if_awg.c revision 308324
1/*-
2 * Copyright (c) 2016 Jared McNeill <jmcneill@invisible.ca>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
19 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
20 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
21 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
22 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * $FreeBSD: stable/11/sys/arm/allwinner/if_awg.c 308324 2016-11-05 04:17:32Z mmel $
27 */
28
29/*
30 * Allwinner Gigabit Ethernet MAC (EMAC) controller
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/arm/allwinner/if_awg.c 308324 2016-11-05 04:17:32Z mmel $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/rman.h>
40#include <sys/kernel.h>
41#include <sys/endian.h>
42#include <sys/mbuf.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/module.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/ethernet.h>
51#include <net/if_dl.h>
52#include <net/if_media.h>
53#include <net/if_types.h>
54#include <net/if_var.h>
55
56#include <machine/bus.h>
57
58#include <dev/ofw/ofw_bus.h>
59#include <dev/ofw/ofw_bus_subr.h>
60
61#include <arm/allwinner/if_awgreg.h>
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/extres/clk/clk.h>
66#include <dev/extres/hwreset/hwreset.h>
67#include <dev/extres/regulator/regulator.h>
68
69#include "miibus_if.h"
70
71#define	RD4(sc, reg)		bus_read_4((sc)->res[0], (reg))
72#define	WR4(sc, reg, val)	bus_write_4((sc)->res[0], (reg), (val))
73
74#define	AWG_LOCK(sc)		mtx_lock(&(sc)->mtx)
75#define	AWG_UNLOCK(sc)		mtx_unlock(&(sc)->mtx);
76#define	AWG_ASSERT_LOCKED(sc)	mtx_assert(&(sc)->mtx, MA_OWNED)
77#define	AWG_ASSERT_UNLOCKED(sc)	mtx_assert(&(sc)->mtx, MA_NOTOWNED)
78
79#define	DESC_ALIGN		4
80#define	TX_DESC_COUNT		256
81#define	TX_DESC_SIZE		(sizeof(struct emac_desc) * TX_DESC_COUNT)
82#define	RX_DESC_COUNT		256
83#define	RX_DESC_SIZE		(sizeof(struct emac_desc) * RX_DESC_COUNT)
84
85#define	DESC_OFF(n)		((n) * sizeof(struct emac_desc))
86#define	TX_NEXT(n)		(((n) + 1) & (TX_DESC_COUNT - 1))
87#define	TX_SKIP(n, o)		(((n) + (o)) & (TX_DESC_COUNT - 1))
88#define	RX_NEXT(n)		(((n) + 1) & (RX_DESC_COUNT - 1))
89
90#define	TX_MAX_SEGS		10
91
92#define	SOFT_RST_RETRY		1000
93#define	MII_BUSY_RETRY		1000
94#define	MDIO_FREQ		2500000
95
96#define	BURST_LEN_DEFAULT	8
97#define	RX_TX_PRI_DEFAULT	0
98#define	PAUSE_TIME_DEFAULT	0x400
99#define	TX_INTERVAL_DEFAULT	64
100
101/* Burst length of RX and TX DMA transfers */
102static int awg_burst_len = BURST_LEN_DEFAULT;
103TUNABLE_INT("hw.awg.burst_len", &awg_burst_len);
104
105/* RX / TX DMA priority. If 1, RX DMA has priority over TX DMA. */
106static int awg_rx_tx_pri = RX_TX_PRI_DEFAULT;
107TUNABLE_INT("hw.awg.rx_tx_pri", &awg_rx_tx_pri);
108
109/* Pause time field in the transmitted control frame */
110static int awg_pause_time = PAUSE_TIME_DEFAULT;
111TUNABLE_INT("hw.awg.pause_time", &awg_pause_time);
112
113/* Request a TX interrupt every <n> descriptors */
114static int awg_tx_interval = TX_INTERVAL_DEFAULT;
115TUNABLE_INT("hw.awg.tx_interval", &awg_tx_interval);
116
117static struct ofw_compat_data compat_data[] = {
118	{ "allwinner,sun8i-a83t-emac",		1 },
119	{ NULL,					0 }
120};
121
122struct awg_bufmap {
123	bus_dmamap_t		map;
124	struct mbuf		*mbuf;
125};
126
127struct awg_txring {
128	bus_dma_tag_t		desc_tag;
129	bus_dmamap_t		desc_map;
130	struct emac_desc	*desc_ring;
131	bus_addr_t		desc_ring_paddr;
132	bus_dma_tag_t		buf_tag;
133	struct awg_bufmap	buf_map[TX_DESC_COUNT];
134	u_int			cur, next, queued;
135};
136
137struct awg_rxring {
138	bus_dma_tag_t		desc_tag;
139	bus_dmamap_t		desc_map;
140	struct emac_desc	*desc_ring;
141	bus_addr_t		desc_ring_paddr;
142	bus_dma_tag_t		buf_tag;
143	struct awg_bufmap	buf_map[RX_DESC_COUNT];
144	u_int			cur;
145};
146
147struct awg_softc {
148	struct resource		*res[2];
149	struct mtx		mtx;
150	if_t			ifp;
151	device_t		miibus;
152	struct callout		stat_ch;
153	struct task		link_task;
154	void			*ih;
155	u_int			mdc_div_ratio_m;
156	int			link;
157	int			if_flags;
158
159	struct awg_txring	tx;
160	struct awg_rxring	rx;
161};
162
163static struct resource_spec awg_spec[] = {
164	{ SYS_RES_MEMORY,	0,	RF_ACTIVE },
165	{ SYS_RES_IRQ,		0,	RF_ACTIVE },
166	{ -1, 0 }
167};
168
169static int
170awg_miibus_readreg(device_t dev, int phy, int reg)
171{
172	struct awg_softc *sc;
173	int retry, val;
174
175	sc = device_get_softc(dev);
176	val = 0;
177
178	WR4(sc, EMAC_MII_CMD,
179	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
180	    (phy << PHY_ADDR_SHIFT) |
181	    (reg << PHY_REG_ADDR_SHIFT) |
182	    MII_BUSY);
183	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
184		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0) {
185			val = RD4(sc, EMAC_MII_DATA);
186			break;
187		}
188		DELAY(10);
189	}
190
191	if (retry == 0)
192		device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
193		    phy, reg);
194
195	return (val);
196}
197
198static int
199awg_miibus_writereg(device_t dev, int phy, int reg, int val)
200{
201	struct awg_softc *sc;
202	int retry;
203
204	sc = device_get_softc(dev);
205
206	WR4(sc, EMAC_MII_DATA, val);
207	WR4(sc, EMAC_MII_CMD,
208	    (sc->mdc_div_ratio_m << MDC_DIV_RATIO_M_SHIFT) |
209	    (phy << PHY_ADDR_SHIFT) |
210	    (reg << PHY_REG_ADDR_SHIFT) |
211	    MII_WR | MII_BUSY);
212	for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
213		if ((RD4(sc, EMAC_MII_CMD) & MII_BUSY) == 0)
214			break;
215		DELAY(10);
216	}
217
218	if (retry == 0)
219		device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
220		    phy, reg);
221
222	return (0);
223}
224
225static void
226awg_update_link_locked(struct awg_softc *sc)
227{
228	struct mii_data *mii;
229	uint32_t val;
230
231	AWG_ASSERT_LOCKED(sc);
232
233	if ((if_getdrvflags(sc->ifp) & IFF_DRV_RUNNING) == 0)
234		return;
235	mii = device_get_softc(sc->miibus);
236
237	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
238	    (IFM_ACTIVE | IFM_AVALID)) {
239		switch (IFM_SUBTYPE(mii->mii_media_active)) {
240		case IFM_1000_T:
241		case IFM_1000_SX:
242		case IFM_100_TX:
243		case IFM_10_T:
244			sc->link = 1;
245			break;
246		default:
247			sc->link = 0;
248			break;
249		}
250	} else
251		sc->link = 0;
252
253	if (sc->link == 0)
254		return;
255
256	val = RD4(sc, EMAC_BASIC_CTL_0);
257	val &= ~(BASIC_CTL_SPEED | BASIC_CTL_DUPLEX);
258
259	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
260	    IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
261		val |= BASIC_CTL_SPEED_1000 << BASIC_CTL_SPEED_SHIFT;
262	else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
263		val |= BASIC_CTL_SPEED_100 << BASIC_CTL_SPEED_SHIFT;
264	else
265		val |= BASIC_CTL_SPEED_10 << BASIC_CTL_SPEED_SHIFT;
266
267	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
268		val |= BASIC_CTL_DUPLEX;
269
270	WR4(sc, EMAC_BASIC_CTL_0, val);
271
272	val = RD4(sc, EMAC_RX_CTL_0);
273	val &= ~RX_FLOW_CTL_EN;
274	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
275		val |= RX_FLOW_CTL_EN;
276	WR4(sc, EMAC_RX_CTL_0, val);
277
278	val = RD4(sc, EMAC_TX_FLOW_CTL);
279	val &= ~(PAUSE_TIME|TX_FLOW_CTL_EN);
280	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
281		val |= TX_FLOW_CTL_EN;
282	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
283		val |= awg_pause_time << PAUSE_TIME_SHIFT;
284	WR4(sc, EMAC_TX_FLOW_CTL, val);
285}
286
287static void
288awg_link_task(void *arg, int pending)
289{
290	struct awg_softc *sc;
291
292	sc = arg;
293
294	AWG_LOCK(sc);
295	awg_update_link_locked(sc);
296	AWG_UNLOCK(sc);
297}
298
299static void
300awg_miibus_statchg(device_t dev)
301{
302	struct awg_softc *sc;
303
304	sc = device_get_softc(dev);
305
306	taskqueue_enqueue(taskqueue_swi, &sc->link_task);
307}
308
309static void
310awg_media_status(if_t ifp, struct ifmediareq *ifmr)
311{
312	struct awg_softc *sc;
313	struct mii_data *mii;
314
315	sc = if_getsoftc(ifp);
316	mii = device_get_softc(sc->miibus);
317
318	AWG_LOCK(sc);
319	mii_pollstat(mii);
320	ifmr->ifm_active = mii->mii_media_active;
321	ifmr->ifm_status = mii->mii_media_status;
322	AWG_UNLOCK(sc);
323}
324
325static int
326awg_media_change(if_t ifp)
327{
328	struct awg_softc *sc;
329	struct mii_data *mii;
330	int error;
331
332	sc = if_getsoftc(ifp);
333	mii = device_get_softc(sc->miibus);
334
335	AWG_LOCK(sc);
336	error = mii_mediachg(mii);
337	AWG_UNLOCK(sc);
338
339	return (error);
340}
341
342static void
343awg_setup_txdesc(struct awg_softc *sc, int index, int flags, bus_addr_t paddr,
344    u_int len)
345{
346	uint32_t status, size;
347
348	if (paddr == 0 || len == 0) {
349		status = 0;
350		size = 0;
351		--sc->tx.queued;
352	} else {
353		status = TX_DESC_CTL;
354		size = flags | len;
355		if ((index & (awg_tx_interval - 1)) == 0)
356			size |= htole32(TX_INT_CTL);
357		++sc->tx.queued;
358	}
359
360	sc->tx.desc_ring[index].addr = htole32((uint32_t)paddr);
361	sc->tx.desc_ring[index].size = htole32(size);
362	sc->tx.desc_ring[index].status = htole32(status);
363}
364
365static int
366awg_setup_txbuf(struct awg_softc *sc, int index, struct mbuf **mp)
367{
368	bus_dma_segment_t segs[TX_MAX_SEGS];
369	int error, nsegs, cur, i, flags;
370	u_int csum_flags;
371	struct mbuf *m;
372
373	m = *mp;
374	error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
375	    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
376	if (error == EFBIG) {
377		m = m_collapse(m, M_NOWAIT, TX_MAX_SEGS);
378		if (m == NULL)
379			return (0);
380		*mp = m;
381		error = bus_dmamap_load_mbuf_sg(sc->tx.buf_tag,
382		    sc->tx.buf_map[index].map, m, segs, &nsegs, BUS_DMA_NOWAIT);
383	}
384	if (error != 0)
385		return (0);
386
387	bus_dmamap_sync(sc->tx.buf_tag, sc->tx.buf_map[index].map,
388	    BUS_DMASYNC_PREWRITE);
389
390	flags = TX_FIR_DESC;
391	if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0) {
392		if ((m->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) != 0)
393			csum_flags = TX_CHECKSUM_CTL_FULL;
394		else
395			csum_flags = TX_CHECKSUM_CTL_IP;
396		flags |= (csum_flags << TX_CHECKSUM_CTL_SHIFT);
397	}
398
399	for (cur = index, i = 0; i < nsegs; i++) {
400		sc->tx.buf_map[cur].mbuf = (i == 0 ? m : NULL);
401		if (i == nsegs - 1)
402			flags |= TX_LAST_DESC;
403		awg_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
404		    segs[i].ds_len);
405		flags &= ~TX_FIR_DESC;
406		cur = TX_NEXT(cur);
407	}
408
409	return (nsegs);
410}
411
412static void
413awg_setup_rxdesc(struct awg_softc *sc, int index, bus_addr_t paddr)
414{
415	uint32_t status, size;
416
417	status = RX_DESC_CTL;
418	size = MCLBYTES - 1;
419
420	sc->rx.desc_ring[index].addr = htole32((uint32_t)paddr);
421	sc->rx.desc_ring[index].size = htole32(size);
422	sc->rx.desc_ring[index].next =
423	    htole32(sc->rx.desc_ring_paddr + DESC_OFF(RX_NEXT(index)));
424	sc->rx.desc_ring[index].status = htole32(status);
425}
426
427static int
428awg_setup_rxbuf(struct awg_softc *sc, int index, struct mbuf *m)
429{
430	bus_dma_segment_t seg;
431	int error, nsegs;
432
433	m_adj(m, ETHER_ALIGN);
434
435	error = bus_dmamap_load_mbuf_sg(sc->rx.buf_tag,
436	    sc->rx.buf_map[index].map, m, &seg, &nsegs, 0);
437	if (error != 0)
438		return (error);
439
440	bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
441	    BUS_DMASYNC_PREREAD);
442
443	sc->rx.buf_map[index].mbuf = m;
444	awg_setup_rxdesc(sc, index, seg.ds_addr);
445
446	return (0);
447}
448
449static struct mbuf *
450awg_alloc_mbufcl(struct awg_softc *sc)
451{
452	struct mbuf *m;
453
454	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
455	if (m != NULL)
456		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
457
458	return (m);
459}
460
461static void
462awg_start_locked(struct awg_softc *sc)
463{
464	struct mbuf *m;
465	uint32_t val;
466	if_t ifp;
467	int cnt, nsegs;
468
469	AWG_ASSERT_LOCKED(sc);
470
471	if (!sc->link)
472		return;
473
474	ifp = sc->ifp;
475
476	if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING|IFF_DRV_OACTIVE)) !=
477	    IFF_DRV_RUNNING)
478		return;
479
480	for (cnt = 0; ; cnt++) {
481		if (sc->tx.queued >= TX_DESC_COUNT - TX_MAX_SEGS) {
482			if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
483			break;
484		}
485
486		m = if_dequeue(ifp);
487		if (m == NULL)
488			break;
489
490		nsegs = awg_setup_txbuf(sc, sc->tx.cur, &m);
491		if (nsegs == 0) {
492			if_sendq_prepend(ifp, m);
493			break;
494		}
495		if_bpfmtap(ifp, m);
496		sc->tx.cur = TX_SKIP(sc->tx.cur, nsegs);
497	}
498
499	if (cnt != 0) {
500		bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
501		    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
502
503		/* Start and run TX DMA */
504		val = RD4(sc, EMAC_TX_CTL_1);
505		WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_START);
506	}
507}
508
509static void
510awg_start(if_t ifp)
511{
512	struct awg_softc *sc;
513
514	sc = if_getsoftc(ifp);
515
516	AWG_LOCK(sc);
517	awg_start_locked(sc);
518	AWG_UNLOCK(sc);
519}
520
521static void
522awg_tick(void *softc)
523{
524	struct awg_softc *sc;
525	struct mii_data *mii;
526	if_t ifp;
527	int link;
528
529	sc = softc;
530	ifp = sc->ifp;
531	mii = device_get_softc(sc->miibus);
532
533	AWG_ASSERT_LOCKED(sc);
534
535	if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
536		return;
537
538	link = sc->link;
539	mii_tick(mii);
540	if (sc->link && !link)
541		awg_start_locked(sc);
542
543	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
544}
545
546/* Bit Reversal - http://aggregate.org/MAGIC/#Bit%20Reversal */
547static uint32_t
548bitrev32(uint32_t x)
549{
550	x = (((x & 0xaaaaaaaa) >> 1) | ((x & 0x55555555) << 1));
551	x = (((x & 0xcccccccc) >> 2) | ((x & 0x33333333) << 2));
552	x = (((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4));
553	x = (((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8));
554
555	return (x >> 16) | (x << 16);
556}
557
558static void
559awg_setup_rxfilter(struct awg_softc *sc)
560{
561	uint32_t val, crc, hashreg, hashbit, hash[2], machi, maclo;
562	int mc_count, mcnt, i;
563	uint8_t *eaddr, *mta;
564	if_t ifp;
565
566	AWG_ASSERT_LOCKED(sc);
567
568	ifp = sc->ifp;
569	val = 0;
570	hash[0] = hash[1] = 0;
571
572	mc_count = if_multiaddr_count(ifp, -1);
573
574	if (if_getflags(ifp) & IFF_PROMISC)
575		val |= DIS_ADDR_FILTER;
576	else if (if_getflags(ifp) & IFF_ALLMULTI) {
577		val |= RX_ALL_MULTICAST;
578		hash[0] = hash[1] = ~0;
579	} else if (mc_count > 0) {
580		val |= HASH_MULTICAST;
581
582		mta = malloc(sizeof(unsigned char) * ETHER_ADDR_LEN * mc_count,
583		    M_DEVBUF, M_NOWAIT);
584		if (mta == NULL) {
585			if_printf(ifp,
586			    "failed to allocate temporary multicast list\n");
587			return;
588		}
589
590		if_multiaddr_array(ifp, mta, &mcnt, mc_count);
591		for (i = 0; i < mcnt; i++) {
592			crc = ether_crc32_le(mta + (i * ETHER_ADDR_LEN),
593			    ETHER_ADDR_LEN) & 0x7f;
594			crc = bitrev32(~crc) >> 26;
595			hashreg = (crc >> 5);
596			hashbit = (crc & 0x1f);
597			hash[hashreg] |= (1 << hashbit);
598		}
599
600		free(mta, M_DEVBUF);
601	}
602
603	/* Write our unicast address */
604	eaddr = IF_LLADDR(ifp);
605	machi = (eaddr[5] << 8) | eaddr[4];
606	maclo = (eaddr[3] << 24) | (eaddr[2] << 16) | (eaddr[1] << 8) |
607	   (eaddr[0] << 0);
608	WR4(sc, EMAC_ADDR_HIGH(0), machi);
609	WR4(sc, EMAC_ADDR_LOW(0), maclo);
610
611	/* Multicast hash filters */
612	WR4(sc, EMAC_RX_HASH_0, hash[1]);
613	WR4(sc, EMAC_RX_HASH_1, hash[0]);
614
615	/* RX frame filter config */
616	WR4(sc, EMAC_RX_FRM_FLT, val);
617}
618
619static void
620awg_init_locked(struct awg_softc *sc)
621{
622	struct mii_data *mii;
623	uint32_t val;
624	if_t ifp;
625
626	mii = device_get_softc(sc->miibus);
627	ifp = sc->ifp;
628
629	AWG_ASSERT_LOCKED(sc);
630
631	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
632		return;
633
634	awg_setup_rxfilter(sc);
635
636	/* Configure DMA burst length and priorities */
637	val = awg_burst_len << BASIC_CTL_BURST_LEN_SHIFT;
638	if (awg_rx_tx_pri)
639		val |= BASIC_CTL_RX_TX_PRI;
640	WR4(sc, EMAC_BASIC_CTL_1, val);
641
642	/* Enable interrupts */
643	WR4(sc, EMAC_INT_EN, RX_INT_EN | TX_INT_EN | TX_BUF_UA_INT_EN);
644
645	/* Enable transmit DMA */
646	val = RD4(sc, EMAC_TX_CTL_1);
647	WR4(sc, EMAC_TX_CTL_1, val | TX_DMA_EN | TX_MD);
648
649	/* Enable receive DMA */
650	val = RD4(sc, EMAC_RX_CTL_1);
651	WR4(sc, EMAC_RX_CTL_1, val | RX_DMA_EN | RX_MD);
652
653	/* Enable transmitter */
654	val = RD4(sc, EMAC_TX_CTL_0);
655	WR4(sc, EMAC_TX_CTL_0, val | TX_EN);
656
657	/* Enable receiver */
658	val = RD4(sc, EMAC_RX_CTL_0);
659	WR4(sc, EMAC_RX_CTL_0, val | RX_EN | CHECK_CRC);
660
661	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, IFF_DRV_OACTIVE);
662
663	mii_mediachg(mii);
664	callout_reset(&sc->stat_ch, hz, awg_tick, sc);
665}
666
667static void
668awg_init(void *softc)
669{
670	struct awg_softc *sc;
671
672	sc = softc;
673
674	AWG_LOCK(sc);
675	awg_init_locked(sc);
676	AWG_UNLOCK(sc);
677}
678
679static void
680awg_stop(struct awg_softc *sc)
681{
682	if_t ifp;
683	uint32_t val;
684
685	AWG_ASSERT_LOCKED(sc);
686
687	ifp = sc->ifp;
688
689	callout_stop(&sc->stat_ch);
690
691	/* Stop transmit DMA and flush data in the TX FIFO */
692	val = RD4(sc, EMAC_TX_CTL_1);
693	val &= ~TX_DMA_EN;
694	val |= FLUSH_TX_FIFO;
695	WR4(sc, EMAC_TX_CTL_1, val);
696
697	/* Disable transmitter */
698	val = RD4(sc, EMAC_TX_CTL_0);
699	WR4(sc, EMAC_TX_CTL_0, val & ~TX_EN);
700
701	/* Disable receiver */
702	val = RD4(sc, EMAC_RX_CTL_0);
703	WR4(sc, EMAC_RX_CTL_0, val & ~RX_EN);
704
705	/* Disable interrupts */
706	WR4(sc, EMAC_INT_EN, 0);
707
708	/* Disable transmit DMA */
709	val = RD4(sc, EMAC_TX_CTL_1);
710	WR4(sc, EMAC_TX_CTL_1, val & ~TX_DMA_EN);
711
712	/* Disable receive DMA */
713	val = RD4(sc, EMAC_RX_CTL_1);
714	WR4(sc, EMAC_RX_CTL_1, val & ~RX_DMA_EN);
715
716	sc->link = 0;
717
718	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
719}
720
721static void
722awg_rxintr(struct awg_softc *sc)
723{
724	if_t ifp;
725	struct mbuf *m, *m0;
726	int error, index, len;
727	uint32_t status;
728
729	ifp = sc->ifp;
730
731	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
732	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
733
734	for (index = sc->rx.cur; ; index = RX_NEXT(index)) {
735		status = le32toh(sc->rx.desc_ring[index].status);
736		if ((status & RX_DESC_CTL) != 0)
737			break;
738
739		bus_dmamap_sync(sc->rx.buf_tag, sc->rx.buf_map[index].map,
740		    BUS_DMASYNC_POSTREAD);
741		bus_dmamap_unload(sc->rx.buf_tag, sc->rx.buf_map[index].map);
742
743		len = (status & RX_FRM_LEN) >> RX_FRM_LEN_SHIFT;
744		if (len != 0) {
745			m = sc->rx.buf_map[index].mbuf;
746			m->m_pkthdr.rcvif = ifp;
747			m->m_pkthdr.len = len;
748			m->m_len = len;
749			if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
750
751			if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0 &&
752			    (status & RX_FRM_TYPE) != 0) {
753				m->m_pkthdr.csum_flags = CSUM_IP_CHECKED;
754				if ((status & RX_HEADER_ERR) == 0)
755					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
756				if ((status & RX_PAYLOAD_ERR) == 0) {
757					m->m_pkthdr.csum_flags |=
758					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
759					m->m_pkthdr.csum_data = 0xffff;
760				}
761			}
762
763			AWG_UNLOCK(sc);
764			if_input(ifp, m);
765			AWG_LOCK(sc);
766		}
767
768		if ((m0 = awg_alloc_mbufcl(sc)) != NULL) {
769			error = awg_setup_rxbuf(sc, index, m0);
770			if (error != 0) {
771				/* XXX hole in RX ring */
772			}
773		} else
774			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
775	}
776
777	if (index != sc->rx.cur) {
778		bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
779		    BUS_DMASYNC_PREWRITE);
780	}
781
782	sc->rx.cur = index;
783}
784
785static void
786awg_txintr(struct awg_softc *sc)
787{
788	struct awg_bufmap *bmap;
789	struct emac_desc *desc;
790	uint32_t status;
791	if_t ifp;
792	int i;
793
794	AWG_ASSERT_LOCKED(sc);
795
796	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
797	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
798
799	ifp = sc->ifp;
800	for (i = sc->tx.next; sc->tx.queued > 0; i = TX_NEXT(i)) {
801		desc = &sc->tx.desc_ring[i];
802		status = le32toh(desc->status);
803		if ((status & TX_DESC_CTL) != 0)
804			break;
805		bmap = &sc->tx.buf_map[i];
806		if (bmap->mbuf != NULL) {
807			bus_dmamap_sync(sc->tx.buf_tag, bmap->map,
808			    BUS_DMASYNC_POSTWRITE);
809			bus_dmamap_unload(sc->tx.buf_tag, bmap->map);
810			m_freem(bmap->mbuf);
811			bmap->mbuf = NULL;
812		}
813		awg_setup_txdesc(sc, i, 0, 0, 0);
814		if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
815		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
816	}
817
818	sc->tx.next = i;
819
820	bus_dmamap_sync(sc->tx.desc_tag, sc->tx.desc_map,
821	    BUS_DMASYNC_PREWRITE);
822}
823
824static void
825awg_intr(void *arg)
826{
827	struct awg_softc *sc;
828	uint32_t val;
829
830	sc = arg;
831
832	AWG_LOCK(sc);
833	val = RD4(sc, EMAC_INT_STA);
834	WR4(sc, EMAC_INT_STA, val);
835
836	if (val & RX_INT)
837		awg_rxintr(sc);
838
839	if (val & (TX_INT|TX_BUF_UA_INT)) {
840		awg_txintr(sc);
841		if (!if_sendq_empty(sc->ifp))
842			awg_start_locked(sc);
843	}
844
845	AWG_UNLOCK(sc);
846}
847
848static int
849awg_ioctl(if_t ifp, u_long cmd, caddr_t data)
850{
851	struct awg_softc *sc;
852	struct mii_data *mii;
853	struct ifreq *ifr;
854	int flags, mask, error;
855
856	sc = if_getsoftc(ifp);
857	mii = device_get_softc(sc->miibus);
858	ifr = (struct ifreq *)data;
859	error = 0;
860
861	switch (cmd) {
862	case SIOCSIFFLAGS:
863		AWG_LOCK(sc);
864		if (if_getflags(ifp) & IFF_UP) {
865			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
866				flags = if_getflags(ifp) ^ sc->if_flags;
867				if ((flags & (IFF_PROMISC|IFF_ALLMULTI)) != 0)
868					awg_setup_rxfilter(sc);
869			} else
870				awg_init_locked(sc);
871		} else {
872			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
873				awg_stop(sc);
874		}
875		sc->if_flags = if_getflags(ifp);
876		AWG_UNLOCK(sc);
877		break;
878	case SIOCADDMULTI:
879	case SIOCDELMULTI:
880		if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
881			AWG_LOCK(sc);
882			awg_setup_rxfilter(sc);
883			AWG_UNLOCK(sc);
884		}
885		break;
886	case SIOCSIFMEDIA:
887	case SIOCGIFMEDIA:
888		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
889		break;
890	case SIOCSIFCAP:
891		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
892		if (mask & IFCAP_VLAN_MTU)
893			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
894		if (mask & IFCAP_RXCSUM)
895			if_togglecapenable(ifp, IFCAP_RXCSUM);
896		if (mask & IFCAP_TXCSUM)
897			if_togglecapenable(ifp, IFCAP_TXCSUM);
898		if ((if_getcapenable(ifp) & (IFCAP_RXCSUM|IFCAP_TXCSUM)) != 0)
899			if_sethwassistbits(ifp, CSUM_IP, 0);
900		else
901			if_sethwassistbits(ifp, 0, CSUM_IP);
902		break;
903	default:
904		error = ether_ioctl(ifp, cmd, data);
905		break;
906	}
907
908	return (error);
909}
910
911static int
912awg_setup_extres(device_t dev)
913{
914	struct awg_softc *sc;
915	hwreset_t rst_ahb;
916	clk_t clk_ahb, clk_tx, clk_tx_parent;
917	regulator_t reg;
918	const char *tx_parent_name;
919	char *phy_type;
920	phandle_t node;
921	uint64_t freq;
922	int error, div;
923
924	sc = device_get_softc(dev);
925	node = ofw_bus_get_node(dev);
926	rst_ahb = NULL;
927	clk_ahb = NULL;
928	clk_tx = NULL;
929	clk_tx_parent = NULL;
930	reg = NULL;
931	phy_type = NULL;
932
933	/* Get AHB clock and reset resources */
934	error = hwreset_get_by_ofw_name(dev, 0, "ahb", &rst_ahb);
935	if (error != 0) {
936		device_printf(dev, "cannot get ahb reset\n");
937		goto fail;
938	}
939	error = clk_get_by_ofw_name(dev, 0, "ahb", &clk_ahb);
940	if (error != 0) {
941		device_printf(dev, "cannot get ahb clock\n");
942		goto fail;
943	}
944
945	/* Configure PHY for MII or RGMII mode */
946	if (OF_getprop_alloc(node, "phy-mode", 1, (void **)&phy_type)) {
947		if (bootverbose)
948			device_printf(dev, "PHY type: %s\n", phy_type);
949
950		if (strcmp(phy_type, "rgmii") == 0)
951			tx_parent_name = "emac_int_tx";
952		else
953			tx_parent_name = "mii_phy_tx";
954		OF_prop_free(phy_type);
955
956		/* Get the TX clock */
957		error = clk_get_by_ofw_name(dev, 0, "tx", &clk_tx);
958		if (error != 0) {
959			device_printf(dev, "cannot get tx clock\n");
960			goto fail;
961		}
962
963		/* Find the desired parent clock based on phy-mode property */
964		error = clk_get_by_name(dev, tx_parent_name, &clk_tx_parent);
965		if (error != 0) {
966			device_printf(dev, "cannot get clock '%s'\n",
967			    tx_parent_name);
968			goto fail;
969		}
970
971		/* Set TX clock parent */
972		error = clk_set_parent_by_clk(clk_tx, clk_tx_parent);
973		if (error != 0) {
974			device_printf(dev, "cannot set tx clock parent\n");
975			goto fail;
976		}
977
978		/* Enable TX clock */
979		error = clk_enable(clk_tx);
980		if (error != 0) {
981			device_printf(dev, "cannot enable tx clock\n");
982			goto fail;
983		}
984	}
985
986	/* Enable AHB clock */
987	error = clk_enable(clk_ahb);
988	if (error != 0) {
989		device_printf(dev, "cannot enable ahb clock\n");
990		goto fail;
991	}
992
993	/* De-assert reset */
994	error = hwreset_deassert(rst_ahb);
995	if (error != 0) {
996		device_printf(dev, "cannot de-assert ahb reset\n");
997		goto fail;
998	}
999
1000	/* Enable PHY regulator if applicable */
1001	if (regulator_get_by_ofw_property(dev, 0, "phy-supply", &reg) == 0) {
1002		error = regulator_enable(reg);
1003		if (error != 0) {
1004			device_printf(dev, "cannot enable PHY regulator\n");
1005			goto fail;
1006		}
1007	}
1008
1009	/* Determine MDC clock divide ratio based on AHB clock */
1010	error = clk_get_freq(clk_ahb, &freq);
1011	if (error != 0) {
1012		device_printf(dev, "cannot get AHB clock frequency\n");
1013		goto fail;
1014	}
1015	div = freq / MDIO_FREQ;
1016	if (div <= 16)
1017		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_16;
1018	else if (div <= 32)
1019		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_32;
1020	else if (div <= 64)
1021		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_64;
1022	else if (div <= 128)
1023		sc->mdc_div_ratio_m = MDC_DIV_RATIO_M_128;
1024	else {
1025		device_printf(dev, "cannot determine MDC clock divide ratio\n");
1026		error = ENXIO;
1027		goto fail;
1028	}
1029
1030	if (bootverbose)
1031		device_printf(dev, "AHB frequency %llu Hz, MDC div: 0x%x\n",
1032		    freq, sc->mdc_div_ratio_m);
1033
1034	return (0);
1035
1036fail:
1037	OF_prop_free(phy_type);
1038
1039	if (reg != NULL)
1040		regulator_release(reg);
1041	if (clk_tx_parent != NULL)
1042		clk_release(clk_tx_parent);
1043	if (clk_tx != NULL)
1044		clk_release(clk_tx);
1045	if (clk_ahb != NULL)
1046		clk_release(clk_ahb);
1047	if (rst_ahb != NULL)
1048		hwreset_release(rst_ahb);
1049	return (error);
1050}
1051
1052static void
1053awg_get_eaddr(device_t dev, uint8_t *eaddr)
1054{
1055	struct awg_softc *sc;
1056	uint32_t maclo, machi, rnd;
1057
1058	sc = device_get_softc(dev);
1059
1060	machi = RD4(sc, EMAC_ADDR_HIGH(0)) & 0xffff;
1061	maclo = RD4(sc, EMAC_ADDR_LOW(0));
1062
1063	if (maclo == 0xffffffff && machi == 0xffff) {
1064		/* MAC address in hardware is invalid, create one */
1065		rnd = arc4random();
1066		maclo = 0x00f2 | (rnd & 0xffff0000);
1067		machi = rnd & 0xffff;
1068	}
1069
1070	eaddr[0] = maclo & 0xff;
1071	eaddr[1] = (maclo >> 8) & 0xff;
1072	eaddr[2] = (maclo >> 16) & 0xff;
1073	eaddr[3] = (maclo >> 24) & 0xff;
1074	eaddr[4] = machi & 0xff;
1075	eaddr[5] = (machi >> 8) & 0xff;
1076}
1077
1078#ifdef AWG_DEBUG
1079static void
1080awg_dump_regs(device_t dev)
1081{
1082	static const struct {
1083		const char *name;
1084		u_int reg;
1085	} regs[] = {
1086		{ "BASIC_CTL_0", EMAC_BASIC_CTL_0 },
1087		{ "BASIC_CTL_1", EMAC_BASIC_CTL_1 },
1088		{ "INT_STA", EMAC_INT_STA },
1089		{ "INT_EN", EMAC_INT_EN },
1090		{ "TX_CTL_0", EMAC_TX_CTL_0 },
1091		{ "TX_CTL_1", EMAC_TX_CTL_1 },
1092		{ "TX_FLOW_CTL", EMAC_TX_FLOW_CTL },
1093		{ "TX_DMA_LIST", EMAC_TX_DMA_LIST },
1094		{ "RX_CTL_0", EMAC_RX_CTL_0 },
1095		{ "RX_CTL_1", EMAC_RX_CTL_1 },
1096		{ "RX_DMA_LIST", EMAC_RX_DMA_LIST },
1097		{ "RX_FRM_FLT", EMAC_RX_FRM_FLT },
1098		{ "RX_HASH_0", EMAC_RX_HASH_0 },
1099		{ "RX_HASH_1", EMAC_RX_HASH_1 },
1100		{ "MII_CMD", EMAC_MII_CMD },
1101		{ "ADDR_HIGH0", EMAC_ADDR_HIGH(0) },
1102		{ "ADDR_LOW0", EMAC_ADDR_LOW(0) },
1103		{ "TX_DMA_STA", EMAC_TX_DMA_STA },
1104		{ "TX_DMA_CUR_DESC", EMAC_TX_DMA_CUR_DESC },
1105		{ "TX_DMA_CUR_BUF", EMAC_TX_DMA_CUR_BUF },
1106		{ "RX_DMA_STA", EMAC_RX_DMA_STA },
1107		{ "RX_DMA_CUR_DESC", EMAC_RX_DMA_CUR_DESC },
1108		{ "RX_DMA_CUR_BUF", EMAC_RX_DMA_CUR_BUF },
1109		{ "RGMII_STA", EMAC_RGMII_STA },
1110	};
1111	struct awg_softc *sc;
1112	unsigned int n;
1113
1114	sc = device_get_softc(dev);
1115
1116	for (n = 0; n < nitems(regs); n++)
1117		device_printf(dev, "  %-20s %08x\n", regs[n].name,
1118		    RD4(sc, regs[n].reg));
1119}
1120#endif
1121
1122static int
1123awg_reset(device_t dev)
1124{
1125	struct awg_softc *sc;
1126	int retry;
1127
1128	sc = device_get_softc(dev);
1129
1130	/* Soft reset all registers and logic */
1131	WR4(sc, EMAC_BASIC_CTL_1, BASIC_CTL_SOFT_RST);
1132
1133	/* Wait for soft reset bit to self-clear */
1134	for (retry = SOFT_RST_RETRY; retry > 0; retry--) {
1135		if ((RD4(sc, EMAC_BASIC_CTL_1) & BASIC_CTL_SOFT_RST) == 0)
1136			break;
1137		DELAY(10);
1138	}
1139	if (retry == 0) {
1140		device_printf(dev, "soft reset timed out\n");
1141#ifdef AWG_DEBUG
1142		awg_dump_regs(dev);
1143#endif
1144		return (ETIMEDOUT);
1145	}
1146
1147	return (0);
1148}
1149
1150static void
1151awg_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1152{
1153	if (error != 0)
1154		return;
1155	*(bus_addr_t *)arg = segs[0].ds_addr;
1156}
1157
1158static int
1159awg_setup_dma(device_t dev)
1160{
1161	struct awg_softc *sc;
1162	struct mbuf *m;
1163	int error, i;
1164
1165	sc = device_get_softc(dev);
1166
1167	/* Setup TX ring */
1168	error = bus_dma_tag_create(
1169	    bus_get_dma_tag(dev),	/* Parent tag */
1170	    DESC_ALIGN, 0,		/* alignment, boundary */
1171	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1172	    BUS_SPACE_MAXADDR,		/* highaddr */
1173	    NULL, NULL,			/* filter, filterarg */
1174	    TX_DESC_SIZE, 1,		/* maxsize, nsegs */
1175	    TX_DESC_SIZE,		/* maxsegsize */
1176	    0,				/* flags */
1177	    NULL, NULL,			/* lockfunc, lockarg */
1178	    &sc->tx.desc_tag);
1179	if (error != 0) {
1180		device_printf(dev, "cannot create TX descriptor ring tag\n");
1181		return (error);
1182	}
1183
1184	error = bus_dmamem_alloc(sc->tx.desc_tag, (void **)&sc->tx.desc_ring,
1185	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->tx.desc_map);
1186	if (error != 0) {
1187		device_printf(dev, "cannot allocate TX descriptor ring\n");
1188		return (error);
1189	}
1190
1191	error = bus_dmamap_load(sc->tx.desc_tag, sc->tx.desc_map,
1192	    sc->tx.desc_ring, TX_DESC_SIZE, awg_dmamap_cb,
1193	    &sc->tx.desc_ring_paddr, 0);
1194	if (error != 0) {
1195		device_printf(dev, "cannot load TX descriptor ring\n");
1196		return (error);
1197	}
1198
1199	for (i = 0; i < TX_DESC_COUNT; i++)
1200		sc->tx.desc_ring[i].next =
1201		    htole32(sc->tx.desc_ring_paddr + DESC_OFF(TX_NEXT(i)));
1202
1203	error = bus_dma_tag_create(
1204	    bus_get_dma_tag(dev),	/* Parent tag */
1205	    1, 0,			/* alignment, boundary */
1206	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1207	    BUS_SPACE_MAXADDR,		/* highaddr */
1208	    NULL, NULL,			/* filter, filterarg */
1209	    MCLBYTES, TX_MAX_SEGS,	/* maxsize, nsegs */
1210	    MCLBYTES,			/* maxsegsize */
1211	    0,				/* flags */
1212	    NULL, NULL,			/* lockfunc, lockarg */
1213	    &sc->tx.buf_tag);
1214	if (error != 0) {
1215		device_printf(dev, "cannot create TX buffer tag\n");
1216		return (error);
1217	}
1218
1219	sc->tx.queued = TX_DESC_COUNT;
1220	for (i = 0; i < TX_DESC_COUNT; i++) {
1221		error = bus_dmamap_create(sc->tx.buf_tag, 0,
1222		    &sc->tx.buf_map[i].map);
1223		if (error != 0) {
1224			device_printf(dev, "cannot create TX buffer map\n");
1225			return (error);
1226		}
1227		awg_setup_txdesc(sc, i, 0, 0, 0);
1228	}
1229
1230	/* Setup RX ring */
1231	error = bus_dma_tag_create(
1232	    bus_get_dma_tag(dev),	/* Parent tag */
1233	    DESC_ALIGN, 0,		/* alignment, boundary */
1234	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1235	    BUS_SPACE_MAXADDR,		/* highaddr */
1236	    NULL, NULL,			/* filter, filterarg */
1237	    RX_DESC_SIZE, 1,		/* maxsize, nsegs */
1238	    RX_DESC_SIZE,		/* maxsegsize */
1239	    0,				/* flags */
1240	    NULL, NULL,			/* lockfunc, lockarg */
1241	    &sc->rx.desc_tag);
1242	if (error != 0) {
1243		device_printf(dev, "cannot create RX descriptor ring tag\n");
1244		return (error);
1245	}
1246
1247	error = bus_dmamem_alloc(sc->rx.desc_tag, (void **)&sc->rx.desc_ring,
1248	    BUS_DMA_COHERENT | BUS_DMA_WAITOK | BUS_DMA_ZERO, &sc->rx.desc_map);
1249	if (error != 0) {
1250		device_printf(dev, "cannot allocate RX descriptor ring\n");
1251		return (error);
1252	}
1253
1254	error = bus_dmamap_load(sc->rx.desc_tag, sc->rx.desc_map,
1255	    sc->rx.desc_ring, RX_DESC_SIZE, awg_dmamap_cb,
1256	    &sc->rx.desc_ring_paddr, 0);
1257	if (error != 0) {
1258		device_printf(dev, "cannot load RX descriptor ring\n");
1259		return (error);
1260	}
1261
1262	error = bus_dma_tag_create(
1263	    bus_get_dma_tag(dev),	/* Parent tag */
1264	    1, 0,			/* alignment, boundary */
1265	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1266	    BUS_SPACE_MAXADDR,		/* highaddr */
1267	    NULL, NULL,			/* filter, filterarg */
1268	    MCLBYTES, 1,		/* maxsize, nsegs */
1269	    MCLBYTES,			/* maxsegsize */
1270	    0,				/* flags */
1271	    NULL, NULL,			/* lockfunc, lockarg */
1272	    &sc->rx.buf_tag);
1273	if (error != 0) {
1274		device_printf(dev, "cannot create RX buffer tag\n");
1275		return (error);
1276	}
1277
1278	for (i = 0; i < RX_DESC_COUNT; i++) {
1279		error = bus_dmamap_create(sc->rx.buf_tag, 0,
1280		    &sc->rx.buf_map[i].map);
1281		if (error != 0) {
1282			device_printf(dev, "cannot create RX buffer map\n");
1283			return (error);
1284		}
1285		if ((m = awg_alloc_mbufcl(sc)) == NULL) {
1286			device_printf(dev, "cannot allocate RX mbuf\n");
1287			return (ENOMEM);
1288		}
1289		error = awg_setup_rxbuf(sc, i, m);
1290		if (error != 0) {
1291			device_printf(dev, "cannot create RX buffer\n");
1292			return (error);
1293		}
1294	}
1295	bus_dmamap_sync(sc->rx.desc_tag, sc->rx.desc_map,
1296	    BUS_DMASYNC_PREWRITE);
1297
1298	/* Write transmit and receive descriptor base address registers */
1299	WR4(sc, EMAC_TX_DMA_LIST, sc->tx.desc_ring_paddr);
1300	WR4(sc, EMAC_RX_DMA_LIST, sc->rx.desc_ring_paddr);
1301
1302	return (0);
1303}
1304
1305static int
1306awg_probe(device_t dev)
1307{
1308	if (!ofw_bus_status_okay(dev))
1309		return (ENXIO);
1310
1311	if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == 0)
1312		return (ENXIO);
1313
1314	device_set_desc(dev, "Allwinner Gigabit Ethernet");
1315	return (BUS_PROBE_DEFAULT);
1316}
1317
1318static int
1319awg_attach(device_t dev)
1320{
1321	uint8_t eaddr[ETHER_ADDR_LEN];
1322	struct awg_softc *sc;
1323	phandle_t node;
1324	int error;
1325
1326	sc = device_get_softc(dev);
1327	node = ofw_bus_get_node(dev);
1328
1329	if (bus_alloc_resources(dev, awg_spec, sc->res) != 0) {
1330		device_printf(dev, "cannot allocate resources for device\n");
1331		return (ENXIO);
1332	}
1333
1334	mtx_init(&sc->mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF);
1335	callout_init_mtx(&sc->stat_ch, &sc->mtx, 0);
1336	TASK_INIT(&sc->link_task, 0, awg_link_task, sc);
1337
1338	/* Setup clocks and regulators */
1339	error = awg_setup_extres(dev);
1340	if (error != 0)
1341		return (error);
1342
1343	/* Read MAC address before resetting the chip */
1344	awg_get_eaddr(dev, eaddr);
1345
1346	/* Soft reset EMAC core */
1347	error = awg_reset(dev);
1348	if (error != 0)
1349		return (error);
1350
1351	/* Setup DMA descriptors */
1352	error = awg_setup_dma(dev);
1353	if (error != 0)
1354		return (error);
1355
1356	/* Install interrupt handler */
1357	error = bus_setup_intr(dev, sc->res[1], INTR_TYPE_NET | INTR_MPSAFE,
1358	    NULL, awg_intr, sc, &sc->ih);
1359	if (error != 0) {
1360		device_printf(dev, "cannot setup interrupt handler\n");
1361		return (error);
1362	}
1363
1364	/* Setup ethernet interface */
1365	sc->ifp = if_alloc(IFT_ETHER);
1366	if_setsoftc(sc->ifp, sc);
1367	if_initname(sc->ifp, device_get_name(dev), device_get_unit(dev));
1368	if_setflags(sc->ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
1369	if_setstartfn(sc->ifp, awg_start);
1370	if_setioctlfn(sc->ifp, awg_ioctl);
1371	if_setinitfn(sc->ifp, awg_init);
1372	if_setsendqlen(sc->ifp, TX_DESC_COUNT - 1);
1373	if_setsendqready(sc->ifp);
1374	if_sethwassist(sc->ifp, CSUM_IP | CSUM_UDP | CSUM_TCP);
1375	if_setcapabilities(sc->ifp, IFCAP_VLAN_MTU | IFCAP_HWCSUM);
1376	if_setcapenable(sc->ifp, if_getcapabilities(sc->ifp));
1377
1378	/* Attach MII driver */
1379	error = mii_attach(dev, &sc->miibus, sc->ifp, awg_media_change,
1380	    awg_media_status, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY,
1381	    MIIF_DOPAUSE);
1382	if (error != 0) {
1383		device_printf(dev, "cannot attach PHY\n");
1384		return (error);
1385	}
1386
1387	/* Attach ethernet interface */
1388	ether_ifattach(sc->ifp, eaddr);
1389
1390	return (0);
1391}
1392
1393static device_method_t awg_methods[] = {
1394	/* Device interface */
1395	DEVMETHOD(device_probe,		awg_probe),
1396	DEVMETHOD(device_attach,	awg_attach),
1397
1398	/* MII interface */
1399	DEVMETHOD(miibus_readreg,	awg_miibus_readreg),
1400	DEVMETHOD(miibus_writereg,	awg_miibus_writereg),
1401	DEVMETHOD(miibus_statchg,	awg_miibus_statchg),
1402
1403	DEVMETHOD_END
1404};
1405
1406static driver_t awg_driver = {
1407	"awg",
1408	awg_methods,
1409	sizeof(struct awg_softc),
1410};
1411
1412static devclass_t awg_devclass;
1413
1414DRIVER_MODULE(awg, simplebus, awg_driver, awg_devclass, 0, 0);
1415DRIVER_MODULE(miibus, awg, miibus_driver, miibus_devclass, 0, 0);
1416
1417MODULE_DEPEND(awg, ether, 1, 1, 1);
1418MODULE_DEPEND(awg, miibus, 1, 1, 1);
1419