if_awg.c revision 329648
1/*-
2 * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/11/sys/arm/allwinner/if_awg.c 329648 2018-02-20 18:12:07Z gonzo $
27 */
28
29/*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/arm/allwinner/if_awg.c 329648 2018-02-20 18:12:07Z gonzo $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/rman.h>
40#include <sys/kernel.h>
41#include <sys/endian.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/module.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/ethernet.h>
51#include <net/if_dl.h>
52#include <net/if_media.h>
53#include <net/if_types.h>
54#include <net/if_var.h>
55
56#include <machine/bus.h>
57
58#include <dev/ofw/ofw_bus.h>
59#include <dev/ofw/ofw_bus_subr.h>
60
61#include <arm/allwinner/if_awgreg.h>
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/extres/clk/clk.h>
66#include <dev/extres/hwreset/hwreset.h>
67#include <dev/extres/regulator/regulator.h>
68
69#include "miibus_if.h"
70
71#define	RD4(sc, reg)		bus_read_4((sc)->res[0], (reg))
72#define	WR4(sc, reg, val)	bus_write_4((sc)->res[0], (reg), (val))
73
74#define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
75#define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
76#define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
77#define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
78
79#define	DESC_ALIGN		4
80#define	TX_DESC_COUNT		256
81#define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
82#define	RX_DESC_COUNT		256
83#define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
84
85#define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
86#define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
87#define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
88#define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
89
90#define	TX_MAX_SEGS		20
91
92#define	SOFT_RST_RETRY		1000
93#define	MII_BUSY_RETRY		1000
94#define	MDIO_FREQ		2500000
95
96#define	BURST_LEN_DEFAULT	8
97#define	RX_TX_PRI_DEFAULT	0
98#define	PAUSE_TIME_DEFAULT	0x400
99#define	TX_INTERVAL_DEFAULT	64
100
101/* Burst length of RX and TX DMA transfers */
102static int awg_burst_len = BURST_LEN_DEFAULT;
103TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
104
105/* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
106static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
107TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
108
109/* Pause time field in the transmitted control frame */
110static int awg_pause_time = PAUSE_TIME_DEFAULT;
111TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
112
113/* Request a TX interrupt every <n> descriptors */
114static int awg_tx_interval = TX_INTERVAL_DEFAULT;
115TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
116
117static struct ofw_compat_data compat_data[] = {
118	{ "allwinner,sun8i-a83t-emac",		1 },
119	{ NULL,					0 }
120};
121
122struct awg_bufmap {
123	bus_dmamap_t		map;
124	struct mbuf		*mbuf;
125};
126
127struct awg_txring {
128	bus_dma_tag_t		desc_tag;
129	bus_dmamap_t		desc_map;
130	struct emac_desc	*desc_ring;
131	bus_addr_t		desc_ring_paddr;
132	bus_dma_tag_t		buf_tag;
133	struct awg_bufmap	buf_map[TX_DESC_COUNT];
134	u_int			cur, next, queued;
135};
136
137struct awg_rxring {
138	bus_dma_tag_t		desc_tag;
139	bus_dmamap_t		desc_map;
140	struct emac_desc	*desc_ring;
141	bus_addr_t		desc_ring_paddr;
142	bus_dma_tag_t		buf_tag;
143	struct awg_bufmap	buf_map[RX_DESC_COUNT];
144	u_int			cur;
145};
146
147struct awg_softc {
148	struct resource		*res[2];
149	struct mtx		mtx;
150	if_t			ifp;
151	device_t		dev;
152	device_t		miibus;
153	struct callout		stat_ch;
154	struct task		link_task;
155	void			*ih;
156	u_int			mdc_div_ratio_m;
157	int			link;
158	int			if_flags;
159
160	struct awg_txring	tx;
161	struct awg_rxring	rx;
162};
163
164static struct resource_spec awg_spec[] = {
165	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
166	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
167	{ -1, 0 }
168};
169
170static int
171awg_miibus_readreg(device_t dev, int phy, int reg)
172{
173	struct awg_softc *sc;
174	int retry, val;
175
176	sc = device_get_softc(dev);
177	val = 0;
178
179	WR4(sc, EMAC_MII_CMD,
180	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
181	    (phy << PHY_ADDR_SHIFT) |
182	    (reg << PHY_REG_ADDR_SHIFT) |
183	    MII_BUSY);
184	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
185		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
186			val = RD4(sc, EMAC_MII_DATA);
187			break;
188		}
189		DELAY(10);
190	}
191
192	if (retry == 0)
193		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
194		    phy, reg);
195
196	return (val);
197}
198
199static int
200awg_miibus_writereg(device_t dev, int phy, int reg, int val)
201{
202	struct awg_softc *sc;
203	int retry;
204
205	sc = device_get_softc(dev);
206
207	WR4(sc, EMAC_MII_DATA, val);
208	WR4(sc, EMAC_MII_CMD,
209	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
210	    (phy << PHY_ADDR_SHIFT) |
211	    (reg << PHY_REG_ADDR_SHIFT) |
212	    MII_WR | MII_BUSY);
213	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
214		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
215			break;
216		DELAY(10);
217	}
218
219	if (retry == 0)
220		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
221		    phy, reg);
222
223	return (0);
224}
225
226static void
227awg_update_link_locked(struct awg_softc *sc)
228{
229	struct mii_data *mii;
230	uint32_t val;
231
232	AWG_ASSERT_LOCKED(sc);
233
234	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
235		return;
236	mii = device_get_softc(sc->miibus);
237
238	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
239	    (IFM_ACTIVE | IFM_AVALID)) {
240		switch (IFM_SUBTYPE(mii->mii_media_active)) {
241		case IFM_1000_T:
242		case IFM_1000_SX:
243		case IFM_100_TX:
244		case IFM_10_T:
245			sc->link = 1;
246			break;
247		default:
248			sc->link = 0;
249			break;
250		}
251	} else
252		sc->link = 0;
253
254	if (sc->link == 0)
255		return;
256
257	val = RD4(sc, EMAC_BASIC_CTL_0);
258	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
259
260	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
261	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
262		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
263	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
264		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
265	else
266		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
267
268	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
269		val |= BASIC_CTL_DUPLEX;
270
271	WR4(sc, EMAC_BASIC_CTL_0, val);
272
273	val = RD4(sc, EMAC_RX_CTL_0);
274	val &= ~RX_FLOW_CTL_EN;
275	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
276		val |= RX_FLOW_CTL_EN;
277	WR4(sc, EMAC_RX_CTL_0, val);
278
279	val = RD4(sc, EMAC_TX_FLOW_CTL);
280	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
281	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
282		val |= TX_FLOW_CTL_EN;
283	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
284		val |= awg_pause_time << PAUSE_TIME_SHIFT;
285	WR4(sc, EMAC_TX_FLOW_CTL, val);
286}
287
288static void
289awg_link_task(void *arg, int pending)
290{
291	struct awg_softc *sc;
292
293	sc = arg;
294
295	AWG_LOCK(sc);
296	awg_update_link_locked(sc);
297	AWG_UNLOCK(sc);
298}
299
300static void
301awg_miibus_statchg(device_t dev)
302{
303	struct awg_softc *sc;
304
305	sc = device_get_softc(dev);
306
307	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
308}
309
310static void
311awg_media_status(if_t ifp, struct ifmediareq *ifmr)
312{
313	struct awg_softc *sc;
314	struct mii_data *mii;
315
316	sc = if_getsoftc(ifp);
317	mii = device_get_softc(sc->miibus);
318
319	AWG_LOCK(sc);
320	mii_pollstat(mii);
321	ifmr->ifm_active = mii->mii_media_active;
322	ifmr->ifm_status = mii->mii_media_status;
323	AWG_UNLOCK(sc);
324}
325
326static int
327awg_media_change(if_t ifp)
328{
329	struct awg_softc *sc;
330	struct mii_data *mii;
331	int error;
332
333	sc = if_getsoftc(ifp);
334	mii = device_get_softc(sc->miibus);
335
336	AWG_LOCK(sc);
337	error = mii_mediachg(mii);
338	AWG_UNLOCK(sc);
339
340	return (error);
341}
342
343static void
344awg_setup_txdesc(struct awg_softc *sc, int index, int flags, bus_addr_t paddr,
345    u_int len)
346{
347	uint32_t status, size;
348
349	if (paddr == 0 || len == 0) {
350		status = 0;
351		size = 0;
352		--sc->tx.queued;
353	} else {
354		status = TX_DESC_CTL;
355		size = flags | len;
356		if ((index & (awg_tx_interval - 1)) == 0)
357			size |= htole32(TX_INT_CTL);
358		++sc->tx.queued;
359	}
360
361	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
362	sc->tx.desc_ring[index].size = htole32(size);
363	sc->tx.desc_ring[index].status = htole32(status);
364}
365
366static int
367awg_setup_txbuf(struct awg_softc *sc, int index, struct mbuf **mp)
368{
369	bus_dma_segment_t segs[TX_MAX_SEGS];
370	int error, nsegs, cur, i, flags;
371	u_int csum_flags;
372	struct mbuf *m;
373
374	m = *mp;
375	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
376	    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
377	if (error == EFBIG) {
378		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
379		if (m == NULL) {
380			device_printf(sc->dev, "awg_setup_txbuf: m_collapse failed\n");
381			return (0);
382		}
383		*mp = m;
384		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
385		    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
386	}
387	if (error != 0) {
388		device_printf(sc->dev, "awg_setup_txbuf: bus_dmamap_load_mbuf_sg failed\n");
389		return (0);
390	}
391
392	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
393	    BUS_DMASYNC_PREWRITE);
394
395	flags = TX_FIR_DESC;
396	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
397		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
398			csum_flags = TX_CHECKSUM_CTL_FULL;
399		else
400			csum_flags = TX_CHECKSUM_CTL_IP;
401		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
402	}
403
404	for (cur = index, i = 0; i < nsegs; i++) {
405		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
406		if (i == nsegs - 1)
407			flags |= TX_LAST_DESC;
408		awg_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
409		    segs[i].ds_len);
410		flags &= ~TX_FIR_DESC;
411		cur = TX_NEXT(cur);
412	}
413
414	return (nsegs);
415}
416
417static void
418awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
419{
420	uint32_t status, size;
421
422	status = RX_DESC_CTL;
423	size = MCLBYTES - 1;
424
425	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
426	sc->rx.desc_ring[index].size = htole32(size);
427	sc->rx.desc_ring[index].next =
428	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
429	sc->rx.desc_ring[index].status = htole32(status);
430}
431
432static int
433awg_setup_rxbuf(struct awg_softc *sc, int index, struct mbuf *m)
434{
435	bus_dma_segment_t seg;
436	int error, nsegs;
437
438	m_adj(m, ETHER_ALIGN);
439
440	error = bus_dmamap_load_mbuf_sg(sc->rx.buf_tag,
441	    sc->rx.buf_map[index].map, m, &seg, &nsegs, 0);
442	if (error != 0)
443		return (error);
444
445	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
446	    BUS_DMASYNC_PREREAD);
447
448	sc->rx.buf_map[index].mbuf = m;
449	awg_setup_rxdesc(sc, index, seg.ds_addr);
450
451	return (0);
452}
453
454static struct mbuf *
455awg_alloc_mbufcl(struct awg_softc *sc)
456{
457	struct mbuf *m;
458
459	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
460	if (m != NULL)
461		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
462
463	return (m);
464}
465
466static void
467awg_start_locked(struct awg_softc *sc)
468{
469	struct mbuf *m;
470	uint32_t val;
471	if_t ifp;
472	int cnt, nsegs;
473
474	AWG_ASSERT_LOCKED(sc);
475
476	if (!sc->link)
477		return;
478
479	ifp = sc->ifp;
480
481	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
482	    IFF_DRV_RUNNING)
483		return;
484
485	for (cnt = 0; ; cnt++) {
486		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
487			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
488			break;
489		}
490
491		m = if_dequeue(ifp);
492		if (m == NULL)
493			break;
494
495		nsegs = awg_setup_txbuf(sc, sc->tx.cur, &m);
496		if (nsegs == 0) {
497			if_sendq_prepend(ifp, m);
498			break;
499		}
500		if_bpfmtap(ifp, m);
501		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
502	}
503
504	if (cnt != 0) {
505		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
506		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
507
508		/* Start and run TX DMA */
509		val = RD4(sc, EMAC_TX_CTL_1);
510		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
511	}
512}
513
514static void
515awg_start(if_t ifp)
516{
517	struct awg_softc *sc;
518
519	sc = if_getsoftc(ifp);
520
521	AWG_LOCK(sc);
522	awg_start_locked(sc);
523	AWG_UNLOCK(sc);
524}
525
526static void
527awg_tick(void *softc)
528{
529	struct awg_softc *sc;
530	struct mii_data *mii;
531	if_t ifp;
532	int link;
533
534	sc = softc;
535	ifp = sc->ifp;
536	mii = device_get_softc(sc->miibus);
537
538	AWG_ASSERT_LOCKED(sc);
539
540	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
541		return;
542
543	link = sc->link;
544	mii_tick(mii);
545	if (sc->link && !link)
546		awg_start_locked(sc);
547
548	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
549}
550
551/* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
552static uint32_t
553bitrev32(uint32_t x)
554{
555	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
556	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
557	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
558	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
559
560	return (x >> 16) | (x << 16);
561}
562
563static void
564awg_setup_rxfilter(struct awg_softc *sc)
565{
566	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
567	int mc_count, mcnt, i;
568	uint8_t *eaddr, *mta;
569	if_t ifp;
570
571	AWG_ASSERT_LOCKED(sc);
572
573	ifp = sc->ifp;
574	val = 0;
575	hash[0] = hash[1] = 0;
576
577	mc_count = if_multiaddr_count(ifp, -1);
578
579	if (if_getflags(ifp) & IFF_PROMISC)
580		val |= DIS_ADDR_FILTER;
581	else if (if_getflags(ifp) & IFF_ALLMULTI) {
582		val |= RX_ALL_MULTICAST;
583		hash[0] = hash[1] = ~0;
584	} else if (mc_count > 0) {
585		val |= HASH_MULTICAST;
586
587		mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
588		    M_DEVBUF, M_NOWAIT);
589		if (mta == NULL) {
590			if_printf(ifp,
591			    "failed to allocate temporary multicast list\n");
592			return;
593		}
594
595		if_multiaddr_array(ifp, mta, &mcnt, mc_count);
596		for (i = 0; i < mcnt; i++) {
597			crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
598			    ETHER_ADDR_LEN) & 0x7f;
599			crc = bitrev32(~crc) >> 26;
600			hashreg = (crc >> 5);
601			hashbit = (crc & 0x1f);
602			hash[hashreg] |= (1 << hashbit);
603		}
604
605		free(mta, M_DEVBUF);
606	}
607
608	/* Write our unicast address */
609	eaddr = IF_LLADDR(ifp);
610	machi = (eaddr[5] << 8) | eaddr[4];
611	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
612	   (eaddr[0] << 0);
613	WR4(sc, EMAC_ADDR_HIGH(0), machi);
614	WR4(sc, EMAC_ADDR_LOW(0), maclo);
615
616	/* Multicast hash filters */
617	WR4(sc, EMAC_RX_HASH_0, hash[1]);
618	WR4(sc, EMAC_RX_HASH_1, hash[0]);
619
620	/* RX frame filter config */
621	WR4(sc, EMAC_RX_FRM_FLT, val);
622}
623
624static void
625awg_init_locked(struct awg_softc *sc)
626{
627	struct mii_data *mii;
628	uint32_t val;
629	if_t ifp;
630
631	mii = device_get_softc(sc->miibus);
632	ifp = sc->ifp;
633
634	AWG_ASSERT_LOCKED(sc);
635
636	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
637		return;
638
639	awg_setup_rxfilter(sc);
640
641	/* Configure DMA burst length and priorities */
642	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
643	if (awg_rx_tx_pri)
644		val |= BASIC_CTL_RX_TX_PRI;
645	WR4(sc, EMAC_BASIC_CTL_1, val);
646
647	/* Enable interrupts */
648	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
649
650	/* Enable transmit DMA */
651	val = RD4(sc, EMAC_TX_CTL_1);
652	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD);
653
654	/* Enable receive DMA */
655	val = RD4(sc, EMAC_RX_CTL_1);
656	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
657
658	/* Enable transmitter */
659	val = RD4(sc, EMAC_TX_CTL_0);
660	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
661
662	/* Enable receiver */
663	val = RD4(sc, EMAC_RX_CTL_0);
664	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
665
666	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
667
668	mii_mediachg(mii);
669	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
670}
671
672static void
673awg_init(void *softc)
674{
675	struct awg_softc *sc;
676
677	sc = softc;
678
679	AWG_LOCK(sc);
680	awg_init_locked(sc);
681	AWG_UNLOCK(sc);
682}
683
684static void
685awg_stop(struct awg_softc *sc)
686{
687	if_t ifp;
688	uint32_t val;
689
690	AWG_ASSERT_LOCKED(sc);
691
692	ifp = sc->ifp;
693
694	callout_stop(&sc->stat_ch);
695
696	/* Stop transmit DMA and flush data in the TX FIFO */
697	val = RD4(sc, EMAC_TX_CTL_1);
698	val &= ~TX_DMA_EN;
699	val |= FLUSH_TX_FIFO;
700	WR4(sc, EMAC_TX_CTL_1, val);
701
702	/* Disable transmitter */
703	val = RD4(sc, EMAC_TX_CTL_0);
704	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
705
706	/* Disable receiver */
707	val = RD4(sc, EMAC_RX_CTL_0);
708	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
709
710	/* Disable interrupts */
711	WR4(sc, EMAC_INT_EN, 0);
712
713	/* Disable transmit DMA */
714	val = RD4(sc, EMAC_TX_CTL_1);
715	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
716
717	/* Disable receive DMA */
718	val = RD4(sc, EMAC_RX_CTL_1);
719	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
720
721	sc->link = 0;
722
723	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
724}
725
726static void
727awg_rxintr(struct awg_softc *sc)
728{
729	if_t ifp;
730	struct mbuf *m, *m0;
731	int error, index, len;
732	uint32_t status;
733
734	ifp = sc->ifp;
735
736	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
737	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
738
739	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
740		status = le32toh(sc->rx.desc_ring[index].status);
741		if ((status & RX_DESC_CTL) != 0)
742			break;
743
744		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
745		    BUS_DMASYNC_POSTREAD);
746		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
747
748		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
749		if (len != 0) {
750			m = sc->rx.buf_map[index].mbuf;
751			m->m_pkthdr.rcvif = ifp;
752			m->m_pkthdr.len = len;
753			m->m_len = len;
754			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
755
756			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
757			    (status & RX_FRM_TYPE) != 0) {
758				m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
759				if ((status & RX_HEADER_ERR) == 0)
760					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
761				if ((status & RX_PAYLOAD_ERR) == 0) {
762					m->m_pkthdr.csum_flags |=
763					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
764					m->m_pkthdr.csum_data = 0xffff;
765				}
766			}
767
768			AWG_UNLOCK(sc);
769			if_input(ifp, m);
770			AWG_LOCK(sc);
771		}
772
773		if ((m0 = awg_alloc_mbufcl(sc)) != NULL) {
774			error = awg_setup_rxbuf(sc, index, m0);
775			if (error != 0) {
776				/* XXX hole in RX ring */
777			}
778		} else
779			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
780	}
781
782	if (index != sc->rx.cur) {
783		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
784		    BUS_DMASYNC_PREWRITE);
785	}
786
787	sc->rx.cur = index;
788}
789
790static void
791awg_txintr(struct awg_softc *sc)
792{
793	struct awg_bufmap *bmap;
794	struct emac_desc *desc;
795	uint32_t status;
796	if_t ifp;
797	int i;
798
799	AWG_ASSERT_LOCKED(sc);
800
801	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
802	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
803
804	ifp = sc->ifp;
805	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
806		desc = &sc->tx.desc_ring[i];
807		status = le32toh(desc->status);
808		if ((status & TX_DESC_CTL) != 0)
809			break;
810		bmap = &sc->tx.buf_map[i];
811		if (bmap->mbuf != NULL) {
812			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
813			    BUS_DMASYNC_POSTWRITE);
814			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
815			m_freem(bmap->mbuf);
816			bmap->mbuf = NULL;
817		}
818		awg_setup_txdesc(sc, i, 0, 0, 0);
819		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
820		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
821	}
822
823	sc->tx.next = i;
824
825	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
826	    BUS_DMASYNC_PREWRITE);
827}
828
829static void
830awg_intr(void *arg)
831{
832	struct awg_softc *sc;
833	uint32_t val;
834
835	sc = arg;
836
837	AWG_LOCK(sc);
838	val = RD4(sc, EMAC_INT_STA);
839	WR4(sc, EMAC_INT_STA, val);
840
841	if (val & RX_INT)
842		awg_rxintr(sc);
843
844	if (val & (TX_INT|TX_BUF_UA_INT)) {
845		awg_txintr(sc);
846		if (!if_sendq_empty(sc->ifp))
847			awg_start_locked(sc);
848	}
849
850	AWG_UNLOCK(sc);
851}
852
853static int
854awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
855{
856	struct awg_softc *sc;
857	struct mii_data *mii;
858	struct ifreq *ifr;
859	int flags, mask, error;
860
861	sc = if_getsoftc(ifp);
862	mii = device_get_softc(sc->miibus);
863	ifr = (struct ifreq *)data;
864	error = 0;
865
866	switch (cmd) {
867	case SIOCSIFFLAGS:
868		AWG_LOCK(sc);
869		if (if_getflags(ifp) & IFF_UP) {
870			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
871				flags = if_getflags(ifp) ^ sc->if_flags;
872				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
873					awg_setup_rxfilter(sc);
874			} else
875				awg_init_locked(sc);
876		} else {
877			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
878				awg_stop(sc);
879		}
880		sc->if_flags = if_getflags(ifp);
881		AWG_UNLOCK(sc);
882		break;
883	case SIOCADDMULTI:
884	case SIOCDELMULTI:
885		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
886			AWG_LOCK(sc);
887			awg_setup_rxfilter(sc);
888			AWG_UNLOCK(sc);
889		}
890		break;
891	case SIOCSIFMEDIA:
892	case SIOCGIFMEDIA:
893		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
894		break;
895	case SIOCSIFCAP:
896		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
897		if (mask & IFCAP_VLAN_MTU)
898			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
899		if (mask & IFCAP_RXCSUM)
900			if_togglecapenable(ifp, IFCAP_RXCSUM);
901		if (mask & IFCAP_TXCSUM)
902			if_togglecapenable(ifp, IFCAP_TXCSUM);
903		if ((if_getcapenable(ifp) & (IFCAP_RXCSUM|IFCAP_TXCSUM)) != 0)
904			if_sethwassistbits(ifp, CSUM_IP, 0);
905		else
906			if_sethwassistbits(ifp, 0, CSUM_IP);
907		break;
908	default:
909		error = ether_ioctl(ifp, cmd, data);
910		break;
911	}
912
913	return (error);
914}
915
916static int
917awg_setup_extres(device_t dev)
918{
919	struct awg_softc *sc;
920	hwreset_t rst_ahb;
921	clk_t clk_ahb, clk_tx, clk_tx_parent;
922	regulator_t reg;
923	const char *tx_parent_name;
924	char *phy_type;
925	phandle_t node;
926	uint64_t freq;
927	int error, div;
928
929	sc = device_get_softc(dev);
930	node = ofw_bus_get_node(dev);
931	rst_ahb = NULL;
932	clk_ahb = NULL;
933	clk_tx = NULL;
934	clk_tx_parent = NULL;
935	reg = NULL;
936	phy_type = NULL;
937
938	/* Get AHB clock and reset resources */
939	error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
940	if (error != 0) {
941		device_printf(dev, "cannot get ahb reset\n");
942		goto fail;
943	}
944	error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
945	if (error != 0) {
946		device_printf(dev, "cannot get ahb clock\n");
947		goto fail;
948	}
949
950	/* Configure PHY for MII or RGMII mode */
951	if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type)) {
952		if (bootverbose)
953			device_printf(dev, "PHY type: %s\n", phy_type);
954
955		if (strcmp(phy_type, "rgmii") == 0)
956			tx_parent_name = "emac_int_tx";
957		else
958			tx_parent_name = "mii_phy_tx";
959		OF_prop_free(phy_type);
960
961		/* Get the TX clock */
962		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
963		if (error != 0) {
964			device_printf(dev, "cannot get tx clock\n");
965			goto fail;
966		}
967
968		/* Find the desired parent clock based on phy-mode property */
969		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
970		if (error != 0) {
971			device_printf(dev, "cannot get clock '%s'\n",
972			    tx_parent_name);
973			goto fail;
974		}
975
976		/* Set TX clock parent */
977		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
978		if (error != 0) {
979			device_printf(dev, "cannot set tx clock parent\n");
980			goto fail;
981		}
982
983		/* Enable TX clock */
984		error = clk_enable(clk_tx);
985		if (error != 0) {
986			device_printf(dev, "cannot enable tx clock\n");
987			goto fail;
988		}
989	}
990
991	/* Enable AHB clock */
992	error = clk_enable(clk_ahb);
993	if (error != 0) {
994		device_printf(dev, "cannot enable ahb clock\n");
995		goto fail;
996	}
997
998	/* De-assert reset */
999	error = hwreset_deassert(rst_ahb);
1000	if (error != 0) {
1001		device_printf(dev, "cannot de-assert ahb reset\n");
1002		goto fail;
1003	}
1004
1005	/* Enable PHY regulator if applicable */
1006	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1007		error = regulator_enable(reg);
1008		if (error != 0) {
1009			device_printf(dev, "cannot enable PHY regulator\n");
1010			goto fail;
1011		}
1012	}
1013
1014	/* Determine MDC clock divide ratio based on AHB clock */
1015	error = clk_get_freq(clk_ahb, &freq);
1016	if (error != 0) {
1017		device_printf(dev, "cannot get AHB clock frequency\n");
1018		goto fail;
1019	}
1020	div = freq / MDIO_FREQ;
1021	if (div <= 16)
1022		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1023	else if (div <= 32)
1024		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1025	else if (div <= 64)
1026		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1027	else if (div <= 128)
1028		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1029	else {
1030		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1031		error = ENXIO;
1032		goto fail;
1033	}
1034
1035	if (bootverbose)
1036		device_printf(dev, "AHB frequency %llu Hz, MDC div: 0x%x\n",
1037		    freq, sc->mdc_div_ratio_m);
1038
1039	return (0);
1040
1041fail:
1042	OF_prop_free(phy_type);
1043
1044	if (reg != NULL)
1045		regulator_release(reg);
1046	if (clk_tx_parent != NULL)
1047		clk_release(clk_tx_parent);
1048	if (clk_tx != NULL)
1049		clk_release(clk_tx);
1050	if (clk_ahb != NULL)
1051		clk_release(clk_ahb);
1052	if (rst_ahb != NULL)
1053		hwreset_release(rst_ahb);
1054	return (error);
1055}
1056
1057static void
1058awg_get_eaddr(device_t dev, uint8_t *eaddr)
1059{
1060	struct awg_softc *sc;
1061	uint32_t maclo, machi, rnd;
1062
1063	sc = device_get_softc(dev);
1064
1065	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1066	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1067
1068	if (maclo == 0xffffffff && machi == 0xffff) {
1069		/* MAC address in hardware is invalid, create one */
1070		rnd = arc4random();
1071		maclo = 0x00f2 | (rnd & 0xffff0000);
1072		machi = rnd & 0xffff;
1073	}
1074
1075	eaddr[0] = maclo & 0xff;
1076	eaddr[1] = (maclo >> 8) & 0xff;
1077	eaddr[2] = (maclo >> 16) & 0xff;
1078	eaddr[3] = (maclo >> 24) & 0xff;
1079	eaddr[4] = machi & 0xff;
1080	eaddr[5] = (machi >> 8) & 0xff;
1081}
1082
1083#ifdef AWG_DEBUG
1084static void
1085awg_dump_regs(device_t dev)
1086{
1087	static const struct {
1088		const char *name;
1089		u_int reg;
1090	} regs[] = {
1091		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1092		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1093		{ "INT_STA", EMAC_INT_STA },
1094		{ "INT_EN", EMAC_INT_EN },
1095		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1096		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1097		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1098		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1099		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1100		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1101		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1102		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1103		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1104		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1105		{ "MII_CMD", EMAC_MII_CMD },
1106		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1107		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1108		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1109		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1110		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1111		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1112		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1113		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1114		{ "RGMII_STA", EMAC_RGMII_STA },
1115	};
1116	struct awg_softc *sc;
1117	unsigned int n;
1118
1119	sc = device_get_softc(dev);
1120
1121	for (n = 0; n < nitems(regs); n++)
1122		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1123		    RD4(sc, regs[n].reg));
1124}
1125#endif
1126
1127static int
1128awg_reset(device_t dev)
1129{
1130	struct awg_softc *sc;
1131	int retry;
1132
1133	sc = device_get_softc(dev);
1134
1135	/* Soft reset all registers and logic */
1136	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1137
1138	/* Wait for soft reset bit to self-clear */
1139	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1140		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1141			break;
1142		DELAY(10);
1143	}
1144	if (retry == 0) {
1145		device_printf(dev, "soft reset timed out\n");
1146#ifdef AWG_DEBUG
1147		awg_dump_regs(dev);
1148#endif
1149		return (ETIMEDOUT);
1150	}
1151
1152	return (0);
1153}
1154
1155static void
1156awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1157{
1158	if (error != 0)
1159		return;
1160	*(bus_addr_t *)arg = segs[0].ds_addr;
1161}
1162
1163static int
1164awg_setup_dma(device_t dev)
1165{
1166	struct awg_softc *sc;
1167	struct mbuf *m;
1168	int error, i;
1169
1170	sc = device_get_softc(dev);
1171
1172	/* Setup TX ring */
1173	error = bus_dma_tag_create(
1174	    bus_get_dma_tag(dev),	/* Parent tag */
1175	    DESC_ALIGN, 0,		/* alignment, boundary */
1176	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1177	    BUS_SPACE_MAXADDR,		/* highaddr */
1178	    NULL, NULL,			/* filter, filterarg */
1179	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1180	    TX_DESC_SIZE,		/* maxsegsize */
1181	    0,				/* flags */
1182	    NULL, NULL,			/* lockfunc, lockarg */
1183	    &sc->tx.desc_tag);
1184	if (error != 0) {
1185		device_printf(dev, "cannot create TX descriptor ring tag\n");
1186		return (error);
1187	}
1188
1189	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1190	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1191	if (error != 0) {
1192		device_printf(dev, "cannot allocate TX descriptor ring\n");
1193		return (error);
1194	}
1195
1196	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1197	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1198	    &sc->tx.desc_ring_paddr, 0);
1199	if (error != 0) {
1200		device_printf(dev, "cannot load TX descriptor ring\n");
1201		return (error);
1202	}
1203
1204	for (i = 0; i < TX_DESC_COUNT; i++)
1205		sc->tx.desc_ring[i].next =
1206		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1207
1208	error = bus_dma_tag_create(
1209	    bus_get_dma_tag(dev),	/* Parent tag */
1210	    1, 0,			/* alignment, boundary */
1211	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1212	    BUS_SPACE_MAXADDR,		/* highaddr */
1213	    NULL, NULL,			/* filter, filterarg */
1214	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1215	    MCLBYTES,			/* maxsegsize */
1216	    0,				/* flags */
1217	    NULL, NULL,			/* lockfunc, lockarg */
1218	    &sc->tx.buf_tag);
1219	if (error != 0) {
1220		device_printf(dev, "cannot create TX buffer tag\n");
1221		return (error);
1222	}
1223
1224	sc->tx.queued = TX_DESC_COUNT;
1225	for (i = 0; i < TX_DESC_COUNT; i++) {
1226		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1227		    &sc->tx.buf_map[i].map);
1228		if (error != 0) {
1229			device_printf(dev, "cannot create TX buffer map\n");
1230			return (error);
1231		}
1232		awg_setup_txdesc(sc, i, 0, 0, 0);
1233	}
1234
1235	/* Setup RX ring */
1236	error = bus_dma_tag_create(
1237	    bus_get_dma_tag(dev),	/* Parent tag */
1238	    DESC_ALIGN, 0,		/* alignment, boundary */
1239	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1240	    BUS_SPACE_MAXADDR,		/* highaddr */
1241	    NULL, NULL,			/* filter, filterarg */
1242	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1243	    RX_DESC_SIZE,		/* maxsegsize */
1244	    0,				/* flags */
1245	    NULL, NULL,			/* lockfunc, lockarg */
1246	    &sc->rx.desc_tag);
1247	if (error != 0) {
1248		device_printf(dev, "cannot create RX descriptor ring tag\n");
1249		return (error);
1250	}
1251
1252	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1253	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1254	if (error != 0) {
1255		device_printf(dev, "cannot allocate RX descriptor ring\n");
1256		return (error);
1257	}
1258
1259	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1260	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1261	    &sc->rx.desc_ring_paddr, 0);
1262	if (error != 0) {
1263		device_printf(dev, "cannot load RX descriptor ring\n");
1264		return (error);
1265	}
1266
1267	error = bus_dma_tag_create(
1268	    bus_get_dma_tag(dev),	/* Parent tag */
1269	    1, 0,			/* alignment, boundary */
1270	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1271	    BUS_SPACE_MAXADDR,		/* highaddr */
1272	    NULL, NULL,			/* filter, filterarg */
1273	    MCLBYTES, 1,		/* maxsize, nsegs */
1274	    MCLBYTES,			/* maxsegsize */
1275	    0,				/* flags */
1276	    NULL, NULL,			/* lockfunc, lockarg */
1277	    &sc->rx.buf_tag);
1278	if (error != 0) {
1279		device_printf(dev, "cannot create RX buffer tag\n");
1280		return (error);
1281	}
1282
1283	for (i = 0; i < RX_DESC_COUNT; i++) {
1284		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1285		    &sc->rx.buf_map[i].map);
1286		if (error != 0) {
1287			device_printf(dev, "cannot create RX buffer map\n");
1288			return (error);
1289		}
1290		if ((m = awg_alloc_mbufcl(sc)) == NULL) {
1291			device_printf(dev, "cannot allocate RX mbuf\n");
1292			return (ENOMEM);
1293		}
1294		error = awg_setup_rxbuf(sc, i, m);
1295		if (error != 0) {
1296			device_printf(dev, "cannot create RX buffer\n");
1297			return (error);
1298		}
1299	}
1300	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1301	    BUS_DMASYNC_PREWRITE);
1302
1303	/* Write transmit and receive descriptor base address registers */
1304	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1305	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1306
1307	return (0);
1308}
1309
1310static int
1311awg_probe(device_t dev)
1312{
1313	if (!ofw_bus_status_okay(dev))
1314		return (ENXIO);
1315
1316	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1317		return (ENXIO);
1318
1319	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1320	return (BUS_PROBE_DEFAULT);
1321}
1322
1323static int
1324awg_attach(device_t dev)
1325{
1326	uint8_t eaddr[ETHER_ADDR_LEN];
1327	struct awg_softc *sc;
1328	phandle_t node;
1329	int error;
1330
1331	sc = device_get_softc(dev);
1332	sc->dev = dev;
1333	node = ofw_bus_get_node(dev);
1334
1335	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1336		device_printf(dev, "cannot allocate resources for device\n");
1337		return (ENXIO);
1338	}
1339
1340	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1341	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1342	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1343
1344	/* Setup clocks and regulators */
1345	error = awg_setup_extres(dev);
1346	if (error != 0)
1347		return (error);
1348
1349	/* Read MAC address before resetting the chip */
1350	awg_get_eaddr(dev, eaddr);
1351
1352	/* Soft reset EMAC core */
1353	error = awg_reset(dev);
1354	if (error != 0)
1355		return (error);
1356
1357	/* Setup DMA descriptors */
1358	error = awg_setup_dma(dev);
1359	if (error != 0)
1360		return (error);
1361
1362	/* Install interrupt handler */
1363	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_NET | INTR_MPSAFE,
1364	    NULL, awg_intr, sc, &sc->ih);
1365	if (error != 0) {
1366		device_printf(dev, "cannot setup interrupt handler\n");
1367		return (error);
1368	}
1369
1370	/* Setup ethernet interface */
1371	sc->ifp = if_alloc(IFT_ETHER);
1372	if_setsoftc(sc->ifp, sc);
1373	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1374	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1375	if_setstartfn(sc->ifp, awg_start);
1376	if_setioctlfn(sc->ifp, awg_ioctl);
1377	if_setinitfn(sc->ifp, awg_init);
1378	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1379	if_setsendqready(sc->ifp);
1380	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1381	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1382	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1383
1384	/* Attach MII driver */
1385	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1386	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1387	    MIIF_DOPAUSE);
1388	if (error != 0) {
1389		device_printf(dev, "cannot attach PHY\n");
1390		return (error);
1391	}
1392
1393	/* Attach ethernet interface */
1394	ether_ifattach(sc->ifp, eaddr);
1395
1396	return (0);
1397}
1398
1399static device_method_t awg_methods[] = {
1400	/* Device interface */
1401	DEVMETHOD(device_probe,		awg_probe),
1402	DEVMETHOD(device_attach,	awg_attach),
1403
1404	/* MII interface */
1405	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1406	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1407	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1408
1409	DEVMETHOD_END
1410};
1411
1412static driver_t awg_driver = {
1413	"awg",
1414	awg_methods,
1415	sizeof(struct awg_softc),
1416};
1417
1418static devclass_t awg_devclass;
1419
1420DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1421DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1422
1423MODULE_DEPEND(awg, ether, 1, 1, 1);
1424MODULE_DEPEND(awg, miibus, 1, 1, 1);
1425