_t *)KERNEL_P2V(pt2tab_pa);
792	bzero(kern_pt2tab, NB_IN_PT2TAB);
793	pte2_sync_range(kern_pt2tab, NB_IN_PT2TAB);
794
795	/* Allocate and zero page(s) for kernel L2 page tables. */
796	pt2pg_pa = pmap_preboot_get_pages(NKPT2PG);
797	pt2pg_va = KERNEL_P2V(pt2pg_pa);
798	size = NKPT2PG * PAGE_SIZE;
799	bzero((void*)pt2pg_va, size);
800	pte2_sync_range((pt2_entry_t *)pt2pg_va, size);
801
802	/*
803	 * Add a physical memory segment (vm_phys_seg) corresponding to the
804	 * preallocated pages for kernel L2 page tables so that vm_page
805	 * structures representing these pages will be created. The vm_page
806	 * structures are required for promotion of the corresponding kernel
807	 * virtual addresses to section mappings.
808	 */
809	vm_phys_add_seg(pt2tab_pa, pmap_preboot_get_pages(0));
810
811	/*
812	 * Insert allocated L2 page table pages to PT2TAB and make
813	 * link to all PT2s in L1 page table. See how kernel_vm_end
814	 * is initialized.
815	 *
816	 * We play simple and safe. So every KVA will have underlaying
817	 * L2 page table, even kernel image mapped by sections.
818	 */
819	pte2p = kern_pt2tab_entry(KERNBASE);
820	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += PTE2_SIZE)
821		pt2tab_store(pte2p++, PTE2_KPT(pa));
822
823	pte1p = kern_pte1(KERNBASE);
824	for (pa = pt2pg_pa; pa < pt2pg_pa + size; pa += NB_IN_PT2)
825		pte1_store(pte1p++, PTE1_LINK(pa));
826
827	/* Make section mappings for kernel. */
828	l1_attr = ATTR_TO_L1(PTE2_ATTR_DEFAULT);
829	pte1p = kern_pte1(KERNBASE);
830	for (pa = KERNEL_V2P(KERNBASE); pa < last; pa += PTE1_SIZE)
831		pte1_store(pte1p++, PTE1_KERN(pa, PTE1_AP_KRW, l1_attr));
832
833	/*
834	 * Get free and aligned space for PT2MAP and make L1 page table links
835	 * to L2 page tables held in PT2TAB.
836	 *
837	 * Note that pages holding PT2s are stored in PT2TAB as pt2_entry_t
838	 * descriptors and PT2TAB page(s) itself is(are) used as PT2s. Thus
839	 * each entry in PT2TAB maps all PT2s in a page. This implies that
840	 * virtual address of PT2MAP must be aligned to NPT2_IN_PG * PTE1_SIZE.
841	 */
842	PT2MAP = (pt2_entry_t *)(KERNBASE - PT2MAP_SIZE);
843	pte1p = kern_pte1((vm_offset_t)PT2MAP);
844	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
845		pte1_store(pte1p++, PTE1_LINK(pa));
846	}
847
848	/*
849	 * Store PT2TAB in PT2TAB itself, i.e. self reference mapping.
850	 * Each pmap will hold own PT2TAB, so the mapping should be not global.
851	 */
852	pte2p = kern_pt2tab_entry((vm_offset_t)PT2MAP);
853	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
854		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
855	}
856
857	/*
858	 * Choose correct L2 page table and make mappings for allocations
859	 * made herein which replaces temporary locore.S mappings after a while.
860	 * Note that PT2MAP cannot be used until we switch to kern_pt1.
861	 *
862	 * Note, that these allocations started aligned on 1M section and
863	 * kernel PT1 was allocated first. Making of mappings must follow
864	 * order of physical allocations as we've used KERNEL_P2V() macro
865	 * for virtual addresses resolution.
866	 */
867	pte2p = kern_pt2tab_entry((vm_offset_t)kern_pt1);
868	pt2pg_va = KERNEL_P2V(pte2_pa(pte2_load(pte2p)));
869
870	pte2p = page_pt2(pt2pg_va, pte1_index((vm_offset_t)kern_pt1));
871
872	/* Make mapping for kernel L1 page table. */
873	for (pa = base_pt1, i = 0; i < NPG_IN_PT1; i++, pa += PTE2_SIZE)
874		pte2_store(pte2p++, PTE2_KPT(pa));
875
876	/* Make mapping for kernel PT2TAB. */
877	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE)
878		pte2_store(pte2p++, PTE2_KPT(pa));
879
880	/* Finally, switch from 'boot_pt1' to 'kern_pt1'. */
881	pmap_kern_ttb = base_pt1 | ttb_flags;
882	cpuinfo_get_actlr_modifier(&actlr_mask, &actlr_set);
883	reinit_mmu(pmap_kern_ttb, actlr_mask, actlr_set);
884	/*
885	 * Initialize the first available KVA. As kernel image is mapped by
886	 * sections, we are leaving some gap behind.
887	 */
888	virtual_avail = (vm_offset_t)kern_pt2tab + NPG_IN_PT2TAB * PAGE_SIZE;
889}
890
891/*
892 *  Setup L2 page table page for given KVA.
893 *  Used in pre-bootstrap epoch.
894 *
895 *  Note that we have allocated NKPT2PG pages for L2 page tables in advance
896 *  and used them for mapping KVA starting from KERNBASE. However, this is not
897 *  enough. Vectors and devices need L2 page tables too. Note that they are
898 *  even above VM_MAX_KERNEL_ADDRESS.
899 */
900static __inline vm_paddr_t
901pmap_preboot_pt2pg_setup(vm_offset_t va)
902{
903	pt2_entry_t *pte2p, pte2;
904	vm_paddr_t pt2pg_pa;
905
906	/* Get associated entry in PT2TAB. */
907	pte2p = kern_pt2tab_entry(va);
908
909	/* Just return, if PT2s page exists already. */
910	pte2 = pt2tab_load(pte2p);
911	if (pte2_is_valid(pte2))
912		return (pte2_pa(pte2));
913
914	KASSERT(va >= VM_MAX_KERNEL_ADDRESS,
915	    ("%s: NKPT2PG too small", __func__));
916
917	/*
918	 * Allocate page for PT2s and insert it to PT2TAB.
919	 * In other words, map it into PT2MAP space.
920	 */
921	pt2pg_pa = pmap_preboot_get_pages(1);
922	pt2tab_store(pte2p, PTE2_KPT(pt2pg_pa));
923
924	/* Zero all PT2s in allocated page. */
925	bzero((void*)pt2map_pt2pg(va), PAGE_SIZE);
926	pte2_sync_range((pt2_entry_t *)pt2map_pt2pg(va), PAGE_SIZE);
927
928	return (pt2pg_pa);
929}
930
931/*
932 *  Setup L2 page table for given KVA.
933 *  Used in pre-bootstrap epoch.
934 */
935static void
936pmap_preboot_pt2_setup(vm_offset_t va)
937{
938	pt1_entry_t *pte1p;
939	vm_paddr_t pt2pg_pa, pt2_pa;
940
941	/* Setup PT2's page. */
942	pt2pg_pa = pmap_preboot_pt2pg_setup(va);
943	pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(va));
944
945	/* Insert PT2 to PT1. */
946	pte1p = kern_pte1(va);
947	pte1_store(pte1p, PTE1_LINK(pt2_pa));
948}
949
950/*
951 *  Get L2 page entry associated with given KVA.
952 *  Used in pre-bootstrap epoch.
953 */
954static __inline pt2_entry_t*
955pmap_preboot_vtopte2(vm_offset_t va)
956{
957	pt1_entry_t *pte1p;
958
959	/* Setup PT2 if needed. */
960	pte1p = kern_pte1(va);
961	if (!pte1_is_valid(pte1_load(pte1p))) /* XXX - sections ?! */
962		pmap_preboot_pt2_setup(va);
963
964	return (pt2map_entry(va));
965}
966
967/*
968 *  Pre-bootstrap epoch page(s) mapping(s).
969 */
970void
971pmap_preboot_map_pages(vm_paddr_t pa, vm_offset_t va, u_int num)
972{
973	u_int i;
974	pt2_entry_t *pte2p;
975
976	/* Map all the pages. */
977	for (i = 0; i < num; i++) {
978		pte2p = pmap_preboot_vtopte2(va);
979		pte2_store(pte2p, PTE2_KRW(pa));
980		va += PAGE_SIZE;
981		pa += PAGE_SIZE;
982	}
983}
984
985/*
986 *  Pre-bootstrap epoch virtual space alocator.
987 */
988vm_offset_t
989pmap_preboot_reserve_pages(u_int num)
990{
991	u_int i;
992	vm_offset_t start, va;
993	pt2_entry_t *pte2p;
994
995	/* Allocate virtual space. */
996	start = va = virtual_avail;
997	virtual_avail += num * PAGE_SIZE;
998
999	/* Zero the mapping. */
1000	for (i = 0; i < num; i++) {
1001		pte2p = pmap_preboot_vtopte2(va);
1002		pte2_store(pte2p, 0);
1003		va += PAGE_SIZE;
1004	}
1005
1006	return (start);
1007}
1008
1009/*
1010 *  Pre-bootstrap epoch page(s) allocation and mapping(s).
1011 */
1012vm_offset_t
1013pmap_preboot_get_vpages(u_int num)
1014{
1015	vm_paddr_t  pa;
1016	vm_offset_t va;
1017
1018	/* Allocate physical page(s). */
1019	pa = pmap_preboot_get_pages(num);
1020
1021	/* Allocate virtual space. */
1022	va = virtual_avail;
1023	virtual_avail += num * PAGE_SIZE;
1024
1025	/* Map and zero all. */
1026	pmap_preboot_map_pages(pa, va, num);
1027	bzero((void *)va, num * PAGE_SIZE);
1028
1029	return (va);
1030}
1031
1032/*
1033 *  Pre-bootstrap epoch page mapping(s) with attributes.
1034 */
1035void
1036pmap_preboot_map_attr(vm_paddr_t pa, vm_offset_t va, vm_size_t size,
1037    vm_prot_t prot, vm_memattr_t attr)
1038{
1039	u_int num;
1040	u_int l1_attr, l1_prot, l2_prot, l2_attr;
1041	pt1_entry_t *pte1p;
1042	pt2_entry_t *pte2p;
1043
1044	l2_prot = prot & VM_PROT_WRITE ? PTE2_AP_KRW : PTE2_AP_KR;
1045	l2_prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1046	l2_attr = vm_memattr_to_pte2(attr);
1047	l1_prot = ATTR_TO_L1(l2_prot);
1048	l1_attr = ATTR_TO_L1(l2_attr);
1049
1050	/* Map all the pages. */
1051	num = round_page(size);
1052	while (num > 0) {
1053		if ((((va | pa) & PTE1_OFFSET) == 0) && (num >= PTE1_SIZE)) {
1054			pte1p = kern_pte1(va);
1055			pte1_store(pte1p, PTE1_KERN(pa, l1_prot, l1_attr));
1056			va += PTE1_SIZE;
1057			pa += PTE1_SIZE;
1058			num -= PTE1_SIZE;
1059		} else {
1060			pte2p = pmap_preboot_vtopte2(va);
1061			pte2_store(pte2p, PTE2_KERN(pa, l2_prot, l2_attr));
1062			va += PAGE_SIZE;
1063			pa += PAGE_SIZE;
1064			num -= PAGE_SIZE;
1065		}
1066	}
1067}
1068
1069/*
1070 *  Extract from the kernel page table the physical address
1071 *  that is mapped by the given virtual address "va".
1072 */
1073vm_paddr_t
1074pmap_kextract(vm_offset_t va)
1075{
1076	vm_paddr_t pa;
1077	pt1_entry_t pte1;
1078	pt2_entry_t pte2;
1079
1080	pte1 = pte1_load(kern_pte1(va));
1081	if (pte1_is_section(pte1)) {
1082		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1083	} else if (pte1_is_link(pte1)) {
1084		/*
1085		 * We should beware of concurrent promotion that changes
1086		 * pte1 at this point. However, it's not a problem as PT2
1087		 * page is preserved by promotion in PT2TAB. So even if
1088		 * it happens, using of PT2MAP is still safe.
1089		 *
1090		 * QQQ: However, concurrent removing is a problem which
1091		 *      ends in abort on PT2MAP space. Locking must be used
1092		 *      to deal with this.
1093		 */
1094		pte2 = pte2_load(pt2map_entry(va));
1095		pa = pte2_pa(pte2) | (va & PTE2_OFFSET);
1096	}
1097	else {
1098		panic("%s: va %#x pte1 %#x", __func__, va, pte1);
1099	}
1100	return (pa);
1101}
1102
1103/*
1104 *  Extract from the kernel page table the physical address
1105 *  that is mapped by the given virtual address "va". Also
1106 *  return L2 page table entry which maps the address.
1107 *
1108 *  This is only intended to be used for panic dumps.
1109 */
1110vm_paddr_t
1111pmap_dump_kextract(vm_offset_t va, pt2_entry_t *pte2p)
1112{
1113	vm_paddr_t pa;
1114	pt1_entry_t pte1;
1115	pt2_entry_t pte2;
1116
1117	pte1 = pte1_load(kern_pte1(va));
1118	if (pte1_is_section(pte1)) {
1119		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1120		pte2 = pa | ATTR_TO_L2(pte1) | PTE2_V;
1121	} else if (pte1_is_link(pte1)) {
1122		pte2 = pte2_load(pt2map_entry(va));
1123		pa = pte2_pa(pte2);
1124	} else {
1125		pte2 = 0;
1126		pa = 0;
1127	}
1128	if (pte2p != NULL)
1129		*pte2p = pte2;
1130	return (pa);
1131}
1132
1133/*****************************************************************************
1134 *
1135 *	PMAP second stage initialization and utility functions
1136 *	for bootstrap epoch.
1137 *
1138 *  After pmap_bootstrap() is called, the following functions for
1139 *  mappings can be used:
1140 *
1141 *  void pmap_kenter(vm_offset_t va, vm_paddr_t pa);
1142 *  void pmap_kremove(vm_offset_t va);
1143 *  vm_offset_t pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end,
1144 *      int prot);
1145 *
1146 *  NOTE: This is not SMP coherent stage. And physical page allocation is not
1147 *        allowed during this stage.
1148 *
1149 *****************************************************************************/
1150
1151/*
1152 *  Initialize kernel PMAP locks and lists, kernel_pmap itself, and
1153 *  reserve various virtual spaces for temporary mappings.
1154 */
1155void
1156pmap_bootstrap(vm_offset_t firstaddr)
1157{
1158	pt2_entry_t *unused __unused;
1159	struct pcpu *pc;
1160
1161	/*
1162	 * Initialize the kernel pmap (which is statically allocated).
1163	 */
1164	PMAP_LOCK_INIT(kernel_pmap);
1165	kernel_l1pa = (vm_paddr_t)kern_pt1;  /* for libkvm */
1166	kernel_pmap->pm_pt1 = kern_pt1;
1167	kernel_pmap->pm_pt2tab = kern_pt2tab;
1168	CPU_FILL(&kernel_pmap->pm_active);  /* don't allow deactivation */
1169	TAILQ_INIT(&kernel_pmap->pm_pvchunk);
1170
1171	/*
1172	 * Initialize the global pv list lock.
1173	 */
1174	rw_init(&pvh_global_lock, "pmap pv global");
1175
1176	LIST_INIT(&allpmaps);
1177
1178	/*
1179	 * Request a spin mutex so that changes to allpmaps cannot be
1180	 * preempted by smp_rendezvous_cpus().
1181	 */
1182	mtx_init(&allpmaps_lock, "allpmaps", NULL, MTX_SPIN);
1183	mtx_lock_spin(&allpmaps_lock);
1184	LIST_INSERT_HEAD(&allpmaps, kernel_pmap, pm_list);
1185	mtx_unlock_spin(&allpmaps_lock);
1186
1187	/*
1188	 * Reserve some special page table entries/VA space for temporary
1189	 * mapping of pages.
1190	 */
1191#define	SYSMAP(c, p, v, n)  do {		\
1192	v = (c)pmap_preboot_reserve_pages(n);	\
1193	p = pt2map_entry((vm_offset_t)v);	\
1194	} while (0)
1195
1196	/*
1197	 * Local CMAP1/CMAP2 are used for zeroing and copying pages.
1198	 * Local CMAP2 is also used for data cache cleaning.
1199	 * Global CMAP3 is used for the idle process page zeroing.
1200	 */
1201	pc = get_pcpu();
1202	mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1203	SYSMAP(caddr_t, pc->pc_cmap1_pte2p, pc->pc_cmap1_addr, 1);
1204	SYSMAP(caddr_t, pc->pc_cmap2_pte2p, pc->pc_cmap2_addr, 1);
1205	SYSMAP(vm_offset_t, pc->pc_qmap_pte2p, pc->pc_qmap_addr, 1);
1206	SYSMAP(caddr_t, CMAP3, CADDR3, 1);
1207
1208	/*
1209	 * Crashdump maps.
1210	 */
1211	SYSMAP(caddr_t, unused, crashdumpmap, MAXDUMPPGS);
1212
1213	/*
1214	 * _tmppt is used for reading arbitrary physical pages via /dev/mem.
1215	 */
1216	SYSMAP(caddr_t, unused, _tmppt, 1);
1217
1218	/*
1219	 * PADDR1 and PADDR2 are used by pmap_pte2_quick() and pmap_pte2(),
1220	 * respectively. PADDR3 is used by pmap_pte2_ddb().
1221	 */
1222	SYSMAP(pt2_entry_t *, PMAP1, PADDR1, 1);
1223	SYSMAP(pt2_entry_t *, PMAP2, PADDR2, 1);
1224#ifdef DDB
1225	SYSMAP(pt2_entry_t *, PMAP3, PADDR3, 1);
1226#endif
1227	mtx_init(&PMAP2mutex, "PMAP2", NULL, MTX_DEF);
1228
1229	/*
1230	 * Note that in very short time in initarm(), we are going to
1231	 * initialize phys_avail[] array and no further page allocation
1232	 * can happen after that until vm subsystem will be initialized.
1233	 */
1234	kernel_vm_end_new = kernel_vm_end;
1235	virtual_end = vm_max_kernel_address;
1236}
1237
1238static void
1239pmap_init_reserved_pages(void)
1240{
1241	struct pcpu *pc;
1242	vm_offset_t pages;
1243	int i;
1244
1245	CPU_FOREACH(i) {
1246		pc = pcpu_find(i);
1247		/*
1248		 * Skip if the mapping has already been initialized,
1249		 * i.e. this is the BSP.
1250		 */
1251		if (pc->pc_cmap1_addr != 0)
1252			continue;
1253		mtx_init(&pc->pc_cmap_lock, "SYSMAPS", NULL, MTX_DEF);
1254		pages = kva_alloc(PAGE_SIZE * 3);
1255		if (pages == 0)
1256			panic("%s: unable to allocate KVA", __func__);
1257		pc->pc_cmap1_pte2p = pt2map_entry(pages);
1258		pc->pc_cmap2_pte2p = pt2map_entry(pages + PAGE_SIZE);
1259		pc->pc_qmap_pte2p = pt2map_entry(pages + (PAGE_SIZE * 2));
1260		pc->pc_cmap1_addr = (caddr_t)pages;
1261		pc->pc_cmap2_addr = (caddr_t)(pages + PAGE_SIZE);
1262		pc->pc_qmap_addr = pages + (PAGE_SIZE * 2);
1263	}
1264}
1265SYSINIT(rpages_init, SI_SUB_CPU, SI_ORDER_ANY, pmap_init_reserved_pages, NULL);
1266
1267/*
1268 *  The function can already be use in second initialization stage.
1269 *  As such, the function DOES NOT call pmap_growkernel() where PT2
1270 *  allocation can happen. So if used, be sure that PT2 for given
1271 *  virtual address is allocated already!
1272 *
1273 *  Add a wired page to the kva.
1274 *  Note: not SMP coherent.
1275 */
1276static __inline void
1277pmap_kenter_prot_attr(vm_offset_t va, vm_paddr_t pa, uint32_t prot,
1278    uint32_t attr)
1279{
1280	pt1_entry_t *pte1p;
1281	pt2_entry_t *pte2p;
1282
1283	pte1p = kern_pte1(va);
1284	if (!pte1_is_valid(pte1_load(pte1p))) { /* XXX - sections ?! */
1285		/*
1286		 * This is a very low level function, so PT2 and particularly
1287		 * PT2PG associated with given virtual address must be already
1288		 * allocated. It's a pain mainly during pmap initialization
1289		 * stage. However, called after pmap initialization with
1290		 * virtual address not under kernel_vm_end will lead to
1291		 * the same misery.
1292		 */
1293		if (!pte2_is_valid(pte2_load(kern_pt2tab_entry(va))))
1294			panic("%s: kernel PT2 not allocated!", __func__);
1295	}
1296
1297	pte2p = pt2map_entry(va);
1298	pte2_store(pte2p, PTE2_KERN(pa, prot, attr));
1299}
1300
1301PMAP_INLINE void
1302pmap_kenter(vm_offset_t va, vm_paddr_t pa)
1303{
1304
1305	pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, PTE2_ATTR_DEFAULT);
1306}
1307
1308/*
1309 *  Remove a page from the kernel pagetables.
1310 *  Note: not SMP coherent.
1311 */
1312PMAP_INLINE void
1313pmap_kremove(vm_offset_t va)
1314{
1315	pt2_entry_t *pte2p;
1316
1317	pte2p = pt2map_entry(va);
1318	pte2_clear(pte2p);
1319}
1320
1321/*
1322 *  Share new kernel PT2PG with all pmaps.
1323 *  The caller is responsible for maintaining TLB consistency.
1324 */
1325static void
1326pmap_kenter_pt2tab(vm_offset_t va, pt2_entry_t npte2)
1327{
1328	pmap_t pmap;
1329	pt2_entry_t *pte2p;
1330
1331	mtx_lock_spin(&allpmaps_lock);
1332	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1333		pte2p = pmap_pt2tab_entry(pmap, va);
1334		pt2tab_store(pte2p, npte2);
1335	}
1336	mtx_unlock_spin(&allpmaps_lock);
1337}
1338
1339/*
1340 *  Share new kernel PTE1 with all pmaps.
1341 *  The caller is responsible for maintaining TLB consistency.
1342 */
1343static void
1344pmap_kenter_pte1(vm_offset_t va, pt1_entry_t npte1)
1345{
1346	pmap_t pmap;
1347	pt1_entry_t *pte1p;
1348
1349	mtx_lock_spin(&allpmaps_lock);
1350	LIST_FOREACH(pmap, &allpmaps, pm_list) {
1351		pte1p = pmap_pte1(pmap, va);
1352		pte1_store(pte1p, npte1);
1353	}
1354	mtx_unlock_spin(&allpmaps_lock);
1355}
1356
1357/*
1358 *  Used to map a range of physical addresses into kernel
1359 *  virtual address space.
1360 *
1361 *  The value passed in '*virt' is a suggested virtual address for
1362 *  the mapping. Architectures which can support a direct-mapped
1363 *  physical to virtual region can return the appropriate address
1364 *  within that region, leaving '*virt' unchanged. Other
1365 *  architectures should map the pages starting at '*virt' and
1366 *  update '*virt' with the first usable address after the mapped
1367 *  region.
1368 *
1369 *  NOTE: Read the comments above pmap_kenter_prot_attr() as
1370 *        the function is used herein!
1371 */
1372vm_offset_t
1373pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
1374{
1375	vm_offset_t va, sva;
1376	vm_paddr_t pte1_offset;
1377	pt1_entry_t npte1;
1378	uint32_t l1prot, l2prot;
1379	uint32_t l1attr, l2attr;
1380
1381	PDEBUG(1, printf("%s: virt = %#x, start = %#x, end = %#x (size = %#x),"
1382	    " prot = %d\n", __func__, *virt, start, end, end - start,  prot));
1383
1384	l2prot = (prot & VM_PROT_WRITE) ? PTE2_AP_KRW : PTE2_AP_KR;
1385	l2prot |= (prot & VM_PROT_EXECUTE) ? PTE2_X : PTE2_NX;
1386	l1prot = ATTR_TO_L1(l2prot);
1387
1388	l2attr = PTE2_ATTR_DEFAULT;
1389	l1attr = ATTR_TO_L1(l2attr);
1390
1391	va = *virt;
1392	/*
1393	 * Does the physical address range's size and alignment permit at
1394	 * least one section mapping to be created?
1395	 */
1396	pte1_offset = start & PTE1_OFFSET;
1397	if ((end - start) - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) >=
1398	    PTE1_SIZE) {
1399		/*
1400		 * Increase the starting virtual address so that its alignment
1401		 * does not preclude the use of section mappings.
1402		 */
1403		if ((va & PTE1_OFFSET) < pte1_offset)
1404			va = pte1_trunc(va) + pte1_offset;
1405		else if ((va & PTE1_OFFSET) > pte1_offset)
1406			va = pte1_roundup(va) + pte1_offset;
1407	}
1408	sva = va;
1409	while (start < end) {
1410		if ((start & PTE1_OFFSET) == 0 && end - start >= PTE1_SIZE) {
1411			KASSERT((va & PTE1_OFFSET) == 0,
1412			    ("%s: misaligned va %#x", __func__, va));
1413			npte1 = PTE1_KERN(start, l1prot, l1attr);
1414			pmap_kenter_pte1(va, npte1);
1415			va += PTE1_SIZE;
1416			start += PTE1_SIZE;
1417		} else {
1418			pmap_kenter_prot_attr(va, start, l2prot, l2attr);
1419			va += PAGE_SIZE;
1420			start += PAGE_SIZE;
1421		}
1422	}
1423	tlb_flush_range(sva, va - sva);
1424	*virt = va;
1425	return (sva);
1426}
1427
1428/*
1429 *  Make a temporary mapping for a physical address.
1430 *  This is only intended to be used for panic dumps.
1431 */
1432void *
1433pmap_kenter_temporary(vm_paddr_t pa, int i)
1434{
1435	vm_offset_t va;
1436
1437	/* QQQ: 'i' should be less or equal to MAXDUMPPGS. */
1438
1439	va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
1440	pmap_kenter(va, pa);
1441	tlb_flush_local(va);
1442	return ((void *)crashdumpmap);
1443}
1444
1445
1446/*************************************
1447 *
1448 *  TLB & cache maintenance routines.
1449 *
1450 *************************************/
1451
1452/*
1453 *  We inline these within pmap.c for speed.
1454 */
1455PMAP_INLINE void
1456pmap_tlb_flush(pmap_t pmap, vm_offset_t va)
1457{
1458
1459	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1460		tlb_flush(va);
1461}
1462
1463PMAP_INLINE void
1464pmap_tlb_flush_range(pmap_t pmap, vm_offset_t sva, vm_size_t size)
1465{
1466
1467	if (pmap == kernel_pmap || !CPU_EMPTY(&pmap->pm_active))
1468		tlb_flush_range(sva, size);
1469}
1470
1471/*
1472 *  Abuse the pte2 nodes for unmapped kva to thread a kva freelist through.
1473 *  Requirements:
1474 *   - Must deal with pages in order to ensure that none of the PTE2_* bits
1475 *     are ever set, PTE2_V in particular.
1476 *   - Assumes we can write to pte2s without pte2_store() atomic ops.
1477 *   - Assumes nothing will ever test these addresses for 0 to indicate
1478 *     no mapping instead of correctly checking PTE2_V.
1479 *   - Assumes a vm_offset_t will fit in a pte2 (true for arm).
1480 *  Because PTE2_V is never set, there can be no mappings to invalidate.
1481 */
1482static vm_offset_t
1483pmap_pte2list_alloc(vm_offset_t *head)
1484{
1485	pt2_entry_t *pte2p;
1486	vm_offset_t va;
1487
1488	va = *head;
1489	if (va == 0)
1490		panic("pmap_ptelist_alloc: exhausted ptelist KVA");
1491	pte2p = pt2map_entry(va);
1492	*head = *pte2p;
1493	if (*head & PTE2_V)
1494		panic("%s: va with PTE2_V set!", __func__);
1495	*pte2p = 0;
1496	return (va);
1497}
1498
1499static void
1500pmap_pte2list_free(vm_offset_t *head, vm_offset_t va)
1501{
1502	pt2_entry_t *pte2p;
1503
1504	if (va & PTE2_V)
1505		panic("%s: freeing va with PTE2_V set!", __func__);
1506	pte2p = pt2map_entry(va);
1507	*pte2p = *head;		/* virtual! PTE2_V is 0 though */
1508	*head = va;
1509}
1510
1511static void
1512pmap_pte2list_init(vm_offset_t *head, void *base, int npages)
1513{
1514	int i;
1515	vm_offset_t va;
1516
1517	*head = 0;
1518	for (i = npages - 1; i >= 0; i--) {
1519		va = (vm_offset_t)base + i * PAGE_SIZE;
1520		pmap_pte2list_free(head, va);
1521	}
1522}
1523
1524/*****************************************************************************
1525 *
1526 *	PMAP third and final stage initialization.
1527 *
1528 *  After pmap_init() is called, PMAP subsystem is fully initialized.
1529 *
1530 *****************************************************************************/
1531
1532SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
1533
1534SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_max, CTLFLAG_RD, &pv_entry_max, 0,
1535    "Max number of PV entries");
1536SYSCTL_INT(_vm_pmap, OID_AUTO, shpgperproc, CTLFLAG_RD, &shpgperproc, 0,
1537    "Page share factor per proc");
1538
1539static u_long nkpt2pg = NKPT2PG;
1540SYSCTL_ULONG(_vm_pmap, OID_AUTO, nkpt2pg, CTLFLAG_RD,
1541    &nkpt2pg, 0, "Pre-allocated pages for kernel PT2s");
1542
1543static int sp_enabled = 1;
1544SYSCTL_INT(_vm_pmap, OID_AUTO, sp_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
1545    &sp_enabled, 0, "Are large page mappings enabled?");
1546
1547static SYSCTL_NODE(_vm_pmap, OID_AUTO, pte1, CTLFLAG_RD, 0,
1548    "1MB page mapping counters");
1549
1550static u_long pmap_pte1_demotions;
1551SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, demotions, CTLFLAG_RD,
1552    &pmap_pte1_demotions, 0, "1MB page demotions");
1553
1554static u_long pmap_pte1_mappings;
1555SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, mappings, CTLFLAG_RD,
1556    &pmap_pte1_mappings, 0, "1MB page mappings");
1557
1558static u_long pmap_pte1_p_failures;
1559SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, p_failures, CTLFLAG_RD,
1560    &pmap_pte1_p_failures, 0, "1MB page promotion failures");
1561
1562static u_long pmap_pte1_promotions;
1563SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, promotions, CTLFLAG_RD,
1564    &pmap_pte1_promotions, 0, "1MB page promotions");
1565
1566static u_long pmap_pte1_kern_demotions;
1567SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_demotions, CTLFLAG_RD,
1568    &pmap_pte1_kern_demotions, 0, "1MB page kernel demotions");
1569
1570static u_long pmap_pte1_kern_promotions;
1571SYSCTL_ULONG(_vm_pmap_pte1, OID_AUTO, kern_promotions, CTLFLAG_RD,
1572    &pmap_pte1_kern_promotions, 0, "1MB page kernel promotions");
1573
1574static __inline ttb_entry_t
1575pmap_ttb_get(pmap_t pmap)
1576{
1577
1578	return (vtophys(pmap->pm_pt1) | ttb_flags);
1579}
1580
1581/*
1582 *  Initialize a vm_page's machine-dependent fields.
1583 *
1584 *  Variations:
1585 *  1. Pages for L2 page tables are always not managed. So, pv_list and
1586 *     pt2_wirecount can share same physical space. However, proper
1587 *     initialization on a page alloc for page tables and reinitialization
1588 *     on the page free must be ensured.
1589 */
1590void
1591pmap_page_init(vm_page_t m)
1592{
1593
1594	TAILQ_INIT(&m->md.pv_list);
1595	pt2_wirecount_init(m);
1596	m->md.pat_mode = VM_MEMATTR_DEFAULT;
1597}
1598
1599/*
1600 *  Virtualization for faster way how to zero whole page.
1601 */
1602static __inline void
1603pagezero(void *page)
1604{
1605
1606	bzero(page, PAGE_SIZE);
1607}
1608
1609/*
1610 *  Zero L2 page table page.
1611 *  Use same KVA as in pmap_zero_page().
1612 */
1613static __inline vm_paddr_t
1614pmap_pt2pg_zero(vm_page_t m)
1615{
1616	pt2_entry_t *cmap2_pte2p;
1617	vm_paddr_t pa;
1618	struct pcpu *pc;
1619
1620	pa = VM_PAGE_TO_PHYS(m);
1621
1622	/*
1623	 * XXX: For now, we map whole page even if it's already zero,
1624	 *      to sync it even if the sync is only DSB.
1625	 */
1626	sched_pin();
1627	pc = get_pcpu();
1628	cmap2_pte2p = pc->pc_cmap2_pte2p;
1629	mtx_lock(&pc->pc_cmap_lock);
1630	if (pte2_load(cmap2_pte2p) != 0)
1631		panic("%s: CMAP2 busy", __func__);
1632	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
1633	    vm_page_pte2_attr(m)));
1634	/*  Even VM_ALLOC_ZERO request is only advisory. */
1635	if ((m->flags & PG_ZERO) == 0)
1636		pagezero(pc->pc_cmap2_addr);
1637	pte2_sync_range((pt2_entry_t *)pc->pc_cmap2_addr, PAGE_SIZE);
1638	pte2_clear(cmap2_pte2p);
1639	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
1640
1641	/*
1642	 * Unpin the thread before releasing the lock.  Otherwise the thread
1643	 * could be rescheduled while still bound to the current CPU, only
1644	 * to unpin itself immediately upon resuming execution.
1645	 */
1646	sched_unpin();
1647	mtx_unlock(&pc->pc_cmap_lock);
1648
1649	return (pa);
1650}
1651
1652/*
1653 *  Init just allocated page as L2 page table(s) holder
1654 *  and return its physical address.
1655 */
1656static __inline vm_paddr_t
1657pmap_pt2pg_init(pmap_t pmap, vm_offset_t va, vm_page_t m)
1658{
1659	vm_paddr_t pa;
1660	pt2_entry_t *pte2p;
1661
1662	/* Check page attributes. */
1663	if (m->md.pat_mode != pt_memattr)
1664		pmap_page_set_memattr(m, pt_memattr);
1665
1666	/* Zero page and init wire counts. */
1667	pa = pmap_pt2pg_zero(m);
1668	pt2_wirecount_init(m);
1669
1670	/*
1671	 * Map page to PT2MAP address space for given pmap.
1672	 * Note that PT2MAP space is shared with all pmaps.
1673	 */
1674	if (pmap == kernel_pmap)
1675		pmap_kenter_pt2tab(va, PTE2_KPT(pa));
1676	else {
1677		pte2p = pmap_pt2tab_entry(pmap, va);
1678		pt2tab_store(pte2p, PTE2_KPT_NG(pa));
1679	}
1680
1681	return (pa);
1682}
1683
1684/*
1685 *  Initialize the pmap module.
1686 *  Called by vm_init, to initialize any structures that the pmap
1687 *  system needs to map virtual memory.
1688 */
1689void
1690pmap_init(void)
1691{
1692	vm_size_t s;
1693	pt2_entry_t *pte2p, pte2;
1694	u_int i, pte1_idx, pv_npg;
1695
1696	PDEBUG(1, printf("%s: phys_start = %#x\n", __func__, PHYSADDR));
1697
1698	/*
1699	 * Initialize the vm page array entries for kernel pmap's
1700	 * L2 page table pages allocated in advance.
1701	 */
1702	pte1_idx = pte1_index(KERNBASE - PT2MAP_SIZE);
1703	pte2p = kern_pt2tab_entry(KERNBASE - PT2MAP_SIZE);
1704	for (i = 0; i < nkpt2pg + NPG_IN_PT2TAB; i++, pte2p++) {
1705		vm_paddr_t pa;
1706		vm_page_t m;
1707
1708		pte2 = pte2_load(pte2p);
1709		KASSERT(pte2_is_valid(pte2), ("%s: no valid entry", __func__));
1710
1711		pa = pte2_pa(pte2);
1712		m = PHYS_TO_VM_PAGE(pa);
1713		KASSERT(m >= vm_page_array &&
1714		    m < &vm_page_array[vm_page_array_size],
1715		    ("%s: L2 page table page is out of range", __func__));
1716
1717		m->pindex = pte1_idx;
1718		m->phys_addr = pa;
1719		pte1_idx += NPT2_IN_PG;
1720	}
1721
1722	/*
1723	 * Initialize the address space (zone) for the pv entries.  Set a
1724	 * high water mark so that the system can recover from excessive
1725	 * numbers of pv entries.
1726	 */
1727	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1728	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1729	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1730	pv_entry_max = roundup(pv_entry_max, _NPCPV);
1731	pv_entry_high_water = 9 * (pv_entry_max / 10);
1732
1733	/*
1734	 * Are large page mappings enabled?
1735	 */
1736	TUNABLE_INT_FETCH("vm.pmap.sp_enabled", &sp_enabled);
1737	if (sp_enabled) {
1738		KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
1739		    ("%s: can't assign to pagesizes[1]", __func__));
1740		pagesizes[1] = PTE1_SIZE;
1741	}
1742
1743	/*
1744	 * Calculate the size of the pv head table for sections.
1745	 * Handle the possibility that "vm_phys_segs[...].end" is zero.
1746	 * Note that the table is only for sections which could be promoted.
1747	 */
1748	first_managed_pa = pte1_trunc(vm_phys_segs[0].start);
1749	pv_npg = (pte1_trunc(vm_phys_segs[vm_phys_nsegs - 1].end - PAGE_SIZE)
1750	    - first_managed_pa) / PTE1_SIZE + 1;
1751
1752	/*
1753	 * Allocate memory for the pv head table for sections.
1754	 */
1755	s = (vm_size_t)(pv_npg * sizeof(struct md_page));
1756	s = round_page(s);
1757	pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
1758	    M_WAITOK | M_ZERO);
1759	for (i = 0; i < pv_npg; i++)
1760		TAILQ_INIT(&pv_table[i].pv_list);
1761
1762	pv_maxchunks = MAX(pv_entry_max / _NPCPV, maxproc);
1763	pv_chunkbase = (struct pv_chunk *)kva_alloc(PAGE_SIZE * pv_maxchunks);
1764	if (pv_chunkbase == NULL)
1765		panic("%s: not enough kvm for pv chunks", __func__);
1766	pmap_pte2list_init(&pv_vafree, pv_chunkbase, pv_maxchunks);
1767}
1768
1769/*
1770 *  Add a list of wired pages to the kva
1771 *  this routine is only used for temporary
1772 *  kernel mappings that do not need to have
1773 *  page modification or references recorded.
1774 *  Note that old mappings are simply written
1775 *  over.  The page *must* be wired.
1776 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1777 */
1778void
1779pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
1780{
1781	u_int anychanged;
1782	pt2_entry_t *epte2p, *pte2p, pte2;
1783	vm_page_t m;
1784	vm_paddr_t pa;
1785
1786	anychanged = 0;
1787	pte2p = pt2map_entry(sva);
1788	epte2p = pte2p + count;
1789	while (pte2p < epte2p) {
1790		m = *ma++;
1791		pa = VM_PAGE_TO_PHYS(m);
1792		pte2 = pte2_load(pte2p);
1793		if ((pte2_pa(pte2) != pa) ||
1794		    (pte2_attr(pte2) != vm_page_pte2_attr(m))) {
1795			anychanged++;
1796			pte2_store(pte2p, PTE2_KERN(pa, PTE2_AP_KRW,
1797			    vm_page_pte2_attr(m)));
1798		}
1799		pte2p++;
1800	}
1801	if (__predict_false(anychanged))
1802		tlb_flush_range(sva, count * PAGE_SIZE);
1803}
1804
1805/*
1806 *  This routine tears out page mappings from the
1807 *  kernel -- it is meant only for temporary mappings.
1808 *  Note: SMP coherent.  Uses a ranged shootdown IPI.
1809 */
1810void
1811pmap_qremove(vm_offset_t sva, int count)
1812{
1813	vm_offset_t va;
1814
1815	va = sva;
1816	while (count-- > 0) {
1817		pmap_kremove(va);
1818		va += PAGE_SIZE;
1819	}
1820	tlb_flush_range(sva, va - sva);
1821}
1822
1823/*
1824 *  Are we current address space or kernel?
1825 */
1826static __inline int
1827pmap_is_current(pmap_t pmap)
1828{
1829
1830	return (pmap == kernel_pmap ||
1831		(pmap == vmspace_pmap(curthread->td_proc->p_vmspace)));
1832}
1833
1834/*
1835 *  If the given pmap is not the current or kernel pmap, the returned
1836 *  pte2 must be released by passing it to pmap_pte2_release().
1837 */
1838static pt2_entry_t *
1839pmap_pte2(pmap_t pmap, vm_offset_t va)
1840{
1841	pt1_entry_t pte1;
1842	vm_paddr_t pt2pg_pa;
1843
1844	pte1 = pte1_load(pmap_pte1(pmap, va));
1845	if (pte1_is_section(pte1))
1846		panic("%s: attempt to map PTE1", __func__);
1847	if (pte1_is_link(pte1)) {
1848		/* Are we current address space or kernel? */
1849		if (pmap_is_current(pmap))
1850			return (pt2map_entry(va));
1851		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1852		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1853		mtx_lock(&PMAP2mutex);
1854		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
1855			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
1856			tlb_flush((vm_offset_t)PADDR2);
1857		}
1858		return (PADDR2 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1859	}
1860	return (NULL);
1861}
1862
1863/*
1864 *  Releases a pte2 that was obtained from pmap_pte2().
1865 *  Be prepared for the pte2p being NULL.
1866 */
1867static __inline void
1868pmap_pte2_release(pt2_entry_t *pte2p)
1869{
1870
1871	if ((pt2_entry_t *)(trunc_page((vm_offset_t)pte2p)) == PADDR2) {
1872		mtx_unlock(&PMAP2mutex);
1873	}
1874}
1875
1876/*
1877 *  Super fast pmap_pte2 routine best used when scanning
1878 *  the pv lists.  This eliminates many coarse-grained
1879 *  invltlb calls.  Note that many of the pv list
1880 *  scans are across different pmaps.  It is very wasteful
1881 *  to do an entire tlb flush for checking a single mapping.
1882 *
1883 *  If the given pmap is not the current pmap, pvh_global_lock
1884 *  must be held and curthread pinned to a CPU.
1885 */
1886static pt2_entry_t *
1887pmap_pte2_quick(pmap_t pmap, vm_offset_t va)
1888{
1889	pt1_entry_t pte1;
1890	vm_paddr_t pt2pg_pa;
1891
1892	pte1 = pte1_load(pmap_pte1(pmap, va));
1893	if (pte1_is_section(pte1))
1894		panic("%s: attempt to map PTE1", __func__);
1895	if (pte1_is_link(pte1)) {
1896		/* Are we current address space or kernel? */
1897		if (pmap_is_current(pmap))
1898			return (pt2map_entry(va));
1899		rw_assert(&pvh_global_lock, RA_WLOCKED);
1900		KASSERT(curthread->td_pinned > 0,
1901		    ("%s: curthread not pinned", __func__));
1902		/* Note that L2 page table size is not equal to PAGE_SIZE. */
1903		pt2pg_pa = trunc_page(pte1_link_pa(pte1));
1904		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
1905			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
1906#ifdef SMP
1907			PMAP1cpu = PCPU_GET(cpuid);
1908#endif
1909			tlb_flush_local((vm_offset_t)PADDR1);
1910			PMAP1changed++;
1911		} else
1912#ifdef SMP
1913		if (PMAP1cpu != PCPU_GET(cpuid)) {
1914			PMAP1cpu = PCPU_GET(cpuid);
1915			tlb_flush_local((vm_offset_t)PADDR1);
1916			PMAP1changedcpu++;
1917		} else
1918#endif
1919			PMAP1unchanged++;
1920		return (PADDR1 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
1921	}
1922	return (NULL);
1923}
1924
1925/*
1926 *  Routine: pmap_extract
1927 *  Function:
1928 * 	Extract the physical page address associated
1929 *	with the given map/virtual_address pair.
1930 */
1931vm_paddr_t
1932pmap_extract(pmap_t pmap, vm_offset_t va)
1933{
1934	vm_paddr_t pa;
1935	pt1_entry_t pte1;
1936	pt2_entry_t *pte2p;
1937
1938	PMAP_LOCK(pmap);
1939	pte1 = pte1_load(pmap_pte1(pmap, va));
1940	if (pte1_is_section(pte1))
1941		pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1942	else if (pte1_is_link(pte1)) {
1943		pte2p = pmap_pte2(pmap, va);
1944		pa = pte2_pa(pte2_load(pte2p)) | (va & PTE2_OFFSET);
1945		pmap_pte2_release(pte2p);
1946	} else
1947		pa = 0;
1948	PMAP_UNLOCK(pmap);
1949	return (pa);
1950}
1951
1952/*
1953 *  Routine: pmap_extract_and_hold
1954 *  Function:
1955 *	Atomically extract and hold the physical page
1956 *	with the given pmap and virtual address pair
1957 *	if that mapping permits the given protection.
1958 */
1959vm_page_t
1960pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1961{
1962	vm_paddr_t pa, lockpa;
1963	pt1_entry_t pte1;
1964	pt2_entry_t pte2, *pte2p;
1965	vm_page_t m;
1966
1967	lockpa = 0;
1968	m = NULL;
1969	PMAP_LOCK(pmap);
1970retry:
1971	pte1 = pte1_load(pmap_pte1(pmap, va));
1972	if (pte1_is_section(pte1)) {
1973		if (!(pte1 & PTE1_RO) || !(prot & VM_PROT_WRITE)) {
1974			pa = pte1_pa(pte1) | (va & PTE1_OFFSET);
1975			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1976				goto retry;
1977			m = PHYS_TO_VM_PAGE(pa);
1978			vm_page_hold(m);
1979		}
1980	} else if (pte1_is_link(pte1)) {
1981		pte2p = pmap_pte2(pmap, va);
1982		pte2 = pte2_load(pte2p);
1983		pmap_pte2_release(pte2p);
1984		if (pte2_is_valid(pte2) &&
1985		    (!(pte2 & PTE2_RO) || !(prot & VM_PROT_WRITE))) {
1986			pa = pte2_pa(pte2);
1987			if (vm_page_pa_tryrelock(pmap, pa, &lockpa))
1988				goto retry;
1989			m = PHYS_TO_VM_PAGE(pa);
1990			vm_page_hold(m);
1991		}
1992	}
1993	PA_UNLOCK_COND(lockpa);
1994	PMAP_UNLOCK(pmap);
1995	return (m);
1996}
1997
1998/*
1999 *  Grow the number of kernel L2 page table entries, if needed.
2000 */
2001void
2002pmap_growkernel(vm_offset_t addr)
2003{
2004	vm_page_t m;
2005	vm_paddr_t pt2pg_pa, pt2_pa;
2006	pt1_entry_t pte1;
2007	pt2_entry_t pte2;
2008
2009	PDEBUG(1, printf("%s: addr = %#x\n", __func__, addr));
2010	/*
2011	 * All the time kernel_vm_end is first KVA for which underlying
2012	 * L2 page table is either not allocated or linked from L1 page table
2013	 * (not considering sections). Except for two possible cases:
2014	 *
2015	 *   (1) in the very beginning as long as pmap_growkernel() was
2016	 *       not called, it could be first unused KVA (which is not
2017	 *       rounded up to PTE1_SIZE),
2018	 *
2019	 *   (2) when all KVA space is mapped and kernel_map->max_offset
2020	 *       address is not rounded up to PTE1_SIZE. (For example,
2021	 *       it could be 0xFFFFFFFF.)
2022	 */
2023	kernel_vm_end = pte1_roundup(kernel_vm_end);
2024	mtx_assert(&kernel_map->system_mtx, MA_OWNED);
2025	addr = roundup2(addr, PTE1_SIZE);
2026	if (addr - 1 >= kernel_map->max_offset)
2027		addr = kernel_map->max_offset;
2028	while (kernel_vm_end < addr) {
2029		pte1 = pte1_load(kern_pte1(kernel_vm_end));
2030		if (pte1_is_valid(pte1)) {
2031			kernel_vm_end += PTE1_SIZE;
2032			if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2033				kernel_vm_end = kernel_map->max_offset;
2034				break;
2035			}
2036			continue;
2037		}
2038
2039		/*
2040		 * kernel_vm_end_new is used in pmap_pinit() when kernel
2041		 * mappings are entered to new pmap all at once to avoid race
2042		 * between pmap_kenter_pte1() and kernel_vm_end increase.
2043		 * The same aplies to pmap_kenter_pt2tab().
2044		 */
2045		kernel_vm_end_new = kernel_vm_end + PTE1_SIZE;
2046
2047		pte2 = pt2tab_load(kern_pt2tab_entry(kernel_vm_end));
2048		if (!pte2_is_valid(pte2)) {
2049			/*
2050			 * Install new PT2s page into kernel PT2TAB.
2051			 */
2052			m = vm_page_alloc(NULL,
2053			    pte1_index(kernel_vm_end) & ~PT2PG_MASK,
2054			    VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
2055			    VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2056			if (m == NULL)
2057				panic("%s: no memory to grow kernel", __func__);
2058			/*
2059			 * QQQ: To link all new L2 page tables from L1 page
2060			 *      table now and so pmap_kenter_pte1() them
2061			 *      at once together with pmap_kenter_pt2tab()
2062			 *      could be nice speed up. However,
2063			 *      pmap_growkernel() does not happen so often...
2064			 * QQQ: The other TTBR is another option.
2065			 */
2066			pt2pg_pa = pmap_pt2pg_init(kernel_pmap, kernel_vm_end,
2067			    m);
2068		} else
2069			pt2pg_pa = pte2_pa(pte2);
2070
2071		pt2_pa = page_pt2pa(pt2pg_pa, pte1_index(kernel_vm_end));
2072		pmap_kenter_pte1(kernel_vm_end, PTE1_LINK(pt2_pa));
2073
2074		kernel_vm_end = kernel_vm_end_new;
2075		if (kernel_vm_end - 1 >= kernel_map->max_offset) {
2076			kernel_vm_end = kernel_map->max_offset;
2077			break;
2078		}
2079	}
2080}
2081
2082static int
2083kvm_size(SYSCTL_HANDLER_ARGS)
2084{
2085	unsigned long ksize = vm_max_kernel_address - KERNBASE;
2086
2087	return (sysctl_handle_long(oidp, &ksize, 0, req));
2088}
2089SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
2090    0, 0, kvm_size, "IU", "Size of KVM");
2091
2092static int
2093kvm_free(SYSCTL_HANDLER_ARGS)
2094{
2095	unsigned long kfree = vm_max_kernel_address - kernel_vm_end;
2096
2097	return (sysctl_handle_long(oidp, &kfree, 0, req));
2098}
2099SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
2100    0, 0, kvm_free, "IU", "Amount of KVM free");
2101
2102/***********************************************
2103 *
2104 *  Pmap allocation/deallocation routines.
2105 *
2106 ***********************************************/
2107
2108/*
2109 *  Initialize the pmap for the swapper process.
2110 */
2111void
2112pmap_pinit0(pmap_t pmap)
2113{
2114	PDEBUG(1, printf("%s: pmap = %p\n", __func__, pmap));
2115
2116	PMAP_LOCK_INIT(pmap);
2117
2118	/*
2119	 * Kernel page table directory and pmap stuff around is already
2120	 * initialized, we are using it right now and here. So, finish
2121	 * only PMAP structures initialization for process0 ...
2122	 *
2123	 * Since the L1 page table and PT2TAB is shared with the kernel pmap,
2124	 * which is already included in the list "allpmaps", this pmap does
2125	 * not need to be inserted into that list.
2126	 */
2127	pmap->pm_pt1 = kern_pt1;
2128	pmap->pm_pt2tab = kern_pt2tab;
2129	CPU_ZERO(&pmap->pm_active);
2130	PCPU_SET(curpmap, pmap);
2131	TAILQ_INIT(&pmap->pm_pvchunk);
2132	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2133	CPU_SET(0, &pmap->pm_active);
2134}
2135
2136static __inline void
2137pte1_copy_nosync(pt1_entry_t *spte1p, pt1_entry_t *dpte1p, vm_offset_t sva,
2138    vm_offset_t eva)
2139{
2140	u_int idx, count;
2141
2142	idx = pte1_index(sva);
2143	count = (pte1_index(eva) - idx + 1) * sizeof(pt1_entry_t);
2144	bcopy(spte1p + idx, dpte1p + idx, count);
2145}
2146
2147static __inline void
2148pt2tab_copy_nosync(pt2_entry_t *spte2p, pt2_entry_t *dpte2p, vm_offset_t sva,
2149    vm_offset_t eva)
2150{
2151	u_int idx, count;
2152
2153	idx = pt2tab_index(sva);
2154	count = (pt2tab_index(eva) - idx + 1) * sizeof(pt2_entry_t);
2155	bcopy(spte2p + idx, dpte2p + idx, count);
2156}
2157
2158/*
2159 *  Initialize a preallocated and zeroed pmap structure,
2160 *  such as one in a vmspace structure.
2161 */
2162int
2163pmap_pinit(pmap_t pmap)
2164{
2165	pt1_entry_t *pte1p;
2166	pt2_entry_t *pte2p;
2167	vm_paddr_t pa, pt2tab_pa;
2168	u_int i;
2169
2170	PDEBUG(6, printf("%s: pmap = %p, pm_pt1 = %p\n", __func__, pmap,
2171	    pmap->pm_pt1));
2172
2173	/*
2174	 * No need to allocate L2 page table space yet but we do need
2175	 * a valid L1 page table and PT2TAB table.
2176	 *
2177	 * Install shared kernel mappings to these tables. It's a little
2178	 * tricky as some parts of KVA are reserved for vectors, devices,
2179	 * and whatever else. These parts are supposed to be above
2180	 * vm_max_kernel_address. Thus two regions should be installed:
2181	 *
2182	 *   (1) <KERNBASE, kernel_vm_end),
2183	 *   (2) <vm_max_kernel_address, 0xFFFFFFFF>.
2184	 *
2185	 * QQQ: The second region should be stable enough to be installed
2186	 *      only once in time when the tables are allocated.
2187	 * QQQ: Maybe copy of both regions at once could be faster ...
2188	 * QQQ: Maybe the other TTBR is an option.
2189	 *
2190	 * Finally, install own PT2TAB table to these tables.
2191	 */
2192
2193	if (pmap->pm_pt1 == NULL) {
2194		pmap->pm_pt1 = (pt1_entry_t *)kmem_alloc_contig(kernel_arena,
2195		    NB_IN_PT1, M_NOWAIT | M_ZERO, 0, -1UL, NB_IN_PT1, 0,
2196		    pt_memattr);
2197		if (pmap->pm_pt1 == NULL)
2198			return (0);
2199	}
2200	if (pmap->pm_pt2tab == NULL) {
2201		/*
2202		 * QQQ: (1) PT2TAB must be contiguous. If PT2TAB is one page
2203		 *      only, what should be the only size for 32 bit systems,
2204		 *      then we could allocate it with vm_page_alloc() and all
2205		 *      the stuff needed as other L2 page table pages.
2206		 *      (2) Note that a process PT2TAB is special L2 page table
2207		 *      page. Its mapping in kernel_arena is permanent and can
2208		 *      be used no matter which process is current. Its mapping
2209		 *      in PT2MAP can be used only for current process.
2210		 */
2211		pmap->pm_pt2tab = (pt2_entry_t *)kmem_alloc_attr(kernel_arena,
2212		    NB_IN_PT2TAB, M_NOWAIT | M_ZERO, 0, -1UL, pt_memattr);
2213		if (pmap->pm_pt2tab == NULL) {
2214			/*
2215			 * QQQ: As struct pmap is allocated from UMA with
2216			 *      UMA_ZONE_NOFREE flag, it's important to leave
2217			 *      no allocation in pmap if initialization failed.
2218			 */
2219			kmem_free(kernel_arena, (vm_offset_t)pmap->pm_pt1,
2220			    NB_IN_PT1);
2221			pmap->pm_pt1 = NULL;
2222			return (0);
2223		}
2224		/*
2225		 * QQQ: Each L2 page table page vm_page_t has pindex set to
2226		 *      pte1 index of virtual address mapped by this page.
2227		 *      It's not valid for non kernel PT2TABs themselves.
2228		 *      The pindex of these pages can not be altered because
2229		 *      of the way how they are allocated now. However, it
2230		 *      should not be a problem.
2231		 */
2232	}
2233
2234	mtx_lock_spin(&allpmaps_lock);
2235	/*
2236	 * To avoid race with pmap_kenter_pte1() and pmap_kenter_pt2tab(),
2237	 * kernel_vm_end_new is used here instead of kernel_vm_end.
2238	 */
2239	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, KERNBASE,
2240	    kernel_vm_end_new - 1);
2241	pte1_copy_nosync(kern_pt1, pmap->pm_pt1, vm_max_kernel_address,
2242	    0xFFFFFFFF);
2243	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, KERNBASE,
2244	    kernel_vm_end_new - 1);
2245	pt2tab_copy_nosync(kern_pt2tab, pmap->pm_pt2tab, vm_max_kernel_address,
2246	    0xFFFFFFFF);
2247	LIST_INSERT_HEAD(&allpmaps, pmap, pm_list);
2248	mtx_unlock_spin(&allpmaps_lock);
2249
2250	/*
2251	 * Store PT2MAP PT2 pages (a.k.a. PT2TAB) in PT2TAB itself.
2252	 * I.e. self reference mapping.  The PT2TAB is private, however mapped
2253	 * into shared PT2MAP space, so the mapping should be not global.
2254	 */
2255	pt2tab_pa = vtophys(pmap->pm_pt2tab);
2256	pte2p = pmap_pt2tab_entry(pmap, (vm_offset_t)PT2MAP);
2257	for (pa = pt2tab_pa, i = 0; i < NPG_IN_PT2TAB; i++, pa += PTE2_SIZE) {
2258		pt2tab_store(pte2p++, PTE2_KPT_NG(pa));
2259	}
2260
2261	/* Insert PT2MAP PT2s into pmap PT1. */
2262	pte1p = pmap_pte1(pmap, (vm_offset_t)PT2MAP);
2263	for (pa = pt2tab_pa, i = 0; i < NPT2_IN_PT2TAB; i++, pa += NB_IN_PT2) {
2264		pte1_store(pte1p++, PTE1_LINK(pa));
2265	}
2266
2267	/*
2268	 * Now synchronize new mapping which was made above.
2269	 */
2270	pte1_sync_range(pmap->pm_pt1, NB_IN_PT1);
2271	pte2_sync_range(pmap->pm_pt2tab, NB_IN_PT2TAB);
2272
2273	CPU_ZERO(&pmap->pm_active);
2274	TAILQ_INIT(&pmap->pm_pvchunk);
2275	bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
2276
2277	return (1);
2278}
2279
2280#ifdef INVARIANTS
2281static boolean_t
2282pt2tab_user_is_empty(pt2_entry_t *tab)
2283{
2284	u_int i, end;
2285
2286	end = pt2tab_index(VM_MAXUSER_ADDRESS);
2287	for (i = 0; i < end; i++)
2288		if (tab[i] != 0) return (FALSE);
2289	return (TRUE);
2290}
2291#endif
2292/*
2293 *  Release any resources held by the given physical map.
2294 *  Called when a pmap initialized by pmap_pinit is being released.
2295 *  Should only be called if the map contains no valid mappings.
2296 */
2297void
2298pmap_release(pmap_t pmap)
2299{
2300#ifdef INVARIANTS
2301	vm_offset_t start, end;
2302#endif
2303	KASSERT(pmap->pm_stats.resident_count == 0,
2304	    ("%s: pmap resident count %ld != 0", __func__,
2305	    pmap->pm_stats.resident_count));
2306	KASSERT(pt2tab_user_is_empty(pmap->pm_pt2tab),
2307	    ("%s: has allocated user PT2(s)", __func__));
2308	KASSERT(CPU_EMPTY(&pmap->pm_active),
2309	    ("%s: pmap %p is active on some CPU(s)", __func__, pmap));
2310
2311	mtx_lock_spin(&allpmaps_lock);
2312	LIST_REMOVE(pmap, pm_list);
2313	mtx_unlock_spin(&allpmaps_lock);
2314
2315#ifdef INVARIANTS
2316	start = pte1_index(KERNBASE) * sizeof(pt1_entry_t);
2317	end = (pte1_index(0xFFFFFFFF) + 1) * sizeof(pt1_entry_t);
2318	bzero((char *)pmap->pm_pt1 + start, end - start);
2319
2320	start = pt2tab_index(KERNBASE) * sizeof(pt2_entry_t);
2321	end = (pt2tab_index(0xFFFFFFFF) + 1) * sizeof(pt2_entry_t);
2322	bzero((char *)pmap->pm_pt2tab + start, end - start);
2323#endif
2324	/*
2325	 * We are leaving PT1 and PT2TAB allocated on released pmap,
2326	 * so hopefully UMA vmspace_zone will always be inited with
2327	 * UMA_ZONE_NOFREE flag.
2328	 */
2329}
2330
2331/*********************************************************
2332 *
2333 *  L2 table pages and their pages management routines.
2334 *
2335 *********************************************************/
2336
2337/*
2338 *  Virtual interface for L2 page table wire counting.
2339 *
2340 *  Each L2 page table in a page has own counter which counts a number of
2341 *  valid mappings in a table. Global page counter counts mappings in all
2342 *  tables in a page plus a single itself mapping in PT2TAB.
2343 *
2344 *  During a promotion we leave the associated L2 page table counter
2345 *  untouched, so the table (strictly speaking a page which holds it)
2346 *  is never freed if promoted.
2347 *
2348 *  If a page m->wire_count == 1 then no valid mappings exist in any L2 page
2349 *  table in the page and the page itself is only mapped in PT2TAB.
2350 */
2351
2352static __inline void
2353pt2_wirecount_init(vm_page_t m)
2354{
2355	u_int i;
2356
2357	/*
2358	 * Note: A page m is allocated with VM_ALLOC_WIRED flag and
2359	 *       m->wire_count should be already set correctly.
2360	 *       So, there is no need to set it again herein.
2361	 */
2362	for (i = 0; i < NPT2_IN_PG; i++)
2363		m->md.pt2_wirecount[i] = 0;
2364}
2365
2366static __inline void
2367pt2_wirecount_inc(vm_page_t m, uint32_t pte1_idx)
2368{
2369
2370	/*
2371	 * Note: A just modificated pte2 (i.e. already allocated)
2372	 *       is acquiring one extra reference which must be
2373	 *       explicitly cleared. It influences the KASSERTs herein.
2374	 *       All L2 page tables in a page always belong to the same
2375	 *       pmap, so we allow only one extra reference for the page.
2376	 */
2377	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] < (NPTE2_IN_PT2 + 1),
2378	    ("%s: PT2 is overflowing ...", __func__));
2379	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2380	    ("%s: PT2PG is overflowing ...", __func__));
2381
2382	m->wire_count++;
2383	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]++;
2384}
2385
2386static __inline void
2387pt2_wirecount_dec(vm_page_t m, uint32_t pte1_idx)
2388{
2389
2390	KASSERT(m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] != 0,
2391	    ("%s: PT2 is underflowing ...", __func__));
2392	KASSERT(m->wire_count > 1,
2393	    ("%s: PT2PG is underflowing ...", __func__));
2394
2395	m->wire_count--;
2396	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]--;
2397}
2398
2399static __inline void
2400pt2_wirecount_set(vm_page_t m, uint32_t pte1_idx, uint16_t count)
2401{
2402
2403	KASSERT(count <= NPTE2_IN_PT2,
2404	    ("%s: invalid count %u", __func__, count));
2405	KASSERT(m->wire_count >  m->md.pt2_wirecount[pte1_idx & PT2PG_MASK],
2406	    ("%s: PT2PG corrupting (%u, %u) ...", __func__, m->wire_count,
2407	    m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]));
2408
2409	m->wire_count -= m->md.pt2_wirecount[pte1_idx & PT2PG_MASK];
2410	m->wire_count += count;
2411	m->md.pt2_wirecount[pte1_idx & PT2PG_MASK] = count;
2412
2413	KASSERT(m->wire_count <= (NPTE2_IN_PG + 1),
2414	    ("%s: PT2PG is overflowed (%u) ...", __func__, m->wire_count));
2415}
2416
2417static __inline uint32_t
2418pt2_wirecount_get(vm_page_t m, uint32_t pte1_idx)
2419{
2420
2421	return (m->md.pt2_wirecount[pte1_idx & PT2PG_MASK]);
2422}
2423
2424static __inline boolean_t
2425pt2_is_empty(vm_page_t m, vm_offset_t va)
2426{
2427
2428	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] == 0);
2429}
2430
2431static __inline boolean_t
2432pt2_is_full(vm_page_t m, vm_offset_t va)
2433{
2434
2435	return (m->md.pt2_wirecount[pte1_index(va) & PT2PG_MASK] ==
2436	    NPTE2_IN_PT2);
2437}
2438
2439static __inline boolean_t
2440pt2pg_is_empty(vm_page_t m)
2441{
2442
2443	return (m->wire_count == 1);
2444}
2445
2446/*
2447 *  This routine is called if the L2 page table
2448 *  is not mapped correctly.
2449 */
2450static vm_page_t
2451_pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2452{
2453	uint32_t pte1_idx;
2454	pt1_entry_t *pte1p;
2455	pt2_entry_t pte2;
2456	vm_page_t  m;
2457	vm_paddr_t pt2pg_pa, pt2_pa;
2458
2459	pte1_idx = pte1_index(va);
2460	pte1p = pmap->pm_pt1 + pte1_idx;
2461
2462	KASSERT(pte1_load(pte1p) == 0,
2463	    ("%s: pm_pt1[%#x] is not zero: %#x", __func__, pte1_idx,
2464	    pte1_load(pte1p)));
2465
2466	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, va));
2467	if (!pte2_is_valid(pte2)) {
2468		/*
2469		 * Install new PT2s page into pmap PT2TAB.
2470		 */
2471		m = vm_page_alloc(NULL, pte1_idx & ~PT2PG_MASK,
2472		    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
2473		if (m == NULL) {
2474			if ((flags & PMAP_ENTER_NOSLEEP) == 0) {
2475				PMAP_UNLOCK(pmap);
2476				rw_wunlock(&pvh_global_lock);
2477				VM_WAIT;
2478				rw_wlock(&pvh_global_lock);
2479				PMAP_LOCK(pmap);
2480			}
2481
2482			/*
2483			 * Indicate the need to retry.  While waiting,
2484			 * the L2 page table page may have been allocated.
2485			 */
2486			return (NULL);
2487		}
2488		pmap->pm_stats.resident_count++;
2489		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
2490	} else {
2491		pt2pg_pa = pte2_pa(pte2);
2492		m = PHYS_TO_VM_PAGE(pt2pg_pa);
2493	}
2494
2495	pt2_wirecount_inc(m, pte1_idx);
2496	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
2497	pte1_store(pte1p, PTE1_LINK(pt2_pa));
2498
2499	return (m);
2500}
2501
2502static vm_page_t
2503pmap_allocpte2(pmap_t pmap, vm_offset_t va, u_int flags)
2504{
2505	u_int pte1_idx;
2506	pt1_entry_t *pte1p, pte1;
2507	vm_page_t m;
2508
2509	pte1_idx = pte1_index(va);
2510retry:
2511	pte1p = pmap->pm_pt1 + pte1_idx;
2512	pte1 = pte1_load(pte1p);
2513
2514	/*
2515	 * This supports switching from a 1MB page to a
2516	 * normal 4K page.
2517	 */
2518	if (pte1_is_section(pte1)) {
2519		(void)pmap_demote_pte1(pmap, pte1p, va);
2520		/*
2521		 * Reload pte1 after demotion.
2522		 *
2523		 * Note: Demotion can even fail as either PT2 is not find for
2524		 *       the virtual address or PT2PG can not be allocated.
2525		 */
2526		pte1 = pte1_load(pte1p);
2527	}
2528
2529	/*
2530	 * If the L2 page table page is mapped, we just increment the
2531	 * hold count, and activate it.
2532	 */
2533	if (pte1_is_link(pte1)) {
2534		m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2535		pt2_wirecount_inc(m, pte1_idx);
2536	} else  {
2537		/*
2538		 * Here if the PT2 isn't mapped, or if it has
2539		 * been deallocated.
2540		 */
2541		m = _pmap_allocpte2(pmap, va, flags);
2542		if (m == NULL && (flags & PMAP_ENTER_NOSLEEP) == 0)
2543			goto retry;
2544	}
2545
2546	return (m);
2547}
2548
2549static __inline void
2550pmap_free_zero_pages(struct spglist *free)
2551{
2552	vm_page_t m;
2553
2554	while ((m = SLIST_FIRST(free)) != NULL) {
2555		SLIST_REMOVE_HEAD(free, plinks.s.ss);
2556		/* Preserve the page's PG_ZERO setting. */
2557		vm_page_free_toq(m);
2558	}
2559}
2560
2561/*
2562 *  Schedule the specified unused L2 page table page to be freed. Specifically,
2563 *  add the page to the specified list of pages that will be released to the
2564 *  physical memory manager after the TLB has been updated.
2565 */
2566static __inline void
2567pmap_add_delayed_free_list(vm_page_t m, struct spglist *free)
2568{
2569
2570	/*
2571	 * Put page on a list so that it is released after
2572	 * *ALL* TLB shootdown is done
2573	 */
2574#ifdef PMAP_DEBUG
2575	pmap_zero_page_check(m);
2576#endif
2577	m->flags |= PG_ZERO;
2578	SLIST_INSERT_HEAD(free, m, plinks.s.ss);
2579}
2580
2581/*
2582 *  Unwire L2 page tables page.
2583 */
2584static void
2585pmap_unwire_pt2pg(pmap_t pmap, vm_offset_t va, vm_page_t m)
2586{
2587	pt1_entry_t *pte1p, opte1 __unused;
2588	pt2_entry_t *pte2p;
2589	uint32_t i;
2590
2591	KASSERT(pt2pg_is_empty(m),
2592	    ("%s: pmap %p PT2PG %p wired", __func__, pmap, m));
2593
2594	/*
2595	 * Unmap all L2 page tables in the page from L1 page table.
2596	 *
2597	 * QQQ: Individual L2 page tables (except the last one) can be unmapped
2598	 * earlier. However, we are doing that this way.
2599	 */
2600	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
2601	    ("%s: pmap %p va %#x PT2PG %p bad index", __func__, pmap, va, m));
2602	pte1p = pmap->pm_pt1 + m->pindex;
2603	for (i = 0; i < NPT2_IN_PG; i++, pte1p++) {
2604		KASSERT(m->md.pt2_wirecount[i] == 0,
2605		    ("%s: pmap %p PT2 %u (PG %p) wired", __func__, pmap, i, m));
2606		opte1 = pte1_load(pte1p);
2607		if (pte1_is_link(opte1)) {
2608			pte1_clear(pte1p);
2609			/*
2610			 * Flush intermediate TLB cache.
2611			 */
2612			pmap_tlb_flush(pmap, (m->pindex + i) << PTE1_SHIFT);
2613		}
2614#ifdef INVARIANTS
2615		else
2616			KASSERT((opte1 == 0) || pte1_is_section(opte1),
2617			    ("%s: pmap %p va %#x bad pte1 %x at %u", __func__,
2618			    pmap, va, opte1, i));
2619#endif
2620	}
2621
2622	/*
2623	 * Unmap the page from PT2TAB.
2624	 */
2625	pte2p = pmap_pt2tab_entry(pmap, va);
2626	(void)pt2tab_load_clear(pte2p);
2627	pmap_tlb_flush(pmap, pt2map_pt2pg(va));
2628
2629	m->wire_count = 0;
2630	pmap->pm_stats.resident_count--;
2631
2632	/*
2633	 * This is a release store so that the ordinary store unmapping
2634	 * the L2 page table page is globally performed before TLB shoot-
2635	 * down is begun.
2636	 */
2637	atomic_subtract_rel_int(&vm_cnt.v_wire_count, 1);
2638}
2639
2640/*
2641 *  Decrements a L2 page table page's wire count, which is used to record the
2642 *  number of valid page table entries within the page.  If the wire count
2643 *  drops to zero, then the page table page is unmapped.  Returns TRUE if the
2644 *  page table page was unmapped and FALSE otherwise.
2645 */
2646static __inline boolean_t
2647pmap_unwire_pt2(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
2648{
2649	pt2_wirecount_dec(m, pte1_index(va));
2650	if (pt2pg_is_empty(m)) {
2651		/*
2652		 * QQQ: Wire count is zero, so whole page should be zero and
2653		 *      we can set PG_ZERO flag to it.
2654		 *      Note that when promotion is enabled, it takes some
2655		 *      more efforts. See pmap_unwire_pt2_all() below.
2656		 */
2657		pmap_unwire_pt2pg(pmap, va, m);
2658		pmap_add_delayed_free_list(m, free);
2659		return (TRUE);
2660	} else
2661		return (FALSE);
2662}
2663
2664/*
2665 *  Drop a L2 page table page's wire count at once, which is used to record
2666 *  the number of valid L2 page table entries within the page. If the wire
2667 *  count drops to zero, then the L2 page table page is unmapped.
2668 */
2669static __inline void
2670pmap_unwire_pt2_all(pmap_t pmap, vm_offset_t va, vm_page_t m,
2671    struct spglist *free)
2672{
2673	u_int pte1_idx = pte1_index(va);
2674
2675	KASSERT(m->pindex == (pte1_idx & ~PT2PG_MASK),
2676		("%s: PT2 page's pindex is wrong", __func__));
2677	KASSERT(m->wire_count > pt2_wirecount_get(m, pte1_idx),
2678	    ("%s: bad pt2 wire count %u > %u", __func__, m->wire_count,
2679	    pt2_wirecount_get(m, pte1_idx)));
2680
2681	/*
2682	 * It's possible that the L2 page table was never used.
2683	 * It happened in case that a section was created without promotion.
2684	 */
2685	if (pt2_is_full(m, va)) {
2686		pt2_wirecount_set(m, pte1_idx, 0);
2687
2688		/*
2689		 * QQQ: We clear L2 page table now, so when L2 page table page
2690		 *      is going to be freed, we can set it PG_ZERO flag ...
2691		 *      This function is called only on section mappings, so
2692		 *      hopefully it's not to big overload.
2693		 *
2694		 * XXX: If pmap is current, existing PT2MAP mapping could be
2695		 *      used for zeroing.
2696		 */
2697		pmap_zero_page_area(m, page_pt2off(pte1_idx), NB_IN_PT2);
2698	}
2699#ifdef INVARIANTS
2700	else
2701		KASSERT(pt2_is_empty(m, va), ("%s: PT2 is not empty (%u)",
2702		    __func__, pt2_wirecount_get(m, pte1_idx)));
2703#endif
2704	if (pt2pg_is_empty(m)) {
2705		pmap_unwire_pt2pg(pmap, va, m);
2706		pmap_add_delayed_free_list(m, free);
2707	}
2708}
2709
2710/*
2711 *  After removing a L2 page table entry, this routine is used to
2712 *  conditionally free the page, and manage the hold/wire counts.
2713 */
2714static boolean_t
2715pmap_unuse_pt2(pmap_t pmap, vm_offset_t va, struct spglist *free)
2716{
2717	pt1_entry_t pte1;
2718	vm_page_t mpte;
2719
2720	if (va >= VM_MAXUSER_ADDRESS)
2721		return (FALSE);
2722	pte1 = pte1_load(pmap_pte1(pmap, va));
2723	mpte = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
2724	return (pmap_unwire_pt2(pmap, va, mpte, free));
2725}
2726
2727/*************************************
2728 *
2729 *  Page management routines.
2730 *
2731 *************************************/
2732
2733CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
2734CTASSERT(_NPCM == 11);
2735CTASSERT(_NPCPV == 336);
2736
2737static __inline struct pv_chunk *
2738pv_to_chunk(pv_entry_t pv)
2739{
2740
2741	return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
2742}
2743
2744#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
2745
2746#define	PC_FREE0_9	0xfffffffful	/* Free values for index 0 through 9 */
2747#define	PC_FREE10	0x0000fffful	/* Free values for index 10 */
2748
2749static const uint32_t pc_freemask[_NPCM] = {
2750	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2751	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2752	PC_FREE0_9, PC_FREE0_9, PC_FREE0_9,
2753	PC_FREE0_9, PC_FREE10
2754};
2755
2756SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
2757	"Current number of pv entries");
2758
2759#ifdef PV_STATS
2760static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
2761
2762SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
2763    "Current number of pv entry chunks");
2764SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
2765    "Current number of pv entry chunks allocated");
2766SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
2767    "Current number of pv entry chunks frees");
2768SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail,
2769    0, "Number of times tried to get a chunk page but failed.");
2770
2771static long pv_entry_frees, pv_entry_allocs;
2772static int pv_entry_spare;
2773
2774SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
2775    "Current number of pv entry frees");
2776SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs,
2777    0, "Current number of pv entry allocs");
2778SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
2779    "Current number of spare pv entries");
2780#endif
2781
2782/*
2783 *  Is given page managed?
2784 */
2785static __inline bool
2786is_managed(vm_paddr_t pa)
2787{
2788	vm_page_t m;
2789
2790	m = PHYS_TO_VM_PAGE(pa);
2791	if (m == NULL)
2792		return (false);
2793	return ((m->oflags & VPO_UNMANAGED) == 0);
2794}
2795
2796static __inline bool
2797pte1_is_managed(pt1_entry_t pte1)
2798{
2799
2800	return (is_managed(pte1_pa(pte1)));
2801}
2802
2803static __inline bool
2804pte2_is_managed(pt2_entry_t pte2)
2805{
2806
2807	return (is_managed(pte2_pa(pte2)));
2808}
2809
2810/*
2811 *  We are in a serious low memory condition.  Resort to
2812 *  drastic measures to free some pages so we can allocate
2813 *  another pv entry chunk.
2814 */
2815static vm_page_t
2816pmap_pv_reclaim(pmap_t locked_pmap)
2817{
2818	struct pch newtail;
2819	struct pv_chunk *pc;
2820	struct md_page *pvh;
2821	pt1_entry_t *pte1p;
2822	pmap_t pmap;
2823	pt2_entry_t *pte2p, tpte2;
2824	pv_entry_t pv;
2825	vm_offset_t va;
2826	vm_page_t m, m_pc;
2827	struct spglist free;
2828	uint32_t inuse;
2829	int bit, field, freed;
2830
2831	PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
2832	pmap = NULL;
2833	m_pc = NULL;
2834	SLIST_INIT(&free);
2835	TAILQ_INIT(&newtail);
2836	while ((pc = TAILQ_FIRST(&pv_chunks)) != NULL && (pv_vafree == 0 ||
2837	    SLIST_EMPTY(&free))) {
2838		TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2839		if (pmap != pc->pc_pmap) {
2840			if (pmap != NULL) {
2841				if (pmap != locked_pmap)
2842					PMAP_UNLOCK(pmap);
2843			}
2844			pmap = pc->pc_pmap;
2845			/* Avoid deadlock and lock recursion. */
2846			if (pmap > locked_pmap)
2847				PMAP_LOCK(pmap);
2848			else if (pmap != locked_pmap && !PMAP_TRYLOCK(pmap)) {
2849				pmap = NULL;
2850				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2851				continue;
2852			}
2853		}
2854
2855		/*
2856		 * Destroy every non-wired, 4 KB page mapping in the chunk.
2857		 */
2858		freed = 0;
2859		for (field = 0; field < _NPCM; field++) {
2860			for (inuse = ~pc->pc_map[field] & pc_freemask[field];
2861			    inuse != 0; inuse &= ~(1UL << bit)) {
2862				bit = ffs(inuse) - 1;
2863				pv = &pc->pc_pventry[field * 32 + bit];
2864				va = pv->pv_va;
2865				pte1p = pmap_pte1(pmap, va);
2866				if (pte1_is_section(pte1_load(pte1p)))
2867					continue;
2868				pte2p = pmap_pte2(pmap, va);
2869				tpte2 = pte2_load(pte2p);
2870				if ((tpte2 & PTE2_W) == 0)
2871					tpte2 = pte2_load_clear(pte2p);
2872				pmap_pte2_release(pte2p);
2873				if ((tpte2 & PTE2_W) != 0)
2874					continue;
2875				KASSERT(tpte2 != 0,
2876				    ("pmap_pv_reclaim: pmap %p va %#x zero pte",
2877				    pmap, va));
2878				pmap_tlb_flush(pmap, va);
2879				m = PHYS_TO_VM_PAGE(pte2_pa(tpte2));
2880				if (pte2_is_dirty(tpte2))
2881					vm_page_dirty(m);
2882				if ((tpte2 & PTE2_A) != 0)
2883					vm_page_aflag_set(m, PGA_REFERENCED);
2884				TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
2885				if (TAILQ_EMPTY(&m->md.pv_list) &&
2886				    (m->flags & PG_FICTITIOUS) == 0) {
2887					pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
2888					if (TAILQ_EMPTY(&pvh->pv_list)) {
2889						vm_page_aflag_clear(m,
2890						    PGA_WRITEABLE);
2891					}
2892				}
2893				pc->pc_map[field] |= 1UL << bit;
2894				pmap_unuse_pt2(pmap, va, &free);
2895				freed++;
2896			}
2897		}
2898		if (freed == 0) {
2899			TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2900			continue;
2901		}
2902		/* Every freed mapping is for a 4 KB page. */
2903		pmap->pm_stats.resident_count -= freed;
2904		PV_STAT(pv_entry_frees += freed);
2905		PV_STAT(pv_entry_spare += freed);
2906		pv_entry_count -= freed;
2907		TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2908		for (field = 0; field < _NPCM; field++)
2909			if (pc->pc_map[field] != pc_freemask[field]) {
2910				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2911				    pc_list);
2912				TAILQ_INSERT_TAIL(&newtail, pc, pc_lru);
2913
2914				/*
2915				 * One freed pv entry in locked_pmap is
2916				 * sufficient.
2917				 */
2918				if (pmap == locked_pmap)
2919					goto out;
2920				break;
2921			}
2922		if (field == _NPCM) {
2923			PV_STAT(pv_entry_spare -= _NPCPV);
2924			PV_STAT(pc_chunk_count--);
2925			PV_STAT(pc_chunk_frees++);
2926			/* Entire chunk is free; return it. */
2927			m_pc = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2928			pmap_qremove((vm_offset_t)pc, 1);
2929			pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2930			break;
2931		}
2932	}
2933out:
2934	TAILQ_CONCAT(&pv_chunks, &newtail, pc_lru);
2935	if (pmap != NULL) {
2936		if (pmap != locked_pmap)
2937			PMAP_UNLOCK(pmap);
2938	}
2939	if (m_pc == NULL && pv_vafree != 0 && SLIST_EMPTY(&free)) {
2940		m_pc = SLIST_FIRST(&free);
2941		SLIST_REMOVE_HEAD(&free, plinks.s.ss);
2942		/* Recycle a freed page table page. */
2943		m_pc->wire_count = 1;
2944		atomic_add_int(&vm_cnt.v_wire_count, 1);
2945	}
2946	pmap_free_zero_pages(&free);
2947	return (m_pc);
2948}
2949
2950static void
2951free_pv_chunk(struct pv_chunk *pc)
2952{
2953	vm_page_t m;
2954
2955	TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
2956	PV_STAT(pv_entry_spare -= _NPCPV);
2957	PV_STAT(pc_chunk_count--);
2958	PV_STAT(pc_chunk_frees++);
2959	/* entire chunk is free, return it */
2960	m = PHYS_TO_VM_PAGE(pmap_kextract((vm_offset_t)pc));
2961	pmap_qremove((vm_offset_t)pc, 1);
2962	vm_page_unwire(m, PQ_NONE);
2963	vm_page_free(m);
2964	pmap_pte2list_free(&pv_vafree, (vm_offset_t)pc);
2965}
2966
2967/*
2968 *  Free the pv_entry back to the free list.
2969 */
2970static void
2971free_pv_entry(pmap_t pmap, pv_entry_t pv)
2972{
2973	struct pv_chunk *pc;
2974	int idx, field, bit;
2975
2976	rw_assert(&pvh_global_lock, RA_WLOCKED);
2977	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
2978	PV_STAT(pv_entry_frees++);
2979	PV_STAT(pv_entry_spare++);
2980	pv_entry_count--;
2981	pc = pv_to_chunk(pv);
2982	idx = pv - &pc->pc_pventry[0];
2983	field = idx / 32;
2984	bit = idx % 32;
2985	pc->pc_map[field] |= 1ul << bit;
2986	for (idx = 0; idx < _NPCM; idx++)
2987		if (pc->pc_map[idx] != pc_freemask[idx]) {
2988			/*
2989			 * 98% of the time, pc is already at the head of the
2990			 * list.  If it isn't already, move it to the head.
2991			 */
2992			if (__predict_false(TAILQ_FIRST(&pmap->pm_pvchunk) !=
2993			    pc)) {
2994				TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
2995				TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc,
2996				    pc_list);
2997			}
2998			return;
2999		}
3000	TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3001	free_pv_chunk(pc);
3002}
3003
3004/*
3005 *  Get a new pv_entry, allocating a block from the system
3006 *  when needed.
3007 */
3008static pv_entry_t
3009get_pv_entry(pmap_t pmap, boolean_t try)
3010{
3011	static const struct timeval printinterval = { 60, 0 };
3012	static struct timeval lastprint;
3013	int bit, field;
3014	pv_entry_t pv;
3015	struct pv_chunk *pc;
3016	vm_page_t m;
3017
3018	rw_assert(&pvh_global_lock, RA_WLOCKED);
3019	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3020	PV_STAT(pv_entry_allocs++);
3021	pv_entry_count++;
3022	if (pv_entry_count > pv_entry_high_water)
3023		if (ratecheck(&lastprint, &printinterval))
3024			printf("Approaching the limit on PV entries, consider "
3025			    "increasing either the vm.pmap.shpgperproc or the "
3026			    "vm.pmap.pv_entry_max tunable.\n");
3027retry:
3028	pc = TAILQ_FIRST(&pmap->pm_pvchunk);
3029	if (pc != NULL) {
3030		for (field = 0; field < _NPCM; field++) {
3031			if (pc->pc_map[field]) {
3032				bit = ffs(pc->pc_map[field]) - 1;
3033				break;
3034			}
3035		}
3036		if (field < _NPCM) {
3037			pv = &pc->pc_pventry[field * 32 + bit];
3038			pc->pc_map[field] &= ~(1ul << bit);
3039			/* If this was the last item, move it to tail */
3040			for (field = 0; field < _NPCM; field++)
3041				if (pc->pc_map[field] != 0) {
3042					PV_STAT(pv_entry_spare--);
3043					return (pv);	/* not full, return */
3044				}
3045			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
3046			TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
3047			PV_STAT(pv_entry_spare--);
3048			return (pv);
3049		}
3050	}
3051	/*
3052	 * Access to the pte2list "pv_vafree" is synchronized by the pvh
3053	 * global lock.  If "pv_vafree" is currently non-empty, it will
3054	 * remain non-empty until pmap_pte2list_alloc() completes.
3055	 */
3056	if (pv_vafree == 0 || (m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
3057	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
3058		if (try) {
3059			pv_entry_count--;
3060			PV_STAT(pc_chunk_tryfail++);
3061			return (NULL);
3062		}
3063		m = pmap_pv_reclaim(pmap);
3064		if (m == NULL)
3065			goto retry;
3066	}
3067	PV_STAT(pc_chunk_count++);
3068	PV_STAT(pc_chunk_allocs++);
3069	pc = (struct pv_chunk *)pmap_pte2list_alloc(&pv_vafree);
3070	pmap_qenter((vm_offset_t)pc, &m, 1);
3071	pc->pc_pmap = pmap;
3072	pc->pc_map[0] = pc_freemask[0] & ~1ul;	/* preallocated bit 0 */
3073	for (field = 1; field < _NPCM; field++)
3074		pc->pc_map[field] = pc_freemask[field];
3075	TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
3076	pv = &pc->pc_pventry[0];
3077	TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
3078	PV_STAT(pv_entry_spare += _NPCPV - 1);
3079	return (pv);
3080}
3081
3082/*
3083 *  Create a pv entry for page at pa for
3084 *  (pmap, va).
3085 */
3086static void
3087pmap_insert_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3088{
3089	pv_entry_t pv;
3090
3091	rw_assert(&pvh_global_lock, RA_WLOCKED);
3092	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3093	pv = get_pv_entry(pmap, FALSE);
3094	pv->pv_va = va;
3095	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3096}
3097
3098static __inline pv_entry_t
3099pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3100{
3101	pv_entry_t pv;
3102
3103	rw_assert(&pvh_global_lock, RA_WLOCKED);
3104	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
3105		if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
3106			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
3107			break;
3108		}
3109	}
3110	return (pv);
3111}
3112
3113static void
3114pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
3115{
3116	pv_entry_t pv;
3117
3118	pv = pmap_pvh_remove(pvh, pmap, va);
3119	KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
3120	free_pv_entry(pmap, pv);
3121}
3122
3123static void
3124pmap_remove_entry(pmap_t pmap, vm_page_t m, vm_offset_t va)
3125{
3126	struct md_page *pvh;
3127
3128	rw_assert(&pvh_global_lock, RA_WLOCKED);
3129	pmap_pvh_free(&m->md, pmap, va);
3130	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
3131		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
3132		if (TAILQ_EMPTY(&pvh->pv_list))
3133			vm_page_aflag_clear(m, PGA_WRITEABLE);
3134	}
3135}
3136
3137static void
3138pmap_pv_demote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3139{
3140	struct md_page *pvh;
3141	pv_entry_t pv;
3142	vm_offset_t va_last;
3143	vm_page_t m;
3144
3145	rw_assert(&pvh_global_lock, RA_WLOCKED);
3146	KASSERT((pa & PTE1_OFFSET) == 0,
3147	    ("pmap_pv_demote_pte1: pa is not 1mpage aligned"));
3148
3149	/*
3150	 * Transfer the 1mpage's pv entry for this mapping to the first
3151	 * page's pv list.
3152	 */
3153	pvh = pa_to_pvh(pa);
3154	va = pte1_trunc(va);
3155	pv = pmap_pvh_remove(pvh, pmap, va);
3156	KASSERT(pv != NULL, ("pmap_pv_demote_pte1: pv not found"));
3157	m = PHYS_TO_VM_PAGE(pa);
3158	TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3159	/* Instantiate the remaining NPTE2_IN_PT2 - 1 pv entries. */
3160	va_last = va + PTE1_SIZE - PAGE_SIZE;
3161	do {
3162		m++;
3163		KASSERT((m->oflags & VPO_UNMANAGED) == 0,
3164		    ("pmap_pv_demote_pte1: page %p is not managed", m));
3165		va += PAGE_SIZE;
3166		pmap_insert_entry(pmap, va, m);
3167	} while (va < va_last);
3168}
3169
3170#if VM_NRESERVLEVEL > 0
3171static void
3172pmap_pv_promote_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3173{
3174	struct md_page *pvh;
3175	pv_entry_t pv;
3176	vm_offset_t va_last;
3177	vm_page_t m;
3178
3179	rw_assert(&pvh_global_lock, RA_WLOCKED);
3180	KASSERT((pa & PTE1_OFFSET) == 0,
3181	    ("pmap_pv_promote_pte1: pa is not 1mpage aligned"));
3182
3183	/*
3184	 * Transfer the first page's pv entry for this mapping to the
3185	 * 1mpage's pv list.  Aside from avoiding the cost of a call
3186	 * to get_pv_entry(), a transfer avoids the possibility that
3187	 * get_pv_entry() calls pmap_pv_reclaim() and that pmap_pv_reclaim()
3188	 * removes one of the mappings that is being promoted.
3189	 */
3190	m = PHYS_TO_VM_PAGE(pa);
3191	va = pte1_trunc(va);
3192	pv = pmap_pvh_remove(&m->md, pmap, va);
3193	KASSERT(pv != NULL, ("pmap_pv_promote_pte1: pv not found"));
3194	pvh = pa_to_pvh(pa);
3195	TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3196	/* Free the remaining NPTE2_IN_PT2 - 1 pv entries. */
3197	va_last = va + PTE1_SIZE - PAGE_SIZE;
3198	do {
3199		m++;
3200		va += PAGE_SIZE;
3201		pmap_pvh_free(&m->md, pmap, va);
3202	} while (va < va_last);
3203}
3204#endif
3205
3206/*
3207 *  Conditionally create a pv entry.
3208 */
3209static boolean_t
3210pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m)
3211{
3212	pv_entry_t pv;
3213
3214	rw_assert(&pvh_global_lock, RA_WLOCKED);
3215	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3216	if (pv_entry_count < pv_entry_high_water &&
3217	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3218		pv->pv_va = va;
3219		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3220		return (TRUE);
3221	} else
3222		return (FALSE);
3223}
3224
3225/*
3226 *  Create the pv entries for each of the pages within a section.
3227 */
3228static boolean_t
3229pmap_pv_insert_pte1(pmap_t pmap, vm_offset_t va, vm_paddr_t pa)
3230{
3231	struct md_page *pvh;
3232	pv_entry_t pv;
3233
3234	rw_assert(&pvh_global_lock, RA_WLOCKED);
3235	if (pv_entry_count < pv_entry_high_water &&
3236	    (pv = get_pv_entry(pmap, TRUE)) != NULL) {
3237		pv->pv_va = va;
3238		pvh = pa_to_pvh(pa);
3239		TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
3240		return (TRUE);
3241	} else
3242		return (FALSE);
3243}
3244
3245static inline void
3246pmap_tlb_flush_pte1(pmap_t pmap, vm_offset_t va, pt1_entry_t npte1)
3247{
3248
3249	/* Kill all the small mappings or the big one only. */
3250	if (pte1_is_section(npte1))
3251		pmap_tlb_flush_range(pmap, pte1_trunc(va), PTE1_SIZE);
3252	else
3253		pmap_tlb_flush(pmap, pte1_trunc(va));
3254}
3255
3256/*
3257 *  Update kernel pte1 on all pmaps.
3258 *
3259 *  The following function is called only on one cpu with disabled interrupts.
3260 *  In SMP case, smp_rendezvous_cpus() is used to stop other cpus. This way
3261 *  nobody can invoke explicit hardware table walk during the update of pte1.
3262 *  Unsolicited hardware table walk can still happen, invoked by speculative
3263 *  data or instruction prefetch or even by speculative hardware table walk.
3264 *
3265 *  The break-before-make approach should be implemented here. However, it's
3266 *  not so easy to do that for kernel mappings as it would be unhappy to unmap
3267 *  itself unexpectedly but voluntarily.
3268 */
3269static void
3270pmap_update_pte1_kernel(vm_offset_t va, pt1_entry_t npte1)
3271{
3272	pmap_t pmap;
3273	pt1_entry_t *pte1p;
3274
3275	/*
3276	 * Get current pmap. Interrupts should be disabled here
3277	 * so PCPU_GET() is done atomically.
3278	 */
3279	pmap = PCPU_GET(curpmap);
3280	if (pmap == NULL)
3281		pmap = kernel_pmap;
3282
3283	/*
3284	 * (1) Change pte1 on current pmap.
3285	 * (2) Flush all obsolete TLB entries on current CPU.
3286	 * (3) Change pte1 on all pmaps.
3287	 * (4) Flush all obsolete TLB entries on all CPUs in SMP case.
3288	 */
3289
3290	pte1p = pmap_pte1(pmap, va);
3291	pte1_store(pte1p, npte1);
3292
3293	/* Kill all the small mappings or the big one only. */
3294	if (pte1_is_section(npte1)) {
3295		pmap_pte1_kern_promotions++;
3296		tlb_flush_range_local(pte1_trunc(va), PTE1_SIZE);
3297	} else {
3298		pmap_pte1_kern_demotions++;
3299		tlb_flush_local(pte1_trunc(va));
3300	}
3301
3302	/*
3303	 * In SMP case, this function is called when all cpus are at smp
3304	 * rendezvous, so there is no need to use 'allpmaps_lock' lock here.
3305	 * In UP case, the function is called with this lock locked.
3306	 */
3307	LIST_FOREACH(pmap, &allpmaps, pm_list) {
3308		pte1p = pmap_pte1(pmap, va);
3309		pte1_store(pte1p, npte1);
3310	}
3311
3312#ifdef SMP
3313	/* Kill all the small mappings or the big one only. */
3314	if (pte1_is_section(npte1))
3315		tlb_flush_range(pte1_trunc(va), PTE1_SIZE);
3316	else
3317		tlb_flush(pte1_trunc(va));
3318#endif
3319}
3320
3321#ifdef SMP
3322struct pte1_action {
3323	vm_offset_t va;
3324	pt1_entry_t npte1;
3325	u_int update;		/* CPU that updates the PTE1 */
3326};
3327
3328static void
3329pmap_update_pte1_action(void *arg)
3330{
3331	struct pte1_action *act = arg;
3332
3333	if (act->update == PCPU_GET(cpuid))
3334		pmap_update_pte1_kernel(act->va, act->npte1);
3335}
3336
3337/*
3338 *  Change pte1 on current pmap.
3339 *  Note that kernel pte1 must be changed on all pmaps.
3340 *
3341 *  According to the architecture reference manual published by ARM,
3342 *  the behaviour is UNPREDICTABLE when two or more TLB entries map the same VA.
3343 *  According to this manual, UNPREDICTABLE behaviours must never happen in
3344 *  a viable system. In contrast, on x86 processors, it is not specified which
3345 *  TLB entry mapping the virtual address will be used, but the MMU doesn't
3346 *  generate a bogus translation the way it does on Cortex-A8 rev 2 (Beaglebone
3347 *  Black).
3348 *
3349 *  It's a problem when either promotion or demotion is being done. The pte1
3350 *  update and appropriate TLB flush must be done atomically in general.
3351 */
3352static void
3353pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3354    pt1_entry_t npte1)
3355{
3356
3357	if (pmap == kernel_pmap) {
3358		struct pte1_action act;
3359
3360		sched_pin();
3361		act.va = va;
3362		act.npte1 = npte1;
3363		act.update = PCPU_GET(cpuid);
3364		smp_rendezvous_cpus(all_cpus, smp_no_rendevous_barrier,
3365		    pmap_update_pte1_action, NULL, &act);
3366		sched_unpin();
3367	} else {
3368		register_t cspr;
3369
3370		/*
3371		 * Use break-before-make approach for changing userland
3372		 * mappings. It can cause L1 translation aborts on other
3373		 * cores in SMP case. So, special treatment is implemented
3374		 * in pmap_fault(). To reduce the likelihood that another core
3375		 * will be affected by the broken mapping, disable interrupts
3376		 * until the mapping change is completed.
3377		 */
3378		cspr = disable_interrupts(PSR_I | PSR_F);
3379		pte1_clear(pte1p);
3380		pmap_tlb_flush_pte1(pmap, va, npte1);
3381		pte1_store(pte1p, npte1);
3382		restore_interrupts(cspr);
3383	}
3384}
3385#else
3386static void
3387pmap_change_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va,
3388    pt1_entry_t npte1)
3389{
3390
3391	if (pmap == kernel_pmap) {
3392		mtx_lock_spin(&allpmaps_lock);
3393		pmap_update_pte1_kernel(va, npte1);
3394		mtx_unlock_spin(&allpmaps_lock);
3395	} else {
3396		register_t cspr;
3397
3398		/*
3399		 * Use break-before-make approach for changing userland
3400		 * mappings. It's absolutely safe in UP case when interrupts
3401		 * are disabled.
3402		 */
3403		cspr = disable_interrupts(PSR_I | PSR_F);
3404		pte1_clear(pte1p);
3405		pmap_tlb_flush_pte1(pmap, va, npte1);
3406		pte1_store(pte1p, npte1);
3407		restore_interrupts(cspr);
3408	}
3409}
3410#endif
3411
3412#if VM_NRESERVLEVEL > 0
3413/*
3414 *  Tries to promote the NPTE2_IN_PT2, contiguous 4KB page mappings that are
3415 *  within a single page table page (PT2) to a single 1MB page mapping.
3416 *  For promotion to occur, two conditions must be met: (1) the 4KB page
3417 *  mappings must map aligned, contiguous physical memory and (2) the 4KB page
3418 *  mappings must have identical characteristics.
3419 *
3420 *  Managed (PG_MANAGED) mappings within the kernel address space are not
3421 *  promoted.  The reason is that kernel PTE1s are replicated in each pmap but
3422 *  pmap_remove_write(), pmap_clear_modify(), and pmap_clear_reference() only
3423 *  read the PTE1 from the kernel pmap.
3424 */
3425static void
3426pmap_promote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3427{
3428	pt1_entry_t npte1;
3429	pt2_entry_t *fpte2p, fpte2, fpte2_fav;
3430	pt2_entry_t *pte2p, pte2;
3431	vm_offset_t pteva __unused;
3432	vm_page_t m __unused;
3433
3434	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3435	    pmap, va, pte1_load(pte1p), pte1p));
3436
3437	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3438
3439	/*
3440	 * Examine the first PTE2 in the specified PT2. Abort if this PTE2 is
3441	 * either invalid, unused, or does not map the first 4KB physical page
3442	 * within a 1MB page.
3443	 */
3444	fpte2p = pmap_pte2_quick(pmap, pte1_trunc(va));
3445	fpte2 = pte2_load(fpte2p);
3446	if ((fpte2 & ((PTE2_FRAME & PTE1_OFFSET) | PTE2_A | PTE2_V)) !=
3447	    (PTE2_A | PTE2_V)) {
3448		pmap_pte1_p_failures++;
3449		CTR3(KTR_PMAP, "%s: failure(1) for va %#x in pmap %p",
3450		    __func__, va, pmap);
3451		return;
3452	}
3453	if (pte2_is_managed(fpte2) && pmap == kernel_pmap) {
3454		pmap_pte1_p_failures++;
3455		CTR3(KTR_PMAP, "%s: failure(2) for va %#x in pmap %p",
3456		    __func__, va, pmap);
3457		return;
3458	}
3459	if ((fpte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3460		/*
3461		 * When page is not modified, PTE2_RO can be set without
3462		 * a TLB invalidation.
3463		 */
3464		fpte2 |= PTE2_RO;
3465		pte2_store(fpte2p, fpte2);
3466	}
3467
3468	/*
3469	 * Examine each of the other PTE2s in the specified PT2. Abort if this
3470	 * PTE2 maps an unexpected 4KB physical page or does not have identical
3471	 * characteristics to the first PTE2.
3472	 */
3473	fpte2_fav = (fpte2 & (PTE2_FRAME | PTE2_A | PTE2_V));
3474	fpte2_fav += PTE1_SIZE - PTE2_SIZE; /* examine from the end */
3475	for (pte2p = fpte2p + NPTE2_IN_PT2 - 1; pte2p > fpte2p; pte2p--) {
3476		pte2 = pte2_load(pte2p);
3477		if ((pte2 & (PTE2_FRAME | PTE2_A | PTE2_V)) != fpte2_fav) {
3478			pmap_pte1_p_failures++;
3479			CTR3(KTR_PMAP, "%s: failure(3) for va %#x in pmap %p",
3480			    __func__, va, pmap);
3481			return;
3482		}
3483		if ((pte2 & (PTE2_NM | PTE2_RO)) == PTE2_NM) {
3484			/*
3485			 * When page is not modified, PTE2_RO can be set
3486			 * without a TLB invalidation. See note above.
3487			 */
3488			pte2 |= PTE2_RO;
3489			pte2_store(pte2p, pte2);
3490			pteva = pte1_trunc(va) | (pte2 & PTE1_OFFSET &
3491			    PTE2_FRAME);
3492			CTR3(KTR_PMAP, "%s: protect for va %#x in pmap %p",
3493			    __func__, pteva, pmap);
3494		}
3495		if ((pte2 & PTE2_PROMOTE) != (fpte2 & PTE2_PROMOTE)) {
3496			pmap_pte1_p_failures++;
3497			CTR3(KTR_PMAP, "%s: failure(4) for va %#x in pmap %p",
3498			    __func__, va, pmap);
3499			return;
3500		}
3501
3502		fpte2_fav -= PTE2_SIZE;
3503	}
3504	/*
3505	 * The page table page in its current state will stay in PT2TAB
3506	 * until the PTE1 mapping the section is demoted by pmap_demote_pte1()
3507	 * or destroyed by pmap_remove_pte1().
3508	 *
3509	 * Note that L2 page table size is not equal to PAGE_SIZE.
3510	 */
3511	m = PHYS_TO_VM_PAGE(trunc_page(pte1_link_pa(pte1_load(pte1p))));
3512	KASSERT(m >= vm_page_array && m < &vm_page_array[vm_page_array_size],
3513	    ("%s: PT2 page is out of range", __func__));
3514	KASSERT(m->pindex == (pte1_index(va) & ~PT2PG_MASK),
3515	    ("%s: PT2 page's pindex is wrong", __func__));
3516
3517	/*
3518	 * Get pte1 from pte2 format.
3519	 */
3520	npte1 = (fpte2 & PTE1_FRAME) | ATTR_TO_L1(fpte2) | PTE1_V;
3521
3522	/*
3523	 * Promote the pv entries.
3524	 */
3525	if (pte2_is_managed(fpte2))
3526		pmap_pv_promote_pte1(pmap, va, pte1_pa(npte1));
3527
3528	/*
3529	 * Promote the mappings.
3530	 */
3531	pmap_change_pte1(pmap, pte1p, va, npte1);
3532
3533	pmap_pte1_promotions++;
3534	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3535	    __func__, va, pmap);
3536
3537	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3538	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3539}
3540#endif /* VM_NRESERVLEVEL > 0 */
3541
3542/*
3543 *  Zero L2 page table page.
3544 */
3545static __inline void
3546pmap_clear_pt2(pt2_entry_t *fpte2p)
3547{
3548	pt2_entry_t *pte2p;
3549
3550	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++)
3551		pte2_clear(pte2p);
3552
3553}
3554
3555/*
3556 *  Removes a 1MB page mapping from the kernel pmap.
3557 */
3558static void
3559pmap_remove_kernel_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3560{
3561	vm_page_t m;
3562	uint32_t pte1_idx;
3563	pt2_entry_t *fpte2p;
3564	vm_paddr_t pt2_pa;
3565
3566	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3567	m = pmap_pt2_page(pmap, va);
3568	if (m == NULL)
3569		/*
3570		 * QQQ: Is this function called only on promoted pte1?
3571		 *      We certainly do section mappings directly
3572		 *      (without promotion) in kernel !!!
3573		 */
3574		panic("%s: missing pt2 page", __func__);
3575
3576	pte1_idx = pte1_index(va);
3577
3578	/*
3579	 * Initialize the L2 page table.
3580	 */
3581	fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3582	pmap_clear_pt2(fpte2p);
3583
3584	/*
3585	 * Remove the mapping.
3586	 */
3587	pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(m), pte1_idx);
3588	pmap_kenter_pte1(va, PTE1_LINK(pt2_pa));
3589
3590	/*
3591	 * QQQ: We do not need to invalidate PT2MAP mapping
3592	 * as we did not change it. I.e. the L2 page table page
3593	 * was and still is mapped the same way.
3594	 */
3595}
3596
3597/*
3598 *  Do the things to unmap a section in a process
3599 */
3600static void
3601pmap_remove_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
3602    struct spglist *free)
3603{
3604	pt1_entry_t opte1;
3605	struct md_page *pvh;
3606	vm_offset_t eva, va;
3607	vm_page_t m;
3608
3609	PDEBUG(6, printf("%s(%p): va %#x pte1 %#x at %p\n", __func__, pmap, sva,
3610	    pte1_load(pte1p), pte1p));
3611
3612	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3613	KASSERT((sva & PTE1_OFFSET) == 0,
3614	    ("%s: sva is not 1mpage aligned", __func__));
3615
3616	/*
3617	 * Clear and invalidate the mapping. It should occupy one and only TLB
3618	 * entry. So, pmap_tlb_flush() called with aligned address should be
3619	 * sufficient.
3620	 */
3621	opte1 = pte1_load_clear(pte1p);
3622	pmap_tlb_flush(pmap, sva);
3623
3624	if (pte1_is_wired(opte1))
3625		pmap->pm_stats.wired_count -= PTE1_SIZE / PAGE_SIZE;
3626	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
3627	if (pte1_is_managed(opte1)) {
3628		pvh = pa_to_pvh(pte1_pa(opte1));
3629		pmap_pvh_free(pvh, pmap, sva);
3630		eva = sva + PTE1_SIZE;
3631		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
3632		    va < eva; va += PAGE_SIZE, m++) {
3633			if (pte1_is_dirty(opte1))
3634				vm_page_dirty(m);
3635			if (opte1 & PTE1_A)
3636				vm_page_aflag_set(m, PGA_REFERENCED);
3637			if (TAILQ_EMPTY(&m->md.pv_list) &&
3638			    TAILQ_EMPTY(&pvh->pv_list))
3639				vm_page_aflag_clear(m, PGA_WRITEABLE);
3640		}
3641	}
3642	if (pmap == kernel_pmap) {
3643		/*
3644		 * L2 page table(s) can't be removed from kernel map as
3645		 * kernel counts on it (stuff around pmap_growkernel()).
3646		 */
3647		 pmap_remove_kernel_pte1(pmap, pte1p, sva);
3648	} else {
3649		/*
3650		 * Get associated L2 page table page.
3651		 * It's possible that the page was never allocated.
3652		 */
3653		m = pmap_pt2_page(pmap, sva);
3654		if (m != NULL)
3655			pmap_unwire_pt2_all(pmap, sva, m, free);
3656	}
3657}
3658
3659/*
3660 *  Fills L2 page table page with mappings to consecutive physical pages.
3661 */
3662static __inline void
3663pmap_fill_pt2(pt2_entry_t *fpte2p, pt2_entry_t npte2)
3664{
3665	pt2_entry_t *pte2p;
3666
3667	for (pte2p = fpte2p; pte2p < fpte2p + NPTE2_IN_PT2; pte2p++) {
3668		pte2_store(pte2p, npte2);
3669		npte2 += PTE2_SIZE;
3670	}
3671}
3672
3673/*
3674 *  Tries to demote a 1MB page mapping. If demotion fails, the
3675 *  1MB page mapping is invalidated.
3676 */
3677static boolean_t
3678pmap_demote_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t va)
3679{
3680	pt1_entry_t opte1, npte1;
3681	pt2_entry_t *fpte2p, npte2;
3682	vm_paddr_t pt2pg_pa, pt2_pa;
3683	vm_page_t m;
3684	struct spglist free;
3685	uint32_t pte1_idx, isnew = 0;
3686
3687	PDEBUG(6, printf("%s(%p): try for va %#x pte1 %#x at %p\n", __func__,
3688	    pmap, va, pte1_load(pte1p), pte1p));
3689
3690	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
3691
3692	opte1 = pte1_load(pte1p);
3693	KASSERT(pte1_is_section(opte1), ("%s: opte1 not a section", __func__));
3694
3695	if ((opte1 & PTE1_A) == 0 || (m = pmap_pt2_page(pmap, va)) == NULL) {
3696		KASSERT(!pte1_is_wired(opte1),
3697		    ("%s: PT2 page for a wired mapping is missing", __func__));
3698
3699		/*
3700		 * Invalidate the 1MB page mapping and return
3701		 * "failure" if the mapping was never accessed or the
3702		 * allocation of the new page table page fails.
3703		 */
3704		if ((opte1 & PTE1_A) == 0 || (m = vm_page_alloc(NULL,
3705		    pte1_index(va) & ~PT2PG_MASK, VM_ALLOC_NOOBJ |
3706		    VM_ALLOC_NORMAL | VM_ALLOC_WIRED)) == NULL) {
3707			SLIST_INIT(&free);
3708			pmap_remove_pte1(pmap, pte1p, pte1_trunc(va), &free);
3709			pmap_free_zero_pages(&free);
3710			CTR3(KTR_PMAP, "%s: failure for va %#x in pmap %p",
3711			    __func__, va, pmap);
3712			return (FALSE);
3713		}
3714		if (va < VM_MAXUSER_ADDRESS)
3715			pmap->pm_stats.resident_count++;
3716
3717		isnew = 1;
3718
3719		/*
3720		 * We init all L2 page tables in the page even if
3721		 * we are going to change everything for one L2 page
3722		 * table in a while.
3723		 */
3724		pt2pg_pa = pmap_pt2pg_init(pmap, va, m);
3725	} else {
3726		if (va < VM_MAXUSER_ADDRESS) {
3727			if (pt2_is_empty(m, va))
3728				isnew = 1; /* Demoting section w/o promotion. */
3729#ifdef INVARIANTS
3730			else
3731				KASSERT(pt2_is_full(m, va), ("%s: bad PT2 wire"
3732				    " count %u", __func__,
3733				    pt2_wirecount_get(m, pte1_index(va))));
3734#endif
3735		}
3736	}
3737
3738	pt2pg_pa = VM_PAGE_TO_PHYS(m);
3739	pte1_idx = pte1_index(va);
3740	/*
3741	 * If the pmap is current, then the PT2MAP can provide access to
3742	 * the page table page (promoted L2 page tables are not unmapped).
3743	 * Otherwise, temporarily map the L2 page table page (m) into
3744	 * the kernel's address space at either PADDR1 or PADDR2.
3745	 *
3746	 * Note that L2 page table size is not equal to PAGE_SIZE.
3747	 */
3748	if (pmap_is_current(pmap))
3749		fpte2p = page_pt2(pt2map_pt2pg(va), pte1_idx);
3750	else if (curthread->td_pinned > 0 && rw_wowned(&pvh_global_lock)) {
3751		if (pte2_pa(pte2_load(PMAP1)) != pt2pg_pa) {
3752			pte2_store(PMAP1, PTE2_KPT(pt2pg_pa));
3753#ifdef SMP
3754			PMAP1cpu = PCPU_GET(cpuid);
3755#endif
3756			tlb_flush_local((vm_offset_t)PADDR1);
3757			PMAP1changed++;
3758		} else
3759#ifdef SMP
3760		if (PMAP1cpu != PCPU_GET(cpuid)) {
3761			PMAP1cpu = PCPU_GET(cpuid);
3762			tlb_flush_local((vm_offset_t)PADDR1);
3763			PMAP1changedcpu++;
3764		} else
3765#endif
3766			PMAP1unchanged++;
3767		fpte2p = page_pt2((vm_offset_t)PADDR1, pte1_idx);
3768	} else {
3769		mtx_lock(&PMAP2mutex);
3770		if (pte2_pa(pte2_load(PMAP2)) != pt2pg_pa) {
3771			pte2_store(PMAP2, PTE2_KPT(pt2pg_pa));
3772			tlb_flush((vm_offset_t)PADDR2);
3773		}
3774		fpte2p = page_pt2((vm_offset_t)PADDR2, pte1_idx);
3775	}
3776	pt2_pa = page_pt2pa(pt2pg_pa, pte1_idx);
3777	npte1 = PTE1_LINK(pt2_pa);
3778
3779	KASSERT((opte1 & PTE1_A) != 0,
3780	    ("%s: opte1 is missing PTE1_A", __func__));
3781	KASSERT((opte1 & (PTE1_NM | PTE1_RO)) != PTE1_NM,
3782	    ("%s: opte1 has PTE1_NM", __func__));
3783
3784	/*
3785	 *  Get pte2 from pte1 format.
3786	*/
3787	npte2 = pte1_pa(opte1) | ATTR_TO_L2(opte1) | PTE2_V;
3788
3789	/*
3790	 * If the L2 page table page is new, initialize it. If the mapping
3791	 * has changed attributes, update the page table entries.
3792	 */
3793	if (isnew != 0) {
3794		pt2_wirecount_set(m, pte1_idx, NPTE2_IN_PT2);
3795		pmap_fill_pt2(fpte2p, npte2);
3796	} else if ((pte2_load(fpte2p) & PTE2_PROMOTE) !=
3797		    (npte2 & PTE2_PROMOTE))
3798		pmap_fill_pt2(fpte2p, npte2);
3799
3800	KASSERT(pte2_pa(pte2_load(fpte2p)) == pte2_pa(npte2),
3801	    ("%s: fpte2p and npte2 map different physical addresses",
3802	    __func__));
3803
3804	if (fpte2p == PADDR2)
3805		mtx_unlock(&PMAP2mutex);
3806
3807	/*
3808	 * Demote the mapping. This pmap is locked. The old PTE1 has
3809	 * PTE1_A set. If the old PTE1 has not PTE1_RO set, it also
3810	 * has not PTE1_NM set. Thus, there is no danger of a race with
3811	 * another processor changing the setting of PTE1_A and/or PTE1_NM
3812	 * between the read above and the store below.
3813	 */
3814	pmap_change_pte1(pmap, pte1p, va, npte1);
3815
3816	/*
3817	 * Demote the pv entry. This depends on the earlier demotion
3818	 * of the mapping. Specifically, the (re)creation of a per-
3819	 * page pv entry might trigger the execution of pmap_pv_reclaim(),
3820	 * which might reclaim a newly (re)created per-page pv entry
3821	 * and destroy the associated mapping. In order to destroy
3822	 * the mapping, the PTE1 must have already changed from mapping
3823	 * the 1mpage to referencing the page table page.
3824	 */
3825	if (pte1_is_managed(opte1))
3826		pmap_pv_demote_pte1(pmap, va, pte1_pa(opte1));
3827
3828	pmap_pte1_demotions++;
3829	CTR3(KTR_PMAP, "%s: success for va %#x in pmap %p",
3830	    __func__, va, pmap);
3831
3832	PDEBUG(6, printf("%s(%p): success for va %#x pte1 %#x(%#x) at %p\n",
3833	    __func__, pmap, va, npte1, pte1_load(pte1p), pte1p));
3834	return (TRUE);
3835}
3836
3837/*
3838 *	Insert the given physical page (p) at
3839 *	the specified virtual address (v) in the
3840 *	target physical map with the protection requested.
3841 *
3842 *	If specified, the page will be wired down, meaning
3843 *	that the related pte can not be reclaimed.
3844 *
3845 *	NB:  This is the only routine which MAY NOT lazy-evaluate
3846 *	or lose information.  That is, this routine must actually
3847 *	insert this page into the given map NOW.
3848 */
3849int
3850pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
3851    u_int flags, int8_t psind)
3852{
3853	pt1_entry_t *pte1p;
3854	pt2_entry_t *pte2p;
3855	pt2_entry_t npte2, opte2;
3856	pv_entry_t pv;
3857	vm_paddr_t opa, pa;
3858	vm_page_t mpte2, om;
3859	boolean_t wired;
3860
3861	va = trunc_page(va);
3862	mpte2 = NULL;
3863	wired = (flags & PMAP_ENTER_WIRED) != 0;
3864
3865	KASSERT(va <= vm_max_kernel_address, ("%s: toobig", __func__));
3866	KASSERT(va < UPT2V_MIN_ADDRESS || va >= UPT2V_MAX_ADDRESS,
3867	    ("%s: invalid to pmap_enter page table pages (va: 0x%x)", __func__,
3868	    va));
3869	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
3870		VM_OBJECT_ASSERT_LOCKED(m->object);
3871
3872	rw_wlock(&pvh_global_lock);
3873	PMAP_LOCK(pmap);
3874	sched_pin();
3875
3876	/*
3877	 * In the case that a page table page is not
3878	 * resident, we are creating it here.
3879	 */
3880	if (va < VM_MAXUSER_ADDRESS) {
3881		mpte2 = pmap_allocpte2(pmap, va, flags);
3882		if (mpte2 == NULL) {
3883			KASSERT((flags & PMAP_ENTER_NOSLEEP) != 0,
3884			    ("pmap_allocpte2 failed with sleep allowed"));
3885			sched_unpin();
3886			rw_wunlock(&pvh_global_lock);
3887			PMAP_UNLOCK(pmap);
3888			return (KERN_RESOURCE_SHORTAGE);
3889		}
3890	}
3891	pte1p = pmap_pte1(pmap, va);
3892	if (pte1_is_section(pte1_load(pte1p)))
3893		panic("%s: attempted on 1MB page", __func__);
3894	pte2p = pmap_pte2_quick(pmap, va);
3895	if (pte2p == NULL)
3896		panic("%s: invalid L1 page table entry va=%#x", __func__, va);
3897
3898	om = NULL;
3899	pa = VM_PAGE_TO_PHYS(m);
3900	opte2 = pte2_load(pte2p);
3901	opa = pte2_pa(opte2);
3902	/*
3903	 * Mapping has not changed, must be protection or wiring change.
3904	 */
3905	if (pte2_is_valid(opte2) && (opa == pa)) {
3906		/*
3907		 * Wiring change, just update stats. We don't worry about
3908		 * wiring PT2 pages as they remain resident as long as there
3909		 * are valid mappings in them. Hence, if a user page is wired,
3910		 * the PT2 page will be also.
3911		 */
3912		if (wired && !pte2_is_wired(opte2))
3913			pmap->pm_stats.wired_count++;
3914		else if (!wired && pte2_is_wired(opte2))
3915			pmap->pm_stats.wired_count--;
3916
3917		/*
3918		 * Remove extra pte2 reference
3919		 */
3920		if (mpte2)
3921			pt2_wirecount_dec(mpte2, pte1_index(va));
3922		if (pte2_is_managed(opte2))
3923			om = m;
3924		goto validate;
3925	}
3926
3927	/*
3928	 * QQQ: We think that changing physical address on writeable mapping
3929	 *      is not safe. Well, maybe on kernel address space with correct
3930	 *      locking, it can make a sense. However, we have no idea why
3931	 *      anyone should do that on user address space. Are we wrong?
3932	 */
3933	KASSERT((opa == 0) || (opa == pa) ||
3934	    !pte2_is_valid(opte2) || ((opte2 & PTE2_RO) != 0),
3935	    ("%s: pmap %p va %#x(%#x) opa %#x pa %#x - gotcha %#x %#x!",
3936	    __func__, pmap, va, opte2, opa, pa, flags, prot));
3937
3938	pv = NULL;
3939
3940	/*
3941	 * Mapping has changed, invalidate old range and fall through to
3942	 * handle validating new mapping.
3943	 */
3944	if (opa) {
3945		if (pte2_is_wired(opte2))
3946			pmap->pm_stats.wired_count--;
3947		if (pte2_is_managed(opte2)) {
3948			om = PHYS_TO_VM_PAGE(opa);
3949			pv = pmap_pvh_remove(&om->md, pmap, va);
3950		}
3951		/*
3952		 * Remove extra pte2 reference
3953		 */
3954		if (mpte2 != NULL)
3955			pt2_wirecount_dec(mpte2, va >> PTE1_SHIFT);
3956	} else
3957		pmap->pm_stats.resident_count++;
3958
3959	/*
3960	 * Enter on the PV list if part of our managed memory.
3961	 */
3962	if ((m->oflags & VPO_UNMANAGED) == 0) {
3963		KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva,
3964		    ("%s: managed mapping within the clean submap", __func__));
3965		if (pv == NULL)
3966			pv = get_pv_entry(pmap, FALSE);
3967		pv->pv_va = va;
3968		TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
3969	} else if (pv != NULL)
3970		free_pv_entry(pmap, pv);
3971
3972	/*
3973	 * Increment counters
3974	 */
3975	if (wired)
3976		pmap->pm_stats.wired_count++;
3977
3978validate:
3979	/*
3980	 * Now validate mapping with desired protection/wiring.
3981	 */
3982	npte2 = PTE2(pa, PTE2_NM, vm_page_pte2_attr(m));
3983	if (prot & VM_PROT_WRITE) {
3984		if (pte2_is_managed(npte2))
3985			vm_page_aflag_set(m, PGA_WRITEABLE);
3986	}
3987	else
3988		npte2 |= PTE2_RO;
3989	if ((prot & VM_PROT_EXECUTE) == 0)
3990		npte2 |= PTE2_NX;
3991	if (wired)
3992		npte2 |= PTE2_W;
3993	if (va < VM_MAXUSER_ADDRESS)
3994		npte2 |= PTE2_U;
3995	if (pmap != kernel_pmap)
3996		npte2 |= PTE2_NG;
3997
3998	/*
3999	 * If the mapping or permission bits are different, we need
4000	 * to update the pte2.
4001	 *
4002	 * QQQ: Think again and again what to do
4003	 *      if the mapping is going to be changed!
4004	 */
4005	if ((opte2 & ~(PTE2_NM | PTE2_A)) != (npte2 & ~(PTE2_NM | PTE2_A))) {
4006		/*
4007		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4008		 * is set. Do it now, before the mapping is stored and made
4009		 * valid for hardware table walk. If done later, there is a race
4010		 * for other threads of current process in lazy loading case.
4011		 * Don't do it for kernel memory which is mapped with exec
4012		 * permission even if the memory isn't going to hold executable
4013		 * code. The only time when icache sync is needed is after
4014		 * kernel module is loaded and the relocation info is processed.
4015		 * And it's done in elf_cpu_load_file().
4016		 *
4017		 * QQQ: (1) Does it exist any better way where
4018		 *          or how to sync icache?
4019		 *      (2) Now, we do it on a page basis.
4020		 */
4021		if ((prot & VM_PROT_EXECUTE) && pmap != kernel_pmap &&
4022		    m->md.pat_mode == VM_MEMATTR_WB_WA &&
4023		    (opa != pa || (opte2 & PTE2_NX)))
4024			cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4025
4026		npte2 |= PTE2_A;
4027		if (flags & VM_PROT_WRITE)
4028			npte2 &= ~PTE2_NM;
4029		if (opte2 & PTE2_V) {
4030			/* Change mapping with break-before-make approach. */
4031			opte2 = pte2_load_clear(pte2p);
4032			pmap_tlb_flush(pmap, va);
4033			pte2_store(pte2p, npte2);
4034			if (opte2 & PTE2_A) {
4035				if (pte2_is_managed(opte2))
4036					vm_page_aflag_set(om, PGA_REFERENCED);
4037			}
4038			if (pte2_is_dirty(opte2)) {
4039				if (pte2_is_managed(opte2))
4040					vm_page_dirty(om);
4041			}
4042			if (pte2_is_managed(opte2) &&
4043			    TAILQ_EMPTY(&om->md.pv_list) &&
4044			    ((om->flags & PG_FICTITIOUS) != 0 ||
4045			    TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
4046				vm_page_aflag_clear(om, PGA_WRITEABLE);
4047		} else
4048			pte2_store(pte2p, npte2);
4049	}
4050#if 0
4051	else {
4052		/*
4053		 * QQQ: In time when both access and not mofified bits are
4054		 *      emulated by software, this should not happen. Some
4055		 *      analysis is need, if this really happen. Missing
4056		 *      tlb flush somewhere could be the reason.
4057		 */
4058		panic("%s: pmap %p va %#x opte2 %x npte2 %x !!", __func__, pmap,
4059		    va, opte2, npte2);
4060	}
4061#endif
4062
4063#if VM_NRESERVLEVEL > 0
4064	/*
4065	 * If both the L2 page table page and the reservation are fully
4066	 * populated, then attempt promotion.
4067	 */
4068	if ((mpte2 == NULL || pt2_is_full(mpte2, va)) &&
4069	    sp_enabled && (m->flags & PG_FICTITIOUS) == 0 &&
4070	    vm_reserv_level_iffullpop(m) == 0)
4071		pmap_promote_pte1(pmap, pte1p, va);
4072#endif
4073	sched_unpin();
4074	rw_wunlock(&pvh_global_lock);
4075	PMAP_UNLOCK(pmap);
4076	return (KERN_SUCCESS);
4077}
4078
4079/*
4080 *  Do the things to unmap a page in a process.
4081 */
4082static int
4083pmap_remove_pte2(pmap_t pmap, pt2_entry_t *pte2p, vm_offset_t va,
4084    struct spglist *free)
4085{
4086	pt2_entry_t opte2;
4087	vm_page_t m;
4088
4089	rw_assert(&pvh_global_lock, RA_WLOCKED);
4090	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4091
4092	/* Clear and invalidate the mapping. */
4093	opte2 = pte2_load_clear(pte2p);
4094	pmap_tlb_flush(pmap, va);
4095
4096	KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %#x not link pte2 %#x",
4097	    __func__, pmap, va, opte2));
4098
4099	if (opte2 & PTE2_W)
4100		pmap->pm_stats.wired_count -= 1;
4101	pmap->pm_stats.resident_count -= 1;
4102	if (pte2_is_managed(opte2)) {
4103		m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4104		if (pte2_is_dirty(opte2))
4105			vm_page_dirty(m);
4106		if (opte2 & PTE2_A)
4107			vm_page_aflag_set(m, PGA_REFERENCED);
4108		pmap_remove_entry(pmap, m, va);
4109	}
4110	return (pmap_unuse_pt2(pmap, va, free));
4111}
4112
4113/*
4114 *  Remove a single page from a process address space.
4115 */
4116static void
4117pmap_remove_page(pmap_t pmap, vm_offset_t va, struct spglist *free)
4118{
4119	pt2_entry_t *pte2p;
4120
4121	rw_assert(&pvh_global_lock, RA_WLOCKED);
4122	KASSERT(curthread->td_pinned > 0,
4123	    ("%s: curthread not pinned", __func__));
4124	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4125	if ((pte2p = pmap_pte2_quick(pmap, va)) == NULL ||
4126	    !pte2_is_valid(pte2_load(pte2p)))
4127		return;
4128	pmap_remove_pte2(pmap, pte2p, va, free);
4129}
4130
4131/*
4132 *  Remove the given range of addresses from the specified map.
4133 *
4134 *  It is assumed that the start and end are properly
4135 *  rounded to the page size.
4136 */
4137void
4138pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
4139{
4140	vm_offset_t nextva;
4141	pt1_entry_t *pte1p, pte1;
4142	pt2_entry_t *pte2p, pte2;
4143	struct spglist free;
4144
4145	/*
4146	 * Perform an unsynchronized read. This is, however, safe.
4147	 */
4148	if (pmap->pm_stats.resident_count == 0)
4149		return;
4150
4151	SLIST_INIT(&free);
4152
4153	rw_wlock(&pvh_global_lock);
4154	sched_pin();
4155	PMAP_LOCK(pmap);
4156
4157	/*
4158	 * Special handling of removing one page. A very common
4159	 * operation and easy to short circuit some code.
4160	 */
4161	if (sva + PAGE_SIZE == eva) {
4162		pte1 = pte1_load(pmap_pte1(pmap, sva));
4163		if (pte1_is_link(pte1)) {
4164			pmap_remove_page(pmap, sva, &free);
4165			goto out;
4166		}
4167	}
4168
4169	for (; sva < eva; sva = nextva) {
4170		/*
4171		 * Calculate address for next L2 page table.
4172		 */
4173		nextva = pte1_trunc(sva + PTE1_SIZE);
4174		if (nextva < sva)
4175			nextva = eva;
4176		if (pmap->pm_stats.resident_count == 0)
4177			break;
4178
4179		pte1p = pmap_pte1(pmap, sva);
4180		pte1 = pte1_load(pte1p);
4181
4182		/*
4183		 * Weed out invalid mappings. Note: we assume that the L1 page
4184		 * table is always allocated, and in kernel virtual.
4185		 */
4186		if (pte1 == 0)
4187			continue;
4188
4189		if (pte1_is_section(pte1)) {
4190			/*
4191			 * Are we removing the entire large page?  If not,
4192			 * demote the mapping and fall through.
4193			 */
4194			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4195				pmap_remove_pte1(pmap, pte1p, sva, &free);
4196				continue;
4197			} else if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4198				/* The large page mapping was destroyed. */
4199				continue;
4200			}
4201#ifdef INVARIANTS
4202			else {
4203				/* Update pte1 after demotion. */
4204				pte1 = pte1_load(pte1p);
4205			}
4206#endif
4207		}
4208
4209		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4210		    " is not link", __func__, pmap, sva, pte1, pte1p));
4211
4212		/*
4213		 * Limit our scan to either the end of the va represented
4214		 * by the current L2 page table page, or to the end of the
4215		 * range being removed.
4216		 */
4217		if (nextva > eva)
4218			nextva = eva;
4219
4220		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva;
4221		    pte2p++, sva += PAGE_SIZE) {
4222			pte2 = pte2_load(pte2p);
4223			if (!pte2_is_valid(pte2))
4224				continue;
4225			if (pmap_remove_pte2(pmap, pte2p, sva, &free))
4226				break;
4227		}
4228	}
4229out:
4230	sched_unpin();
4231	rw_wunlock(&pvh_global_lock);
4232	PMAP_UNLOCK(pmap);
4233	pmap_free_zero_pages(&free);
4234}
4235
4236/*
4237 *	Routine:	pmap_remove_all
4238 *	Function:
4239 *		Removes this physical page from
4240 *		all physical maps in which it resides.
4241 *		Reflects back modify bits to the pager.
4242 *
4243 *	Notes:
4244 *		Original versions of this routine were very
4245 *		inefficient because they iteratively called
4246 *		pmap_remove (slow...)
4247 */
4248
4249void
4250pmap_remove_all(vm_page_t m)
4251{
4252	struct md_page *pvh;
4253	pv_entry_t pv;
4254	pmap_t pmap;
4255	pt2_entry_t *pte2p, opte2;
4256	pt1_entry_t *pte1p;
4257	vm_offset_t va;
4258	struct spglist free;
4259
4260	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
4261	    ("%s: page %p is not managed", __func__, m));
4262	SLIST_INIT(&free);
4263	rw_wlock(&pvh_global_lock);
4264	sched_pin();
4265	if ((m->flags & PG_FICTITIOUS) != 0)
4266		goto small_mappings;
4267	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
4268	while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
4269		va = pv->pv_va;
4270		pmap = PV_PMAP(pv);
4271		PMAP_LOCK(pmap);
4272		pte1p = pmap_pte1(pmap, va);
4273		(void)pmap_demote_pte1(pmap, pte1p, va);
4274		PMAP_UNLOCK(pmap);
4275	}
4276small_mappings:
4277	while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
4278		pmap = PV_PMAP(pv);
4279		PMAP_LOCK(pmap);
4280		pmap->pm_stats.resident_count--;
4281		pte1p = pmap_pte1(pmap, pv->pv_va);
4282		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found "
4283		    "a 1mpage in page %p's pv list", __func__, m));
4284		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
4285		opte2 = pte2_load_clear(pte2p);
4286		pmap_tlb_flush(pmap, pv->pv_va);
4287		KASSERT(pte2_is_valid(opte2), ("%s: pmap %p va %x zero pte2",
4288		    __func__, pmap, pv->pv_va));
4289		if (pte2_is_wired(opte2))
4290			pmap->pm_stats.wired_count--;
4291		if (opte2 & PTE2_A)
4292			vm_page_aflag_set(m, PGA_REFERENCED);
4293
4294		/*
4295		 * Update the vm_page_t clean and reference bits.
4296		 */
4297		if (pte2_is_dirty(opte2))
4298			vm_page_dirty(m);
4299		pmap_unuse_pt2(pmap, pv->pv_va, &free);
4300		TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4301		free_pv_entry(pmap, pv);
4302		PMAP_UNLOCK(pmap);
4303	}
4304	vm_page_aflag_clear(m, PGA_WRITEABLE);
4305	sched_unpin();
4306	rw_wunlock(&pvh_global_lock);
4307	pmap_free_zero_pages(&free);
4308}
4309
4310/*
4311 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4312 *  good coding style, a.k.a. 80 character line width limit hell.
4313 */
4314static __inline void
4315pmap_remove_pte1_quick(pmap_t pmap, pt1_entry_t pte1, pv_entry_t pv,
4316    struct spglist *free)
4317{
4318	vm_paddr_t pa;
4319	vm_page_t m, mt, mpt2pg;
4320	struct md_page *pvh;
4321
4322	pa = pte1_pa(pte1);
4323	m = PHYS_TO_VM_PAGE(pa);
4324
4325	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4326	    __func__, m, m->phys_addr, pa));
4327	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4328	    m < &vm_page_array[vm_page_array_size],
4329	    ("%s: bad pte1 %#x", __func__, pte1));
4330
4331	if (pte1_is_dirty(pte1)) {
4332		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4333			vm_page_dirty(mt);
4334	}
4335
4336	pmap->pm_stats.resident_count -= PTE1_SIZE / PAGE_SIZE;
4337	pvh = pa_to_pvh(pa);
4338	TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
4339	if (TAILQ_EMPTY(&pvh->pv_list)) {
4340		for (mt = m; mt < &m[PTE1_SIZE / PAGE_SIZE]; mt++)
4341			if (TAILQ_EMPTY(&mt->md.pv_list))
4342				vm_page_aflag_clear(mt, PGA_WRITEABLE);
4343	}
4344	mpt2pg = pmap_pt2_page(pmap, pv->pv_va);
4345	if (mpt2pg != NULL)
4346		pmap_unwire_pt2_all(pmap, pv->pv_va, mpt2pg, free);
4347}
4348
4349/*
4350 *  Just subroutine for pmap_remove_pages() to reasonably satisfy
4351 *  good coding style, a.k.a. 80 character line width limit hell.
4352 */
4353static __inline void
4354pmap_remove_pte2_quick(pmap_t pmap, pt2_entry_t pte2, pv_entry_t pv,
4355    struct spglist *free)
4356{
4357	vm_paddr_t pa;
4358	vm_page_t m;
4359	struct md_page *pvh;
4360
4361	pa = pte2_pa(pte2);
4362	m = PHYS_TO_VM_PAGE(pa);
4363
4364	KASSERT(m->phys_addr == pa, ("%s: vm_page_t %p addr mismatch %#x %#x",
4365	    __func__, m, m->phys_addr, pa));
4366	KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
4367	    m < &vm_page_array[vm_page_array_size],
4368	    ("%s: bad pte2 %#x", __func__, pte2));
4369
4370	if (pte2_is_dirty(pte2))
4371		vm_page_dirty(m);
4372
4373	pmap->pm_stats.resident_count--;
4374	TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
4375	if (TAILQ_EMPTY(&m->md.pv_list) && (m->flags & PG_FICTITIOUS) == 0) {
4376		pvh = pa_to_pvh(pa);
4377		if (TAILQ_EMPTY(&pvh->pv_list))
4378			vm_page_aflag_clear(m, PGA_WRITEABLE);
4379	}
4380	pmap_unuse_pt2(pmap, pv->pv_va, free);
4381}
4382
4383/*
4384 *  Remove all pages from specified address space this aids process
4385 *  exit speeds. Also, this code is special cased for current process
4386 *  only, but can have the more generic (and slightly slower) mode enabled.
4387 *  This is much faster than pmap_remove in the case of running down
4388 *  an entire address space.
4389 */
4390void
4391pmap_remove_pages(pmap_t pmap)
4392{
4393	pt1_entry_t *pte1p, pte1;
4394	pt2_entry_t *pte2p, pte2;
4395	pv_entry_t pv;
4396	struct pv_chunk *pc, *npc;
4397	struct spglist free;
4398	int field, idx;
4399	int32_t bit;
4400	uint32_t inuse, bitmask;
4401	boolean_t allfree;
4402
4403	/*
4404	 * Assert that the given pmap is only active on the current
4405	 * CPU.  Unfortunately, we cannot block another CPU from
4406	 * activating the pmap while this function is executing.
4407	 */
4408	KASSERT(pmap == vmspace_pmap(curthread->td_proc->p_vmspace),
4409	    ("%s: non-current pmap %p", __func__, pmap));
4410#if defined(SMP) && defined(INVARIANTS)
4411	{
4412		cpuset_t other_cpus;
4413
4414		sched_pin();
4415		other_cpus = pmap->pm_active;
4416		CPU_CLR(PCPU_GET(cpuid), &other_cpus);
4417		sched_unpin();
4418		KASSERT(CPU_EMPTY(&other_cpus),
4419		    ("%s: pmap %p active on other cpus", __func__, pmap));
4420	}
4421#endif
4422	SLIST_INIT(&free);
4423	rw_wlock(&pvh_global_lock);
4424	PMAP_LOCK(pmap);
4425	sched_pin();
4426	TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
4427		KASSERT(pc->pc_pmap == pmap, ("%s: wrong pmap %p %p",
4428		    __func__, pmap, pc->pc_pmap));
4429		allfree = TRUE;
4430		for (field = 0; field < _NPCM; field++) {
4431			inuse = (~(pc->pc_map[field])) & pc_freemask[field];
4432			while (inuse != 0) {
4433				bit = ffs(inuse) - 1;
4434				bitmask = 1UL << bit;
4435				idx = field * 32 + bit;
4436				pv = &pc->pc_pventry[idx];
4437				inuse &= ~bitmask;
4438
4439				/*
4440				 * Note that we cannot remove wired pages
4441				 * from a process' mapping at this time
4442				 */
4443				pte1p = pmap_pte1(pmap, pv->pv_va);
4444				pte1 = pte1_load(pte1p);
4445				if (pte1_is_section(pte1)) {
4446					if (pte1_is_wired(pte1))  {
4447						allfree = FALSE;
4448						continue;
4449					}
4450					pte1_clear(pte1p);
4451					pmap_remove_pte1_quick(pmap, pte1, pv,
4452					    &free);
4453				}
4454				else if (pte1_is_link(pte1)) {
4455					pte2p = pt2map_entry(pv->pv_va);
4456					pte2 = pte2_load(pte2p);
4457
4458					if (!pte2_is_valid(pte2)) {
4459						printf("%s: pmap %p va %#x "
4460						    "pte2 %#x\n", __func__,
4461						    pmap, pv->pv_va, pte2);
4462						panic("bad pte2");
4463					}
4464
4465					if (pte2_is_wired(pte2))   {
4466						allfree = FALSE;
4467						continue;
4468					}
4469					pte2_clear(pte2p);
4470					pmap_remove_pte2_quick(pmap, pte2, pv,
4471					    &free);
4472				} else {
4473					printf("%s: pmap %p va %#x pte1 %#x\n",
4474					    __func__, pmap, pv->pv_va, pte1);
4475					panic("bad pte1");
4476				}
4477
4478				/* Mark free */
4479				PV_STAT(pv_entry_frees++);
4480				PV_STAT(pv_entry_spare++);
4481				pv_entry_count--;
4482				pc->pc_map[field] |= bitmask;
4483			}
4484		}
4485		if (allfree) {
4486			TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
4487			free_pv_chunk(pc);
4488		}
4489	}
4490	tlb_flush_all_ng_local();
4491	sched_unpin();
4492	rw_wunlock(&pvh_global_lock);
4493	PMAP_UNLOCK(pmap);
4494	pmap_free_zero_pages(&free);
4495}
4496
4497/*
4498 *  This code makes some *MAJOR* assumptions:
4499 *  1. Current pmap & pmap exists.
4500 *  2. Not wired.
4501 *  3. Read access.
4502 *  4. No L2 page table pages.
4503 *  but is *MUCH* faster than pmap_enter...
4504 */
4505static vm_page_t
4506pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
4507    vm_prot_t prot, vm_page_t mpt2pg)
4508{
4509	pt2_entry_t *pte2p, pte2;
4510	vm_paddr_t pa;
4511	struct spglist free;
4512	uint32_t l2prot;
4513
4514	KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
4515	    (m->oflags & VPO_UNMANAGED) != 0,
4516	    ("%s: managed mapping within the clean submap", __func__));
4517	rw_assert(&pvh_global_lock, RA_WLOCKED);
4518	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4519
4520	/*
4521	 * In the case that a L2 page table page is not
4522	 * resident, we are creating it here.
4523	 */
4524	if (va < VM_MAXUSER_ADDRESS) {
4525		u_int pte1_idx;
4526		pt1_entry_t pte1, *pte1p;
4527		vm_paddr_t pt2_pa;
4528
4529		/*
4530		 * Get L1 page table things.
4531		 */
4532		pte1_idx = pte1_index(va);
4533		pte1p = pmap_pte1(pmap, va);
4534		pte1 = pte1_load(pte1p);
4535
4536		if (mpt2pg && (mpt2pg->pindex == (pte1_idx & ~PT2PG_MASK))) {
4537			/*
4538			 * Each of NPT2_IN_PG L2 page tables on the page can
4539			 * come here. Make sure that associated L1 page table
4540			 * link is established.
4541			 *
4542			 * QQQ: It comes that we don't establish all links to
4543			 *      L2 page tables for newly allocated L2 page
4544			 *      tables page.
4545			 */
4546			KASSERT(!pte1_is_section(pte1),
4547			    ("%s: pte1 %#x is section", __func__, pte1));
4548			if (!pte1_is_link(pte1)) {
4549				pt2_pa = page_pt2pa(VM_PAGE_TO_PHYS(mpt2pg),
4550				    pte1_idx);
4551				pte1_store(pte1p, PTE1_LINK(pt2_pa));
4552			}
4553			pt2_wirecount_inc(mpt2pg, pte1_idx);
4554		} else {
4555			/*
4556			 * If the L2 page table page is mapped, we just
4557			 * increment the hold count, and activate it.
4558			 */
4559			if (pte1_is_section(pte1)) {
4560				return (NULL);
4561			} else if (pte1_is_link(pte1)) {
4562				mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
4563				pt2_wirecount_inc(mpt2pg, pte1_idx);
4564			} else {
4565				mpt2pg = _pmap_allocpte2(pmap, va,
4566				    PMAP_ENTER_NOSLEEP);
4567				if (mpt2pg == NULL)
4568					return (NULL);
4569			}
4570		}
4571	} else {
4572		mpt2pg = NULL;
4573	}
4574
4575	/*
4576	 * This call to pt2map_entry() makes the assumption that we are
4577	 * entering the page into the current pmap.  In order to support
4578	 * quick entry into any pmap, one would likely use pmap_pte2_quick().
4579	 * But that isn't as quick as pt2map_entry().
4580	 */
4581	pte2p = pt2map_entry(va);
4582	pte2 = pte2_load(pte2p);
4583	if (pte2_is_valid(pte2)) {
4584		if (mpt2pg != NULL) {
4585			/*
4586			 * Remove extra pte2 reference
4587			 */
4588			pt2_wirecount_dec(mpt2pg, pte1_index(va));
4589			mpt2pg = NULL;
4590		}
4591		return (NULL);
4592	}
4593
4594	/*
4595	 * Enter on the PV list if part of our managed memory.
4596	 */
4597	if ((m->oflags & VPO_UNMANAGED) == 0 &&
4598	    !pmap_try_insert_pv_entry(pmap, va, m)) {
4599		if (mpt2pg != NULL) {
4600			SLIST_INIT(&free);
4601			if (pmap_unwire_pt2(pmap, va, mpt2pg, &free)) {
4602				pmap_tlb_flush(pmap, va);
4603				pmap_free_zero_pages(&free);
4604			}
4605
4606			mpt2pg = NULL;
4607		}
4608		return (NULL);
4609	}
4610
4611	/*
4612	 * Increment counters
4613	 */
4614	pmap->pm_stats.resident_count++;
4615
4616	/*
4617	 * Now validate mapping with RO protection
4618	 */
4619	pa = VM_PAGE_TO_PHYS(m);
4620	l2prot = PTE2_RO | PTE2_NM;
4621	if (va < VM_MAXUSER_ADDRESS)
4622		l2prot |= PTE2_U | PTE2_NG;
4623	if ((prot & VM_PROT_EXECUTE) == 0)
4624		l2prot |= PTE2_NX;
4625	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4626		/*
4627		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4628		 * is set. QQQ: For more info, see comments in pmap_enter().
4629		 */
4630		cache_icache_sync_fresh(va, pa, PAGE_SIZE);
4631	}
4632	pte2_store(pte2p, PTE2(pa, l2prot, vm_page_pte2_attr(m)));
4633
4634	return (mpt2pg);
4635}
4636
4637void
4638pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4639{
4640
4641	rw_wlock(&pvh_global_lock);
4642	PMAP_LOCK(pmap);
4643	(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL);
4644	rw_wunlock(&pvh_global_lock);
4645	PMAP_UNLOCK(pmap);
4646}
4647
4648/*
4649 *  Tries to create 1MB page mapping.  Returns TRUE if successful and
4650 *  FALSE otherwise.  Fails if (1) a page table page cannot be allocated without
4651 *  blocking, (2) a mapping already exists at the specified virtual address, or
4652 *  (3) a pv entry cannot be allocated without reclaiming another pv entry.
4653 */
4654static boolean_t
4655pmap_enter_pte1(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
4656{
4657	pt1_entry_t *pte1p;
4658	vm_paddr_t pa;
4659	uint32_t l1prot;
4660
4661	rw_assert(&pvh_global_lock, RA_WLOCKED);
4662	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4663	pte1p = pmap_pte1(pmap, va);
4664	if (pte1_is_valid(pte1_load(pte1p))) {
4665		CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p", __func__,
4666		    va, pmap);
4667		return (FALSE);
4668	}
4669	if ((m->oflags & VPO_UNMANAGED) == 0) {
4670		/*
4671		 * Abort this mapping if its PV entry could not be created.
4672		 */
4673		if (!pmap_pv_insert_pte1(pmap, va, VM_PAGE_TO_PHYS(m))) {
4674			CTR3(KTR_PMAP, "%s: failure for va %#lx in pmap %p",
4675			    __func__, va, pmap);
4676			return (FALSE);
4677		}
4678	}
4679	/*
4680	 * Increment counters.
4681	 */
4682	pmap->pm_stats.resident_count += PTE1_SIZE / PAGE_SIZE;
4683
4684	/*
4685	 * Map the section.
4686	 *
4687	 * QQQ: Why VM_PROT_WRITE is not evaluated and the mapping is
4688	 *      made readonly?
4689	 */
4690	pa = VM_PAGE_TO_PHYS(m);
4691	l1prot = PTE1_RO | PTE1_NM;
4692	if (va < VM_MAXUSER_ADDRESS)
4693		l1prot |= PTE1_U | PTE1_NG;
4694	if ((prot & VM_PROT_EXECUTE) == 0)
4695		l1prot |= PTE1_NX;
4696	else if (m->md.pat_mode == VM_MEMATTR_WB_WA && pmap != kernel_pmap) {
4697		/*
4698		 * Sync icache if exec permission and attribute VM_MEMATTR_WB_WA
4699		 * is set. QQQ: For more info, see comments in pmap_enter().
4700		 */
4701		cache_icache_sync_fresh(va, pa, PTE1_SIZE);
4702	}
4703	pte1_store(pte1p, PTE1(pa, l1prot, ATTR_TO_L1(vm_page_pte2_attr(m))));
4704
4705	pmap_pte1_mappings++;
4706	CTR3(KTR_PMAP, "%s: success for va %#lx in pmap %p", __func__, va,
4707	    pmap);
4708	return (TRUE);
4709}
4710
4711/*
4712 *  Maps a sequence of resident pages belonging to the same object.
4713 *  The sequence begins with the given page m_start.  This page is
4714 *  mapped at the given virtual address start.  Each subsequent page is
4715 *  mapped at a virtual address that is offset from start by the same
4716 *  amount as the page is offset from m_start within the object.  The
4717 *  last page in the sequence is the page with the largest offset from
4718 *  m_start that can be mapped at a virtual address less than the given
4719 *  virtual address end.  Not every virtual page between start and end
4720 *  is mapped; only those for which a resident page exists with the
4721 *  corresponding offset from m_start are mapped.
4722 */
4723void
4724pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
4725    vm_page_t m_start, vm_prot_t prot)
4726{
4727	vm_offset_t va;
4728	vm_page_t m, mpt2pg;
4729	vm_pindex_t diff, psize;
4730
4731	PDEBUG(6, printf("%s: pmap %p start %#x end  %#x m %p prot %#x\n",
4732	    __func__, pmap, start, end, m_start, prot));
4733
4734	VM_OBJECT_ASSERT_LOCKED(m_start->object);
4735	psize = atop(end - start);
4736	mpt2pg = NULL;
4737	m = m_start;
4738	rw_wlock(&pvh_global_lock);
4739	PMAP_LOCK(pmap);
4740	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
4741		va = start + ptoa(diff);
4742		if ((va & PTE1_OFFSET) == 0 && va + PTE1_SIZE <= end &&
4743		    m->psind == 1 && sp_enabled &&
4744		    pmap_enter_pte1(pmap, va, m, prot))
4745			m = &m[PTE1_SIZE / PAGE_SIZE - 1];
4746		else
4747			mpt2pg = pmap_enter_quick_locked(pmap, va, m, prot,
4748			    mpt2pg);
4749		m = TAILQ_NEXT(m, listq);
4750	}
4751	rw_wunlock(&pvh_global_lock);
4752	PMAP_UNLOCK(pmap);
4753}
4754
4755/*
4756 *  This code maps large physical mmap regions into the
4757 *  processor address space.  Note that some shortcuts
4758 *  are taken, but the code works.
4759 */
4760void
4761pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
4762    vm_pindex_t pindex, vm_size_t size)
4763{
4764	pt1_entry_t *pte1p;
4765	vm_paddr_t pa, pte2_pa;
4766	vm_page_t p;
4767	vm_memattr_t pat_mode;
4768	u_int l1attr, l1prot;
4769
4770	VM_OBJECT_ASSERT_WLOCKED(object);
4771	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
4772	    ("%s: non-device object", __func__));
4773	if ((addr & PTE1_OFFSET) == 0 && (size & PTE1_OFFSET) == 0) {
4774		if (!vm_object_populate(object, pindex, pindex + atop(size)))
4775			return;
4776		p = vm_page_lookup(object, pindex);
4777		KASSERT(p->valid == VM_PAGE_BITS_ALL,
4778		    ("%s: invalid page %p", __func__, p));
4779		pat_mode = p->md.pat_mode;
4780
4781		/*
4782		 * Abort the mapping if the first page is not physically
4783		 * aligned to a 1MB page boundary.
4784		 */
4785		pte2_pa = VM_PAGE_TO_PHYS(p);
4786		if (pte2_pa & PTE1_OFFSET)
4787			return;
4788
4789		/*
4790		 * Skip the first page. Abort the mapping if the rest of
4791		 * the pages are not physically contiguous or have differing
4792		 * memory attributes.
4793		 */
4794		p = TAILQ_NEXT(p, listq);
4795		for (pa = pte2_pa + PAGE_SIZE; pa < pte2_pa + size;
4796		    pa += PAGE_SIZE) {
4797			KASSERT(p->valid == VM_PAGE_BITS_ALL,
4798			    ("%s: invalid page %p", __func__, p));
4799			if (pa != VM_PAGE_TO_PHYS(p) ||
4800			    pat_mode != p->md.pat_mode)
4801				return;
4802			p = TAILQ_NEXT(p, listq);
4803		}
4804
4805		/*
4806		 * Map using 1MB pages.
4807		 *
4808		 * QQQ: Well, we are mapping a section, so same condition must
4809		 * be hold like during promotion. It looks that only RW mapping
4810		 * is done here, so readonly mapping must be done elsewhere.
4811		 */
4812		l1prot = PTE1_U | PTE1_NG | PTE1_RW | PTE1_M | PTE1_A;
4813		l1attr = ATTR_TO_L1(vm_memattr_to_pte2(pat_mode));
4814		PMAP_LOCK(pmap);
4815		for (pa = pte2_pa; pa < pte2_pa + size; pa += PTE1_SIZE) {
4816			pte1p = pmap_pte1(pmap, addr);
4817			if (!pte1_is_valid(pte1_load(pte1p))) {
4818				pte1_store(pte1p, PTE1(pa, l1prot, l1attr));
4819				pmap->pm_stats.resident_count += PTE1_SIZE /
4820				    PAGE_SIZE;
4821				pmap_pte1_mappings++;
4822			}
4823			/* Else continue on if the PTE1 is already valid. */
4824			addr += PTE1_SIZE;
4825		}
4826		PMAP_UNLOCK(pmap);
4827	}
4828}
4829
4830/*
4831 *  Do the things to protect a 1mpage in a process.
4832 */
4833static void
4834pmap_protect_pte1(pmap_t pmap, pt1_entry_t *pte1p, vm_offset_t sva,
4835    vm_prot_t prot)
4836{
4837	pt1_entry_t npte1, opte1;
4838	vm_offset_t eva, va;
4839	vm_page_t m;
4840
4841	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
4842	KASSERT((sva & PTE1_OFFSET) == 0,
4843	    ("%s: sva is not 1mpage aligned", __func__));
4844
4845	opte1 = npte1 = pte1_load(pte1p);
4846	if (pte1_is_managed(opte1) && pte1_is_dirty(opte1)) {
4847		eva = sva + PTE1_SIZE;
4848		for (va = sva, m = PHYS_TO_VM_PAGE(pte1_pa(opte1));
4849		    va < eva; va += PAGE_SIZE, m++)
4850			vm_page_dirty(m);
4851	}
4852	if ((prot & VM_PROT_WRITE) == 0)
4853		npte1 |= PTE1_RO | PTE1_NM;
4854	if ((prot & VM_PROT_EXECUTE) == 0)
4855		npte1 |= PTE1_NX;
4856
4857	/*
4858	 * QQQ: Herein, execute permission is never set.
4859	 *      It only can be cleared. So, no icache
4860	 *      syncing is needed.
4861	 */
4862
4863	if (npte1 != opte1) {
4864		pte1_store(pte1p, npte1);
4865		pmap_tlb_flush(pmap, sva);
4866	}
4867}
4868
4869/*
4870 *	Set the physical protection on the
4871 *	specified range of this map as requested.
4872 */
4873void
4874pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
4875{
4876	boolean_t pv_lists_locked;
4877	vm_offset_t nextva;
4878	pt1_entry_t *pte1p, pte1;
4879	pt2_entry_t *pte2p, opte2, npte2;
4880
4881	KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
4882	if (prot == VM_PROT_NONE) {
4883		pmap_remove(pmap, sva, eva);
4884		return;
4885	}
4886
4887	if ((prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) ==
4888	    (VM_PROT_WRITE | VM_PROT_EXECUTE))
4889		return;
4890
4891	if (pmap_is_current(pmap))
4892		pv_lists_locked = FALSE;
4893	else {
4894		pv_lists_locked = TRUE;
4895resume:
4896		rw_wlock(&pvh_global_lock);
4897		sched_pin();
4898	}
4899
4900	PMAP_LOCK(pmap);
4901	for (; sva < eva; sva = nextva) {
4902		/*
4903		 * Calculate address for next L2 page table.
4904		 */
4905		nextva = pte1_trunc(sva + PTE1_SIZE);
4906		if (nextva < sva)
4907			nextva = eva;
4908
4909		pte1p = pmap_pte1(pmap, sva);
4910		pte1 = pte1_load(pte1p);
4911
4912		/*
4913		 * Weed out invalid mappings. Note: we assume that L1 page
4914		 * page table is always allocated, and in kernel virtual.
4915		 */
4916		if (pte1 == 0)
4917			continue;
4918
4919		if (pte1_is_section(pte1)) {
4920			/*
4921			 * Are we protecting the entire large page?  If not,
4922			 * demote the mapping and fall through.
4923			 */
4924			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
4925				pmap_protect_pte1(pmap, pte1p, sva, prot);
4926				continue;
4927			} else {
4928				if (!pv_lists_locked) {
4929					pv_lists_locked = TRUE;
4930					if (!rw_try_wlock(&pvh_global_lock)) {
4931						PMAP_UNLOCK(pmap);
4932						goto resume;
4933					}
4934					sched_pin();
4935				}
4936				if (!pmap_demote_pte1(pmap, pte1p, sva)) {
4937					/*
4938					 * The large page mapping
4939					 * was destroyed.
4940					 */
4941					continue;
4942				}
4943#ifdef INVARIANTS
4944				else {
4945					/* Update pte1 after demotion */
4946					pte1 = pte1_load(pte1p);
4947				}
4948#endif
4949			}
4950		}
4951
4952		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
4953		    " is not link", __func__, pmap, sva, pte1, pte1p));
4954
4955		/*
4956		 * Limit our scan to either the end of the va represented
4957		 * by the current L2 page table page, or to the end of the
4958		 * range being protected.
4959		 */
4960		if (nextva > eva)
4961			nextva = eva;
4962
4963		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
4964		    sva += PAGE_SIZE) {
4965			vm_page_t m;
4966
4967			opte2 = npte2 = pte2_load(pte2p);
4968			if (!pte2_is_valid(opte2))
4969				continue;
4970
4971			if ((prot & VM_PROT_WRITE) == 0) {
4972				if (pte2_is_managed(opte2) &&
4973				    pte2_is_dirty(opte2)) {
4974					m = PHYS_TO_VM_PAGE(pte2_pa(opte2));
4975					vm_page_dirty(m);
4976				}
4977				npte2 |= PTE2_RO | PTE2_NM;
4978			}
4979
4980			if ((prot & VM_PROT_EXECUTE) == 0)
4981				npte2 |= PTE2_NX;
4982
4983			/*
4984			 * QQQ: Herein, execute permission is never set.
4985			 *      It only can be cleared. So, no icache
4986			 *      syncing is needed.
4987			 */
4988
4989			if (npte2 != opte2) {
4990				pte2_store(pte2p, npte2);
4991				pmap_tlb_flush(pmap, sva);
4992			}
4993		}
4994	}
4995	if (pv_lists_locked) {
4996		sched_unpin();
4997		rw_wunlock(&pvh_global_lock);
4998	}
4999	PMAP_UNLOCK(pmap);
5000}
5001
5002/*
5003 *	pmap_pvh_wired_mappings:
5004 *
5005 *	Return the updated number "count" of managed mappings that are wired.
5006 */
5007static int
5008pmap_pvh_wired_mappings(struct md_page *pvh, int count)
5009{
5010	pmap_t pmap;
5011	pt1_entry_t pte1;
5012	pt2_entry_t pte2;
5013	pv_entry_t pv;
5014
5015	rw_assert(&pvh_global_lock, RA_WLOCKED);
5016	sched_pin();
5017	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5018		pmap = PV_PMAP(pv);
5019		PMAP_LOCK(pmap);
5020		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5021		if (pte1_is_section(pte1)) {
5022			if (pte1_is_wired(pte1))
5023				count++;
5024		} else {
5025			KASSERT(pte1_is_link(pte1),
5026			    ("%s: pte1 %#x is not link", __func__, pte1));
5027			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5028			if (pte2_is_wired(pte2))
5029				count++;
5030		}
5031		PMAP_UNLOCK(pmap);
5032	}
5033	sched_unpin();
5034	return (count);
5035}
5036
5037/*
5038 *	pmap_page_wired_mappings:
5039 *
5040 *	Return the number of managed mappings to the given physical page
5041 *	that are wired.
5042 */
5043int
5044pmap_page_wired_mappings(vm_page_t m)
5045{
5046	int count;
5047
5048	count = 0;
5049	if ((m->oflags & VPO_UNMANAGED) != 0)
5050		return (count);
5051	rw_wlock(&pvh_global_lock);
5052	count = pmap_pvh_wired_mappings(&m->md, count);
5053	if ((m->flags & PG_FICTITIOUS) == 0) {
5054		count = pmap_pvh_wired_mappings(pa_to_pvh(VM_PAGE_TO_PHYS(m)),
5055		    count);
5056	}
5057	rw_wunlock(&pvh_global_lock);
5058	return (count);
5059}
5060
5061/*
5062 *  Returns TRUE if any of the given mappings were used to modify
5063 *  physical memory.  Otherwise, returns FALSE.  Both page and 1mpage
5064 *  mappings are supported.
5065 */
5066static boolean_t
5067pmap_is_modified_pvh(struct md_page *pvh)
5068{
5069	pv_entry_t pv;
5070	pt1_entry_t pte1;
5071	pt2_entry_t pte2;
5072	pmap_t pmap;
5073	boolean_t rv;
5074
5075	rw_assert(&pvh_global_lock, RA_WLOCKED);
5076	rv = FALSE;
5077	sched_pin();
5078	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5079		pmap = PV_PMAP(pv);
5080		PMAP_LOCK(pmap);
5081		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5082		if (pte1_is_section(pte1)) {
5083			rv = pte1_is_dirty(pte1);
5084		} else {
5085			KASSERT(pte1_is_link(pte1),
5086			    ("%s: pte1 %#x is not link", __func__, pte1));
5087			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5088			rv = pte2_is_dirty(pte2);
5089		}
5090		PMAP_UNLOCK(pmap);
5091		if (rv)
5092			break;
5093	}
5094	sched_unpin();
5095	return (rv);
5096}
5097
5098/*
5099 *	pmap_is_modified:
5100 *
5101 *	Return whether or not the specified physical page was modified
5102 *	in any physical maps.
5103 */
5104boolean_t
5105pmap_is_modified(vm_page_t m)
5106{
5107	boolean_t rv;
5108
5109	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5110	    ("%s: page %p is not managed", __func__, m));
5111
5112	/*
5113	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5114	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
5115	 * is clear, no PTE2s can have PG_M set.
5116	 */
5117	VM_OBJECT_ASSERT_WLOCKED(m->object);
5118	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5119		return (FALSE);
5120	rw_wlock(&pvh_global_lock);
5121	rv = pmap_is_modified_pvh(&m->md) ||
5122	    ((m->flags & PG_FICTITIOUS) == 0 &&
5123	    pmap_is_modified_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5124	rw_wunlock(&pvh_global_lock);
5125	return (rv);
5126}
5127
5128/*
5129 *	pmap_is_prefaultable:
5130 *
5131 *	Return whether or not the specified virtual address is eligible
5132 *	for prefault.
5133 */
5134boolean_t
5135pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
5136{
5137	pt1_entry_t pte1;
5138	pt2_entry_t pte2;
5139	boolean_t rv;
5140
5141	rv = FALSE;
5142	PMAP_LOCK(pmap);
5143	pte1 = pte1_load(pmap_pte1(pmap, addr));
5144	if (pte1_is_link(pte1)) {
5145		pte2 = pte2_load(pt2map_entry(addr));
5146		rv = !pte2_is_valid(pte2) ;
5147	}
5148	PMAP_UNLOCK(pmap);
5149	return (rv);
5150}
5151
5152/*
5153 *  Returns TRUE if any of the given mappings were referenced and FALSE
5154 *  otherwise. Both page and 1mpage mappings are supported.
5155 */
5156static boolean_t
5157pmap_is_referenced_pvh(struct md_page *pvh)
5158{
5159
5160	pv_entry_t pv;
5161	pt1_entry_t pte1;
5162	pt2_entry_t pte2;
5163	pmap_t pmap;
5164	boolean_t rv;
5165
5166	rw_assert(&pvh_global_lock, RA_WLOCKED);
5167	rv = FALSE;
5168	sched_pin();
5169	TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5170		pmap = PV_PMAP(pv);
5171		PMAP_LOCK(pmap);
5172		pte1 = pte1_load(pmap_pte1(pmap, pv->pv_va));
5173		if (pte1_is_section(pte1)) {
5174			rv = (pte1 & (PTE1_A | PTE1_V)) == (PTE1_A | PTE1_V);
5175		} else {
5176			pte2 = pte2_load(pmap_pte2_quick(pmap, pv->pv_va));
5177			rv = (pte2 & (PTE2_A | PTE2_V)) == (PTE2_A | PTE2_V);
5178		}
5179		PMAP_UNLOCK(pmap);
5180		if (rv)
5181			break;
5182	}
5183	sched_unpin();
5184	return (rv);
5185}
5186
5187/*
5188 *	pmap_is_referenced:
5189 *
5190 *	Return whether or not the specified physical page was referenced
5191 *	in any physical maps.
5192 */
5193boolean_t
5194pmap_is_referenced(vm_page_t m)
5195{
5196	boolean_t rv;
5197
5198	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5199	    ("%s: page %p is not managed", __func__, m));
5200	rw_wlock(&pvh_global_lock);
5201	rv = pmap_is_referenced_pvh(&m->md) ||
5202	    ((m->flags & PG_FICTITIOUS) == 0 &&
5203	    pmap_is_referenced_pvh(pa_to_pvh(VM_PAGE_TO_PHYS(m))));
5204	rw_wunlock(&pvh_global_lock);
5205	return (rv);
5206}
5207
5208/*
5209 *	pmap_ts_referenced:
5210 *
5211 *	Return a count of reference bits for a page, clearing those bits.
5212 *	It is not necessary for every reference bit to be cleared, but it
5213 *	is necessary that 0 only be returned when there are truly no
5214 *	reference bits set.
5215 *
5216 *	As an optimization, update the page's dirty field if a modified bit is
5217 *	found while counting reference bits.  This opportunistic update can be
5218 *	performed at low cost and can eliminate the need for some future calls
5219 *	to pmap_is_modified().  However, since this function stops after
5220 *	finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
5221 *	dirty pages.  Those dirty pages will only be detected by a future call
5222 *	to pmap_is_modified().
5223 */
5224int
5225pmap_ts_referenced(vm_page_t m)
5226{
5227	struct md_page *pvh;
5228	pv_entry_t pv, pvf;
5229	pmap_t pmap;
5230	pt1_entry_t  *pte1p, opte1;
5231	pt2_entry_t *pte2p, opte2;
5232	vm_paddr_t pa;
5233	int rtval = 0;
5234
5235	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5236	    ("%s: page %p is not managed", __func__, m));
5237	pa = VM_PAGE_TO_PHYS(m);
5238	pvh = pa_to_pvh(pa);
5239	rw_wlock(&pvh_global_lock);
5240	sched_pin();
5241	if ((m->flags & PG_FICTITIOUS) != 0 ||
5242	    (pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
5243		goto small_mappings;
5244	pv = pvf;
5245	do {
5246		pmap = PV_PMAP(pv);
5247		PMAP_LOCK(pmap);
5248		pte1p = pmap_pte1(pmap, pv->pv_va);
5249		opte1 = pte1_load(pte1p);
5250		if (pte1_is_dirty(opte1)) {
5251			/*
5252			 * Although "opte1" is mapping a 1MB page, because
5253			 * this function is called at a 4KB page granularity,
5254			 * we only update the 4KB page under test.
5255			 */
5256			vm_page_dirty(m);
5257		}
5258		if ((opte1 & PTE1_A) != 0) {
5259			/*
5260			 * Since this reference bit is shared by 256 4KB pages,
5261			 * it should not be cleared every time it is tested.
5262			 * Apply a simple "hash" function on the physical page
5263			 * number, the virtual section number, and the pmap
5264			 * address to select one 4KB page out of the 256
5265			 * on which testing the reference bit will result
5266			 * in clearing that bit. This function is designed
5267			 * to avoid the selection of the same 4KB page
5268			 * for every 1MB page mapping.
5269			 *
5270			 * On demotion, a mapping that hasn't been referenced
5271			 * is simply destroyed.  To avoid the possibility of a
5272			 * subsequent page fault on a demoted wired mapping,
5273			 * always leave its reference bit set.  Moreover,
5274			 * since the section is wired, the current state of
5275			 * its reference bit won't affect page replacement.
5276			 */
5277			 if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PTE1_SHIFT) ^
5278			    (uintptr_t)pmap) & (NPTE2_IN_PG - 1)) == 0 &&
5279			    !pte1_is_wired(opte1)) {
5280				pte1_clear_bit(pte1p, PTE1_A);
5281				pmap_tlb_flush(pmap, pv->pv_va);
5282			}
5283			rtval++;
5284		}
5285		PMAP_UNLOCK(pmap);
5286		/* Rotate the PV list if it has more than one entry. */
5287		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5288			TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
5289			TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
5290		}
5291		if (rtval >= PMAP_TS_REFERENCED_MAX)
5292			goto out;
5293	} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
5294small_mappings:
5295	if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
5296		goto out;
5297	pv = pvf;
5298	do {
5299		pmap = PV_PMAP(pv);
5300		PMAP_LOCK(pmap);
5301		pte1p = pmap_pte1(pmap, pv->pv_va);
5302		KASSERT(pte1_is_link(pte1_load(pte1p)),
5303		    ("%s: not found a link in page %p's pv list", __func__, m));
5304
5305		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5306		opte2 = pte2_load(pte2p);
5307		if (pte2_is_dirty(opte2))
5308			vm_page_dirty(m);
5309		if ((opte2 & PTE2_A) != 0) {
5310			pte2_clear_bit(pte2p, PTE2_A);
5311			pmap_tlb_flush(pmap, pv->pv_va);
5312			rtval++;
5313		}
5314		PMAP_UNLOCK(pmap);
5315		/* Rotate the PV list if it has more than one entry. */
5316		if (TAILQ_NEXT(pv, pv_next) != NULL) {
5317			TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
5318			TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
5319		}
5320	} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && rtval <
5321	    PMAP_TS_REFERENCED_MAX);
5322out:
5323	sched_unpin();
5324	rw_wunlock(&pvh_global_lock);
5325	return (rtval);
5326}
5327
5328/*
5329 *	Clear the wired attribute from the mappings for the specified range of
5330 *	addresses in the given pmap.  Every valid mapping within that range
5331 *	must have the wired attribute set.  In contrast, invalid mappings
5332 *	cannot have the wired attribute set, so they are ignored.
5333 *
5334 *	The wired attribute of the page table entry is not a hardware feature,
5335 *	so there is no need to invalidate any TLB entries.
5336 */
5337void
5338pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
5339{
5340	vm_offset_t nextva;
5341	pt1_entry_t *pte1p, pte1;
5342	pt2_entry_t *pte2p, pte2;
5343	boolean_t pv_lists_locked;
5344
5345	if (pmap_is_current(pmap))
5346		pv_lists_locked = FALSE;
5347	else {
5348		pv_lists_locked = TRUE;
5349resume:
5350		rw_wlock(&pvh_global_lock);
5351		sched_pin();
5352	}
5353	PMAP_LOCK(pmap);
5354	for (; sva < eva; sva = nextva) {
5355		nextva = pte1_trunc(sva + PTE1_SIZE);
5356		if (nextva < sva)
5357			nextva = eva;
5358
5359		pte1p = pmap_pte1(pmap, sva);
5360		pte1 = pte1_load(pte1p);
5361
5362		/*
5363		 * Weed out invalid mappings. Note: we assume that L1 page
5364		 * page table is always allocated, and in kernel virtual.
5365		 */
5366		if (pte1 == 0)
5367			continue;
5368
5369		if (pte1_is_section(pte1)) {
5370			if (!pte1_is_wired(pte1))
5371				panic("%s: pte1 %#x not wired", __func__, pte1);
5372
5373			/*
5374			 * Are we unwiring the entire large page?  If not,
5375			 * demote the mapping and fall through.
5376			 */
5377			if (sva + PTE1_SIZE == nextva && eva >= nextva) {
5378				pte1_clear_bit(pte1p, PTE1_W);
5379				pmap->pm_stats.wired_count -= PTE1_SIZE /
5380				    PAGE_SIZE;
5381				continue;
5382			} else {
5383				if (!pv_lists_locked) {
5384					pv_lists_locked = TRUE;
5385					if (!rw_try_wlock(&pvh_global_lock)) {
5386						PMAP_UNLOCK(pmap);
5387						/* Repeat sva. */
5388						goto resume;
5389					}
5390					sched_pin();
5391				}
5392				if (!pmap_demote_pte1(pmap, pte1p, sva))
5393					panic("%s: demotion failed", __func__);
5394#ifdef INVARIANTS
5395				else {
5396					/* Update pte1 after demotion */
5397					pte1 = pte1_load(pte1p);
5398				}
5399#endif
5400			}
5401		}
5402
5403		KASSERT(pte1_is_link(pte1), ("%s: pmap %p va %#x pte1 %#x at %p"
5404		    " is not link", __func__, pmap, sva, pte1, pte1p));
5405
5406		/*
5407		 * Limit our scan to either the end of the va represented
5408		 * by the current L2 page table page, or to the end of the
5409		 * range being protected.
5410		 */
5411		if (nextva > eva)
5412			nextva = eva;
5413
5414		for (pte2p = pmap_pte2_quick(pmap, sva); sva != nextva; pte2p++,
5415		    sva += PAGE_SIZE) {
5416			pte2 = pte2_load(pte2p);
5417			if (!pte2_is_valid(pte2))
5418				continue;
5419			if (!pte2_is_wired(pte2))
5420				panic("%s: pte2 %#x is missing PTE2_W",
5421				    __func__, pte2);
5422
5423			/*
5424			 * PTE2_W must be cleared atomically. Although the pmap
5425			 * lock synchronizes access to PTE2_W, another processor
5426			 * could be changing PTE2_NM and/or PTE2_A concurrently.
5427			 */
5428			pte2_clear_bit(pte2p, PTE2_W);
5429			pmap->pm_stats.wired_count--;
5430		}
5431	}
5432	if (pv_lists_locked) {
5433		sched_unpin();
5434		rw_wunlock(&pvh_global_lock);
5435	}
5436	PMAP_UNLOCK(pmap);
5437}
5438
5439/*
5440 *  Clear the write and modified bits in each of the given page's mappings.
5441 */
5442void
5443pmap_remove_write(vm_page_t m)
5444{
5445	struct md_page *pvh;
5446	pv_entry_t next_pv, pv;
5447	pmap_t pmap;
5448	pt1_entry_t *pte1p;
5449	pt2_entry_t *pte2p, opte2;
5450	vm_offset_t va;
5451
5452	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5453	    ("%s: page %p is not managed", __func__, m));
5454
5455	/*
5456	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
5457	 * set by another thread while the object is locked.  Thus,
5458	 * if PGA_WRITEABLE is clear, no page table entries need updating.
5459	 */
5460	VM_OBJECT_ASSERT_WLOCKED(m->object);
5461	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
5462		return;
5463	rw_wlock(&pvh_global_lock);
5464	sched_pin();
5465	if ((m->flags & PG_FICTITIOUS) != 0)
5466		goto small_mappings;
5467	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5468	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5469		va = pv->pv_va;
5470		pmap = PV_PMAP(pv);
5471		PMAP_LOCK(pmap);
5472		pte1p = pmap_pte1(pmap, va);
5473		if (!(pte1_load(pte1p) & PTE1_RO))
5474			(void)pmap_demote_pte1(pmap, pte1p, va);
5475		PMAP_UNLOCK(pmap);
5476	}
5477small_mappings:
5478	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5479		pmap = PV_PMAP(pv);
5480		PMAP_LOCK(pmap);
5481		pte1p = pmap_pte1(pmap, pv->pv_va);
5482		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5483		    " a section in page %p's pv list", __func__, m));
5484		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5485		opte2 = pte2_load(pte2p);
5486		if (!(opte2 & PTE2_RO)) {
5487			pte2_store(pte2p, opte2 | PTE2_RO | PTE2_NM);
5488			if (pte2_is_dirty(opte2))
5489				vm_page_dirty(m);
5490			pmap_tlb_flush(pmap, pv->pv_va);
5491		}
5492		PMAP_UNLOCK(pmap);
5493	}
5494	vm_page_aflag_clear(m, PGA_WRITEABLE);
5495	sched_unpin();
5496	rw_wunlock(&pvh_global_lock);
5497}
5498
5499/*
5500 *	Apply the given advice to the specified range of addresses within the
5501 *	given pmap.  Depending on the advice, clear the referenced and/or
5502 *	modified flags in each mapping and set the mapped page's dirty field.
5503 */
5504void
5505pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
5506{
5507	pt1_entry_t *pte1p, opte1;
5508	pt2_entry_t *pte2p, pte2;
5509	vm_offset_t pdnxt;
5510	vm_page_t m;
5511	boolean_t pv_lists_locked;
5512
5513	if (advice != MADV_DONTNEED && advice != MADV_FREE)
5514		return;
5515	if (pmap_is_current(pmap))
5516		pv_lists_locked = FALSE;
5517	else {
5518		pv_lists_locked = TRUE;
5519resume:
5520		rw_wlock(&pvh_global_lock);
5521		sched_pin();
5522	}
5523	PMAP_LOCK(pmap);
5524	for (; sva < eva; sva = pdnxt) {
5525		pdnxt = pte1_trunc(sva + PTE1_SIZE);
5526		if (pdnxt < sva)
5527			pdnxt = eva;
5528		pte1p = pmap_pte1(pmap, sva);
5529		opte1 = pte1_load(pte1p);
5530		if (!pte1_is_valid(opte1)) /* XXX */
5531			continue;
5532		else if (pte1_is_section(opte1)) {
5533			if (!pte1_is_managed(opte1))
5534				continue;
5535			if (!pv_lists_locked) {
5536				pv_lists_locked = TRUE;
5537				if (!rw_try_wlock(&pvh_global_lock)) {
5538					PMAP_UNLOCK(pmap);
5539					goto resume;
5540				}
5541				sched_pin();
5542			}
5543			if (!pmap_demote_pte1(pmap, pte1p, sva)) {
5544				/*
5545				 * The large page mapping was destroyed.
5546				 */
5547				continue;
5548			}
5549
5550			/*
5551			 * Unless the page mappings are wired, remove the
5552			 * mapping to a single page so that a subsequent
5553			 * access may repromote.  Since the underlying L2 page
5554			 * table is fully populated, this removal never
5555			 * frees a L2 page table page.
5556			 */
5557			if (!pte1_is_wired(opte1)) {
5558				pte2p = pmap_pte2_quick(pmap, sva);
5559				KASSERT(pte2_is_valid(pte2_load(pte2p)),
5560				    ("%s: invalid PTE2", __func__));
5561				pmap_remove_pte2(pmap, pte2p, sva, NULL);
5562			}
5563		}
5564		if (pdnxt > eva)
5565			pdnxt = eva;
5566		for (pte2p = pmap_pte2_quick(pmap, sva); sva != pdnxt; pte2p++,
5567		    sva += PAGE_SIZE) {
5568			pte2 = pte2_load(pte2p);
5569			if (!pte2_is_valid(pte2) || !pte2_is_managed(pte2))
5570				continue;
5571			else if (pte2_is_dirty(pte2)) {
5572				if (advice == MADV_DONTNEED) {
5573					/*
5574					 * Future calls to pmap_is_modified()
5575					 * can be avoided by making the page
5576					 * dirty now.
5577					 */
5578					m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
5579					vm_page_dirty(m);
5580				}
5581				pte2_set_bit(pte2p, PTE2_NM);
5582				pte2_clear_bit(pte2p, PTE2_A);
5583			} else if ((pte2 & PTE2_A) != 0)
5584				pte2_clear_bit(pte2p, PTE2_A);
5585			else
5586				continue;
5587			pmap_tlb_flush(pmap, sva);
5588		}
5589	}
5590	if (pv_lists_locked) {
5591		sched_unpin();
5592		rw_wunlock(&pvh_global_lock);
5593	}
5594	PMAP_UNLOCK(pmap);
5595}
5596
5597/*
5598 *	Clear the modify bits on the specified physical page.
5599 */
5600void
5601pmap_clear_modify(vm_page_t m)
5602{
5603	struct md_page *pvh;
5604	pv_entry_t next_pv, pv;
5605	pmap_t pmap;
5606	pt1_entry_t *pte1p, opte1;
5607	pt2_entry_t *pte2p, opte2;
5608	vm_offset_t va;
5609
5610	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5611	    ("%s: page %p is not managed", __func__, m));
5612	VM_OBJECT_ASSERT_WLOCKED(m->object);
5613	KASSERT(!vm_page_xbusied(m),
5614	    ("%s: page %p is exclusive busy", __func__, m));
5615
5616	/*
5617	 * If the page is not PGA_WRITEABLE, then no PTE2s can have PTE2_NM
5618	 * cleared. If the object containing the page is locked and the page
5619	 * is not exclusive busied, then PGA_WRITEABLE cannot be concurrently
5620	 * set.
5621	 */
5622	if ((m->flags & PGA_WRITEABLE) == 0)
5623		return;
5624	rw_wlock(&pvh_global_lock);
5625	sched_pin();
5626	if ((m->flags & PG_FICTITIOUS) != 0)
5627		goto small_mappings;
5628	pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5629	TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
5630		va = pv->pv_va;
5631		pmap = PV_PMAP(pv);
5632		PMAP_LOCK(pmap);
5633		pte1p = pmap_pte1(pmap, va);
5634		opte1 = pte1_load(pte1p);
5635		if (!(opte1 & PTE1_RO)) {
5636			if (pmap_demote_pte1(pmap, pte1p, va) &&
5637			    !pte1_is_wired(opte1)) {
5638				/*
5639				 * Write protect the mapping to a
5640				 * single page so that a subsequent
5641				 * write access may repromote.
5642				 */
5643				va += VM_PAGE_TO_PHYS(m) - pte1_pa(opte1);
5644				pte2p = pmap_pte2_quick(pmap, va);
5645				opte2 = pte2_load(pte2p);
5646				if ((opte2 & PTE2_V)) {
5647					pte2_set_bit(pte2p, PTE2_NM | PTE2_RO);
5648					vm_page_dirty(m);
5649					pmap_tlb_flush(pmap, va);
5650				}
5651			}
5652		}
5653		PMAP_UNLOCK(pmap);
5654	}
5655small_mappings:
5656	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5657		pmap = PV_PMAP(pv);
5658		PMAP_LOCK(pmap);
5659		pte1p = pmap_pte1(pmap, pv->pv_va);
5660		KASSERT(!pte1_is_section(pte1_load(pte1p)), ("%s: found"
5661		    " a section in page %p's pv list", __func__, m));
5662		pte2p = pmap_pte2_quick(pmap, pv->pv_va);
5663		if (pte2_is_dirty(pte2_load(pte2p))) {
5664			pte2_set_bit(pte2p, PTE2_NM);
5665			pmap_tlb_flush(pmap, pv->pv_va);
5666		}
5667		PMAP_UNLOCK(pmap);
5668	}
5669	sched_unpin();
5670	rw_wunlock(&pvh_global_lock);
5671}
5672
5673
5674/*
5675 *  Sets the memory attribute for the specified page.
5676 */
5677void
5678pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
5679{
5680	pt2_entry_t *cmap2_pte2p;
5681	vm_memattr_t oma;
5682	vm_paddr_t pa;
5683	struct pcpu *pc;
5684
5685	oma = m->md.pat_mode;
5686	m->md.pat_mode = ma;
5687
5688	CTR5(KTR_PMAP, "%s: page %p - 0x%08X oma: %d, ma: %d", __func__, m,
5689	    VM_PAGE_TO_PHYS(m), oma, ma);
5690	if ((m->flags & PG_FICTITIOUS) != 0)
5691		return;
5692#if 0
5693	/*
5694	 * If "m" is a normal page, flush it from the cache.
5695	 *
5696	 * First, try to find an existing mapping of the page by sf
5697	 * buffer. sf_buf_invalidate_cache() modifies mapping and
5698	 * flushes the cache.
5699	 */
5700	if (sf_buf_invalidate_cache(m, oma))
5701		return;
5702#endif
5703	/*
5704	 * If page is not mapped by sf buffer, map the page
5705	 * transient and do invalidation.
5706	 */
5707	if (ma != oma) {
5708		pa = VM_PAGE_TO_PHYS(m);
5709		sched_pin();
5710		pc = get_pcpu();
5711		cmap2_pte2p = pc->pc_cmap2_pte2p;
5712		mtx_lock(&pc->pc_cmap_lock);
5713		if (pte2_load(cmap2_pte2p) != 0)
5714			panic("%s: CMAP2 busy", __func__);
5715		pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW,
5716		    vm_memattr_to_pte2(ma)));
5717		dcache_wbinv_poc((vm_offset_t)pc->pc_cmap2_addr, pa, PAGE_SIZE);
5718		pte2_clear(cmap2_pte2p);
5719		tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5720		sched_unpin();
5721		mtx_unlock(&pc->pc_cmap_lock);
5722	}
5723}
5724
5725/*
5726 *  Miscellaneous support routines follow
5727 */
5728
5729/*
5730 *  Returns TRUE if the given page is mapped individually or as part of
5731 *  a 1mpage.  Otherwise, returns FALSE.
5732 */
5733boolean_t
5734pmap_page_is_mapped(vm_page_t m)
5735{
5736	boolean_t rv;
5737
5738	if ((m->oflags & VPO_UNMANAGED) != 0)
5739		return (FALSE);
5740	rw_wlock(&pvh_global_lock);
5741	rv = !TAILQ_EMPTY(&m->md.pv_list) ||
5742	    ((m->flags & PG_FICTITIOUS) == 0 &&
5743	    !TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
5744	rw_wunlock(&pvh_global_lock);
5745	return (rv);
5746}
5747
5748/*
5749 *  Returns true if the pmap's pv is one of the first
5750 *  16 pvs linked to from this page.  This count may
5751 *  be changed upwards or downwards in the future; it
5752 *  is only necessary that true be returned for a small
5753 *  subset of pmaps for proper page aging.
5754 */
5755boolean_t
5756pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
5757{
5758	struct md_page *pvh;
5759	pv_entry_t pv;
5760	int loops = 0;
5761	boolean_t rv;
5762
5763	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
5764	    ("%s: page %p is not managed", __func__, m));
5765	rv = FALSE;
5766	rw_wlock(&pvh_global_lock);
5767	TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
5768		if (PV_PMAP(pv) == pmap) {
5769			rv = TRUE;
5770			break;
5771		}
5772		loops++;
5773		if (loops >= 16)
5774			break;
5775	}
5776	if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
5777		pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
5778		TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
5779			if (PV_PMAP(pv) == pmap) {
5780				rv = TRUE;
5781				break;
5782			}
5783			loops++;
5784			if (loops >= 16)
5785				break;
5786		}
5787	}
5788	rw_wunlock(&pvh_global_lock);
5789	return (rv);
5790}
5791
5792/*
5793 *	pmap_zero_page zeros the specified hardware page by mapping
5794 *	the page into KVM and using bzero to clear its contents.
5795 */
5796void
5797pmap_zero_page(vm_page_t m)
5798{
5799	pt2_entry_t *cmap2_pte2p;
5800	struct pcpu *pc;
5801
5802	sched_pin();
5803	pc = get_pcpu();
5804	cmap2_pte2p = pc->pc_cmap2_pte2p;
5805	mtx_lock(&pc->pc_cmap_lock);
5806	if (pte2_load(cmap2_pte2p) != 0)
5807		panic("%s: CMAP2 busy", __func__);
5808	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5809	    vm_page_pte2_attr(m)));
5810	pagezero(pc->pc_cmap2_addr);
5811	pte2_clear(cmap2_pte2p);
5812	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5813	sched_unpin();
5814	mtx_unlock(&pc->pc_cmap_lock);
5815}
5816
5817/*
5818 *	pmap_zero_page_area zeros the specified hardware page by mapping
5819 *	the page into KVM and using bzero to clear its contents.
5820 *
5821 *	off and size may not cover an area beyond a single hardware page.
5822 */
5823void
5824pmap_zero_page_area(vm_page_t m, int off, int size)
5825{
5826	pt2_entry_t *cmap2_pte2p;
5827	struct pcpu *pc;
5828
5829	sched_pin();
5830	pc = get_pcpu();
5831	cmap2_pte2p = pc->pc_cmap2_pte2p;
5832	mtx_lock(&pc->pc_cmap_lock);
5833	if (pte2_load(cmap2_pte2p) != 0)
5834		panic("%s: CMAP2 busy", __func__);
5835	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5836	    vm_page_pte2_attr(m)));
5837	if (off == 0 && size == PAGE_SIZE)
5838		pagezero(pc->pc_cmap2_addr);
5839	else
5840		bzero(pc->pc_cmap2_addr + off, size);
5841	pte2_clear(cmap2_pte2p);
5842	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5843	sched_unpin();
5844	mtx_unlock(&pc->pc_cmap_lock);
5845}
5846
5847/*
5848 *	pmap_zero_page_idle zeros the specified hardware page by mapping
5849 *	the page into KVM and using bzero to clear its contents.  This
5850 *	is intended to be called from the vm_pagezero process only and
5851 *	outside of Giant.
5852 */
5853void
5854pmap_zero_page_idle(vm_page_t m)
5855{
5856
5857	if (pte2_load(CMAP3) != 0)
5858		panic("%s: CMAP3 busy", __func__);
5859	sched_pin();
5860	pte2_store(CMAP3, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5861	    vm_page_pte2_attr(m)));
5862	pagezero(CADDR3);
5863	pte2_clear(CMAP3);
5864	tlb_flush((vm_offset_t)CADDR3);
5865	sched_unpin();
5866}
5867
5868/*
5869 *	pmap_copy_page copies the specified (machine independent)
5870 *	page by mapping the page into virtual memory and using
5871 *	bcopy to copy the page, one machine dependent page at a
5872 *	time.
5873 */
5874void
5875pmap_copy_page(vm_page_t src, vm_page_t dst)
5876{
5877	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5878	struct pcpu *pc;
5879
5880	sched_pin();
5881	pc = get_pcpu();
5882	cmap1_pte2p = pc->pc_cmap1_pte2p;
5883	cmap2_pte2p = pc->pc_cmap2_pte2p;
5884	mtx_lock(&pc->pc_cmap_lock);
5885	if (pte2_load(cmap1_pte2p) != 0)
5886		panic("%s: CMAP1 busy", __func__);
5887	if (pte2_load(cmap2_pte2p) != 0)
5888		panic("%s: CMAP2 busy", __func__);
5889	pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(src),
5890	    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(src)));
5891	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(dst),
5892	    PTE2_AP_KRW, vm_page_pte2_attr(dst)));
5893	bcopy(pc->pc_cmap1_addr, pc->pc_cmap2_addr, PAGE_SIZE);
5894	pte2_clear(cmap1_pte2p);
5895	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5896	pte2_clear(cmap2_pte2p);
5897	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5898	sched_unpin();
5899	mtx_unlock(&pc->pc_cmap_lock);
5900}
5901
5902int unmapped_buf_allowed = 1;
5903
5904void
5905pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
5906    vm_offset_t b_offset, int xfersize)
5907{
5908	pt2_entry_t *cmap1_pte2p, *cmap2_pte2p;
5909	vm_page_t a_pg, b_pg;
5910	char *a_cp, *b_cp;
5911	vm_offset_t a_pg_offset, b_pg_offset;
5912	struct pcpu *pc;
5913	int cnt;
5914
5915	sched_pin();
5916	pc = get_pcpu();
5917	cmap1_pte2p = pc->pc_cmap1_pte2p;
5918	cmap2_pte2p = pc->pc_cmap2_pte2p;
5919	mtx_lock(&pc->pc_cmap_lock);
5920	if (pte2_load(cmap1_pte2p) != 0)
5921		panic("pmap_copy_pages: CMAP1 busy");
5922	if (pte2_load(cmap2_pte2p) != 0)
5923		panic("pmap_copy_pages: CMAP2 busy");
5924	while (xfersize > 0) {
5925		a_pg = ma[a_offset >> PAGE_SHIFT];
5926		a_pg_offset = a_offset & PAGE_MASK;
5927		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
5928		b_pg = mb[b_offset >> PAGE_SHIFT];
5929		b_pg_offset = b_offset & PAGE_MASK;
5930		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
5931		pte2_store(cmap1_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(a_pg),
5932		    PTE2_AP_KR | PTE2_NM, vm_page_pte2_attr(a_pg)));
5933		tlb_flush_local((vm_offset_t)pc->pc_cmap1_addr);
5934		pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(b_pg),
5935		    PTE2_AP_KRW, vm_page_pte2_attr(b_pg)));
5936		tlb_flush_local((vm_offset_t)pc->pc_cmap2_addr);
5937		a_cp = pc->pc_cmap1_addr + a_pg_offset;
5938		b_cp = pc->pc_cmap2_addr + b_pg_offset;
5939		bcopy(a_cp, b_cp, cnt);
5940		a_offset += cnt;
5941		b_offset += cnt;
5942		xfersize -= cnt;
5943	}
5944	pte2_clear(cmap1_pte2p);
5945	tlb_flush((vm_offset_t)pc->pc_cmap1_addr);
5946	pte2_clear(cmap2_pte2p);
5947	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
5948	sched_unpin();
5949	mtx_unlock(&pc->pc_cmap_lock);
5950}
5951
5952vm_offset_t
5953pmap_quick_enter_page(vm_page_t m)
5954{
5955	struct pcpu *pc;
5956	pt2_entry_t *pte2p;
5957
5958	critical_enter();
5959	pc = get_pcpu();
5960	pte2p = pc->pc_qmap_pte2p;
5961
5962	KASSERT(pte2_load(pte2p) == 0, ("%s: PTE2 busy", __func__));
5963
5964	pte2_store(pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
5965	    vm_page_pte2_attr(m)));
5966	return (pc->pc_qmap_addr);
5967}
5968
5969void
5970pmap_quick_remove_page(vm_offset_t addr)
5971{
5972	struct pcpu *pc;
5973	pt2_entry_t *pte2p;
5974
5975	pc = get_pcpu();
5976	pte2p = pc->pc_qmap_pte2p;
5977
5978	KASSERT(addr == pc->pc_qmap_addr, ("%s: invalid address", __func__));
5979	KASSERT(pte2_load(pte2p) != 0, ("%s: PTE2 not in use", __func__));
5980
5981	pte2_clear(pte2p);
5982	tlb_flush(pc->pc_qmap_addr);
5983	critical_exit();
5984}
5985
5986/*
5987 *	Copy the range specified by src_addr/len
5988 *	from the source map to the range dst_addr/len
5989 *	in the destination map.
5990 *
5991 *	This routine is only advisory and need not do anything.
5992 */
5993void
5994pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
5995    vm_offset_t src_addr)
5996{
5997	struct spglist free;
5998	vm_offset_t addr;
5999	vm_offset_t end_addr = src_addr + len;
6000	vm_offset_t nextva;
6001
6002	if (dst_addr != src_addr)
6003		return;
6004
6005	if (!pmap_is_current(src_pmap))
6006		return;
6007
6008	rw_wlock(&pvh_global_lock);
6009	if (dst_pmap < src_pmap) {
6010		PMAP_LOCK(dst_pmap);
6011		PMAP_LOCK(src_pmap);
6012	} else {
6013		PMAP_LOCK(src_pmap);
6014		PMAP_LOCK(dst_pmap);
6015	}
6016	sched_pin();
6017	for (addr = src_addr; addr < end_addr; addr = nextva) {
6018		pt2_entry_t *src_pte2p, *dst_pte2p;
6019		vm_page_t dst_mpt2pg, src_mpt2pg;
6020		pt1_entry_t src_pte1;
6021		u_int pte1_idx;
6022
6023		KASSERT(addr < VM_MAXUSER_ADDRESS,
6024		    ("%s: invalid to pmap_copy page tables", __func__));
6025
6026		nextva = pte1_trunc(addr + PTE1_SIZE);
6027		if (nextva < addr)
6028			nextva = end_addr;
6029
6030		pte1_idx = pte1_index(addr);
6031		src_pte1 = src_pmap->pm_pt1[pte1_idx];
6032		if (pte1_is_section(src_pte1)) {
6033			if ((addr & PTE1_OFFSET) != 0 ||
6034			    (addr + PTE1_SIZE) > end_addr)
6035				continue;
6036			if (dst_pmap->pm_pt1[pte1_idx] == 0 &&
6037			    (!pte1_is_managed(src_pte1) ||
6038			    pmap_pv_insert_pte1(dst_pmap, addr,
6039			    pte1_pa(src_pte1)))) {
6040				dst_pmap->pm_pt1[pte1_idx] = src_pte1 &
6041				    ~PTE1_W;
6042				dst_pmap->pm_stats.resident_count +=
6043				    PTE1_SIZE / PAGE_SIZE;
6044				pmap_pte1_mappings++;
6045			}
6046			continue;
6047		} else if (!pte1_is_link(src_pte1))
6048			continue;
6049
6050		src_mpt2pg = PHYS_TO_VM_PAGE(pte1_link_pa(src_pte1));
6051
6052		/*
6053		 * We leave PT2s to be linked from PT1 even if they are not
6054		 * referenced until all PT2s in a page are without reference.
6055		 *
6056		 * QQQ: It could be changed ...
6057		 */
6058#if 0 /* single_pt2_link_is_cleared */
6059		KASSERT(pt2_wirecount_get(src_mpt2pg, pte1_idx) > 0,
6060		    ("%s: source page table page is unused", __func__));
6061#else
6062		if (pt2_wirecount_get(src_mpt2pg, pte1_idx) == 0)
6063			continue;
6064#endif
6065		if (nextva > end_addr)
6066			nextva = end_addr;
6067
6068		src_pte2p = pt2map_entry(addr);
6069		while (addr < nextva) {
6070			pt2_entry_t temp_pte2;
6071			temp_pte2 = pte2_load(src_pte2p);
6072			/*
6073			 * we only virtual copy managed pages
6074			 */
6075			if (pte2_is_managed(temp_pte2)) {
6076				dst_mpt2pg = pmap_allocpte2(dst_pmap, addr,
6077				    PMAP_ENTER_NOSLEEP);
6078				if (dst_mpt2pg == NULL)
6079					goto out;
6080				dst_pte2p = pmap_pte2_quick(dst_pmap, addr);
6081				if (!pte2_is_valid(pte2_load(dst_pte2p)) &&
6082				    pmap_try_insert_pv_entry(dst_pmap, addr,
6083				    PHYS_TO_VM_PAGE(pte2_pa(temp_pte2)))) {
6084					/*
6085					 * Clear the wired, modified, and
6086					 * accessed (referenced) bits
6087					 * during the copy.
6088					 */
6089					temp_pte2 &=  ~(PTE2_W | PTE2_A);
6090					temp_pte2 |= PTE2_NM;
6091					pte2_store(dst_pte2p, temp_pte2);
6092					dst_pmap->pm_stats.resident_count++;
6093				} else {
6094					SLIST_INIT(&free);
6095					if (pmap_unwire_pt2(dst_pmap, addr,
6096					    dst_mpt2pg, &free)) {
6097						pmap_tlb_flush(dst_pmap, addr);
6098						pmap_free_zero_pages(&free);
6099					}
6100					goto out;
6101				}
6102				if (pt2_wirecount_get(dst_mpt2pg, pte1_idx) >=
6103				    pt2_wirecount_get(src_mpt2pg, pte1_idx))
6104					break;
6105			}
6106			addr += PAGE_SIZE;
6107			src_pte2p++;
6108		}
6109	}
6110out:
6111	sched_unpin();
6112	rw_wunlock(&pvh_global_lock);
6113	PMAP_UNLOCK(src_pmap);
6114	PMAP_UNLOCK(dst_pmap);
6115}
6116
6117/*
6118 *	Increase the starting virtual address of the given mapping if a
6119 *	different alignment might result in more section mappings.
6120 */
6121void
6122pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
6123    vm_offset_t *addr, vm_size_t size)
6124{
6125	vm_offset_t pte1_offset;
6126
6127	if (size < PTE1_SIZE)
6128		return;
6129	if (object != NULL && (object->flags & OBJ_COLORED) != 0)
6130		offset += ptoa(object->pg_color);
6131	pte1_offset = offset & PTE1_OFFSET;
6132	if (size - ((PTE1_SIZE - pte1_offset) & PTE1_OFFSET) < PTE1_SIZE ||
6133	    (*addr & PTE1_OFFSET) == pte1_offset)
6134		return;
6135	if ((*addr & PTE1_OFFSET) < pte1_offset)
6136		*addr = pte1_trunc(*addr) + pte1_offset;
6137	else
6138		*addr = pte1_roundup(*addr) + pte1_offset;
6139}
6140
6141void
6142pmap_activate(struct thread *td)
6143{
6144	pmap_t pmap, oldpmap;
6145	u_int cpuid, ttb;
6146
6147	PDEBUG(9, printf("%s: td = %08x\n", __func__, (uint32_t)td));
6148
6149	critical_enter();
6150	pmap = vmspace_pmap(td->td_proc->p_vmspace);
6151	oldpmap = PCPU_GET(curpmap);
6152	cpuid = PCPU_GET(cpuid);
6153
6154#if defined(SMP)
6155	CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
6156	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
6157#else
6158	CPU_CLR(cpuid, &oldpmap->pm_active);
6159	CPU_SET(cpuid, &pmap->pm_active);
6160#endif
6161
6162	ttb = pmap_ttb_get(pmap);
6163
6164	/*
6165	 * pmap_activate is for the current thread on the current cpu
6166	 */
6167	td->td_pcb->pcb_pagedir = ttb;
6168	cp15_ttbr_set(ttb);
6169	PCPU_SET(curpmap, pmap);
6170	critical_exit();
6171}
6172
6173/*
6174 *  Perform the pmap work for mincore.
6175 */
6176int
6177pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
6178{
6179	pt1_entry_t *pte1p, pte1;
6180	pt2_entry_t *pte2p, pte2;
6181	vm_paddr_t pa;
6182	bool managed;
6183	int val;
6184
6185	PMAP_LOCK(pmap);
6186retry:
6187	pte1p = pmap_pte1(pmap, addr);
6188	pte1 = pte1_load(pte1p);
6189	if (pte1_is_section(pte1)) {
6190		pa = trunc_page(pte1_pa(pte1) | (addr & PTE1_OFFSET));
6191		managed = pte1_is_managed(pte1);
6192		val = MINCORE_SUPER | MINCORE_INCORE;
6193		if (pte1_is_dirty(pte1))
6194			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6195		if (pte1 & PTE1_A)
6196			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6197	} else if (pte1_is_link(pte1)) {
6198		pte2p = pmap_pte2(pmap, addr);
6199		pte2 = pte2_load(pte2p);
6200		pmap_pte2_release(pte2p);
6201		pa = pte2_pa(pte2);
6202		managed = pte2_is_managed(pte2);
6203		val = MINCORE_INCORE;
6204		if (pte2_is_dirty(pte2))
6205			val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
6206		if (pte2 & PTE2_A)
6207			val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
6208	} else {
6209		managed = false;
6210		val = 0;
6211	}
6212	if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
6213	    (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && managed) {
6214		/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
6215		if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
6216			goto retry;
6217	} else
6218		PA_UNLOCK_COND(*locked_pa);
6219	PMAP_UNLOCK(pmap);
6220	return (val);
6221}
6222
6223void
6224pmap_kenter_device(vm_offset_t va, vm_size_t size, vm_paddr_t pa)
6225{
6226	vm_offset_t sva;
6227	uint32_t l2attr;
6228
6229	KASSERT((size & PAGE_MASK) == 0,
6230	    ("%s: device mapping not page-sized", __func__));
6231
6232	sva = va;
6233	l2attr = vm_memattr_to_pte2(VM_MEMATTR_DEVICE);
6234	while (size != 0) {
6235		pmap_kenter_prot_attr(va, pa, PTE2_AP_KRW, l2attr);
6236		va += PAGE_SIZE;
6237		pa += PAGE_SIZE;
6238		size -= PAGE_SIZE;
6239	}
6240	tlb_flush_range(sva, va - sva);
6241}
6242
6243void
6244pmap_kremove_device(vm_offset_t va, vm_size_t size)
6245{
6246	vm_offset_t sva;
6247
6248	KASSERT((size & PAGE_MASK) == 0,
6249	    ("%s: device mapping not page-sized", __func__));
6250
6251	sva = va;
6252	while (size != 0) {
6253		pmap_kremove(va);
6254		va += PAGE_SIZE;
6255		size -= PAGE_SIZE;
6256	}
6257	tlb_flush_range(sva, va - sva);
6258}
6259
6260void
6261pmap_set_pcb_pagedir(pmap_t pmap, struct pcb *pcb)
6262{
6263
6264	pcb->pcb_pagedir = pmap_ttb_get(pmap);
6265}
6266
6267
6268/*
6269 *  Clean L1 data cache range by physical address.
6270 *  The range must be within a single page.
6271 */
6272static void
6273pmap_dcache_wb_pou(vm_paddr_t pa, vm_size_t size, uint32_t attr)
6274{
6275	pt2_entry_t *cmap2_pte2p;
6276	struct pcpu *pc;
6277
6278	KASSERT(((pa & PAGE_MASK) + size) <= PAGE_SIZE,
6279	    ("%s: not on single page", __func__));
6280
6281	sched_pin();
6282	pc = get_pcpu();
6283	cmap2_pte2p = pc->pc_cmap2_pte2p;
6284	mtx_lock(&pc->pc_cmap_lock);
6285	if (pte2_load(cmap2_pte2p) != 0)
6286		panic("%s: CMAP2 busy", __func__);
6287	pte2_store(cmap2_pte2p, PTE2_KERN_NG(pa, PTE2_AP_KRW, attr));
6288	dcache_wb_pou((vm_offset_t)pc->pc_cmap2_addr + (pa & PAGE_MASK), size);
6289	pte2_clear(cmap2_pte2p);
6290	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6291	sched_unpin();
6292	mtx_unlock(&pc->pc_cmap_lock);
6293}
6294
6295/*
6296 *  Sync instruction cache range which is not mapped yet.
6297 */
6298void
6299cache_icache_sync_fresh(vm_offset_t va, vm_paddr_t pa, vm_size_t size)
6300{
6301	uint32_t len, offset;
6302	vm_page_t m;
6303
6304	/* Write back d-cache on given address range. */
6305	offset = pa & PAGE_MASK;
6306	for ( ; size != 0; size -= len, pa += len, offset = 0) {
6307		len = min(PAGE_SIZE - offset, size);
6308		m = PHYS_TO_VM_PAGE(pa);
6309		KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6310		  __func__, pa));
6311		pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6312	}
6313	/*
6314	 * I-cache is VIPT. Only way how to flush all virtual mappings
6315	 * on given physical address is to invalidate all i-cache.
6316	 */
6317	icache_inv_all();
6318}
6319
6320void
6321pmap_sync_icache(pmap_t pmap, vm_offset_t va, vm_size_t size)
6322{
6323
6324	/* Write back d-cache on given address range. */
6325	if (va >= VM_MIN_KERNEL_ADDRESS) {
6326		dcache_wb_pou(va, size);
6327	} else {
6328		uint32_t len, offset;
6329		vm_paddr_t pa;
6330		vm_page_t m;
6331
6332		offset = va & PAGE_MASK;
6333		for ( ; size != 0; size -= len, va += len, offset = 0) {
6334			pa = pmap_extract(pmap, va); /* offset is preserved */
6335			len = min(PAGE_SIZE - offset, size);
6336			m = PHYS_TO_VM_PAGE(pa);
6337			KASSERT(m != NULL, ("%s: vm_page_t is null for %#x",
6338				__func__, pa));
6339			pmap_dcache_wb_pou(pa, len, vm_page_pte2_attr(m));
6340		}
6341	}
6342	/*
6343	 * I-cache is VIPT. Only way how to flush all virtual mappings
6344	 * on given physical address is to invalidate all i-cache.
6345	 */
6346	icache_inv_all();
6347}
6348
6349/*
6350 *  The implementation of pmap_fault() uses IN_RANGE2() macro which
6351 *  depends on the fact that given range size is a power of 2.
6352 */
6353CTASSERT(powerof2(NB_IN_PT1));
6354CTASSERT(powerof2(PT2MAP_SIZE));
6355
6356#define IN_RANGE2(addr, start, size)	\
6357    ((vm_offset_t)(start) == ((vm_offset_t)(addr) & ~((size) - 1)))
6358
6359/*
6360 *  Handle access and R/W emulation faults.
6361 */
6362int
6363pmap_fault(pmap_t pmap, vm_offset_t far, uint32_t fsr, int idx, bool usermode)
6364{
6365	pt1_entry_t *pte1p, pte1;
6366	pt2_entry_t *pte2p, pte2;
6367
6368	if (pmap == NULL)
6369		pmap = kernel_pmap;
6370
6371	/*
6372	 * In kernel, we should never get abort with FAR which is in range of
6373	 * pmap->pm_pt1 or PT2MAP address spaces. If it happens, stop here
6374	 * and print out a useful abort message and even get to the debugger
6375	 * otherwise it likely ends with never ending loop of aborts.
6376	 */
6377	if (__predict_false(IN_RANGE2(far, pmap->pm_pt1, NB_IN_PT1))) {
6378		/*
6379		 * All L1 tables should always be mapped and present.
6380		 * However, we check only current one herein. For user mode,
6381		 * only permission abort from malicious user is not fatal.
6382		 * And alignment abort as it may have higher priority.
6383		 */
6384		if (!usermode || (idx != FAULT_ALIGN && idx != FAULT_PERM_L2)) {
6385			CTR4(KTR_PMAP, "%s: pmap %#x pm_pt1 %#x far %#x",
6386			    __func__, pmap, pmap->pm_pt1, far);
6387			panic("%s: pm_pt1 abort", __func__);
6388		}
6389		return (KERN_INVALID_ADDRESS);
6390	}
6391	if (__predict_false(IN_RANGE2(far, PT2MAP, PT2MAP_SIZE))) {
6392		/*
6393		 * PT2MAP should be always mapped and present in current
6394		 * L1 table. However, only existing L2 tables are mapped
6395		 * in PT2MAP. For user mode, only L2 translation abort and
6396		 * permission abort from malicious user is not fatal.
6397		 * And alignment abort as it may have higher priority.
6398		 */
6399		if (!usermode || (idx != FAULT_ALIGN &&
6400		    idx != FAULT_TRAN_L2 && idx != FAULT_PERM_L2)) {
6401			CTR4(KTR_PMAP, "%s: pmap %#x PT2MAP %#x far %#x",
6402			    __func__, pmap, PT2MAP, far);
6403			panic("%s: PT2MAP abort", __func__);
6404		}
6405		return (KERN_INVALID_ADDRESS);
6406	}
6407
6408	/*
6409	 * A pmap lock is used below for handling of access and R/W emulation
6410	 * aborts. They were handled by atomic operations before so some
6411	 * analysis of new situation is needed to answer the following question:
6412	 * Is it safe to use the lock even for these aborts?
6413	 *
6414	 * There may happen two cases in general:
6415	 *
6416	 * (1) Aborts while the pmap lock is locked already - this should not
6417	 * happen as pmap lock is not recursive. However, under pmap lock only
6418	 * internal kernel data should be accessed and such data should be
6419	 * mapped with A bit set and NM bit cleared. If double abort happens,
6420	 * then a mapping of data which has caused it must be fixed. Further,
6421	 * all new mappings are always made with A bit set and the bit can be
6422	 * cleared only on managed mappings.
6423	 *
6424	 * (2) Aborts while another lock(s) is/are locked - this already can
6425	 * happen. However, there is no difference here if it's either access or
6426	 * R/W emulation abort, or if it's some other abort.
6427	 */
6428
6429	PMAP_LOCK(pmap);
6430#ifdef SMP
6431	/*
6432	 * Special treatment is due to break-before-make approach done when
6433	 * pte1 is updated for userland mapping during section promotion or
6434	 * demotion. If not caught here, pmap_enter() can find a section
6435	 * mapping on faulting address. That is not allowed.
6436	 */
6437	if (idx == FAULT_TRAN_L1 && usermode && cp15_ats1cur_check(far) == 0) {
6438		PMAP_UNLOCK(pmap);
6439		return (KERN_SUCCESS);
6440	}
6441#endif
6442	/*
6443	 * Accesss bits for page and section. Note that the entry
6444	 * is not in TLB yet, so TLB flush is not necessary.
6445	 *
6446	 * QQQ: This is hardware emulation, we do not call userret()
6447	 *      for aborts from user mode.
6448	 */
6449	if (idx == FAULT_ACCESS_L2) {
6450		pte2p = pt2map_entry(far);
6451		pte2 = pte2_load(pte2p);
6452		if (pte2_is_valid(pte2)) {
6453			pte2_store(pte2p, pte2 | PTE2_A);
6454			PMAP_UNLOCK(pmap);
6455			return (KERN_SUCCESS);
6456		}
6457	}
6458	if (idx == FAULT_ACCESS_L1) {
6459		pte1p = pmap_pte1(pmap, far);
6460		pte1 = pte1_load(pte1p);
6461		if (pte1_is_section(pte1)) {
6462			pte1_store(pte1p, pte1 | PTE1_A);
6463			PMAP_UNLOCK(pmap);
6464			return (KERN_SUCCESS);
6465		}
6466	}
6467
6468	/*
6469	 * Handle modify bits for page and section. Note that the modify
6470	 * bit is emulated by software. So PTEx_RO is software read only
6471	 * bit and PTEx_NM flag is real hardware read only bit.
6472	 *
6473	 * QQQ: This is hardware emulation, we do not call userret()
6474	 *      for aborts from user mode.
6475	 */
6476	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L2)) {
6477		pte2p = pt2map_entry(far);
6478		pte2 = pte2_load(pte2p);
6479		if (pte2_is_valid(pte2) && !(pte2 & PTE2_RO) &&
6480		    (pte2 & PTE2_NM)) {
6481			pte2_store(pte2p, pte2 & ~PTE2_NM);
6482			tlb_flush(trunc_page(far));
6483			PMAP_UNLOCK(pmap);
6484			return (KERN_SUCCESS);
6485		}
6486	}
6487	if ((fsr & FSR_WNR) && (idx == FAULT_PERM_L1)) {
6488		pte1p = pmap_pte1(pmap, far);
6489		pte1 = pte1_load(pte1p);
6490		if (pte1_is_section(pte1) && !(pte1 & PTE1_RO) &&
6491		    (pte1 & PTE1_NM)) {
6492			pte1_store(pte1p, pte1 & ~PTE1_NM);
6493			tlb_flush(pte1_trunc(far));
6494			PMAP_UNLOCK(pmap);
6495			return (KERN_SUCCESS);
6496		}
6497	}
6498
6499	/*
6500	 * QQQ: The previous code, mainly fast handling of access and
6501	 *      modify bits aborts, could be moved to ASM. Now we are
6502	 *      starting to deal with not fast aborts.
6503	 */
6504
6505#ifdef INVARIANTS
6506	/*
6507	 * Read an entry in PT2TAB associated with both pmap and far.
6508	 * It's safe because PT2TAB is always mapped.
6509	 */
6510	pte2 = pt2tab_load(pmap_pt2tab_entry(pmap, far));
6511	if (pte2_is_valid(pte2)) {
6512		/*
6513		 * Now, when we know that L2 page table is allocated,
6514		 * we can use PT2MAP to get L2 page table entry.
6515		 */
6516		pte2 = pte2_load(pt2map_entry(far));
6517		if (pte2_is_valid(pte2)) {
6518			/*
6519			 * If L2 page table entry is valid, make sure that
6520			 * L1 page table entry is valid too.  Note that we
6521			 * leave L2 page entries untouched when promoted.
6522			 */
6523			pte1 = pte1_load(pmap_pte1(pmap, far));
6524			if (!pte1_is_valid(pte1)) {
6525				panic("%s: missing L1 page entry (%p, %#x)",
6526				    __func__, pmap, far);
6527			}
6528		}
6529	}
6530#endif
6531	PMAP_UNLOCK(pmap);
6532	return (KERN_FAILURE);
6533}
6534
6535#if defined(PMAP_DEBUG)
6536/*
6537 *  Reusing of KVA used in pmap_zero_page function !!!
6538 */
6539static void
6540pmap_zero_page_check(vm_page_t m)
6541{
6542	pt2_entry_t *cmap2_pte2p;
6543	uint32_t *p, *end;
6544	struct pcpu *pc;
6545
6546	sched_pin();
6547	pc = get_pcpu();
6548	cmap2_pte2p = pc->pc_cmap2_pte2p;
6549	mtx_lock(&pc->pc_cmap_lock);
6550	if (pte2_load(cmap2_pte2p) != 0)
6551		panic("%s: CMAP2 busy", __func__);
6552	pte2_store(cmap2_pte2p, PTE2_KERN_NG(VM_PAGE_TO_PHYS(m), PTE2_AP_KRW,
6553	    vm_page_pte2_attr(m)));
6554	end = (uint32_t*)(pc->pc_cmap2_addr + PAGE_SIZE);
6555	for (p = (uint32_t*)pc->pc_cmap2_addr; p < end; p++)
6556		if (*p != 0)
6557			panic("%s: page %p not zero, va: %p", __func__, m,
6558			    pc->pc_cmap2_addr);
6559	pte2_clear(cmap2_pte2p);
6560	tlb_flush((vm_offset_t)pc->pc_cmap2_addr);
6561	sched_unpin();
6562	mtx_unlock(&pc->pc_cmap_lock);
6563}
6564
6565int
6566pmap_pid_dump(int pid)
6567{
6568	pmap_t pmap;
6569	struct proc *p;
6570	int npte2 = 0;
6571	int i, j, index;
6572
6573	sx_slock(&allproc_lock);
6574	FOREACH_PROC_IN_SYSTEM(p) {
6575		if (p->p_pid != pid || p->p_vmspace == NULL)
6576			continue;
6577		index = 0;
6578		pmap = vmspace_pmap(p->p_vmspace);
6579		for (i = 0; i < NPTE1_IN_PT1; i++) {
6580			pt1_entry_t pte1;
6581			pt2_entry_t *pte2p, pte2;
6582			vm_offset_t base, va;
6583			vm_paddr_t pa;
6584			vm_page_t m;
6585
6586			base = i << PTE1_SHIFT;
6587			pte1 = pte1_load(&pmap->pm_pt1[i]);
6588
6589			if (pte1_is_section(pte1)) {
6590				/*
6591				 * QQQ: Do something here!
6592				 */
6593			} else if (pte1_is_link(pte1)) {
6594				for (j = 0; j < NPTE2_IN_PT2; j++) {
6595					va = base + (j << PAGE_SHIFT);
6596					if (va >= VM_MIN_KERNEL_ADDRESS) {
6597						if (index) {
6598							index = 0;
6599							printf("\n");
6600						}
6601						sx_sunlock(&allproc_lock);
6602						return (npte2);
6603					}
6604					pte2p = pmap_pte2(pmap, va);
6605					pte2 = pte2_load(pte2p);
6606					pmap_pte2_release(pte2p);
6607					if (!pte2_is_valid(pte2))
6608						continue;
6609
6610					pa = pte2_pa(pte2);
6611					m = PHYS_TO_VM_PAGE(pa);
6612					printf("va: 0x%x, pa: 0x%x, h: %d, w:"
6613					    " %d, f: 0x%x", va, pa,
6614					    m->hold_count, m->wire_count,
6615					    m->flags);
6616					npte2++;
6617					index++;
6618					if (index >= 2) {
6619						index = 0;
6620						printf("\n");
6621					} else {
6622						printf(" ");
6623					}
6624				}
6625			}
6626		}
6627	}
6628	sx_sunlock(&allproc_lock);
6629	return (npte2);
6630}
6631
6632#endif
6633
6634#ifdef DDB
6635static pt2_entry_t *
6636pmap_pte2_ddb(pmap_t pmap, vm_offset_t va)
6637{
6638	pt1_entry_t pte1;
6639	vm_paddr_t pt2pg_pa;
6640
6641	pte1 = pte1_load(pmap_pte1(pmap, va));
6642	if (!pte1_is_link(pte1))
6643		return (NULL);
6644
6645	if (pmap_is_current(pmap))
6646		return (pt2map_entry(va));
6647
6648	/* Note that L2 page table size is not equal to PAGE_SIZE. */
6649	pt2pg_pa = trunc_page(pte1_link_pa(pte1));
6650	if (pte2_pa(pte2_load(PMAP3)) != pt2pg_pa) {
6651		pte2_store(PMAP3, PTE2_KPT(pt2pg_pa));
6652#ifdef SMP
6653		PMAP3cpu = PCPU_GET(cpuid);
6654#endif
6655		tlb_flush_local((vm_offset_t)PADDR3);
6656	}
6657#ifdef SMP
6658	else if (PMAP3cpu != PCPU_GET(cpuid)) {
6659		PMAP3cpu = PCPU_GET(cpuid);
6660		tlb_flush_local((vm_offset_t)PADDR3);
6661	}
6662#endif
6663	return (PADDR3 + (arm32_btop(va) & (NPTE2_IN_PG - 1)));
6664}
6665
6666static void
6667dump_pmap(pmap_t pmap)
6668{
6669
6670	printf("pmap %p\n", pmap);
6671	printf("  pm_pt1: %p\n", pmap->pm_pt1);
6672	printf("  pm_pt2tab: %p\n", pmap->pm_pt2tab);
6673	printf("  pm_active: 0x%08lX\n", pmap->pm_active.__bits[0]);
6674}
6675
6676DB_SHOW_COMMAND(pmaps, pmap_list_pmaps)
6677{
6678
6679	pmap_t pmap;
6680	LIST_FOREACH(pmap, &allpmaps, pm_list) {
6681		dump_pmap(pmap);
6682	}
6683}
6684
6685static int
6686pte2_class(pt2_entry_t pte2)
6687{
6688	int cls;
6689
6690	cls = (pte2 >> 2) & 0x03;
6691	cls |= (pte2 >> 4) & 0x04;
6692	return (cls);
6693}
6694
6695static void
6696dump_section(pmap_t pmap, uint32_t pte1_idx)
6697{
6698}
6699
6700static void
6701dump_link(pmap_t pmap, uint32_t pte1_idx, boolean_t invalid_ok)
6702{
6703	uint32_t i;
6704	vm_offset_t va;
6705	pt2_entry_t *pte2p, pte2;
6706	vm_page_t m;
6707
6708	va = pte1_idx << PTE1_SHIFT;
6709	pte2p = pmap_pte2_ddb(pmap, va);
6710	for (i = 0; i < NPTE2_IN_PT2; i++, pte2p++, va += PAGE_SIZE) {
6711		pte2 = pte2_load(pte2p);
6712		if (pte2 == 0)
6713			continue;
6714		if (!pte2_is_valid(pte2)) {
6715			printf(" 0x%08X: 0x%08X", va, pte2);
6716			if (!invalid_ok)
6717				printf(" - not valid !!!");
6718			printf("\n");
6719			continue;
6720		}
6721		m = PHYS_TO_VM_PAGE(pte2_pa(pte2));
6722		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, g:%d, m:%p", va , pte2,
6723		    pte2_class(pte2), !!(pte2 & PTE2_S), !(pte2 & PTE2_NG), m);
6724		if (m != NULL) {
6725			printf(" v:%d h:%d w:%d f:0x%04X\n", m->valid,
6726			    m->hold_count, m->wire_count, m->flags);
6727		} else {
6728			printf("\n");
6729		}
6730	}
6731}
6732
6733static __inline boolean_t
6734is_pv_chunk_space(vm_offset_t va)
6735{
6736
6737	if ((((vm_offset_t)pv_chunkbase) <= va) &&
6738	    (va < ((vm_offset_t)pv_chunkbase + PAGE_SIZE * pv_maxchunks)))
6739		return (TRUE);
6740	return (FALSE);
6741}
6742
6743DB_SHOW_COMMAND(pmap, pmap_pmap_print)
6744{
6745	/* XXX convert args. */
6746	pmap_t pmap = (pmap_t)addr;
6747	pt1_entry_t pte1;
6748	pt2_entry_t pte2;
6749	vm_offset_t va, eva;
6750	vm_page_t m;
6751	uint32_t i;
6752	boolean_t invalid_ok, dump_link_ok, dump_pv_chunk;
6753
6754	if (have_addr) {
6755		pmap_t pm;
6756
6757		LIST_FOREACH(pm, &allpmaps, pm_list)
6758			if (pm == pmap) break;
6759		if (pm == NULL) {
6760			printf("given pmap %p is not in allpmaps list\n", pmap);
6761			return;
6762		}
6763	} else
6764		pmap = PCPU_GET(curpmap);
6765
6766	eva = (modif[0] == 'u') ? VM_MAXUSER_ADDRESS : 0xFFFFFFFF;
6767	dump_pv_chunk = FALSE; /* XXX evaluate from modif[] */
6768
6769	printf("pmap: 0x%08X\n", (uint32_t)pmap);
6770	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6771	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6772
6773	for(i = 0; i < NPTE1_IN_PT1; i++) {
6774		pte1 = pte1_load(&pmap->pm_pt1[i]);
6775		if (pte1 == 0)
6776			continue;
6777		va = i << PTE1_SHIFT;
6778		if (va >= eva)
6779			break;
6780
6781		if (pte1_is_section(pte1)) {
6782			printf("0x%08X: Section 0x%08X, s:%d g:%d\n", va, pte1,
6783			    !!(pte1 & PTE1_S), !(pte1 & PTE1_NG));
6784			dump_section(pmap, i);
6785		} else if (pte1_is_link(pte1)) {
6786			dump_link_ok = TRUE;
6787			invalid_ok = FALSE;
6788			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6789			m = PHYS_TO_VM_PAGE(pte1_link_pa(pte1));
6790			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X m: %p",
6791			    va, pte1, pte2, m);
6792			if (is_pv_chunk_space(va)) {
6793				printf(" - pv_chunk space");
6794				if (dump_pv_chunk)
6795					invalid_ok = TRUE;
6796				else
6797					dump_link_ok = FALSE;
6798			}
6799			else if (m != NULL)
6800				printf(" w:%d w2:%u", m->wire_count,
6801				    pt2_wirecount_get(m, pte1_index(va)));
6802			if (pte2 == 0)
6803				printf(" !!! pt2tab entry is ZERO");
6804			else if (pte2_pa(pte1) != pte2_pa(pte2))
6805				printf(" !!! pt2tab entry is DIFFERENT - m: %p",
6806				    PHYS_TO_VM_PAGE(pte2_pa(pte2)));
6807			printf("\n");
6808			if (dump_link_ok)
6809				dump_link(pmap, i, invalid_ok);
6810		} else
6811			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6812	}
6813}
6814
6815static void
6816dump_pt2tab(pmap_t pmap)
6817{
6818	uint32_t i;
6819	pt2_entry_t pte2;
6820	vm_offset_t va;
6821	vm_paddr_t pa;
6822	vm_page_t m;
6823
6824	printf("PT2TAB:\n");
6825	for (i = 0; i < PT2TAB_ENTRIES; i++) {
6826		pte2 = pte2_load(&pmap->pm_pt2tab[i]);
6827		if (!pte2_is_valid(pte2))
6828			continue;
6829		va = i << PT2TAB_SHIFT;
6830		pa = pte2_pa(pte2);
6831		m = PHYS_TO_VM_PAGE(pa);
6832		printf(" 0x%08X: 0x%08X, TEX%d, s:%d, m:%p", va, pte2,
6833		    pte2_class(pte2), !!(pte2 & PTE2_S), m);
6834		if (m != NULL)
6835			printf(" , h: %d, w: %d, f: 0x%04X pidx: %lld",
6836			    m->hold_count, m->wire_count, m->flags, m->pindex);
6837		printf("\n");
6838	}
6839}
6840
6841DB_SHOW_COMMAND(pmap_pt2tab, pmap_pt2tab_print)
6842{
6843	/* XXX convert args. */
6844	pmap_t pmap = (pmap_t)addr;
6845	pt1_entry_t pte1;
6846	pt2_entry_t pte2;
6847	vm_offset_t va;
6848	uint32_t i, start;
6849
6850	if (have_addr) {
6851		printf("supported only on current pmap\n");
6852		return;
6853	}
6854
6855	pmap = PCPU_GET(curpmap);
6856	printf("curpmap: 0x%08X\n", (uint32_t)pmap);
6857	printf("PT2MAP: 0x%08X\n", (uint32_t)PT2MAP);
6858	printf("pt2tab: 0x%08X\n", (uint32_t)pmap->pm_pt2tab);
6859
6860	start = pte1_index((vm_offset_t)PT2MAP);
6861	for (i = start; i < (start + NPT2_IN_PT2TAB); i++) {
6862		pte1 = pte1_load(&pmap->pm_pt1[i]);
6863		if (pte1 == 0)
6864			continue;
6865		va = i << PTE1_SHIFT;
6866		if (pte1_is_section(pte1)) {
6867			printf("0x%08X: Section 0x%08X, s:%d\n", va, pte1,
6868			    !!(pte1 & PTE1_S));
6869			dump_section(pmap, i);
6870		} else if (pte1_is_link(pte1)) {
6871			pte2 = pte2_load(pmap_pt2tab_entry(pmap, va));
6872			printf("0x%08X: Link 0x%08X, pt2tab: 0x%08X\n", va,
6873			    pte1, pte2);
6874			if (pte2 == 0)
6875				printf("  !!! pt2tab entry is ZERO\n");
6876		} else
6877			printf("0x%08X: Invalid entry 0x%08X\n", va, pte1);
6878	}
6879	dump_pt2tab(pmap);
6880}
6881#endif
6882