ntp_control.c revision 358659
1/*
2 * ntp_control.c - respond to mode 6 control messages and send async
3 *		   traps.  Provides service to ntpq and others.
4 */
5
6#ifdef HAVE_CONFIG_H
7# include <config.h>
8#endif
9
10#include <stdio.h>
11#include <ctype.h>
12#include <signal.h>
13#include <sys/stat.h>
14#ifdef HAVE_NETINET_IN_H
15# include <netinet/in.h>
16#endif
17#include <arpa/inet.h>
18
19#include "ntpd.h"
20#include "ntp_io.h"
21#include "ntp_refclock.h"
22#include "ntp_control.h"
23#include "ntp_unixtime.h"
24#include "ntp_stdlib.h"
25#include "ntp_config.h"
26#include "ntp_crypto.h"
27#include "ntp_assert.h"
28#include "ntp_leapsec.h"
29#include "ntp_md5.h"	/* provides OpenSSL digest API */
30#include "lib_strbuf.h"
31#include "timexsup.h"
32
33#include <rc_cmdlength.h>
34#ifdef KERNEL_PLL
35# include "ntp_syscall.h"
36#endif
37
38/*
39 * Structure to hold request procedure information
40 */
41
42struct ctl_proc {
43	short control_code;		/* defined request code */
44#define NO_REQUEST	(-1)
45	u_short flags;			/* flags word */
46	/* Only one flag.  Authentication required or not. */
47#define NOAUTH	0
48#define AUTH	1
49	void (*handler) (struct recvbuf *, int); /* handle request */
50};
51
52
53/*
54 * Request processing routines
55 */
56static	void	ctl_error	(u_char);
57#ifdef REFCLOCK
58static	u_short ctlclkstatus	(struct refclockstat *);
59#endif
60static	void	ctl_flushpkt	(u_char);
61static	void	ctl_putdata	(const char *, unsigned int, int);
62static	void	ctl_putstr	(const char *, const char *, size_t);
63static	void	ctl_putdblf	(const char *, int, int, double);
64#define	ctl_putdbl(tag, d)	ctl_putdblf(tag, 1, 3, d)
65#define	ctl_putdbl6(tag, d)	ctl_putdblf(tag, 1, 6, d)
66#define	ctl_putsfp(tag, sfp)	ctl_putdblf(tag, 0, -1, \
67					    FPTOD(sfp))
68static	void	ctl_putuint	(const char *, u_long);
69static	void	ctl_puthex	(const char *, u_long);
70static	void	ctl_putint	(const char *, long);
71static	void	ctl_putts	(const char *, l_fp *);
72static	void	ctl_putadr	(const char *, u_int32,
73				 sockaddr_u *);
74static	void	ctl_putrefid	(const char *, u_int32);
75static	void	ctl_putarray	(const char *, double *, int);
76static	void	ctl_putsys	(int);
77static	void	ctl_putpeer	(int, struct peer *);
78static	void	ctl_putfs	(const char *, tstamp_t);
79static	void	ctl_printf	(const char *, ...) NTP_PRINTF(1, 2);
80#ifdef REFCLOCK
81static	void	ctl_putclock	(int, struct refclockstat *, int);
82#endif	/* REFCLOCK */
83static	const struct ctl_var *ctl_getitem(const struct ctl_var *,
84					  char **);
85static	u_short	count_var	(const struct ctl_var *);
86static	void	control_unspec	(struct recvbuf *, int);
87static	void	read_status	(struct recvbuf *, int);
88static	void	read_sysvars	(void);
89static	void	read_peervars	(void);
90static	void	read_variables	(struct recvbuf *, int);
91static	void	write_variables (struct recvbuf *, int);
92static	void	read_clockstatus(struct recvbuf *, int);
93static	void	write_clockstatus(struct recvbuf *, int);
94static	void	set_trap	(struct recvbuf *, int);
95static	void	save_config	(struct recvbuf *, int);
96static	void	configure	(struct recvbuf *, int);
97static	void	send_mru_entry	(mon_entry *, int);
98static	void	send_random_tag_value(int);
99static	void	read_mru_list	(struct recvbuf *, int);
100static	void	send_ifstats_entry(endpt *, u_int);
101static	void	read_ifstats	(struct recvbuf *);
102static	void	sockaddrs_from_restrict_u(sockaddr_u *,	sockaddr_u *,
103					  restrict_u *, int);
104static	void	send_restrict_entry(restrict_u *, int, u_int);
105static	void	send_restrict_list(restrict_u *, int, u_int *);
106static	void	read_addr_restrictions(struct recvbuf *);
107static	void	read_ordlist	(struct recvbuf *, int);
108static	u_int32	derive_nonce	(sockaddr_u *, u_int32, u_int32);
109static	void	generate_nonce	(struct recvbuf *, char *, size_t);
110static	int	validate_nonce	(const char *, struct recvbuf *);
111static	void	req_nonce	(struct recvbuf *, int);
112static	void	unset_trap	(struct recvbuf *, int);
113static	struct ctl_trap *ctlfindtrap(sockaddr_u *,
114				     struct interface *);
115
116int/*BOOL*/ is_safe_filename(const char * name);
117
118static const struct ctl_proc control_codes[] = {
119	{ CTL_OP_UNSPEC,		NOAUTH,	control_unspec },
120	{ CTL_OP_READSTAT,		NOAUTH,	read_status },
121	{ CTL_OP_READVAR,		NOAUTH,	read_variables },
122	{ CTL_OP_WRITEVAR,		AUTH,	write_variables },
123	{ CTL_OP_READCLOCK,		NOAUTH,	read_clockstatus },
124	{ CTL_OP_WRITECLOCK,		AUTH,	write_clockstatus },
125	{ CTL_OP_SETTRAP,		AUTH,	set_trap },
126	{ CTL_OP_CONFIGURE,		AUTH,	configure },
127	{ CTL_OP_SAVECONFIG,		AUTH,	save_config },
128	{ CTL_OP_READ_MRU,		NOAUTH,	read_mru_list },
129	{ CTL_OP_READ_ORDLIST_A,	AUTH,	read_ordlist },
130	{ CTL_OP_REQ_NONCE,		NOAUTH,	req_nonce },
131	{ CTL_OP_UNSETTRAP,		AUTH,	unset_trap },
132	{ NO_REQUEST,			0,	NULL }
133};
134
135/*
136 * System variables we understand
137 */
138#define	CS_LEAP			1
139#define	CS_STRATUM		2
140#define	CS_PRECISION		3
141#define	CS_ROOTDELAY		4
142#define	CS_ROOTDISPERSION	5
143#define	CS_REFID		6
144#define	CS_REFTIME		7
145#define	CS_POLL			8
146#define	CS_PEERID		9
147#define	CS_OFFSET		10
148#define	CS_DRIFT		11
149#define	CS_JITTER		12
150#define	CS_ERROR		13
151#define	CS_CLOCK		14
152#define	CS_PROCESSOR		15
153#define	CS_SYSTEM		16
154#define	CS_VERSION		17
155#define	CS_STABIL		18
156#define	CS_VARLIST		19
157#define	CS_TAI			20
158#define	CS_LEAPTAB		21
159#define	CS_LEAPEND		22
160#define	CS_RATE			23
161#define	CS_MRU_ENABLED		24
162#define	CS_MRU_DEPTH		25
163#define	CS_MRU_DEEPEST		26
164#define	CS_MRU_MINDEPTH		27
165#define	CS_MRU_MAXAGE		28
166#define	CS_MRU_MAXDEPTH		29
167#define	CS_MRU_MEM		30
168#define	CS_MRU_MAXMEM		31
169#define	CS_SS_UPTIME		32
170#define	CS_SS_RESET		33
171#define	CS_SS_RECEIVED		34
172#define	CS_SS_THISVER		35
173#define	CS_SS_OLDVER		36
174#define	CS_SS_BADFORMAT		37
175#define	CS_SS_BADAUTH		38
176#define	CS_SS_DECLINED		39
177#define	CS_SS_RESTRICTED	40
178#define	CS_SS_LIMITED		41
179#define	CS_SS_KODSENT		42
180#define	CS_SS_PROCESSED		43
181#define	CS_SS_LAMPORT		44
182#define	CS_SS_TSROUNDING	45
183#define	CS_PEERADR		46
184#define	CS_PEERMODE		47
185#define	CS_BCASTDELAY		48
186#define	CS_AUTHDELAY		49
187#define	CS_AUTHKEYS		50
188#define	CS_AUTHFREEK		51
189#define	CS_AUTHKLOOKUPS		52
190#define	CS_AUTHKNOTFOUND	53
191#define	CS_AUTHKUNCACHED	54
192#define	CS_AUTHKEXPIRED		55
193#define	CS_AUTHENCRYPTS		56
194#define	CS_AUTHDECRYPTS		57
195#define	CS_AUTHRESET		58
196#define	CS_K_OFFSET		59
197#define	CS_K_FREQ		60
198#define	CS_K_MAXERR		61
199#define	CS_K_ESTERR		62
200#define	CS_K_STFLAGS		63
201#define	CS_K_TIMECONST		64
202#define	CS_K_PRECISION		65
203#define	CS_K_FREQTOL		66
204#define	CS_K_PPS_FREQ		67
205#define	CS_K_PPS_STABIL		68
206#define	CS_K_PPS_JITTER		69
207#define	CS_K_PPS_CALIBDUR	70
208#define	CS_K_PPS_CALIBS		71
209#define	CS_K_PPS_CALIBERRS	72
210#define	CS_K_PPS_JITEXC		73
211#define	CS_K_PPS_STBEXC		74
212#define	CS_KERN_FIRST		CS_K_OFFSET
213#define	CS_KERN_LAST		CS_K_PPS_STBEXC
214#define	CS_IOSTATS_RESET	75
215#define	CS_TOTAL_RBUF		76
216#define	CS_FREE_RBUF		77
217#define	CS_USED_RBUF		78
218#define	CS_RBUF_LOWATER		79
219#define	CS_IO_DROPPED		80
220#define	CS_IO_IGNORED		81
221#define	CS_IO_RECEIVED		82
222#define	CS_IO_SENT		83
223#define	CS_IO_SENDFAILED	84
224#define	CS_IO_WAKEUPS		85
225#define	CS_IO_GOODWAKEUPS	86
226#define	CS_TIMERSTATS_RESET	87
227#define	CS_TIMER_OVERRUNS	88
228#define	CS_TIMER_XMTS		89
229#define	CS_FUZZ			90
230#define	CS_WANDER_THRESH	91
231#define	CS_LEAPSMEARINTV	92
232#define	CS_LEAPSMEAROFFS	93
233#define	CS_MAX_NOAUTOKEY	CS_LEAPSMEAROFFS
234#ifdef AUTOKEY
235#define	CS_FLAGS		(1 + CS_MAX_NOAUTOKEY)
236#define	CS_HOST			(2 + CS_MAX_NOAUTOKEY)
237#define	CS_PUBLIC		(3 + CS_MAX_NOAUTOKEY)
238#define	CS_CERTIF		(4 + CS_MAX_NOAUTOKEY)
239#define	CS_SIGNATURE		(5 + CS_MAX_NOAUTOKEY)
240#define	CS_REVTIME		(6 + CS_MAX_NOAUTOKEY)
241#define	CS_IDENT		(7 + CS_MAX_NOAUTOKEY)
242#define	CS_DIGEST		(8 + CS_MAX_NOAUTOKEY)
243#define	CS_MAXCODE		CS_DIGEST
244#else	/* !AUTOKEY follows */
245#define	CS_MAXCODE		CS_MAX_NOAUTOKEY
246#endif	/* !AUTOKEY */
247
248/*
249 * Peer variables we understand
250 */
251#define	CP_CONFIG		1
252#define	CP_AUTHENABLE		2
253#define	CP_AUTHENTIC		3
254#define	CP_SRCADR		4
255#define	CP_SRCPORT		5
256#define	CP_DSTADR		6
257#define	CP_DSTPORT		7
258#define	CP_LEAP			8
259#define	CP_HMODE		9
260#define	CP_STRATUM		10
261#define	CP_PPOLL		11
262#define	CP_HPOLL		12
263#define	CP_PRECISION		13
264#define	CP_ROOTDELAY		14
265#define	CP_ROOTDISPERSION	15
266#define	CP_REFID		16
267#define	CP_REFTIME		17
268#define	CP_ORG			18
269#define	CP_REC			19
270#define	CP_XMT			20
271#define	CP_REACH		21
272#define	CP_UNREACH		22
273#define	CP_TIMER		23
274#define	CP_DELAY		24
275#define	CP_OFFSET		25
276#define	CP_JITTER		26
277#define	CP_DISPERSION		27
278#define	CP_KEYID		28
279#define	CP_FILTDELAY		29
280#define	CP_FILTOFFSET		30
281#define	CP_PMODE		31
282#define	CP_RECEIVED		32
283#define	CP_SENT			33
284#define	CP_FILTERROR		34
285#define	CP_FLASH		35
286#define	CP_TTL			36
287#define	CP_VARLIST		37
288#define	CP_IN			38
289#define	CP_OUT			39
290#define	CP_RATE			40
291#define	CP_BIAS			41
292#define	CP_SRCHOST		42
293#define	CP_TIMEREC		43
294#define	CP_TIMEREACH		44
295#define	CP_BADAUTH		45
296#define	CP_BOGUSORG		46
297#define	CP_OLDPKT		47
298#define	CP_SELDISP		48
299#define	CP_SELBROKEN		49
300#define	CP_CANDIDATE		50
301#define	CP_MAX_NOAUTOKEY	CP_CANDIDATE
302#ifdef AUTOKEY
303#define	CP_FLAGS		(1 + CP_MAX_NOAUTOKEY)
304#define	CP_HOST			(2 + CP_MAX_NOAUTOKEY)
305#define	CP_VALID		(3 + CP_MAX_NOAUTOKEY)
306#define	CP_INITSEQ		(4 + CP_MAX_NOAUTOKEY)
307#define	CP_INITKEY		(5 + CP_MAX_NOAUTOKEY)
308#define	CP_INITTSP		(6 + CP_MAX_NOAUTOKEY)
309#define	CP_SIGNATURE		(7 + CP_MAX_NOAUTOKEY)
310#define	CP_IDENT		(8 + CP_MAX_NOAUTOKEY)
311#define	CP_MAXCODE		CP_IDENT
312#else	/* !AUTOKEY follows */
313#define	CP_MAXCODE		CP_MAX_NOAUTOKEY
314#endif	/* !AUTOKEY */
315
316/*
317 * Clock variables we understand
318 */
319#define	CC_TYPE		1
320#define	CC_TIMECODE	2
321#define	CC_POLL		3
322#define	CC_NOREPLY	4
323#define	CC_BADFORMAT	5
324#define	CC_BADDATA	6
325#define	CC_FUDGETIME1	7
326#define	CC_FUDGETIME2	8
327#define	CC_FUDGEVAL1	9
328#define	CC_FUDGEVAL2	10
329#define	CC_FLAGS	11
330#define	CC_DEVICE	12
331#define	CC_VARLIST	13
332#define	CC_FUDGEMINJIT	14
333#define	CC_MAXCODE	CC_FUDGEMINJIT
334
335/*
336 * System variable values. The array can be indexed by the variable
337 * index to find the textual name.
338 */
339static const struct ctl_var sys_var[] = {
340	{ 0,		PADDING, "" },		/* 0 */
341	{ CS_LEAP,	RW, "leap" },		/* 1 */
342	{ CS_STRATUM,	RO, "stratum" },	/* 2 */
343	{ CS_PRECISION, RO, "precision" },	/* 3 */
344	{ CS_ROOTDELAY, RO, "rootdelay" },	/* 4 */
345	{ CS_ROOTDISPERSION, RO, "rootdisp" },	/* 5 */
346	{ CS_REFID,	RO, "refid" },		/* 6 */
347	{ CS_REFTIME,	RO, "reftime" },	/* 7 */
348	{ CS_POLL,	RO, "tc" },		/* 8 */
349	{ CS_PEERID,	RO, "peer" },		/* 9 */
350	{ CS_OFFSET,	RO, "offset" },		/* 10 */
351	{ CS_DRIFT,	RO, "frequency" },	/* 11 */
352	{ CS_JITTER,	RO, "sys_jitter" },	/* 12 */
353	{ CS_ERROR,	RO, "clk_jitter" },	/* 13 */
354	{ CS_CLOCK,	RO, "clock" },		/* 14 */
355	{ CS_PROCESSOR, RO, "processor" },	/* 15 */
356	{ CS_SYSTEM,	RO, "system" },		/* 16 */
357	{ CS_VERSION,	RO, "version" },	/* 17 */
358	{ CS_STABIL,	RO, "clk_wander" },	/* 18 */
359	{ CS_VARLIST,	RO, "sys_var_list" },	/* 19 */
360	{ CS_TAI,	RO, "tai" },		/* 20 */
361	{ CS_LEAPTAB,	RO, "leapsec" },	/* 21 */
362	{ CS_LEAPEND,	RO, "expire" },		/* 22 */
363	{ CS_RATE,	RO, "mintc" },		/* 23 */
364	{ CS_MRU_ENABLED,	RO, "mru_enabled" },	/* 24 */
365	{ CS_MRU_DEPTH,		RO, "mru_depth" },	/* 25 */
366	{ CS_MRU_DEEPEST,	RO, "mru_deepest" },	/* 26 */
367	{ CS_MRU_MINDEPTH,	RO, "mru_mindepth" },	/* 27 */
368	{ CS_MRU_MAXAGE,	RO, "mru_maxage" },	/* 28 */
369	{ CS_MRU_MAXDEPTH,	RO, "mru_maxdepth" },	/* 29 */
370	{ CS_MRU_MEM,		RO, "mru_mem" },	/* 30 */
371	{ CS_MRU_MAXMEM,	RO, "mru_maxmem" },	/* 31 */
372	{ CS_SS_UPTIME,		RO, "ss_uptime" },	/* 32 */
373	{ CS_SS_RESET,		RO, "ss_reset" },	/* 33 */
374	{ CS_SS_RECEIVED,	RO, "ss_received" },	/* 34 */
375	{ CS_SS_THISVER,	RO, "ss_thisver" },	/* 35 */
376	{ CS_SS_OLDVER,		RO, "ss_oldver" },	/* 36 */
377	{ CS_SS_BADFORMAT,	RO, "ss_badformat" },	/* 37 */
378	{ CS_SS_BADAUTH,	RO, "ss_badauth" },	/* 38 */
379	{ CS_SS_DECLINED,	RO, "ss_declined" },	/* 39 */
380	{ CS_SS_RESTRICTED,	RO, "ss_restricted" },	/* 40 */
381	{ CS_SS_LIMITED,	RO, "ss_limited" },	/* 41 */
382	{ CS_SS_KODSENT,	RO, "ss_kodsent" },	/* 42 */
383	{ CS_SS_PROCESSED,	RO, "ss_processed" },	/* 43 */
384	{ CS_SS_LAMPORT,	RO, "ss_lamport" },	/* 44 */
385	{ CS_SS_TSROUNDING,	RO, "ss_tsrounding" },	/* 45 */
386	{ CS_PEERADR,		RO, "peeradr" },	/* 46 */
387	{ CS_PEERMODE,		RO, "peermode" },	/* 47 */
388	{ CS_BCASTDELAY,	RO, "bcastdelay" },	/* 48 */
389	{ CS_AUTHDELAY,		RO, "authdelay" },	/* 49 */
390	{ CS_AUTHKEYS,		RO, "authkeys" },	/* 50 */
391	{ CS_AUTHFREEK,		RO, "authfreek" },	/* 51 */
392	{ CS_AUTHKLOOKUPS,	RO, "authklookups" },	/* 52 */
393	{ CS_AUTHKNOTFOUND,	RO, "authknotfound" },	/* 53 */
394	{ CS_AUTHKUNCACHED,	RO, "authkuncached" },	/* 54 */
395	{ CS_AUTHKEXPIRED,	RO, "authkexpired" },	/* 55 */
396	{ CS_AUTHENCRYPTS,	RO, "authencrypts" },	/* 56 */
397	{ CS_AUTHDECRYPTS,	RO, "authdecrypts" },	/* 57 */
398	{ CS_AUTHRESET,		RO, "authreset" },	/* 58 */
399	{ CS_K_OFFSET,		RO, "koffset" },	/* 59 */
400	{ CS_K_FREQ,		RO, "kfreq" },		/* 60 */
401	{ CS_K_MAXERR,		RO, "kmaxerr" },	/* 61 */
402	{ CS_K_ESTERR,		RO, "kesterr" },	/* 62 */
403	{ CS_K_STFLAGS,		RO, "kstflags" },	/* 63 */
404	{ CS_K_TIMECONST,	RO, "ktimeconst" },	/* 64 */
405	{ CS_K_PRECISION,	RO, "kprecis" },	/* 65 */
406	{ CS_K_FREQTOL,		RO, "kfreqtol" },	/* 66 */
407	{ CS_K_PPS_FREQ,	RO, "kppsfreq" },	/* 67 */
408	{ CS_K_PPS_STABIL,	RO, "kppsstab" },	/* 68 */
409	{ CS_K_PPS_JITTER,	RO, "kppsjitter" },	/* 69 */
410	{ CS_K_PPS_CALIBDUR,	RO, "kppscalibdur" },	/* 70 */
411	{ CS_K_PPS_CALIBS,	RO, "kppscalibs" },	/* 71 */
412	{ CS_K_PPS_CALIBERRS,	RO, "kppscaliberrs" },	/* 72 */
413	{ CS_K_PPS_JITEXC,	RO, "kppsjitexc" },	/* 73 */
414	{ CS_K_PPS_STBEXC,	RO, "kppsstbexc" },	/* 74 */
415	{ CS_IOSTATS_RESET,	RO, "iostats_reset" },	/* 75 */
416	{ CS_TOTAL_RBUF,	RO, "total_rbuf" },	/* 76 */
417	{ CS_FREE_RBUF,		RO, "free_rbuf" },	/* 77 */
418	{ CS_USED_RBUF,		RO, "used_rbuf" },	/* 78 */
419	{ CS_RBUF_LOWATER,	RO, "rbuf_lowater" },	/* 79 */
420	{ CS_IO_DROPPED,	RO, "io_dropped" },	/* 80 */
421	{ CS_IO_IGNORED,	RO, "io_ignored" },	/* 81 */
422	{ CS_IO_RECEIVED,	RO, "io_received" },	/* 82 */
423	{ CS_IO_SENT,		RO, "io_sent" },	/* 83 */
424	{ CS_IO_SENDFAILED,	RO, "io_sendfailed" },	/* 84 */
425	{ CS_IO_WAKEUPS,	RO, "io_wakeups" },	/* 85 */
426	{ CS_IO_GOODWAKEUPS,	RO, "io_goodwakeups" },	/* 86 */
427	{ CS_TIMERSTATS_RESET,	RO, "timerstats_reset" },/* 87 */
428	{ CS_TIMER_OVERRUNS,	RO, "timer_overruns" },	/* 88 */
429	{ CS_TIMER_XMTS,	RO, "timer_xmts" },	/* 89 */
430	{ CS_FUZZ,		RO, "fuzz" },		/* 90 */
431	{ CS_WANDER_THRESH,	RO, "clk_wander_threshold" }, /* 91 */
432
433	{ CS_LEAPSMEARINTV,	RO, "leapsmearinterval" },    /* 92 */
434	{ CS_LEAPSMEAROFFS,	RO, "leapsmearoffset" },      /* 93 */
435
436#ifdef AUTOKEY
437	{ CS_FLAGS,	RO, "flags" },		/* 1 + CS_MAX_NOAUTOKEY */
438	{ CS_HOST,	RO, "host" },		/* 2 + CS_MAX_NOAUTOKEY */
439	{ CS_PUBLIC,	RO, "update" },		/* 3 + CS_MAX_NOAUTOKEY */
440	{ CS_CERTIF,	RO, "cert" },		/* 4 + CS_MAX_NOAUTOKEY */
441	{ CS_SIGNATURE,	RO, "signature" },	/* 5 + CS_MAX_NOAUTOKEY */
442	{ CS_REVTIME,	RO, "until" },		/* 6 + CS_MAX_NOAUTOKEY */
443	{ CS_IDENT,	RO, "ident" },		/* 7 + CS_MAX_NOAUTOKEY */
444	{ CS_DIGEST,	RO, "digest" },		/* 8 + CS_MAX_NOAUTOKEY */
445#endif	/* AUTOKEY */
446	{ 0,		EOV, "" }		/* 94/102 */
447};
448
449static struct ctl_var *ext_sys_var = NULL;
450
451/*
452 * System variables we print by default (in fuzzball order,
453 * more-or-less)
454 */
455static const u_char def_sys_var[] = {
456	CS_VERSION,
457	CS_PROCESSOR,
458	CS_SYSTEM,
459	CS_LEAP,
460	CS_STRATUM,
461	CS_PRECISION,
462	CS_ROOTDELAY,
463	CS_ROOTDISPERSION,
464	CS_REFID,
465	CS_REFTIME,
466	CS_CLOCK,
467	CS_PEERID,
468	CS_POLL,
469	CS_RATE,
470	CS_OFFSET,
471	CS_DRIFT,
472	CS_JITTER,
473	CS_ERROR,
474	CS_STABIL,
475	CS_TAI,
476	CS_LEAPTAB,
477	CS_LEAPEND,
478	CS_LEAPSMEARINTV,
479	CS_LEAPSMEAROFFS,
480#ifdef AUTOKEY
481	CS_HOST,
482	CS_IDENT,
483	CS_FLAGS,
484	CS_DIGEST,
485	CS_SIGNATURE,
486	CS_PUBLIC,
487	CS_CERTIF,
488#endif	/* AUTOKEY */
489	0
490};
491
492
493/*
494 * Peer variable list
495 */
496static const struct ctl_var peer_var[] = {
497	{ 0,		PADDING, "" },		/* 0 */
498	{ CP_CONFIG,	RO, "config" },		/* 1 */
499	{ CP_AUTHENABLE, RO,	"authenable" },	/* 2 */
500	{ CP_AUTHENTIC, RO, "authentic" },	/* 3 */
501	{ CP_SRCADR,	RO, "srcadr" },		/* 4 */
502	{ CP_SRCPORT,	RO, "srcport" },	/* 5 */
503	{ CP_DSTADR,	RO, "dstadr" },		/* 6 */
504	{ CP_DSTPORT,	RO, "dstport" },	/* 7 */
505	{ CP_LEAP,	RO, "leap" },		/* 8 */
506	{ CP_HMODE,	RO, "hmode" },		/* 9 */
507	{ CP_STRATUM,	RO, "stratum" },	/* 10 */
508	{ CP_PPOLL,	RO, "ppoll" },		/* 11 */
509	{ CP_HPOLL,	RO, "hpoll" },		/* 12 */
510	{ CP_PRECISION,	RO, "precision" },	/* 13 */
511	{ CP_ROOTDELAY,	RO, "rootdelay" },	/* 14 */
512	{ CP_ROOTDISPERSION, RO, "rootdisp" },	/* 15 */
513	{ CP_REFID,	RO, "refid" },		/* 16 */
514	{ CP_REFTIME,	RO, "reftime" },	/* 17 */
515	{ CP_ORG,	RO, "org" },		/* 18 */
516	{ CP_REC,	RO, "rec" },		/* 19 */
517	{ CP_XMT,	RO, "xleave" },		/* 20 */
518	{ CP_REACH,	RO, "reach" },		/* 21 */
519	{ CP_UNREACH,	RO, "unreach" },	/* 22 */
520	{ CP_TIMER,	RO, "timer" },		/* 23 */
521	{ CP_DELAY,	RO, "delay" },		/* 24 */
522	{ CP_OFFSET,	RO, "offset" },		/* 25 */
523	{ CP_JITTER,	RO, "jitter" },		/* 26 */
524	{ CP_DISPERSION, RO, "dispersion" },	/* 27 */
525	{ CP_KEYID,	RO, "keyid" },		/* 28 */
526	{ CP_FILTDELAY,	RO, "filtdelay" },	/* 29 */
527	{ CP_FILTOFFSET, RO, "filtoffset" },	/* 30 */
528	{ CP_PMODE,	RO, "pmode" },		/* 31 */
529	{ CP_RECEIVED,	RO, "received"},	/* 32 */
530	{ CP_SENT,	RO, "sent" },		/* 33 */
531	{ CP_FILTERROR,	RO, "filtdisp" },	/* 34 */
532	{ CP_FLASH,	RO, "flash" },		/* 35 */
533	{ CP_TTL,	RO, "ttl" },		/* 36 */
534	{ CP_VARLIST,	RO, "peer_var_list" },	/* 37 */
535	{ CP_IN,	RO, "in" },		/* 38 */
536	{ CP_OUT,	RO, "out" },		/* 39 */
537	{ CP_RATE,	RO, "headway" },	/* 40 */
538	{ CP_BIAS,	RO, "bias" },		/* 41 */
539	{ CP_SRCHOST,	RO, "srchost" },	/* 42 */
540	{ CP_TIMEREC,	RO, "timerec" },	/* 43 */
541	{ CP_TIMEREACH,	RO, "timereach" },	/* 44 */
542	{ CP_BADAUTH,	RO, "badauth" },	/* 45 */
543	{ CP_BOGUSORG,	RO, "bogusorg" },	/* 46 */
544	{ CP_OLDPKT,	RO, "oldpkt" },		/* 47 */
545	{ CP_SELDISP,	RO, "seldisp" },	/* 48 */
546	{ CP_SELBROKEN,	RO, "selbroken" },	/* 49 */
547	{ CP_CANDIDATE, RO, "candidate" },	/* 50 */
548#ifdef AUTOKEY
549	{ CP_FLAGS,	RO, "flags" },		/* 1 + CP_MAX_NOAUTOKEY */
550	{ CP_HOST,	RO, "host" },		/* 2 + CP_MAX_NOAUTOKEY */
551	{ CP_VALID,	RO, "valid" },		/* 3 + CP_MAX_NOAUTOKEY */
552	{ CP_INITSEQ,	RO, "initsequence" },	/* 4 + CP_MAX_NOAUTOKEY */
553	{ CP_INITKEY,	RO, "initkey" },	/* 5 + CP_MAX_NOAUTOKEY */
554	{ CP_INITTSP,	RO, "timestamp" },	/* 6 + CP_MAX_NOAUTOKEY */
555	{ CP_SIGNATURE,	RO, "signature" },	/* 7 + CP_MAX_NOAUTOKEY */
556	{ CP_IDENT,	RO, "ident" },		/* 8 + CP_MAX_NOAUTOKEY */
557#endif	/* AUTOKEY */
558	{ 0,		EOV, "" }		/* 50/58 */
559};
560
561
562/*
563 * Peer variables we print by default
564 */
565static const u_char def_peer_var[] = {
566	CP_SRCADR,
567	CP_SRCPORT,
568	CP_SRCHOST,
569	CP_DSTADR,
570	CP_DSTPORT,
571	CP_OUT,
572	CP_IN,
573	CP_LEAP,
574	CP_STRATUM,
575	CP_PRECISION,
576	CP_ROOTDELAY,
577	CP_ROOTDISPERSION,
578	CP_REFID,
579	CP_REFTIME,
580	CP_REC,
581	CP_REACH,
582	CP_UNREACH,
583	CP_HMODE,
584	CP_PMODE,
585	CP_HPOLL,
586	CP_PPOLL,
587	CP_RATE,
588	CP_FLASH,
589	CP_KEYID,
590	CP_TTL,
591	CP_OFFSET,
592	CP_DELAY,
593	CP_DISPERSION,
594	CP_JITTER,
595	CP_XMT,
596	CP_BIAS,
597	CP_FILTDELAY,
598	CP_FILTOFFSET,
599	CP_FILTERROR,
600#ifdef AUTOKEY
601	CP_HOST,
602	CP_FLAGS,
603	CP_SIGNATURE,
604	CP_VALID,
605	CP_INITSEQ,
606	CP_IDENT,
607#endif	/* AUTOKEY */
608	0
609};
610
611
612#ifdef REFCLOCK
613/*
614 * Clock variable list
615 */
616static const struct ctl_var clock_var[] = {
617	{ 0,		PADDING, "" },		/* 0 */
618	{ CC_TYPE,	RO, "type" },		/* 1 */
619	{ CC_TIMECODE,	RO, "timecode" },	/* 2 */
620	{ CC_POLL,	RO, "poll" },		/* 3 */
621	{ CC_NOREPLY,	RO, "noreply" },	/* 4 */
622	{ CC_BADFORMAT, RO, "badformat" },	/* 5 */
623	{ CC_BADDATA,	RO, "baddata" },	/* 6 */
624	{ CC_FUDGETIME1, RO, "fudgetime1" },	/* 7 */
625	{ CC_FUDGETIME2, RO, "fudgetime2" },	/* 8 */
626	{ CC_FUDGEVAL1, RO, "stratum" },	/* 9 */
627	{ CC_FUDGEVAL2, RO, "refid" },		/* 10 */
628	{ CC_FLAGS,	RO, "flags" },		/* 11 */
629	{ CC_DEVICE,	RO, "device" },		/* 12 */
630	{ CC_VARLIST,	RO, "clock_var_list" },	/* 13 */
631	{ CC_FUDGEMINJIT, RO, "minjitter" },	/* 14 */
632	{ 0,		EOV, ""  }		/* 15 */
633};
634
635
636/*
637 * Clock variables printed by default
638 */
639static const u_char def_clock_var[] = {
640	CC_DEVICE,
641	CC_TYPE,	/* won't be output if device = known */
642	CC_TIMECODE,
643	CC_POLL,
644	CC_NOREPLY,
645	CC_BADFORMAT,
646	CC_BADDATA,
647	CC_FUDGEMINJIT,
648	CC_FUDGETIME1,
649	CC_FUDGETIME2,
650	CC_FUDGEVAL1,
651	CC_FUDGEVAL2,
652	CC_FLAGS,
653	0
654};
655#endif
656
657/*
658 * MRU string constants shared by send_mru_entry() and read_mru_list().
659 */
660static const char addr_fmt[] =		"addr.%d";
661static const char last_fmt[] =		"last.%d";
662
663/*
664 * System and processor definitions.
665 */
666#ifndef HAVE_UNAME
667# ifndef STR_SYSTEM
668#  define		STR_SYSTEM	"UNIX"
669# endif
670# ifndef STR_PROCESSOR
671#  define		STR_PROCESSOR	"unknown"
672# endif
673
674static const char str_system[] = STR_SYSTEM;
675static const char str_processor[] = STR_PROCESSOR;
676#else
677# include <sys/utsname.h>
678static struct utsname utsnamebuf;
679#endif /* HAVE_UNAME */
680
681/*
682 * Trap structures. We only allow a few of these, and send a copy of
683 * each async message to each live one. Traps time out after an hour, it
684 * is up to the trap receipient to keep resetting it to avoid being
685 * timed out.
686 */
687/* ntp_request.c */
688struct ctl_trap ctl_traps[CTL_MAXTRAPS];
689int num_ctl_traps;
690
691/*
692 * Type bits, for ctlsettrap() call.
693 */
694#define TRAP_TYPE_CONFIG	0	/* used by configuration code */
695#define TRAP_TYPE_PRIO		1	/* priority trap */
696#define TRAP_TYPE_NONPRIO	2	/* nonpriority trap */
697
698
699/*
700 * List relating reference clock types to control message time sources.
701 * Index by the reference clock type. This list will only be used iff
702 * the reference clock driver doesn't set peer->sstclktype to something
703 * different than CTL_SST_TS_UNSPEC.
704 */
705#ifdef REFCLOCK
706static const u_char clocktypes[] = {
707	CTL_SST_TS_NTP,		/* REFCLK_NONE (0) */
708	CTL_SST_TS_LOCAL,	/* REFCLK_LOCALCLOCK (1) */
709	CTL_SST_TS_UHF,		/* deprecated REFCLK_GPS_TRAK (2) */
710	CTL_SST_TS_HF,		/* REFCLK_WWV_PST (3) */
711	CTL_SST_TS_LF,		/* REFCLK_WWVB_SPECTRACOM (4) */
712	CTL_SST_TS_UHF,		/* REFCLK_TRUETIME (5) */
713	CTL_SST_TS_UHF,		/* REFCLK_IRIG_AUDIO (6) */
714	CTL_SST_TS_HF,		/* REFCLK_CHU (7) */
715	CTL_SST_TS_LF,		/* REFCLOCK_PARSE (default) (8) */
716	CTL_SST_TS_LF,		/* REFCLK_GPS_MX4200 (9) */
717	CTL_SST_TS_UHF,		/* REFCLK_GPS_AS2201 (10) */
718	CTL_SST_TS_UHF,		/* REFCLK_GPS_ARBITER (11) */
719	CTL_SST_TS_UHF,		/* REFCLK_IRIG_TPRO (12) */
720	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_LEITCH (13) */
721	CTL_SST_TS_LF,		/* deprecated REFCLK_MSF_EES (14) */
722	CTL_SST_TS_NTP,		/* not used (15) */
723	CTL_SST_TS_UHF,		/* REFCLK_IRIG_BANCOMM (16) */
724	CTL_SST_TS_UHF,		/* REFCLK_GPS_DATU (17) */
725	CTL_SST_TS_TELEPHONE,	/* REFCLK_NIST_ACTS (18) */
726	CTL_SST_TS_HF,		/* REFCLK_WWV_HEATH (19) */
727	CTL_SST_TS_UHF,		/* REFCLK_GPS_NMEA (20) */
728	CTL_SST_TS_UHF,		/* REFCLK_GPS_VME (21) */
729	CTL_SST_TS_ATOM,	/* REFCLK_ATOM_PPS (22) */
730	CTL_SST_TS_NTP,		/* not used (23) */
731	CTL_SST_TS_NTP,		/* not used (24) */
732	CTL_SST_TS_NTP,		/* not used (25) */
733	CTL_SST_TS_UHF,		/* REFCLK_GPS_HP (26) */
734	CTL_SST_TS_LF,		/* REFCLK_ARCRON_MSF (27) */
735	CTL_SST_TS_UHF,		/* REFCLK_SHM (28) */
736	CTL_SST_TS_UHF,		/* REFCLK_PALISADE (29) */
737	CTL_SST_TS_UHF,		/* REFCLK_ONCORE (30) */
738	CTL_SST_TS_UHF,		/* REFCLK_JUPITER (31) */
739	CTL_SST_TS_LF,		/* REFCLK_CHRONOLOG (32) */
740	CTL_SST_TS_LF,		/* REFCLK_DUMBCLOCK (33) */
741	CTL_SST_TS_LF,		/* REFCLK_ULINK (34) */
742	CTL_SST_TS_LF,		/* REFCLK_PCF (35) */
743	CTL_SST_TS_HF,		/* REFCLK_WWV (36) */
744	CTL_SST_TS_LF,		/* REFCLK_FG (37) */
745	CTL_SST_TS_UHF,		/* REFCLK_HOPF_SERIAL (38) */
746	CTL_SST_TS_UHF,		/* REFCLK_HOPF_PCI (39) */
747	CTL_SST_TS_LF,		/* REFCLK_JJY (40) */
748	CTL_SST_TS_UHF,		/* REFCLK_TT560 (41) */
749	CTL_SST_TS_UHF,		/* REFCLK_ZYFER (42) */
750	CTL_SST_TS_UHF,		/* REFCLK_RIPENCC (43) */
751	CTL_SST_TS_UHF,		/* REFCLK_NEOCLOCK4X (44) */
752	CTL_SST_TS_UHF,		/* REFCLK_TSYNCPCI (45) */
753	CTL_SST_TS_UHF		/* REFCLK_GPSDJSON (46) */
754};
755#endif  /* REFCLOCK */
756
757
758/*
759 * Keyid used for authenticating write requests.
760 */
761keyid_t ctl_auth_keyid;
762
763/*
764 * We keep track of the last error reported by the system internally
765 */
766static	u_char ctl_sys_last_event;
767static	u_char ctl_sys_num_events;
768
769
770/*
771 * Statistic counters to keep track of requests and responses.
772 */
773u_long ctltimereset;		/* time stats reset */
774u_long numctlreq;		/* number of requests we've received */
775u_long numctlbadpkts;		/* number of bad control packets */
776u_long numctlresponses;		/* number of resp packets sent with data */
777u_long numctlfrags;		/* number of fragments sent */
778u_long numctlerrors;		/* number of error responses sent */
779u_long numctltooshort;		/* number of too short input packets */
780u_long numctlinputresp;		/* number of responses on input */
781u_long numctlinputfrag;		/* number of fragments on input */
782u_long numctlinputerr;		/* number of input pkts with err bit set */
783u_long numctlbadoffset;		/* number of input pkts with nonzero offset */
784u_long numctlbadversion;	/* number of input pkts with unknown version */
785u_long numctldatatooshort;	/* data too short for count */
786u_long numctlbadop;		/* bad op code found in packet */
787u_long numasyncmsgs;		/* number of async messages we've sent */
788
789/*
790 * Response packet used by these routines. Also some state information
791 * so that we can handle packet formatting within a common set of
792 * subroutines.  Note we try to enter data in place whenever possible,
793 * but the need to set the more bit correctly means we occasionally
794 * use the extra buffer and copy.
795 */
796static struct ntp_control rpkt;
797static u_char	res_version;
798static u_char	res_opcode;
799static associd_t res_associd;
800static u_short	res_frags;	/* datagrams in this response */
801static int	res_offset;	/* offset of payload in response */
802static u_char * datapt;
803static u_char * dataend;
804static int	datalinelen;
805static int	datasent;	/* flag to avoid initial ", " */
806static int	datanotbinflag;
807static sockaddr_u *rmt_addr;
808static struct interface *lcl_inter;
809
810static u_char	res_authenticate;
811static u_char	res_authokay;
812static keyid_t	res_keyid;
813
814#define MAXDATALINELEN	(72)
815
816static u_char	res_async;	/* sending async trap response? */
817
818/*
819 * Pointers for saving state when decoding request packets
820 */
821static	char *reqpt;
822static	char *reqend;
823
824#ifndef MIN
825#define MIN(a, b) (((a) <= (b)) ? (a) : (b))
826#endif
827
828/*
829 * init_control - initialize request data
830 */
831void
832init_control(void)
833{
834	size_t i;
835
836#ifdef HAVE_UNAME
837	uname(&utsnamebuf);
838#endif /* HAVE_UNAME */
839
840	ctl_clr_stats();
841
842	ctl_auth_keyid = 0;
843	ctl_sys_last_event = EVNT_UNSPEC;
844	ctl_sys_num_events = 0;
845
846	num_ctl_traps = 0;
847	for (i = 0; i < COUNTOF(ctl_traps); i++)
848		ctl_traps[i].tr_flags = 0;
849}
850
851
852/*
853 * ctl_error - send an error response for the current request
854 */
855static void
856ctl_error(
857	u_char errcode
858	)
859{
860	size_t		maclen;
861
862	numctlerrors++;
863	DPRINTF(3, ("sending control error %u\n", errcode));
864
865	/*
866	 * Fill in the fields. We assume rpkt.sequence and rpkt.associd
867	 * have already been filled in.
868	 */
869	rpkt.r_m_e_op = (u_char)CTL_RESPONSE | CTL_ERROR |
870			(res_opcode & CTL_OP_MASK);
871	rpkt.status = htons((u_short)(errcode << 8) & 0xff00);
872	rpkt.count = 0;
873
874	/*
875	 * send packet and bump counters
876	 */
877	if (res_authenticate && sys_authenticate) {
878		maclen = authencrypt(res_keyid, (u_int32 *)&rpkt,
879				     CTL_HEADER_LEN);
880		sendpkt(rmt_addr, lcl_inter, -2, (void *)&rpkt,
881			CTL_HEADER_LEN + maclen);
882	} else
883		sendpkt(rmt_addr, lcl_inter, -3, (void *)&rpkt,
884			CTL_HEADER_LEN);
885}
886
887int/*BOOL*/
888is_safe_filename(const char * name)
889{
890	/* We need a strict validation of filenames we should write: The
891	 * daemon might run with special permissions and is remote
892	 * controllable, so we better take care what we allow as file
893	 * name!
894	 *
895	 * The first character must be digit or a letter from the ASCII
896	 * base plane or a '_' ([_A-Za-z0-9]), the following characters
897	 * must be from [-._+A-Za-z0-9].
898	 *
899	 * We do not trust the character classification much here: Since
900	 * the NTP protocol makes no provisions for UTF-8 or local code
901	 * pages, we strictly require the 7bit ASCII code page.
902	 *
903	 * The following table is a packed bit field of 128 two-bit
904	 * groups. The LSB in each group tells us if a character is
905	 * acceptable at the first position, the MSB if the character is
906	 * accepted at any other position.
907	 *
908	 * This does not ensure that the file name is syntactically
909	 * correct (multiple dots will not work with VMS...) but it will
910	 * exclude potential globbing bombs and directory traversal. It
911	 * also rules out drive selection. (For systems that have this
912	 * notion, like Windows or VMS.)
913	 */
914	static const uint32_t chclass[8] = {
915		0x00000000, 0x00000000,
916		0x28800000, 0x000FFFFF,
917		0xFFFFFFFC, 0xC03FFFFF,
918		0xFFFFFFFC, 0x003FFFFF
919	};
920
921	u_int widx, bidx, mask;
922	if ( ! (name && *name))
923		return FALSE;
924
925	mask = 1u;
926	while (0 != (widx = (u_char)*name++)) {
927		bidx = (widx & 15) << 1;
928		widx = widx >> 4;
929		if (widx >= sizeof(chclass)/sizeof(chclass[0]))
930			return FALSE;
931		if (0 == ((chclass[widx] >> bidx) & mask))
932			return FALSE;
933		mask = 2u;
934	}
935	return TRUE;
936}
937
938
939/*
940 * save_config - Implements ntpq -c "saveconfig <filename>"
941 *		 Writes current configuration including any runtime
942 *		 changes by ntpq's :config or config-from-file
943 *
944 * Note: There should be no buffer overflow or truncation in the
945 * processing of file names -- both cause security problems. This is bit
946 * painful to code but essential here.
947 */
948void
949save_config(
950	struct recvbuf *rbufp,
951	int restrict_mask
952	)
953{
954	/* block directory traversal by searching for characters that
955	 * indicate directory components in a file path.
956	 *
957	 * Conceptually we should be searching for DIRSEP in filename,
958	 * however Windows actually recognizes both forward and
959	 * backslashes as equivalent directory separators at the API
960	 * level.  On POSIX systems we could allow '\\' but such
961	 * filenames are tricky to manipulate from a shell, so just
962	 * reject both types of slashes on all platforms.
963	 */
964	/* TALOS-CAN-0062: block directory traversal for VMS, too */
965	static const char * illegal_in_filename =
966#if defined(VMS)
967	    ":[]"	/* do not allow drive and path components here */
968#elif defined(SYS_WINNT)
969	    ":\\/"	/* path and drive separators */
970#else
971	    "\\/"	/* separator and critical char for POSIX */
972#endif
973	    ;
974	char reply[128];
975#ifdef SAVECONFIG
976	static const char savedconfig_eq[] = "savedconfig=";
977
978	/* Build a safe open mode from the available mode flags. We want
979	 * to create a new file and write it in text mode (when
980	 * applicable -- only Windows does this...)
981	 */
982	static const int openmode = O_CREAT | O_TRUNC | O_WRONLY
983#  if defined(O_EXCL)		/* posix, vms */
984	    | O_EXCL
985#  elif defined(_O_EXCL)	/* windows is alway very special... */
986	    | _O_EXCL
987#  endif
988#  if defined(_O_TEXT)		/* windows, again */
989	    | _O_TEXT
990#endif
991	    ;
992
993	char filespec[128];
994	char filename[128];
995	char fullpath[512];
996	char savedconfig[sizeof(savedconfig_eq) + sizeof(filename)];
997	time_t now;
998	int fd;
999	FILE *fptr;
1000	int prc;
1001	size_t reqlen;
1002#endif
1003
1004	if (RES_NOMODIFY & restrict_mask) {
1005		ctl_printf("%s", "saveconfig prohibited by restrict ... nomodify");
1006		ctl_flushpkt(0);
1007		NLOG(NLOG_SYSINFO)
1008			msyslog(LOG_NOTICE,
1009				"saveconfig from %s rejected due to nomodify restriction",
1010				stoa(&rbufp->recv_srcadr));
1011		sys_restricted++;
1012		return;
1013	}
1014
1015#ifdef SAVECONFIG
1016	if (NULL == saveconfigdir) {
1017		ctl_printf("%s", "saveconfig prohibited, no saveconfigdir configured");
1018		ctl_flushpkt(0);
1019		NLOG(NLOG_SYSINFO)
1020			msyslog(LOG_NOTICE,
1021				"saveconfig from %s rejected, no saveconfigdir",
1022				stoa(&rbufp->recv_srcadr));
1023		return;
1024	}
1025
1026	/* The length checking stuff gets serious. Do not assume a NUL
1027	 * byte can be found, but if so, use it to calculate the needed
1028	 * buffer size. If the available buffer is too short, bail out;
1029	 * likewise if there is no file spec. (The latter will not
1030	 * happen when using NTPQ, but there are other ways to craft a
1031	 * network packet!)
1032	 */
1033	reqlen = (size_t)(reqend - reqpt);
1034	if (0 != reqlen) {
1035		char * nulpos = (char*)memchr(reqpt, 0, reqlen);
1036		if (NULL != nulpos)
1037			reqlen = (size_t)(nulpos - reqpt);
1038	}
1039	if (0 == reqlen)
1040		return;
1041	if (reqlen >= sizeof(filespec)) {
1042		ctl_printf("saveconfig exceeded maximum raw name length (%u)",
1043			   (u_int)sizeof(filespec));
1044		ctl_flushpkt(0);
1045		msyslog(LOG_NOTICE,
1046			"saveconfig exceeded maximum raw name length from %s",
1047			stoa(&rbufp->recv_srcadr));
1048		return;
1049	}
1050
1051	/* copy data directly as we exactly know the size */
1052	memcpy(filespec, reqpt, reqlen);
1053	filespec[reqlen] = '\0';
1054
1055	/*
1056	 * allow timestamping of the saved config filename with
1057	 * strftime() format such as:
1058	 *   ntpq -c "saveconfig ntp-%Y%m%d-%H%M%S.conf"
1059	 * XXX: Nice feature, but not too safe.
1060	 * YYY: The check for permitted characters in file names should
1061	 *      weed out the worst. Let's hope 'strftime()' does not
1062	 *      develop pathological problems.
1063	 */
1064	time(&now);
1065	if (0 == strftime(filename, sizeof(filename), filespec,
1066			  localtime(&now)))
1067	{
1068		/*
1069		 * If we arrive here, 'strftime()' balked; most likely
1070		 * the buffer was too short. (Or it encounterd an empty
1071		 * format, or just a format that expands to an empty
1072		 * string.) We try to use the original name, though this
1073		 * is very likely to fail later if there are format
1074		 * specs in the string. Note that truncation cannot
1075		 * happen here as long as both buffers have the same
1076		 * size!
1077		 */
1078		strlcpy(filename, filespec, sizeof(filename));
1079	}
1080
1081	/*
1082	 * Check the file name for sanity. This might/will rule out file
1083	 * names that would be legal but problematic, and it blocks
1084	 * directory traversal.
1085	 */
1086	if (!is_safe_filename(filename)) {
1087		ctl_printf("saveconfig rejects unsafe file name '%s'",
1088			   filename);
1089		ctl_flushpkt(0);
1090		msyslog(LOG_NOTICE,
1091			"saveconfig rejects unsafe file name from %s",
1092			stoa(&rbufp->recv_srcadr));
1093		return;
1094	}
1095
1096	/*
1097	 * XXX: This next test may not be needed with is_safe_filename()
1098	 */
1099
1100	/* block directory/drive traversal */
1101	/* TALOS-CAN-0062: block directory traversal for VMS, too */
1102	if (NULL != strpbrk(filename, illegal_in_filename)) {
1103		snprintf(reply, sizeof(reply),
1104			 "saveconfig does not allow directory in filename");
1105		ctl_putdata(reply, strlen(reply), 0);
1106		ctl_flushpkt(0);
1107		msyslog(LOG_NOTICE,
1108			"saveconfig rejects unsafe file name from %s",
1109			stoa(&rbufp->recv_srcadr));
1110		return;
1111	}
1112
1113	/* concatenation of directory and path can cause another
1114	 * truncation...
1115	 */
1116	prc = snprintf(fullpath, sizeof(fullpath), "%s%s",
1117		       saveconfigdir, filename);
1118	if (prc < 0 || (size_t)prc >= sizeof(fullpath)) {
1119		ctl_printf("saveconfig exceeded maximum path length (%u)",
1120			   (u_int)sizeof(fullpath));
1121		ctl_flushpkt(0);
1122		msyslog(LOG_NOTICE,
1123			"saveconfig exceeded maximum path length from %s",
1124			stoa(&rbufp->recv_srcadr));
1125		return;
1126	}
1127
1128	fd = open(fullpath, openmode, S_IRUSR | S_IWUSR);
1129	if (-1 == fd)
1130		fptr = NULL;
1131	else
1132		fptr = fdopen(fd, "w");
1133
1134	if (NULL == fptr || -1 == dump_all_config_trees(fptr, 1)) {
1135		ctl_printf("Unable to save configuration to file '%s': %s",
1136			   filename, strerror(errno));
1137		msyslog(LOG_ERR,
1138			"saveconfig %s from %s failed", filename,
1139			stoa(&rbufp->recv_srcadr));
1140	} else {
1141		ctl_printf("Configuration saved to '%s'", filename);
1142		msyslog(LOG_NOTICE,
1143			"Configuration saved to '%s' (requested by %s)",
1144			fullpath, stoa(&rbufp->recv_srcadr));
1145		/*
1146		 * save the output filename in system variable
1147		 * savedconfig, retrieved with:
1148		 *   ntpq -c "rv 0 savedconfig"
1149		 * Note: the way 'savedconfig' is defined makes overflow
1150		 * checks unnecessary here.
1151		 */
1152		snprintf(savedconfig, sizeof(savedconfig), "%s%s",
1153			 savedconfig_eq, filename);
1154		set_sys_var(savedconfig, strlen(savedconfig) + 1, RO);
1155	}
1156
1157	if (NULL != fptr)
1158		fclose(fptr);
1159#else	/* !SAVECONFIG follows */
1160	ctl_printf("%s",
1161		   "saveconfig unavailable, configured with --disable-saveconfig");
1162#endif
1163	ctl_flushpkt(0);
1164}
1165
1166
1167/*
1168 * process_control - process an incoming control message
1169 */
1170void
1171process_control(
1172	struct recvbuf *rbufp,
1173	int restrict_mask
1174	)
1175{
1176	struct ntp_control *pkt;
1177	int req_count;
1178	int req_data;
1179	const struct ctl_proc *cc;
1180	keyid_t *pkid;
1181	int properlen;
1182	size_t maclen;
1183
1184	DPRINTF(3, ("in process_control()\n"));
1185
1186	/*
1187	 * Save the addresses for error responses
1188	 */
1189	numctlreq++;
1190	rmt_addr = &rbufp->recv_srcadr;
1191	lcl_inter = rbufp->dstadr;
1192	pkt = (struct ntp_control *)&rbufp->recv_pkt;
1193
1194	/*
1195	 * If the length is less than required for the header,
1196	 * ignore it.
1197	 */
1198	if (rbufp->recv_length < (int)CTL_HEADER_LEN) {
1199		DPRINTF(1, ("Short control packet\n"));
1200		numctltooshort++;
1201		return;
1202	}
1203
1204	/*
1205	 * If this packet is a response or a fragment, ignore it.
1206	 */
1207	if (   (CTL_RESPONSE | CTL_MORE | CTL_ERROR) & pkt->r_m_e_op
1208	    || pkt->offset != 0) {
1209		DPRINTF(1, ("invalid format in control packet\n"));
1210		if (CTL_RESPONSE & pkt->r_m_e_op)
1211			numctlinputresp++;
1212		if (CTL_MORE & pkt->r_m_e_op)
1213			numctlinputfrag++;
1214		if (CTL_ERROR & pkt->r_m_e_op)
1215			numctlinputerr++;
1216		if (pkt->offset != 0)
1217			numctlbadoffset++;
1218		return;
1219	}
1220
1221	res_version = PKT_VERSION(pkt->li_vn_mode);
1222	if (res_version > NTP_VERSION || res_version < NTP_OLDVERSION) {
1223		DPRINTF(1, ("unknown version %d in control packet\n",
1224			    res_version));
1225		numctlbadversion++;
1226		return;
1227	}
1228
1229	/*
1230	 * Pull enough data from the packet to make intelligent
1231	 * responses
1232	 */
1233	rpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, res_version,
1234					 MODE_CONTROL);
1235	res_opcode = pkt->r_m_e_op;
1236	rpkt.sequence = pkt->sequence;
1237	rpkt.associd = pkt->associd;
1238	rpkt.status = 0;
1239	res_frags = 1;
1240	res_offset = 0;
1241	res_associd = htons(pkt->associd);
1242	res_async = FALSE;
1243	res_authenticate = FALSE;
1244	res_keyid = 0;
1245	res_authokay = FALSE;
1246	req_count = (int)ntohs(pkt->count);
1247	datanotbinflag = FALSE;
1248	datalinelen = 0;
1249	datasent = 0;
1250	datapt = rpkt.u.data;
1251	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
1252
1253	if ((rbufp->recv_length & 0x3) != 0)
1254		DPRINTF(3, ("Control packet length %d unrounded\n",
1255			    rbufp->recv_length));
1256
1257	/*
1258	 * We're set up now. Make sure we've got at least enough
1259	 * incoming data space to match the count.
1260	 */
1261	req_data = rbufp->recv_length - CTL_HEADER_LEN;
1262	if (req_data < req_count || rbufp->recv_length & 0x3) {
1263		ctl_error(CERR_BADFMT);
1264		numctldatatooshort++;
1265		return;
1266	}
1267
1268	properlen = req_count + CTL_HEADER_LEN;
1269	/* round up proper len to a 8 octet boundary */
1270
1271	properlen = (properlen + 7) & ~7;
1272	maclen = rbufp->recv_length - properlen;
1273	if ((rbufp->recv_length & 3) == 0 &&
1274	    maclen >= MIN_MAC_LEN && maclen <= MAX_MAC_LEN &&
1275	    sys_authenticate) {
1276		res_authenticate = TRUE;
1277		pkid = (void *)((char *)pkt + properlen);
1278		res_keyid = ntohl(*pkid);
1279		DPRINTF(3, ("recv_len %d, properlen %d, wants auth with keyid %08x, MAC length=%zu\n",
1280			    rbufp->recv_length, properlen, res_keyid,
1281			    maclen));
1282
1283		if (!authistrustedip(res_keyid, &rbufp->recv_srcadr))
1284			DPRINTF(3, ("invalid keyid %08x\n", res_keyid));
1285		else if (authdecrypt(res_keyid, (u_int32 *)pkt,
1286				     rbufp->recv_length - maclen,
1287				     maclen)) {
1288			res_authokay = TRUE;
1289			DPRINTF(3, ("authenticated okay\n"));
1290		} else {
1291			res_keyid = 0;
1292			DPRINTF(3, ("authentication failed\n"));
1293		}
1294	}
1295
1296	/*
1297	 * Set up translate pointers
1298	 */
1299	reqpt = (char *)pkt->u.data;
1300	reqend = reqpt + req_count;
1301
1302	/*
1303	 * Look for the opcode processor
1304	 */
1305	for (cc = control_codes; cc->control_code != NO_REQUEST; cc++) {
1306		if (cc->control_code == res_opcode) {
1307			DPRINTF(3, ("opcode %d, found command handler\n",
1308				    res_opcode));
1309			if (cc->flags == AUTH
1310			    && (!res_authokay
1311				|| res_keyid != ctl_auth_keyid)) {
1312				ctl_error(CERR_PERMISSION);
1313				return;
1314			}
1315			(cc->handler)(rbufp, restrict_mask);
1316			return;
1317		}
1318	}
1319
1320	/*
1321	 * Can't find this one, return an error.
1322	 */
1323	numctlbadop++;
1324	ctl_error(CERR_BADOP);
1325	return;
1326}
1327
1328
1329/*
1330 * ctlpeerstatus - return a status word for this peer
1331 */
1332u_short
1333ctlpeerstatus(
1334	register struct peer *p
1335	)
1336{
1337	u_short status;
1338
1339	status = p->status;
1340	if (FLAG_CONFIG & p->flags)
1341		status |= CTL_PST_CONFIG;
1342	if (p->keyid)
1343		status |= CTL_PST_AUTHENABLE;
1344	if (FLAG_AUTHENTIC & p->flags)
1345		status |= CTL_PST_AUTHENTIC;
1346	if (p->reach)
1347		status |= CTL_PST_REACH;
1348	if (MDF_TXONLY_MASK & p->cast_flags)
1349		status |= CTL_PST_BCAST;
1350
1351	return CTL_PEER_STATUS(status, p->num_events, p->last_event);
1352}
1353
1354
1355/*
1356 * ctlclkstatus - return a status word for this clock
1357 */
1358#ifdef REFCLOCK
1359static u_short
1360ctlclkstatus(
1361	struct refclockstat *pcs
1362	)
1363{
1364	return CTL_PEER_STATUS(0, pcs->lastevent, pcs->currentstatus);
1365}
1366#endif
1367
1368
1369/*
1370 * ctlsysstatus - return the system status word
1371 */
1372u_short
1373ctlsysstatus(void)
1374{
1375	register u_char this_clock;
1376
1377	this_clock = CTL_SST_TS_UNSPEC;
1378#ifdef REFCLOCK
1379	if (sys_peer != NULL) {
1380		if (CTL_SST_TS_UNSPEC != sys_peer->sstclktype)
1381			this_clock = sys_peer->sstclktype;
1382		else if (sys_peer->refclktype < COUNTOF(clocktypes))
1383			this_clock = clocktypes[sys_peer->refclktype];
1384	}
1385#else /* REFCLOCK */
1386	if (sys_peer != 0)
1387		this_clock = CTL_SST_TS_NTP;
1388#endif /* REFCLOCK */
1389	return CTL_SYS_STATUS(sys_leap, this_clock, ctl_sys_num_events,
1390			      ctl_sys_last_event);
1391}
1392
1393
1394/*
1395 * ctl_flushpkt - write out the current packet and prepare
1396 *		  another if necessary.
1397 */
1398static void
1399ctl_flushpkt(
1400	u_char more
1401	)
1402{
1403	size_t i;
1404	size_t dlen;
1405	size_t sendlen;
1406	size_t maclen;
1407	size_t totlen;
1408	keyid_t keyid;
1409
1410	dlen = datapt - rpkt.u.data;
1411	if (!more && datanotbinflag && dlen + 2 < CTL_MAX_DATA_LEN) {
1412		/*
1413		 * Big hack, output a trailing \r\n
1414		 */
1415		*datapt++ = '\r';
1416		*datapt++ = '\n';
1417		dlen += 2;
1418	}
1419	sendlen = dlen + CTL_HEADER_LEN;
1420
1421	/*
1422	 * Pad to a multiple of 32 bits
1423	 */
1424	while (sendlen & 0x3) {
1425		*datapt++ = '\0';
1426		sendlen++;
1427	}
1428
1429	/*
1430	 * Fill in the packet with the current info
1431	 */
1432	rpkt.r_m_e_op = CTL_RESPONSE | more |
1433			(res_opcode & CTL_OP_MASK);
1434	rpkt.count = htons((u_short)dlen);
1435	rpkt.offset = htons((u_short)res_offset);
1436	if (res_async) {
1437		for (i = 0; i < COUNTOF(ctl_traps); i++) {
1438			if (TRAP_INUSE & ctl_traps[i].tr_flags) {
1439				rpkt.li_vn_mode =
1440				    PKT_LI_VN_MODE(
1441					sys_leap,
1442					ctl_traps[i].tr_version,
1443					MODE_CONTROL);
1444				rpkt.sequence =
1445				    htons(ctl_traps[i].tr_sequence);
1446				sendpkt(&ctl_traps[i].tr_addr,
1447					ctl_traps[i].tr_localaddr, -4,
1448					(struct pkt *)&rpkt, sendlen);
1449				if (!more)
1450					ctl_traps[i].tr_sequence++;
1451				numasyncmsgs++;
1452			}
1453		}
1454	} else {
1455		if (res_authenticate && sys_authenticate) {
1456			totlen = sendlen;
1457			/*
1458			 * If we are going to authenticate, then there
1459			 * is an additional requirement that the MAC
1460			 * begin on a 64 bit boundary.
1461			 */
1462			while (totlen & 7) {
1463				*datapt++ = '\0';
1464				totlen++;
1465			}
1466			keyid = htonl(res_keyid);
1467			memcpy(datapt, &keyid, sizeof(keyid));
1468			maclen = authencrypt(res_keyid,
1469					     (u_int32 *)&rpkt, totlen);
1470			sendpkt(rmt_addr, lcl_inter, -5,
1471				(struct pkt *)&rpkt, totlen + maclen);
1472		} else {
1473			sendpkt(rmt_addr, lcl_inter, -6,
1474				(struct pkt *)&rpkt, sendlen);
1475		}
1476		if (more)
1477			numctlfrags++;
1478		else
1479			numctlresponses++;
1480	}
1481
1482	/*
1483	 * Set us up for another go around.
1484	 */
1485	res_frags++;
1486	res_offset += dlen;
1487	datapt = rpkt.u.data;
1488}
1489
1490
1491/* --------------------------------------------------------------------
1492 * block transfer API -- stream string/data fragments into xmit buffer
1493 * without additional copying
1494 */
1495
1496/* buffer descriptor: address & size of fragment
1497 * 'buf' may only be NULL when 'len' is zero!
1498 */
1499typedef struct {
1500	const void  *buf;
1501	size_t       len;
1502} CtlMemBufT;
1503
1504/* put ctl data in a gather-style operation */
1505static void
1506ctl_putdata_ex(
1507	const CtlMemBufT * argv,
1508	size_t             argc,
1509	int/*BOOL*/        bin		/* set to 1 when data is binary */
1510	)
1511{
1512	const char * src_ptr;
1513	size_t       src_len, cur_len, add_len, argi;
1514
1515	/* text / binary preprocessing, possibly create new linefeed */
1516	if (bin) {
1517		add_len = 0;
1518	} else {
1519		datanotbinflag = TRUE;
1520		add_len = 3;
1521
1522		if (datasent) {
1523			*datapt++ = ',';
1524			datalinelen++;
1525
1526			/* sum up total length */
1527			for (argi = 0, src_len = 0; argi < argc; ++argi)
1528				src_len += argv[argi].len;
1529			/* possibly start a new line, assume no size_t overflow */
1530			if ((src_len + datalinelen + 1) >= MAXDATALINELEN) {
1531				*datapt++ = '\r';
1532				*datapt++ = '\n';
1533				datalinelen = 0;
1534			} else {
1535				*datapt++ = ' ';
1536				datalinelen++;
1537			}
1538		}
1539	}
1540
1541	/* now stream out all buffers */
1542	for (argi = 0; argi < argc; ++argi) {
1543		src_ptr = argv[argi].buf;
1544		src_len = argv[argi].len;
1545
1546		if ( ! (src_ptr && src_len))
1547			continue;
1548
1549		cur_len = (size_t)(dataend - datapt);
1550		while ((src_len + add_len) > cur_len) {
1551			/* Not enough room in this one, flush it out. */
1552			if (src_len < cur_len)
1553				cur_len = src_len;
1554
1555			memcpy(datapt, src_ptr, cur_len);
1556			datapt      += cur_len;
1557			datalinelen += cur_len;
1558
1559			src_ptr     += cur_len;
1560			src_len     -= cur_len;
1561
1562			ctl_flushpkt(CTL_MORE);
1563			cur_len = (size_t)(dataend - datapt);
1564		}
1565
1566		memcpy(datapt, src_ptr, src_len);
1567		datapt      += src_len;
1568		datalinelen += src_len;
1569
1570		datasent = TRUE;
1571	}
1572}
1573
1574/*
1575 * ctl_putdata - write data into the packet, fragmenting and starting
1576 * another if this one is full.
1577 */
1578static void
1579ctl_putdata(
1580	const char *dp,
1581	unsigned int dlen,
1582	int bin			/* set to 1 when data is binary */
1583	)
1584{
1585	CtlMemBufT args[1];
1586
1587	args[0].buf = dp;
1588	args[0].len = dlen;
1589	ctl_putdata_ex(args, 1, bin);
1590}
1591
1592/*
1593 * ctl_putstr - write a tagged string into the response packet
1594 *		in the form:
1595 *
1596 *		tag="data"
1597 *
1598 *		len is the data length excluding the NUL terminator,
1599 *		as in ctl_putstr("var", "value", strlen("value"));
1600 */
1601static void
1602ctl_putstr(
1603	const char *	tag,
1604	const char *	data,
1605	size_t		len
1606	)
1607{
1608	CtlMemBufT args[4];
1609
1610	args[0].buf = tag;
1611	args[0].len = strlen(tag);
1612	if (data && len) {
1613	    args[1].buf = "=\"";
1614	    args[1].len = 2;
1615	    args[2].buf = data;
1616	    args[2].len = len;
1617	    args[3].buf = "\"";
1618	    args[3].len = 1;
1619	    ctl_putdata_ex(args, 4, FALSE);
1620	} else {
1621	    args[1].buf = "=\"\"";
1622	    args[1].len = 3;
1623	    ctl_putdata_ex(args, 2, FALSE);
1624	}
1625}
1626
1627
1628/*
1629 * ctl_putunqstr - write a tagged string into the response packet
1630 *		   in the form:
1631 *
1632 *		   tag=data
1633 *
1634 *	len is the data length excluding the NUL terminator.
1635 *	data must not contain a comma or whitespace.
1636 */
1637static void
1638ctl_putunqstr(
1639	const char *	tag,
1640	const char *	data,
1641	size_t		len
1642	)
1643{
1644	CtlMemBufT args[3];
1645
1646	args[0].buf = tag;
1647	args[0].len = strlen(tag);
1648	args[1].buf = "=";
1649	args[1].len = 1;
1650	if (data && len) {
1651		args[2].buf = data;
1652		args[2].len = len;
1653		ctl_putdata_ex(args, 3, FALSE);
1654	} else {
1655		ctl_putdata_ex(args, 2, FALSE);
1656	}
1657}
1658
1659
1660/*
1661 * ctl_putdblf - write a tagged, signed double into the response packet
1662 */
1663static void
1664ctl_putdblf(
1665	const char *	tag,
1666	int		use_f,
1667	int		precision,
1668	double		d
1669	)
1670{
1671	char buffer[40];
1672	int  rc;
1673
1674	rc = snprintf(buffer, sizeof(buffer),
1675		      (use_f ? "%.*f" : "%.*g"),
1676		      precision, d);
1677	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1678	ctl_putunqstr(tag, buffer, rc);
1679}
1680
1681/*
1682 * ctl_putuint - write a tagged unsigned integer into the response
1683 */
1684static void
1685ctl_putuint(
1686	const char *tag,
1687	u_long uval
1688	)
1689{
1690	char buffer[24]; /* needs to fit for 64 bits! */
1691	int  rc;
1692
1693	rc = snprintf(buffer, sizeof(buffer), "%lu", uval);
1694	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1695	ctl_putunqstr(tag, buffer, rc);
1696}
1697
1698/*
1699 * ctl_putcal - write a decoded calendar data into the response.
1700 * only used with AUTOKEY currently, so compiled conditional
1701 */
1702#ifdef AUTOKEY
1703static void
1704ctl_putcal(
1705	const char *tag,
1706	const struct calendar *pcal
1707	)
1708{
1709	char buffer[16];
1710	int  rc;
1711
1712	rc = snprintf(buffer, sizeof(buffer),
1713		      "%04d%02d%02d%02d%02d",
1714		      pcal->year, pcal->month, pcal->monthday,
1715		      pcal->hour, pcal->minute
1716		);
1717	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1718	ctl_putunqstr(tag, buffer, rc);
1719}
1720#endif
1721
1722/*
1723 * ctl_putfs - write a decoded filestamp into the response
1724 */
1725static void
1726ctl_putfs(
1727	const char *tag,
1728	tstamp_t uval
1729	)
1730{
1731	char buffer[16];
1732	int  rc;
1733
1734	time_t fstamp = (time_t)uval - JAN_1970;
1735	struct tm *tm = gmtime(&fstamp);
1736
1737	if (NULL == tm)
1738		return;
1739
1740	rc = snprintf(buffer, sizeof(buffer),
1741		      "%04d%02d%02d%02d%02d",
1742		      tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday,
1743		      tm->tm_hour, tm->tm_min);
1744	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1745	ctl_putunqstr(tag, buffer, rc);
1746}
1747
1748
1749/*
1750 * ctl_puthex - write a tagged unsigned integer, in hex, into the
1751 * response
1752 */
1753static void
1754ctl_puthex(
1755	const char *tag,
1756	u_long uval
1757	)
1758{
1759	char buffer[24];	/* must fit 64bit int! */
1760	int  rc;
1761
1762	rc = snprintf(buffer, sizeof(buffer), "0x%lx", uval);
1763	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1764	ctl_putunqstr(tag, buffer, rc);
1765}
1766
1767
1768/*
1769 * ctl_putint - write a tagged signed integer into the response
1770 */
1771static void
1772ctl_putint(
1773	const char *tag,
1774	long ival
1775	)
1776{
1777	char buffer[24];	/*must fit 64bit int */
1778	int  rc;
1779
1780	rc = snprintf(buffer, sizeof(buffer), "%ld", ival);
1781	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1782	ctl_putunqstr(tag, buffer, rc);
1783}
1784
1785
1786/*
1787 * ctl_putts - write a tagged timestamp, in hex, into the response
1788 */
1789static void
1790ctl_putts(
1791	const char *tag,
1792	l_fp *ts
1793	)
1794{
1795	char buffer[24];
1796	int  rc;
1797
1798	rc = snprintf(buffer, sizeof(buffer),
1799		      "0x%08lx.%08lx",
1800		      (u_long)ts->l_ui, (u_long)ts->l_uf);
1801	INSIST(rc >= 0 && (size_t)rc < sizeof(buffer));
1802	ctl_putunqstr(tag, buffer, rc);
1803}
1804
1805
1806/*
1807 * ctl_putadr - write an IP address into the response
1808 */
1809static void
1810ctl_putadr(
1811	const char *tag,
1812	u_int32 addr32,
1813	sockaddr_u *addr
1814	)
1815{
1816	const char *cq;
1817
1818	if (NULL == addr)
1819		cq = numtoa(addr32);
1820	else
1821		cq = stoa(addr);
1822	ctl_putunqstr(tag, cq, strlen(cq));
1823}
1824
1825
1826/*
1827 * ctl_putrefid - send a u_int32 refid as printable text
1828 */
1829static void
1830ctl_putrefid(
1831	const char *	tag,
1832	u_int32		refid
1833	)
1834{
1835	size_t nc;
1836
1837	union {
1838		uint32_t w;
1839		uint8_t  b[sizeof(uint32_t)];
1840	} bytes;
1841
1842	bytes.w = refid;
1843	for (nc = 0; nc < sizeof(bytes.b) && bytes.b[nc]; ++nc)
1844		if (  !isprint(bytes.b[nc])
1845		    || isspace(bytes.b[nc])
1846		    || bytes.b[nc] == ','  )
1847			bytes.b[nc] = '.';
1848	ctl_putunqstr(tag, (const char*)bytes.b, nc);
1849}
1850
1851
1852/*
1853 * ctl_putarray - write a tagged eight element double array into the response
1854 */
1855static void
1856ctl_putarray(
1857	const char *tag,
1858	double *arr,
1859	int start
1860	)
1861{
1862	char *cp, *ep;
1863	char buffer[200];
1864	int  i, rc;
1865
1866	cp = buffer;
1867	ep = buffer + sizeof(buffer);
1868	i  = start;
1869	do {
1870		if (i == 0)
1871			i = NTP_SHIFT;
1872		i--;
1873		rc = snprintf(cp, (size_t)(ep - cp), " %.2f", arr[i] * 1e3);
1874		INSIST(rc >= 0 && (size_t)rc < (size_t)(ep - cp));
1875		cp += rc;
1876	} while (i != start);
1877	ctl_putunqstr(tag, buffer, (size_t)(cp - buffer));
1878}
1879
1880/*
1881 * ctl_printf - put a formatted string into the data buffer
1882 */
1883static void
1884ctl_printf(
1885	const char * fmt,
1886	...
1887	)
1888{
1889	static const char * ellipsis = "[...]";
1890	va_list va;
1891	char    fmtbuf[128];
1892	int     rc;
1893
1894	va_start(va, fmt);
1895	rc = vsnprintf(fmtbuf, sizeof(fmtbuf), fmt, va);
1896	va_end(va);
1897	if (rc < 0 || (size_t)rc >= sizeof(fmtbuf))
1898		strcpy(fmtbuf + sizeof(fmtbuf) - strlen(ellipsis) - 1,
1899		       ellipsis);
1900	ctl_putdata(fmtbuf, strlen(fmtbuf), 0);
1901}
1902
1903
1904/*
1905 * ctl_putsys - output a system variable
1906 */
1907static void
1908ctl_putsys(
1909	int varid
1910	)
1911{
1912	l_fp tmp;
1913	char str[256];
1914	u_int u;
1915	double kb;
1916	double dtemp;
1917	const char *ss;
1918#ifdef AUTOKEY
1919	struct cert_info *cp;
1920#endif	/* AUTOKEY */
1921#ifdef KERNEL_PLL
1922	static struct timex ntx;
1923	static u_long ntp_adjtime_time;
1924
1925	/*
1926	 * CS_K_* variables depend on up-to-date output of ntp_adjtime()
1927	 */
1928	if (CS_KERN_FIRST <= varid && varid <= CS_KERN_LAST &&
1929	    current_time != ntp_adjtime_time) {
1930		ZERO(ntx);
1931		if (ntp_adjtime(&ntx) < 0)
1932			msyslog(LOG_ERR, "ntp_adjtime() for mode 6 query failed: %m");
1933		else
1934			ntp_adjtime_time = current_time;
1935	}
1936#endif	/* KERNEL_PLL */
1937
1938	switch (varid) {
1939
1940	case CS_LEAP:
1941		ctl_putuint(sys_var[CS_LEAP].text, sys_leap);
1942		break;
1943
1944	case CS_STRATUM:
1945		ctl_putuint(sys_var[CS_STRATUM].text, sys_stratum);
1946		break;
1947
1948	case CS_PRECISION:
1949		ctl_putint(sys_var[CS_PRECISION].text, sys_precision);
1950		break;
1951
1952	case CS_ROOTDELAY:
1953		ctl_putdbl(sys_var[CS_ROOTDELAY].text, sys_rootdelay *
1954			   1e3);
1955		break;
1956
1957	case CS_ROOTDISPERSION:
1958		ctl_putdbl(sys_var[CS_ROOTDISPERSION].text,
1959			   sys_rootdisp * 1e3);
1960		break;
1961
1962	case CS_REFID:
1963		if (REFID_ISTEXT(sys_stratum))
1964			ctl_putrefid(sys_var[varid].text, sys_refid);
1965		else
1966			ctl_putadr(sys_var[varid].text, sys_refid, NULL);
1967		break;
1968
1969	case CS_REFTIME:
1970		ctl_putts(sys_var[CS_REFTIME].text, &sys_reftime);
1971		break;
1972
1973	case CS_POLL:
1974		ctl_putuint(sys_var[CS_POLL].text, sys_poll);
1975		break;
1976
1977	case CS_PEERID:
1978		if (sys_peer == NULL)
1979			ctl_putuint(sys_var[CS_PEERID].text, 0);
1980		else
1981			ctl_putuint(sys_var[CS_PEERID].text,
1982				    sys_peer->associd);
1983		break;
1984
1985	case CS_PEERADR:
1986		if (sys_peer != NULL && sys_peer->dstadr != NULL)
1987			ss = sptoa(&sys_peer->srcadr);
1988		else
1989			ss = "0.0.0.0:0";
1990		ctl_putunqstr(sys_var[CS_PEERADR].text, ss, strlen(ss));
1991		break;
1992
1993	case CS_PEERMODE:
1994		u = (sys_peer != NULL)
1995			? sys_peer->hmode
1996			: MODE_UNSPEC;
1997		ctl_putuint(sys_var[CS_PEERMODE].text, u);
1998		break;
1999
2000	case CS_OFFSET:
2001		ctl_putdbl6(sys_var[CS_OFFSET].text, last_offset * 1e3);
2002		break;
2003
2004	case CS_DRIFT:
2005		ctl_putdbl(sys_var[CS_DRIFT].text, drift_comp * 1e6);
2006		break;
2007
2008	case CS_JITTER:
2009		ctl_putdbl6(sys_var[CS_JITTER].text, sys_jitter * 1e3);
2010		break;
2011
2012	case CS_ERROR:
2013		ctl_putdbl(sys_var[CS_ERROR].text, clock_jitter * 1e3);
2014		break;
2015
2016	case CS_CLOCK:
2017		get_systime(&tmp);
2018		ctl_putts(sys_var[CS_CLOCK].text, &tmp);
2019		break;
2020
2021	case CS_PROCESSOR:
2022#ifndef HAVE_UNAME
2023		ctl_putstr(sys_var[CS_PROCESSOR].text, str_processor,
2024			   sizeof(str_processor) - 1);
2025#else
2026		ctl_putstr(sys_var[CS_PROCESSOR].text,
2027			   utsnamebuf.machine, strlen(utsnamebuf.machine));
2028#endif /* HAVE_UNAME */
2029		break;
2030
2031	case CS_SYSTEM:
2032#ifndef HAVE_UNAME
2033		ctl_putstr(sys_var[CS_SYSTEM].text, str_system,
2034			   sizeof(str_system) - 1);
2035#else
2036		snprintf(str, sizeof(str), "%s/%s", utsnamebuf.sysname,
2037			 utsnamebuf.release);
2038		ctl_putstr(sys_var[CS_SYSTEM].text, str, strlen(str));
2039#endif /* HAVE_UNAME */
2040		break;
2041
2042	case CS_VERSION:
2043		ctl_putstr(sys_var[CS_VERSION].text, Version,
2044			   strlen(Version));
2045		break;
2046
2047	case CS_STABIL:
2048		ctl_putdbl(sys_var[CS_STABIL].text, clock_stability *
2049			   1e6);
2050		break;
2051
2052	case CS_VARLIST:
2053	{
2054		char buf[CTL_MAX_DATA_LEN];
2055		//buffPointer, firstElementPointer, buffEndPointer
2056		char *buffp, *buffend;
2057		int firstVarName;
2058		const char *ss1;
2059		int len;
2060		const struct ctl_var *k;
2061
2062		buffp = buf;
2063		buffend = buf + sizeof(buf);
2064		if (strlen(sys_var[CS_VARLIST].text) > (sizeof(buf) - 4))
2065			break;	/* really long var name */
2066
2067		snprintf(buffp, sizeof(buf), "%s=\"",sys_var[CS_VARLIST].text);
2068		buffp += strlen(buffp);
2069		firstVarName = TRUE;
2070		for (k = sys_var; !(k->flags & EOV); k++) {
2071			if (k->flags & PADDING)
2072				continue;
2073			len = strlen(k->text);
2074			if (len + 1 >= buffend - buffp)
2075				break;
2076			if (!firstVarName)
2077				*buffp++ = ',';
2078			else
2079				firstVarName = FALSE;
2080			memcpy(buffp, k->text, len);
2081			buffp += len;
2082		}
2083
2084		for (k = ext_sys_var; k && !(k->flags & EOV); k++) {
2085			if (k->flags & PADDING)
2086				continue;
2087			if (NULL == k->text)
2088				continue;
2089			ss1 = strchr(k->text, '=');
2090			if (NULL == ss1)
2091				len = strlen(k->text);
2092			else
2093				len = ss1 - k->text;
2094			if (len + 1 >= buffend - buffp)
2095				break;
2096			if (firstVarName) {
2097				*buffp++ = ',';
2098				firstVarName = FALSE;
2099			}
2100			memcpy(buffp, k->text,(unsigned)len);
2101			buffp += len;
2102		}
2103		if (2 >= buffend - buffp)
2104			break;
2105
2106		*buffp++ = '"';
2107		*buffp = '\0';
2108
2109		ctl_putdata(buf, (unsigned)( buffp - buf ), 0);
2110		break;
2111	}
2112
2113	case CS_TAI:
2114		if (sys_tai > 0)
2115			ctl_putuint(sys_var[CS_TAI].text, sys_tai);
2116		break;
2117
2118	case CS_LEAPTAB:
2119	{
2120		leap_signature_t lsig;
2121		leapsec_getsig(&lsig);
2122		if (lsig.ttime > 0)
2123			ctl_putfs(sys_var[CS_LEAPTAB].text, lsig.ttime);
2124		break;
2125	}
2126
2127	case CS_LEAPEND:
2128	{
2129		leap_signature_t lsig;
2130		leapsec_getsig(&lsig);
2131		if (lsig.etime > 0)
2132			ctl_putfs(sys_var[CS_LEAPEND].text, lsig.etime);
2133		break;
2134	}
2135
2136#ifdef LEAP_SMEAR
2137	case CS_LEAPSMEARINTV:
2138		if (leap_smear_intv > 0)
2139			ctl_putuint(sys_var[CS_LEAPSMEARINTV].text, leap_smear_intv);
2140		break;
2141
2142	case CS_LEAPSMEAROFFS:
2143		if (leap_smear_intv > 0)
2144			ctl_putdbl(sys_var[CS_LEAPSMEAROFFS].text,
2145				   leap_smear.doffset * 1e3);
2146		break;
2147#endif	/* LEAP_SMEAR */
2148
2149	case CS_RATE:
2150		ctl_putuint(sys_var[CS_RATE].text, ntp_minpoll);
2151		break;
2152
2153	case CS_MRU_ENABLED:
2154		ctl_puthex(sys_var[varid].text, mon_enabled);
2155		break;
2156
2157	case CS_MRU_DEPTH:
2158		ctl_putuint(sys_var[varid].text, mru_entries);
2159		break;
2160
2161	case CS_MRU_MEM:
2162		kb = mru_entries * (sizeof(mon_entry) / 1024.);
2163		u = (u_int)kb;
2164		if (kb - u >= 0.5)
2165			u++;
2166		ctl_putuint(sys_var[varid].text, u);
2167		break;
2168
2169	case CS_MRU_DEEPEST:
2170		ctl_putuint(sys_var[varid].text, mru_peakentries);
2171		break;
2172
2173	case CS_MRU_MINDEPTH:
2174		ctl_putuint(sys_var[varid].text, mru_mindepth);
2175		break;
2176
2177	case CS_MRU_MAXAGE:
2178		ctl_putint(sys_var[varid].text, mru_maxage);
2179		break;
2180
2181	case CS_MRU_MAXDEPTH:
2182		ctl_putuint(sys_var[varid].text, mru_maxdepth);
2183		break;
2184
2185	case CS_MRU_MAXMEM:
2186		kb = mru_maxdepth * (sizeof(mon_entry) / 1024.);
2187		u = (u_int)kb;
2188		if (kb - u >= 0.5)
2189			u++;
2190		ctl_putuint(sys_var[varid].text, u);
2191		break;
2192
2193	case CS_SS_UPTIME:
2194		ctl_putuint(sys_var[varid].text, current_time);
2195		break;
2196
2197	case CS_SS_RESET:
2198		ctl_putuint(sys_var[varid].text,
2199			    current_time - sys_stattime);
2200		break;
2201
2202	case CS_SS_RECEIVED:
2203		ctl_putuint(sys_var[varid].text, sys_received);
2204		break;
2205
2206	case CS_SS_THISVER:
2207		ctl_putuint(sys_var[varid].text, sys_newversion);
2208		break;
2209
2210	case CS_SS_OLDVER:
2211		ctl_putuint(sys_var[varid].text, sys_oldversion);
2212		break;
2213
2214	case CS_SS_BADFORMAT:
2215		ctl_putuint(sys_var[varid].text, sys_badlength);
2216		break;
2217
2218	case CS_SS_BADAUTH:
2219		ctl_putuint(sys_var[varid].text, sys_badauth);
2220		break;
2221
2222	case CS_SS_DECLINED:
2223		ctl_putuint(sys_var[varid].text, sys_declined);
2224		break;
2225
2226	case CS_SS_RESTRICTED:
2227		ctl_putuint(sys_var[varid].text, sys_restricted);
2228		break;
2229
2230	case CS_SS_LIMITED:
2231		ctl_putuint(sys_var[varid].text, sys_limitrejected);
2232		break;
2233
2234	case CS_SS_LAMPORT:
2235		ctl_putuint(sys_var[varid].text, sys_lamport);
2236		break;
2237
2238	case CS_SS_TSROUNDING:
2239		ctl_putuint(sys_var[varid].text, sys_tsrounding);
2240		break;
2241
2242	case CS_SS_KODSENT:
2243		ctl_putuint(sys_var[varid].text, sys_kodsent);
2244		break;
2245
2246	case CS_SS_PROCESSED:
2247		ctl_putuint(sys_var[varid].text, sys_processed);
2248		break;
2249
2250	case CS_BCASTDELAY:
2251		ctl_putdbl(sys_var[varid].text, sys_bdelay * 1e3);
2252		break;
2253
2254	case CS_AUTHDELAY:
2255		LFPTOD(&sys_authdelay, dtemp);
2256		ctl_putdbl(sys_var[varid].text, dtemp * 1e3);
2257		break;
2258
2259	case CS_AUTHKEYS:
2260		ctl_putuint(sys_var[varid].text, authnumkeys);
2261		break;
2262
2263	case CS_AUTHFREEK:
2264		ctl_putuint(sys_var[varid].text, authnumfreekeys);
2265		break;
2266
2267	case CS_AUTHKLOOKUPS:
2268		ctl_putuint(sys_var[varid].text, authkeylookups);
2269		break;
2270
2271	case CS_AUTHKNOTFOUND:
2272		ctl_putuint(sys_var[varid].text, authkeynotfound);
2273		break;
2274
2275	case CS_AUTHKUNCACHED:
2276		ctl_putuint(sys_var[varid].text, authkeyuncached);
2277		break;
2278
2279	case CS_AUTHKEXPIRED:
2280		ctl_putuint(sys_var[varid].text, authkeyexpired);
2281		break;
2282
2283	case CS_AUTHENCRYPTS:
2284		ctl_putuint(sys_var[varid].text, authencryptions);
2285		break;
2286
2287	case CS_AUTHDECRYPTS:
2288		ctl_putuint(sys_var[varid].text, authdecryptions);
2289		break;
2290
2291	case CS_AUTHRESET:
2292		ctl_putuint(sys_var[varid].text,
2293			    current_time - auth_timereset);
2294		break;
2295
2296		/*
2297		 * CTL_IF_KERNLOOP() puts a zero if the kernel loop is
2298		 * unavailable, otherwise calls putfunc with args.
2299		 */
2300#ifndef KERNEL_PLL
2301# define	CTL_IF_KERNLOOP(putfunc, args)	\
2302		ctl_putint(sys_var[varid].text, 0)
2303#else
2304# define	CTL_IF_KERNLOOP(putfunc, args)	\
2305		putfunc args
2306#endif
2307
2308		/*
2309		 * CTL_IF_KERNPPS() puts a zero if either the kernel
2310		 * loop is unavailable, or kernel hard PPS is not
2311		 * active, otherwise calls putfunc with args.
2312		 */
2313#ifndef KERNEL_PLL
2314# define	CTL_IF_KERNPPS(putfunc, args)	\
2315		ctl_putint(sys_var[varid].text, 0)
2316#else
2317# define	CTL_IF_KERNPPS(putfunc, args)			\
2318		if (0 == ntx.shift)				\
2319			ctl_putint(sys_var[varid].text, 0);	\
2320		else						\
2321			putfunc args	/* no trailing ; */
2322#endif
2323
2324	case CS_K_OFFSET:
2325		CTL_IF_KERNLOOP(
2326			ctl_putdblf,
2327			(sys_var[varid].text, 0, -1,
2328			 1000 * dbl_from_var_long(ntx.offset, ntx.status))
2329		);
2330		break;
2331
2332	case CS_K_FREQ:
2333		CTL_IF_KERNLOOP(
2334			ctl_putsfp,
2335			(sys_var[varid].text, ntx.freq)
2336		);
2337		break;
2338
2339	case CS_K_MAXERR:
2340		CTL_IF_KERNLOOP(
2341			ctl_putdblf,
2342			(sys_var[varid].text, 0, 6,
2343			 1000 * dbl_from_usec_long(ntx.maxerror))
2344		);
2345		break;
2346
2347	case CS_K_ESTERR:
2348		CTL_IF_KERNLOOP(
2349			ctl_putdblf,
2350			(sys_var[varid].text, 0, 6,
2351			 1000 * dbl_from_usec_long(ntx.esterror))
2352		);
2353		break;
2354
2355	case CS_K_STFLAGS:
2356#ifndef KERNEL_PLL
2357		ss = "";
2358#else
2359		ss = k_st_flags(ntx.status);
2360#endif
2361		ctl_putstr(sys_var[varid].text, ss, strlen(ss));
2362		break;
2363
2364	case CS_K_TIMECONST:
2365		CTL_IF_KERNLOOP(
2366			ctl_putint,
2367			(sys_var[varid].text, ntx.constant)
2368		);
2369		break;
2370
2371	case CS_K_PRECISION:
2372		CTL_IF_KERNLOOP(
2373			ctl_putdblf,
2374			(sys_var[varid].text, 0, 6,
2375			 1000 * dbl_from_var_long(ntx.precision, ntx.status))
2376		);
2377		break;
2378
2379	case CS_K_FREQTOL:
2380		CTL_IF_KERNLOOP(
2381			ctl_putsfp,
2382			(sys_var[varid].text, ntx.tolerance)
2383		);
2384		break;
2385
2386	case CS_K_PPS_FREQ:
2387		CTL_IF_KERNPPS(
2388			ctl_putsfp,
2389			(sys_var[varid].text, ntx.ppsfreq)
2390		);
2391		break;
2392
2393	case CS_K_PPS_STABIL:
2394		CTL_IF_KERNPPS(
2395			ctl_putsfp,
2396			(sys_var[varid].text, ntx.stabil)
2397		);
2398		break;
2399
2400	case CS_K_PPS_JITTER:
2401		CTL_IF_KERNPPS(
2402			ctl_putdbl,
2403			(sys_var[varid].text,
2404			 1000 * dbl_from_var_long(ntx.jitter, ntx.status))
2405		);
2406		break;
2407
2408	case CS_K_PPS_CALIBDUR:
2409		CTL_IF_KERNPPS(
2410			ctl_putint,
2411			(sys_var[varid].text, 1 << ntx.shift)
2412		);
2413		break;
2414
2415	case CS_K_PPS_CALIBS:
2416		CTL_IF_KERNPPS(
2417			ctl_putint,
2418			(sys_var[varid].text, ntx.calcnt)
2419		);
2420		break;
2421
2422	case CS_K_PPS_CALIBERRS:
2423		CTL_IF_KERNPPS(
2424			ctl_putint,
2425			(sys_var[varid].text, ntx.errcnt)
2426		);
2427		break;
2428
2429	case CS_K_PPS_JITEXC:
2430		CTL_IF_KERNPPS(
2431			ctl_putint,
2432			(sys_var[varid].text, ntx.jitcnt)
2433		);
2434		break;
2435
2436	case CS_K_PPS_STBEXC:
2437		CTL_IF_KERNPPS(
2438			ctl_putint,
2439			(sys_var[varid].text, ntx.stbcnt)
2440		);
2441		break;
2442
2443	case CS_IOSTATS_RESET:
2444		ctl_putuint(sys_var[varid].text,
2445			    current_time - io_timereset);
2446		break;
2447
2448	case CS_TOTAL_RBUF:
2449		ctl_putuint(sys_var[varid].text, total_recvbuffs());
2450		break;
2451
2452	case CS_FREE_RBUF:
2453		ctl_putuint(sys_var[varid].text, free_recvbuffs());
2454		break;
2455
2456	case CS_USED_RBUF:
2457		ctl_putuint(sys_var[varid].text, full_recvbuffs());
2458		break;
2459
2460	case CS_RBUF_LOWATER:
2461		ctl_putuint(sys_var[varid].text, lowater_additions());
2462		break;
2463
2464	case CS_IO_DROPPED:
2465		ctl_putuint(sys_var[varid].text, packets_dropped);
2466		break;
2467
2468	case CS_IO_IGNORED:
2469		ctl_putuint(sys_var[varid].text, packets_ignored);
2470		break;
2471
2472	case CS_IO_RECEIVED:
2473		ctl_putuint(sys_var[varid].text, packets_received);
2474		break;
2475
2476	case CS_IO_SENT:
2477		ctl_putuint(sys_var[varid].text, packets_sent);
2478		break;
2479
2480	case CS_IO_SENDFAILED:
2481		ctl_putuint(sys_var[varid].text, packets_notsent);
2482		break;
2483
2484	case CS_IO_WAKEUPS:
2485		ctl_putuint(sys_var[varid].text, handler_calls);
2486		break;
2487
2488	case CS_IO_GOODWAKEUPS:
2489		ctl_putuint(sys_var[varid].text, handler_pkts);
2490		break;
2491
2492	case CS_TIMERSTATS_RESET:
2493		ctl_putuint(sys_var[varid].text,
2494			    current_time - timer_timereset);
2495		break;
2496
2497	case CS_TIMER_OVERRUNS:
2498		ctl_putuint(sys_var[varid].text, alarm_overflow);
2499		break;
2500
2501	case CS_TIMER_XMTS:
2502		ctl_putuint(sys_var[varid].text, timer_xmtcalls);
2503		break;
2504
2505	case CS_FUZZ:
2506		ctl_putdbl(sys_var[varid].text, sys_fuzz * 1e3);
2507		break;
2508	case CS_WANDER_THRESH:
2509		ctl_putdbl(sys_var[varid].text, wander_threshold * 1e6);
2510		break;
2511#ifdef AUTOKEY
2512	case CS_FLAGS:
2513		if (crypto_flags)
2514			ctl_puthex(sys_var[CS_FLAGS].text,
2515			    crypto_flags);
2516		break;
2517
2518	case CS_DIGEST:
2519		if (crypto_flags) {
2520			strlcpy(str, OBJ_nid2ln(crypto_nid),
2521			    COUNTOF(str));
2522			ctl_putstr(sys_var[CS_DIGEST].text, str,
2523			    strlen(str));
2524		}
2525		break;
2526
2527	case CS_SIGNATURE:
2528		if (crypto_flags) {
2529			const EVP_MD *dp;
2530
2531			dp = EVP_get_digestbynid(crypto_flags >> 16);
2532			strlcpy(str, OBJ_nid2ln(EVP_MD_pkey_type(dp)),
2533			    COUNTOF(str));
2534			ctl_putstr(sys_var[CS_SIGNATURE].text, str,
2535			    strlen(str));
2536		}
2537		break;
2538
2539	case CS_HOST:
2540		if (hostval.ptr != NULL)
2541			ctl_putstr(sys_var[CS_HOST].text, hostval.ptr,
2542			    strlen(hostval.ptr));
2543		break;
2544
2545	case CS_IDENT:
2546		if (sys_ident != NULL)
2547			ctl_putstr(sys_var[CS_IDENT].text, sys_ident,
2548			    strlen(sys_ident));
2549		break;
2550
2551	case CS_CERTIF:
2552		for (cp = cinfo; cp != NULL; cp = cp->link) {
2553			snprintf(str, sizeof(str), "%s %s 0x%x",
2554			    cp->subject, cp->issuer, cp->flags);
2555			ctl_putstr(sys_var[CS_CERTIF].text, str,
2556			    strlen(str));
2557			ctl_putcal(sys_var[CS_REVTIME].text, &(cp->last));
2558		}
2559		break;
2560
2561	case CS_PUBLIC:
2562		if (hostval.tstamp != 0)
2563			ctl_putfs(sys_var[CS_PUBLIC].text,
2564			    ntohl(hostval.tstamp));
2565		break;
2566#endif	/* AUTOKEY */
2567
2568	default:
2569		break;
2570	}
2571}
2572
2573
2574/*
2575 * ctl_putpeer - output a peer variable
2576 */
2577static void
2578ctl_putpeer(
2579	int id,
2580	struct peer *p
2581	)
2582{
2583	char buf[CTL_MAX_DATA_LEN];
2584	char *s;
2585	char *t;
2586	char *be;
2587	int i;
2588	const struct ctl_var *k;
2589#ifdef AUTOKEY
2590	struct autokey *ap;
2591	const EVP_MD *dp;
2592	const char *str;
2593#endif	/* AUTOKEY */
2594
2595	switch (id) {
2596
2597	case CP_CONFIG:
2598		ctl_putuint(peer_var[id].text,
2599			    !(FLAG_PREEMPT & p->flags));
2600		break;
2601
2602	case CP_AUTHENABLE:
2603		ctl_putuint(peer_var[id].text, !(p->keyid));
2604		break;
2605
2606	case CP_AUTHENTIC:
2607		ctl_putuint(peer_var[id].text,
2608			    !!(FLAG_AUTHENTIC & p->flags));
2609		break;
2610
2611	case CP_SRCADR:
2612		ctl_putadr(peer_var[id].text, 0, &p->srcadr);
2613		break;
2614
2615	case CP_SRCPORT:
2616		ctl_putuint(peer_var[id].text, SRCPORT(&p->srcadr));
2617		break;
2618
2619	case CP_SRCHOST:
2620		if (p->hostname != NULL)
2621			ctl_putstr(peer_var[id].text, p->hostname,
2622				   strlen(p->hostname));
2623		break;
2624
2625	case CP_DSTADR:
2626		ctl_putadr(peer_var[id].text, 0,
2627			   (p->dstadr != NULL)
2628				? &p->dstadr->sin
2629				: NULL);
2630		break;
2631
2632	case CP_DSTPORT:
2633		ctl_putuint(peer_var[id].text,
2634			    (p->dstadr != NULL)
2635				? SRCPORT(&p->dstadr->sin)
2636				: 0);
2637		break;
2638
2639	case CP_IN:
2640		if (p->r21 > 0.)
2641			ctl_putdbl(peer_var[id].text, p->r21 / 1e3);
2642		break;
2643
2644	case CP_OUT:
2645		if (p->r34 > 0.)
2646			ctl_putdbl(peer_var[id].text, p->r34 / 1e3);
2647		break;
2648
2649	case CP_RATE:
2650		ctl_putuint(peer_var[id].text, p->throttle);
2651		break;
2652
2653	case CP_LEAP:
2654		ctl_putuint(peer_var[id].text, p->leap);
2655		break;
2656
2657	case CP_HMODE:
2658		ctl_putuint(peer_var[id].text, p->hmode);
2659		break;
2660
2661	case CP_STRATUM:
2662		ctl_putuint(peer_var[id].text, p->stratum);
2663		break;
2664
2665	case CP_PPOLL:
2666		ctl_putuint(peer_var[id].text, p->ppoll);
2667		break;
2668
2669	case CP_HPOLL:
2670		ctl_putuint(peer_var[id].text, p->hpoll);
2671		break;
2672
2673	case CP_PRECISION:
2674		ctl_putint(peer_var[id].text, p->precision);
2675		break;
2676
2677	case CP_ROOTDELAY:
2678		ctl_putdbl(peer_var[id].text, p->rootdelay * 1e3);
2679		break;
2680
2681	case CP_ROOTDISPERSION:
2682		ctl_putdbl(peer_var[id].text, p->rootdisp * 1e3);
2683		break;
2684
2685	case CP_REFID:
2686#ifdef REFCLOCK
2687		if (p->flags & FLAG_REFCLOCK) {
2688			ctl_putrefid(peer_var[id].text, p->refid);
2689			break;
2690		}
2691#endif
2692		if (REFID_ISTEXT(p->stratum))
2693			ctl_putrefid(peer_var[id].text, p->refid);
2694		else
2695			ctl_putadr(peer_var[id].text, p->refid, NULL);
2696		break;
2697
2698	case CP_REFTIME:
2699		ctl_putts(peer_var[id].text, &p->reftime);
2700		break;
2701
2702	case CP_ORG:
2703		ctl_putts(peer_var[id].text, &p->aorg);
2704		break;
2705
2706	case CP_REC:
2707		ctl_putts(peer_var[id].text, &p->dst);
2708		break;
2709
2710	case CP_XMT:
2711		if (p->xleave)
2712			ctl_putdbl(peer_var[id].text, p->xleave * 1e3);
2713		break;
2714
2715	case CP_BIAS:
2716		if (p->bias != 0.)
2717			ctl_putdbl(peer_var[id].text, p->bias * 1e3);
2718		break;
2719
2720	case CP_REACH:
2721		ctl_puthex(peer_var[id].text, p->reach);
2722		break;
2723
2724	case CP_FLASH:
2725		ctl_puthex(peer_var[id].text, p->flash);
2726		break;
2727
2728	case CP_TTL:
2729#ifdef REFCLOCK
2730		if (p->flags & FLAG_REFCLOCK) {
2731			ctl_putuint(peer_var[id].text, p->ttl);
2732			break;
2733		}
2734#endif
2735		if (p->ttl > 0 && p->ttl < COUNTOF(sys_ttl))
2736			ctl_putint(peer_var[id].text,
2737				   sys_ttl[p->ttl]);
2738		break;
2739
2740	case CP_UNREACH:
2741		ctl_putuint(peer_var[id].text, p->unreach);
2742		break;
2743
2744	case CP_TIMER:
2745		ctl_putuint(peer_var[id].text,
2746			    p->nextdate - current_time);
2747		break;
2748
2749	case CP_DELAY:
2750		ctl_putdbl(peer_var[id].text, p->delay * 1e3);
2751		break;
2752
2753	case CP_OFFSET:
2754		ctl_putdbl(peer_var[id].text, p->offset * 1e3);
2755		break;
2756
2757	case CP_JITTER:
2758		ctl_putdbl(peer_var[id].text, p->jitter * 1e3);
2759		break;
2760
2761	case CP_DISPERSION:
2762		ctl_putdbl(peer_var[id].text, p->disp * 1e3);
2763		break;
2764
2765	case CP_KEYID:
2766		if (p->keyid > NTP_MAXKEY)
2767			ctl_puthex(peer_var[id].text, p->keyid);
2768		else
2769			ctl_putuint(peer_var[id].text, p->keyid);
2770		break;
2771
2772	case CP_FILTDELAY:
2773		ctl_putarray(peer_var[id].text, p->filter_delay,
2774			     p->filter_nextpt);
2775		break;
2776
2777	case CP_FILTOFFSET:
2778		ctl_putarray(peer_var[id].text, p->filter_offset,
2779			     p->filter_nextpt);
2780		break;
2781
2782	case CP_FILTERROR:
2783		ctl_putarray(peer_var[id].text, p->filter_disp,
2784			     p->filter_nextpt);
2785		break;
2786
2787	case CP_PMODE:
2788		ctl_putuint(peer_var[id].text, p->pmode);
2789		break;
2790
2791	case CP_RECEIVED:
2792		ctl_putuint(peer_var[id].text, p->received);
2793		break;
2794
2795	case CP_SENT:
2796		ctl_putuint(peer_var[id].text, p->sent);
2797		break;
2798
2799	case CP_VARLIST:
2800		s = buf;
2801		be = buf + sizeof(buf);
2802		if (strlen(peer_var[id].text) + 4 > sizeof(buf))
2803			break;	/* really long var name */
2804
2805		snprintf(s, sizeof(buf), "%s=\"", peer_var[id].text);
2806		s += strlen(s);
2807		t = s;
2808		for (k = peer_var; !(EOV & k->flags); k++) {
2809			if (PADDING & k->flags)
2810				continue;
2811			i = strlen(k->text);
2812			if (s + i + 1 >= be)
2813				break;
2814			if (s != t)
2815				*s++ = ',';
2816			memcpy(s, k->text, i);
2817			s += i;
2818		}
2819		if (s + 2 < be) {
2820			*s++ = '"';
2821			*s = '\0';
2822			ctl_putdata(buf, (u_int)(s - buf), 0);
2823		}
2824		break;
2825
2826	case CP_TIMEREC:
2827		ctl_putuint(peer_var[id].text,
2828			    current_time - p->timereceived);
2829		break;
2830
2831	case CP_TIMEREACH:
2832		ctl_putuint(peer_var[id].text,
2833			    current_time - p->timereachable);
2834		break;
2835
2836	case CP_BADAUTH:
2837		ctl_putuint(peer_var[id].text, p->badauth);
2838		break;
2839
2840	case CP_BOGUSORG:
2841		ctl_putuint(peer_var[id].text, p->bogusorg);
2842		break;
2843
2844	case CP_OLDPKT:
2845		ctl_putuint(peer_var[id].text, p->oldpkt);
2846		break;
2847
2848	case CP_SELDISP:
2849		ctl_putuint(peer_var[id].text, p->seldisptoolarge);
2850		break;
2851
2852	case CP_SELBROKEN:
2853		ctl_putuint(peer_var[id].text, p->selbroken);
2854		break;
2855
2856	case CP_CANDIDATE:
2857		ctl_putuint(peer_var[id].text, p->status);
2858		break;
2859#ifdef AUTOKEY
2860	case CP_FLAGS:
2861		if (p->crypto)
2862			ctl_puthex(peer_var[id].text, p->crypto);
2863		break;
2864
2865	case CP_SIGNATURE:
2866		if (p->crypto) {
2867			dp = EVP_get_digestbynid(p->crypto >> 16);
2868			str = OBJ_nid2ln(EVP_MD_pkey_type(dp));
2869			ctl_putstr(peer_var[id].text, str, strlen(str));
2870		}
2871		break;
2872
2873	case CP_HOST:
2874		if (p->subject != NULL)
2875			ctl_putstr(peer_var[id].text, p->subject,
2876			    strlen(p->subject));
2877		break;
2878
2879	case CP_VALID:		/* not used */
2880		break;
2881
2882	case CP_INITSEQ:
2883		if (NULL == (ap = p->recval.ptr))
2884			break;
2885
2886		ctl_putint(peer_var[CP_INITSEQ].text, ap->seq);
2887		ctl_puthex(peer_var[CP_INITKEY].text, ap->key);
2888		ctl_putfs(peer_var[CP_INITTSP].text,
2889			  ntohl(p->recval.tstamp));
2890		break;
2891
2892	case CP_IDENT:
2893		if (p->ident != NULL)
2894			ctl_putstr(peer_var[id].text, p->ident,
2895			    strlen(p->ident));
2896		break;
2897
2898
2899#endif	/* AUTOKEY */
2900	}
2901}
2902
2903
2904#ifdef REFCLOCK
2905/*
2906 * ctl_putclock - output clock variables
2907 */
2908static void
2909ctl_putclock(
2910	int id,
2911	struct refclockstat *pcs,
2912	int mustput
2913	)
2914{
2915	char buf[CTL_MAX_DATA_LEN];
2916	char *s, *t, *be;
2917	const char *ss;
2918	int i;
2919	const struct ctl_var *k;
2920
2921	switch (id) {
2922
2923	case CC_TYPE:
2924		if (mustput || pcs->clockdesc == NULL
2925		    || *(pcs->clockdesc) == '\0') {
2926			ctl_putuint(clock_var[id].text, pcs->type);
2927		}
2928		break;
2929	case CC_TIMECODE:
2930		ctl_putstr(clock_var[id].text,
2931			   pcs->p_lastcode,
2932			   (unsigned)pcs->lencode);
2933		break;
2934
2935	case CC_POLL:
2936		ctl_putuint(clock_var[id].text, pcs->polls);
2937		break;
2938
2939	case CC_NOREPLY:
2940		ctl_putuint(clock_var[id].text,
2941			    pcs->noresponse);
2942		break;
2943
2944	case CC_BADFORMAT:
2945		ctl_putuint(clock_var[id].text,
2946			    pcs->badformat);
2947		break;
2948
2949	case CC_BADDATA:
2950		ctl_putuint(clock_var[id].text,
2951			    pcs->baddata);
2952		break;
2953
2954	case CC_FUDGETIME1:
2955		if (mustput || (pcs->haveflags & CLK_HAVETIME1))
2956			ctl_putdbl(clock_var[id].text,
2957				   pcs->fudgetime1 * 1e3);
2958		break;
2959
2960	case CC_FUDGETIME2:
2961		if (mustput || (pcs->haveflags & CLK_HAVETIME2))
2962			ctl_putdbl(clock_var[id].text,
2963				   pcs->fudgetime2 * 1e3);
2964		break;
2965
2966	case CC_FUDGEVAL1:
2967		if (mustput || (pcs->haveflags & CLK_HAVEVAL1))
2968			ctl_putint(clock_var[id].text,
2969				   pcs->fudgeval1);
2970		break;
2971
2972	case CC_FUDGEVAL2:
2973		/* RefID of clocks are always text even if stratum is fudged */
2974		if (mustput || (pcs->haveflags & CLK_HAVEVAL2))
2975			ctl_putrefid(clock_var[id].text, pcs->fudgeval2);
2976		break;
2977
2978	case CC_FLAGS:
2979		ctl_putuint(clock_var[id].text, pcs->flags);
2980		break;
2981
2982	case CC_DEVICE:
2983		if (pcs->clockdesc == NULL ||
2984		    *(pcs->clockdesc) == '\0') {
2985			if (mustput)
2986				ctl_putstr(clock_var[id].text,
2987					   "", 0);
2988		} else {
2989			ctl_putstr(clock_var[id].text,
2990				   pcs->clockdesc,
2991				   strlen(pcs->clockdesc));
2992		}
2993		break;
2994
2995	case CC_VARLIST:
2996		s = buf;
2997		be = buf + sizeof(buf);
2998		if (strlen(clock_var[CC_VARLIST].text) + 4 >
2999		    sizeof(buf))
3000			break;	/* really long var name */
3001
3002		snprintf(s, sizeof(buf), "%s=\"",
3003			 clock_var[CC_VARLIST].text);
3004		s += strlen(s);
3005		t = s;
3006
3007		for (k = clock_var; !(EOV & k->flags); k++) {
3008			if (PADDING & k->flags)
3009				continue;
3010
3011			i = strlen(k->text);
3012			if (s + i + 1 >= be)
3013				break;
3014
3015			if (s != t)
3016				*s++ = ',';
3017			memcpy(s, k->text, i);
3018			s += i;
3019		}
3020
3021		for (k = pcs->kv_list; k && !(EOV & k->flags); k++) {
3022			if (PADDING & k->flags)
3023				continue;
3024
3025			ss = k->text;
3026			if (NULL == ss)
3027				continue;
3028
3029			while (*ss && *ss != '=')
3030				ss++;
3031			i = ss - k->text;
3032			if (s + i + 1 >= be)
3033				break;
3034
3035			if (s != t)
3036				*s++ = ',';
3037			memcpy(s, k->text, (unsigned)i);
3038			s += i;
3039			*s = '\0';
3040		}
3041		if (s + 2 >= be)
3042			break;
3043
3044		*s++ = '"';
3045		*s = '\0';
3046		ctl_putdata(buf, (unsigned)(s - buf), 0);
3047		break;
3048
3049	case CC_FUDGEMINJIT:
3050		if (mustput || (pcs->haveflags & CLK_HAVEMINJIT))
3051			ctl_putdbl(clock_var[id].text,
3052				   pcs->fudgeminjitter * 1e3);
3053		break;
3054
3055	default:
3056		break;
3057
3058	}
3059}
3060#endif
3061
3062
3063
3064/*
3065 * ctl_getitem - get the next data item from the incoming packet
3066 */
3067static const struct ctl_var *
3068ctl_getitem(
3069	const struct ctl_var *var_list,
3070	char **data
3071	)
3072{
3073	/* [Bug 3008] First check the packet data sanity, then search
3074	 * the key. This improves the consistency of result values: If
3075	 * the result is NULL once, it will never be EOV again for this
3076	 * packet; If it's EOV, it will never be NULL again until the
3077	 * variable is found and processed in a given 'var_list'. (That
3078	 * is, a result is returned that is neither NULL nor EOV).
3079	 */
3080	static const struct ctl_var eol = { 0, EOV, NULL };
3081	static char buf[128];
3082	static u_long quiet_until;
3083	const struct ctl_var *v;
3084	char *cp;
3085	char *tp;
3086
3087	/*
3088	 * Part One: Validate the packet state
3089	 */
3090
3091	/* Delete leading commas and white space */
3092	while (reqpt < reqend && (*reqpt == ',' ||
3093				  isspace((unsigned char)*reqpt)))
3094		reqpt++;
3095	if (reqpt >= reqend)
3096		return NULL;
3097
3098	/* Scan the string in the packet until we hit comma or
3099	 * EoB. Register position of first '=' on the fly. */
3100	for (tp = NULL, cp = reqpt; cp != reqend; ++cp) {
3101		if (*cp == '=' && tp == NULL)
3102			tp = cp;
3103		if (*cp == ',')
3104			break;
3105	}
3106
3107	/* Process payload, if any. */
3108	*data = NULL;
3109	if (NULL != tp) {
3110		/* eventually strip white space from argument. */
3111		const char *plhead = tp + 1; /* skip the '=' */
3112		const char *pltail = cp;
3113		size_t      plsize;
3114
3115		while (plhead != pltail && isspace((u_char)plhead[0]))
3116			++plhead;
3117		while (plhead != pltail && isspace((u_char)pltail[-1]))
3118			--pltail;
3119
3120		/* check payload size, terminate packet on overflow */
3121		plsize = (size_t)(pltail - plhead);
3122		if (plsize >= sizeof(buf))
3123			goto badpacket;
3124
3125		/* copy data, NUL terminate, and set result data ptr */
3126		memcpy(buf, plhead, plsize);
3127		buf[plsize] = '\0';
3128		*data = buf;
3129	} else {
3130		/* no payload, current end --> current name termination */
3131		tp = cp;
3132	}
3133
3134	/* Part Two
3135	 *
3136	 * Now we're sure that the packet data itself is sane. Scan the
3137	 * list now. Make sure a NULL list is properly treated by
3138	 * returning a synthetic End-Of-Values record. We must not
3139	 * return NULL pointers after this point, or the behaviour would
3140	 * become inconsistent if called several times with different
3141	 * variable lists after an EoV was returned.  (Such a behavior
3142	 * actually caused Bug 3008.)
3143	 */
3144
3145	if (NULL == var_list)
3146		return &eol;
3147
3148	for (v = var_list; !(EOV & v->flags); ++v)
3149		if (!(PADDING & v->flags)) {
3150			/* Check if the var name matches the buffer. The
3151			 * name is bracketed by [reqpt..tp] and not NUL
3152			 * terminated, and it contains no '=' char. The
3153			 * lookup value IS NUL-terminated but might
3154			 * include a '='... We have to look out for
3155			 * that!
3156			 */
3157			const char *sp1 = reqpt;
3158			const char *sp2 = v->text;
3159
3160			/* [Bug 3412] do not compare past NUL byte in name */
3161			while (   (sp1 != tp)
3162			       && ('\0' != *sp2) && (*sp1 == *sp2)) {
3163				++sp1;
3164				++sp2;
3165			}
3166			if (sp1 == tp && (*sp2 == '\0' || *sp2 == '='))
3167				break;
3168		}
3169
3170	/* See if we have found a valid entry or not. If found, advance
3171	 * the request pointer for the next round; if not, clear the
3172	 * data pointer so we have no dangling garbage here.
3173	 */
3174	if (EOV & v->flags)
3175		*data = NULL;
3176	else
3177		reqpt = cp + (cp != reqend);
3178	return v;
3179
3180  badpacket:
3181	/*TODO? somehow indicate this packet was bad, apart from syslog? */
3182	numctlbadpkts++;
3183	NLOG(NLOG_SYSEVENT)
3184	    if (quiet_until <= current_time) {
3185		    quiet_until = current_time + 300;
3186		    msyslog(LOG_WARNING,
3187			    "Possible 'ntpdx' exploit from %s#%u (possibly spoofed)",
3188			    stoa(rmt_addr), SRCPORT(rmt_addr));
3189	    }
3190	reqpt = reqend; /* never again for this packet! */
3191	return NULL;
3192}
3193
3194
3195/*
3196 * control_unspec - response to an unspecified op-code
3197 */
3198/*ARGSUSED*/
3199static void
3200control_unspec(
3201	struct recvbuf *rbufp,
3202	int restrict_mask
3203	)
3204{
3205	struct peer *peer;
3206
3207	/*
3208	 * What is an appropriate response to an unspecified op-code?
3209	 * I return no errors and no data, unless a specified assocation
3210	 * doesn't exist.
3211	 */
3212	if (res_associd) {
3213		peer = findpeerbyassoc(res_associd);
3214		if (NULL == peer) {
3215			ctl_error(CERR_BADASSOC);
3216			return;
3217		}
3218		rpkt.status = htons(ctlpeerstatus(peer));
3219	} else
3220		rpkt.status = htons(ctlsysstatus());
3221	ctl_flushpkt(0);
3222}
3223
3224
3225/*
3226 * read_status - return either a list of associd's, or a particular
3227 * peer's status.
3228 */
3229/*ARGSUSED*/
3230static void
3231read_status(
3232	struct recvbuf *rbufp,
3233	int restrict_mask
3234	)
3235{
3236	struct peer *peer;
3237	const u_char *cp;
3238	size_t n;
3239	/* a_st holds association ID, status pairs alternating */
3240	u_short a_st[CTL_MAX_DATA_LEN / sizeof(u_short)];
3241
3242#ifdef DEBUG
3243	if (debug > 2)
3244		printf("read_status: ID %d\n", res_associd);
3245#endif
3246	/*
3247	 * Two choices here. If the specified association ID is
3248	 * zero we return all known assocation ID's.  Otherwise
3249	 * we return a bunch of stuff about the particular peer.
3250	 */
3251	if (res_associd) {
3252		peer = findpeerbyassoc(res_associd);
3253		if (NULL == peer) {
3254			ctl_error(CERR_BADASSOC);
3255			return;
3256		}
3257		rpkt.status = htons(ctlpeerstatus(peer));
3258		if (res_authokay)
3259			peer->num_events = 0;
3260		/*
3261		 * For now, output everything we know about the
3262		 * peer. May be more selective later.
3263		 */
3264		for (cp = def_peer_var; *cp != 0; cp++)
3265			ctl_putpeer((int)*cp, peer);
3266		ctl_flushpkt(0);
3267		return;
3268	}
3269	n = 0;
3270	rpkt.status = htons(ctlsysstatus());
3271	for (peer = peer_list; peer != NULL; peer = peer->p_link) {
3272		a_st[n++] = htons(peer->associd);
3273		a_st[n++] = htons(ctlpeerstatus(peer));
3274		/* two entries each loop iteration, so n + 1 */
3275		if (n + 1 >= COUNTOF(a_st)) {
3276			ctl_putdata((void *)a_st, n * sizeof(a_st[0]),
3277				    1);
3278			n = 0;
3279		}
3280	}
3281	if (n)
3282		ctl_putdata((void *)a_st, n * sizeof(a_st[0]), 1);
3283	ctl_flushpkt(0);
3284}
3285
3286
3287/*
3288 * read_peervars - half of read_variables() implementation
3289 */
3290static void
3291read_peervars(void)
3292{
3293	const struct ctl_var *v;
3294	struct peer *peer;
3295	const u_char *cp;
3296	size_t i;
3297	char *	valuep;
3298	u_char	wants[CP_MAXCODE + 1];
3299	u_int	gotvar;
3300
3301	/*
3302	 * Wants info for a particular peer. See if we know
3303	 * the guy.
3304	 */
3305	peer = findpeerbyassoc(res_associd);
3306	if (NULL == peer) {
3307		ctl_error(CERR_BADASSOC);
3308		return;
3309	}
3310	rpkt.status = htons(ctlpeerstatus(peer));
3311	if (res_authokay)
3312		peer->num_events = 0;
3313	ZERO(wants);
3314	gotvar = 0;
3315	while (NULL != (v = ctl_getitem(peer_var, &valuep))) {
3316		if (v->flags & EOV) {
3317			ctl_error(CERR_UNKNOWNVAR);
3318			return;
3319		}
3320		INSIST(v->code < COUNTOF(wants));
3321		wants[v->code] = 1;
3322		gotvar = 1;
3323	}
3324	if (gotvar) {
3325		for (i = 1; i < COUNTOF(wants); i++)
3326			if (wants[i])
3327				ctl_putpeer(i, peer);
3328	} else
3329		for (cp = def_peer_var; *cp != 0; cp++)
3330			ctl_putpeer((int)*cp, peer);
3331	ctl_flushpkt(0);
3332}
3333
3334
3335/*
3336 * read_sysvars - half of read_variables() implementation
3337 */
3338static void
3339read_sysvars(void)
3340{
3341	const struct ctl_var *v;
3342	struct ctl_var *kv;
3343	u_int	n;
3344	u_int	gotvar;
3345	const u_char *cs;
3346	char *	valuep;
3347	const char * pch;
3348	u_char *wants;
3349	size_t	wants_count;
3350
3351	/*
3352	 * Wants system variables. Figure out which he wants
3353	 * and give them to him.
3354	 */
3355	rpkt.status = htons(ctlsysstatus());
3356	if (res_authokay)
3357		ctl_sys_num_events = 0;
3358	wants_count = CS_MAXCODE + 1 + count_var(ext_sys_var);
3359	wants = emalloc_zero(wants_count);
3360	gotvar = 0;
3361	while (NULL != (v = ctl_getitem(sys_var, &valuep))) {
3362		if (!(EOV & v->flags)) {
3363			INSIST(v->code < wants_count);
3364			wants[v->code] = 1;
3365			gotvar = 1;
3366		} else {
3367			v = ctl_getitem(ext_sys_var, &valuep);
3368			if (NULL == v) {
3369				ctl_error(CERR_BADVALUE);
3370				free(wants);
3371				return;
3372			}
3373			if (EOV & v->flags) {
3374				ctl_error(CERR_UNKNOWNVAR);
3375				free(wants);
3376				return;
3377			}
3378			n = v->code + CS_MAXCODE + 1;
3379			INSIST(n < wants_count);
3380			wants[n] = 1;
3381			gotvar = 1;
3382		}
3383	}
3384	if (gotvar) {
3385		for (n = 1; n <= CS_MAXCODE; n++)
3386			if (wants[n])
3387				ctl_putsys(n);
3388		for (n = 0; n + CS_MAXCODE + 1 < wants_count; n++)
3389			if (wants[n + CS_MAXCODE + 1]) {
3390				pch = ext_sys_var[n].text;
3391				ctl_putdata(pch, strlen(pch), 0);
3392			}
3393	} else {
3394		for (cs = def_sys_var; *cs != 0; cs++)
3395			ctl_putsys((int)*cs);
3396		for (kv = ext_sys_var; kv && !(EOV & kv->flags); kv++)
3397			if (DEF & kv->flags)
3398				ctl_putdata(kv->text, strlen(kv->text),
3399					    0);
3400	}
3401	free(wants);
3402	ctl_flushpkt(0);
3403}
3404
3405
3406/*
3407 * read_variables - return the variables the caller asks for
3408 */
3409/*ARGSUSED*/
3410static void
3411read_variables(
3412	struct recvbuf *rbufp,
3413	int restrict_mask
3414	)
3415{
3416	if (res_associd)
3417		read_peervars();
3418	else
3419		read_sysvars();
3420}
3421
3422
3423/*
3424 * write_variables - write into variables. We only allow leap bit
3425 * writing this way.
3426 */
3427/*ARGSUSED*/
3428static void
3429write_variables(
3430	struct recvbuf *rbufp,
3431	int restrict_mask
3432	)
3433{
3434	const struct ctl_var *v;
3435	int ext_var;
3436	char *valuep;
3437	long val;
3438	size_t octets;
3439	char *vareqv;
3440	const char *t;
3441	char *tt;
3442
3443	val = 0;
3444	/*
3445	 * If he's trying to write into a peer tell him no way
3446	 */
3447	if (res_associd != 0) {
3448		ctl_error(CERR_PERMISSION);
3449		return;
3450	}
3451
3452	/*
3453	 * Set status
3454	 */
3455	rpkt.status = htons(ctlsysstatus());
3456
3457	/*
3458	 * Look through the variables. Dump out at the first sign of
3459	 * trouble.
3460	 */
3461	while ((v = ctl_getitem(sys_var, &valuep)) != NULL) {
3462		ext_var = 0;
3463		if (v->flags & EOV) {
3464			v = ctl_getitem(ext_sys_var, &valuep);
3465			if (v != NULL) {
3466				if (v->flags & EOV) {
3467					ctl_error(CERR_UNKNOWNVAR);
3468					return;
3469				}
3470				ext_var = 1;
3471			} else {
3472				break;
3473			}
3474		}
3475		if (!(v->flags & CAN_WRITE)) {
3476			ctl_error(CERR_PERMISSION);
3477			return;
3478		}
3479		/* [bug 3565] writing makes sense only if we *have* a
3480		 * value in the packet!
3481		 */
3482		if (valuep == NULL) {
3483			ctl_error(CERR_BADFMT);
3484			return;
3485		}
3486		if (!ext_var) {
3487			if ( !(*valuep && atoint(valuep, &val))) {
3488				ctl_error(CERR_BADFMT);
3489				return;
3490			}
3491			if ((val & ~LEAP_NOTINSYNC) != 0) {
3492				ctl_error(CERR_BADVALUE);
3493				return;
3494			}
3495		}
3496
3497		if (ext_var) {
3498			octets = strlen(v->text) + strlen(valuep) + 2;
3499			vareqv = emalloc(octets);
3500			tt = vareqv;
3501			t = v->text;
3502			while (*t && *t != '=')
3503				*tt++ = *t++;
3504			*tt++ = '=';
3505			memcpy(tt, valuep, 1 + strlen(valuep));
3506			set_sys_var(vareqv, 1 + strlen(vareqv), v->flags);
3507			free(vareqv);
3508		} else {
3509			ctl_error(CERR_UNSPEC); /* really */
3510			return;
3511		}
3512	}
3513
3514	/*
3515	 * If we got anything, do it. xxx nothing to do ***
3516	 */
3517	/*
3518	  if (leapind != ~0 || leapwarn != ~0) {
3519	  if (!leap_setleap((int)leapind, (int)leapwarn)) {
3520	  ctl_error(CERR_PERMISSION);
3521	  return;
3522	  }
3523	  }
3524	*/
3525	ctl_flushpkt(0);
3526}
3527
3528
3529/*
3530 * configure() processes ntpq :config/config-from-file, allowing
3531 *		generic runtime reconfiguration.
3532 */
3533static void configure(
3534	struct recvbuf *rbufp,
3535	int restrict_mask
3536	)
3537{
3538	size_t data_count;
3539	int retval;
3540
3541	/* I haven't yet implemented changes to an existing association.
3542	 * Hence check if the association id is 0
3543	 */
3544	if (res_associd != 0) {
3545		ctl_error(CERR_BADVALUE);
3546		return;
3547	}
3548
3549	if (RES_NOMODIFY & restrict_mask) {
3550		snprintf(remote_config.err_msg,
3551			 sizeof(remote_config.err_msg),
3552			 "runtime configuration prohibited by restrict ... nomodify");
3553		ctl_putdata(remote_config.err_msg,
3554			    strlen(remote_config.err_msg), 0);
3555		ctl_flushpkt(0);
3556		NLOG(NLOG_SYSINFO)
3557			msyslog(LOG_NOTICE,
3558				"runtime config from %s rejected due to nomodify restriction",
3559				stoa(&rbufp->recv_srcadr));
3560		sys_restricted++;
3561		return;
3562	}
3563
3564	/* Initialize the remote config buffer */
3565	data_count = remoteconfig_cmdlength(reqpt, reqend);
3566
3567	if (data_count > sizeof(remote_config.buffer) - 2) {
3568		snprintf(remote_config.err_msg,
3569			 sizeof(remote_config.err_msg),
3570			 "runtime configuration failed: request too long");
3571		ctl_putdata(remote_config.err_msg,
3572			    strlen(remote_config.err_msg), 0);
3573		ctl_flushpkt(0);
3574		msyslog(LOG_NOTICE,
3575			"runtime config from %s rejected: request too long",
3576			stoa(&rbufp->recv_srcadr));
3577		return;
3578	}
3579	/* Bug 2853 -- check if all characters were acceptable */
3580	if (data_count != (size_t)(reqend - reqpt)) {
3581		snprintf(remote_config.err_msg,
3582			 sizeof(remote_config.err_msg),
3583			 "runtime configuration failed: request contains an unprintable character");
3584		ctl_putdata(remote_config.err_msg,
3585			    strlen(remote_config.err_msg), 0);
3586		ctl_flushpkt(0);
3587		msyslog(LOG_NOTICE,
3588			"runtime config from %s rejected: request contains an unprintable character: %0x",
3589			stoa(&rbufp->recv_srcadr),
3590			reqpt[data_count]);
3591		return;
3592	}
3593
3594	memcpy(remote_config.buffer, reqpt, data_count);
3595	/* The buffer has no trailing linefeed or NUL right now. For
3596	 * logging, we do not want a newline, so we do that first after
3597	 * adding the necessary NUL byte.
3598	 */
3599	remote_config.buffer[data_count] = '\0';
3600	DPRINTF(1, ("Got Remote Configuration Command: %s\n",
3601		remote_config.buffer));
3602	msyslog(LOG_NOTICE, "%s config: %s",
3603		stoa(&rbufp->recv_srcadr),
3604		remote_config.buffer);
3605
3606	/* Now we have to make sure there is a NL/NUL sequence at the
3607	 * end of the buffer before we parse it.
3608	 */
3609	remote_config.buffer[data_count++] = '\n';
3610	remote_config.buffer[data_count] = '\0';
3611	remote_config.pos = 0;
3612	remote_config.err_pos = 0;
3613	remote_config.no_errors = 0;
3614	config_remotely(&rbufp->recv_srcadr);
3615
3616	/*
3617	 * Check if errors were reported. If not, output 'Config
3618	 * Succeeded'.  Else output the error count.  It would be nice
3619	 * to output any parser error messages.
3620	 */
3621	if (0 == remote_config.no_errors) {
3622		retval = snprintf(remote_config.err_msg,
3623				  sizeof(remote_config.err_msg),
3624				  "Config Succeeded");
3625		if (retval > 0)
3626			remote_config.err_pos += retval;
3627	}
3628
3629	ctl_putdata(remote_config.err_msg, remote_config.err_pos, 0);
3630	ctl_flushpkt(0);
3631
3632	DPRINTF(1, ("Reply: %s\n", remote_config.err_msg));
3633
3634	if (remote_config.no_errors > 0)
3635		msyslog(LOG_NOTICE, "%d error in %s config",
3636			remote_config.no_errors,
3637			stoa(&rbufp->recv_srcadr));
3638}
3639
3640
3641/*
3642 * derive_nonce - generate client-address-specific nonce value
3643 *		  associated with a given timestamp.
3644 */
3645static u_int32 derive_nonce(
3646	sockaddr_u *	addr,
3647	u_int32		ts_i,
3648	u_int32		ts_f
3649	)
3650{
3651	static u_int32	salt[4];
3652	static u_long	last_salt_update;
3653	union d_tag {
3654		u_char	digest[EVP_MAX_MD_SIZE];
3655		u_int32 extract;
3656	}		d;
3657	EVP_MD_CTX	*ctx;
3658	u_int		len;
3659
3660	while (!salt[0] || current_time - last_salt_update >= 3600) {
3661		salt[0] = ntp_random();
3662		salt[1] = ntp_random();
3663		salt[2] = ntp_random();
3664		salt[3] = ntp_random();
3665		last_salt_update = current_time;
3666	}
3667
3668	ctx = EVP_MD_CTX_new();
3669#   if defined(OPENSSL) && defined(EVP_MD_CTX_FLAG_NON_FIPS_ALLOW)
3670	/* [Bug 3457] set flags and don't kill them again */
3671	EVP_MD_CTX_set_flags(ctx, EVP_MD_CTX_FLAG_NON_FIPS_ALLOW);
3672	EVP_DigestInit_ex(ctx, EVP_get_digestbynid(NID_md5), NULL);
3673#   else
3674	EVP_DigestInit(ctx, EVP_get_digestbynid(NID_md5));
3675#   endif
3676	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3677	EVP_DigestUpdate(ctx, &ts_i, sizeof(ts_i));
3678	EVP_DigestUpdate(ctx, &ts_f, sizeof(ts_f));
3679	if (IS_IPV4(addr))
3680		EVP_DigestUpdate(ctx, &SOCK_ADDR4(addr),
3681			         sizeof(SOCK_ADDR4(addr)));
3682	else
3683		EVP_DigestUpdate(ctx, &SOCK_ADDR6(addr),
3684			         sizeof(SOCK_ADDR6(addr)));
3685	EVP_DigestUpdate(ctx, &NSRCPORT(addr), sizeof(NSRCPORT(addr)));
3686	EVP_DigestUpdate(ctx, salt, sizeof(salt));
3687	EVP_DigestFinal(ctx, d.digest, &len);
3688	EVP_MD_CTX_free(ctx);
3689
3690	return d.extract;
3691}
3692
3693
3694/*
3695 * generate_nonce - generate client-address-specific nonce string.
3696 */
3697static void generate_nonce(
3698	struct recvbuf *	rbufp,
3699	char *			nonce,
3700	size_t			nonce_octets
3701	)
3702{
3703	u_int32 derived;
3704
3705	derived = derive_nonce(&rbufp->recv_srcadr,
3706			       rbufp->recv_time.l_ui,
3707			       rbufp->recv_time.l_uf);
3708	snprintf(nonce, nonce_octets, "%08x%08x%08x",
3709		 rbufp->recv_time.l_ui, rbufp->recv_time.l_uf, derived);
3710}
3711
3712
3713/*
3714 * validate_nonce - validate client-address-specific nonce string.
3715 *
3716 * Returns TRUE if the local calculation of the nonce matches the
3717 * client-provided value and the timestamp is recent enough.
3718 */
3719static int validate_nonce(
3720	const char *		pnonce,
3721	struct recvbuf *	rbufp
3722	)
3723{
3724	u_int	ts_i;
3725	u_int	ts_f;
3726	l_fp	ts;
3727	l_fp	now_delta;
3728	u_int	supposed;
3729	u_int	derived;
3730
3731	if (3 != sscanf(pnonce, "%08x%08x%08x", &ts_i, &ts_f, &supposed))
3732		return FALSE;
3733
3734	ts.l_ui = (u_int32)ts_i;
3735	ts.l_uf = (u_int32)ts_f;
3736	derived = derive_nonce(&rbufp->recv_srcadr, ts.l_ui, ts.l_uf);
3737	get_systime(&now_delta);
3738	L_SUB(&now_delta, &ts);
3739
3740	return (supposed == derived && now_delta.l_ui < 16);
3741}
3742
3743
3744/*
3745 * send_random_tag_value - send a randomly-generated three character
3746 *			   tag prefix, a '.', an index, a '=' and a
3747 *			   random integer value.
3748 *
3749 * To try to force clients to ignore unrecognized tags in mrulist,
3750 * reslist, and ifstats responses, the first and last rows are spiced
3751 * with randomly-generated tag names with correct .# index.  Make it
3752 * three characters knowing that none of the currently-used subscripted
3753 * tags have that length, avoiding the need to test for
3754 * tag collision.
3755 */
3756static void
3757send_random_tag_value(
3758	int	indx
3759	)
3760{
3761	int	noise;
3762	char	buf[32];
3763
3764	noise = rand() ^ (rand() << 16);
3765	buf[0] = 'a' + noise % 26;
3766	noise >>= 5;
3767	buf[1] = 'a' + noise % 26;
3768	noise >>= 5;
3769	buf[2] = 'a' + noise % 26;
3770	noise >>= 5;
3771	buf[3] = '.';
3772	snprintf(&buf[4], sizeof(buf) - 4, "%d", indx);
3773	ctl_putuint(buf, noise);
3774}
3775
3776
3777/*
3778 * Send a MRU list entry in response to a "ntpq -c mrulist" operation.
3779 *
3780 * To keep clients honest about not depending on the order of values,
3781 * and thereby avoid being locked into ugly workarounds to maintain
3782 * backward compatibility later as new fields are added to the response,
3783 * the order is random.
3784 */
3785static void
3786send_mru_entry(
3787	mon_entry *	mon,
3788	int		count
3789	)
3790{
3791	const char first_fmt[] =	"first.%d";
3792	const char ct_fmt[] =		"ct.%d";
3793	const char mv_fmt[] =		"mv.%d";
3794	const char rs_fmt[] =		"rs.%d";
3795	char	tag[32];
3796	u_char	sent[6]; /* 6 tag=value pairs */
3797	u_int32 noise;
3798	u_int	which;
3799	u_int	remaining;
3800	const char * pch;
3801
3802	remaining = COUNTOF(sent);
3803	ZERO(sent);
3804	noise = (u_int32)(rand() ^ (rand() << 16));
3805	while (remaining > 0) {
3806		which = (noise & 7) % COUNTOF(sent);
3807		noise >>= 3;
3808		while (sent[which])
3809			which = (which + 1) % COUNTOF(sent);
3810
3811		switch (which) {
3812
3813		case 0:
3814			snprintf(tag, sizeof(tag), addr_fmt, count);
3815			pch = sptoa(&mon->rmtadr);
3816			ctl_putunqstr(tag, pch, strlen(pch));
3817			break;
3818
3819		case 1:
3820			snprintf(tag, sizeof(tag), last_fmt, count);
3821			ctl_putts(tag, &mon->last);
3822			break;
3823
3824		case 2:
3825			snprintf(tag, sizeof(tag), first_fmt, count);
3826			ctl_putts(tag, &mon->first);
3827			break;
3828
3829		case 3:
3830			snprintf(tag, sizeof(tag), ct_fmt, count);
3831			ctl_putint(tag, mon->count);
3832			break;
3833
3834		case 4:
3835			snprintf(tag, sizeof(tag), mv_fmt, count);
3836			ctl_putuint(tag, mon->vn_mode);
3837			break;
3838
3839		case 5:
3840			snprintf(tag, sizeof(tag), rs_fmt, count);
3841			ctl_puthex(tag, mon->flags);
3842			break;
3843		}
3844		sent[which] = TRUE;
3845		remaining--;
3846	}
3847}
3848
3849
3850/*
3851 * read_mru_list - supports ntpq's mrulist command.
3852 *
3853 * The challenge here is to match ntpdc's monlist functionality without
3854 * being limited to hundreds of entries returned total, and without
3855 * requiring state on the server.  If state were required, ntpq's
3856 * mrulist command would require authentication.
3857 *
3858 * The approach was suggested by Ry Jones.  A finite and variable number
3859 * of entries are retrieved per request, to avoid having responses with
3860 * such large numbers of packets that socket buffers are overflowed and
3861 * packets lost.  The entries are retrieved oldest-first, taking into
3862 * account that the MRU list will be changing between each request.  We
3863 * can expect to see duplicate entries for addresses updated in the MRU
3864 * list during the fetch operation.  In the end, the client can assemble
3865 * a close approximation of the MRU list at the point in time the last
3866 * response was sent by ntpd.  The only difference is it may be longer,
3867 * containing some number of oldest entries which have since been
3868 * reclaimed.  If necessary, the protocol could be extended to zap those
3869 * from the client snapshot at the end, but so far that doesn't seem
3870 * useful.
3871 *
3872 * To accomodate the changing MRU list, the starting point for requests
3873 * after the first request is supplied as a series of last seen
3874 * timestamps and associated addresses, the newest ones the client has
3875 * received.  As long as at least one of those entries hasn't been
3876 * bumped to the head of the MRU list, ntpd can pick up at that point.
3877 * Otherwise, the request is failed and it is up to ntpq to back up and
3878 * provide the next newest entry's timestamps and addresses, conceivably
3879 * backing up all the way to the starting point.
3880 *
3881 * input parameters:
3882 *	nonce=		Regurgitated nonce retrieved by the client
3883 *			previously using CTL_OP_REQ_NONCE, demonstrating
3884 *			ability to receive traffic sent to its address.
3885 *	frags=		Limit on datagrams (fragments) in response.  Used
3886 *			by newer ntpq versions instead of limit= when
3887 *			retrieving multiple entries.
3888 *	limit=		Limit on MRU entries returned.  One of frags= or
3889 *			limit= must be provided.
3890 *			limit=1 is a special case:  Instead of fetching
3891 *			beginning with the supplied starting point's
3892 *			newer neighbor, fetch the supplied entry, and
3893 *			in that case the #.last timestamp can be zero.
3894 *			This enables fetching a single entry by IP
3895 *			address.  When limit is not one and frags= is
3896 *			provided, the fragment limit controls.
3897 *	mincount=	(decimal) Return entries with count >= mincount.
3898 *	laddr=		Return entries associated with the server's IP
3899 *			address given.  No port specification is needed,
3900 *			and any supplied is ignored.
3901 *	resall=		0x-prefixed hex restrict bits which must all be
3902 *			lit for an MRU entry to be included.
3903 *			Has precedence over any resany=.
3904 *	resany=		0x-prefixed hex restrict bits, at least one of
3905 *			which must be list for an MRU entry to be
3906 *			included.
3907 *	last.0=		0x-prefixed hex l_fp timestamp of newest entry
3908 *			which client previously received.
3909 *	addr.0=		text of newest entry's IP address and port,
3910 *			IPv6 addresses in bracketed form: [::]:123
3911 *	last.1=		timestamp of 2nd newest entry client has.
3912 *	addr.1=		address of 2nd newest entry.
3913 *	[...]
3914 *
3915 * ntpq provides as many last/addr pairs as will fit in a single request
3916 * packet, except for the first request in a MRU fetch operation.
3917 *
3918 * The response begins with a new nonce value to be used for any
3919 * followup request.  Following the nonce is the next newer entry than
3920 * referred to by last.0 and addr.0, if the "0" entry has not been
3921 * bumped to the front.  If it has, the first entry returned will be the
3922 * next entry newer than referred to by last.1 and addr.1, and so on.
3923 * If none of the referenced entries remain unchanged, the request fails
3924 * and ntpq backs up to the next earlier set of entries to resync.
3925 *
3926 * Except for the first response, the response begins with confirmation
3927 * of the entry that precedes the first additional entry provided:
3928 *
3929 *	last.older=	hex l_fp timestamp matching one of the input
3930 *			.last timestamps, which entry now precedes the
3931 *			response 0. entry in the MRU list.
3932 *	addr.older=	text of address corresponding to older.last.
3933 *
3934 * And in any case, a successful response contains sets of values
3935 * comprising entries, with the oldest numbered 0 and incrementing from
3936 * there:
3937 *
3938 *	addr.#		text of IPv4 or IPv6 address and port
3939 *	last.#		hex l_fp timestamp of last receipt
3940 *	first.#		hex l_fp timestamp of first receipt
3941 *	ct.#		count of packets received
3942 *	mv.#		mode and version
3943 *	rs.#		restriction mask (RES_* bits)
3944 *
3945 * Note the code currently assumes there are no valid three letter
3946 * tags sent with each row, and needs to be adjusted if that changes.
3947 *
3948 * The client should accept the values in any order, and ignore .#
3949 * values which it does not understand, to allow a smooth path to
3950 * future changes without requiring a new opcode.  Clients can rely
3951 * on all *.0 values preceding any *.1 values, that is all values for
3952 * a given index number are together in the response.
3953 *
3954 * The end of the response list is noted with one or two tag=value
3955 * pairs.  Unconditionally:
3956 *
3957 *	now=		0x-prefixed l_fp timestamp at the server marking
3958 *			the end of the operation.
3959 *
3960 * If any entries were returned, now= is followed by:
3961 *
3962 *	last.newest=	hex l_fp identical to last.# of the prior
3963 *			entry.
3964 */
3965static void read_mru_list(
3966	struct recvbuf *rbufp,
3967	int restrict_mask
3968	)
3969{
3970	static const char	nulltxt[1] = 		{ '\0' };
3971	static const char	nonce_text[] =		"nonce";
3972	static const char	frags_text[] =		"frags";
3973	static const char	limit_text[] =		"limit";
3974	static const char	mincount_text[] =	"mincount";
3975	static const char	resall_text[] =		"resall";
3976	static const char	resany_text[] =		"resany";
3977	static const char	maxlstint_text[] =	"maxlstint";
3978	static const char	laddr_text[] =		"laddr";
3979	static const char	resaxx_fmt[] =		"0x%hx";
3980
3981	u_int			limit;
3982	u_short			frags;
3983	u_short			resall;
3984	u_short			resany;
3985	int			mincount;
3986	u_int			maxlstint;
3987	sockaddr_u		laddr;
3988	struct interface *	lcladr;
3989	u_int			count;
3990	u_int			ui;
3991	u_int			uf;
3992	l_fp			last[16];
3993	sockaddr_u		addr[COUNTOF(last)];
3994	char			buf[128];
3995	struct ctl_var *	in_parms;
3996	const struct ctl_var *	v;
3997	const char *		val;
3998	const char *		pch;
3999	char *			pnonce;
4000	int			nonce_valid;
4001	size_t			i;
4002	int			priors;
4003	u_short			hash;
4004	mon_entry *		mon;
4005	mon_entry *		prior_mon;
4006	l_fp			now;
4007
4008	if (RES_NOMRULIST & restrict_mask) {
4009		ctl_error(CERR_PERMISSION);
4010		NLOG(NLOG_SYSINFO)
4011			msyslog(LOG_NOTICE,
4012				"mrulist from %s rejected due to nomrulist restriction",
4013				stoa(&rbufp->recv_srcadr));
4014		sys_restricted++;
4015		return;
4016	}
4017	/*
4018	 * fill in_parms var list with all possible input parameters.
4019	 */
4020	in_parms = NULL;
4021	set_var(&in_parms, nonce_text, sizeof(nonce_text), 0);
4022	set_var(&in_parms, frags_text, sizeof(frags_text), 0);
4023	set_var(&in_parms, limit_text, sizeof(limit_text), 0);
4024	set_var(&in_parms, mincount_text, sizeof(mincount_text), 0);
4025	set_var(&in_parms, resall_text, sizeof(resall_text), 0);
4026	set_var(&in_parms, resany_text, sizeof(resany_text), 0);
4027	set_var(&in_parms, maxlstint_text, sizeof(maxlstint_text), 0);
4028	set_var(&in_parms, laddr_text, sizeof(laddr_text), 0);
4029	for (i = 0; i < COUNTOF(last); i++) {
4030		snprintf(buf, sizeof(buf), last_fmt, (int)i);
4031		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4032		snprintf(buf, sizeof(buf), addr_fmt, (int)i);
4033		set_var(&in_parms, buf, strlen(buf) + 1, 0);
4034	}
4035
4036	/* decode input parms */
4037	pnonce = NULL;
4038	frags = 0;
4039	limit = 0;
4040	mincount = 0;
4041	resall = 0;
4042	resany = 0;
4043	maxlstint = 0;
4044	lcladr = NULL;
4045	priors = 0;
4046	ZERO(last);
4047	ZERO(addr);
4048
4049	/* have to go through '(void*)' to drop 'const' property from pointer.
4050	 * ctl_getitem()' needs some cleanup, too.... perlinger@ntp.org
4051	 */
4052	while (NULL != (v = ctl_getitem(in_parms, (void*)&val)) &&
4053	       !(EOV & v->flags)) {
4054		int si;
4055
4056		if (NULL == val)
4057			val = nulltxt;
4058
4059		if (!strcmp(nonce_text, v->text)) {
4060			free(pnonce);
4061			pnonce = (*val) ? estrdup(val) : NULL;
4062		} else if (!strcmp(frags_text, v->text)) {
4063			if (1 != sscanf(val, "%hu", &frags))
4064				goto blooper;
4065		} else if (!strcmp(limit_text, v->text)) {
4066			if (1 != sscanf(val, "%u", &limit))
4067				goto blooper;
4068		} else if (!strcmp(mincount_text, v->text)) {
4069			if (1 != sscanf(val, "%d", &mincount))
4070				goto blooper;
4071			if (mincount < 0)
4072				mincount = 0;
4073		} else if (!strcmp(resall_text, v->text)) {
4074			if (1 != sscanf(val, resaxx_fmt, &resall))
4075				goto blooper;
4076		} else if (!strcmp(resany_text, v->text)) {
4077			if (1 != sscanf(val, resaxx_fmt, &resany))
4078				goto blooper;
4079		} else if (!strcmp(maxlstint_text, v->text)) {
4080			if (1 != sscanf(val, "%u", &maxlstint))
4081				goto blooper;
4082		} else if (!strcmp(laddr_text, v->text)) {
4083			if (!decodenetnum(val, &laddr))
4084				goto blooper;
4085			lcladr = getinterface(&laddr, 0);
4086		} else if (1 == sscanf(v->text, last_fmt, &si) &&
4087			   (size_t)si < COUNTOF(last)) {
4088			if (2 != sscanf(val, "0x%08x.%08x", &ui, &uf))
4089				goto blooper;
4090			last[si].l_ui = ui;
4091			last[si].l_uf = uf;
4092			if (!SOCK_UNSPEC(&addr[si]) && si == priors)
4093				priors++;
4094		} else if (1 == sscanf(v->text, addr_fmt, &si) &&
4095			   (size_t)si < COUNTOF(addr)) {
4096			if (!decodenetnum(val, &addr[si]))
4097				goto blooper;
4098			if (last[si].l_ui && last[si].l_uf && si == priors)
4099				priors++;
4100		} else {
4101			DPRINTF(1, ("read_mru_list: invalid key item: '%s' (ignored)\n",
4102				    v->text));
4103			continue;
4104
4105		blooper:
4106			DPRINTF(1, ("read_mru_list: invalid param for '%s': '%s' (bailing)\n",
4107				    v->text, val));
4108			free(pnonce);
4109			pnonce = NULL;
4110			break;
4111		}
4112	}
4113	free_varlist(in_parms);
4114	in_parms = NULL;
4115
4116	/* return no responses until the nonce is validated */
4117	if (NULL == pnonce)
4118		return;
4119
4120	nonce_valid = validate_nonce(pnonce, rbufp);
4121	free(pnonce);
4122	if (!nonce_valid)
4123		return;
4124
4125	if ((0 == frags && !(0 < limit && limit <= MRU_ROW_LIMIT)) ||
4126	    frags > MRU_FRAGS_LIMIT) {
4127		ctl_error(CERR_BADVALUE);
4128		return;
4129	}
4130
4131	/*
4132	 * If either frags or limit is not given, use the max.
4133	 */
4134	if (0 != frags && 0 == limit)
4135		limit = UINT_MAX;
4136	else if (0 != limit && 0 == frags)
4137		frags = MRU_FRAGS_LIMIT;
4138
4139	/*
4140	 * Find the starting point if one was provided.
4141	 */
4142	mon = NULL;
4143	for (i = 0; i < (size_t)priors; i++) {
4144		hash = MON_HASH(&addr[i]);
4145		for (mon = mon_hash[hash];
4146		     mon != NULL;
4147		     mon = mon->hash_next)
4148			if (ADDR_PORT_EQ(&mon->rmtadr, &addr[i]))
4149				break;
4150		if (mon != NULL) {
4151			if (L_ISEQU(&mon->last, &last[i]))
4152				break;
4153			mon = NULL;
4154		}
4155	}
4156
4157	/* If a starting point was provided... */
4158	if (priors) {
4159		/* and none could be found unmodified... */
4160		if (NULL == mon) {
4161			/* tell ntpq to try again with older entries */
4162			ctl_error(CERR_UNKNOWNVAR);
4163			return;
4164		}
4165		/* confirm the prior entry used as starting point */
4166		ctl_putts("last.older", &mon->last);
4167		pch = sptoa(&mon->rmtadr);
4168		ctl_putunqstr("addr.older", pch, strlen(pch));
4169
4170		/*
4171		 * Move on to the first entry the client doesn't have,
4172		 * except in the special case of a limit of one.  In
4173		 * that case return the starting point entry.
4174		 */
4175		if (limit > 1)
4176			mon = PREV_DLIST(mon_mru_list, mon, mru);
4177	} else {	/* start with the oldest */
4178		mon = TAIL_DLIST(mon_mru_list, mru);
4179	}
4180
4181	/*
4182	 * send up to limit= entries in up to frags= datagrams
4183	 */
4184	get_systime(&now);
4185	generate_nonce(rbufp, buf, sizeof(buf));
4186	ctl_putunqstr("nonce", buf, strlen(buf));
4187	prior_mon = NULL;
4188	for (count = 0;
4189	     mon != NULL && res_frags < frags && count < limit;
4190	     mon = PREV_DLIST(mon_mru_list, mon, mru)) {
4191
4192		if (mon->count < mincount)
4193			continue;
4194		if (resall && resall != (resall & mon->flags))
4195			continue;
4196		if (resany && !(resany & mon->flags))
4197			continue;
4198		if (maxlstint > 0 && now.l_ui - mon->last.l_ui >
4199		    maxlstint)
4200			continue;
4201		if (lcladr != NULL && mon->lcladr != lcladr)
4202			continue;
4203
4204		send_mru_entry(mon, count);
4205		if (!count)
4206			send_random_tag_value(0);
4207		count++;
4208		prior_mon = mon;
4209	}
4210
4211	/*
4212	 * If this batch completes the MRU list, say so explicitly with
4213	 * a now= l_fp timestamp.
4214	 */
4215	if (NULL == mon) {
4216		if (count > 1)
4217			send_random_tag_value(count - 1);
4218		ctl_putts("now", &now);
4219		/* if any entries were returned confirm the last */
4220		if (prior_mon != NULL)
4221			ctl_putts("last.newest", &prior_mon->last);
4222	}
4223	ctl_flushpkt(0);
4224}
4225
4226
4227/*
4228 * Send a ifstats entry in response to a "ntpq -c ifstats" request.
4229 *
4230 * To keep clients honest about not depending on the order of values,
4231 * and thereby avoid being locked into ugly workarounds to maintain
4232 * backward compatibility later as new fields are added to the response,
4233 * the order is random.
4234 */
4235static void
4236send_ifstats_entry(
4237	endpt *	la,
4238	u_int	ifnum
4239	)
4240{
4241	const char addr_fmtu[] =	"addr.%u";
4242	const char bcast_fmt[] =	"bcast.%u";
4243	const char en_fmt[] =		"en.%u";	/* enabled */
4244	const char name_fmt[] =		"name.%u";
4245	const char flags_fmt[] =	"flags.%u";
4246	const char tl_fmt[] =		"tl.%u";	/* ttl */
4247	const char mc_fmt[] =		"mc.%u";	/* mcast count */
4248	const char rx_fmt[] =		"rx.%u";
4249	const char tx_fmt[] =		"tx.%u";
4250	const char txerr_fmt[] =	"txerr.%u";
4251	const char pc_fmt[] =		"pc.%u";	/* peer count */
4252	const char up_fmt[] =		"up.%u";	/* uptime */
4253	char	tag[32];
4254	u_char	sent[IFSTATS_FIELDS]; /* 12 tag=value pairs */
4255	int	noisebits;
4256	u_int32 noise;
4257	u_int	which;
4258	u_int	remaining;
4259	const char *pch;
4260
4261	remaining = COUNTOF(sent);
4262	ZERO(sent);
4263	noise = 0;
4264	noisebits = 0;
4265	while (remaining > 0) {
4266		if (noisebits < 4) {
4267			noise = rand() ^ (rand() << 16);
4268			noisebits = 31;
4269		}
4270		which = (noise & 0xf) % COUNTOF(sent);
4271		noise >>= 4;
4272		noisebits -= 4;
4273
4274		while (sent[which])
4275			which = (which + 1) % COUNTOF(sent);
4276
4277		switch (which) {
4278
4279		case 0:
4280			snprintf(tag, sizeof(tag), addr_fmtu, ifnum);
4281			pch = sptoa(&la->sin);
4282			ctl_putunqstr(tag, pch, strlen(pch));
4283			break;
4284
4285		case 1:
4286			snprintf(tag, sizeof(tag), bcast_fmt, ifnum);
4287			if (INT_BCASTOPEN & la->flags)
4288				pch = sptoa(&la->bcast);
4289			else
4290				pch = "";
4291			ctl_putunqstr(tag, pch, strlen(pch));
4292			break;
4293
4294		case 2:
4295			snprintf(tag, sizeof(tag), en_fmt, ifnum);
4296			ctl_putint(tag, !la->ignore_packets);
4297			break;
4298
4299		case 3:
4300			snprintf(tag, sizeof(tag), name_fmt, ifnum);
4301			ctl_putstr(tag, la->name, strlen(la->name));
4302			break;
4303
4304		case 4:
4305			snprintf(tag, sizeof(tag), flags_fmt, ifnum);
4306			ctl_puthex(tag, (u_int)la->flags);
4307			break;
4308
4309		case 5:
4310			snprintf(tag, sizeof(tag), tl_fmt, ifnum);
4311			ctl_putint(tag, la->last_ttl);
4312			break;
4313
4314		case 6:
4315			snprintf(tag, sizeof(tag), mc_fmt, ifnum);
4316			ctl_putint(tag, la->num_mcast);
4317			break;
4318
4319		case 7:
4320			snprintf(tag, sizeof(tag), rx_fmt, ifnum);
4321			ctl_putint(tag, la->received);
4322			break;
4323
4324		case 8:
4325			snprintf(tag, sizeof(tag), tx_fmt, ifnum);
4326			ctl_putint(tag, la->sent);
4327			break;
4328
4329		case 9:
4330			snprintf(tag, sizeof(tag), txerr_fmt, ifnum);
4331			ctl_putint(tag, la->notsent);
4332			break;
4333
4334		case 10:
4335			snprintf(tag, sizeof(tag), pc_fmt, ifnum);
4336			ctl_putuint(tag, la->peercnt);
4337			break;
4338
4339		case 11:
4340			snprintf(tag, sizeof(tag), up_fmt, ifnum);
4341			ctl_putuint(tag, current_time - la->starttime);
4342			break;
4343		}
4344		sent[which] = TRUE;
4345		remaining--;
4346	}
4347	send_random_tag_value((int)ifnum);
4348}
4349
4350
4351/*
4352 * read_ifstats - send statistics for each local address, exposed by
4353 *		  ntpq -c ifstats
4354 */
4355static void
4356read_ifstats(
4357	struct recvbuf *	rbufp
4358	)
4359{
4360	u_int	ifidx;
4361	endpt *	la;
4362
4363	/*
4364	 * loop over [0..sys_ifnum] searching ep_list for each
4365	 * ifnum in turn.
4366	 */
4367	for (ifidx = 0; ifidx < sys_ifnum; ifidx++) {
4368		for (la = ep_list; la != NULL; la = la->elink)
4369			if (ifidx == la->ifnum)
4370				break;
4371		if (NULL == la)
4372			continue;
4373		/* return stats for one local address */
4374		send_ifstats_entry(la, ifidx);
4375	}
4376	ctl_flushpkt(0);
4377}
4378
4379static void
4380sockaddrs_from_restrict_u(
4381	sockaddr_u *	psaA,
4382	sockaddr_u *	psaM,
4383	restrict_u *	pres,
4384	int		ipv6
4385	)
4386{
4387	ZERO(*psaA);
4388	ZERO(*psaM);
4389	if (!ipv6) {
4390		psaA->sa.sa_family = AF_INET;
4391		psaA->sa4.sin_addr.s_addr = htonl(pres->u.v4.addr);
4392		psaM->sa.sa_family = AF_INET;
4393		psaM->sa4.sin_addr.s_addr = htonl(pres->u.v4.mask);
4394	} else {
4395		psaA->sa.sa_family = AF_INET6;
4396		memcpy(&psaA->sa6.sin6_addr, &pres->u.v6.addr,
4397		       sizeof(psaA->sa6.sin6_addr));
4398		psaM->sa.sa_family = AF_INET6;
4399		memcpy(&psaM->sa6.sin6_addr, &pres->u.v6.mask,
4400		       sizeof(psaA->sa6.sin6_addr));
4401	}
4402}
4403
4404
4405/*
4406 * Send a restrict entry in response to a "ntpq -c reslist" request.
4407 *
4408 * To keep clients honest about not depending on the order of values,
4409 * and thereby avoid being locked into ugly workarounds to maintain
4410 * backward compatibility later as new fields are added to the response,
4411 * the order is random.
4412 */
4413static void
4414send_restrict_entry(
4415	restrict_u *	pres,
4416	int		ipv6,
4417	u_int		idx
4418	)
4419{
4420	const char addr_fmtu[] =	"addr.%u";
4421	const char mask_fmtu[] =	"mask.%u";
4422	const char hits_fmt[] =		"hits.%u";
4423	const char flags_fmt[] =	"flags.%u";
4424	char		tag[32];
4425	u_char		sent[RESLIST_FIELDS]; /* 4 tag=value pairs */
4426	int		noisebits;
4427	u_int32		noise;
4428	u_int		which;
4429	u_int		remaining;
4430	sockaddr_u	addr;
4431	sockaddr_u	mask;
4432	const char *	pch;
4433	char *		buf;
4434	const char *	match_str;
4435	const char *	access_str;
4436
4437	sockaddrs_from_restrict_u(&addr, &mask, pres, ipv6);
4438	remaining = COUNTOF(sent);
4439	ZERO(sent);
4440	noise = 0;
4441	noisebits = 0;
4442	while (remaining > 0) {
4443		if (noisebits < 2) {
4444			noise = rand() ^ (rand() << 16);
4445			noisebits = 31;
4446		}
4447		which = (noise & 0x3) % COUNTOF(sent);
4448		noise >>= 2;
4449		noisebits -= 2;
4450
4451		while (sent[which])
4452			which = (which + 1) % COUNTOF(sent);
4453
4454		/* XXX: Numbers?  Really? */
4455		switch (which) {
4456
4457		case 0:
4458			snprintf(tag, sizeof(tag), addr_fmtu, idx);
4459			pch = stoa(&addr);
4460			ctl_putunqstr(tag, pch, strlen(pch));
4461			break;
4462
4463		case 1:
4464			snprintf(tag, sizeof(tag), mask_fmtu, idx);
4465			pch = stoa(&mask);
4466			ctl_putunqstr(tag, pch, strlen(pch));
4467			break;
4468
4469		case 2:
4470			snprintf(tag, sizeof(tag), hits_fmt, idx);
4471			ctl_putuint(tag, pres->count);
4472			break;
4473
4474		case 3:
4475			snprintf(tag, sizeof(tag), flags_fmt, idx);
4476			match_str = res_match_flags(pres->mflags);
4477			access_str = res_access_flags(pres->rflags);
4478			if ('\0' == match_str[0]) {
4479				pch = access_str;
4480			} else {
4481				LIB_GETBUF(buf);
4482				snprintf(buf, LIB_BUFLENGTH, "%s %s",
4483					 match_str, access_str);
4484				pch = buf;
4485			}
4486			ctl_putunqstr(tag, pch, strlen(pch));
4487			break;
4488		}
4489		sent[which] = TRUE;
4490		remaining--;
4491	}
4492	send_random_tag_value((int)idx);
4493}
4494
4495
4496static void
4497send_restrict_list(
4498	restrict_u *	pres,
4499	int		ipv6,
4500	u_int *		pidx
4501	)
4502{
4503	for ( ; pres != NULL; pres = pres->link) {
4504		send_restrict_entry(pres, ipv6, *pidx);
4505		(*pidx)++;
4506	}
4507}
4508
4509
4510/*
4511 * read_addr_restrictions - returns IPv4 and IPv6 access control lists
4512 */
4513static void
4514read_addr_restrictions(
4515	struct recvbuf *	rbufp
4516)
4517{
4518	u_int idx;
4519
4520	idx = 0;
4521	send_restrict_list(restrictlist4, FALSE, &idx);
4522	send_restrict_list(restrictlist6, TRUE, &idx);
4523	ctl_flushpkt(0);
4524}
4525
4526
4527/*
4528 * read_ordlist - CTL_OP_READ_ORDLIST_A for ntpq -c ifstats & reslist
4529 */
4530static void
4531read_ordlist(
4532	struct recvbuf *	rbufp,
4533	int			restrict_mask
4534	)
4535{
4536	const char ifstats_s[] = "ifstats";
4537	const size_t ifstats_chars = COUNTOF(ifstats_s) - 1;
4538	const char addr_rst_s[] = "addr_restrictions";
4539	const size_t a_r_chars = COUNTOF(addr_rst_s) - 1;
4540	struct ntp_control *	cpkt;
4541	u_short			qdata_octets;
4542
4543	/*
4544	 * CTL_OP_READ_ORDLIST_A was first named CTL_OP_READ_IFSTATS and
4545	 * used only for ntpq -c ifstats.  With the addition of reslist
4546	 * the same opcode was generalized to retrieve ordered lists
4547	 * which require authentication.  The request data is empty or
4548	 * contains "ifstats" (not null terminated) to retrieve local
4549	 * addresses and associated stats.  It is "addr_restrictions"
4550	 * to retrieve the IPv4 then IPv6 remote address restrictions,
4551	 * which are access control lists.  Other request data return
4552	 * CERR_UNKNOWNVAR.
4553	 */
4554	cpkt = (struct ntp_control *)&rbufp->recv_pkt;
4555	qdata_octets = ntohs(cpkt->count);
4556	if (0 == qdata_octets || (ifstats_chars == qdata_octets &&
4557	    !memcmp(ifstats_s, cpkt->u.data, ifstats_chars))) {
4558		read_ifstats(rbufp);
4559		return;
4560	}
4561	if (a_r_chars == qdata_octets &&
4562	    !memcmp(addr_rst_s, cpkt->u.data, a_r_chars)) {
4563		read_addr_restrictions(rbufp);
4564		return;
4565	}
4566	ctl_error(CERR_UNKNOWNVAR);
4567}
4568
4569
4570/*
4571 * req_nonce - CTL_OP_REQ_NONCE for ntpq -c mrulist prerequisite.
4572 */
4573static void req_nonce(
4574	struct recvbuf *	rbufp,
4575	int			restrict_mask
4576	)
4577{
4578	char	buf[64];
4579
4580	generate_nonce(rbufp, buf, sizeof(buf));
4581	ctl_putunqstr("nonce", buf, strlen(buf));
4582	ctl_flushpkt(0);
4583}
4584
4585
4586/*
4587 * read_clockstatus - return clock radio status
4588 */
4589/*ARGSUSED*/
4590static void
4591read_clockstatus(
4592	struct recvbuf *rbufp,
4593	int restrict_mask
4594	)
4595{
4596#ifndef REFCLOCK
4597	/*
4598	 * If no refclock support, no data to return
4599	 */
4600	ctl_error(CERR_BADASSOC);
4601#else
4602	const struct ctl_var *	v;
4603	int			i;
4604	struct peer *		peer;
4605	char *			valuep;
4606	u_char *		wants;
4607	size_t			wants_alloc;
4608	int			gotvar;
4609	const u_char *		cc;
4610	struct ctl_var *	kv;
4611	struct refclockstat	cs;
4612
4613	if (res_associd != 0) {
4614		peer = findpeerbyassoc(res_associd);
4615	} else {
4616		/*
4617		 * Find a clock for this jerk.	If the system peer
4618		 * is a clock use it, else search peer_list for one.
4619		 */
4620		if (sys_peer != NULL && (FLAG_REFCLOCK &
4621		    sys_peer->flags))
4622			peer = sys_peer;
4623		else
4624			for (peer = peer_list;
4625			     peer != NULL;
4626			     peer = peer->p_link)
4627				if (FLAG_REFCLOCK & peer->flags)
4628					break;
4629	}
4630	if (NULL == peer || !(FLAG_REFCLOCK & peer->flags)) {
4631		ctl_error(CERR_BADASSOC);
4632		return;
4633	}
4634	/*
4635	 * If we got here we have a peer which is a clock. Get his
4636	 * status.
4637	 */
4638	cs.kv_list = NULL;
4639	refclock_control(&peer->srcadr, NULL, &cs);
4640	kv = cs.kv_list;
4641	/*
4642	 * Look for variables in the packet.
4643	 */
4644	rpkt.status = htons(ctlclkstatus(&cs));
4645	wants_alloc = CC_MAXCODE + 1 + count_var(kv);
4646	wants = emalloc_zero(wants_alloc);
4647	gotvar = FALSE;
4648	while (NULL != (v = ctl_getitem(clock_var, &valuep))) {
4649		if (!(EOV & v->flags)) {
4650			wants[v->code] = TRUE;
4651			gotvar = TRUE;
4652		} else {
4653			v = ctl_getitem(kv, &valuep);
4654			if (NULL == v) {
4655				ctl_error(CERR_BADVALUE);
4656				free(wants);
4657				free_varlist(cs.kv_list);
4658				return;
4659			}
4660			if (EOV & v->flags) {
4661				ctl_error(CERR_UNKNOWNVAR);
4662				free(wants);
4663				free_varlist(cs.kv_list);
4664				return;
4665			}
4666			wants[CC_MAXCODE + 1 + v->code] = TRUE;
4667			gotvar = TRUE;
4668		}
4669	}
4670
4671	if (gotvar) {
4672		for (i = 1; i <= CC_MAXCODE; i++)
4673			if (wants[i])
4674				ctl_putclock(i, &cs, TRUE);
4675		if (kv != NULL)
4676			for (i = 0; !(EOV & kv[i].flags); i++)
4677				if (wants[i + CC_MAXCODE + 1])
4678					ctl_putdata(kv[i].text,
4679						    strlen(kv[i].text),
4680						    FALSE);
4681	} else {
4682		for (cc = def_clock_var; *cc != 0; cc++)
4683			ctl_putclock((int)*cc, &cs, FALSE);
4684		for ( ; kv != NULL && !(EOV & kv->flags); kv++)
4685			if (DEF & kv->flags)
4686				ctl_putdata(kv->text, strlen(kv->text),
4687					    FALSE);
4688	}
4689
4690	free(wants);
4691	free_varlist(cs.kv_list);
4692
4693	ctl_flushpkt(0);
4694#endif
4695}
4696
4697
4698/*
4699 * write_clockstatus - we don't do this
4700 */
4701/*ARGSUSED*/
4702static void
4703write_clockstatus(
4704	struct recvbuf *rbufp,
4705	int restrict_mask
4706	)
4707{
4708	ctl_error(CERR_PERMISSION);
4709}
4710
4711/*
4712 * Trap support from here on down. We send async trap messages when the
4713 * upper levels report trouble. Traps can by set either by control
4714 * messages or by configuration.
4715 */
4716/*
4717 * set_trap - set a trap in response to a control message
4718 */
4719static void
4720set_trap(
4721	struct recvbuf *rbufp,
4722	int restrict_mask
4723	)
4724{
4725	int traptype;
4726
4727	/*
4728	 * See if this guy is allowed
4729	 */
4730	if (restrict_mask & RES_NOTRAP) {
4731		ctl_error(CERR_PERMISSION);
4732		return;
4733	}
4734
4735	/*
4736	 * Determine his allowed trap type.
4737	 */
4738	traptype = TRAP_TYPE_PRIO;
4739	if (restrict_mask & RES_LPTRAP)
4740		traptype = TRAP_TYPE_NONPRIO;
4741
4742	/*
4743	 * Call ctlsettrap() to do the work.  Return
4744	 * an error if it can't assign the trap.
4745	 */
4746	if (!ctlsettrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype,
4747			(int)res_version))
4748		ctl_error(CERR_NORESOURCE);
4749	ctl_flushpkt(0);
4750}
4751
4752
4753/*
4754 * unset_trap - unset a trap in response to a control message
4755 */
4756static void
4757unset_trap(
4758	struct recvbuf *rbufp,
4759	int restrict_mask
4760	)
4761{
4762	int traptype;
4763
4764	/*
4765	 * We don't prevent anyone from removing his own trap unless the
4766	 * trap is configured. Note we also must be aware of the
4767	 * possibility that restriction flags were changed since this
4768	 * guy last set his trap. Set the trap type based on this.
4769	 */
4770	traptype = TRAP_TYPE_PRIO;
4771	if (restrict_mask & RES_LPTRAP)
4772		traptype = TRAP_TYPE_NONPRIO;
4773
4774	/*
4775	 * Call ctlclrtrap() to clear this out.
4776	 */
4777	if (!ctlclrtrap(&rbufp->recv_srcadr, rbufp->dstadr, traptype))
4778		ctl_error(CERR_BADASSOC);
4779	ctl_flushpkt(0);
4780}
4781
4782
4783/*
4784 * ctlsettrap - called to set a trap
4785 */
4786int
4787ctlsettrap(
4788	sockaddr_u *raddr,
4789	struct interface *linter,
4790	int traptype,
4791	int version
4792	)
4793{
4794	size_t n;
4795	struct ctl_trap *tp;
4796	struct ctl_trap *tptouse;
4797
4798	/*
4799	 * See if we can find this trap.  If so, we only need update
4800	 * the flags and the time.
4801	 */
4802	if ((tp = ctlfindtrap(raddr, linter)) != NULL) {
4803		switch (traptype) {
4804
4805		case TRAP_TYPE_CONFIG:
4806			tp->tr_flags = TRAP_INUSE|TRAP_CONFIGURED;
4807			break;
4808
4809		case TRAP_TYPE_PRIO:
4810			if (tp->tr_flags & TRAP_CONFIGURED)
4811				return (1); /* don't change anything */
4812			tp->tr_flags = TRAP_INUSE;
4813			break;
4814
4815		case TRAP_TYPE_NONPRIO:
4816			if (tp->tr_flags & TRAP_CONFIGURED)
4817				return (1); /* don't change anything */
4818			tp->tr_flags = TRAP_INUSE|TRAP_NONPRIO;
4819			break;
4820		}
4821		tp->tr_settime = current_time;
4822		tp->tr_resets++;
4823		return (1);
4824	}
4825
4826	/*
4827	 * First we heard of this guy.	Try to find a trap structure
4828	 * for him to use, clearing out lesser priority guys if we
4829	 * have to. Clear out anyone who's expired while we're at it.
4830	 */
4831	tptouse = NULL;
4832	for (n = 0; n < COUNTOF(ctl_traps); n++) {
4833		tp = &ctl_traps[n];
4834		if ((TRAP_INUSE & tp->tr_flags) &&
4835		    !(TRAP_CONFIGURED & tp->tr_flags) &&
4836		    ((tp->tr_settime + CTL_TRAPTIME) > current_time)) {
4837			tp->tr_flags = 0;
4838			num_ctl_traps--;
4839		}
4840		if (!(TRAP_INUSE & tp->tr_flags)) {
4841			tptouse = tp;
4842		} else if (!(TRAP_CONFIGURED & tp->tr_flags)) {
4843			switch (traptype) {
4844
4845			case TRAP_TYPE_CONFIG:
4846				if (tptouse == NULL) {
4847					tptouse = tp;
4848					break;
4849				}
4850				if ((TRAP_NONPRIO & tptouse->tr_flags) &&
4851				    !(TRAP_NONPRIO & tp->tr_flags))
4852					break;
4853
4854				if (!(TRAP_NONPRIO & tptouse->tr_flags)
4855				    && (TRAP_NONPRIO & tp->tr_flags)) {
4856					tptouse = tp;
4857					break;
4858				}
4859				if (tptouse->tr_origtime <
4860				    tp->tr_origtime)
4861					tptouse = tp;
4862				break;
4863
4864			case TRAP_TYPE_PRIO:
4865				if ( TRAP_NONPRIO & tp->tr_flags) {
4866					if (tptouse == NULL ||
4867					    ((TRAP_INUSE &
4868					      tptouse->tr_flags) &&
4869					     tptouse->tr_origtime <
4870					     tp->tr_origtime))
4871						tptouse = tp;
4872				}
4873				break;
4874
4875			case TRAP_TYPE_NONPRIO:
4876				break;
4877			}
4878		}
4879	}
4880
4881	/*
4882	 * If we don't have room for him return an error.
4883	 */
4884	if (tptouse == NULL)
4885		return (0);
4886
4887	/*
4888	 * Set up this structure for him.
4889	 */
4890	tptouse->tr_settime = tptouse->tr_origtime = current_time;
4891	tptouse->tr_count = tptouse->tr_resets = 0;
4892	tptouse->tr_sequence = 1;
4893	tptouse->tr_addr = *raddr;
4894	tptouse->tr_localaddr = linter;
4895	tptouse->tr_version = (u_char) version;
4896	tptouse->tr_flags = TRAP_INUSE;
4897	if (traptype == TRAP_TYPE_CONFIG)
4898		tptouse->tr_flags |= TRAP_CONFIGURED;
4899	else if (traptype == TRAP_TYPE_NONPRIO)
4900		tptouse->tr_flags |= TRAP_NONPRIO;
4901	num_ctl_traps++;
4902	return (1);
4903}
4904
4905
4906/*
4907 * ctlclrtrap - called to clear a trap
4908 */
4909int
4910ctlclrtrap(
4911	sockaddr_u *raddr,
4912	struct interface *linter,
4913	int traptype
4914	)
4915{
4916	register struct ctl_trap *tp;
4917
4918	if ((tp = ctlfindtrap(raddr, linter)) == NULL)
4919		return (0);
4920
4921	if (tp->tr_flags & TRAP_CONFIGURED
4922	    && traptype != TRAP_TYPE_CONFIG)
4923		return (0);
4924
4925	tp->tr_flags = 0;
4926	num_ctl_traps--;
4927	return (1);
4928}
4929
4930
4931/*
4932 * ctlfindtrap - find a trap given the remote and local addresses
4933 */
4934static struct ctl_trap *
4935ctlfindtrap(
4936	sockaddr_u *raddr,
4937	struct interface *linter
4938	)
4939{
4940	size_t	n;
4941
4942	for (n = 0; n < COUNTOF(ctl_traps); n++)
4943		if ((ctl_traps[n].tr_flags & TRAP_INUSE)
4944		    && ADDR_PORT_EQ(raddr, &ctl_traps[n].tr_addr)
4945		    && (linter == ctl_traps[n].tr_localaddr))
4946			return &ctl_traps[n];
4947
4948	return NULL;
4949}
4950
4951
4952/*
4953 * report_event - report an event to the trappers
4954 */
4955void
4956report_event(
4957	int	err,		/* error code */
4958	struct peer *peer,	/* peer structure pointer */
4959	const char *str		/* protostats string */
4960	)
4961{
4962	char	statstr[NTP_MAXSTRLEN];
4963	int	i;
4964	size_t	len;
4965
4966	/*
4967	 * Report the error to the protostats file, system log and
4968	 * trappers.
4969	 */
4970	if (peer == NULL) {
4971
4972		/*
4973		 * Discard a system report if the number of reports of
4974		 * the same type exceeds the maximum.
4975		 */
4976		if (ctl_sys_last_event != (u_char)err)
4977			ctl_sys_num_events= 0;
4978		if (ctl_sys_num_events >= CTL_SYS_MAXEVENTS)
4979			return;
4980
4981		ctl_sys_last_event = (u_char)err;
4982		ctl_sys_num_events++;
4983		snprintf(statstr, sizeof(statstr),
4984		    "0.0.0.0 %04x %02x %s",
4985		    ctlsysstatus(), err, eventstr(err));
4986		if (str != NULL) {
4987			len = strlen(statstr);
4988			snprintf(statstr + len, sizeof(statstr) - len,
4989			    " %s", str);
4990		}
4991		NLOG(NLOG_SYSEVENT)
4992			msyslog(LOG_INFO, "%s", statstr);
4993	} else {
4994
4995		/*
4996		 * Discard a peer report if the number of reports of
4997		 * the same type exceeds the maximum for that peer.
4998		 */
4999		const char *	src;
5000		u_char		errlast;
5001
5002		errlast = (u_char)err & ~PEER_EVENT;
5003		if (peer->last_event != errlast)
5004			peer->num_events = 0;
5005		if (peer->num_events >= CTL_PEER_MAXEVENTS)
5006			return;
5007
5008		peer->last_event = errlast;
5009		peer->num_events++;
5010		if (ISREFCLOCKADR(&peer->srcadr))
5011			src = refnumtoa(&peer->srcadr);
5012		else
5013			src = stoa(&peer->srcadr);
5014
5015		snprintf(statstr, sizeof(statstr),
5016		    "%s %04x %02x %s", src,
5017		    ctlpeerstatus(peer), err, eventstr(err));
5018		if (str != NULL) {
5019			len = strlen(statstr);
5020			snprintf(statstr + len, sizeof(statstr) - len,
5021			    " %s", str);
5022		}
5023		NLOG(NLOG_PEEREVENT)
5024			msyslog(LOG_INFO, "%s", statstr);
5025	}
5026	record_proto_stats(statstr);
5027#if DEBUG
5028	if (debug)
5029		printf("event at %lu %s\n", current_time, statstr);
5030#endif
5031
5032	/*
5033	 * If no trappers, return.
5034	 */
5035	if (num_ctl_traps <= 0)
5036		return;
5037
5038	/* [Bug 3119]
5039	 * Peer Events should be associated with a peer -- hence the
5040	 * name. But there are instances where this function is called
5041	 * *without* a valid peer. This happens e.g. with an unsolicited
5042	 * CryptoNAK, or when a leap second alarm is going off while
5043	 * currently without a system peer.
5044	 *
5045	 * The most sensible approach to this seems to bail out here if
5046	 * this happens. Avoiding to call this function would also
5047	 * bypass the log reporting in the first part of this function,
5048	 * and this is probably not the best of all options.
5049	 *   -*-perlinger@ntp.org-*-
5050	 */
5051	if ((err & PEER_EVENT) && !peer)
5052		return;
5053
5054	/*
5055	 * Set up the outgoing packet variables
5056	 */
5057	res_opcode = CTL_OP_ASYNCMSG;
5058	res_offset = 0;
5059	res_async = TRUE;
5060	res_authenticate = FALSE;
5061	datapt = rpkt.u.data;
5062	dataend = &rpkt.u.data[CTL_MAX_DATA_LEN];
5063	if (!(err & PEER_EVENT)) {
5064		rpkt.associd = 0;
5065		rpkt.status = htons(ctlsysstatus());
5066
5067		/* Include the core system variables and the list. */
5068		for (i = 1; i <= CS_VARLIST; i++)
5069			ctl_putsys(i);
5070	} else if (NULL != peer) { /* paranoia -- skip output */
5071		rpkt.associd = htons(peer->associd);
5072		rpkt.status = htons(ctlpeerstatus(peer));
5073
5074		/* Dump it all. Later, maybe less. */
5075		for (i = 1; i <= CP_MAX_NOAUTOKEY; i++)
5076			ctl_putpeer(i, peer);
5077#	    ifdef REFCLOCK
5078		/*
5079		 * for clock exception events: add clock variables to
5080		 * reflect info on exception
5081		 */
5082		if (err == PEVNT_CLOCK) {
5083			struct refclockstat cs;
5084			struct ctl_var *kv;
5085
5086			cs.kv_list = NULL;
5087			refclock_control(&peer->srcadr, NULL, &cs);
5088
5089			ctl_puthex("refclockstatus",
5090				   ctlclkstatus(&cs));
5091
5092			for (i = 1; i <= CC_MAXCODE; i++)
5093				ctl_putclock(i, &cs, FALSE);
5094			for (kv = cs.kv_list;
5095			     kv != NULL && !(EOV & kv->flags);
5096			     kv++)
5097				if (DEF & kv->flags)
5098					ctl_putdata(kv->text,
5099						    strlen(kv->text),
5100						    FALSE);
5101			free_varlist(cs.kv_list);
5102		}
5103#	    endif /* REFCLOCK */
5104	}
5105
5106	/*
5107	 * We're done, return.
5108	 */
5109	ctl_flushpkt(0);
5110}
5111
5112
5113/*
5114 * mprintf_event - printf-style varargs variant of report_event()
5115 */
5116int
5117mprintf_event(
5118	int		evcode,		/* event code */
5119	struct peer *	p,		/* may be NULL */
5120	const char *	fmt,		/* msnprintf format */
5121	...
5122	)
5123{
5124	va_list	ap;
5125	int	rc;
5126	char	msg[512];
5127
5128	va_start(ap, fmt);
5129	rc = mvsnprintf(msg, sizeof(msg), fmt, ap);
5130	va_end(ap);
5131	report_event(evcode, p, msg);
5132
5133	return rc;
5134}
5135
5136
5137/*
5138 * ctl_clr_stats - clear stat counters
5139 */
5140void
5141ctl_clr_stats(void)
5142{
5143	ctltimereset = current_time;
5144	numctlreq = 0;
5145	numctlbadpkts = 0;
5146	numctlresponses = 0;
5147	numctlfrags = 0;
5148	numctlerrors = 0;
5149	numctlfrags = 0;
5150	numctltooshort = 0;
5151	numctlinputresp = 0;
5152	numctlinputfrag = 0;
5153	numctlinputerr = 0;
5154	numctlbadoffset = 0;
5155	numctlbadversion = 0;
5156	numctldatatooshort = 0;
5157	numctlbadop = 0;
5158	numasyncmsgs = 0;
5159}
5160
5161static u_short
5162count_var(
5163	const struct ctl_var *k
5164	)
5165{
5166	u_int c;
5167
5168	if (NULL == k)
5169		return 0;
5170
5171	c = 0;
5172	while (!(EOV & (k++)->flags))
5173		c++;
5174
5175	ENSURE(c <= USHRT_MAX);
5176	return (u_short)c;
5177}
5178
5179
5180char *
5181add_var(
5182	struct ctl_var **kv,
5183	u_long size,
5184	u_short def
5185	)
5186{
5187	u_short		c;
5188	struct ctl_var *k;
5189	char *		buf;
5190
5191	c = count_var(*kv);
5192	*kv  = erealloc(*kv, (c + 2) * sizeof(**kv));
5193	k = *kv;
5194	buf = emalloc(size);
5195	k[c].code  = c;
5196	k[c].text  = buf;
5197	k[c].flags = def;
5198	k[c + 1].code  = 0;
5199	k[c + 1].text  = NULL;
5200	k[c + 1].flags = EOV;
5201
5202	return buf;
5203}
5204
5205
5206void
5207set_var(
5208	struct ctl_var **kv,
5209	const char *data,
5210	u_long size,
5211	u_short def
5212	)
5213{
5214	struct ctl_var *k;
5215	const char *s;
5216	const char *t;
5217	char *td;
5218
5219	if (NULL == data || !size)
5220		return;
5221
5222	k = *kv;
5223	if (k != NULL) {
5224		while (!(EOV & k->flags)) {
5225			if (NULL == k->text)	{
5226				td = emalloc(size);
5227				memcpy(td, data, size);
5228				k->text = td;
5229				k->flags = def;
5230				return;
5231			} else {
5232				s = data;
5233				t = k->text;
5234				while (*t != '=' && *s == *t) {
5235					s++;
5236					t++;
5237				}
5238				if (*s == *t && ((*t == '=') || !*t)) {
5239					td = erealloc((void *)(intptr_t)k->text, size);
5240					memcpy(td, data, size);
5241					k->text = td;
5242					k->flags = def;
5243					return;
5244				}
5245			}
5246			k++;
5247		}
5248	}
5249	td = add_var(kv, size, def);
5250	memcpy(td, data, size);
5251}
5252
5253
5254void
5255set_sys_var(
5256	const char *data,
5257	u_long size,
5258	u_short def
5259	)
5260{
5261	set_var(&ext_sys_var, data, size, def);
5262}
5263
5264
5265/*
5266 * get_ext_sys_var() retrieves the value of a user-defined variable or
5267 * NULL if the variable has not been setvar'd.
5268 */
5269const char *
5270get_ext_sys_var(const char *tag)
5271{
5272	struct ctl_var *	v;
5273	size_t			c;
5274	const char *		val;
5275
5276	val = NULL;
5277	c = strlen(tag);
5278	for (v = ext_sys_var; !(EOV & v->flags); v++) {
5279		if (NULL != v->text && !memcmp(tag, v->text, c)) {
5280			if ('=' == v->text[c]) {
5281				val = v->text + c + 1;
5282				break;
5283			} else if ('\0' == v->text[c]) {
5284				val = "";
5285				break;
5286			}
5287		}
5288	}
5289
5290	return val;
5291}
5292
5293
5294void
5295free_varlist(
5296	struct ctl_var *kv
5297	)
5298{
5299	struct ctl_var *k;
5300	if (kv) {
5301		for (k = kv; !(k->flags & EOV); k++)
5302			free((void *)(intptr_t)k->text);
5303		free((void *)kv);
5304	}
5305}
5306