vmm.c revision 330897
1/*-
2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3 *
4 * Copyright (c) 2011 NetApp, Inc.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 *    notice, this list of conditions and the following disclaimer in the
14 *    documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * $FreeBSD: stable/11/sys/amd64/vmm/vmm.c 330897 2018-03-14 03:19:51Z eadler $
29 */
30
31#include <sys/cdefs.h>
32__FBSDID("$FreeBSD: stable/11/sys/amd64/vmm/vmm.c 330897 2018-03-14 03:19:51Z eadler $");
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/module.h>
38#include <sys/sysctl.h>
39#include <sys/malloc.h>
40#include <sys/pcpu.h>
41#include <sys/lock.h>
42#include <sys/mutex.h>
43#include <sys/proc.h>
44#include <sys/rwlock.h>
45#include <sys/sched.h>
46#include <sys/smp.h>
47#include <sys/systm.h>
48
49#include <vm/vm.h>
50#include <vm/vm_object.h>
51#include <vm/vm_page.h>
52#include <vm/pmap.h>
53#include <vm/vm_map.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_param.h>
56
57#include <machine/cpu.h>
58#include <machine/pcb.h>
59#include <machine/smp.h>
60#include <machine/md_var.h>
61#include <x86/psl.h>
62#include <x86/apicreg.h>
63
64#include <machine/vmm.h>
65#include <machine/vmm_dev.h>
66#include <machine/vmm_instruction_emul.h>
67
68#include "vmm_ioport.h"
69#include "vmm_ktr.h"
70#include "vmm_host.h"
71#include "vmm_mem.h"
72#include "vmm_util.h"
73#include "vatpic.h"
74#include "vatpit.h"
75#include "vhpet.h"
76#include "vioapic.h"
77#include "vlapic.h"
78#include "vpmtmr.h"
79#include "vrtc.h"
80#include "vmm_stat.h"
81#include "vmm_lapic.h"
82
83#include "io/ppt.h"
84#include "io/iommu.h"
85
86struct vlapic;
87
88/*
89 * Initialization:
90 * (a) allocated when vcpu is created
91 * (i) initialized when vcpu is created and when it is reinitialized
92 * (o) initialized the first time the vcpu is created
93 * (x) initialized before use
94 */
95struct vcpu {
96	struct mtx 	mtx;		/* (o) protects 'state' and 'hostcpu' */
97	enum vcpu_state	state;		/* (o) vcpu state */
98	int		hostcpu;	/* (o) vcpu's host cpu */
99	int		reqidle;	/* (i) request vcpu to idle */
100	struct vlapic	*vlapic;	/* (i) APIC device model */
101	enum x2apic_state x2apic_state;	/* (i) APIC mode */
102	uint64_t	exitintinfo;	/* (i) events pending at VM exit */
103	int		nmi_pending;	/* (i) NMI pending */
104	int		extint_pending;	/* (i) INTR pending */
105	int	exception_pending;	/* (i) exception pending */
106	int	exc_vector;		/* (x) exception collateral */
107	int	exc_errcode_valid;
108	uint32_t exc_errcode;
109	struct savefpu	*guestfpu;	/* (a,i) guest fpu state */
110	uint64_t	guest_xcr0;	/* (i) guest %xcr0 register */
111	void		*stats;		/* (a,i) statistics */
112	struct vm_exit	exitinfo;	/* (x) exit reason and collateral */
113	uint64_t	nextrip;	/* (x) next instruction to execute */
114};
115
116#define	vcpu_lock_initialized(v) mtx_initialized(&((v)->mtx))
117#define	vcpu_lock_init(v)	mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
118#define	vcpu_lock(v)		mtx_lock_spin(&((v)->mtx))
119#define	vcpu_unlock(v)		mtx_unlock_spin(&((v)->mtx))
120#define	vcpu_assert_locked(v)	mtx_assert(&((v)->mtx), MA_OWNED)
121
122struct mem_seg {
123	size_t	len;
124	bool	sysmem;
125	struct vm_object *object;
126};
127#define	VM_MAX_MEMSEGS	3
128
129struct mem_map {
130	vm_paddr_t	gpa;
131	size_t		len;
132	vm_ooffset_t	segoff;
133	int		segid;
134	int		prot;
135	int		flags;
136};
137#define	VM_MAX_MEMMAPS	4
138
139/*
140 * Initialization:
141 * (o) initialized the first time the VM is created
142 * (i) initialized when VM is created and when it is reinitialized
143 * (x) initialized before use
144 */
145struct vm {
146	void		*cookie;		/* (i) cpu-specific data */
147	void		*iommu;			/* (x) iommu-specific data */
148	struct vhpet	*vhpet;			/* (i) virtual HPET */
149	struct vioapic	*vioapic;		/* (i) virtual ioapic */
150	struct vatpic	*vatpic;		/* (i) virtual atpic */
151	struct vatpit	*vatpit;		/* (i) virtual atpit */
152	struct vpmtmr	*vpmtmr;		/* (i) virtual ACPI PM timer */
153	struct vrtc	*vrtc;			/* (o) virtual RTC */
154	volatile cpuset_t active_cpus;		/* (i) active vcpus */
155	int		suspend;		/* (i) stop VM execution */
156	volatile cpuset_t suspended_cpus; 	/* (i) suspended vcpus */
157	volatile cpuset_t halted_cpus;		/* (x) cpus in a hard halt */
158	cpuset_t	rendezvous_req_cpus;	/* (x) rendezvous requested */
159	cpuset_t	rendezvous_done_cpus;	/* (x) rendezvous finished */
160	void		*rendezvous_arg;	/* (x) rendezvous func/arg */
161	vm_rendezvous_func_t rendezvous_func;
162	struct mtx	rendezvous_mtx;		/* (o) rendezvous lock */
163	struct mem_map	mem_maps[VM_MAX_MEMMAPS]; /* (i) guest address space */
164	struct mem_seg	mem_segs[VM_MAX_MEMSEGS]; /* (o) guest memory regions */
165	struct vmspace	*vmspace;		/* (o) guest's address space */
166	char		name[VM_MAX_NAMELEN];	/* (o) virtual machine name */
167	struct vcpu	vcpu[VM_MAXCPU];	/* (i) guest vcpus */
168};
169
170static int vmm_initialized;
171
172static struct vmm_ops *ops;
173#define	VMM_INIT(num)	(ops != NULL ? (*ops->init)(num) : 0)
174#define	VMM_CLEANUP()	(ops != NULL ? (*ops->cleanup)() : 0)
175#define	VMM_RESUME()	(ops != NULL ? (*ops->resume)() : 0)
176
177#define	VMINIT(vm, pmap) (ops != NULL ? (*ops->vminit)(vm, pmap): NULL)
178#define	VMRUN(vmi, vcpu, rip, pmap, evinfo) \
179	(ops != NULL ? (*ops->vmrun)(vmi, vcpu, rip, pmap, evinfo) : ENXIO)
180#define	VMCLEANUP(vmi)	(ops != NULL ? (*ops->vmcleanup)(vmi) : NULL)
181#define	VMSPACE_ALLOC(min, max) \
182	(ops != NULL ? (*ops->vmspace_alloc)(min, max) : NULL)
183#define	VMSPACE_FREE(vmspace) \
184	(ops != NULL ? (*ops->vmspace_free)(vmspace) : ENXIO)
185#define	VMGETREG(vmi, vcpu, num, retval)		\
186	(ops != NULL ? (*ops->vmgetreg)(vmi, vcpu, num, retval) : ENXIO)
187#define	VMSETREG(vmi, vcpu, num, val)		\
188	(ops != NULL ? (*ops->vmsetreg)(vmi, vcpu, num, val) : ENXIO)
189#define	VMGETDESC(vmi, vcpu, num, desc)		\
190	(ops != NULL ? (*ops->vmgetdesc)(vmi, vcpu, num, desc) : ENXIO)
191#define	VMSETDESC(vmi, vcpu, num, desc)		\
192	(ops != NULL ? (*ops->vmsetdesc)(vmi, vcpu, num, desc) : ENXIO)
193#define	VMGETCAP(vmi, vcpu, num, retval)	\
194	(ops != NULL ? (*ops->vmgetcap)(vmi, vcpu, num, retval) : ENXIO)
195#define	VMSETCAP(vmi, vcpu, num, val)		\
196	(ops != NULL ? (*ops->vmsetcap)(vmi, vcpu, num, val) : ENXIO)
197#define	VLAPIC_INIT(vmi, vcpu)			\
198	(ops != NULL ? (*ops->vlapic_init)(vmi, vcpu) : NULL)
199#define	VLAPIC_CLEANUP(vmi, vlapic)		\
200	(ops != NULL ? (*ops->vlapic_cleanup)(vmi, vlapic) : NULL)
201
202#define	fpu_start_emulating()	load_cr0(rcr0() | CR0_TS)
203#define	fpu_stop_emulating()	clts()
204
205static MALLOC_DEFINE(M_VM, "vm", "vm");
206
207/* statistics */
208static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
209
210SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW, NULL, NULL);
211
212/*
213 * Halt the guest if all vcpus are executing a HLT instruction with
214 * interrupts disabled.
215 */
216static int halt_detection_enabled = 1;
217SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
218    &halt_detection_enabled, 0,
219    "Halt VM if all vcpus execute HLT with interrupts disabled");
220
221static int vmm_ipinum;
222SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
223    "IPI vector used for vcpu notifications");
224
225static int trace_guest_exceptions;
226SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
227    &trace_guest_exceptions, 0,
228    "Trap into hypervisor on all guest exceptions and reflect them back");
229
230static void vm_free_memmap(struct vm *vm, int ident);
231static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
232static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
233
234#ifdef KTR
235static const char *
236vcpu_state2str(enum vcpu_state state)
237{
238
239	switch (state) {
240	case VCPU_IDLE:
241		return ("idle");
242	case VCPU_FROZEN:
243		return ("frozen");
244	case VCPU_RUNNING:
245		return ("running");
246	case VCPU_SLEEPING:
247		return ("sleeping");
248	default:
249		return ("unknown");
250	}
251}
252#endif
253
254static void
255vcpu_cleanup(struct vm *vm, int i, bool destroy)
256{
257	struct vcpu *vcpu = &vm->vcpu[i];
258
259	VLAPIC_CLEANUP(vm->cookie, vcpu->vlapic);
260	if (destroy) {
261		vmm_stat_free(vcpu->stats);
262		fpu_save_area_free(vcpu->guestfpu);
263	}
264}
265
266static void
267vcpu_init(struct vm *vm, int vcpu_id, bool create)
268{
269	struct vcpu *vcpu;
270
271	KASSERT(vcpu_id >= 0 && vcpu_id < VM_MAXCPU,
272	    ("vcpu_init: invalid vcpu %d", vcpu_id));
273
274	vcpu = &vm->vcpu[vcpu_id];
275
276	if (create) {
277		KASSERT(!vcpu_lock_initialized(vcpu), ("vcpu %d already "
278		    "initialized", vcpu_id));
279		vcpu_lock_init(vcpu);
280		vcpu->state = VCPU_IDLE;
281		vcpu->hostcpu = NOCPU;
282		vcpu->guestfpu = fpu_save_area_alloc();
283		vcpu->stats = vmm_stat_alloc();
284	}
285
286	vcpu->vlapic = VLAPIC_INIT(vm->cookie, vcpu_id);
287	vm_set_x2apic_state(vm, vcpu_id, X2APIC_DISABLED);
288	vcpu->reqidle = 0;
289	vcpu->exitintinfo = 0;
290	vcpu->nmi_pending = 0;
291	vcpu->extint_pending = 0;
292	vcpu->exception_pending = 0;
293	vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
294	fpu_save_area_reset(vcpu->guestfpu);
295	vmm_stat_init(vcpu->stats);
296}
297
298int
299vcpu_trace_exceptions(struct vm *vm, int vcpuid)
300{
301
302	return (trace_guest_exceptions);
303}
304
305struct vm_exit *
306vm_exitinfo(struct vm *vm, int cpuid)
307{
308	struct vcpu *vcpu;
309
310	if (cpuid < 0 || cpuid >= VM_MAXCPU)
311		panic("vm_exitinfo: invalid cpuid %d", cpuid);
312
313	vcpu = &vm->vcpu[cpuid];
314
315	return (&vcpu->exitinfo);
316}
317
318static void
319vmm_resume(void)
320{
321	VMM_RESUME();
322}
323
324static int
325vmm_init(void)
326{
327	int error;
328
329	vmm_host_state_init();
330
331	vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
332	    &IDTVEC(justreturn));
333	if (vmm_ipinum < 0)
334		vmm_ipinum = IPI_AST;
335
336	error = vmm_mem_init();
337	if (error)
338		return (error);
339
340	if (vmm_is_intel())
341		ops = &vmm_ops_intel;
342	else if (vmm_is_amd())
343		ops = &vmm_ops_amd;
344	else
345		return (ENXIO);
346
347	vmm_resume_p = vmm_resume;
348
349	return (VMM_INIT(vmm_ipinum));
350}
351
352static int
353vmm_handler(module_t mod, int what, void *arg)
354{
355	int error;
356
357	switch (what) {
358	case MOD_LOAD:
359		vmmdev_init();
360		error = vmm_init();
361		if (error == 0)
362			vmm_initialized = 1;
363		break;
364	case MOD_UNLOAD:
365		error = vmmdev_cleanup();
366		if (error == 0) {
367			vmm_resume_p = NULL;
368			iommu_cleanup();
369			if (vmm_ipinum != IPI_AST)
370				lapic_ipi_free(vmm_ipinum);
371			error = VMM_CLEANUP();
372			/*
373			 * Something bad happened - prevent new
374			 * VMs from being created
375			 */
376			if (error)
377				vmm_initialized = 0;
378		}
379		break;
380	default:
381		error = 0;
382		break;
383	}
384	return (error);
385}
386
387static moduledata_t vmm_kmod = {
388	"vmm",
389	vmm_handler,
390	NULL
391};
392
393/*
394 * vmm initialization has the following dependencies:
395 *
396 * - VT-x initialization requires smp_rendezvous() and therefore must happen
397 *   after SMP is fully functional (after SI_SUB_SMP).
398 */
399DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
400MODULE_VERSION(vmm, 1);
401
402static void
403vm_init(struct vm *vm, bool create)
404{
405	int i;
406
407	vm->cookie = VMINIT(vm, vmspace_pmap(vm->vmspace));
408	vm->iommu = NULL;
409	vm->vioapic = vioapic_init(vm);
410	vm->vhpet = vhpet_init(vm);
411	vm->vatpic = vatpic_init(vm);
412	vm->vatpit = vatpit_init(vm);
413	vm->vpmtmr = vpmtmr_init(vm);
414	if (create)
415		vm->vrtc = vrtc_init(vm);
416
417	CPU_ZERO(&vm->active_cpus);
418
419	vm->suspend = 0;
420	CPU_ZERO(&vm->suspended_cpus);
421
422	for (i = 0; i < VM_MAXCPU; i++)
423		vcpu_init(vm, i, create);
424}
425
426int
427vm_create(const char *name, struct vm **retvm)
428{
429	struct vm *vm;
430	struct vmspace *vmspace;
431
432	/*
433	 * If vmm.ko could not be successfully initialized then don't attempt
434	 * to create the virtual machine.
435	 */
436	if (!vmm_initialized)
437		return (ENXIO);
438
439	if (name == NULL || strlen(name) >= VM_MAX_NAMELEN)
440		return (EINVAL);
441
442	vmspace = VMSPACE_ALLOC(0, VM_MAXUSER_ADDRESS);
443	if (vmspace == NULL)
444		return (ENOMEM);
445
446	vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
447	strcpy(vm->name, name);
448	vm->vmspace = vmspace;
449	mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
450
451	vm_init(vm, true);
452
453	*retvm = vm;
454	return (0);
455}
456
457static void
458vm_cleanup(struct vm *vm, bool destroy)
459{
460	struct mem_map *mm;
461	int i;
462
463	ppt_unassign_all(vm);
464
465	if (vm->iommu != NULL)
466		iommu_destroy_domain(vm->iommu);
467
468	if (destroy)
469		vrtc_cleanup(vm->vrtc);
470	else
471		vrtc_reset(vm->vrtc);
472	vpmtmr_cleanup(vm->vpmtmr);
473	vatpit_cleanup(vm->vatpit);
474	vhpet_cleanup(vm->vhpet);
475	vatpic_cleanup(vm->vatpic);
476	vioapic_cleanup(vm->vioapic);
477
478	for (i = 0; i < VM_MAXCPU; i++)
479		vcpu_cleanup(vm, i, destroy);
480
481	VMCLEANUP(vm->cookie);
482
483	/*
484	 * System memory is removed from the guest address space only when
485	 * the VM is destroyed. This is because the mapping remains the same
486	 * across VM reset.
487	 *
488	 * Device memory can be relocated by the guest (e.g. using PCI BARs)
489	 * so those mappings are removed on a VM reset.
490	 */
491	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
492		mm = &vm->mem_maps[i];
493		if (destroy || !sysmem_mapping(vm, mm))
494			vm_free_memmap(vm, i);
495	}
496
497	if (destroy) {
498		for (i = 0; i < VM_MAX_MEMSEGS; i++)
499			vm_free_memseg(vm, i);
500
501		VMSPACE_FREE(vm->vmspace);
502		vm->vmspace = NULL;
503	}
504}
505
506void
507vm_destroy(struct vm *vm)
508{
509	vm_cleanup(vm, true);
510	free(vm, M_VM);
511}
512
513int
514vm_reinit(struct vm *vm)
515{
516	int error;
517
518	/*
519	 * A virtual machine can be reset only if all vcpus are suspended.
520	 */
521	if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
522		vm_cleanup(vm, false);
523		vm_init(vm, false);
524		error = 0;
525	} else {
526		error = EBUSY;
527	}
528
529	return (error);
530}
531
532const char *
533vm_name(struct vm *vm)
534{
535	return (vm->name);
536}
537
538int
539vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
540{
541	vm_object_t obj;
542
543	if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
544		return (ENOMEM);
545	else
546		return (0);
547}
548
549int
550vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
551{
552
553	vmm_mmio_free(vm->vmspace, gpa, len);
554	return (0);
555}
556
557/*
558 * Return 'true' if 'gpa' is allocated in the guest address space.
559 *
560 * This function is called in the context of a running vcpu which acts as
561 * an implicit lock on 'vm->mem_maps[]'.
562 */
563bool
564vm_mem_allocated(struct vm *vm, int vcpuid, vm_paddr_t gpa)
565{
566	struct mem_map *mm;
567	int i;
568
569#ifdef INVARIANTS
570	int hostcpu, state;
571	state = vcpu_get_state(vm, vcpuid, &hostcpu);
572	KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
573	    ("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
574#endif
575
576	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
577		mm = &vm->mem_maps[i];
578		if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
579			return (true);		/* 'gpa' is sysmem or devmem */
580	}
581
582	if (ppt_is_mmio(vm, gpa))
583		return (true);			/* 'gpa' is pci passthru mmio */
584
585	return (false);
586}
587
588int
589vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
590{
591	struct mem_seg *seg;
592	vm_object_t obj;
593
594	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
595		return (EINVAL);
596
597	if (len == 0 || (len & PAGE_MASK))
598		return (EINVAL);
599
600	seg = &vm->mem_segs[ident];
601	if (seg->object != NULL) {
602		if (seg->len == len && seg->sysmem == sysmem)
603			return (EEXIST);
604		else
605			return (EINVAL);
606	}
607
608	obj = vm_object_allocate(OBJT_DEFAULT, len >> PAGE_SHIFT);
609	if (obj == NULL)
610		return (ENOMEM);
611
612	seg->len = len;
613	seg->object = obj;
614	seg->sysmem = sysmem;
615	return (0);
616}
617
618int
619vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
620    vm_object_t *objptr)
621{
622	struct mem_seg *seg;
623
624	if (ident < 0 || ident >= VM_MAX_MEMSEGS)
625		return (EINVAL);
626
627	seg = &vm->mem_segs[ident];
628	if (len)
629		*len = seg->len;
630	if (sysmem)
631		*sysmem = seg->sysmem;
632	if (objptr)
633		*objptr = seg->object;
634	return (0);
635}
636
637void
638vm_free_memseg(struct vm *vm, int ident)
639{
640	struct mem_seg *seg;
641
642	KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
643	    ("%s: invalid memseg ident %d", __func__, ident));
644
645	seg = &vm->mem_segs[ident];
646	if (seg->object != NULL) {
647		vm_object_deallocate(seg->object);
648		bzero(seg, sizeof(struct mem_seg));
649	}
650}
651
652int
653vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
654    size_t len, int prot, int flags)
655{
656	struct mem_seg *seg;
657	struct mem_map *m, *map;
658	vm_ooffset_t last;
659	int i, error;
660
661	if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
662		return (EINVAL);
663
664	if (flags & ~VM_MEMMAP_F_WIRED)
665		return (EINVAL);
666
667	if (segid < 0 || segid >= VM_MAX_MEMSEGS)
668		return (EINVAL);
669
670	seg = &vm->mem_segs[segid];
671	if (seg->object == NULL)
672		return (EINVAL);
673
674	last = first + len;
675	if (first < 0 || first >= last || last > seg->len)
676		return (EINVAL);
677
678	if ((gpa | first | last) & PAGE_MASK)
679		return (EINVAL);
680
681	map = NULL;
682	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
683		m = &vm->mem_maps[i];
684		if (m->len == 0) {
685			map = m;
686			break;
687		}
688	}
689
690	if (map == NULL)
691		return (ENOSPC);
692
693	error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
694	    len, 0, VMFS_NO_SPACE, prot, prot, 0);
695	if (error != KERN_SUCCESS)
696		return (EFAULT);
697
698	vm_object_reference(seg->object);
699
700	if (flags & VM_MEMMAP_F_WIRED) {
701		error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
702		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
703		if (error != KERN_SUCCESS) {
704			vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
705			return (EFAULT);
706		}
707	}
708
709	map->gpa = gpa;
710	map->len = len;
711	map->segoff = first;
712	map->segid = segid;
713	map->prot = prot;
714	map->flags = flags;
715	return (0);
716}
717
718int
719vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
720    vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
721{
722	struct mem_map *mm, *mmnext;
723	int i;
724
725	mmnext = NULL;
726	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
727		mm = &vm->mem_maps[i];
728		if (mm->len == 0 || mm->gpa < *gpa)
729			continue;
730		if (mmnext == NULL || mm->gpa < mmnext->gpa)
731			mmnext = mm;
732	}
733
734	if (mmnext != NULL) {
735		*gpa = mmnext->gpa;
736		if (segid)
737			*segid = mmnext->segid;
738		if (segoff)
739			*segoff = mmnext->segoff;
740		if (len)
741			*len = mmnext->len;
742		if (prot)
743			*prot = mmnext->prot;
744		if (flags)
745			*flags = mmnext->flags;
746		return (0);
747	} else {
748		return (ENOENT);
749	}
750}
751
752static void
753vm_free_memmap(struct vm *vm, int ident)
754{
755	struct mem_map *mm;
756	int error;
757
758	mm = &vm->mem_maps[ident];
759	if (mm->len) {
760		error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
761		    mm->gpa + mm->len);
762		KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
763		    __func__, error));
764		bzero(mm, sizeof(struct mem_map));
765	}
766}
767
768static __inline bool
769sysmem_mapping(struct vm *vm, struct mem_map *mm)
770{
771
772	if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
773		return (true);
774	else
775		return (false);
776}
777
778static vm_paddr_t
779sysmem_maxaddr(struct vm *vm)
780{
781	struct mem_map *mm;
782	vm_paddr_t maxaddr;
783	int i;
784
785	maxaddr = 0;
786	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
787		mm = &vm->mem_maps[i];
788		if (sysmem_mapping(vm, mm)) {
789			if (maxaddr < mm->gpa + mm->len)
790				maxaddr = mm->gpa + mm->len;
791		}
792	}
793	return (maxaddr);
794}
795
796static void
797vm_iommu_modify(struct vm *vm, boolean_t map)
798{
799	int i, sz;
800	vm_paddr_t gpa, hpa;
801	struct mem_map *mm;
802	void *vp, *cookie, *host_domain;
803
804	sz = PAGE_SIZE;
805	host_domain = iommu_host_domain();
806
807	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
808		mm = &vm->mem_maps[i];
809		if (!sysmem_mapping(vm, mm))
810			continue;
811
812		if (map) {
813			KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
814			    ("iommu map found invalid memmap %#lx/%#lx/%#x",
815			    mm->gpa, mm->len, mm->flags));
816			if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
817				continue;
818			mm->flags |= VM_MEMMAP_F_IOMMU;
819		} else {
820			if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
821				continue;
822			mm->flags &= ~VM_MEMMAP_F_IOMMU;
823			KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
824			    ("iommu unmap found invalid memmap %#lx/%#lx/%#x",
825			    mm->gpa, mm->len, mm->flags));
826		}
827
828		gpa = mm->gpa;
829		while (gpa < mm->gpa + mm->len) {
830			vp = vm_gpa_hold(vm, -1, gpa, PAGE_SIZE, VM_PROT_WRITE,
831					 &cookie);
832			KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
833			    vm_name(vm), gpa));
834
835			vm_gpa_release(cookie);
836
837			hpa = DMAP_TO_PHYS((uintptr_t)vp);
838			if (map) {
839				iommu_create_mapping(vm->iommu, gpa, hpa, sz);
840				iommu_remove_mapping(host_domain, hpa, sz);
841			} else {
842				iommu_remove_mapping(vm->iommu, gpa, sz);
843				iommu_create_mapping(host_domain, hpa, hpa, sz);
844			}
845
846			gpa += PAGE_SIZE;
847		}
848	}
849
850	/*
851	 * Invalidate the cached translations associated with the domain
852	 * from which pages were removed.
853	 */
854	if (map)
855		iommu_invalidate_tlb(host_domain);
856	else
857		iommu_invalidate_tlb(vm->iommu);
858}
859
860#define	vm_iommu_unmap(vm)	vm_iommu_modify((vm), FALSE)
861#define	vm_iommu_map(vm)	vm_iommu_modify((vm), TRUE)
862
863int
864vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
865{
866	int error;
867
868	error = ppt_unassign_device(vm, bus, slot, func);
869	if (error)
870		return (error);
871
872	if (ppt_assigned_devices(vm) == 0)
873		vm_iommu_unmap(vm);
874
875	return (0);
876}
877
878int
879vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
880{
881	int error;
882	vm_paddr_t maxaddr;
883
884	/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
885	if (ppt_assigned_devices(vm) == 0) {
886		KASSERT(vm->iommu == NULL,
887		    ("vm_assign_pptdev: iommu must be NULL"));
888		maxaddr = sysmem_maxaddr(vm);
889		vm->iommu = iommu_create_domain(maxaddr);
890		if (vm->iommu == NULL)
891			return (ENXIO);
892		vm_iommu_map(vm);
893	}
894
895	error = ppt_assign_device(vm, bus, slot, func);
896	return (error);
897}
898
899void *
900vm_gpa_hold(struct vm *vm, int vcpuid, vm_paddr_t gpa, size_t len, int reqprot,
901	    void **cookie)
902{
903	int i, count, pageoff;
904	struct mem_map *mm;
905	vm_page_t m;
906#ifdef INVARIANTS
907	/*
908	 * All vcpus are frozen by ioctls that modify the memory map
909	 * (e.g. VM_MMAP_MEMSEG). Therefore 'vm->memmap[]' stability is
910	 * guaranteed if at least one vcpu is in the VCPU_FROZEN state.
911	 */
912	int state;
913	KASSERT(vcpuid >= -1 && vcpuid < VM_MAXCPU, ("%s: invalid vcpuid %d",
914	    __func__, vcpuid));
915	for (i = 0; i < VM_MAXCPU; i++) {
916		if (vcpuid != -1 && vcpuid != i)
917			continue;
918		state = vcpu_get_state(vm, i, NULL);
919		KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
920		    __func__, state));
921	}
922#endif
923	pageoff = gpa & PAGE_MASK;
924	if (len > PAGE_SIZE - pageoff)
925		panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
926
927	count = 0;
928	for (i = 0; i < VM_MAX_MEMMAPS; i++) {
929		mm = &vm->mem_maps[i];
930		if (sysmem_mapping(vm, mm) && gpa >= mm->gpa &&
931		    gpa < mm->gpa + mm->len) {
932			count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
933			    trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
934			break;
935		}
936	}
937
938	if (count == 1) {
939		*cookie = m;
940		return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
941	} else {
942		*cookie = NULL;
943		return (NULL);
944	}
945}
946
947void
948vm_gpa_release(void *cookie)
949{
950	vm_page_t m = cookie;
951
952	vm_page_lock(m);
953	vm_page_unhold(m);
954	vm_page_unlock(m);
955}
956
957int
958vm_get_register(struct vm *vm, int vcpu, int reg, uint64_t *retval)
959{
960
961	if (vcpu < 0 || vcpu >= VM_MAXCPU)
962		return (EINVAL);
963
964	if (reg >= VM_REG_LAST)
965		return (EINVAL);
966
967	return (VMGETREG(vm->cookie, vcpu, reg, retval));
968}
969
970int
971vm_set_register(struct vm *vm, int vcpuid, int reg, uint64_t val)
972{
973	struct vcpu *vcpu;
974	int error;
975
976	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
977		return (EINVAL);
978
979	if (reg >= VM_REG_LAST)
980		return (EINVAL);
981
982	error = VMSETREG(vm->cookie, vcpuid, reg, val);
983	if (error || reg != VM_REG_GUEST_RIP)
984		return (error);
985
986	/* Set 'nextrip' to match the value of %rip */
987	VCPU_CTR1(vm, vcpuid, "Setting nextrip to %#lx", val);
988	vcpu = &vm->vcpu[vcpuid];
989	vcpu->nextrip = val;
990	return (0);
991}
992
993static boolean_t
994is_descriptor_table(int reg)
995{
996
997	switch (reg) {
998	case VM_REG_GUEST_IDTR:
999	case VM_REG_GUEST_GDTR:
1000		return (TRUE);
1001	default:
1002		return (FALSE);
1003	}
1004}
1005
1006static boolean_t
1007is_segment_register(int reg)
1008{
1009
1010	switch (reg) {
1011	case VM_REG_GUEST_ES:
1012	case VM_REG_GUEST_CS:
1013	case VM_REG_GUEST_SS:
1014	case VM_REG_GUEST_DS:
1015	case VM_REG_GUEST_FS:
1016	case VM_REG_GUEST_GS:
1017	case VM_REG_GUEST_TR:
1018	case VM_REG_GUEST_LDTR:
1019		return (TRUE);
1020	default:
1021		return (FALSE);
1022	}
1023}
1024
1025int
1026vm_get_seg_desc(struct vm *vm, int vcpu, int reg,
1027		struct seg_desc *desc)
1028{
1029
1030	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1031		return (EINVAL);
1032
1033	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1034		return (EINVAL);
1035
1036	return (VMGETDESC(vm->cookie, vcpu, reg, desc));
1037}
1038
1039int
1040vm_set_seg_desc(struct vm *vm, int vcpu, int reg,
1041		struct seg_desc *desc)
1042{
1043	if (vcpu < 0 || vcpu >= VM_MAXCPU)
1044		return (EINVAL);
1045
1046	if (!is_segment_register(reg) && !is_descriptor_table(reg))
1047		return (EINVAL);
1048
1049	return (VMSETDESC(vm->cookie, vcpu, reg, desc));
1050}
1051
1052static void
1053restore_guest_fpustate(struct vcpu *vcpu)
1054{
1055
1056	/* flush host state to the pcb */
1057	fpuexit(curthread);
1058
1059	/* restore guest FPU state */
1060	fpu_stop_emulating();
1061	fpurestore(vcpu->guestfpu);
1062
1063	/* restore guest XCR0 if XSAVE is enabled in the host */
1064	if (rcr4() & CR4_XSAVE)
1065		load_xcr(0, vcpu->guest_xcr0);
1066
1067	/*
1068	 * The FPU is now "dirty" with the guest's state so turn on emulation
1069	 * to trap any access to the FPU by the host.
1070	 */
1071	fpu_start_emulating();
1072}
1073
1074static void
1075save_guest_fpustate(struct vcpu *vcpu)
1076{
1077
1078	if ((rcr0() & CR0_TS) == 0)
1079		panic("fpu emulation not enabled in host!");
1080
1081	/* save guest XCR0 and restore host XCR0 */
1082	if (rcr4() & CR4_XSAVE) {
1083		vcpu->guest_xcr0 = rxcr(0);
1084		load_xcr(0, vmm_get_host_xcr0());
1085	}
1086
1087	/* save guest FPU state */
1088	fpu_stop_emulating();
1089	fpusave(vcpu->guestfpu);
1090	fpu_start_emulating();
1091}
1092
1093static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
1094
1095static int
1096vcpu_set_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate,
1097    bool from_idle)
1098{
1099	struct vcpu *vcpu;
1100	int error;
1101
1102	vcpu = &vm->vcpu[vcpuid];
1103	vcpu_assert_locked(vcpu);
1104
1105	/*
1106	 * State transitions from the vmmdev_ioctl() must always begin from
1107	 * the VCPU_IDLE state. This guarantees that there is only a single
1108	 * ioctl() operating on a vcpu at any point.
1109	 */
1110	if (from_idle) {
1111		while (vcpu->state != VCPU_IDLE) {
1112			vcpu->reqidle = 1;
1113			vcpu_notify_event_locked(vcpu, false);
1114			VCPU_CTR1(vm, vcpuid, "vcpu state change from %s to "
1115			    "idle requested", vcpu_state2str(vcpu->state));
1116			msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
1117		}
1118	} else {
1119		KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
1120		    "vcpu idle state"));
1121	}
1122
1123	if (vcpu->state == VCPU_RUNNING) {
1124		KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
1125		    "mismatch for running vcpu", curcpu, vcpu->hostcpu));
1126	} else {
1127		KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
1128		    "vcpu that is not running", vcpu->hostcpu));
1129	}
1130
1131	/*
1132	 * The following state transitions are allowed:
1133	 * IDLE -> FROZEN -> IDLE
1134	 * FROZEN -> RUNNING -> FROZEN
1135	 * FROZEN -> SLEEPING -> FROZEN
1136	 */
1137	switch (vcpu->state) {
1138	case VCPU_IDLE:
1139	case VCPU_RUNNING:
1140	case VCPU_SLEEPING:
1141		error = (newstate != VCPU_FROZEN);
1142		break;
1143	case VCPU_FROZEN:
1144		error = (newstate == VCPU_FROZEN);
1145		break;
1146	default:
1147		error = 1;
1148		break;
1149	}
1150
1151	if (error)
1152		return (EBUSY);
1153
1154	VCPU_CTR2(vm, vcpuid, "vcpu state changed from %s to %s",
1155	    vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
1156
1157	vcpu->state = newstate;
1158	if (newstate == VCPU_RUNNING)
1159		vcpu->hostcpu = curcpu;
1160	else
1161		vcpu->hostcpu = NOCPU;
1162
1163	if (newstate == VCPU_IDLE)
1164		wakeup(&vcpu->state);
1165
1166	return (0);
1167}
1168
1169static void
1170vcpu_require_state(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1171{
1172	int error;
1173
1174	if ((error = vcpu_set_state(vm, vcpuid, newstate, false)) != 0)
1175		panic("Error %d setting state to %d\n", error, newstate);
1176}
1177
1178static void
1179vcpu_require_state_locked(struct vm *vm, int vcpuid, enum vcpu_state newstate)
1180{
1181	int error;
1182
1183	if ((error = vcpu_set_state_locked(vm, vcpuid, newstate, false)) != 0)
1184		panic("Error %d setting state to %d", error, newstate);
1185}
1186
1187static void
1188vm_set_rendezvous_func(struct vm *vm, vm_rendezvous_func_t func)
1189{
1190
1191	KASSERT(mtx_owned(&vm->rendezvous_mtx), ("rendezvous_mtx not locked"));
1192
1193	/*
1194	 * Update 'rendezvous_func' and execute a write memory barrier to
1195	 * ensure that it is visible across all host cpus. This is not needed
1196	 * for correctness but it does ensure that all the vcpus will notice
1197	 * that the rendezvous is requested immediately.
1198	 */
1199	vm->rendezvous_func = func;
1200	wmb();
1201}
1202
1203#define	RENDEZVOUS_CTR0(vm, vcpuid, fmt)				\
1204	do {								\
1205		if (vcpuid >= 0)					\
1206			VCPU_CTR0(vm, vcpuid, fmt);			\
1207		else							\
1208			VM_CTR0(vm, fmt);				\
1209	} while (0)
1210
1211static void
1212vm_handle_rendezvous(struct vm *vm, int vcpuid)
1213{
1214
1215	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
1216	    ("vm_handle_rendezvous: invalid vcpuid %d", vcpuid));
1217
1218	mtx_lock(&vm->rendezvous_mtx);
1219	while (vm->rendezvous_func != NULL) {
1220		/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
1221		CPU_AND(&vm->rendezvous_req_cpus, &vm->active_cpus);
1222
1223		if (vcpuid != -1 &&
1224		    CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
1225		    !CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
1226			VCPU_CTR0(vm, vcpuid, "Calling rendezvous func");
1227			(*vm->rendezvous_func)(vm, vcpuid, vm->rendezvous_arg);
1228			CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
1229		}
1230		if (CPU_CMP(&vm->rendezvous_req_cpus,
1231		    &vm->rendezvous_done_cpus) == 0) {
1232			VCPU_CTR0(vm, vcpuid, "Rendezvous completed");
1233			vm_set_rendezvous_func(vm, NULL);
1234			wakeup(&vm->rendezvous_func);
1235			break;
1236		}
1237		RENDEZVOUS_CTR0(vm, vcpuid, "Wait for rendezvous completion");
1238		mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
1239		    "vmrndv", 0);
1240	}
1241	mtx_unlock(&vm->rendezvous_mtx);
1242}
1243
1244/*
1245 * Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
1246 */
1247static int
1248vm_handle_hlt(struct vm *vm, int vcpuid, bool intr_disabled, bool *retu)
1249{
1250	struct vcpu *vcpu;
1251	const char *wmesg;
1252	int t, vcpu_halted, vm_halted;
1253
1254	KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
1255
1256	vcpu = &vm->vcpu[vcpuid];
1257	vcpu_halted = 0;
1258	vm_halted = 0;
1259
1260	vcpu_lock(vcpu);
1261	while (1) {
1262		/*
1263		 * Do a final check for pending NMI or interrupts before
1264		 * really putting this thread to sleep. Also check for
1265		 * software events that would cause this vcpu to wakeup.
1266		 *
1267		 * These interrupts/events could have happened after the
1268		 * vcpu returned from VMRUN() and before it acquired the
1269		 * vcpu lock above.
1270		 */
1271		if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
1272			break;
1273		if (vm_nmi_pending(vm, vcpuid))
1274			break;
1275		if (!intr_disabled) {
1276			if (vm_extint_pending(vm, vcpuid) ||
1277			    vlapic_pending_intr(vcpu->vlapic, NULL)) {
1278				break;
1279			}
1280		}
1281
1282		/* Don't go to sleep if the vcpu thread needs to yield */
1283		if (vcpu_should_yield(vm, vcpuid))
1284			break;
1285
1286		/*
1287		 * Some Linux guests implement "halt" by having all vcpus
1288		 * execute HLT with interrupts disabled. 'halted_cpus' keeps
1289		 * track of the vcpus that have entered this state. When all
1290		 * vcpus enter the halted state the virtual machine is halted.
1291		 */
1292		if (intr_disabled) {
1293			wmesg = "vmhalt";
1294			VCPU_CTR0(vm, vcpuid, "Halted");
1295			if (!vcpu_halted && halt_detection_enabled) {
1296				vcpu_halted = 1;
1297				CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
1298			}
1299			if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
1300				vm_halted = 1;
1301				break;
1302			}
1303		} else {
1304			wmesg = "vmidle";
1305		}
1306
1307		t = ticks;
1308		vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1309		/*
1310		 * XXX msleep_spin() cannot be interrupted by signals so
1311		 * wake up periodically to check pending signals.
1312		 */
1313		msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
1314		vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1315		vmm_stat_incr(vm, vcpuid, VCPU_IDLE_TICKS, ticks - t);
1316	}
1317
1318	if (vcpu_halted)
1319		CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
1320
1321	vcpu_unlock(vcpu);
1322
1323	if (vm_halted)
1324		vm_suspend(vm, VM_SUSPEND_HALT);
1325
1326	return (0);
1327}
1328
1329static int
1330vm_handle_paging(struct vm *vm, int vcpuid, bool *retu)
1331{
1332	int rv, ftype;
1333	struct vm_map *map;
1334	struct vcpu *vcpu;
1335	struct vm_exit *vme;
1336
1337	vcpu = &vm->vcpu[vcpuid];
1338	vme = &vcpu->exitinfo;
1339
1340	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1341	    __func__, vme->inst_length));
1342
1343	ftype = vme->u.paging.fault_type;
1344	KASSERT(ftype == VM_PROT_READ ||
1345	    ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
1346	    ("vm_handle_paging: invalid fault_type %d", ftype));
1347
1348	if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
1349		rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
1350		    vme->u.paging.gpa, ftype);
1351		if (rv == 0) {
1352			VCPU_CTR2(vm, vcpuid, "%s bit emulation for gpa %#lx",
1353			    ftype == VM_PROT_READ ? "accessed" : "dirty",
1354			    vme->u.paging.gpa);
1355			goto done;
1356		}
1357	}
1358
1359	map = &vm->vmspace->vm_map;
1360	rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL);
1361
1362	VCPU_CTR3(vm, vcpuid, "vm_handle_paging rv = %d, gpa = %#lx, "
1363	    "ftype = %d", rv, vme->u.paging.gpa, ftype);
1364
1365	if (rv != KERN_SUCCESS)
1366		return (EFAULT);
1367done:
1368	return (0);
1369}
1370
1371static int
1372vm_handle_inst_emul(struct vm *vm, int vcpuid, bool *retu)
1373{
1374	struct vie *vie;
1375	struct vcpu *vcpu;
1376	struct vm_exit *vme;
1377	uint64_t gla, gpa, cs_base;
1378	struct vm_guest_paging *paging;
1379	mem_region_read_t mread;
1380	mem_region_write_t mwrite;
1381	enum vm_cpu_mode cpu_mode;
1382	int cs_d, error, fault;
1383
1384	vcpu = &vm->vcpu[vcpuid];
1385	vme = &vcpu->exitinfo;
1386
1387	KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
1388	    __func__, vme->inst_length));
1389
1390	gla = vme->u.inst_emul.gla;
1391	gpa = vme->u.inst_emul.gpa;
1392	cs_base = vme->u.inst_emul.cs_base;
1393	cs_d = vme->u.inst_emul.cs_d;
1394	vie = &vme->u.inst_emul.vie;
1395	paging = &vme->u.inst_emul.paging;
1396	cpu_mode = paging->cpu_mode;
1397
1398	VCPU_CTR1(vm, vcpuid, "inst_emul fault accessing gpa %#lx", gpa);
1399
1400	/* Fetch, decode and emulate the faulting instruction */
1401	if (vie->num_valid == 0) {
1402		error = vmm_fetch_instruction(vm, vcpuid, paging, vme->rip +
1403		    cs_base, VIE_INST_SIZE, vie, &fault);
1404	} else {
1405		/*
1406		 * The instruction bytes have already been copied into 'vie'
1407		 */
1408		error = fault = 0;
1409	}
1410	if (error || fault)
1411		return (error);
1412
1413	if (vmm_decode_instruction(vm, vcpuid, gla, cpu_mode, cs_d, vie) != 0) {
1414		VCPU_CTR1(vm, vcpuid, "Error decoding instruction at %#lx",
1415		    vme->rip + cs_base);
1416		*retu = true;	    /* dump instruction bytes in userspace */
1417		return (0);
1418	}
1419
1420	/*
1421	 * Update 'nextrip' based on the length of the emulated instruction.
1422	 */
1423	vme->inst_length = vie->num_processed;
1424	vcpu->nextrip += vie->num_processed;
1425	VCPU_CTR1(vm, vcpuid, "nextrip updated to %#lx after instruction "
1426	    "decoding", vcpu->nextrip);
1427
1428	/* return to userland unless this is an in-kernel emulated device */
1429	if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
1430		mread = lapic_mmio_read;
1431		mwrite = lapic_mmio_write;
1432	} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
1433		mread = vioapic_mmio_read;
1434		mwrite = vioapic_mmio_write;
1435	} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
1436		mread = vhpet_mmio_read;
1437		mwrite = vhpet_mmio_write;
1438	} else {
1439		*retu = true;
1440		return (0);
1441	}
1442
1443	error = vmm_emulate_instruction(vm, vcpuid, gpa, vie, paging,
1444	    mread, mwrite, retu);
1445
1446	return (error);
1447}
1448
1449static int
1450vm_handle_suspend(struct vm *vm, int vcpuid, bool *retu)
1451{
1452	int i, done;
1453	struct vcpu *vcpu;
1454
1455	done = 0;
1456	vcpu = &vm->vcpu[vcpuid];
1457
1458	CPU_SET_ATOMIC(vcpuid, &vm->suspended_cpus);
1459
1460	/*
1461	 * Wait until all 'active_cpus' have suspended themselves.
1462	 *
1463	 * Since a VM may be suspended at any time including when one or
1464	 * more vcpus are doing a rendezvous we need to call the rendezvous
1465	 * handler while we are waiting to prevent a deadlock.
1466	 */
1467	vcpu_lock(vcpu);
1468	while (1) {
1469		if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
1470			VCPU_CTR0(vm, vcpuid, "All vcpus suspended");
1471			break;
1472		}
1473
1474		if (vm->rendezvous_func == NULL) {
1475			VCPU_CTR0(vm, vcpuid, "Sleeping during suspend");
1476			vcpu_require_state_locked(vm, vcpuid, VCPU_SLEEPING);
1477			msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
1478			vcpu_require_state_locked(vm, vcpuid, VCPU_FROZEN);
1479		} else {
1480			VCPU_CTR0(vm, vcpuid, "Rendezvous during suspend");
1481			vcpu_unlock(vcpu);
1482			vm_handle_rendezvous(vm, vcpuid);
1483			vcpu_lock(vcpu);
1484		}
1485	}
1486	vcpu_unlock(vcpu);
1487
1488	/*
1489	 * Wakeup the other sleeping vcpus and return to userspace.
1490	 */
1491	for (i = 0; i < VM_MAXCPU; i++) {
1492		if (CPU_ISSET(i, &vm->suspended_cpus)) {
1493			vcpu_notify_event(vm, i, false);
1494		}
1495	}
1496
1497	*retu = true;
1498	return (0);
1499}
1500
1501static int
1502vm_handle_reqidle(struct vm *vm, int vcpuid, bool *retu)
1503{
1504	struct vcpu *vcpu = &vm->vcpu[vcpuid];
1505
1506	vcpu_lock(vcpu);
1507	KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
1508	vcpu->reqidle = 0;
1509	vcpu_unlock(vcpu);
1510	*retu = true;
1511	return (0);
1512}
1513
1514int
1515vm_suspend(struct vm *vm, enum vm_suspend_how how)
1516{
1517	int i;
1518
1519	if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
1520		return (EINVAL);
1521
1522	if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
1523		VM_CTR2(vm, "virtual machine already suspended %d/%d",
1524		    vm->suspend, how);
1525		return (EALREADY);
1526	}
1527
1528	VM_CTR1(vm, "virtual machine successfully suspended %d", how);
1529
1530	/*
1531	 * Notify all active vcpus that they are now suspended.
1532	 */
1533	for (i = 0; i < VM_MAXCPU; i++) {
1534		if (CPU_ISSET(i, &vm->active_cpus))
1535			vcpu_notify_event(vm, i, false);
1536	}
1537
1538	return (0);
1539}
1540
1541void
1542vm_exit_suspended(struct vm *vm, int vcpuid, uint64_t rip)
1543{
1544	struct vm_exit *vmexit;
1545
1546	KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
1547	    ("vm_exit_suspended: invalid suspend type %d", vm->suspend));
1548
1549	vmexit = vm_exitinfo(vm, vcpuid);
1550	vmexit->rip = rip;
1551	vmexit->inst_length = 0;
1552	vmexit->exitcode = VM_EXITCODE_SUSPENDED;
1553	vmexit->u.suspended.how = vm->suspend;
1554}
1555
1556void
1557vm_exit_rendezvous(struct vm *vm, int vcpuid, uint64_t rip)
1558{
1559	struct vm_exit *vmexit;
1560
1561	KASSERT(vm->rendezvous_func != NULL, ("rendezvous not in progress"));
1562
1563	vmexit = vm_exitinfo(vm, vcpuid);
1564	vmexit->rip = rip;
1565	vmexit->inst_length = 0;
1566	vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
1567	vmm_stat_incr(vm, vcpuid, VMEXIT_RENDEZVOUS, 1);
1568}
1569
1570void
1571vm_exit_reqidle(struct vm *vm, int vcpuid, uint64_t rip)
1572{
1573	struct vm_exit *vmexit;
1574
1575	vmexit = vm_exitinfo(vm, vcpuid);
1576	vmexit->rip = rip;
1577	vmexit->inst_length = 0;
1578	vmexit->exitcode = VM_EXITCODE_REQIDLE;
1579	vmm_stat_incr(vm, vcpuid, VMEXIT_REQIDLE, 1);
1580}
1581
1582void
1583vm_exit_astpending(struct vm *vm, int vcpuid, uint64_t rip)
1584{
1585	struct vm_exit *vmexit;
1586
1587	vmexit = vm_exitinfo(vm, vcpuid);
1588	vmexit->rip = rip;
1589	vmexit->inst_length = 0;
1590	vmexit->exitcode = VM_EXITCODE_BOGUS;
1591	vmm_stat_incr(vm, vcpuid, VMEXIT_ASTPENDING, 1);
1592}
1593
1594int
1595vm_run(struct vm *vm, struct vm_run *vmrun)
1596{
1597	struct vm_eventinfo evinfo;
1598	int error, vcpuid;
1599	struct vcpu *vcpu;
1600	struct pcb *pcb;
1601	uint64_t tscval;
1602	struct vm_exit *vme;
1603	bool retu, intr_disabled;
1604	pmap_t pmap;
1605
1606	vcpuid = vmrun->cpuid;
1607
1608	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1609		return (EINVAL);
1610
1611	if (!CPU_ISSET(vcpuid, &vm->active_cpus))
1612		return (EINVAL);
1613
1614	if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
1615		return (EINVAL);
1616
1617	pmap = vmspace_pmap(vm->vmspace);
1618	vcpu = &vm->vcpu[vcpuid];
1619	vme = &vcpu->exitinfo;
1620	evinfo.rptr = &vm->rendezvous_func;
1621	evinfo.sptr = &vm->suspend;
1622	evinfo.iptr = &vcpu->reqidle;
1623restart:
1624	critical_enter();
1625
1626	KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
1627	    ("vm_run: absurd pm_active"));
1628
1629	tscval = rdtsc();
1630
1631	pcb = PCPU_GET(curpcb);
1632	set_pcb_flags(pcb, PCB_FULL_IRET);
1633
1634	restore_guest_fpustate(vcpu);
1635
1636	vcpu_require_state(vm, vcpuid, VCPU_RUNNING);
1637	error = VMRUN(vm->cookie, vcpuid, vcpu->nextrip, pmap, &evinfo);
1638	vcpu_require_state(vm, vcpuid, VCPU_FROZEN);
1639
1640	save_guest_fpustate(vcpu);
1641
1642	vmm_stat_incr(vm, vcpuid, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
1643
1644	critical_exit();
1645
1646	if (error == 0) {
1647		retu = false;
1648		vcpu->nextrip = vme->rip + vme->inst_length;
1649		switch (vme->exitcode) {
1650		case VM_EXITCODE_REQIDLE:
1651			error = vm_handle_reqidle(vm, vcpuid, &retu);
1652			break;
1653		case VM_EXITCODE_SUSPENDED:
1654			error = vm_handle_suspend(vm, vcpuid, &retu);
1655			break;
1656		case VM_EXITCODE_IOAPIC_EOI:
1657			vioapic_process_eoi(vm, vcpuid,
1658			    vme->u.ioapic_eoi.vector);
1659			break;
1660		case VM_EXITCODE_RENDEZVOUS:
1661			vm_handle_rendezvous(vm, vcpuid);
1662			error = 0;
1663			break;
1664		case VM_EXITCODE_HLT:
1665			intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
1666			error = vm_handle_hlt(vm, vcpuid, intr_disabled, &retu);
1667			break;
1668		case VM_EXITCODE_PAGING:
1669			error = vm_handle_paging(vm, vcpuid, &retu);
1670			break;
1671		case VM_EXITCODE_INST_EMUL:
1672			error = vm_handle_inst_emul(vm, vcpuid, &retu);
1673			break;
1674		case VM_EXITCODE_INOUT:
1675		case VM_EXITCODE_INOUT_STR:
1676			error = vm_handle_inout(vm, vcpuid, vme, &retu);
1677			break;
1678		case VM_EXITCODE_MONITOR:
1679		case VM_EXITCODE_MWAIT:
1680			vm_inject_ud(vm, vcpuid);
1681			break;
1682		default:
1683			retu = true;	/* handled in userland */
1684			break;
1685		}
1686	}
1687
1688	if (error == 0 && retu == false)
1689		goto restart;
1690
1691	VCPU_CTR2(vm, vcpuid, "retu %d/%d", error, vme->exitcode);
1692
1693	/* copy the exit information */
1694	bcopy(vme, &vmrun->vm_exit, sizeof(struct vm_exit));
1695	return (error);
1696}
1697
1698int
1699vm_restart_instruction(void *arg, int vcpuid)
1700{
1701	struct vm *vm;
1702	struct vcpu *vcpu;
1703	enum vcpu_state state;
1704	uint64_t rip;
1705	int error;
1706
1707	vm = arg;
1708	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1709		return (EINVAL);
1710
1711	vcpu = &vm->vcpu[vcpuid];
1712	state = vcpu_get_state(vm, vcpuid, NULL);
1713	if (state == VCPU_RUNNING) {
1714		/*
1715		 * When a vcpu is "running" the next instruction is determined
1716		 * by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
1717		 * Thus setting 'inst_length' to zero will cause the current
1718		 * instruction to be restarted.
1719		 */
1720		vcpu->exitinfo.inst_length = 0;
1721		VCPU_CTR1(vm, vcpuid, "restarting instruction at %#lx by "
1722		    "setting inst_length to zero", vcpu->exitinfo.rip);
1723	} else if (state == VCPU_FROZEN) {
1724		/*
1725		 * When a vcpu is "frozen" it is outside the critical section
1726		 * around VMRUN() and 'nextrip' points to the next instruction.
1727		 * Thus instruction restart is achieved by setting 'nextrip'
1728		 * to the vcpu's %rip.
1729		 */
1730		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_RIP, &rip);
1731		KASSERT(!error, ("%s: error %d getting rip", __func__, error));
1732		VCPU_CTR2(vm, vcpuid, "restarting instruction by updating "
1733		    "nextrip from %#lx to %#lx", vcpu->nextrip, rip);
1734		vcpu->nextrip = rip;
1735	} else {
1736		panic("%s: invalid state %d", __func__, state);
1737	}
1738	return (0);
1739}
1740
1741int
1742vm_exit_intinfo(struct vm *vm, int vcpuid, uint64_t info)
1743{
1744	struct vcpu *vcpu;
1745	int type, vector;
1746
1747	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1748		return (EINVAL);
1749
1750	vcpu = &vm->vcpu[vcpuid];
1751
1752	if (info & VM_INTINFO_VALID) {
1753		type = info & VM_INTINFO_TYPE;
1754		vector = info & 0xff;
1755		if (type == VM_INTINFO_NMI && vector != IDT_NMI)
1756			return (EINVAL);
1757		if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
1758			return (EINVAL);
1759		if (info & VM_INTINFO_RSVD)
1760			return (EINVAL);
1761	} else {
1762		info = 0;
1763	}
1764	VCPU_CTR2(vm, vcpuid, "%s: info1(%#lx)", __func__, info);
1765	vcpu->exitintinfo = info;
1766	return (0);
1767}
1768
1769enum exc_class {
1770	EXC_BENIGN,
1771	EXC_CONTRIBUTORY,
1772	EXC_PAGEFAULT
1773};
1774
1775#define	IDT_VE	20	/* Virtualization Exception (Intel specific) */
1776
1777static enum exc_class
1778exception_class(uint64_t info)
1779{
1780	int type, vector;
1781
1782	KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
1783	type = info & VM_INTINFO_TYPE;
1784	vector = info & 0xff;
1785
1786	/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
1787	switch (type) {
1788	case VM_INTINFO_HWINTR:
1789	case VM_INTINFO_SWINTR:
1790	case VM_INTINFO_NMI:
1791		return (EXC_BENIGN);
1792	default:
1793		/*
1794		 * Hardware exception.
1795		 *
1796		 * SVM and VT-x use identical type values to represent NMI,
1797		 * hardware interrupt and software interrupt.
1798		 *
1799		 * SVM uses type '3' for all exceptions. VT-x uses type '3'
1800		 * for exceptions except #BP and #OF. #BP and #OF use a type
1801		 * value of '5' or '6'. Therefore we don't check for explicit
1802		 * values of 'type' to classify 'intinfo' into a hardware
1803		 * exception.
1804		 */
1805		break;
1806	}
1807
1808	switch (vector) {
1809	case IDT_PF:
1810	case IDT_VE:
1811		return (EXC_PAGEFAULT);
1812	case IDT_DE:
1813	case IDT_TS:
1814	case IDT_NP:
1815	case IDT_SS:
1816	case IDT_GP:
1817		return (EXC_CONTRIBUTORY);
1818	default:
1819		return (EXC_BENIGN);
1820	}
1821}
1822
1823static int
1824nested_fault(struct vm *vm, int vcpuid, uint64_t info1, uint64_t info2,
1825    uint64_t *retinfo)
1826{
1827	enum exc_class exc1, exc2;
1828	int type1, vector1;
1829
1830	KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
1831	KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
1832
1833	/*
1834	 * If an exception occurs while attempting to call the double-fault
1835	 * handler the processor enters shutdown mode (aka triple fault).
1836	 */
1837	type1 = info1 & VM_INTINFO_TYPE;
1838	vector1 = info1 & 0xff;
1839	if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
1840		VCPU_CTR2(vm, vcpuid, "triple fault: info1(%#lx), info2(%#lx)",
1841		    info1, info2);
1842		vm_suspend(vm, VM_SUSPEND_TRIPLEFAULT);
1843		*retinfo = 0;
1844		return (0);
1845	}
1846
1847	/*
1848	 * Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
1849	 */
1850	exc1 = exception_class(info1);
1851	exc2 = exception_class(info2);
1852	if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
1853	    (exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
1854		/* Convert nested fault into a double fault. */
1855		*retinfo = IDT_DF;
1856		*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1857		*retinfo |= VM_INTINFO_DEL_ERRCODE;
1858	} else {
1859		/* Handle exceptions serially */
1860		*retinfo = info2;
1861	}
1862	return (1);
1863}
1864
1865static uint64_t
1866vcpu_exception_intinfo(struct vcpu *vcpu)
1867{
1868	uint64_t info = 0;
1869
1870	if (vcpu->exception_pending) {
1871		info = vcpu->exc_vector & 0xff;
1872		info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
1873		if (vcpu->exc_errcode_valid) {
1874			info |= VM_INTINFO_DEL_ERRCODE;
1875			info |= (uint64_t)vcpu->exc_errcode << 32;
1876		}
1877	}
1878	return (info);
1879}
1880
1881int
1882vm_entry_intinfo(struct vm *vm, int vcpuid, uint64_t *retinfo)
1883{
1884	struct vcpu *vcpu;
1885	uint64_t info1, info2;
1886	int valid;
1887
1888	KASSERT(vcpuid >= 0 && vcpuid < VM_MAXCPU, ("invalid vcpu %d", vcpuid));
1889
1890	vcpu = &vm->vcpu[vcpuid];
1891
1892	info1 = vcpu->exitintinfo;
1893	vcpu->exitintinfo = 0;
1894
1895	info2 = 0;
1896	if (vcpu->exception_pending) {
1897		info2 = vcpu_exception_intinfo(vcpu);
1898		vcpu->exception_pending = 0;
1899		VCPU_CTR2(vm, vcpuid, "Exception %d delivered: %#lx",
1900		    vcpu->exc_vector, info2);
1901	}
1902
1903	if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
1904		valid = nested_fault(vm, vcpuid, info1, info2, retinfo);
1905	} else if (info1 & VM_INTINFO_VALID) {
1906		*retinfo = info1;
1907		valid = 1;
1908	} else if (info2 & VM_INTINFO_VALID) {
1909		*retinfo = info2;
1910		valid = 1;
1911	} else {
1912		valid = 0;
1913	}
1914
1915	if (valid) {
1916		VCPU_CTR4(vm, vcpuid, "%s: info1(%#lx), info2(%#lx), "
1917		    "retinfo(%#lx)", __func__, info1, info2, *retinfo);
1918	}
1919
1920	return (valid);
1921}
1922
1923int
1924vm_get_intinfo(struct vm *vm, int vcpuid, uint64_t *info1, uint64_t *info2)
1925{
1926	struct vcpu *vcpu;
1927
1928	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1929		return (EINVAL);
1930
1931	vcpu = &vm->vcpu[vcpuid];
1932	*info1 = vcpu->exitintinfo;
1933	*info2 = vcpu_exception_intinfo(vcpu);
1934	return (0);
1935}
1936
1937int
1938vm_inject_exception(struct vm *vm, int vcpuid, int vector, int errcode_valid,
1939    uint32_t errcode, int restart_instruction)
1940{
1941	struct vcpu *vcpu;
1942	uint64_t regval;
1943	int error;
1944
1945	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
1946		return (EINVAL);
1947
1948	if (vector < 0 || vector >= 32)
1949		return (EINVAL);
1950
1951	/*
1952	 * A double fault exception should never be injected directly into
1953	 * the guest. It is a derived exception that results from specific
1954	 * combinations of nested faults.
1955	 */
1956	if (vector == IDT_DF)
1957		return (EINVAL);
1958
1959	vcpu = &vm->vcpu[vcpuid];
1960
1961	if (vcpu->exception_pending) {
1962		VCPU_CTR2(vm, vcpuid, "Unable to inject exception %d due to "
1963		    "pending exception %d", vector, vcpu->exc_vector);
1964		return (EBUSY);
1965	}
1966
1967	if (errcode_valid) {
1968		/*
1969		 * Exceptions don't deliver an error code in real mode.
1970		 */
1971		error = vm_get_register(vm, vcpuid, VM_REG_GUEST_CR0, &regval);
1972		KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
1973		if (!(regval & CR0_PE))
1974			errcode_valid = 0;
1975	}
1976
1977	/*
1978	 * From section 26.6.1 "Interruptibility State" in Intel SDM:
1979	 *
1980	 * Event blocking by "STI" or "MOV SS" is cleared after guest executes
1981	 * one instruction or incurs an exception.
1982	 */
1983	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_INTR_SHADOW, 0);
1984	KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
1985	    __func__, error));
1986
1987	if (restart_instruction)
1988		vm_restart_instruction(vm, vcpuid);
1989
1990	vcpu->exception_pending = 1;
1991	vcpu->exc_vector = vector;
1992	vcpu->exc_errcode = errcode;
1993	vcpu->exc_errcode_valid = errcode_valid;
1994	VCPU_CTR1(vm, vcpuid, "Exception %d pending", vector);
1995	return (0);
1996}
1997
1998void
1999vm_inject_fault(void *vmarg, int vcpuid, int vector, int errcode_valid,
2000    int errcode)
2001{
2002	struct vm *vm;
2003	int error, restart_instruction;
2004
2005	vm = vmarg;
2006	restart_instruction = 1;
2007
2008	error = vm_inject_exception(vm, vcpuid, vector, errcode_valid,
2009	    errcode, restart_instruction);
2010	KASSERT(error == 0, ("vm_inject_exception error %d", error));
2011}
2012
2013void
2014vm_inject_pf(void *vmarg, int vcpuid, int error_code, uint64_t cr2)
2015{
2016	struct vm *vm;
2017	int error;
2018
2019	vm = vmarg;
2020	VCPU_CTR2(vm, vcpuid, "Injecting page fault: error_code %#x, cr2 %#lx",
2021	    error_code, cr2);
2022
2023	error = vm_set_register(vm, vcpuid, VM_REG_GUEST_CR2, cr2);
2024	KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
2025
2026	vm_inject_fault(vm, vcpuid, IDT_PF, 1, error_code);
2027}
2028
2029static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
2030
2031int
2032vm_inject_nmi(struct vm *vm, int vcpuid)
2033{
2034	struct vcpu *vcpu;
2035
2036	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2037		return (EINVAL);
2038
2039	vcpu = &vm->vcpu[vcpuid];
2040
2041	vcpu->nmi_pending = 1;
2042	vcpu_notify_event(vm, vcpuid, false);
2043	return (0);
2044}
2045
2046int
2047vm_nmi_pending(struct vm *vm, int vcpuid)
2048{
2049	struct vcpu *vcpu;
2050
2051	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2052		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2053
2054	vcpu = &vm->vcpu[vcpuid];
2055
2056	return (vcpu->nmi_pending);
2057}
2058
2059void
2060vm_nmi_clear(struct vm *vm, int vcpuid)
2061{
2062	struct vcpu *vcpu;
2063
2064	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2065		panic("vm_nmi_pending: invalid vcpuid %d", vcpuid);
2066
2067	vcpu = &vm->vcpu[vcpuid];
2068
2069	if (vcpu->nmi_pending == 0)
2070		panic("vm_nmi_clear: inconsistent nmi_pending state");
2071
2072	vcpu->nmi_pending = 0;
2073	vmm_stat_incr(vm, vcpuid, VCPU_NMI_COUNT, 1);
2074}
2075
2076static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
2077
2078int
2079vm_inject_extint(struct vm *vm, int vcpuid)
2080{
2081	struct vcpu *vcpu;
2082
2083	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2084		return (EINVAL);
2085
2086	vcpu = &vm->vcpu[vcpuid];
2087
2088	vcpu->extint_pending = 1;
2089	vcpu_notify_event(vm, vcpuid, false);
2090	return (0);
2091}
2092
2093int
2094vm_extint_pending(struct vm *vm, int vcpuid)
2095{
2096	struct vcpu *vcpu;
2097
2098	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2099		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2100
2101	vcpu = &vm->vcpu[vcpuid];
2102
2103	return (vcpu->extint_pending);
2104}
2105
2106void
2107vm_extint_clear(struct vm *vm, int vcpuid)
2108{
2109	struct vcpu *vcpu;
2110
2111	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2112		panic("vm_extint_pending: invalid vcpuid %d", vcpuid);
2113
2114	vcpu = &vm->vcpu[vcpuid];
2115
2116	if (vcpu->extint_pending == 0)
2117		panic("vm_extint_clear: inconsistent extint_pending state");
2118
2119	vcpu->extint_pending = 0;
2120	vmm_stat_incr(vm, vcpuid, VCPU_EXTINT_COUNT, 1);
2121}
2122
2123int
2124vm_get_capability(struct vm *vm, int vcpu, int type, int *retval)
2125{
2126	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2127		return (EINVAL);
2128
2129	if (type < 0 || type >= VM_CAP_MAX)
2130		return (EINVAL);
2131
2132	return (VMGETCAP(vm->cookie, vcpu, type, retval));
2133}
2134
2135int
2136vm_set_capability(struct vm *vm, int vcpu, int type, int val)
2137{
2138	if (vcpu < 0 || vcpu >= VM_MAXCPU)
2139		return (EINVAL);
2140
2141	if (type < 0 || type >= VM_CAP_MAX)
2142		return (EINVAL);
2143
2144	return (VMSETCAP(vm->cookie, vcpu, type, val));
2145}
2146
2147struct vlapic *
2148vm_lapic(struct vm *vm, int cpu)
2149{
2150	return (vm->vcpu[cpu].vlapic);
2151}
2152
2153struct vioapic *
2154vm_ioapic(struct vm *vm)
2155{
2156
2157	return (vm->vioapic);
2158}
2159
2160struct vhpet *
2161vm_hpet(struct vm *vm)
2162{
2163
2164	return (vm->vhpet);
2165}
2166
2167boolean_t
2168vmm_is_pptdev(int bus, int slot, int func)
2169{
2170	int found, i, n;
2171	int b, s, f;
2172	char *val, *cp, *cp2;
2173
2174	/*
2175	 * XXX
2176	 * The length of an environment variable is limited to 128 bytes which
2177	 * puts an upper limit on the number of passthru devices that may be
2178	 * specified using a single environment variable.
2179	 *
2180	 * Work around this by scanning multiple environment variable
2181	 * names instead of a single one - yuck!
2182	 */
2183	const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
2184
2185	/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
2186	found = 0;
2187	for (i = 0; names[i] != NULL && !found; i++) {
2188		cp = val = kern_getenv(names[i]);
2189		while (cp != NULL && *cp != '\0') {
2190			if ((cp2 = strchr(cp, ' ')) != NULL)
2191				*cp2 = '\0';
2192
2193			n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
2194			if (n == 3 && bus == b && slot == s && func == f) {
2195				found = 1;
2196				break;
2197			}
2198
2199			if (cp2 != NULL)
2200				*cp2++ = ' ';
2201
2202			cp = cp2;
2203		}
2204		freeenv(val);
2205	}
2206	return (found);
2207}
2208
2209void *
2210vm_iommu_domain(struct vm *vm)
2211{
2212
2213	return (vm->iommu);
2214}
2215
2216int
2217vcpu_set_state(struct vm *vm, int vcpuid, enum vcpu_state newstate,
2218    bool from_idle)
2219{
2220	int error;
2221	struct vcpu *vcpu;
2222
2223	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2224		panic("vm_set_run_state: invalid vcpuid %d", vcpuid);
2225
2226	vcpu = &vm->vcpu[vcpuid];
2227
2228	vcpu_lock(vcpu);
2229	error = vcpu_set_state_locked(vm, vcpuid, newstate, from_idle);
2230	vcpu_unlock(vcpu);
2231
2232	return (error);
2233}
2234
2235enum vcpu_state
2236vcpu_get_state(struct vm *vm, int vcpuid, int *hostcpu)
2237{
2238	struct vcpu *vcpu;
2239	enum vcpu_state state;
2240
2241	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2242		panic("vm_get_run_state: invalid vcpuid %d", vcpuid);
2243
2244	vcpu = &vm->vcpu[vcpuid];
2245
2246	vcpu_lock(vcpu);
2247	state = vcpu->state;
2248	if (hostcpu != NULL)
2249		*hostcpu = vcpu->hostcpu;
2250	vcpu_unlock(vcpu);
2251
2252	return (state);
2253}
2254
2255int
2256vm_activate_cpu(struct vm *vm, int vcpuid)
2257{
2258
2259	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2260		return (EINVAL);
2261
2262	if (CPU_ISSET(vcpuid, &vm->active_cpus))
2263		return (EBUSY);
2264
2265	VCPU_CTR0(vm, vcpuid, "activated");
2266	CPU_SET_ATOMIC(vcpuid, &vm->active_cpus);
2267	return (0);
2268}
2269
2270cpuset_t
2271vm_active_cpus(struct vm *vm)
2272{
2273
2274	return (vm->active_cpus);
2275}
2276
2277cpuset_t
2278vm_suspended_cpus(struct vm *vm)
2279{
2280
2281	return (vm->suspended_cpus);
2282}
2283
2284void *
2285vcpu_stats(struct vm *vm, int vcpuid)
2286{
2287
2288	return (vm->vcpu[vcpuid].stats);
2289}
2290
2291int
2292vm_get_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state *state)
2293{
2294	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2295		return (EINVAL);
2296
2297	*state = vm->vcpu[vcpuid].x2apic_state;
2298
2299	return (0);
2300}
2301
2302int
2303vm_set_x2apic_state(struct vm *vm, int vcpuid, enum x2apic_state state)
2304{
2305	if (vcpuid < 0 || vcpuid >= VM_MAXCPU)
2306		return (EINVAL);
2307
2308	if (state >= X2APIC_STATE_LAST)
2309		return (EINVAL);
2310
2311	vm->vcpu[vcpuid].x2apic_state = state;
2312
2313	vlapic_set_x2apic_state(vm, vcpuid, state);
2314
2315	return (0);
2316}
2317
2318/*
2319 * This function is called to ensure that a vcpu "sees" a pending event
2320 * as soon as possible:
2321 * - If the vcpu thread is sleeping then it is woken up.
2322 * - If the vcpu is running on a different host_cpu then an IPI will be directed
2323 *   to the host_cpu to cause the vcpu to trap into the hypervisor.
2324 */
2325static void
2326vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
2327{
2328	int hostcpu;
2329
2330	hostcpu = vcpu->hostcpu;
2331	if (vcpu->state == VCPU_RUNNING) {
2332		KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
2333		if (hostcpu != curcpu) {
2334			if (lapic_intr) {
2335				vlapic_post_intr(vcpu->vlapic, hostcpu,
2336				    vmm_ipinum);
2337			} else {
2338				ipi_cpu(hostcpu, vmm_ipinum);
2339			}
2340		} else {
2341			/*
2342			 * If the 'vcpu' is running on 'curcpu' then it must
2343			 * be sending a notification to itself (e.g. SELF_IPI).
2344			 * The pending event will be picked up when the vcpu
2345			 * transitions back to guest context.
2346			 */
2347		}
2348	} else {
2349		KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
2350		    "with hostcpu %d", vcpu->state, hostcpu));
2351		if (vcpu->state == VCPU_SLEEPING)
2352			wakeup_one(vcpu);
2353	}
2354}
2355
2356void
2357vcpu_notify_event(struct vm *vm, int vcpuid, bool lapic_intr)
2358{
2359	struct vcpu *vcpu = &vm->vcpu[vcpuid];
2360
2361	vcpu_lock(vcpu);
2362	vcpu_notify_event_locked(vcpu, lapic_intr);
2363	vcpu_unlock(vcpu);
2364}
2365
2366struct vmspace *
2367vm_get_vmspace(struct vm *vm)
2368{
2369
2370	return (vm->vmspace);
2371}
2372
2373int
2374vm_apicid2vcpuid(struct vm *vm, int apicid)
2375{
2376	/*
2377	 * XXX apic id is assumed to be numerically identical to vcpu id
2378	 */
2379	return (apicid);
2380}
2381
2382void
2383vm_smp_rendezvous(struct vm *vm, int vcpuid, cpuset_t dest,
2384    vm_rendezvous_func_t func, void *arg)
2385{
2386	int i;
2387
2388	/*
2389	 * Enforce that this function is called without any locks
2390	 */
2391	WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
2392	KASSERT(vcpuid == -1 || (vcpuid >= 0 && vcpuid < VM_MAXCPU),
2393	    ("vm_smp_rendezvous: invalid vcpuid %d", vcpuid));
2394
2395restart:
2396	mtx_lock(&vm->rendezvous_mtx);
2397	if (vm->rendezvous_func != NULL) {
2398		/*
2399		 * If a rendezvous is already in progress then we need to
2400		 * call the rendezvous handler in case this 'vcpuid' is one
2401		 * of the targets of the rendezvous.
2402		 */
2403		RENDEZVOUS_CTR0(vm, vcpuid, "Rendezvous already in progress");
2404		mtx_unlock(&vm->rendezvous_mtx);
2405		vm_handle_rendezvous(vm, vcpuid);
2406		goto restart;
2407	}
2408	KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
2409	    "rendezvous is still in progress"));
2410
2411	RENDEZVOUS_CTR0(vm, vcpuid, "Initiating rendezvous");
2412	vm->rendezvous_req_cpus = dest;
2413	CPU_ZERO(&vm->rendezvous_done_cpus);
2414	vm->rendezvous_arg = arg;
2415	vm_set_rendezvous_func(vm, func);
2416	mtx_unlock(&vm->rendezvous_mtx);
2417
2418	/*
2419	 * Wake up any sleeping vcpus and trigger a VM-exit in any running
2420	 * vcpus so they handle the rendezvous as soon as possible.
2421	 */
2422	for (i = 0; i < VM_MAXCPU; i++) {
2423		if (CPU_ISSET(i, &dest))
2424			vcpu_notify_event(vm, i, false);
2425	}
2426
2427	vm_handle_rendezvous(vm, vcpuid);
2428}
2429
2430struct vatpic *
2431vm_atpic(struct vm *vm)
2432{
2433	return (vm->vatpic);
2434}
2435
2436struct vatpit *
2437vm_atpit(struct vm *vm)
2438{
2439	return (vm->vatpit);
2440}
2441
2442struct vpmtmr *
2443vm_pmtmr(struct vm *vm)
2444{
2445
2446	return (vm->vpmtmr);
2447}
2448
2449struct vrtc *
2450vm_rtc(struct vm *vm)
2451{
2452
2453	return (vm->vrtc);
2454}
2455
2456enum vm_reg_name
2457vm_segment_name(int seg)
2458{
2459	static enum vm_reg_name seg_names[] = {
2460		VM_REG_GUEST_ES,
2461		VM_REG_GUEST_CS,
2462		VM_REG_GUEST_SS,
2463		VM_REG_GUEST_DS,
2464		VM_REG_GUEST_FS,
2465		VM_REG_GUEST_GS
2466	};
2467
2468	KASSERT(seg >= 0 && seg < nitems(seg_names),
2469	    ("%s: invalid segment encoding %d", __func__, seg));
2470	return (seg_names[seg]);
2471}
2472
2473void
2474vm_copy_teardown(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo,
2475    int num_copyinfo)
2476{
2477	int idx;
2478
2479	for (idx = 0; idx < num_copyinfo; idx++) {
2480		if (copyinfo[idx].cookie != NULL)
2481			vm_gpa_release(copyinfo[idx].cookie);
2482	}
2483	bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
2484}
2485
2486int
2487vm_copy_setup(struct vm *vm, int vcpuid, struct vm_guest_paging *paging,
2488    uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
2489    int num_copyinfo, int *fault)
2490{
2491	int error, idx, nused;
2492	size_t n, off, remaining;
2493	void *hva, *cookie;
2494	uint64_t gpa;
2495
2496	bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
2497
2498	nused = 0;
2499	remaining = len;
2500	while (remaining > 0) {
2501		KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
2502		error = vm_gla2gpa(vm, vcpuid, paging, gla, prot, &gpa, fault);
2503		if (error || *fault)
2504			return (error);
2505		off = gpa & PAGE_MASK;
2506		n = min(remaining, PAGE_SIZE - off);
2507		copyinfo[nused].gpa = gpa;
2508		copyinfo[nused].len = n;
2509		remaining -= n;
2510		gla += n;
2511		nused++;
2512	}
2513
2514	for (idx = 0; idx < nused; idx++) {
2515		hva = vm_gpa_hold(vm, vcpuid, copyinfo[idx].gpa,
2516		    copyinfo[idx].len, prot, &cookie);
2517		if (hva == NULL)
2518			break;
2519		copyinfo[idx].hva = hva;
2520		copyinfo[idx].cookie = cookie;
2521	}
2522
2523	if (idx != nused) {
2524		vm_copy_teardown(vm, vcpuid, copyinfo, num_copyinfo);
2525		return (EFAULT);
2526	} else {
2527		*fault = 0;
2528		return (0);
2529	}
2530}
2531
2532void
2533vm_copyin(struct vm *vm, int vcpuid, struct vm_copyinfo *copyinfo, void *kaddr,
2534    size_t len)
2535{
2536	char *dst;
2537	int idx;
2538
2539	dst = kaddr;
2540	idx = 0;
2541	while (len > 0) {
2542		bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
2543		len -= copyinfo[idx].len;
2544		dst += copyinfo[idx].len;
2545		idx++;
2546	}
2547}
2548
2549void
2550vm_copyout(struct vm *vm, int vcpuid, const void *kaddr,
2551    struct vm_copyinfo *copyinfo, size_t len)
2552{
2553	const char *src;
2554	int idx;
2555
2556	src = kaddr;
2557	idx = 0;
2558	while (len > 0) {
2559		bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
2560		len -= copyinfo[idx].len;
2561		src += copyinfo[idx].len;
2562		idx++;
2563	}
2564}
2565
2566/*
2567 * Return the amount of in-use and wired memory for the VM. Since
2568 * these are global stats, only return the values with for vCPU 0
2569 */
2570VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
2571VMM_STAT_DECLARE(VMM_MEM_WIRED);
2572
2573static void
2574vm_get_rescnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2575{
2576
2577	if (vcpu == 0) {
2578		vmm_stat_set(vm, vcpu, VMM_MEM_RESIDENT,
2579	       	    PAGE_SIZE * vmspace_resident_count(vm->vmspace));
2580	}
2581}
2582
2583static void
2584vm_get_wiredcnt(struct vm *vm, int vcpu, struct vmm_stat_type *stat)
2585{
2586
2587	if (vcpu == 0) {
2588		vmm_stat_set(vm, vcpu, VMM_MEM_WIRED,
2589	      	    PAGE_SIZE * pmap_wired_count(vmspace_pmap(vm->vmspace)));
2590	}
2591}
2592
2593VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
2594VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
2595