e_pow.c revision 336767
1/* @(#)e_pow.c 1.5 04/04/22 SMI */
2/*
3 * ====================================================
4 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
5 *
6 * Permission to use, copy, modify, and distribute this
7 * software is freely granted, provided that this notice
8 * is preserved.
9 * ====================================================
10 */
11
12#include <sys/cdefs.h>
13__FBSDID("$FreeBSD: stable/11/lib/msun/src/e_pow.c 336767 2018-07-27 17:39:36Z dim $");
14
15/* __ieee754_pow(x,y) return x**y
16 *
17 *		      n
18 * Method:  Let x =  2   * (1+f)
19 *	1. Compute and return log2(x) in two pieces:
20 *		log2(x) = w1 + w2,
21 *	   where w1 has 53-24 = 29 bit trailing zeros.
22 *	2. Perform y*log2(x) = n+y' by simulating multi-precision
23 *	   arithmetic, where |y'|<=0.5.
24 *	3. Return x**y = 2**n*exp(y'*log2)
25 *
26 * Special cases:
27 *	1.  (anything) ** 0  is 1
28 *	2.  (anything) ** 1  is itself
29 *	3.  (anything) ** NAN is NAN except 1 ** NAN = 1
30 *	4.  NAN ** (anything except 0) is NAN
31 *	5.  +-(|x| > 1) **  +INF is +INF
32 *	6.  +-(|x| > 1) **  -INF is +0
33 *	7.  +-(|x| < 1) **  +INF is +0
34 *	8.  +-(|x| < 1) **  -INF is +INF
35 *	9.  +-1         ** +-INF is 1
36 *	10. +0 ** (+anything except 0, NAN)               is +0
37 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
38 *	12. +0 ** (-anything except 0, NAN)               is +INF
39 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
40 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
41 *	15. +INF ** (+anything except 0,NAN) is +INF
42 *	16. +INF ** (-anything except 0,NAN) is +0
43 *	17. -INF ** (anything)  = -0 ** (-anything)
44 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
45 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
46 *
47 * Accuracy:
48 *	pow(x,y) returns x**y nearly rounded. In particular
49 *			pow(integer,integer)
50 *	always returns the correct integer provided it is
51 *	representable.
52 *
53 * Constants :
54 * The hexadecimal values are the intended ones for the following
55 * constants. The decimal values may be used, provided that the
56 * compiler will convert from decimal to binary accurately enough
57 * to produce the hexadecimal values shown.
58 */
59
60#include <float.h>
61#include "math.h"
62#include "math_private.h"
63
64static const double
65bp[] = {1.0, 1.5,},
66dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
67dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
68zero    =  0.0,
69half    =  0.5,
70qrtr    =  0.25,
71thrd    =  3.3333333333333331e-01, /* 0x3fd55555, 0x55555555 */
72one	=  1.0,
73two	=  2.0,
74two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */
75huge	=  1.0e300,
76tiny    =  1.0e-300,
77	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
78L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
79L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
80L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
81L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
82L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
83L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
84P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
85P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
86P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
87P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
88P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
89lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
90lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
91lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
92ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
93cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
94cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
95cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
96ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
97ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
98ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
99
100double
101__ieee754_pow(double x, double y)
102{
103	double z,ax,z_h,z_l,p_h,p_l;
104	double y1,t1,t2,r,s,t,u,v,w;
105	int32_t i,j,k,yisint,n;
106	int32_t hx,hy,ix,iy;
107	u_int32_t lx,ly;
108
109	EXTRACT_WORDS(hx,lx,x);
110	EXTRACT_WORDS(hy,ly,y);
111	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
112
113    /* y==zero: x**0 = 1 */
114	if((iy|ly)==0) return one;
115
116    /* x==1: 1**y = 1, even if y is NaN */
117	if (hx==0x3ff00000 && lx == 0) return one;
118
119    /* y!=zero: result is NaN if either arg is NaN */
120	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
121	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
122		return (x+0.0)+(y+0.0);
123
124    /* determine if y is an odd int when x < 0
125     * yisint = 0	... y is not an integer
126     * yisint = 1	... y is an odd int
127     * yisint = 2	... y is an even int
128     */
129	yisint  = 0;
130	if(hx<0) {
131	    if(iy>=0x43400000) yisint = 2; /* even integer y */
132	    else if(iy>=0x3ff00000) {
133		k = (iy>>20)-0x3ff;	   /* exponent */
134		if(k>20) {
135		    j = ly>>(52-k);
136		    if((j<<(52-k))==ly) yisint = 2-(j&1);
137		} else if(ly==0) {
138		    j = iy>>(20-k);
139		    if((j<<(20-k))==iy) yisint = 2-(j&1);
140		}
141	    }
142	}
143
144    /* special value of y */
145	if(ly==0) {
146	    if (iy==0x7ff00000) {	/* y is +-inf */
147	        if(((ix-0x3ff00000)|lx)==0)
148		    return  one;	/* (-1)**+-inf is 1 */
149	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
150		    return (hy>=0)? y: zero;
151	        else			/* (|x|<1)**-,+inf = inf,0 */
152		    return (hy<0)?-y: zero;
153	    }
154	    if(iy==0x3ff00000) {	/* y is  +-1 */
155		if(hy<0) return one/x; else return x;
156	    }
157	    if(hy==0x40000000) return x*x; /* y is  2 */
158	    if(hy==0x3fe00000) {	/* y is  0.5 */
159		if(hx>=0)	/* x >= +0 */
160		return sqrt(x);
161	    }
162	}
163
164	ax   = fabs(x);
165    /* special value of x */
166	if(lx==0) {
167	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
168		z = ax;			/*x is +-0,+-inf,+-1*/
169		if(hy<0) z = one/z;	/* z = (1/|x|) */
170		if(hx<0) {
171		    if(((ix-0x3ff00000)|yisint)==0) {
172			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
173		    } else if(yisint==1)
174			z = -z;		/* (x<0)**odd = -(|x|**odd) */
175		}
176		return z;
177	    }
178	}
179
180    /* CYGNUS LOCAL + fdlibm-5.3 fix: This used to be
181	n = (hx>>31)+1;
182       but ANSI C says a right shift of a signed negative quantity is
183       implementation defined.  */
184	n = ((u_int32_t)hx>>31)-1;
185
186    /* (x<0)**(non-int) is NaN */
187	if((n|yisint)==0) return (x-x)/(x-x);
188
189	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
190	if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
191
192    /* |y| is huge */
193	if(iy>0x41e00000) { /* if |y| > 2**31 */
194	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
195		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
196		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
197	    }
198	/* over/underflow if x is not close to one */
199	    if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
200	    if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
201	/* now |1-x| is tiny <= 2**-20, suffice to compute
202	   log(x) by x-x^2/2+x^3/3-x^4/4 */
203	    t = ax-one;		/* t has 20 trailing zeros */
204	    w = (t*t)*(half-t*(thrd-t*qrtr));
205	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
206	    v = t*ivln2_l-w*ivln2;
207	    t1 = u+v;
208	    SET_LOW_WORD(t1,0);
209	    t2 = v-(t1-u);
210	} else {
211	    double ss,s2,s_h,s_l,t_h,t_l;
212	    n = 0;
213	/* take care subnormal number */
214	    if(ix<0x00100000)
215		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
216	    n  += ((ix)>>20)-0x3ff;
217	    j  = ix&0x000fffff;
218	/* determine interval */
219	    ix = j|0x3ff00000;		/* normalize ix */
220	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
221	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
222	    else {k=0;n+=1;ix -= 0x00100000;}
223	    SET_HIGH_WORD(ax,ix);
224
225	/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
226	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
227	    v = one/(ax+bp[k]);
228	    ss = u*v;
229	    s_h = ss;
230	    SET_LOW_WORD(s_h,0);
231	/* t_h=ax+bp[k] High */
232	    t_h = zero;
233	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
234	    t_l = ax - (t_h-bp[k]);
235	    s_l = v*((u-s_h*t_h)-s_h*t_l);
236	/* compute log(ax) */
237	    s2 = ss*ss;
238	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
239	    r += s_l*(s_h+ss);
240	    s2  = s_h*s_h;
241	    t_h = 3+s2+r;
242	    SET_LOW_WORD(t_h,0);
243	    t_l = r-((t_h-3)-s2);
244	/* u+v = ss*(1+...) */
245	    u = s_h*t_h;
246	    v = s_l*t_h+t_l*ss;
247	/* 2/(3log2)*(ss+...) */
248	    p_h = u+v;
249	    SET_LOW_WORD(p_h,0);
250	    p_l = v-(p_h-u);
251	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
252	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
253	/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
254	    t = n;
255	    t1 = (((z_h+z_l)+dp_h[k])+t);
256	    SET_LOW_WORD(t1,0);
257	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
258	}
259
260    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
261	y1  = y;
262	SET_LOW_WORD(y1,0);
263	p_l = (y-y1)*t1+y*t2;
264	p_h = y1*t1;
265	z = p_l+p_h;
266	EXTRACT_WORDS(j,i,z);
267	if (j>=0x40900000) {				/* z >= 1024 */
268	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
269		return s*huge*huge;			/* overflow */
270	    else {
271		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
272	    }
273	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
274	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
275		return s*tiny*tiny;		/* underflow */
276	    else {
277		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
278	    }
279	}
280    /*
281     * compute 2**(p_h+p_l)
282     */
283	i = j&0x7fffffff;
284	k = (i>>20)-0x3ff;
285	n = 0;
286	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
287	    n = j+(0x00100000>>(k+1));
288	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
289	    t = zero;
290	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
291	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
292	    if(j<0) n = -n;
293	    p_h -= t;
294	}
295	t = p_l+p_h;
296	SET_LOW_WORD(t,0);
297	u = t*lg2_h;
298	v = (p_l-(t-p_h))*lg2+t*lg2_l;
299	z = u+v;
300	w = v-(z-u);
301	t  = z*z;
302	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
303	r  = (z*t1)/(t1-two)-(w+z*w);
304	z  = one-(r-z);
305	GET_HIGH_WORD(j,z);
306	j += (n<<20);
307	if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */
308	else SET_HIGH_WORD(z,j);
309	return s*z;
310}
311
312#if (LDBL_MANT_DIG == 53)
313__weak_reference(pow, powl);
314#endif
315