machdep.c revision 317005
1124758Semax/*	$NetBSD: arm32_machdep.c,v 1.44 2004/03/24 15:34:47 atatat Exp $	*/
2124758Semax
3124758Semax/*-
4124758Semax * Copyright (c) 2004 Olivier Houchard
5124758Semax * Copyright (c) 1994-1998 Mark Brinicombe.
6124758Semax * Copyright (c) 1994 Brini.
7124758Semax * All rights reserved.
8124758Semax *
9124758Semax * This code is derived from software written for Brini by Mark Brinicombe
10124758Semax *
11124758Semax * Redistribution and use in source and binary forms, with or without
12124758Semax * modification, are permitted provided that the following conditions
13124758Semax * are met:
14124758Semax * 1. Redistributions of source code must retain the above copyright
15124758Semax *    notice, this list of conditions and the following disclaimer.
16124758Semax * 2. Redistributions in binary form must reproduce the above copyright
17124758Semax *    notice, this list of conditions and the following disclaimer in the
18124758Semax *    documentation and/or other materials provided with the distribution.
19124758Semax * 3. All advertising materials mentioning features or use of this software
20124758Semax *    must display the following acknowledgement:
21124758Semax *	This product includes software developed by Mark Brinicombe
22124758Semax *	for the NetBSD Project.
23124758Semax * 4. The name of the company nor the name of the author may be used to
24124758Semax *    endorse or promote products derived from this software without specific
25124758Semax *    prior written permission.
26124758Semax *
27124758Semax * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
28124758Semax * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
29124758Semax * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30124758Semax * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
31124758Semax * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
32124758Semax * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
33124758Semax * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
34124758Semax * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
35124758Semax * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
36124758Semax * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
37124758Semax * SUCH DAMAGE.
38124758Semax *
39124758Semax * Machine dependent functions for kernel setup
40124758Semax *
41124758Semax * Created      : 17/09/94
42124758Semax * Updated	: 18/04/01 updated for new wscons
43124758Semax */
44153176Semax
45153176Semax#include "opt_compat.h"
46124758Semax#include "opt_ddb.h"
47124758Semax#include "opt_kstack_pages.h"
48124758Semax#include "opt_platform.h"
49124758Semax#include "opt_sched.h"
50124758Semax#include "opt_timer.h"
51124758Semax
52124758Semax#include <sys/cdefs.h>
53124758Semax__FBSDID("$FreeBSD: stable/11/sys/arm/arm/machdep.c 317005 2017-04-16 07:33:47Z mmel $");
54124758Semax
55124758Semax#include <sys/param.h>
56124758Semax#include <sys/buf.h>
57124758Semax#include <sys/bus.h>
58124758Semax#include <sys/cons.h>
59124758Semax#include <sys/cpu.h>
60124758Semax#include <sys/devmap.h>
61124758Semax#include <sys/efi.h>
62124758Semax#include <sys/imgact.h>
63124758Semax#include <sys/kdb.h>
64124758Semax#include <sys/kernel.h>
65124758Semax#include <sys/linker.h>
66124758Semax#include <sys/msgbuf.h>
67124758Semax#include <sys/rwlock.h>
68124758Semax#include <sys/sched.h>
69124758Semax#include <sys/syscallsubr.h>
70124758Semax#include <sys/sysent.h>
71124758Semax#include <sys/sysproto.h>
72124758Semax
73124758Semax#include <vm/vm_object.h>
74124758Semax#include <vm/vm_page.h>
75124758Semax#include <vm/vm_pager.h>
76124758Semax
77124758Semax#include <machine/debug_monitor.h>
78124758Semax#include <machine/machdep.h>
79124758Semax#include <machine/metadata.h>
80124758Semax#include <machine/pcb.h>
81124758Semax#include <machine/physmem.h>
82124758Semax#include <machine/platform.h>
83124758Semax#include <machine/sysarch.h>
84124758Semax#include <machine/undefined.h>
85124758Semax#include <machine/vfp.h>
86124758Semax#include <machine/vmparam.h>
87124758Semax
88124758Semax#ifdef FDT
89124758Semax#include <dev/fdt/fdt_common.h>
90124758Semax#include <machine/ofw_machdep.h>
91124758Semax#endif
92124758Semax
93124758Semax#ifdef DEBUG
94124758Semax#define	debugf(fmt, args...) printf(fmt, ##args)
95124758Semax#else
96124758Semax#define	debugf(fmt, args...)
97124758Semax#endif
98124758Semax
99124758Semax#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
100124758Semax    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7) || \
101124758Semax    defined(COMPAT_FREEBSD9)
102124758Semax#error FreeBSD/arm doesn't provide compatibility with releases prior to 10
103#endif
104
105struct pcpu __pcpu[MAXCPU];
106struct pcpu *pcpup = &__pcpu[0];
107
108static struct trapframe proc0_tf;
109uint32_t cpu_reset_address = 0;
110int cold = 1;
111vm_offset_t vector_page;
112
113int (*_arm_memcpy)(void *, void *, int, int) = NULL;
114int (*_arm_bzero)(void *, int, int) = NULL;
115int _min_memcpy_size = 0;
116int _min_bzero_size = 0;
117
118extern int *end;
119
120#ifdef FDT
121vm_paddr_t pmap_pa;
122#if __ARM_ARCH >= 6
123vm_offset_t systempage;
124vm_offset_t irqstack;
125vm_offset_t undstack;
126vm_offset_t abtstack;
127#else
128/*
129 * This is the number of L2 page tables required for covering max
130 * (hypothetical) memsize of 4GB and all kernel mappings (vectors, msgbuf,
131 * stacks etc.), uprounded to be divisible by 4.
132 */
133#define KERNEL_PT_MAX	78
134static struct pv_addr kernel_pt_table[KERNEL_PT_MAX];
135struct pv_addr systempage;
136static struct pv_addr msgbufpv;
137struct pv_addr irqstack;
138struct pv_addr undstack;
139struct pv_addr abtstack;
140static struct pv_addr kernelstack;
141#endif /* __ARM_ARCH >= 6 */
142#endif /* FDT */
143
144#ifdef MULTIDELAY
145static delay_func *delay_impl;
146static void *delay_arg;
147#endif
148
149struct kva_md_info kmi;
150
151/*
152 * arm32_vector_init:
153 *
154 *	Initialize the vector page, and select whether or not to
155 *	relocate the vectors.
156 *
157 *	NOTE: We expect the vector page to be mapped at its expected
158 *	destination.
159 */
160
161extern unsigned int page0[], page0_data[];
162void
163arm_vector_init(vm_offset_t va, int which)
164{
165	unsigned int *vectors = (int *) va;
166	unsigned int *vectors_data = vectors + (page0_data - page0);
167	int vec;
168
169	/*
170	 * Loop through the vectors we're taking over, and copy the
171	 * vector's insn and data word.
172	 */
173	for (vec = 0; vec < ARM_NVEC; vec++) {
174		if ((which & (1 << vec)) == 0) {
175			/* Don't want to take over this vector. */
176			continue;
177		}
178		vectors[vec] = page0[vec];
179		vectors_data[vec] = page0_data[vec];
180	}
181
182	/* Now sync the vectors. */
183	icache_sync(va, (ARM_NVEC * 2) * sizeof(u_int));
184
185	vector_page = va;
186#if __ARM_ARCH < 6
187	if (va == ARM_VECTORS_HIGH) {
188		/*
189		 * Enable high vectors in the system control reg (SCTLR).
190		 *
191		 * Assume the MD caller knows what it's doing here, and really
192		 * does want the vector page relocated.
193		 *
194		 * Note: This has to be done here (and not just in
195		 * cpu_setup()) because the vector page needs to be
196		 * accessible *before* cpu_startup() is called.
197		 * Think ddb(9) ...
198		 */
199		cpu_control(CPU_CONTROL_VECRELOC, CPU_CONTROL_VECRELOC);
200	}
201#endif
202}
203
204static void
205cpu_startup(void *dummy)
206{
207	struct pcb *pcb = thread0.td_pcb;
208	const unsigned int mbyte = 1024 * 1024;
209#if __ARM_ARCH < 6 && !defined(ARM_CACHE_LOCK_ENABLE)
210	vm_page_t m;
211#endif
212
213	identify_arm_cpu();
214
215	vm_ksubmap_init(&kmi);
216
217	/*
218	 * Display the RAM layout.
219	 */
220	printf("real memory  = %ju (%ju MB)\n",
221	    (uintmax_t)arm32_ptob(realmem),
222	    (uintmax_t)arm32_ptob(realmem) / mbyte);
223	printf("avail memory = %ju (%ju MB)\n",
224	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count),
225	    (uintmax_t)arm32_ptob(vm_cnt.v_free_count) / mbyte);
226	if (bootverbose) {
227		arm_physmem_print_tables();
228		devmap_print_table();
229	}
230
231	bufinit();
232	vm_pager_bufferinit();
233	pcb->pcb_regs.sf_sp = (u_int)thread0.td_kstack +
234	    USPACE_SVC_STACK_TOP;
235	pmap_set_pcb_pagedir(kernel_pmap, pcb);
236#if __ARM_ARCH < 6
237	vector_page_setprot(VM_PROT_READ);
238	pmap_postinit();
239#ifdef ARM_CACHE_LOCK_ENABLE
240	pmap_kenter_user(ARM_TP_ADDRESS, ARM_TP_ADDRESS);
241	arm_lock_cache_line(ARM_TP_ADDRESS);
242#else
243	m = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ | VM_ALLOC_ZERO);
244	pmap_kenter_user(ARM_TP_ADDRESS, VM_PAGE_TO_PHYS(m));
245#endif
246	*(uint32_t *)ARM_RAS_START = 0;
247	*(uint32_t *)ARM_RAS_END = 0xffffffff;
248#endif
249}
250
251SYSINIT(cpu, SI_SUB_CPU, SI_ORDER_FIRST, cpu_startup, NULL);
252
253/*
254 * Flush the D-cache for non-DMA I/O so that the I-cache can
255 * be made coherent later.
256 */
257void
258cpu_flush_dcache(void *ptr, size_t len)
259{
260
261	dcache_wb_poc((vm_offset_t)ptr, (vm_paddr_t)vtophys(ptr), len);
262}
263
264/* Get current clock frequency for the given cpu id. */
265int
266cpu_est_clockrate(int cpu_id, uint64_t *rate)
267{
268
269	return (ENXIO);
270}
271
272void
273cpu_idle(int busy)
274{
275
276	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d", busy, curcpu);
277	spinlock_enter();
278#ifndef NO_EVENTTIMERS
279	if (!busy)
280		cpu_idleclock();
281#endif
282	if (!sched_runnable())
283		cpu_sleep(0);
284#ifndef NO_EVENTTIMERS
285	if (!busy)
286		cpu_activeclock();
287#endif
288	spinlock_exit();
289	CTR2(KTR_SPARE2, "cpu_idle(%d) at %d done", busy, curcpu);
290}
291
292int
293cpu_idle_wakeup(int cpu)
294{
295
296	return (0);
297}
298
299/*
300 * Most ARM platforms don't need to do anything special to init their clocks
301 * (they get intialized during normal device attachment), and by not defining a
302 * cpu_initclocks() function they get this generic one.  Any platform that needs
303 * to do something special can just provide their own implementation, which will
304 * override this one due to the weak linkage.
305 */
306void
307arm_generic_initclocks(void)
308{
309
310#ifndef NO_EVENTTIMERS
311#ifdef SMP
312	if (PCPU_GET(cpuid) == 0)
313		cpu_initclocks_bsp();
314	else
315		cpu_initclocks_ap();
316#else
317	cpu_initclocks_bsp();
318#endif
319#endif
320}
321__weak_reference(arm_generic_initclocks, cpu_initclocks);
322
323#ifdef MULTIDELAY
324void
325arm_set_delay(delay_func *impl, void *arg)
326{
327
328	KASSERT(impl != NULL, ("No DELAY implementation"));
329	delay_impl = impl;
330	delay_arg = arg;
331}
332
333void
334DELAY(int usec)
335{
336
337	delay_impl(usec, delay_arg);
338}
339#endif
340
341void
342cpu_pcpu_init(struct pcpu *pcpu, int cpuid, size_t size)
343{
344}
345
346void
347spinlock_enter(void)
348{
349	struct thread *td;
350	register_t cspr;
351
352	td = curthread;
353	if (td->td_md.md_spinlock_count == 0) {
354		cspr = disable_interrupts(PSR_I | PSR_F);
355		td->td_md.md_spinlock_count = 1;
356		td->td_md.md_saved_cspr = cspr;
357	} else
358		td->td_md.md_spinlock_count++;
359	critical_enter();
360}
361
362void
363spinlock_exit(void)
364{
365	struct thread *td;
366	register_t cspr;
367
368	td = curthread;
369	critical_exit();
370	cspr = td->td_md.md_saved_cspr;
371	td->td_md.md_spinlock_count--;
372	if (td->td_md.md_spinlock_count == 0)
373		restore_interrupts(cspr);
374}
375
376/*
377 * Clear registers on exec
378 */
379void
380exec_setregs(struct thread *td, struct image_params *imgp, u_long stack)
381{
382	struct trapframe *tf = td->td_frame;
383
384	memset(tf, 0, sizeof(*tf));
385	tf->tf_usr_sp = stack;
386	tf->tf_usr_lr = imgp->entry_addr;
387	tf->tf_svc_lr = 0x77777777;
388	tf->tf_pc = imgp->entry_addr;
389	tf->tf_spsr = PSR_USR32_MODE;
390}
391
392
393#ifdef VFP
394/*
395 * Get machine VFP context.
396 */
397static void
398get_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
399{
400	struct pcb *curpcb;
401
402	curpcb = curthread->td_pcb;
403	critical_enter();
404
405	vfp_store(&curpcb->pcb_vfpstate, false);
406	memcpy(vfp->mcv_reg, curpcb->pcb_vfpstate.reg,
407	    sizeof(vfp->mcv_reg));
408	vfp->mcv_fpscr = curpcb->pcb_vfpstate.fpscr;
409
410	critical_exit();
411}
412
413/*
414 * Set machine VFP context.
415 */
416static void
417set_vfpcontext(struct thread *td, mcontext_vfp_t *vfp)
418{
419	struct pcb *curpcb;
420
421	curpcb = curthread->td_pcb;
422	critical_enter();
423
424	vfp_discard(td);
425	memcpy(curpcb->pcb_vfpstate.reg, vfp->mcv_reg,
426	    sizeof(curpcb->pcb_vfpstate.reg));
427	curpcb->pcb_vfpstate.fpscr = vfp->mcv_fpscr;
428
429	critical_exit();
430}
431#endif
432
433/*
434 * Get machine context.
435 */
436int
437get_mcontext(struct thread *td, mcontext_t *mcp, int clear_ret)
438{
439	struct trapframe *tf = td->td_frame;
440	__greg_t *gr = mcp->__gregs;
441
442	if (clear_ret & GET_MC_CLEAR_RET) {
443		gr[_REG_R0] = 0;
444		gr[_REG_CPSR] = tf->tf_spsr & ~PSR_C;
445	} else {
446		gr[_REG_R0]   = tf->tf_r0;
447		gr[_REG_CPSR] = tf->tf_spsr;
448	}
449	gr[_REG_R1]   = tf->tf_r1;
450	gr[_REG_R2]   = tf->tf_r2;
451	gr[_REG_R3]   = tf->tf_r3;
452	gr[_REG_R4]   = tf->tf_r4;
453	gr[_REG_R5]   = tf->tf_r5;
454	gr[_REG_R6]   = tf->tf_r6;
455	gr[_REG_R7]   = tf->tf_r7;
456	gr[_REG_R8]   = tf->tf_r8;
457	gr[_REG_R9]   = tf->tf_r9;
458	gr[_REG_R10]  = tf->tf_r10;
459	gr[_REG_R11]  = tf->tf_r11;
460	gr[_REG_R12]  = tf->tf_r12;
461	gr[_REG_SP]   = tf->tf_usr_sp;
462	gr[_REG_LR]   = tf->tf_usr_lr;
463	gr[_REG_PC]   = tf->tf_pc;
464
465	mcp->mc_vfp_size = 0;
466	mcp->mc_vfp_ptr = NULL;
467	memset(&mcp->mc_spare, 0, sizeof(mcp->mc_spare));
468
469	return (0);
470}
471
472/*
473 * Set machine context.
474 *
475 * However, we don't set any but the user modifiable flags, and we won't
476 * touch the cs selector.
477 */
478int
479set_mcontext(struct thread *td, mcontext_t *mcp)
480{
481	mcontext_vfp_t mc_vfp, *vfp;
482	struct trapframe *tf = td->td_frame;
483	const __greg_t *gr = mcp->__gregs;
484
485#ifdef WITNESS
486	if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_size != sizeof(mc_vfp)) {
487		printf("%s: %s: Malformed mc_vfp_size: %d (0x%08X)\n",
488		    td->td_proc->p_comm, __func__,
489		    mcp->mc_vfp_size, mcp->mc_vfp_size);
490	} else if (mcp->mc_vfp_size != 0 && mcp->mc_vfp_ptr == NULL) {
491		printf("%s: %s: c_vfp_size != 0 but mc_vfp_ptr == NULL\n",
492		    td->td_proc->p_comm, __func__);
493	}
494#endif
495
496	if (mcp->mc_vfp_size == sizeof(mc_vfp) && mcp->mc_vfp_ptr != NULL) {
497		if (copyin(mcp->mc_vfp_ptr, &mc_vfp, sizeof(mc_vfp)) != 0)
498			return (EFAULT);
499		vfp = &mc_vfp;
500	} else {
501		vfp = NULL;
502	}
503
504	tf->tf_r0 = gr[_REG_R0];
505	tf->tf_r1 = gr[_REG_R1];
506	tf->tf_r2 = gr[_REG_R2];
507	tf->tf_r3 = gr[_REG_R3];
508	tf->tf_r4 = gr[_REG_R4];
509	tf->tf_r5 = gr[_REG_R5];
510	tf->tf_r6 = gr[_REG_R6];
511	tf->tf_r7 = gr[_REG_R7];
512	tf->tf_r8 = gr[_REG_R8];
513	tf->tf_r9 = gr[_REG_R9];
514	tf->tf_r10 = gr[_REG_R10];
515	tf->tf_r11 = gr[_REG_R11];
516	tf->tf_r12 = gr[_REG_R12];
517	tf->tf_usr_sp = gr[_REG_SP];
518	tf->tf_usr_lr = gr[_REG_LR];
519	tf->tf_pc = gr[_REG_PC];
520	tf->tf_spsr = gr[_REG_CPSR];
521#ifdef VFP
522	if (vfp != NULL)
523		set_vfpcontext(td, vfp);
524#endif
525	return (0);
526}
527
528void
529sendsig(catcher, ksi, mask)
530	sig_t catcher;
531	ksiginfo_t *ksi;
532	sigset_t *mask;
533{
534	struct thread *td;
535	struct proc *p;
536	struct trapframe *tf;
537	struct sigframe *fp, frame;
538	struct sigacts *psp;
539	struct sysentvec *sysent;
540	int onstack;
541	int sig;
542	int code;
543
544	td = curthread;
545	p = td->td_proc;
546	PROC_LOCK_ASSERT(p, MA_OWNED);
547	sig = ksi->ksi_signo;
548	code = ksi->ksi_code;
549	psp = p->p_sigacts;
550	mtx_assert(&psp->ps_mtx, MA_OWNED);
551	tf = td->td_frame;
552	onstack = sigonstack(tf->tf_usr_sp);
553
554	CTR4(KTR_SIG, "sendsig: td=%p (%s) catcher=%p sig=%d", td, p->p_comm,
555	    catcher, sig);
556
557	/* Allocate and validate space for the signal handler context. */
558	if ((td->td_pflags & TDP_ALTSTACK) != 0 && !(onstack) &&
559	    SIGISMEMBER(psp->ps_sigonstack, sig)) {
560		fp = (struct sigframe *)((uintptr_t)td->td_sigstk.ss_sp +
561		    td->td_sigstk.ss_size);
562#if defined(COMPAT_43)
563		td->td_sigstk.ss_flags |= SS_ONSTACK;
564#endif
565	} else
566		fp = (struct sigframe *)td->td_frame->tf_usr_sp;
567
568	/* make room on the stack */
569	fp--;
570
571	/* make the stack aligned */
572	fp = (struct sigframe *)STACKALIGN(fp);
573	/* Populate the siginfo frame. */
574	get_mcontext(td, &frame.sf_uc.uc_mcontext, 0);
575#ifdef VFP
576	get_vfpcontext(td, &frame.sf_vfp);
577	frame.sf_uc.uc_mcontext.mc_vfp_size = sizeof(fp->sf_vfp);
578	frame.sf_uc.uc_mcontext.mc_vfp_ptr = &fp->sf_vfp;
579#else
580	frame.sf_uc.uc_mcontext.mc_vfp_size = 0;
581	frame.sf_uc.uc_mcontext.mc_vfp_ptr = NULL;
582#endif
583	frame.sf_si = ksi->ksi_info;
584	frame.sf_uc.uc_sigmask = *mask;
585	frame.sf_uc.uc_stack.ss_flags = (td->td_pflags & TDP_ALTSTACK )
586	    ? ((onstack) ? SS_ONSTACK : 0) : SS_DISABLE;
587	frame.sf_uc.uc_stack = td->td_sigstk;
588	mtx_unlock(&psp->ps_mtx);
589	PROC_UNLOCK(td->td_proc);
590
591	/* Copy the sigframe out to the user's stack. */
592	if (copyout(&frame, fp, sizeof(*fp)) != 0) {
593		/* Process has trashed its stack. Kill it. */
594		CTR2(KTR_SIG, "sendsig: sigexit td=%p fp=%p", td, fp);
595		PROC_LOCK(p);
596		sigexit(td, SIGILL);
597	}
598
599	/*
600	 * Build context to run handler in.  We invoke the handler
601	 * directly, only returning via the trampoline.  Note the
602	 * trampoline version numbers are coordinated with machine-
603	 * dependent code in libc.
604	 */
605
606	tf->tf_r0 = sig;
607	tf->tf_r1 = (register_t)&fp->sf_si;
608	tf->tf_r2 = (register_t)&fp->sf_uc;
609
610	/* the trampoline uses r5 as the uc address */
611	tf->tf_r5 = (register_t)&fp->sf_uc;
612	tf->tf_pc = (register_t)catcher;
613	tf->tf_usr_sp = (register_t)fp;
614	sysent = p->p_sysent;
615	if (sysent->sv_sigcode_base != 0)
616		tf->tf_usr_lr = (register_t)sysent->sv_sigcode_base;
617	else
618		tf->tf_usr_lr = (register_t)(sysent->sv_psstrings -
619		    *(sysent->sv_szsigcode));
620	/* Set the mode to enter in the signal handler */
621#if __ARM_ARCH >= 7
622	if ((register_t)catcher & 1)
623		tf->tf_spsr |= PSR_T;
624	else
625		tf->tf_spsr &= ~PSR_T;
626#endif
627
628	CTR3(KTR_SIG, "sendsig: return td=%p pc=%#x sp=%#x", td, tf->tf_usr_lr,
629	    tf->tf_usr_sp);
630
631	PROC_LOCK(p);
632	mtx_lock(&psp->ps_mtx);
633}
634
635int
636sys_sigreturn(td, uap)
637	struct thread *td;
638	struct sigreturn_args /* {
639		const struct __ucontext *sigcntxp;
640	} */ *uap;
641{
642	ucontext_t uc;
643	int spsr;
644
645	if (uap == NULL)
646		return (EFAULT);
647	if (copyin(uap->sigcntxp, &uc, sizeof(uc)))
648		return (EFAULT);
649	/*
650	 * Make sure the processor mode has not been tampered with and
651	 * interrupts have not been disabled.
652	 */
653	spsr = uc.uc_mcontext.__gregs[_REG_CPSR];
654	if ((spsr & PSR_MODE) != PSR_USR32_MODE ||
655	    (spsr & (PSR_I | PSR_F)) != 0)
656		return (EINVAL);
657	/* Restore register context. */
658	set_mcontext(td, &uc.uc_mcontext);
659
660	/* Restore signal mask. */
661	kern_sigprocmask(td, SIG_SETMASK, &uc.uc_sigmask, NULL, 0);
662
663	return (EJUSTRETURN);
664}
665
666/*
667 * Construct a PCB from a trapframe. This is called from kdb_trap() where
668 * we want to start a backtrace from the function that caused us to enter
669 * the debugger. We have the context in the trapframe, but base the trace
670 * on the PCB. The PCB doesn't have to be perfect, as long as it contains
671 * enough for a backtrace.
672 */
673void
674makectx(struct trapframe *tf, struct pcb *pcb)
675{
676	pcb->pcb_regs.sf_r4 = tf->tf_r4;
677	pcb->pcb_regs.sf_r5 = tf->tf_r5;
678	pcb->pcb_regs.sf_r6 = tf->tf_r6;
679	pcb->pcb_regs.sf_r7 = tf->tf_r7;
680	pcb->pcb_regs.sf_r8 = tf->tf_r8;
681	pcb->pcb_regs.sf_r9 = tf->tf_r9;
682	pcb->pcb_regs.sf_r10 = tf->tf_r10;
683	pcb->pcb_regs.sf_r11 = tf->tf_r11;
684	pcb->pcb_regs.sf_r12 = tf->tf_r12;
685	pcb->pcb_regs.sf_pc = tf->tf_pc;
686	pcb->pcb_regs.sf_lr = tf->tf_usr_lr;
687	pcb->pcb_regs.sf_sp = tf->tf_usr_sp;
688}
689
690void
691pcpu0_init(void)
692{
693#if __ARM_ARCH >= 6
694	set_curthread(&thread0);
695#endif
696	pcpu_init(pcpup, 0, sizeof(struct pcpu));
697	PCPU_SET(curthread, &thread0);
698}
699
700/*
701 * Initialize proc0
702 */
703void
704init_proc0(vm_offset_t kstack)
705{
706	proc_linkup0(&proc0, &thread0);
707	thread0.td_kstack = kstack;
708	thread0.td_pcb = (struct pcb *)
709		(thread0.td_kstack + kstack_pages * PAGE_SIZE) - 1;
710	thread0.td_pcb->pcb_flags = 0;
711	thread0.td_pcb->pcb_vfpcpu = -1;
712	thread0.td_pcb->pcb_vfpstate.fpscr = VFPSCR_DN;
713	thread0.td_frame = &proc0_tf;
714	pcpup->pc_curpcb = thread0.td_pcb;
715}
716
717#if __ARM_ARCH >= 6
718void
719set_stackptrs(int cpu)
720{
721
722	set_stackptr(PSR_IRQ32_MODE,
723	    irqstack + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
724	set_stackptr(PSR_ABT32_MODE,
725	    abtstack + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
726	set_stackptr(PSR_UND32_MODE,
727	    undstack + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
728}
729#else
730void
731set_stackptrs(int cpu)
732{
733
734	set_stackptr(PSR_IRQ32_MODE,
735	    irqstack.pv_va + ((IRQ_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
736	set_stackptr(PSR_ABT32_MODE,
737	    abtstack.pv_va + ((ABT_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
738	set_stackptr(PSR_UND32_MODE,
739	    undstack.pv_va + ((UND_STACK_SIZE * PAGE_SIZE) * (cpu + 1)));
740}
741#endif
742
743
744#ifdef FDT
745#if __ARM_ARCH < 6
746void *
747initarm(struct arm_boot_params *abp)
748{
749	struct mem_region mem_regions[FDT_MEM_REGIONS];
750	struct pv_addr kernel_l1pt;
751	struct pv_addr dpcpu;
752	vm_offset_t dtbp, freemempos, l2_start, lastaddr;
753	uint64_t memsize;
754	uint32_t l2size;
755	char *env;
756	void *kmdp;
757	u_int l1pagetable;
758	int i, j, err_devmap, mem_regions_sz;
759
760	lastaddr = parse_boot_param(abp);
761	arm_physmem_kernaddr = abp->abp_physaddr;
762
763	memsize = 0;
764
765	cpuinfo_init();
766	set_cpufuncs();
767
768	/*
769	 * Find the dtb passed in by the boot loader.
770	 */
771	kmdp = preload_search_by_type("elf kernel");
772	if (kmdp != NULL)
773		dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
774	else
775		dtbp = (vm_offset_t)NULL;
776
777#if defined(FDT_DTB_STATIC)
778	/*
779	 * In case the device tree blob was not retrieved (from metadata) try
780	 * to use the statically embedded one.
781	 */
782	if (dtbp == (vm_offset_t)NULL)
783		dtbp = (vm_offset_t)&fdt_static_dtb;
784#endif
785
786	if (OF_install(OFW_FDT, 0) == FALSE)
787		panic("Cannot install FDT");
788
789	if (OF_init((void *)dtbp) != 0)
790		panic("OF_init failed with the found device tree");
791
792	/* Grab physical memory regions information from device tree. */
793	if (fdt_get_mem_regions(mem_regions, &mem_regions_sz, &memsize) != 0)
794		panic("Cannot get physical memory regions");
795	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
796
797	/* Grab reserved memory regions information from device tree. */
798	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
799		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
800		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
801
802	/* Platform-specific initialisation */
803	platform_probe_and_attach();
804
805	pcpu0_init();
806
807	/* Do basic tuning, hz etc */
808	init_param1();
809
810	/* Calculate number of L2 tables needed for mapping vm_page_array */
811	l2size = (memsize / PAGE_SIZE) * sizeof(struct vm_page);
812	l2size = (l2size >> L1_S_SHIFT) + 1;
813
814	/*
815	 * Add one table for end of kernel map, one for stacks, msgbuf and
816	 * L1 and L2 tables map and one for vectors map.
817	 */
818	l2size += 3;
819
820	/* Make it divisible by 4 */
821	l2size = (l2size + 3) & ~3;
822
823	freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
824
825	/* Define a macro to simplify memory allocation */
826#define valloc_pages(var, np)						\
827	alloc_pages((var).pv_va, (np));					\
828	(var).pv_pa = (var).pv_va + (abp->abp_physaddr - KERNVIRTADDR);
829
830#define alloc_pages(var, np)						\
831	(var) = freemempos;						\
832	freemempos += (np * PAGE_SIZE);					\
833	memset((char *)(var), 0, ((np) * PAGE_SIZE));
834
835	while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
836		freemempos += PAGE_SIZE;
837	valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
838
839	for (i = 0, j = 0; i < l2size; ++i) {
840		if (!(i % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
841			valloc_pages(kernel_pt_table[i],
842			    L2_TABLE_SIZE / PAGE_SIZE);
843			j = i;
844		} else {
845			kernel_pt_table[i].pv_va = kernel_pt_table[j].pv_va +
846			    L2_TABLE_SIZE_REAL * (i - j);
847			kernel_pt_table[i].pv_pa =
848			    kernel_pt_table[i].pv_va - KERNVIRTADDR +
849			    abp->abp_physaddr;
850
851		}
852	}
853	/*
854	 * Allocate a page for the system page mapped to 0x00000000
855	 * or 0xffff0000. This page will just contain the system vectors
856	 * and can be shared by all processes.
857	 */
858	valloc_pages(systempage, 1);
859
860	/* Allocate dynamic per-cpu area. */
861	valloc_pages(dpcpu, DPCPU_SIZE / PAGE_SIZE);
862	dpcpu_init((void *)dpcpu.pv_va, 0);
863
864	/* Allocate stacks for all modes */
865	valloc_pages(irqstack, IRQ_STACK_SIZE * MAXCPU);
866	valloc_pages(abtstack, ABT_STACK_SIZE * MAXCPU);
867	valloc_pages(undstack, UND_STACK_SIZE * MAXCPU);
868	valloc_pages(kernelstack, kstack_pages * MAXCPU);
869	valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
870
871	/*
872	 * Now we start construction of the L1 page table
873	 * We start by mapping the L2 page tables into the L1.
874	 * This means that we can replace L1 mappings later on if necessary
875	 */
876	l1pagetable = kernel_l1pt.pv_va;
877
878	/*
879	 * Try to map as much as possible of kernel text and data using
880	 * 1MB section mapping and for the rest of initial kernel address
881	 * space use L2 coarse tables.
882	 *
883	 * Link L2 tables for mapping remainder of kernel (modulo 1MB)
884	 * and kernel structures
885	 */
886	l2_start = lastaddr & ~(L1_S_OFFSET);
887	for (i = 0 ; i < l2size - 1; i++)
888		pmap_link_l2pt(l1pagetable, l2_start + i * L1_S_SIZE,
889		    &kernel_pt_table[i]);
890
891	pmap_curmaxkvaddr = l2_start + (l2size - 1) * L1_S_SIZE;
892
893	/* Map kernel code and data */
894	pmap_map_chunk(l1pagetable, KERNVIRTADDR, abp->abp_physaddr,
895	   (((uint32_t)(lastaddr) - KERNVIRTADDR) + PAGE_MASK) & ~PAGE_MASK,
896	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
897
898	/* Map L1 directory and allocated L2 page tables */
899	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
900	    L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
901
902	pmap_map_chunk(l1pagetable, kernel_pt_table[0].pv_va,
903	    kernel_pt_table[0].pv_pa,
904	    L2_TABLE_SIZE_REAL * l2size,
905	    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
906
907	/* Map allocated DPCPU, stacks and msgbuf */
908	pmap_map_chunk(l1pagetable, dpcpu.pv_va, dpcpu.pv_pa,
909	    freemempos - dpcpu.pv_va,
910	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
911
912	/* Link and map the vector page */
913	pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
914	    &kernel_pt_table[l2size - 1]);
915	pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
916	    VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE, PTE_CACHE);
917
918	/* Establish static device mappings. */
919	err_devmap = platform_devmap_init();
920	devmap_bootstrap(l1pagetable, NULL);
921	vm_max_kernel_address = platform_lastaddr();
922
923	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2)) | DOMAIN_CLIENT);
924	pmap_pa = kernel_l1pt.pv_pa;
925	cpu_setttb(kernel_l1pt.pv_pa);
926	cpu_tlb_flushID();
927	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL * 2));
928
929	/*
930	 * Now that proper page tables are installed, call cpu_setup() to enable
931	 * instruction and data caches and other chip-specific features.
932	 */
933	cpu_setup();
934
935	/*
936	 * Only after the SOC registers block is mapped we can perform device
937	 * tree fixups, as they may attempt to read parameters from hardware.
938	 */
939	OF_interpret("perform-fixup", 0);
940
941	platform_gpio_init();
942
943	cninit();
944
945	debugf("initarm: console initialized\n");
946	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
947	debugf(" boothowto = 0x%08x\n", boothowto);
948	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
949	arm_print_kenv();
950
951	env = kern_getenv("kernelname");
952	if (env != NULL) {
953		strlcpy(kernelname, env, sizeof(kernelname));
954		freeenv(env);
955	}
956
957	if (err_devmap != 0)
958		printf("WARNING: could not fully configure devmap, error=%d\n",
959		    err_devmap);
960
961	platform_late_init();
962
963	/*
964	 * Pages were allocated during the secondary bootstrap for the
965	 * stacks for different CPU modes.
966	 * We must now set the r13 registers in the different CPU modes to
967	 * point to these stacks.
968	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
969	 * of the stack memory.
970	 */
971	cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
972
973	set_stackptrs(0);
974
975	/*
976	 * We must now clean the cache again....
977	 * Cleaning may be done by reading new data to displace any
978	 * dirty data in the cache. This will have happened in cpu_setttb()
979	 * but since we are boot strapping the addresses used for the read
980	 * may have just been remapped and thus the cache could be out
981	 * of sync. A re-clean after the switch will cure this.
982	 * After booting there are no gross relocations of the kernel thus
983	 * this problem will not occur after initarm().
984	 */
985	cpu_idcache_wbinv_all();
986
987	undefined_init();
988
989	init_proc0(kernelstack.pv_va);
990
991	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
992	pmap_bootstrap(freemempos, &kernel_l1pt);
993	msgbufp = (void *)msgbufpv.pv_va;
994	msgbufinit(msgbufp, msgbufsize);
995	mutex_init();
996
997	/*
998	 * Exclude the kernel (and all the things we allocated which immediately
999	 * follow the kernel) from the VM allocation pool but not from crash
1000	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1001	 * "allocated" while setting up pmaps.
1002	 *
1003	 * Prepare the list of physical memory available to the vm subsystem.
1004	 */
1005	arm_physmem_exclude_region(abp->abp_physaddr,
1006	    (virtual_avail - KERNVIRTADDR), EXFLAG_NOALLOC);
1007	arm_physmem_init_kernel_globals();
1008
1009	init_param2(physmem);
1010	dbg_monitor_init();
1011	kdb_init();
1012
1013	return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
1014	    sizeof(struct pcb)));
1015}
1016#else /* __ARM_ARCH < 6 */
1017void *
1018initarm(struct arm_boot_params *abp)
1019{
1020	struct mem_region mem_regions[FDT_MEM_REGIONS];
1021	vm_paddr_t lastaddr;
1022	vm_offset_t dtbp, kernelstack, dpcpu;
1023	char *env;
1024	void *kmdp;
1025	int err_devmap, mem_regions_sz;
1026#ifdef EFI
1027	struct efi_map_header *efihdr;
1028#endif
1029
1030	/* get last allocated physical address */
1031	arm_physmem_kernaddr = abp->abp_physaddr;
1032	lastaddr = parse_boot_param(abp) - KERNVIRTADDR + arm_physmem_kernaddr;
1033
1034	set_cpufuncs();
1035	cpuinfo_init();
1036
1037	/*
1038	 * Find the dtb passed in by the boot loader.
1039	 */
1040	kmdp = preload_search_by_type("elf kernel");
1041	dtbp = MD_FETCH(kmdp, MODINFOMD_DTBP, vm_offset_t);
1042#if defined(FDT_DTB_STATIC)
1043	/*
1044	 * In case the device tree blob was not retrieved (from metadata) try
1045	 * to use the statically embedded one.
1046	 */
1047	if (dtbp == (vm_offset_t)NULL)
1048		dtbp = (vm_offset_t)&fdt_static_dtb;
1049#endif
1050
1051	if (OF_install(OFW_FDT, 0) == FALSE)
1052		panic("Cannot install FDT");
1053
1054	if (OF_init((void *)dtbp) != 0)
1055		panic("OF_init failed with the found device tree");
1056
1057#if defined(LINUX_BOOT_ABI)
1058	arm_parse_fdt_bootargs();
1059#endif
1060
1061#ifdef EFI
1062	efihdr = (struct efi_map_header *)preload_search_info(kmdp,
1063	    MODINFO_METADATA | MODINFOMD_EFI_MAP);
1064	if (efihdr != NULL) {
1065		arm_add_efi_map_entries(efihdr, mem_regions, &mem_regions_sz);
1066	} else
1067#endif
1068	{
1069		/* Grab physical memory regions information from device tree. */
1070		if (fdt_get_mem_regions(mem_regions, &mem_regions_sz,NULL) != 0)
1071			panic("Cannot get physical memory regions");
1072	}
1073	arm_physmem_hardware_regions(mem_regions, mem_regions_sz);
1074
1075	/* Grab reserved memory regions information from device tree. */
1076	if (fdt_get_reserved_regions(mem_regions, &mem_regions_sz) == 0)
1077		arm_physmem_exclude_regions(mem_regions, mem_regions_sz,
1078		    EXFLAG_NODUMP | EXFLAG_NOALLOC);
1079
1080	/*
1081	 * Set TEX remapping registers.
1082	 * Setup kernel page tables and switch to kernel L1 page table.
1083	 */
1084	pmap_set_tex();
1085	pmap_bootstrap_prepare(lastaddr);
1086
1087	/*
1088	 * Now that proper page tables are installed, call cpu_setup() to enable
1089	 * instruction and data caches and other chip-specific features.
1090	 */
1091	cpu_setup();
1092
1093	/* Platform-specific initialisation */
1094	platform_probe_and_attach();
1095	pcpu0_init();
1096
1097	/* Do basic tuning, hz etc */
1098	init_param1();
1099
1100	/*
1101	 * Allocate a page for the system page mapped to 0xffff0000
1102	 * This page will just contain the system vectors and can be
1103	 * shared by all processes.
1104	 */
1105	systempage = pmap_preboot_get_pages(1);
1106
1107	/* Map the vector page. */
1108	pmap_preboot_map_pages(systempage, ARM_VECTORS_HIGH,  1);
1109	if (virtual_end >= ARM_VECTORS_HIGH)
1110		virtual_end = ARM_VECTORS_HIGH - 1;
1111
1112	/* Allocate dynamic per-cpu area. */
1113	dpcpu = pmap_preboot_get_vpages(DPCPU_SIZE / PAGE_SIZE);
1114	dpcpu_init((void *)dpcpu, 0);
1115
1116	/* Allocate stacks for all modes */
1117	irqstack    = pmap_preboot_get_vpages(IRQ_STACK_SIZE * MAXCPU);
1118	abtstack    = pmap_preboot_get_vpages(ABT_STACK_SIZE * MAXCPU);
1119	undstack    = pmap_preboot_get_vpages(UND_STACK_SIZE * MAXCPU );
1120	kernelstack = pmap_preboot_get_vpages(kstack_pages * MAXCPU);
1121
1122	/* Allocate message buffer. */
1123	msgbufp = (void *)pmap_preboot_get_vpages(
1124	    round_page(msgbufsize) / PAGE_SIZE);
1125
1126	/*
1127	 * Pages were allocated during the secondary bootstrap for the
1128	 * stacks for different CPU modes.
1129	 * We must now set the r13 registers in the different CPU modes to
1130	 * point to these stacks.
1131	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
1132	 * of the stack memory.
1133	 */
1134	set_stackptrs(0);
1135	mutex_init();
1136
1137	/* Establish static device mappings. */
1138	err_devmap = platform_devmap_init();
1139	devmap_bootstrap(0, NULL);
1140	vm_max_kernel_address = platform_lastaddr();
1141
1142	/*
1143	 * Only after the SOC registers block is mapped we can perform device
1144	 * tree fixups, as they may attempt to read parameters from hardware.
1145	 */
1146	OF_interpret("perform-fixup", 0);
1147	platform_gpio_init();
1148	cninit();
1149
1150	debugf("initarm: console initialized\n");
1151	debugf(" arg1 kmdp = 0x%08x\n", (uint32_t)kmdp);
1152	debugf(" boothowto = 0x%08x\n", boothowto);
1153	debugf(" dtbp = 0x%08x\n", (uint32_t)dtbp);
1154	debugf(" lastaddr1: 0x%08x\n", lastaddr);
1155	arm_print_kenv();
1156
1157	env = kern_getenv("kernelname");
1158	if (env != NULL)
1159		strlcpy(kernelname, env, sizeof(kernelname));
1160
1161	if (err_devmap != 0)
1162		printf("WARNING: could not fully configure devmap, error=%d\n",
1163		    err_devmap);
1164
1165	platform_late_init();
1166
1167	/*
1168	 * We must now clean the cache again....
1169	 * Cleaning may be done by reading new data to displace any
1170	 * dirty data in the cache. This will have happened in cpu_setttb()
1171	 * but since we are boot strapping the addresses used for the read
1172	 * may have just been remapped and thus the cache could be out
1173	 * of sync. A re-clean after the switch will cure this.
1174	 * After booting there are no gross relocations of the kernel thus
1175	 * this problem will not occur after initarm().
1176	 */
1177	/* Set stack for exception handlers */
1178	undefined_init();
1179	init_proc0(kernelstack);
1180	arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
1181	enable_interrupts(PSR_A);
1182	pmap_bootstrap(0);
1183
1184	/* Exclude the kernel (and all the things we allocated which immediately
1185	 * follow the kernel) from the VM allocation pool but not from crash
1186	 * dumps.  virtual_avail is a global variable which tracks the kva we've
1187	 * "allocated" while setting up pmaps.
1188	 *
1189	 * Prepare the list of physical memory available to the vm subsystem.
1190	 */
1191	arm_physmem_exclude_region(abp->abp_physaddr,
1192		pmap_preboot_get_pages(0) - abp->abp_physaddr, EXFLAG_NOALLOC);
1193	arm_physmem_init_kernel_globals();
1194
1195	init_param2(physmem);
1196	/* Init message buffer. */
1197	msgbufinit(msgbufp, msgbufsize);
1198	dbg_monitor_init();
1199	kdb_init();
1200	return ((void *)STACKALIGN(thread0.td_pcb));
1201
1202}
1203
1204#endif /* __ARM_ARCH < 6 */
1205#endif /* FDT */
1206