fpu.c revision 332028
1/*-
2 * Copyright (c) 1990 William Jolitz.
3 * Copyright (c) 1991 The Regents of the University of California.
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 4. Neither the name of the University nor the names of its contributors
15 *    may be used to endorse or promote products derived from this software
16 *    without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 *	from: @(#)npx.c	7.2 (Berkeley) 5/12/91
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: stable/11/sys/amd64/amd64/fpu.c 332028 2018-04-04 13:58:18Z kevans $");
35
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/bus.h>
39#include <sys/kernel.h>
40#include <sys/lock.h>
41#include <sys/malloc.h>
42#include <sys/module.h>
43#include <sys/mutex.h>
44#include <sys/mutex.h>
45#include <sys/proc.h>
46#include <sys/sysctl.h>
47#include <machine/bus.h>
48#include <sys/rman.h>
49#include <sys/signalvar.h>
50#include <vm/uma.h>
51
52#include <machine/cputypes.h>
53#include <machine/frame.h>
54#include <machine/intr_machdep.h>
55#include <machine/md_var.h>
56#include <machine/pcb.h>
57#include <machine/psl.h>
58#include <machine/resource.h>
59#include <machine/specialreg.h>
60#include <machine/segments.h>
61#include <machine/ucontext.h>
62
63/*
64 * Floating point support.
65 */
66
67#if defined(__GNUCLIKE_ASM) && !defined(lint)
68
69#define	fldcw(cw)		__asm __volatile("fldcw %0" : : "m" (cw))
70#define	fnclex()		__asm __volatile("fnclex")
71#define	fninit()		__asm __volatile("fninit")
72#define	fnstcw(addr)		__asm __volatile("fnstcw %0" : "=m" (*(addr)))
73#define	fnstsw(addr)		__asm __volatile("fnstsw %0" : "=am" (*(addr)))
74#define	fxrstor(addr)		__asm __volatile("fxrstor %0" : : "m" (*(addr)))
75#define	fxsave(addr)		__asm __volatile("fxsave %0" : "=m" (*(addr)))
76#define	ldmxcsr(csr)		__asm __volatile("ldmxcsr %0" : : "m" (csr))
77#define	stmxcsr(addr)		__asm __volatile("stmxcsr %0" : : "m" (*(addr)))
78
79static __inline void
80xrstor(char *addr, uint64_t mask)
81{
82	uint32_t low, hi;
83
84	low = mask;
85	hi = mask >> 32;
86	__asm __volatile("xrstor %0" : : "m" (*addr), "a" (low), "d" (hi));
87}
88
89static __inline void
90xsave(char *addr, uint64_t mask)
91{
92	uint32_t low, hi;
93
94	low = mask;
95	hi = mask >> 32;
96	__asm __volatile("xsave %0" : "=m" (*addr) : "a" (low), "d" (hi) :
97	    "memory");
98}
99
100#else	/* !(__GNUCLIKE_ASM && !lint) */
101
102void	fldcw(u_short cw);
103void	fnclex(void);
104void	fninit(void);
105void	fnstcw(caddr_t addr);
106void	fnstsw(caddr_t addr);
107void	fxsave(caddr_t addr);
108void	fxrstor(caddr_t addr);
109void	ldmxcsr(u_int csr);
110void	stmxcsr(u_int *csr);
111void	xrstor(char *addr, uint64_t mask);
112void	xsave(char *addr, uint64_t mask);
113
114#endif	/* __GNUCLIKE_ASM && !lint */
115
116#define	start_emulating()	load_cr0(rcr0() | CR0_TS)
117#define	stop_emulating()	clts()
118
119CTASSERT(sizeof(struct savefpu) == 512);
120CTASSERT(sizeof(struct xstate_hdr) == 64);
121CTASSERT(sizeof(struct savefpu_ymm) == 832);
122
123/*
124 * This requirement is to make it easier for asm code to calculate
125 * offset of the fpu save area from the pcb address. FPU save area
126 * must be 64-byte aligned.
127 */
128CTASSERT(sizeof(struct pcb) % XSAVE_AREA_ALIGN == 0);
129
130/*
131 * Ensure the copy of XCR0 saved in a core is contained in the padding
132 * area.
133 */
134CTASSERT(X86_XSTATE_XCR0_OFFSET >= offsetof(struct savefpu, sv_pad) &&
135    X86_XSTATE_XCR0_OFFSET + sizeof(uint64_t) <= sizeof(struct savefpu));
136
137static	void	fpu_clean_state(void);
138
139SYSCTL_INT(_hw, HW_FLOATINGPT, floatingpoint, CTLFLAG_RD,
140    SYSCTL_NULL_INT_PTR, 1, "Floating point instructions executed in hardware");
141
142int use_xsave;			/* non-static for cpu_switch.S */
143uint64_t xsave_mask;		/* the same */
144static	uma_zone_t fpu_save_area_zone;
145static	struct savefpu *fpu_initialstate;
146
147struct xsave_area_elm_descr {
148	u_int	offset;
149	u_int	size;
150} *xsave_area_desc;
151
152void
153fpusave(void *addr)
154{
155
156	if (use_xsave)
157		xsave((char *)addr, xsave_mask);
158	else
159		fxsave((char *)addr);
160}
161
162void
163fpurestore(void *addr)
164{
165
166	if (use_xsave)
167		xrstor((char *)addr, xsave_mask);
168	else
169		fxrstor((char *)addr);
170}
171
172void
173fpususpend(void *addr)
174{
175	u_long cr0;
176
177	cr0 = rcr0();
178	stop_emulating();
179	fpusave(addr);
180	load_cr0(cr0);
181}
182
183void
184fpuresume(void *addr)
185{
186	u_long cr0;
187
188	cr0 = rcr0();
189	stop_emulating();
190	fninit();
191	if (use_xsave)
192		load_xcr(XCR0, xsave_mask);
193	fpurestore(addr);
194	load_cr0(cr0);
195}
196
197/*
198 * Enable XSAVE if supported and allowed by user.
199 * Calculate the xsave_mask.
200 */
201static void
202fpuinit_bsp1(void)
203{
204	u_int cp[4];
205	uint64_t xsave_mask_user;
206
207	if ((cpu_feature2 & CPUID2_XSAVE) != 0) {
208		use_xsave = 1;
209		TUNABLE_INT_FETCH("hw.use_xsave", &use_xsave);
210	}
211	if (!use_xsave)
212		return;
213
214	cpuid_count(0xd, 0x0, cp);
215	xsave_mask = XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
216	if ((cp[0] & xsave_mask) != xsave_mask)
217		panic("CPU0 does not support X87 or SSE: %x", cp[0]);
218	xsave_mask = ((uint64_t)cp[3] << 32) | cp[0];
219	xsave_mask_user = xsave_mask;
220	TUNABLE_ULONG_FETCH("hw.xsave_mask", &xsave_mask_user);
221	xsave_mask_user |= XFEATURE_ENABLED_X87 | XFEATURE_ENABLED_SSE;
222	xsave_mask &= xsave_mask_user;
223	if ((xsave_mask & XFEATURE_AVX512) != XFEATURE_AVX512)
224		xsave_mask &= ~XFEATURE_AVX512;
225	if ((xsave_mask & XFEATURE_MPX) != XFEATURE_MPX)
226		xsave_mask &= ~XFEATURE_MPX;
227
228	cpuid_count(0xd, 0x1, cp);
229	if ((cp[0] & CPUID_EXTSTATE_XSAVEOPT) != 0) {
230		/*
231		 * Patch the XSAVE instruction in the cpu_switch code
232		 * to XSAVEOPT.  We assume that XSAVE encoding used
233		 * REX byte, and set the bit 4 of the r/m byte.
234		 */
235		ctx_switch_xsave[3] |= 0x10;
236	}
237}
238
239/*
240 * Calculate the fpu save area size.
241 */
242static void
243fpuinit_bsp2(void)
244{
245	u_int cp[4];
246
247	if (use_xsave) {
248		cpuid_count(0xd, 0x0, cp);
249		cpu_max_ext_state_size = cp[1];
250
251		/*
252		 * Reload the cpu_feature2, since we enabled OSXSAVE.
253		 */
254		do_cpuid(1, cp);
255		cpu_feature2 = cp[2];
256	} else
257		cpu_max_ext_state_size = sizeof(struct savefpu);
258}
259
260/*
261 * Initialize the floating point unit.
262 */
263void
264fpuinit(void)
265{
266	register_t saveintr;
267	u_int mxcsr;
268	u_short control;
269
270	if (IS_BSP())
271		fpuinit_bsp1();
272
273	if (use_xsave) {
274		load_cr4(rcr4() | CR4_XSAVE);
275		load_xcr(XCR0, xsave_mask);
276	}
277
278	/*
279	 * XCR0 shall be set up before CPU can report the save area size.
280	 */
281	if (IS_BSP())
282		fpuinit_bsp2();
283
284	/*
285	 * It is too early for critical_enter() to work on AP.
286	 */
287	saveintr = intr_disable();
288	stop_emulating();
289	fninit();
290	control = __INITIAL_FPUCW__;
291	fldcw(control);
292	mxcsr = __INITIAL_MXCSR__;
293	ldmxcsr(mxcsr);
294	start_emulating();
295	intr_restore(saveintr);
296}
297
298/*
299 * On the boot CPU we generate a clean state that is used to
300 * initialize the floating point unit when it is first used by a
301 * process.
302 */
303static void
304fpuinitstate(void *arg __unused)
305{
306	register_t saveintr;
307	int cp[4], i, max_ext_n;
308
309	fpu_initialstate = malloc(cpu_max_ext_state_size, M_DEVBUF,
310	    M_WAITOK | M_ZERO);
311	saveintr = intr_disable();
312	stop_emulating();
313
314	fpusave(fpu_initialstate);
315	if (fpu_initialstate->sv_env.en_mxcsr_mask)
316		cpu_mxcsr_mask = fpu_initialstate->sv_env.en_mxcsr_mask;
317	else
318		cpu_mxcsr_mask = 0xFFBF;
319
320	/*
321	 * The fninit instruction does not modify XMM registers or x87
322	 * registers (MM/ST).  The fpusave call dumped the garbage
323	 * contained in the registers after reset to the initial state
324	 * saved.  Clear XMM and x87 registers file image to make the
325	 * startup program state and signal handler XMM/x87 register
326	 * content predictable.
327	 */
328	bzero(fpu_initialstate->sv_fp, sizeof(fpu_initialstate->sv_fp));
329	bzero(fpu_initialstate->sv_xmm, sizeof(fpu_initialstate->sv_xmm));
330
331	/*
332	 * Create a table describing the layout of the CPU Extended
333	 * Save Area.
334	 */
335	if (use_xsave) {
336		max_ext_n = flsl(xsave_mask);
337		xsave_area_desc = malloc(max_ext_n * sizeof(struct
338		    xsave_area_elm_descr), M_DEVBUF, M_WAITOK | M_ZERO);
339		/* x87 state */
340		xsave_area_desc[0].offset = 0;
341		xsave_area_desc[0].size = 160;
342		/* XMM */
343		xsave_area_desc[1].offset = 160;
344		xsave_area_desc[1].size = 288 - 160;
345
346		for (i = 2; i < max_ext_n; i++) {
347			cpuid_count(0xd, i, cp);
348			xsave_area_desc[i].offset = cp[1];
349			xsave_area_desc[i].size = cp[0];
350		}
351	}
352
353	fpu_save_area_zone = uma_zcreate("FPU_save_area",
354	    cpu_max_ext_state_size, NULL, NULL, NULL, NULL,
355	    XSAVE_AREA_ALIGN - 1, 0);
356
357	start_emulating();
358	intr_restore(saveintr);
359}
360/* EFIRT needs this to be initialized before we can enter our EFI environment */
361SYSINIT(fpuinitstate, SI_SUB_DRIVERS, SI_ORDER_FIRST, fpuinitstate, NULL);
362
363/*
364 * Free coprocessor (if we have it).
365 */
366void
367fpuexit(struct thread *td)
368{
369
370	critical_enter();
371	if (curthread == PCPU_GET(fpcurthread)) {
372		stop_emulating();
373		fpusave(curpcb->pcb_save);
374		start_emulating();
375		PCPU_SET(fpcurthread, NULL);
376	}
377	critical_exit();
378}
379
380int
381fpuformat(void)
382{
383
384	return (_MC_FPFMT_XMM);
385}
386
387/*
388 * The following mechanism is used to ensure that the FPE_... value
389 * that is passed as a trapcode to the signal handler of the user
390 * process does not have more than one bit set.
391 *
392 * Multiple bits may be set if the user process modifies the control
393 * word while a status word bit is already set.  While this is a sign
394 * of bad coding, we have no choise than to narrow them down to one
395 * bit, since we must not send a trapcode that is not exactly one of
396 * the FPE_ macros.
397 *
398 * The mechanism has a static table with 127 entries.  Each combination
399 * of the 7 FPU status word exception bits directly translates to a
400 * position in this table, where a single FPE_... value is stored.
401 * This FPE_... value stored there is considered the "most important"
402 * of the exception bits and will be sent as the signal code.  The
403 * precedence of the bits is based upon Intel Document "Numerical
404 * Applications", Chapter "Special Computational Situations".
405 *
406 * The macro to choose one of these values does these steps: 1) Throw
407 * away status word bits that cannot be masked.  2) Throw away the bits
408 * currently masked in the control word, assuming the user isn't
409 * interested in them anymore.  3) Reinsert status word bit 7 (stack
410 * fault) if it is set, which cannot be masked but must be presered.
411 * 4) Use the remaining bits to point into the trapcode table.
412 *
413 * The 6 maskable bits in order of their preference, as stated in the
414 * above referenced Intel manual:
415 * 1  Invalid operation (FP_X_INV)
416 * 1a   Stack underflow
417 * 1b   Stack overflow
418 * 1c   Operand of unsupported format
419 * 1d   SNaN operand.
420 * 2  QNaN operand (not an exception, irrelavant here)
421 * 3  Any other invalid-operation not mentioned above or zero divide
422 *      (FP_X_INV, FP_X_DZ)
423 * 4  Denormal operand (FP_X_DNML)
424 * 5  Numeric over/underflow (FP_X_OFL, FP_X_UFL)
425 * 6  Inexact result (FP_X_IMP)
426 */
427static char fpetable[128] = {
428	0,
429	FPE_FLTINV,	/*  1 - INV */
430	FPE_FLTUND,	/*  2 - DNML */
431	FPE_FLTINV,	/*  3 - INV | DNML */
432	FPE_FLTDIV,	/*  4 - DZ */
433	FPE_FLTINV,	/*  5 - INV | DZ */
434	FPE_FLTDIV,	/*  6 - DNML | DZ */
435	FPE_FLTINV,	/*  7 - INV | DNML | DZ */
436	FPE_FLTOVF,	/*  8 - OFL */
437	FPE_FLTINV,	/*  9 - INV | OFL */
438	FPE_FLTUND,	/*  A - DNML | OFL */
439	FPE_FLTINV,	/*  B - INV | DNML | OFL */
440	FPE_FLTDIV,	/*  C - DZ | OFL */
441	FPE_FLTINV,	/*  D - INV | DZ | OFL */
442	FPE_FLTDIV,	/*  E - DNML | DZ | OFL */
443	FPE_FLTINV,	/*  F - INV | DNML | DZ | OFL */
444	FPE_FLTUND,	/* 10 - UFL */
445	FPE_FLTINV,	/* 11 - INV | UFL */
446	FPE_FLTUND,	/* 12 - DNML | UFL */
447	FPE_FLTINV,	/* 13 - INV | DNML | UFL */
448	FPE_FLTDIV,	/* 14 - DZ | UFL */
449	FPE_FLTINV,	/* 15 - INV | DZ | UFL */
450	FPE_FLTDIV,	/* 16 - DNML | DZ | UFL */
451	FPE_FLTINV,	/* 17 - INV | DNML | DZ | UFL */
452	FPE_FLTOVF,	/* 18 - OFL | UFL */
453	FPE_FLTINV,	/* 19 - INV | OFL | UFL */
454	FPE_FLTUND,	/* 1A - DNML | OFL | UFL */
455	FPE_FLTINV,	/* 1B - INV | DNML | OFL | UFL */
456	FPE_FLTDIV,	/* 1C - DZ | OFL | UFL */
457	FPE_FLTINV,	/* 1D - INV | DZ | OFL | UFL */
458	FPE_FLTDIV,	/* 1E - DNML | DZ | OFL | UFL */
459	FPE_FLTINV,	/* 1F - INV | DNML | DZ | OFL | UFL */
460	FPE_FLTRES,	/* 20 - IMP */
461	FPE_FLTINV,	/* 21 - INV | IMP */
462	FPE_FLTUND,	/* 22 - DNML | IMP */
463	FPE_FLTINV,	/* 23 - INV | DNML | IMP */
464	FPE_FLTDIV,	/* 24 - DZ | IMP */
465	FPE_FLTINV,	/* 25 - INV | DZ | IMP */
466	FPE_FLTDIV,	/* 26 - DNML | DZ | IMP */
467	FPE_FLTINV,	/* 27 - INV | DNML | DZ | IMP */
468	FPE_FLTOVF,	/* 28 - OFL | IMP */
469	FPE_FLTINV,	/* 29 - INV | OFL | IMP */
470	FPE_FLTUND,	/* 2A - DNML | OFL | IMP */
471	FPE_FLTINV,	/* 2B - INV | DNML | OFL | IMP */
472	FPE_FLTDIV,	/* 2C - DZ | OFL | IMP */
473	FPE_FLTINV,	/* 2D - INV | DZ | OFL | IMP */
474	FPE_FLTDIV,	/* 2E - DNML | DZ | OFL | IMP */
475	FPE_FLTINV,	/* 2F - INV | DNML | DZ | OFL | IMP */
476	FPE_FLTUND,	/* 30 - UFL | IMP */
477	FPE_FLTINV,	/* 31 - INV | UFL | IMP */
478	FPE_FLTUND,	/* 32 - DNML | UFL | IMP */
479	FPE_FLTINV,	/* 33 - INV | DNML | UFL | IMP */
480	FPE_FLTDIV,	/* 34 - DZ | UFL | IMP */
481	FPE_FLTINV,	/* 35 - INV | DZ | UFL | IMP */
482	FPE_FLTDIV,	/* 36 - DNML | DZ | UFL | IMP */
483	FPE_FLTINV,	/* 37 - INV | DNML | DZ | UFL | IMP */
484	FPE_FLTOVF,	/* 38 - OFL | UFL | IMP */
485	FPE_FLTINV,	/* 39 - INV | OFL | UFL | IMP */
486	FPE_FLTUND,	/* 3A - DNML | OFL | UFL | IMP */
487	FPE_FLTINV,	/* 3B - INV | DNML | OFL | UFL | IMP */
488	FPE_FLTDIV,	/* 3C - DZ | OFL | UFL | IMP */
489	FPE_FLTINV,	/* 3D - INV | DZ | OFL | UFL | IMP */
490	FPE_FLTDIV,	/* 3E - DNML | DZ | OFL | UFL | IMP */
491	FPE_FLTINV,	/* 3F - INV | DNML | DZ | OFL | UFL | IMP */
492	FPE_FLTSUB,	/* 40 - STK */
493	FPE_FLTSUB,	/* 41 - INV | STK */
494	FPE_FLTUND,	/* 42 - DNML | STK */
495	FPE_FLTSUB,	/* 43 - INV | DNML | STK */
496	FPE_FLTDIV,	/* 44 - DZ | STK */
497	FPE_FLTSUB,	/* 45 - INV | DZ | STK */
498	FPE_FLTDIV,	/* 46 - DNML | DZ | STK */
499	FPE_FLTSUB,	/* 47 - INV | DNML | DZ | STK */
500	FPE_FLTOVF,	/* 48 - OFL | STK */
501	FPE_FLTSUB,	/* 49 - INV | OFL | STK */
502	FPE_FLTUND,	/* 4A - DNML | OFL | STK */
503	FPE_FLTSUB,	/* 4B - INV | DNML | OFL | STK */
504	FPE_FLTDIV,	/* 4C - DZ | OFL | STK */
505	FPE_FLTSUB,	/* 4D - INV | DZ | OFL | STK */
506	FPE_FLTDIV,	/* 4E - DNML | DZ | OFL | STK */
507	FPE_FLTSUB,	/* 4F - INV | DNML | DZ | OFL | STK */
508	FPE_FLTUND,	/* 50 - UFL | STK */
509	FPE_FLTSUB,	/* 51 - INV | UFL | STK */
510	FPE_FLTUND,	/* 52 - DNML | UFL | STK */
511	FPE_FLTSUB,	/* 53 - INV | DNML | UFL | STK */
512	FPE_FLTDIV,	/* 54 - DZ | UFL | STK */
513	FPE_FLTSUB,	/* 55 - INV | DZ | UFL | STK */
514	FPE_FLTDIV,	/* 56 - DNML | DZ | UFL | STK */
515	FPE_FLTSUB,	/* 57 - INV | DNML | DZ | UFL | STK */
516	FPE_FLTOVF,	/* 58 - OFL | UFL | STK */
517	FPE_FLTSUB,	/* 59 - INV | OFL | UFL | STK */
518	FPE_FLTUND,	/* 5A - DNML | OFL | UFL | STK */
519	FPE_FLTSUB,	/* 5B - INV | DNML | OFL | UFL | STK */
520	FPE_FLTDIV,	/* 5C - DZ | OFL | UFL | STK */
521	FPE_FLTSUB,	/* 5D - INV | DZ | OFL | UFL | STK */
522	FPE_FLTDIV,	/* 5E - DNML | DZ | OFL | UFL | STK */
523	FPE_FLTSUB,	/* 5F - INV | DNML | DZ | OFL | UFL | STK */
524	FPE_FLTRES,	/* 60 - IMP | STK */
525	FPE_FLTSUB,	/* 61 - INV | IMP | STK */
526	FPE_FLTUND,	/* 62 - DNML | IMP | STK */
527	FPE_FLTSUB,	/* 63 - INV | DNML | IMP | STK */
528	FPE_FLTDIV,	/* 64 - DZ | IMP | STK */
529	FPE_FLTSUB,	/* 65 - INV | DZ | IMP | STK */
530	FPE_FLTDIV,	/* 66 - DNML | DZ | IMP | STK */
531	FPE_FLTSUB,	/* 67 - INV | DNML | DZ | IMP | STK */
532	FPE_FLTOVF,	/* 68 - OFL | IMP | STK */
533	FPE_FLTSUB,	/* 69 - INV | OFL | IMP | STK */
534	FPE_FLTUND,	/* 6A - DNML | OFL | IMP | STK */
535	FPE_FLTSUB,	/* 6B - INV | DNML | OFL | IMP | STK */
536	FPE_FLTDIV,	/* 6C - DZ | OFL | IMP | STK */
537	FPE_FLTSUB,	/* 6D - INV | DZ | OFL | IMP | STK */
538	FPE_FLTDIV,	/* 6E - DNML | DZ | OFL | IMP | STK */
539	FPE_FLTSUB,	/* 6F - INV | DNML | DZ | OFL | IMP | STK */
540	FPE_FLTUND,	/* 70 - UFL | IMP | STK */
541	FPE_FLTSUB,	/* 71 - INV | UFL | IMP | STK */
542	FPE_FLTUND,	/* 72 - DNML | UFL | IMP | STK */
543	FPE_FLTSUB,	/* 73 - INV | DNML | UFL | IMP | STK */
544	FPE_FLTDIV,	/* 74 - DZ | UFL | IMP | STK */
545	FPE_FLTSUB,	/* 75 - INV | DZ | UFL | IMP | STK */
546	FPE_FLTDIV,	/* 76 - DNML | DZ | UFL | IMP | STK */
547	FPE_FLTSUB,	/* 77 - INV | DNML | DZ | UFL | IMP | STK */
548	FPE_FLTOVF,	/* 78 - OFL | UFL | IMP | STK */
549	FPE_FLTSUB,	/* 79 - INV | OFL | UFL | IMP | STK */
550	FPE_FLTUND,	/* 7A - DNML | OFL | UFL | IMP | STK */
551	FPE_FLTSUB,	/* 7B - INV | DNML | OFL | UFL | IMP | STK */
552	FPE_FLTDIV,	/* 7C - DZ | OFL | UFL | IMP | STK */
553	FPE_FLTSUB,	/* 7D - INV | DZ | OFL | UFL | IMP | STK */
554	FPE_FLTDIV,	/* 7E - DNML | DZ | OFL | UFL | IMP | STK */
555	FPE_FLTSUB,	/* 7F - INV | DNML | DZ | OFL | UFL | IMP | STK */
556};
557
558/*
559 * Read the FP status and control words, then generate si_code value
560 * for SIGFPE.  The error code chosen will be one of the
561 * FPE_... macros.  It will be sent as the second argument to old
562 * BSD-style signal handlers and as "siginfo_t->si_code" (second
563 * argument) to SA_SIGINFO signal handlers.
564 *
565 * Some time ago, we cleared the x87 exceptions with FNCLEX there.
566 * Clearing exceptions was necessary mainly to avoid IRQ13 bugs.  The
567 * usermode code which understands the FPU hardware enough to enable
568 * the exceptions, can also handle clearing the exception state in the
569 * handler.  The only consequence of not clearing the exception is the
570 * rethrow of the SIGFPE on return from the signal handler and
571 * reexecution of the corresponding instruction.
572 *
573 * For XMM traps, the exceptions were never cleared.
574 */
575int
576fputrap_x87(void)
577{
578	struct savefpu *pcb_save;
579	u_short control, status;
580
581	critical_enter();
582
583	/*
584	 * Interrupt handling (for another interrupt) may have pushed the
585	 * state to memory.  Fetch the relevant parts of the state from
586	 * wherever they are.
587	 */
588	if (PCPU_GET(fpcurthread) != curthread) {
589		pcb_save = curpcb->pcb_save;
590		control = pcb_save->sv_env.en_cw;
591		status = pcb_save->sv_env.en_sw;
592	} else {
593		fnstcw(&control);
594		fnstsw(&status);
595	}
596
597	critical_exit();
598	return (fpetable[status & ((~control & 0x3f) | 0x40)]);
599}
600
601int
602fputrap_sse(void)
603{
604	u_int mxcsr;
605
606	critical_enter();
607	if (PCPU_GET(fpcurthread) != curthread)
608		mxcsr = curpcb->pcb_save->sv_env.en_mxcsr;
609	else
610		stmxcsr(&mxcsr);
611	critical_exit();
612	return (fpetable[(mxcsr & (~mxcsr >> 7)) & 0x3f]);
613}
614
615/*
616 * Device Not Available (DNA, #NM) exception handler.
617 *
618 * It would be better to switch FP context here (if curthread !=
619 * fpcurthread) and not necessarily for every context switch, but it
620 * is too hard to access foreign pcb's.
621 */
622void
623fpudna(void)
624{
625
626	/*
627	 * This handler is entered with interrupts enabled, so context
628	 * switches may occur before critical_enter() is executed.  If
629	 * a context switch occurs, then when we regain control, our
630	 * state will have been completely restored.  The CPU may
631	 * change underneath us, but the only part of our context that
632	 * lives in the CPU is CR0.TS and that will be "restored" by
633	 * setting it on the new CPU.
634	 */
635	critical_enter();
636
637	KASSERT((curpcb->pcb_flags & PCB_FPUNOSAVE) == 0,
638	    ("fpudna while in fpu_kern_enter(FPU_KERN_NOCTX)"));
639	if (PCPU_GET(fpcurthread) == curthread) {
640		printf("fpudna: fpcurthread == curthread\n");
641		stop_emulating();
642		critical_exit();
643		return;
644	}
645	if (PCPU_GET(fpcurthread) != NULL) {
646		panic("fpudna: fpcurthread = %p (%d), curthread = %p (%d)\n",
647		    PCPU_GET(fpcurthread), PCPU_GET(fpcurthread)->td_tid,
648		    curthread, curthread->td_tid);
649	}
650	stop_emulating();
651	/*
652	 * Record new context early in case frstor causes a trap.
653	 */
654	PCPU_SET(fpcurthread, curthread);
655
656	fpu_clean_state();
657
658	if ((curpcb->pcb_flags & PCB_FPUINITDONE) == 0) {
659		/*
660		 * This is the first time this thread has used the FPU or
661		 * the PCB doesn't contain a clean FPU state.  Explicitly
662		 * load an initial state.
663		 *
664		 * We prefer to restore the state from the actual save
665		 * area in PCB instead of directly loading from
666		 * fpu_initialstate, to ignite the XSAVEOPT
667		 * tracking engine.
668		 */
669		bcopy(fpu_initialstate, curpcb->pcb_save,
670		    cpu_max_ext_state_size);
671		fpurestore(curpcb->pcb_save);
672		if (curpcb->pcb_initial_fpucw != __INITIAL_FPUCW__)
673			fldcw(curpcb->pcb_initial_fpucw);
674		if (PCB_USER_FPU(curpcb))
675			set_pcb_flags(curpcb,
676			    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
677		else
678			set_pcb_flags(curpcb, PCB_FPUINITDONE);
679	} else
680		fpurestore(curpcb->pcb_save);
681	critical_exit();
682}
683
684void
685fpudrop(void)
686{
687	struct thread *td;
688
689	td = PCPU_GET(fpcurthread);
690	KASSERT(td == curthread, ("fpudrop: fpcurthread != curthread"));
691	CRITICAL_ASSERT(td);
692	PCPU_SET(fpcurthread, NULL);
693	clear_pcb_flags(td->td_pcb, PCB_FPUINITDONE);
694	start_emulating();
695}
696
697/*
698 * Get the user state of the FPU into pcb->pcb_user_save without
699 * dropping ownership (if possible).  It returns the FPU ownership
700 * status.
701 */
702int
703fpugetregs(struct thread *td)
704{
705	struct pcb *pcb;
706	uint64_t *xstate_bv, bit;
707	char *sa;
708	int max_ext_n, i, owned;
709
710	pcb = td->td_pcb;
711	if ((pcb->pcb_flags & PCB_USERFPUINITDONE) == 0) {
712		bcopy(fpu_initialstate, get_pcb_user_save_pcb(pcb),
713		    cpu_max_ext_state_size);
714		get_pcb_user_save_pcb(pcb)->sv_env.en_cw =
715		    pcb->pcb_initial_fpucw;
716		fpuuserinited(td);
717		return (_MC_FPOWNED_PCB);
718	}
719	critical_enter();
720	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
721		fpusave(get_pcb_user_save_pcb(pcb));
722		owned = _MC_FPOWNED_FPU;
723	} else {
724		owned = _MC_FPOWNED_PCB;
725	}
726	critical_exit();
727	if (use_xsave) {
728		/*
729		 * Handle partially saved state.
730		 */
731		sa = (char *)get_pcb_user_save_pcb(pcb);
732		xstate_bv = (uint64_t *)(sa + sizeof(struct savefpu) +
733		    offsetof(struct xstate_hdr, xstate_bv));
734		max_ext_n = flsl(xsave_mask);
735		for (i = 0; i < max_ext_n; i++) {
736			bit = 1ULL << i;
737			if ((xsave_mask & bit) == 0 || (*xstate_bv & bit) != 0)
738				continue;
739			bcopy((char *)fpu_initialstate +
740			    xsave_area_desc[i].offset,
741			    sa + xsave_area_desc[i].offset,
742			    xsave_area_desc[i].size);
743			*xstate_bv |= bit;
744		}
745	}
746	return (owned);
747}
748
749void
750fpuuserinited(struct thread *td)
751{
752	struct pcb *pcb;
753
754	pcb = td->td_pcb;
755	if (PCB_USER_FPU(pcb))
756		set_pcb_flags(pcb,
757		    PCB_FPUINITDONE | PCB_USERFPUINITDONE);
758	else
759		set_pcb_flags(pcb, PCB_FPUINITDONE);
760}
761
762int
763fpusetxstate(struct thread *td, char *xfpustate, size_t xfpustate_size)
764{
765	struct xstate_hdr *hdr, *ehdr;
766	size_t len, max_len;
767	uint64_t bv;
768
769	/* XXXKIB should we clear all extended state in xstate_bv instead ? */
770	if (xfpustate == NULL)
771		return (0);
772	if (!use_xsave)
773		return (EOPNOTSUPP);
774
775	len = xfpustate_size;
776	if (len < sizeof(struct xstate_hdr))
777		return (EINVAL);
778	max_len = cpu_max_ext_state_size - sizeof(struct savefpu);
779	if (len > max_len)
780		return (EINVAL);
781
782	ehdr = (struct xstate_hdr *)xfpustate;
783	bv = ehdr->xstate_bv;
784
785	/*
786	 * Avoid #gp.
787	 */
788	if (bv & ~xsave_mask)
789		return (EINVAL);
790
791	hdr = (struct xstate_hdr *)(get_pcb_user_save_td(td) + 1);
792
793	hdr->xstate_bv = bv;
794	bcopy(xfpustate + sizeof(struct xstate_hdr),
795	    (char *)(hdr + 1), len - sizeof(struct xstate_hdr));
796
797	return (0);
798}
799
800/*
801 * Set the state of the FPU.
802 */
803int
804fpusetregs(struct thread *td, struct savefpu *addr, char *xfpustate,
805    size_t xfpustate_size)
806{
807	struct pcb *pcb;
808	int error;
809
810	addr->sv_env.en_mxcsr &= cpu_mxcsr_mask;
811	pcb = td->td_pcb;
812	critical_enter();
813	if (td == PCPU_GET(fpcurthread) && PCB_USER_FPU(pcb)) {
814		error = fpusetxstate(td, xfpustate, xfpustate_size);
815		if (error != 0) {
816			critical_exit();
817			return (error);
818		}
819		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
820		fpurestore(get_pcb_user_save_td(td));
821		critical_exit();
822		set_pcb_flags(pcb, PCB_FPUINITDONE | PCB_USERFPUINITDONE);
823	} else {
824		critical_exit();
825		error = fpusetxstate(td, xfpustate, xfpustate_size);
826		if (error != 0)
827			return (error);
828		bcopy(addr, get_pcb_user_save_td(td), sizeof(*addr));
829		fpuuserinited(td);
830	}
831	return (0);
832}
833
834/*
835 * On AuthenticAMD processors, the fxrstor instruction does not restore
836 * the x87's stored last instruction pointer, last data pointer, and last
837 * opcode values, except in the rare case in which the exception summary
838 * (ES) bit in the x87 status word is set to 1.
839 *
840 * In order to avoid leaking this information across processes, we clean
841 * these values by performing a dummy load before executing fxrstor().
842 */
843static void
844fpu_clean_state(void)
845{
846	static float dummy_variable = 0.0;
847	u_short status;
848
849	/*
850	 * Clear the ES bit in the x87 status word if it is currently
851	 * set, in order to avoid causing a fault in the upcoming load.
852	 */
853	fnstsw(&status);
854	if (status & 0x80)
855		fnclex();
856
857	/*
858	 * Load the dummy variable into the x87 stack.  This mangles
859	 * the x87 stack, but we don't care since we're about to call
860	 * fxrstor() anyway.
861	 */
862	__asm __volatile("ffree %%st(7); flds %0" : : "m" (dummy_variable));
863}
864
865/*
866 * This really sucks.  We want the acpi version only, but it requires
867 * the isa_if.h file in order to get the definitions.
868 */
869#include "opt_isa.h"
870#ifdef DEV_ISA
871#include <isa/isavar.h>
872/*
873 * This sucks up the legacy ISA support assignments from PNPBIOS/ACPI.
874 */
875static struct isa_pnp_id fpupnp_ids[] = {
876	{ 0x040cd041, "Legacy ISA coprocessor support" }, /* PNP0C04 */
877	{ 0 }
878};
879
880static int
881fpupnp_probe(device_t dev)
882{
883	int result;
884
885	result = ISA_PNP_PROBE(device_get_parent(dev), dev, fpupnp_ids);
886	if (result <= 0)
887		device_quiet(dev);
888	return (result);
889}
890
891static int
892fpupnp_attach(device_t dev)
893{
894
895	return (0);
896}
897
898static device_method_t fpupnp_methods[] = {
899	/* Device interface */
900	DEVMETHOD(device_probe,		fpupnp_probe),
901	DEVMETHOD(device_attach,	fpupnp_attach),
902	DEVMETHOD(device_detach,	bus_generic_detach),
903	DEVMETHOD(device_shutdown,	bus_generic_shutdown),
904	DEVMETHOD(device_suspend,	bus_generic_suspend),
905	DEVMETHOD(device_resume,	bus_generic_resume),
906
907	{ 0, 0 }
908};
909
910static driver_t fpupnp_driver = {
911	"fpupnp",
912	fpupnp_methods,
913	1,			/* no softc */
914};
915
916static devclass_t fpupnp_devclass;
917
918DRIVER_MODULE(fpupnp, acpi, fpupnp_driver, fpupnp_devclass, 0, 0);
919#endif	/* DEV_ISA */
920
921static MALLOC_DEFINE(M_FPUKERN_CTX, "fpukern_ctx",
922    "Kernel contexts for FPU state");
923
924#define	FPU_KERN_CTX_FPUINITDONE 0x01
925#define	FPU_KERN_CTX_DUMMY	 0x02	/* avoided save for the kern thread */
926#define	FPU_KERN_CTX_INUSE	 0x04
927
928struct fpu_kern_ctx {
929	struct savefpu *prev;
930	uint32_t flags;
931	char hwstate1[];
932};
933
934struct fpu_kern_ctx *
935fpu_kern_alloc_ctx(u_int flags)
936{
937	struct fpu_kern_ctx *res;
938	size_t sz;
939
940	sz = sizeof(struct fpu_kern_ctx) + XSAVE_AREA_ALIGN +
941	    cpu_max_ext_state_size;
942	res = malloc(sz, M_FPUKERN_CTX, ((flags & FPU_KERN_NOWAIT) ?
943	    M_NOWAIT : M_WAITOK) | M_ZERO);
944	return (res);
945}
946
947void
948fpu_kern_free_ctx(struct fpu_kern_ctx *ctx)
949{
950
951	KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) == 0, ("free'ing inuse ctx"));
952	/* XXXKIB clear the memory ? */
953	free(ctx, M_FPUKERN_CTX);
954}
955
956static struct savefpu *
957fpu_kern_ctx_savefpu(struct fpu_kern_ctx *ctx)
958{
959	vm_offset_t p;
960
961	p = (vm_offset_t)&ctx->hwstate1;
962	p = roundup2(p, XSAVE_AREA_ALIGN);
963	return ((struct savefpu *)p);
964}
965
966int
967fpu_kern_enter(struct thread *td, struct fpu_kern_ctx *ctx, u_int flags)
968{
969	struct pcb *pcb;
970
971	pcb = td->td_pcb;
972	KASSERT((flags & FPU_KERN_NOCTX) != 0 || ctx != NULL,
973	    ("ctx is required when !FPU_KERN_NOCTX"));
974	KASSERT(ctx == NULL || (ctx->flags & FPU_KERN_CTX_INUSE) == 0,
975	    ("using inuse ctx"));
976	KASSERT((pcb->pcb_flags & PCB_FPUNOSAVE) == 0,
977	    ("recursive fpu_kern_enter while in PCB_FPUNOSAVE state"));
978
979	if ((flags & FPU_KERN_NOCTX) != 0) {
980		critical_enter();
981		stop_emulating();
982		if (curthread == PCPU_GET(fpcurthread)) {
983			fpusave(curpcb->pcb_save);
984			PCPU_SET(fpcurthread, NULL);
985		} else {
986			KASSERT(PCPU_GET(fpcurthread) == NULL,
987			    ("invalid fpcurthread"));
988		}
989
990		/*
991		 * This breaks XSAVEOPT tracker, but
992		 * PCB_FPUNOSAVE state is supposed to never need to
993		 * save FPU context at all.
994		 */
995		fpurestore(fpu_initialstate);
996		set_pcb_flags(pcb, PCB_KERNFPU | PCB_FPUNOSAVE |
997		    PCB_FPUINITDONE);
998		return (0);
999	}
1000	if ((flags & FPU_KERN_KTHR) != 0 && is_fpu_kern_thread(0)) {
1001		ctx->flags = FPU_KERN_CTX_DUMMY | FPU_KERN_CTX_INUSE;
1002		return (0);
1003	}
1004	KASSERT(!PCB_USER_FPU(pcb) || pcb->pcb_save ==
1005	    get_pcb_user_save_pcb(pcb), ("mangled pcb_save"));
1006	ctx->flags = FPU_KERN_CTX_INUSE;
1007	if ((pcb->pcb_flags & PCB_FPUINITDONE) != 0)
1008		ctx->flags |= FPU_KERN_CTX_FPUINITDONE;
1009	fpuexit(td);
1010	ctx->prev = pcb->pcb_save;
1011	pcb->pcb_save = fpu_kern_ctx_savefpu(ctx);
1012	set_pcb_flags(pcb, PCB_KERNFPU);
1013	clear_pcb_flags(pcb, PCB_FPUINITDONE);
1014	return (0);
1015}
1016
1017int
1018fpu_kern_leave(struct thread *td, struct fpu_kern_ctx *ctx)
1019{
1020	struct pcb *pcb;
1021
1022	pcb = td->td_pcb;
1023
1024	if ((pcb->pcb_flags & PCB_FPUNOSAVE) != 0) {
1025		KASSERT(ctx == NULL, ("non-null ctx after FPU_KERN_NOCTX"));
1026		KASSERT(PCPU_GET(fpcurthread) == NULL,
1027		    ("non-NULL fpcurthread for PCB_FPUNOSAVE"));
1028		CRITICAL_ASSERT(td);
1029
1030		clear_pcb_flags(pcb,  PCB_FPUNOSAVE | PCB_FPUINITDONE);
1031		start_emulating();
1032		critical_exit();
1033	} else {
1034		KASSERT((ctx->flags & FPU_KERN_CTX_INUSE) != 0,
1035		    ("leaving not inuse ctx"));
1036		ctx->flags &= ~FPU_KERN_CTX_INUSE;
1037
1038		if (is_fpu_kern_thread(0) &&
1039		    (ctx->flags & FPU_KERN_CTX_DUMMY) != 0)
1040			return (0);
1041		KASSERT((ctx->flags & FPU_KERN_CTX_DUMMY) == 0,
1042		    ("dummy ctx"));
1043		critical_enter();
1044		if (curthread == PCPU_GET(fpcurthread))
1045			fpudrop();
1046		critical_exit();
1047		pcb->pcb_save = ctx->prev;
1048	}
1049
1050	if (pcb->pcb_save == get_pcb_user_save_pcb(pcb)) {
1051		if ((pcb->pcb_flags & PCB_USERFPUINITDONE) != 0) {
1052			set_pcb_flags(pcb, PCB_FPUINITDONE);
1053			clear_pcb_flags(pcb, PCB_KERNFPU);
1054		} else
1055			clear_pcb_flags(pcb, PCB_FPUINITDONE | PCB_KERNFPU);
1056	} else {
1057		if ((ctx->flags & FPU_KERN_CTX_FPUINITDONE) != 0)
1058			set_pcb_flags(pcb, PCB_FPUINITDONE);
1059		else
1060			clear_pcb_flags(pcb, PCB_FPUINITDONE);
1061		KASSERT(!PCB_USER_FPU(pcb), ("unpaired fpu_kern_leave"));
1062	}
1063	return (0);
1064}
1065
1066int
1067fpu_kern_thread(u_int flags)
1068{
1069
1070	KASSERT((curthread->td_pflags & TDP_KTHREAD) != 0,
1071	    ("Only kthread may use fpu_kern_thread"));
1072	KASSERT(curpcb->pcb_save == get_pcb_user_save_pcb(curpcb),
1073	    ("mangled pcb_save"));
1074	KASSERT(PCB_USER_FPU(curpcb), ("recursive call"));
1075
1076	set_pcb_flags(curpcb, PCB_KERNFPU);
1077	return (0);
1078}
1079
1080int
1081is_fpu_kern_thread(u_int flags)
1082{
1083
1084	if ((curthread->td_pflags & TDP_KTHREAD) == 0)
1085		return (0);
1086	return ((curpcb->pcb_flags & PCB_KERNFPU) != 0);
1087}
1088
1089/*
1090 * FPU save area alloc/free/init utility routines
1091 */
1092struct savefpu *
1093fpu_save_area_alloc(void)
1094{
1095
1096	return (uma_zalloc(fpu_save_area_zone, 0));
1097}
1098
1099void
1100fpu_save_area_free(struct savefpu *fsa)
1101{
1102
1103	uma_zfree(fpu_save_area_zone, fsa);
1104}
1105
1106void
1107fpu_save_area_reset(struct savefpu *fsa)
1108{
1109
1110	bcopy(fpu_initialstate, fsa, cpu_max_ext_state_size);
1111}
1112