lcode.c revision 344220
1/*
2** $Id: lcode.c,v 2.112.1.1 2017/04/19 17:20:42 roberto Exp $
3** Code generator for Lua
4** See Copyright Notice in lua.h
5*/
6
7#define lcode_c
8#define LUA_CORE
9
10#include "lprefix.h"
11
12
13#include <math.h>
14#include <stdlib.h>
15
16#include "lua.h"
17
18#include "lcode.h"
19#include "ldebug.h"
20#include "ldo.h"
21#include "lgc.h"
22#include "llex.h"
23#include "lmem.h"
24#include "lobject.h"
25#include "lopcodes.h"
26#include "lparser.h"
27#include "lstring.h"
28#include "ltable.h"
29#include "lvm.h"
30
31
32/* Maximum number of registers in a Lua function (must fit in 8 bits) */
33#define MAXREGS		255
34
35
36#define hasjumps(e)	((e)->t != (e)->f)
37
38
39/*
40** If expression is a numeric constant, fills 'v' with its value
41** and returns 1. Otherwise, returns 0.
42*/
43static int tonumeral(const expdesc *e, TValue *v) {
44  if (hasjumps(e))
45    return 0;  /* not a numeral */
46  switch (e->k) {
47    case VKINT:
48      if (v) setivalue(v, e->u.ival);
49      return 1;
50    case VKFLT:
51      if (v) setfltvalue(v, e->u.nval);
52      return 1;
53    default: return 0;
54  }
55}
56
57
58/*
59** Create a OP_LOADNIL instruction, but try to optimize: if the previous
60** instruction is also OP_LOADNIL and ranges are compatible, adjust
61** range of previous instruction instead of emitting a new one. (For
62** instance, 'local a; local b' will generate a single opcode.)
63*/
64void luaK_nil (FuncState *fs, int from, int n) {
65  Instruction *previous;
66  int l = from + n - 1;  /* last register to set nil */
67  if (fs->pc > fs->lasttarget) {  /* no jumps to current position? */
68    previous = &fs->f->code[fs->pc-1];
69    if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
70      int pfrom = GETARG_A(*previous);  /* get previous range */
71      int pl = pfrom + GETARG_B(*previous);
72      if ((pfrom <= from && from <= pl + 1) ||
73          (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
74        if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
75        if (pl > l) l = pl;  /* l = max(l, pl) */
76        SETARG_A(*previous, from);
77        SETARG_B(*previous, l - from);
78        return;
79      }
80    }  /* else go through */
81  }
82  luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
83}
84
85
86/*
87** Gets the destination address of a jump instruction. Used to traverse
88** a list of jumps.
89*/
90static int getjump (FuncState *fs, int pc) {
91  int offset = GETARG_sBx(fs->f->code[pc]);
92  if (offset == NO_JUMP)  /* point to itself represents end of list */
93    return NO_JUMP;  /* end of list */
94  else
95    return (pc+1)+offset;  /* turn offset into absolute position */
96}
97
98
99/*
100** Fix jump instruction at position 'pc' to jump to 'dest'.
101** (Jump addresses are relative in Lua)
102*/
103static void fixjump (FuncState *fs, int pc, int dest) {
104  Instruction *jmp = &fs->f->code[pc];
105  int offset = dest - (pc + 1);
106  lua_assert(dest != NO_JUMP);
107  if (abs(offset) > MAXARG_sBx)
108    luaX_syntaxerror(fs->ls, "control structure too long");
109  SETARG_sBx(*jmp, offset);
110}
111
112
113/*
114** Concatenate jump-list 'l2' into jump-list 'l1'
115*/
116void luaK_concat (FuncState *fs, int *l1, int l2) {
117  if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
118  else if (*l1 == NO_JUMP)  /* no original list? */
119    *l1 = l2;  /* 'l1' points to 'l2' */
120  else {
121    int list = *l1;
122    int next;
123    while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
124      list = next;
125    fixjump(fs, list, l2);  /* last element links to 'l2' */
126  }
127}
128
129
130/*
131** Create a jump instruction and return its position, so its destination
132** can be fixed later (with 'fixjump'). If there are jumps to
133** this position (kept in 'jpc'), link them all together so that
134** 'patchlistaux' will fix all them directly to the final destination.
135*/
136int luaK_jump (FuncState *fs) {
137  int jpc = fs->jpc;  /* save list of jumps to here */
138  int j;
139  fs->jpc = NO_JUMP;  /* no more jumps to here */
140  j = luaK_codeAsBx(fs, OP_JMP, 0, NO_JUMP);
141  luaK_concat(fs, &j, jpc);  /* keep them on hold */
142  return j;
143}
144
145
146/*
147** Code a 'return' instruction
148*/
149void luaK_ret (FuncState *fs, int first, int nret) {
150  luaK_codeABC(fs, OP_RETURN, first, nret+1, 0);
151}
152
153
154/*
155** Code a "conditional jump", that is, a test or comparison opcode
156** followed by a jump. Return jump position.
157*/
158static int condjump (FuncState *fs, OpCode op, int A, int B, int C) {
159  luaK_codeABC(fs, op, A, B, C);
160  return luaK_jump(fs);
161}
162
163
164/*
165** returns current 'pc' and marks it as a jump target (to avoid wrong
166** optimizations with consecutive instructions not in the same basic block).
167*/
168int luaK_getlabel (FuncState *fs) {
169  fs->lasttarget = fs->pc;
170  return fs->pc;
171}
172
173
174/*
175** Returns the position of the instruction "controlling" a given
176** jump (that is, its condition), or the jump itself if it is
177** unconditional.
178*/
179static Instruction *getjumpcontrol (FuncState *fs, int pc) {
180  Instruction *pi = &fs->f->code[pc];
181  if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
182    return pi-1;
183  else
184    return pi;
185}
186
187
188/*
189** Patch destination register for a TESTSET instruction.
190** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
191** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
192** register. Otherwise, change instruction to a simple 'TEST' (produces
193** no register value)
194*/
195static int patchtestreg (FuncState *fs, int node, int reg) {
196  Instruction *i = getjumpcontrol(fs, node);
197  if (GET_OPCODE(*i) != OP_TESTSET)
198    return 0;  /* cannot patch other instructions */
199  if (reg != NO_REG && reg != GETARG_B(*i))
200    SETARG_A(*i, reg);
201  else {
202     /* no register to put value or register already has the value;
203        change instruction to simple test */
204    *i = CREATE_ABC(OP_TEST, GETARG_B(*i), 0, GETARG_C(*i));
205  }
206  return 1;
207}
208
209
210/*
211** Traverse a list of tests ensuring no one produces a value
212*/
213static void removevalues (FuncState *fs, int list) {
214  for (; list != NO_JUMP; list = getjump(fs, list))
215      patchtestreg(fs, list, NO_REG);
216}
217
218
219/*
220** Traverse a list of tests, patching their destination address and
221** registers: tests producing values jump to 'vtarget' (and put their
222** values in 'reg'), other tests jump to 'dtarget'.
223*/
224static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
225                          int dtarget) {
226  while (list != NO_JUMP) {
227    int next = getjump(fs, list);
228    if (patchtestreg(fs, list, reg))
229      fixjump(fs, list, vtarget);
230    else
231      fixjump(fs, list, dtarget);  /* jump to default target */
232    list = next;
233  }
234}
235
236
237/*
238** Ensure all pending jumps to current position are fixed (jumping
239** to current position with no values) and reset list of pending
240** jumps
241*/
242static void dischargejpc (FuncState *fs) {
243  patchlistaux(fs, fs->jpc, fs->pc, NO_REG, fs->pc);
244  fs->jpc = NO_JUMP;
245}
246
247
248/*
249** Add elements in 'list' to list of pending jumps to "here"
250** (current position)
251*/
252void luaK_patchtohere (FuncState *fs, int list) {
253  luaK_getlabel(fs);  /* mark "here" as a jump target */
254  luaK_concat(fs, &fs->jpc, list);
255}
256
257
258/*
259** Path all jumps in 'list' to jump to 'target'.
260** (The assert means that we cannot fix a jump to a forward address
261** because we only know addresses once code is generated.)
262*/
263void luaK_patchlist (FuncState *fs, int list, int target) {
264  if (target == fs->pc)  /* 'target' is current position? */
265    luaK_patchtohere(fs, list);  /* add list to pending jumps */
266  else {
267    lua_assert(target < fs->pc);
268    patchlistaux(fs, list, target, NO_REG, target);
269  }
270}
271
272
273/*
274** Path all jumps in 'list' to close upvalues up to given 'level'
275** (The assertion checks that jumps either were closing nothing
276** or were closing higher levels, from inner blocks.)
277*/
278void luaK_patchclose (FuncState *fs, int list, int level) {
279  level++;  /* argument is +1 to reserve 0 as non-op */
280  for (; list != NO_JUMP; list = getjump(fs, list)) {
281    lua_assert(GET_OPCODE(fs->f->code[list]) == OP_JMP &&
282                (GETARG_A(fs->f->code[list]) == 0 ||
283                 GETARG_A(fs->f->code[list]) >= level));
284    SETARG_A(fs->f->code[list], level);
285  }
286}
287
288
289/*
290** Emit instruction 'i', checking for array sizes and saving also its
291** line information. Return 'i' position.
292*/
293static int luaK_code (FuncState *fs, Instruction i) {
294  Proto *f = fs->f;
295  dischargejpc(fs);  /* 'pc' will change */
296  /* put new instruction in code array */
297  luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
298                  MAX_INT, "opcodes");
299  f->code[fs->pc] = i;
300  /* save corresponding line information */
301  luaM_growvector(fs->ls->L, f->lineinfo, fs->pc, f->sizelineinfo, int,
302                  MAX_INT, "opcodes");
303  f->lineinfo[fs->pc] = fs->ls->lastline;
304  return fs->pc++;
305}
306
307
308/*
309** Format and emit an 'iABC' instruction. (Assertions check consistency
310** of parameters versus opcode.)
311*/
312int luaK_codeABC (FuncState *fs, OpCode o, int a, int b, int c) {
313  lua_assert(getOpMode(o) == iABC);
314  lua_assert(getBMode(o) != OpArgN || b == 0);
315  lua_assert(getCMode(o) != OpArgN || c == 0);
316  lua_assert(a <= MAXARG_A && b <= MAXARG_B && c <= MAXARG_C);
317  return luaK_code(fs, CREATE_ABC(o, a, b, c));
318}
319
320
321/*
322** Format and emit an 'iABx' instruction.
323*/
324int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
325  lua_assert(getOpMode(o) == iABx || getOpMode(o) == iAsBx);
326  lua_assert(getCMode(o) == OpArgN);
327  lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
328  return luaK_code(fs, CREATE_ABx(o, a, bc));
329}
330
331
332/*
333** Emit an "extra argument" instruction (format 'iAx')
334*/
335static int codeextraarg (FuncState *fs, int a) {
336  lua_assert(a <= MAXARG_Ax);
337  return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
338}
339
340
341/*
342** Emit a "load constant" instruction, using either 'OP_LOADK'
343** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
344** instruction with "extra argument".
345*/
346int luaK_codek (FuncState *fs, int reg, int k) {
347  if (k <= MAXARG_Bx)
348    return luaK_codeABx(fs, OP_LOADK, reg, k);
349  else {
350    int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
351    codeextraarg(fs, k);
352    return p;
353  }
354}
355
356
357/*
358** Check register-stack level, keeping track of its maximum size
359** in field 'maxstacksize'
360*/
361void luaK_checkstack (FuncState *fs, int n) {
362  int newstack = fs->freereg + n;
363  if (newstack > fs->f->maxstacksize) {
364    if (newstack >= MAXREGS)
365      luaX_syntaxerror(fs->ls,
366        "function or expression needs too many registers");
367    fs->f->maxstacksize = cast_byte(newstack);
368  }
369}
370
371
372/*
373** Reserve 'n' registers in register stack
374*/
375void luaK_reserveregs (FuncState *fs, int n) {
376  luaK_checkstack(fs, n);
377  fs->freereg += n;
378}
379
380
381/*
382** Free register 'reg', if it is neither a constant index nor
383** a local variable.
384)
385*/
386static void freereg (FuncState *fs, int reg) {
387  if (!ISK(reg) && reg >= fs->nactvar) {
388    fs->freereg--;
389    lua_assert(reg == fs->freereg);
390  }
391}
392
393
394/*
395** Free register used by expression 'e' (if any)
396*/
397static void freeexp (FuncState *fs, expdesc *e) {
398  if (e->k == VNONRELOC)
399    freereg(fs, e->u.info);
400}
401
402
403/*
404** Free registers used by expressions 'e1' and 'e2' (if any) in proper
405** order.
406*/
407static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
408  int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
409  int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
410  if (r1 > r2) {
411    freereg(fs, r1);
412    freereg(fs, r2);
413  }
414  else {
415    freereg(fs, r2);
416    freereg(fs, r1);
417  }
418}
419
420
421/*
422** Add constant 'v' to prototype's list of constants (field 'k').
423** Use scanner's table to cache position of constants in constant list
424** and try to reuse constants. Because some values should not be used
425** as keys (nil cannot be a key, integer keys can collapse with float
426** keys), the caller must provide a useful 'key' for indexing the cache.
427*/
428static int addk (FuncState *fs, TValue *key, TValue *v) {
429  lua_State *L = fs->ls->L;
430  Proto *f = fs->f;
431  TValue *idx = luaH_set(L, fs->ls->h, key);  /* index scanner table */
432  int k, oldsize;
433  if (ttisinteger(idx)) {  /* is there an index there? */
434    k = cast_int(ivalue(idx));
435    /* correct value? (warning: must distinguish floats from integers!) */
436    if (k < fs->nk && ttype(&f->k[k]) == ttype(v) &&
437                      luaV_rawequalobj(&f->k[k], v))
438      return k;  /* reuse index */
439  }
440  /* constant not found; create a new entry */
441  oldsize = f->sizek;
442  k = fs->nk;
443  /* numerical value does not need GC barrier;
444     table has no metatable, so it does not need to invalidate cache */
445  setivalue(idx, k);
446  luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
447  while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
448  setobj(L, &f->k[k], v);
449  fs->nk++;
450  luaC_barrier(L, f, v);
451  return k;
452}
453
454
455/*
456** Add a string to list of constants and return its index.
457*/
458int luaK_stringK (FuncState *fs, TString *s) {
459  TValue o;
460  setsvalue(fs->ls->L, &o, s);
461  return addk(fs, &o, &o);  /* use string itself as key */
462}
463
464
465/*
466** Add an integer to list of constants and return its index.
467** Integers use userdata as keys to avoid collision with floats with
468** same value; conversion to 'void*' is used only for hashing, so there
469** are no "precision" problems.
470*/
471int luaK_intK (FuncState *fs, lua_Integer n) {
472  TValue k, o;
473  setpvalue(&k, cast(void*, cast(size_t, n)));
474  setivalue(&o, n);
475  return addk(fs, &k, &o);
476}
477
478/*
479** Add a float to list of constants and return its index.
480*/
481static int luaK_numberK (FuncState *fs, lua_Number r) {
482  TValue o;
483  setfltvalue(&o, r);
484  return addk(fs, &o, &o);  /* use number itself as key */
485}
486
487
488/*
489** Add a boolean to list of constants and return its index.
490*/
491static int boolK (FuncState *fs, int b) {
492  TValue o;
493  setbvalue(&o, b);
494  return addk(fs, &o, &o);  /* use boolean itself as key */
495}
496
497
498/*
499** Add nil to list of constants and return its index.
500*/
501static int nilK (FuncState *fs) {
502  TValue k, v;
503  setnilvalue(&v);
504  /* cannot use nil as key; instead use table itself to represent nil */
505  sethvalue(fs->ls->L, &k, fs->ls->h);
506  return addk(fs, &k, &v);
507}
508
509
510/*
511** Fix an expression to return the number of results 'nresults'.
512** Either 'e' is a multi-ret expression (function call or vararg)
513** or 'nresults' is LUA_MULTRET (as any expression can satisfy that).
514*/
515void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
516  if (e->k == VCALL) {  /* expression is an open function call? */
517    SETARG_C(getinstruction(fs, e), nresults + 1);
518  }
519  else if (e->k == VVARARG) {
520    Instruction *pc = &getinstruction(fs, e);
521    SETARG_B(*pc, nresults + 1);
522    SETARG_A(*pc, fs->freereg);
523    luaK_reserveregs(fs, 1);
524  }
525  else lua_assert(nresults == LUA_MULTRET);
526}
527
528
529/*
530** Fix an expression to return one result.
531** If expression is not a multi-ret expression (function call or
532** vararg), it already returns one result, so nothing needs to be done.
533** Function calls become VNONRELOC expressions (as its result comes
534** fixed in the base register of the call), while vararg expressions
535** become VRELOCABLE (as OP_VARARG puts its results where it wants).
536** (Calls are created returning one result, so that does not need
537** to be fixed.)
538*/
539void luaK_setoneret (FuncState *fs, expdesc *e) {
540  if (e->k == VCALL) {  /* expression is an open function call? */
541    /* already returns 1 value */
542    lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
543    e->k = VNONRELOC;  /* result has fixed position */
544    e->u.info = GETARG_A(getinstruction(fs, e));
545  }
546  else if (e->k == VVARARG) {
547    SETARG_B(getinstruction(fs, e), 2);
548    e->k = VRELOCABLE;  /* can relocate its simple result */
549  }
550}
551
552
553/*
554** Ensure that expression 'e' is not a variable.
555*/
556void luaK_dischargevars (FuncState *fs, expdesc *e) {
557  switch (e->k) {
558    case VLOCAL: {  /* already in a register */
559      e->k = VNONRELOC;  /* becomes a non-relocatable value */
560      break;
561    }
562    case VUPVAL: {  /* move value to some (pending) register */
563      e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
564      e->k = VRELOCABLE;
565      break;
566    }
567    case VINDEXED: {
568      OpCode op;
569      freereg(fs, e->u.ind.idx);
570      if (e->u.ind.vt == VLOCAL) {  /* is 't' in a register? */
571        freereg(fs, e->u.ind.t);
572        op = OP_GETTABLE;
573      }
574      else {
575        lua_assert(e->u.ind.vt == VUPVAL);
576        op = OP_GETTABUP;  /* 't' is in an upvalue */
577      }
578      e->u.info = luaK_codeABC(fs, op, 0, e->u.ind.t, e->u.ind.idx);
579      e->k = VRELOCABLE;
580      break;
581    }
582    case VVARARG: case VCALL: {
583      luaK_setoneret(fs, e);
584      break;
585    }
586    default: break;  /* there is one value available (somewhere) */
587  }
588}
589
590
591/*
592** Ensures expression value is in register 'reg' (and therefore
593** 'e' will become a non-relocatable expression).
594*/
595static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
596  luaK_dischargevars(fs, e);
597  switch (e->k) {
598    case VNIL: {
599      luaK_nil(fs, reg, 1);
600      break;
601    }
602    case VFALSE: case VTRUE: {
603      luaK_codeABC(fs, OP_LOADBOOL, reg, e->k == VTRUE, 0);
604      break;
605    }
606    case VK: {
607      luaK_codek(fs, reg, e->u.info);
608      break;
609    }
610    case VKFLT: {
611      luaK_codek(fs, reg, luaK_numberK(fs, e->u.nval));
612      break;
613    }
614    case VKINT: {
615      luaK_codek(fs, reg, luaK_intK(fs, e->u.ival));
616      break;
617    }
618    case VRELOCABLE: {
619      Instruction *pc = &getinstruction(fs, e);
620      SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
621      break;
622    }
623    case VNONRELOC: {
624      if (reg != e->u.info)
625        luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
626      break;
627    }
628    default: {
629      lua_assert(e->k == VJMP);
630      return;  /* nothing to do... */
631    }
632  }
633  e->u.info = reg;
634  e->k = VNONRELOC;
635}
636
637
638/*
639** Ensures expression value is in any register.
640*/
641static void discharge2anyreg (FuncState *fs, expdesc *e) {
642  if (e->k != VNONRELOC) {  /* no fixed register yet? */
643    luaK_reserveregs(fs, 1);  /* get a register */
644    discharge2reg(fs, e, fs->freereg-1);  /* put value there */
645  }
646}
647
648
649static int code_loadbool (FuncState *fs, int A, int b, int jump) {
650  luaK_getlabel(fs);  /* those instructions may be jump targets */
651  return luaK_codeABC(fs, OP_LOADBOOL, A, b, jump);
652}
653
654
655/*
656** check whether list has any jump that do not produce a value
657** or produce an inverted value
658*/
659static int need_value (FuncState *fs, int list) {
660  for (; list != NO_JUMP; list = getjump(fs, list)) {
661    Instruction i = *getjumpcontrol(fs, list);
662    if (GET_OPCODE(i) != OP_TESTSET) return 1;
663  }
664  return 0;  /* not found */
665}
666
667
668/*
669** Ensures final expression result (including results from its jump
670** lists) is in register 'reg'.
671** If expression has jumps, need to patch these jumps either to
672** its final position or to "load" instructions (for those tests
673** that do not produce values).
674*/
675static void exp2reg (FuncState *fs, expdesc *e, int reg) {
676  discharge2reg(fs, e, reg);
677  if (e->k == VJMP)  /* expression itself is a test? */
678    luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
679  if (hasjumps(e)) {
680    int final;  /* position after whole expression */
681    int p_f = NO_JUMP;  /* position of an eventual LOAD false */
682    int p_t = NO_JUMP;  /* position of an eventual LOAD true */
683    if (need_value(fs, e->t) || need_value(fs, e->f)) {
684      int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
685      p_f = code_loadbool(fs, reg, 0, 1);
686      p_t = code_loadbool(fs, reg, 1, 0);
687      luaK_patchtohere(fs, fj);
688    }
689    final = luaK_getlabel(fs);
690    patchlistaux(fs, e->f, final, reg, p_f);
691    patchlistaux(fs, e->t, final, reg, p_t);
692  }
693  e->f = e->t = NO_JUMP;
694  e->u.info = reg;
695  e->k = VNONRELOC;
696}
697
698
699/*
700** Ensures final expression result (including results from its jump
701** lists) is in next available register.
702*/
703void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
704  luaK_dischargevars(fs, e);
705  freeexp(fs, e);
706  luaK_reserveregs(fs, 1);
707  exp2reg(fs, e, fs->freereg - 1);
708}
709
710
711/*
712** Ensures final expression result (including results from its jump
713** lists) is in some (any) register and return that register.
714*/
715int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
716  luaK_dischargevars(fs, e);
717  if (e->k == VNONRELOC) {  /* expression already has a register? */
718    if (!hasjumps(e))  /* no jumps? */
719      return e->u.info;  /* result is already in a register */
720    if (e->u.info >= fs->nactvar) {  /* reg. is not a local? */
721      exp2reg(fs, e, e->u.info);  /* put final result in it */
722      return e->u.info;
723    }
724  }
725  luaK_exp2nextreg(fs, e);  /* otherwise, use next available register */
726  return e->u.info;
727}
728
729
730/*
731** Ensures final expression result is either in a register or in an
732** upvalue.
733*/
734void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
735  if (e->k != VUPVAL || hasjumps(e))
736    luaK_exp2anyreg(fs, e);
737}
738
739
740/*
741** Ensures final expression result is either in a register or it is
742** a constant.
743*/
744void luaK_exp2val (FuncState *fs, expdesc *e) {
745  if (hasjumps(e))
746    luaK_exp2anyreg(fs, e);
747  else
748    luaK_dischargevars(fs, e);
749}
750
751
752/*
753** Ensures final expression result is in a valid R/K index
754** (that is, it is either in a register or in 'k' with an index
755** in the range of R/K indices).
756** Returns R/K index.
757*/
758int luaK_exp2RK (FuncState *fs, expdesc *e) {
759  luaK_exp2val(fs, e);
760  switch (e->k) {  /* move constants to 'k' */
761    case VTRUE: e->u.info = boolK(fs, 1); goto vk;
762    case VFALSE: e->u.info = boolK(fs, 0); goto vk;
763    case VNIL: e->u.info = nilK(fs); goto vk;
764    case VKINT: e->u.info = luaK_intK(fs, e->u.ival); goto vk;
765    case VKFLT: e->u.info = luaK_numberK(fs, e->u.nval); goto vk;
766    case VK:
767     vk:
768      e->k = VK;
769      if (e->u.info <= MAXINDEXRK)  /* constant fits in 'argC'? */
770        return RKASK(e->u.info);
771      else break;
772    default: break;
773  }
774  /* not a constant in the right range: put it in a register */
775  return luaK_exp2anyreg(fs, e);
776}
777
778
779/*
780** Generate code to store result of expression 'ex' into variable 'var'.
781*/
782void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
783  switch (var->k) {
784    case VLOCAL: {
785      freeexp(fs, ex);
786      exp2reg(fs, ex, var->u.info);  /* compute 'ex' into proper place */
787      return;
788    }
789    case VUPVAL: {
790      int e = luaK_exp2anyreg(fs, ex);
791      luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
792      break;
793    }
794    case VINDEXED: {
795      OpCode op = (var->u.ind.vt == VLOCAL) ? OP_SETTABLE : OP_SETTABUP;
796      int e = luaK_exp2RK(fs, ex);
797      luaK_codeABC(fs, op, var->u.ind.t, var->u.ind.idx, e);
798      break;
799    }
800    default: lua_assert(0);  /* invalid var kind to store */
801  }
802  freeexp(fs, ex);
803}
804
805
806/*
807** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
808*/
809void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
810  int ereg;
811  luaK_exp2anyreg(fs, e);
812  ereg = e->u.info;  /* register where 'e' was placed */
813  freeexp(fs, e);
814  e->u.info = fs->freereg;  /* base register for op_self */
815  e->k = VNONRELOC;  /* self expression has a fixed register */
816  luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
817  luaK_codeABC(fs, OP_SELF, e->u.info, ereg, luaK_exp2RK(fs, key));
818  freeexp(fs, key);
819}
820
821
822/*
823** Negate condition 'e' (where 'e' is a comparison).
824*/
825static void negatecondition (FuncState *fs, expdesc *e) {
826  Instruction *pc = getjumpcontrol(fs, e->u.info);
827  lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
828                                           GET_OPCODE(*pc) != OP_TEST);
829  SETARG_A(*pc, !(GETARG_A(*pc)));
830}
831
832
833/*
834** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
835** is true, code will jump if 'e' is true.) Return jump position.
836** Optimize when 'e' is 'not' something, inverting the condition
837** and removing the 'not'.
838*/
839static int jumponcond (FuncState *fs, expdesc *e, int cond) {
840  if (e->k == VRELOCABLE) {
841    Instruction ie = getinstruction(fs, e);
842    if (GET_OPCODE(ie) == OP_NOT) {
843      fs->pc--;  /* remove previous OP_NOT */
844      return condjump(fs, OP_TEST, GETARG_B(ie), 0, !cond);
845    }
846    /* else go through */
847  }
848  discharge2anyreg(fs, e);
849  freeexp(fs, e);
850  return condjump(fs, OP_TESTSET, NO_REG, e->u.info, cond);
851}
852
853
854/*
855** Emit code to go through if 'e' is true, jump otherwise.
856*/
857void luaK_goiftrue (FuncState *fs, expdesc *e) {
858  int pc;  /* pc of new jump */
859  luaK_dischargevars(fs, e);
860  switch (e->k) {
861    case VJMP: {  /* condition? */
862      negatecondition(fs, e);  /* jump when it is false */
863      pc = e->u.info;  /* save jump position */
864      break;
865    }
866    case VK: case VKFLT: case VKINT: case VTRUE: {
867      pc = NO_JUMP;  /* always true; do nothing */
868      break;
869    }
870    default: {
871      pc = jumponcond(fs, e, 0);  /* jump when false */
872      break;
873    }
874  }
875  luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
876  luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
877  e->t = NO_JUMP;
878}
879
880
881/*
882** Emit code to go through if 'e' is false, jump otherwise.
883*/
884void luaK_goiffalse (FuncState *fs, expdesc *e) {
885  int pc;  /* pc of new jump */
886  luaK_dischargevars(fs, e);
887  switch (e->k) {
888    case VJMP: {
889      pc = e->u.info;  /* already jump if true */
890      break;
891    }
892    case VNIL: case VFALSE: {
893      pc = NO_JUMP;  /* always false; do nothing */
894      break;
895    }
896    default: {
897      pc = jumponcond(fs, e, 1);  /* jump if true */
898      break;
899    }
900  }
901  luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
902  luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
903  e->f = NO_JUMP;
904}
905
906
907/*
908** Code 'not e', doing constant folding.
909*/
910static void codenot (FuncState *fs, expdesc *e) {
911  luaK_dischargevars(fs, e);
912  switch (e->k) {
913    case VNIL: case VFALSE: {
914      e->k = VTRUE;  /* true == not nil == not false */
915      break;
916    }
917    case VK: case VKFLT: case VKINT: case VTRUE: {
918      e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
919      break;
920    }
921    case VJMP: {
922      negatecondition(fs, e);
923      break;
924    }
925    case VRELOCABLE:
926    case VNONRELOC: {
927      discharge2anyreg(fs, e);
928      freeexp(fs, e);
929      e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
930      e->k = VRELOCABLE;
931      break;
932    }
933    default: lua_assert(0);  /* cannot happen */
934  }
935  /* interchange true and false lists */
936  { int temp = e->f; e->f = e->t; e->t = temp; }
937  removevalues(fs, e->f);  /* values are useless when negated */
938  removevalues(fs, e->t);
939}
940
941
942/*
943** Create expression 't[k]'. 't' must have its final result already in a
944** register or upvalue.
945*/
946void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
947  lua_assert(!hasjumps(t) && (vkisinreg(t->k) || t->k == VUPVAL));
948  t->u.ind.t = t->u.info;  /* register or upvalue index */
949  t->u.ind.idx = luaK_exp2RK(fs, k);  /* R/K index for key */
950  t->u.ind.vt = (t->k == VUPVAL) ? VUPVAL : VLOCAL;
951  t->k = VINDEXED;
952}
953
954
955/*
956** Return false if folding can raise an error.
957** Bitwise operations need operands convertible to integers; division
958** operations cannot have 0 as divisor.
959*/
960static int validop (int op, TValue *v1, TValue *v2) {
961  switch (op) {
962    case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
963    case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
964      lua_Integer i;
965      return (tointeger(v1, &i) && tointeger(v2, &i));
966    }
967    case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
968      return (nvalue(v2) != 0);
969    default: return 1;  /* everything else is valid */
970  }
971}
972
973
974/*
975** Try to "constant-fold" an operation; return 1 iff successful.
976** (In this case, 'e1' has the final result.)
977*/
978static int constfolding (FuncState *fs, int op, expdesc *e1,
979                                                const expdesc *e2) {
980  TValue v1, v2, res;
981  if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
982    return 0;  /* non-numeric operands or not safe to fold */
983  luaO_arith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
984  if (ttisinteger(&res)) {
985    e1->k = VKINT;
986    e1->u.ival = ivalue(&res);
987  }
988  else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
989    lua_Number n = fltvalue(&res);
990    if (luai_numisnan(n) || n == 0)
991      return 0;
992    e1->k = VKFLT;
993    e1->u.nval = n;
994  }
995  return 1;
996}
997
998
999/*
1000** Emit code for unary expressions that "produce values"
1001** (everything but 'not').
1002** Expression to produce final result will be encoded in 'e'.
1003*/
1004static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1005  int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1006  freeexp(fs, e);
1007  e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1008  e->k = VRELOCABLE;  /* all those operations are relocatable */
1009  luaK_fixline(fs, line);
1010}
1011
1012
1013/*
1014** Emit code for binary expressions that "produce values"
1015** (everything but logical operators 'and'/'or' and comparison
1016** operators).
1017** Expression to produce final result will be encoded in 'e1'.
1018** Because 'luaK_exp2RK' can free registers, its calls must be
1019** in "stack order" (that is, first on 'e2', which may have more
1020** recent registers to be released).
1021*/
1022static void codebinexpval (FuncState *fs, OpCode op,
1023                           expdesc *e1, expdesc *e2, int line) {
1024  int rk2 = luaK_exp2RK(fs, e2);  /* both operands are "RK" */
1025  int rk1 = luaK_exp2RK(fs, e1);
1026  freeexps(fs, e1, e2);
1027  e1->u.info = luaK_codeABC(fs, op, 0, rk1, rk2);  /* generate opcode */
1028  e1->k = VRELOCABLE;  /* all those operations are relocatable */
1029  luaK_fixline(fs, line);
1030}
1031
1032
1033/*
1034** Emit code for comparisons.
1035** 'e1' was already put in R/K form by 'luaK_infix'.
1036*/
1037static void codecomp (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1038  int rk1 = (e1->k == VK) ? RKASK(e1->u.info)
1039                          : check_exp(e1->k == VNONRELOC, e1->u.info);
1040  int rk2 = luaK_exp2RK(fs, e2);
1041  freeexps(fs, e1, e2);
1042  switch (opr) {
1043    case OPR_NE: {  /* '(a ~= b)' ==> 'not (a == b)' */
1044      e1->u.info = condjump(fs, OP_EQ, 0, rk1, rk2);
1045      break;
1046    }
1047    case OPR_GT: case OPR_GE: {
1048      /* '(a > b)' ==> '(b < a)';  '(a >= b)' ==> '(b <= a)' */
1049      OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1050      e1->u.info = condjump(fs, op, 1, rk2, rk1);  /* invert operands */
1051      break;
1052    }
1053    default: {  /* '==', '<', '<=' use their own opcodes */
1054      OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1055      e1->u.info = condjump(fs, op, 1, rk1, rk2);
1056      break;
1057    }
1058  }
1059  e1->k = VJMP;
1060}
1061
1062
1063/*
1064** Aplly prefix operation 'op' to expression 'e'.
1065*/
1066void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1067  static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1068  switch (op) {
1069    case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1070      if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1071        break;
1072      /* FALLTHROUGH */
1073    case OPR_LEN:
1074      codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1075      break;
1076    case OPR_NOT: codenot(fs, e); break;
1077    default: lua_assert(0);
1078  }
1079}
1080
1081
1082/*
1083** Process 1st operand 'v' of binary operation 'op' before reading
1084** 2nd operand.
1085*/
1086void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1087  switch (op) {
1088    case OPR_AND: {
1089      luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1090      break;
1091    }
1092    case OPR_OR: {
1093      luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1094      break;
1095    }
1096    case OPR_CONCAT: {
1097      luaK_exp2nextreg(fs, v);  /* operand must be on the 'stack' */
1098      break;
1099    }
1100    case OPR_ADD: case OPR_SUB:
1101    case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1102    case OPR_MOD: case OPR_POW:
1103    case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1104    case OPR_SHL: case OPR_SHR: {
1105      if (!tonumeral(v, NULL))
1106        luaK_exp2RK(fs, v);
1107      /* else keep numeral, which may be folded with 2nd operand */
1108      break;
1109    }
1110    default: {
1111      luaK_exp2RK(fs, v);
1112      break;
1113    }
1114  }
1115}
1116
1117
1118/*
1119** Finalize code for binary operation, after reading 2nd operand.
1120** For '(a .. b .. c)' (which is '(a .. (b .. c))', because
1121** concatenation is right associative), merge second CONCAT into first
1122** one.
1123*/
1124void luaK_posfix (FuncState *fs, BinOpr op,
1125                  expdesc *e1, expdesc *e2, int line) {
1126  switch (op) {
1127    case OPR_AND: {
1128      lua_assert(e1->t == NO_JUMP);  /* list closed by 'luK_infix' */
1129      luaK_dischargevars(fs, e2);
1130      luaK_concat(fs, &e2->f, e1->f);
1131      *e1 = *e2;
1132      break;
1133    }
1134    case OPR_OR: {
1135      lua_assert(e1->f == NO_JUMP);  /* list closed by 'luK_infix' */
1136      luaK_dischargevars(fs, e2);
1137      luaK_concat(fs, &e2->t, e1->t);
1138      *e1 = *e2;
1139      break;
1140    }
1141    case OPR_CONCAT: {
1142      luaK_exp2val(fs, e2);
1143      if (e2->k == VRELOCABLE &&
1144          GET_OPCODE(getinstruction(fs, e2)) == OP_CONCAT) {
1145        lua_assert(e1->u.info == GETARG_B(getinstruction(fs, e2))-1);
1146        freeexp(fs, e1);
1147        SETARG_B(getinstruction(fs, e2), e1->u.info);
1148        e1->k = VRELOCABLE; e1->u.info = e2->u.info;
1149      }
1150      else {
1151        luaK_exp2nextreg(fs, e2);  /* operand must be on the 'stack' */
1152        codebinexpval(fs, OP_CONCAT, e1, e2, line);
1153      }
1154      break;
1155    }
1156    case OPR_ADD: case OPR_SUB: case OPR_MUL: case OPR_DIV:
1157    case OPR_IDIV: case OPR_MOD: case OPR_POW:
1158    case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1159    case OPR_SHL: case OPR_SHR: {
1160      if (!constfolding(fs, op + LUA_OPADD, e1, e2))
1161        codebinexpval(fs, cast(OpCode, op + OP_ADD), e1, e2, line);
1162      break;
1163    }
1164    case OPR_EQ: case OPR_LT: case OPR_LE:
1165    case OPR_NE: case OPR_GT: case OPR_GE: {
1166      codecomp(fs, op, e1, e2);
1167      break;
1168    }
1169    default: lua_assert(0);
1170  }
1171}
1172
1173
1174/*
1175** Change line information associated with current position.
1176*/
1177void luaK_fixline (FuncState *fs, int line) {
1178  fs->f->lineinfo[fs->pc - 1] = line;
1179}
1180
1181
1182/*
1183** Emit a SETLIST instruction.
1184** 'base' is register that keeps table;
1185** 'nelems' is #table plus those to be stored now;
1186** 'tostore' is number of values (in registers 'base + 1',...) to add to
1187** table (or LUA_MULTRET to add up to stack top).
1188*/
1189void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1190  int c =  (nelems - 1)/LFIELDS_PER_FLUSH + 1;
1191  int b = (tostore == LUA_MULTRET) ? 0 : tostore;
1192  lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1193  if (c <= MAXARG_C)
1194    luaK_codeABC(fs, OP_SETLIST, base, b, c);
1195  else if (c <= MAXARG_Ax) {
1196    luaK_codeABC(fs, OP_SETLIST, base, b, 0);
1197    codeextraarg(fs, c);
1198  }
1199  else
1200    luaX_syntaxerror(fs->ls, "constructor too long");
1201  fs->freereg = base + 1;  /* free registers with list values */
1202}
1203
1204