kmp_tasking.cpp revision 360784
1/*
2 * kmp_tasking.cpp -- OpenMP 3.0 tasking support.
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_i18n.h"
15#include "kmp_itt.h"
16#include "kmp_stats.h"
17#include "kmp_wait_release.h"
18#include "kmp_taskdeps.h"
19
20#if OMPT_SUPPORT
21#include "ompt-specific.h"
22#endif
23
24#include "tsan_annotations.h"
25
26/* forward declaration */
27static void __kmp_enable_tasking(kmp_task_team_t *task_team,
28                                 kmp_info_t *this_thr);
29static void __kmp_alloc_task_deque(kmp_info_t *thread,
30                                   kmp_thread_data_t *thread_data);
31static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
32                                           kmp_task_team_t *task_team);
33static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask);
34
35#ifdef BUILD_TIED_TASK_STACK
36
37//  __kmp_trace_task_stack: print the tied tasks from the task stack in order
38//  from top do bottom
39//
40//  gtid: global thread identifier for thread containing stack
41//  thread_data: thread data for task team thread containing stack
42//  threshold: value above which the trace statement triggers
43//  location: string identifying call site of this function (for trace)
44static void __kmp_trace_task_stack(kmp_int32 gtid,
45                                   kmp_thread_data_t *thread_data,
46                                   int threshold, char *location) {
47  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
48  kmp_taskdata_t **stack_top = task_stack->ts_top;
49  kmp_int32 entries = task_stack->ts_entries;
50  kmp_taskdata_t *tied_task;
51
52  KA_TRACE(
53      threshold,
54      ("__kmp_trace_task_stack(start): location = %s, gtid = %d, entries = %d, "
55       "first_block = %p, stack_top = %p \n",
56       location, gtid, entries, task_stack->ts_first_block, stack_top));
57
58  KMP_DEBUG_ASSERT(stack_top != NULL);
59  KMP_DEBUG_ASSERT(entries > 0);
60
61  while (entries != 0) {
62    KMP_DEBUG_ASSERT(stack_top != &task_stack->ts_first_block.sb_block[0]);
63    // fix up ts_top if we need to pop from previous block
64    if (entries & TASK_STACK_INDEX_MASK == 0) {
65      kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(stack_top);
66
67      stack_block = stack_block->sb_prev;
68      stack_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
69    }
70
71    // finish bookkeeping
72    stack_top--;
73    entries--;
74
75    tied_task = *stack_top;
76
77    KMP_DEBUG_ASSERT(tied_task != NULL);
78    KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
79
80    KA_TRACE(threshold,
81             ("__kmp_trace_task_stack(%s):             gtid=%d, entry=%d, "
82              "stack_top=%p, tied_task=%p\n",
83              location, gtid, entries, stack_top, tied_task));
84  }
85  KMP_DEBUG_ASSERT(stack_top == &task_stack->ts_first_block.sb_block[0]);
86
87  KA_TRACE(threshold,
88           ("__kmp_trace_task_stack(exit): location = %s, gtid = %d\n",
89            location, gtid));
90}
91
92//  __kmp_init_task_stack: initialize the task stack for the first time
93//  after a thread_data structure is created.
94//  It should not be necessary to do this again (assuming the stack works).
95//
96//  gtid: global thread identifier of calling thread
97//  thread_data: thread data for task team thread containing stack
98static void __kmp_init_task_stack(kmp_int32 gtid,
99                                  kmp_thread_data_t *thread_data) {
100  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
101  kmp_stack_block_t *first_block;
102
103  // set up the first block of the stack
104  first_block = &task_stack->ts_first_block;
105  task_stack->ts_top = (kmp_taskdata_t **)first_block;
106  memset((void *)first_block, '\0',
107         TASK_STACK_BLOCK_SIZE * sizeof(kmp_taskdata_t *));
108
109  // initialize the stack to be empty
110  task_stack->ts_entries = TASK_STACK_EMPTY;
111  first_block->sb_next = NULL;
112  first_block->sb_prev = NULL;
113}
114
115//  __kmp_free_task_stack: free the task stack when thread_data is destroyed.
116//
117//  gtid: global thread identifier for calling thread
118//  thread_data: thread info for thread containing stack
119static void __kmp_free_task_stack(kmp_int32 gtid,
120                                  kmp_thread_data_t *thread_data) {
121  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
122  kmp_stack_block_t *stack_block = &task_stack->ts_first_block;
123
124  KMP_DEBUG_ASSERT(task_stack->ts_entries == TASK_STACK_EMPTY);
125  // free from the second block of the stack
126  while (stack_block != NULL) {
127    kmp_stack_block_t *next_block = (stack_block) ? stack_block->sb_next : NULL;
128
129    stack_block->sb_next = NULL;
130    stack_block->sb_prev = NULL;
131    if (stack_block != &task_stack->ts_first_block) {
132      __kmp_thread_free(thread,
133                        stack_block); // free the block, if not the first
134    }
135    stack_block = next_block;
136  }
137  // initialize the stack to be empty
138  task_stack->ts_entries = 0;
139  task_stack->ts_top = NULL;
140}
141
142//  __kmp_push_task_stack: Push the tied task onto the task stack.
143//     Grow the stack if necessary by allocating another block.
144//
145//  gtid: global thread identifier for calling thread
146//  thread: thread info for thread containing stack
147//  tied_task: the task to push on the stack
148static void __kmp_push_task_stack(kmp_int32 gtid, kmp_info_t *thread,
149                                  kmp_taskdata_t *tied_task) {
150  // GEH - need to consider what to do if tt_threads_data not allocated yet
151  kmp_thread_data_t *thread_data =
152      &thread->th.th_task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
153  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
154
155  if (tied_task->td_flags.team_serial || tied_task->td_flags.tasking_ser) {
156    return; // Don't push anything on stack if team or team tasks are serialized
157  }
158
159  KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
160  KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
161
162  KA_TRACE(20,
163           ("__kmp_push_task_stack(enter): GTID: %d; THREAD: %p; TASK: %p\n",
164            gtid, thread, tied_task));
165  // Store entry
166  *(task_stack->ts_top) = tied_task;
167
168  // Do bookkeeping for next push
169  task_stack->ts_top++;
170  task_stack->ts_entries++;
171
172  if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
173    // Find beginning of this task block
174    kmp_stack_block_t *stack_block =
175        (kmp_stack_block_t *)(task_stack->ts_top - TASK_STACK_BLOCK_SIZE);
176
177    // Check if we already have a block
178    if (stack_block->sb_next !=
179        NULL) { // reset ts_top to beginning of next block
180      task_stack->ts_top = &stack_block->sb_next->sb_block[0];
181    } else { // Alloc new block and link it up
182      kmp_stack_block_t *new_block = (kmp_stack_block_t *)__kmp_thread_calloc(
183          thread, sizeof(kmp_stack_block_t));
184
185      task_stack->ts_top = &new_block->sb_block[0];
186      stack_block->sb_next = new_block;
187      new_block->sb_prev = stack_block;
188      new_block->sb_next = NULL;
189
190      KA_TRACE(
191          30,
192          ("__kmp_push_task_stack(): GTID: %d; TASK: %p; Alloc new block: %p\n",
193           gtid, tied_task, new_block));
194    }
195  }
196  KA_TRACE(20, ("__kmp_push_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
197                tied_task));
198}
199
200//  __kmp_pop_task_stack: Pop the tied task from the task stack.  Don't return
201//  the task, just check to make sure it matches the ending task passed in.
202//
203//  gtid: global thread identifier for the calling thread
204//  thread: thread info structure containing stack
205//  tied_task: the task popped off the stack
206//  ending_task: the task that is ending (should match popped task)
207static void __kmp_pop_task_stack(kmp_int32 gtid, kmp_info_t *thread,
208                                 kmp_taskdata_t *ending_task) {
209  // GEH - need to consider what to do if tt_threads_data not allocated yet
210  kmp_thread_data_t *thread_data =
211      &thread->th.th_task_team->tt_threads_data[__kmp_tid_from_gtid(gtid)];
212  kmp_task_stack_t *task_stack = &thread_data->td.td_susp_tied_tasks;
213  kmp_taskdata_t *tied_task;
214
215  if (ending_task->td_flags.team_serial || ending_task->td_flags.tasking_ser) {
216    // Don't pop anything from stack if team or team tasks are serialized
217    return;
218  }
219
220  KMP_DEBUG_ASSERT(task_stack->ts_top != NULL);
221  KMP_DEBUG_ASSERT(task_stack->ts_entries > 0);
222
223  KA_TRACE(20, ("__kmp_pop_task_stack(enter): GTID: %d; THREAD: %p\n", gtid,
224                thread));
225
226  // fix up ts_top if we need to pop from previous block
227  if (task_stack->ts_entries & TASK_STACK_INDEX_MASK == 0) {
228    kmp_stack_block_t *stack_block = (kmp_stack_block_t *)(task_stack->ts_top);
229
230    stack_block = stack_block->sb_prev;
231    task_stack->ts_top = &stack_block->sb_block[TASK_STACK_BLOCK_SIZE];
232  }
233
234  // finish bookkeeping
235  task_stack->ts_top--;
236  task_stack->ts_entries--;
237
238  tied_task = *(task_stack->ts_top);
239
240  KMP_DEBUG_ASSERT(tied_task != NULL);
241  KMP_DEBUG_ASSERT(tied_task->td_flags.tasktype == TASK_TIED);
242  KMP_DEBUG_ASSERT(tied_task == ending_task); // If we built the stack correctly
243
244  KA_TRACE(20, ("__kmp_pop_task_stack(exit): GTID: %d; TASK: %p\n", gtid,
245                tied_task));
246  return;
247}
248#endif /* BUILD_TIED_TASK_STACK */
249
250// returns 1 if new task is allowed to execute, 0 otherwise
251// checks Task Scheduling constraint (if requested) and
252// mutexinoutset dependencies if any
253static bool __kmp_task_is_allowed(int gtid, const kmp_int32 is_constrained,
254                                  const kmp_taskdata_t *tasknew,
255                                  const kmp_taskdata_t *taskcurr) {
256  if (is_constrained && (tasknew->td_flags.tiedness == TASK_TIED)) {
257    // Check if the candidate obeys the Task Scheduling Constraints (TSC)
258    // only descendant of all deferred tied tasks can be scheduled, checking
259    // the last one is enough, as it in turn is the descendant of all others
260    kmp_taskdata_t *current = taskcurr->td_last_tied;
261    KMP_DEBUG_ASSERT(current != NULL);
262    // check if the task is not suspended on barrier
263    if (current->td_flags.tasktype == TASK_EXPLICIT ||
264        current->td_taskwait_thread > 0) { // <= 0 on barrier
265      kmp_int32 level = current->td_level;
266      kmp_taskdata_t *parent = tasknew->td_parent;
267      while (parent != current && parent->td_level > level) {
268        // check generation up to the level of the current task
269        parent = parent->td_parent;
270        KMP_DEBUG_ASSERT(parent != NULL);
271      }
272      if (parent != current)
273        return false;
274    }
275  }
276  // Check mutexinoutset dependencies, acquire locks
277  kmp_depnode_t *node = tasknew->td_depnode;
278  if (node && (node->dn.mtx_num_locks > 0)) {
279    for (int i = 0; i < node->dn.mtx_num_locks; ++i) {
280      KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
281      if (__kmp_test_lock(node->dn.mtx_locks[i], gtid))
282        continue;
283      // could not get the lock, release previous locks
284      for (int j = i - 1; j >= 0; --j)
285        __kmp_release_lock(node->dn.mtx_locks[j], gtid);
286      return false;
287    }
288    // negative num_locks means all locks acquired successfully
289    node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
290  }
291  return true;
292}
293
294// __kmp_realloc_task_deque:
295// Re-allocates a task deque for a particular thread, copies the content from
296// the old deque and adjusts the necessary data structures relating to the
297// deque. This operation must be done with the deque_lock being held
298static void __kmp_realloc_task_deque(kmp_info_t *thread,
299                                     kmp_thread_data_t *thread_data) {
300  kmp_int32 size = TASK_DEQUE_SIZE(thread_data->td);
301  kmp_int32 new_size = 2 * size;
302
303  KE_TRACE(10, ("__kmp_realloc_task_deque: T#%d reallocating deque[from %d to "
304                "%d] for thread_data %p\n",
305                __kmp_gtid_from_thread(thread), size, new_size, thread_data));
306
307  kmp_taskdata_t **new_deque =
308      (kmp_taskdata_t **)__kmp_allocate(new_size * sizeof(kmp_taskdata_t *));
309
310  int i, j;
311  for (i = thread_data->td.td_deque_head, j = 0; j < size;
312       i = (i + 1) & TASK_DEQUE_MASK(thread_data->td), j++)
313    new_deque[j] = thread_data->td.td_deque[i];
314
315  __kmp_free(thread_data->td.td_deque);
316
317  thread_data->td.td_deque_head = 0;
318  thread_data->td.td_deque_tail = size;
319  thread_data->td.td_deque = new_deque;
320  thread_data->td.td_deque_size = new_size;
321}
322
323//  __kmp_push_task: Add a task to the thread's deque
324static kmp_int32 __kmp_push_task(kmp_int32 gtid, kmp_task_t *task) {
325  kmp_info_t *thread = __kmp_threads[gtid];
326  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
327  kmp_task_team_t *task_team = thread->th.th_task_team;
328  kmp_int32 tid = __kmp_tid_from_gtid(gtid);
329  kmp_thread_data_t *thread_data;
330
331  KA_TRACE(20,
332           ("__kmp_push_task: T#%d trying to push task %p.\n", gtid, taskdata));
333
334  if (taskdata->td_flags.tiedness == TASK_UNTIED) {
335    // untied task needs to increment counter so that the task structure is not
336    // freed prematurely
337    kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
338    KMP_DEBUG_USE_VAR(counter);
339    KA_TRACE(
340        20,
341        ("__kmp_push_task: T#%d untied_count (%d) incremented for task %p\n",
342         gtid, counter, taskdata));
343  }
344
345  // The first check avoids building task_team thread data if serialized
346  if (taskdata->td_flags.task_serial) {
347    KA_TRACE(20, ("__kmp_push_task: T#%d team serialized; returning "
348                  "TASK_NOT_PUSHED for task %p\n",
349                  gtid, taskdata));
350    return TASK_NOT_PUSHED;
351  }
352
353  // Now that serialized tasks have returned, we can assume that we are not in
354  // immediate exec mode
355  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
356  if (!KMP_TASKING_ENABLED(task_team)) {
357    __kmp_enable_tasking(task_team, thread);
358  }
359  KMP_DEBUG_ASSERT(TCR_4(task_team->tt.tt_found_tasks) == TRUE);
360  KMP_DEBUG_ASSERT(TCR_PTR(task_team->tt.tt_threads_data) != NULL);
361
362  // Find tasking deque specific to encountering thread
363  thread_data = &task_team->tt.tt_threads_data[tid];
364
365  // No lock needed since only owner can allocate
366  if (thread_data->td.td_deque == NULL) {
367    __kmp_alloc_task_deque(thread, thread_data);
368  }
369
370  int locked = 0;
371  // Check if deque is full
372  if (TCR_4(thread_data->td.td_deque_ntasks) >=
373      TASK_DEQUE_SIZE(thread_data->td)) {
374    if (__kmp_enable_task_throttling &&
375        __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
376                              thread->th.th_current_task)) {
377      KA_TRACE(20, ("__kmp_push_task: T#%d deque is full; returning "
378                    "TASK_NOT_PUSHED for task %p\n",
379                    gtid, taskdata));
380      return TASK_NOT_PUSHED;
381    } else {
382      __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
383      locked = 1;
384      // expand deque to push the task which is not allowed to execute
385      __kmp_realloc_task_deque(thread, thread_data);
386    }
387  }
388  // Lock the deque for the task push operation
389  if (!locked) {
390    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
391    // Need to recheck as we can get a proxy task from thread outside of OpenMP
392    if (TCR_4(thread_data->td.td_deque_ntasks) >=
393        TASK_DEQUE_SIZE(thread_data->td)) {
394      if (__kmp_enable_task_throttling &&
395          __kmp_task_is_allowed(gtid, __kmp_task_stealing_constraint, taskdata,
396                                thread->th.th_current_task)) {
397        __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
398        KA_TRACE(20, ("__kmp_push_task: T#%d deque is full on 2nd check; "
399                      "returning TASK_NOT_PUSHED for task %p\n",
400                      gtid, taskdata));
401        return TASK_NOT_PUSHED;
402      } else {
403        // expand deque to push the task which is not allowed to execute
404        __kmp_realloc_task_deque(thread, thread_data);
405      }
406    }
407  }
408  // Must have room since no thread can add tasks but calling thread
409  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) <
410                   TASK_DEQUE_SIZE(thread_data->td));
411
412  thread_data->td.td_deque[thread_data->td.td_deque_tail] =
413      taskdata; // Push taskdata
414  // Wrap index.
415  thread_data->td.td_deque_tail =
416      (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
417  TCW_4(thread_data->td.td_deque_ntasks,
418        TCR_4(thread_data->td.td_deque_ntasks) + 1); // Adjust task count
419
420  KA_TRACE(20, ("__kmp_push_task: T#%d returning TASK_SUCCESSFULLY_PUSHED: "
421                "task=%p ntasks=%d head=%u tail=%u\n",
422                gtid, taskdata, thread_data->td.td_deque_ntasks,
423                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
424
425  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
426
427  return TASK_SUCCESSFULLY_PUSHED;
428}
429
430// __kmp_pop_current_task_from_thread: set up current task from called thread
431// when team ends
432//
433// this_thr: thread structure to set current_task in.
434void __kmp_pop_current_task_from_thread(kmp_info_t *this_thr) {
435  KF_TRACE(10, ("__kmp_pop_current_task_from_thread(enter): T#%d "
436                "this_thread=%p, curtask=%p, "
437                "curtask_parent=%p\n",
438                0, this_thr, this_thr->th.th_current_task,
439                this_thr->th.th_current_task->td_parent));
440
441  this_thr->th.th_current_task = this_thr->th.th_current_task->td_parent;
442
443  KF_TRACE(10, ("__kmp_pop_current_task_from_thread(exit): T#%d "
444                "this_thread=%p, curtask=%p, "
445                "curtask_parent=%p\n",
446                0, this_thr, this_thr->th.th_current_task,
447                this_thr->th.th_current_task->td_parent));
448}
449
450// __kmp_push_current_task_to_thread: set up current task in called thread for a
451// new team
452//
453// this_thr: thread structure to set up
454// team: team for implicit task data
455// tid: thread within team to set up
456void __kmp_push_current_task_to_thread(kmp_info_t *this_thr, kmp_team_t *team,
457                                       int tid) {
458  // current task of the thread is a parent of the new just created implicit
459  // tasks of new team
460  KF_TRACE(10, ("__kmp_push_current_task_to_thread(enter): T#%d this_thread=%p "
461                "curtask=%p "
462                "parent_task=%p\n",
463                tid, this_thr, this_thr->th.th_current_task,
464                team->t.t_implicit_task_taskdata[tid].td_parent));
465
466  KMP_DEBUG_ASSERT(this_thr != NULL);
467
468  if (tid == 0) {
469    if (this_thr->th.th_current_task != &team->t.t_implicit_task_taskdata[0]) {
470      team->t.t_implicit_task_taskdata[0].td_parent =
471          this_thr->th.th_current_task;
472      this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[0];
473    }
474  } else {
475    team->t.t_implicit_task_taskdata[tid].td_parent =
476        team->t.t_implicit_task_taskdata[0].td_parent;
477    this_thr->th.th_current_task = &team->t.t_implicit_task_taskdata[tid];
478  }
479
480  KF_TRACE(10, ("__kmp_push_current_task_to_thread(exit): T#%d this_thread=%p "
481                "curtask=%p "
482                "parent_task=%p\n",
483                tid, this_thr, this_thr->th.th_current_task,
484                team->t.t_implicit_task_taskdata[tid].td_parent));
485}
486
487// __kmp_task_start: bookkeeping for a task starting execution
488//
489// GTID: global thread id of calling thread
490// task: task starting execution
491// current_task: task suspending
492static void __kmp_task_start(kmp_int32 gtid, kmp_task_t *task,
493                             kmp_taskdata_t *current_task) {
494  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
495  kmp_info_t *thread = __kmp_threads[gtid];
496
497  KA_TRACE(10,
498           ("__kmp_task_start(enter): T#%d starting task %p: current_task=%p\n",
499            gtid, taskdata, current_task));
500
501  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
502
503  // mark currently executing task as suspended
504  // TODO: GEH - make sure root team implicit task is initialized properly.
505  // KMP_DEBUG_ASSERT( current_task -> td_flags.executing == 1 );
506  current_task->td_flags.executing = 0;
507
508// Add task to stack if tied
509#ifdef BUILD_TIED_TASK_STACK
510  if (taskdata->td_flags.tiedness == TASK_TIED) {
511    __kmp_push_task_stack(gtid, thread, taskdata);
512  }
513#endif /* BUILD_TIED_TASK_STACK */
514
515  // mark starting task as executing and as current task
516  thread->th.th_current_task = taskdata;
517
518  KMP_DEBUG_ASSERT(taskdata->td_flags.started == 0 ||
519                   taskdata->td_flags.tiedness == TASK_UNTIED);
520  KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0 ||
521                   taskdata->td_flags.tiedness == TASK_UNTIED);
522  taskdata->td_flags.started = 1;
523  taskdata->td_flags.executing = 1;
524  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
525  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
526
527  // GEH TODO: shouldn't we pass some sort of location identifier here?
528  // APT: yes, we will pass location here.
529  // need to store current thread state (in a thread or taskdata structure)
530  // before setting work_state, otherwise wrong state is set after end of task
531
532  KA_TRACE(10, ("__kmp_task_start(exit): T#%d task=%p\n", gtid, taskdata));
533
534  return;
535}
536
537#if OMPT_SUPPORT
538//------------------------------------------------------------------------------
539// __ompt_task_init:
540//   Initialize OMPT fields maintained by a task. This will only be called after
541//   ompt_start_tool, so we already know whether ompt is enabled or not.
542
543static inline void __ompt_task_init(kmp_taskdata_t *task, int tid) {
544  // The calls to __ompt_task_init already have the ompt_enabled condition.
545  task->ompt_task_info.task_data.value = 0;
546  task->ompt_task_info.frame.exit_frame = ompt_data_none;
547  task->ompt_task_info.frame.enter_frame = ompt_data_none;
548  task->ompt_task_info.frame.exit_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
549  task->ompt_task_info.frame.enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
550  task->ompt_task_info.ndeps = 0;
551  task->ompt_task_info.deps = NULL;
552}
553
554// __ompt_task_start:
555//   Build and trigger task-begin event
556static inline void __ompt_task_start(kmp_task_t *task,
557                                     kmp_taskdata_t *current_task,
558                                     kmp_int32 gtid) {
559  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
560  ompt_task_status_t status = ompt_task_switch;
561  if (__kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded) {
562    status = ompt_task_yield;
563    __kmp_threads[gtid]->th.ompt_thread_info.ompt_task_yielded = 0;
564  }
565  /* let OMPT know that we're about to run this task */
566  if (ompt_enabled.ompt_callback_task_schedule) {
567    ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
568        &(current_task->ompt_task_info.task_data), status,
569        &(taskdata->ompt_task_info.task_data));
570  }
571  taskdata->ompt_task_info.scheduling_parent = current_task;
572}
573
574// __ompt_task_finish:
575//   Build and trigger final task-schedule event
576static inline void
577__ompt_task_finish(kmp_task_t *task, kmp_taskdata_t *resumed_task,
578                   ompt_task_status_t status = ompt_task_complete) {
579  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
580  if (__kmp_omp_cancellation && taskdata->td_taskgroup &&
581      taskdata->td_taskgroup->cancel_request == cancel_taskgroup) {
582    status = ompt_task_cancel;
583  }
584
585  /* let OMPT know that we're returning to the callee task */
586  if (ompt_enabled.ompt_callback_task_schedule) {
587    ompt_callbacks.ompt_callback(ompt_callback_task_schedule)(
588        &(taskdata->ompt_task_info.task_data), status,
589        &((resumed_task ? resumed_task
590                        : (taskdata->ompt_task_info.scheduling_parent
591                               ? taskdata->ompt_task_info.scheduling_parent
592                               : taskdata->td_parent))
593              ->ompt_task_info.task_data));
594  }
595}
596#endif
597
598template <bool ompt>
599static void __kmpc_omp_task_begin_if0_template(ident_t *loc_ref, kmp_int32 gtid,
600                                               kmp_task_t *task,
601                                               void *frame_address,
602                                               void *return_address) {
603  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
604  kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
605
606  KA_TRACE(10, ("__kmpc_omp_task_begin_if0(enter): T#%d loc=%p task=%p "
607                "current_task=%p\n",
608                gtid, loc_ref, taskdata, current_task));
609
610  if (taskdata->td_flags.tiedness == TASK_UNTIED) {
611    // untied task needs to increment counter so that the task structure is not
612    // freed prematurely
613    kmp_int32 counter = 1 + KMP_ATOMIC_INC(&taskdata->td_untied_count);
614    KMP_DEBUG_USE_VAR(counter);
615    KA_TRACE(20, ("__kmpc_omp_task_begin_if0: T#%d untied_count (%d) "
616                  "incremented for task %p\n",
617                  gtid, counter, taskdata));
618  }
619
620  taskdata->td_flags.task_serial =
621      1; // Execute this task immediately, not deferred.
622  __kmp_task_start(gtid, task, current_task);
623
624#if OMPT_SUPPORT
625  if (ompt) {
626    if (current_task->ompt_task_info.frame.enter_frame.ptr == NULL) {
627      current_task->ompt_task_info.frame.enter_frame.ptr =
628          taskdata->ompt_task_info.frame.exit_frame.ptr = frame_address;
629      current_task->ompt_task_info.frame.enter_frame_flags =
630          taskdata->ompt_task_info.frame.exit_frame_flags = ompt_frame_application | ompt_frame_framepointer;
631    }
632    if (ompt_enabled.ompt_callback_task_create) {
633      ompt_task_info_t *parent_info = &(current_task->ompt_task_info);
634      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
635          &(parent_info->task_data), &(parent_info->frame),
636          &(taskdata->ompt_task_info.task_data),
637          ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(taskdata), 0,
638          return_address);
639    }
640    __ompt_task_start(task, current_task, gtid);
641  }
642#endif // OMPT_SUPPORT
643
644  KA_TRACE(10, ("__kmpc_omp_task_begin_if0(exit): T#%d loc=%p task=%p,\n", gtid,
645                loc_ref, taskdata));
646}
647
648#if OMPT_SUPPORT
649OMPT_NOINLINE
650static void __kmpc_omp_task_begin_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
651                                           kmp_task_t *task,
652                                           void *frame_address,
653                                           void *return_address) {
654  __kmpc_omp_task_begin_if0_template<true>(loc_ref, gtid, task, frame_address,
655                                           return_address);
656}
657#endif // OMPT_SUPPORT
658
659// __kmpc_omp_task_begin_if0: report that a given serialized task has started
660// execution
661//
662// loc_ref: source location information; points to beginning of task block.
663// gtid: global thread number.
664// task: task thunk for the started task.
665void __kmpc_omp_task_begin_if0(ident_t *loc_ref, kmp_int32 gtid,
666                               kmp_task_t *task) {
667#if OMPT_SUPPORT
668  if (UNLIKELY(ompt_enabled.enabled)) {
669    OMPT_STORE_RETURN_ADDRESS(gtid);
670    __kmpc_omp_task_begin_if0_ompt(loc_ref, gtid, task,
671                                   OMPT_GET_FRAME_ADDRESS(1),
672                                   OMPT_LOAD_RETURN_ADDRESS(gtid));
673    return;
674  }
675#endif
676  __kmpc_omp_task_begin_if0_template<false>(loc_ref, gtid, task, NULL, NULL);
677}
678
679#ifdef TASK_UNUSED
680// __kmpc_omp_task_begin: report that a given task has started execution
681// NEVER GENERATED BY COMPILER, DEPRECATED!!!
682void __kmpc_omp_task_begin(ident_t *loc_ref, kmp_int32 gtid, kmp_task_t *task) {
683  kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
684
685  KA_TRACE(
686      10,
687      ("__kmpc_omp_task_begin(enter): T#%d loc=%p task=%p current_task=%p\n",
688       gtid, loc_ref, KMP_TASK_TO_TASKDATA(task), current_task));
689
690  __kmp_task_start(gtid, task, current_task);
691
692  KA_TRACE(10, ("__kmpc_omp_task_begin(exit): T#%d loc=%p task=%p,\n", gtid,
693                loc_ref, KMP_TASK_TO_TASKDATA(task)));
694  return;
695}
696#endif // TASK_UNUSED
697
698// __kmp_free_task: free the current task space and the space for shareds
699//
700// gtid: Global thread ID of calling thread
701// taskdata: task to free
702// thread: thread data structure of caller
703static void __kmp_free_task(kmp_int32 gtid, kmp_taskdata_t *taskdata,
704                            kmp_info_t *thread) {
705  KA_TRACE(30, ("__kmp_free_task: T#%d freeing data from task %p\n", gtid,
706                taskdata));
707
708  // Check to make sure all flags and counters have the correct values
709  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
710  KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 0);
711  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 1);
712  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
713  KMP_DEBUG_ASSERT(taskdata->td_allocated_child_tasks == 0 ||
714                   taskdata->td_flags.task_serial == 1);
715  KMP_DEBUG_ASSERT(taskdata->td_incomplete_child_tasks == 0);
716
717  taskdata->td_flags.freed = 1;
718  ANNOTATE_HAPPENS_BEFORE(taskdata);
719// deallocate the taskdata and shared variable blocks associated with this task
720#if USE_FAST_MEMORY
721  __kmp_fast_free(thread, taskdata);
722#else /* ! USE_FAST_MEMORY */
723  __kmp_thread_free(thread, taskdata);
724#endif
725
726  KA_TRACE(20, ("__kmp_free_task: T#%d freed task %p\n", gtid, taskdata));
727}
728
729// __kmp_free_task_and_ancestors: free the current task and ancestors without
730// children
731//
732// gtid: Global thread ID of calling thread
733// taskdata: task to free
734// thread: thread data structure of caller
735static void __kmp_free_task_and_ancestors(kmp_int32 gtid,
736                                          kmp_taskdata_t *taskdata,
737                                          kmp_info_t *thread) {
738  // Proxy tasks must always be allowed to free their parents
739  // because they can be run in background even in serial mode.
740  kmp_int32 team_serial =
741      (taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser) &&
742      !taskdata->td_flags.proxy;
743  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
744
745  kmp_int32 children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
746  KMP_DEBUG_ASSERT(children >= 0);
747
748  // Now, go up the ancestor tree to see if any ancestors can now be freed.
749  while (children == 0) {
750    kmp_taskdata_t *parent_taskdata = taskdata->td_parent;
751
752    KA_TRACE(20, ("__kmp_free_task_and_ancestors(enter): T#%d task %p complete "
753                  "and freeing itself\n",
754                  gtid, taskdata));
755
756    // --- Deallocate my ancestor task ---
757    __kmp_free_task(gtid, taskdata, thread);
758
759    taskdata = parent_taskdata;
760
761    if (team_serial)
762      return;
763    // Stop checking ancestors at implicit task instead of walking up ancestor
764    // tree to avoid premature deallocation of ancestors.
765    if (taskdata->td_flags.tasktype == TASK_IMPLICIT) {
766      if (taskdata->td_dephash) { // do we need to cleanup dephash?
767        int children = KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks);
768        kmp_tasking_flags_t flags_old = taskdata->td_flags;
769        if (children == 0 && flags_old.complete == 1) {
770          kmp_tasking_flags_t flags_new = flags_old;
771          flags_new.complete = 0;
772          if (KMP_COMPARE_AND_STORE_ACQ32(
773                  RCAST(kmp_int32 *, &taskdata->td_flags),
774                  *RCAST(kmp_int32 *, &flags_old),
775                  *RCAST(kmp_int32 *, &flags_new))) {
776            KA_TRACE(100, ("__kmp_free_task_and_ancestors: T#%d cleans "
777                           "dephash of implicit task %p\n",
778                           gtid, taskdata));
779            // cleanup dephash of finished implicit task
780            __kmp_dephash_free_entries(thread, taskdata->td_dephash);
781          }
782        }
783      }
784      return;
785    }
786    // Predecrement simulated by "- 1" calculation
787    children = KMP_ATOMIC_DEC(&taskdata->td_allocated_child_tasks) - 1;
788    KMP_DEBUG_ASSERT(children >= 0);
789  }
790
791  KA_TRACE(
792      20, ("__kmp_free_task_and_ancestors(exit): T#%d task %p has %d children; "
793           "not freeing it yet\n",
794           gtid, taskdata, children));
795}
796
797// __kmp_task_finish: bookkeeping to do when a task finishes execution
798//
799// gtid: global thread ID for calling thread
800// task: task to be finished
801// resumed_task: task to be resumed.  (may be NULL if task is serialized)
802template <bool ompt>
803static void __kmp_task_finish(kmp_int32 gtid, kmp_task_t *task,
804                              kmp_taskdata_t *resumed_task) {
805  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
806  kmp_info_t *thread = __kmp_threads[gtid];
807  kmp_task_team_t *task_team =
808      thread->th.th_task_team; // might be NULL for serial teams...
809  kmp_int32 children = 0;
810
811  KA_TRACE(10, ("__kmp_task_finish(enter): T#%d finishing task %p and resuming "
812                "task %p\n",
813                gtid, taskdata, resumed_task));
814
815  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
816
817// Pop task from stack if tied
818#ifdef BUILD_TIED_TASK_STACK
819  if (taskdata->td_flags.tiedness == TASK_TIED) {
820    __kmp_pop_task_stack(gtid, thread, taskdata);
821  }
822#endif /* BUILD_TIED_TASK_STACK */
823
824  if (taskdata->td_flags.tiedness == TASK_UNTIED) {
825    // untied task needs to check the counter so that the task structure is not
826    // freed prematurely
827    kmp_int32 counter = KMP_ATOMIC_DEC(&taskdata->td_untied_count) - 1;
828    KA_TRACE(
829        20,
830        ("__kmp_task_finish: T#%d untied_count (%d) decremented for task %p\n",
831         gtid, counter, taskdata));
832    if (counter > 0) {
833      // untied task is not done, to be continued possibly by other thread, do
834      // not free it now
835      if (resumed_task == NULL) {
836        KMP_DEBUG_ASSERT(taskdata->td_flags.task_serial);
837        resumed_task = taskdata->td_parent; // In a serialized task, the resumed
838        // task is the parent
839      }
840      thread->th.th_current_task = resumed_task; // restore current_task
841      resumed_task->td_flags.executing = 1; // resume previous task
842      KA_TRACE(10, ("__kmp_task_finish(exit): T#%d partially done task %p, "
843                    "resuming task %p\n",
844                    gtid, taskdata, resumed_task));
845      return;
846    }
847  }
848#if OMPT_SUPPORT
849  if (ompt)
850    __ompt_task_finish(task, resumed_task);
851#endif
852
853  // Check mutexinoutset dependencies, release locks
854  kmp_depnode_t *node = taskdata->td_depnode;
855  if (node && (node->dn.mtx_num_locks < 0)) {
856    // negative num_locks means all locks were acquired
857    node->dn.mtx_num_locks = -node->dn.mtx_num_locks;
858    for (int i = node->dn.mtx_num_locks - 1; i >= 0; --i) {
859      KMP_DEBUG_ASSERT(node->dn.mtx_locks[i] != NULL);
860      __kmp_release_lock(node->dn.mtx_locks[i], gtid);
861    }
862  }
863
864  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
865  bool detach = false;
866  if (taskdata->td_flags.detachable == TASK_DETACHABLE) {
867    if (taskdata->td_allow_completion_event.type ==
868        KMP_EVENT_ALLOW_COMPLETION) {
869      // event hasn't been fulfilled yet. Try to detach task.
870      __kmp_acquire_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
871      if (taskdata->td_allow_completion_event.type ==
872          KMP_EVENT_ALLOW_COMPLETION) {
873        taskdata->td_flags.proxy = TASK_PROXY; // proxify!
874        detach = true;
875      }
876      __kmp_release_tas_lock(&taskdata->td_allow_completion_event.lock, gtid);
877    }
878  }
879  KMP_DEBUG_ASSERT(taskdata->td_flags.started == 1);
880  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
881
882  if (!detach) {
883    taskdata->td_flags.complete = 1; // mark the task as completed
884
885    // Only need to keep track of count if team parallel and tasking not
886    // serialized
887    if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
888      // Predecrement simulated by "- 1" calculation
889      children =
890          KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
891      KMP_DEBUG_ASSERT(children >= 0);
892      if (taskdata->td_taskgroup)
893        KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
894      __kmp_release_deps(gtid, taskdata);
895    } else if (task_team && task_team->tt.tt_found_proxy_tasks) {
896      // if we found proxy tasks there could exist a dependency chain
897      // with the proxy task as origin
898      __kmp_release_deps(gtid, taskdata);
899    }
900  }
901
902  // td_flags.executing must be marked as 0 after __kmp_release_deps has been
903  // called. Othertwise, if a task is executed immediately from the release_deps
904  // code, the flag will be reset to 1 again by this same function
905  KMP_DEBUG_ASSERT(taskdata->td_flags.executing == 1);
906  taskdata->td_flags.executing = 0; // suspend the finishing task
907
908  KA_TRACE(
909      20, ("__kmp_task_finish: T#%d finished task %p, %d incomplete children\n",
910           gtid, taskdata, children));
911
912  /* If the tasks' destructor thunk flag has been set, we need to invoke the
913     destructor thunk that has been generated by the compiler. The code is
914     placed here, since at this point other tasks might have been released
915     hence overlapping the destructor invokations with some other work in the
916     released tasks.  The OpenMP spec is not specific on when the destructors
917     are invoked, so we should be free to choose. */
918  if (taskdata->td_flags.destructors_thunk) {
919    kmp_routine_entry_t destr_thunk = task->data1.destructors;
920    KMP_ASSERT(destr_thunk);
921    destr_thunk(gtid, task);
922  }
923
924  // bookkeeping for resuming task:
925  // GEH - note tasking_ser => task_serial
926  KMP_DEBUG_ASSERT(
927      (taskdata->td_flags.tasking_ser || taskdata->td_flags.task_serial) ==
928      taskdata->td_flags.task_serial);
929  if (taskdata->td_flags.task_serial) {
930    if (resumed_task == NULL) {
931      resumed_task = taskdata->td_parent; // In a serialized task, the resumed
932      // task is the parent
933    }
934  } else {
935    KMP_DEBUG_ASSERT(resumed_task !=
936                     NULL); // verify that resumed task is passed as argument
937  }
938
939  // Free this task and then ancestor tasks if they have no children.
940  // Restore th_current_task first as suggested by John:
941  // johnmc: if an asynchronous inquiry peers into the runtime system
942  // it doesn't see the freed task as the current task.
943  thread->th.th_current_task = resumed_task;
944  if (!detach)
945    __kmp_free_task_and_ancestors(gtid, taskdata, thread);
946
947  // TODO: GEH - make sure root team implicit task is initialized properly.
948  // KMP_DEBUG_ASSERT( resumed_task->td_flags.executing == 0 );
949  resumed_task->td_flags.executing = 1; // resume previous task
950
951  KA_TRACE(
952      10, ("__kmp_task_finish(exit): T#%d finished task %p, resuming task %p\n",
953           gtid, taskdata, resumed_task));
954
955  return;
956}
957
958template <bool ompt>
959static void __kmpc_omp_task_complete_if0_template(ident_t *loc_ref,
960                                                  kmp_int32 gtid,
961                                                  kmp_task_t *task) {
962  KA_TRACE(10, ("__kmpc_omp_task_complete_if0(enter): T#%d loc=%p task=%p\n",
963                gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
964  // this routine will provide task to resume
965  __kmp_task_finish<ompt>(gtid, task, NULL);
966
967  KA_TRACE(10, ("__kmpc_omp_task_complete_if0(exit): T#%d loc=%p task=%p\n",
968                gtid, loc_ref, KMP_TASK_TO_TASKDATA(task)));
969
970#if OMPT_SUPPORT
971  if (ompt) {
972    ompt_frame_t *ompt_frame;
973    __ompt_get_task_info_internal(0, NULL, NULL, &ompt_frame, NULL, NULL);
974    ompt_frame->enter_frame = ompt_data_none;
975    ompt_frame->enter_frame_flags = ompt_frame_runtime | ompt_frame_framepointer;
976  }
977#endif
978
979  return;
980}
981
982#if OMPT_SUPPORT
983OMPT_NOINLINE
984void __kmpc_omp_task_complete_if0_ompt(ident_t *loc_ref, kmp_int32 gtid,
985                                       kmp_task_t *task) {
986  __kmpc_omp_task_complete_if0_template<true>(loc_ref, gtid, task);
987}
988#endif // OMPT_SUPPORT
989
990// __kmpc_omp_task_complete_if0: report that a task has completed execution
991//
992// loc_ref: source location information; points to end of task block.
993// gtid: global thread number.
994// task: task thunk for the completed task.
995void __kmpc_omp_task_complete_if0(ident_t *loc_ref, kmp_int32 gtid,
996                                  kmp_task_t *task) {
997#if OMPT_SUPPORT
998  if (UNLIKELY(ompt_enabled.enabled)) {
999    __kmpc_omp_task_complete_if0_ompt(loc_ref, gtid, task);
1000    return;
1001  }
1002#endif
1003  __kmpc_omp_task_complete_if0_template<false>(loc_ref, gtid, task);
1004}
1005
1006#ifdef TASK_UNUSED
1007// __kmpc_omp_task_complete: report that a task has completed execution
1008// NEVER GENERATED BY COMPILER, DEPRECATED!!!
1009void __kmpc_omp_task_complete(ident_t *loc_ref, kmp_int32 gtid,
1010                              kmp_task_t *task) {
1011  KA_TRACE(10, ("__kmpc_omp_task_complete(enter): T#%d loc=%p task=%p\n", gtid,
1012                loc_ref, KMP_TASK_TO_TASKDATA(task)));
1013
1014  __kmp_task_finish<false>(gtid, task,
1015                           NULL); // Not sure how to find task to resume
1016
1017  KA_TRACE(10, ("__kmpc_omp_task_complete(exit): T#%d loc=%p task=%p\n", gtid,
1018                loc_ref, KMP_TASK_TO_TASKDATA(task)));
1019  return;
1020}
1021#endif // TASK_UNUSED
1022
1023// __kmp_init_implicit_task: Initialize the appropriate fields in the implicit
1024// task for a given thread
1025//
1026// loc_ref:  reference to source location of parallel region
1027// this_thr:  thread data structure corresponding to implicit task
1028// team: team for this_thr
1029// tid: thread id of given thread within team
1030// set_curr_task: TRUE if need to push current task to thread
1031// NOTE: Routine does not set up the implicit task ICVS.  This is assumed to
1032// have already been done elsewhere.
1033// TODO: Get better loc_ref.  Value passed in may be NULL
1034void __kmp_init_implicit_task(ident_t *loc_ref, kmp_info_t *this_thr,
1035                              kmp_team_t *team, int tid, int set_curr_task) {
1036  kmp_taskdata_t *task = &team->t.t_implicit_task_taskdata[tid];
1037
1038  KF_TRACE(
1039      10,
1040      ("__kmp_init_implicit_task(enter): T#:%d team=%p task=%p, reinit=%s\n",
1041       tid, team, task, set_curr_task ? "TRUE" : "FALSE"));
1042
1043  task->td_task_id = KMP_GEN_TASK_ID();
1044  task->td_team = team;
1045  //    task->td_parent   = NULL;  // fix for CQ230101 (broken parent task info
1046  //    in debugger)
1047  task->td_ident = loc_ref;
1048  task->td_taskwait_ident = NULL;
1049  task->td_taskwait_counter = 0;
1050  task->td_taskwait_thread = 0;
1051
1052  task->td_flags.tiedness = TASK_TIED;
1053  task->td_flags.tasktype = TASK_IMPLICIT;
1054  task->td_flags.proxy = TASK_FULL;
1055
1056  // All implicit tasks are executed immediately, not deferred
1057  task->td_flags.task_serial = 1;
1058  task->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1059  task->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1060
1061  task->td_flags.started = 1;
1062  task->td_flags.executing = 1;
1063  task->td_flags.complete = 0;
1064  task->td_flags.freed = 0;
1065
1066  task->td_depnode = NULL;
1067  task->td_last_tied = task;
1068  task->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1069
1070  if (set_curr_task) { // only do this init first time thread is created
1071    KMP_ATOMIC_ST_REL(&task->td_incomplete_child_tasks, 0);
1072    // Not used: don't need to deallocate implicit task
1073    KMP_ATOMIC_ST_REL(&task->td_allocated_child_tasks, 0);
1074    task->td_taskgroup = NULL; // An implicit task does not have taskgroup
1075    task->td_dephash = NULL;
1076    __kmp_push_current_task_to_thread(this_thr, team, tid);
1077  } else {
1078    KMP_DEBUG_ASSERT(task->td_incomplete_child_tasks == 0);
1079    KMP_DEBUG_ASSERT(task->td_allocated_child_tasks == 0);
1080  }
1081
1082#if OMPT_SUPPORT
1083  if (UNLIKELY(ompt_enabled.enabled))
1084    __ompt_task_init(task, tid);
1085#endif
1086
1087  KF_TRACE(10, ("__kmp_init_implicit_task(exit): T#:%d team=%p task=%p\n", tid,
1088                team, task));
1089}
1090
1091// __kmp_finish_implicit_task: Release resources associated to implicit tasks
1092// at the end of parallel regions. Some resources are kept for reuse in the next
1093// parallel region.
1094//
1095// thread:  thread data structure corresponding to implicit task
1096void __kmp_finish_implicit_task(kmp_info_t *thread) {
1097  kmp_taskdata_t *task = thread->th.th_current_task;
1098  if (task->td_dephash) {
1099    int children;
1100    task->td_flags.complete = 1;
1101    children = KMP_ATOMIC_LD_ACQ(&task->td_incomplete_child_tasks);
1102    kmp_tasking_flags_t flags_old = task->td_flags;
1103    if (children == 0 && flags_old.complete == 1) {
1104      kmp_tasking_flags_t flags_new = flags_old;
1105      flags_new.complete = 0;
1106      if (KMP_COMPARE_AND_STORE_ACQ32(RCAST(kmp_int32 *, &task->td_flags),
1107                                      *RCAST(kmp_int32 *, &flags_old),
1108                                      *RCAST(kmp_int32 *, &flags_new))) {
1109        KA_TRACE(100, ("__kmp_finish_implicit_task: T#%d cleans "
1110                       "dephash of implicit task %p\n",
1111                       thread->th.th_info.ds.ds_gtid, task));
1112        __kmp_dephash_free_entries(thread, task->td_dephash);
1113      }
1114    }
1115  }
1116}
1117
1118// __kmp_free_implicit_task: Release resources associated to implicit tasks
1119// when these are destroyed regions
1120//
1121// thread:  thread data structure corresponding to implicit task
1122void __kmp_free_implicit_task(kmp_info_t *thread) {
1123  kmp_taskdata_t *task = thread->th.th_current_task;
1124  if (task && task->td_dephash) {
1125    __kmp_dephash_free(thread, task->td_dephash);
1126    task->td_dephash = NULL;
1127  }
1128}
1129
1130// Round up a size to a power of two specified by val: Used to insert padding
1131// between structures co-allocated using a single malloc() call
1132static size_t __kmp_round_up_to_val(size_t size, size_t val) {
1133  if (size & (val - 1)) {
1134    size &= ~(val - 1);
1135    if (size <= KMP_SIZE_T_MAX - val) {
1136      size += val; // Round up if there is no overflow.
1137    }
1138  }
1139  return size;
1140} // __kmp_round_up_to_va
1141
1142// __kmp_task_alloc: Allocate the taskdata and task data structures for a task
1143//
1144// loc_ref: source location information
1145// gtid: global thread number.
1146// flags: include tiedness & task type (explicit vs. implicit) of the ''new''
1147// task encountered. Converted from kmp_int32 to kmp_tasking_flags_t in routine.
1148// sizeof_kmp_task_t:  Size in bytes of kmp_task_t data structure including
1149// private vars accessed in task.
1150// sizeof_shareds:  Size in bytes of array of pointers to shared vars accessed
1151// in task.
1152// task_entry: Pointer to task code entry point generated by compiler.
1153// returns: a pointer to the allocated kmp_task_t structure (task).
1154kmp_task_t *__kmp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1155                             kmp_tasking_flags_t *flags,
1156                             size_t sizeof_kmp_task_t, size_t sizeof_shareds,
1157                             kmp_routine_entry_t task_entry) {
1158  kmp_task_t *task;
1159  kmp_taskdata_t *taskdata;
1160  kmp_info_t *thread = __kmp_threads[gtid];
1161  kmp_team_t *team = thread->th.th_team;
1162  kmp_taskdata_t *parent_task = thread->th.th_current_task;
1163  size_t shareds_offset;
1164
1165  if (!TCR_4(__kmp_init_middle))
1166    __kmp_middle_initialize();
1167
1168  KA_TRACE(10, ("__kmp_task_alloc(enter): T#%d loc=%p, flags=(0x%x) "
1169                "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1170                gtid, loc_ref, *((kmp_int32 *)flags), sizeof_kmp_task_t,
1171                sizeof_shareds, task_entry));
1172
1173  if (parent_task->td_flags.final) {
1174    if (flags->merged_if0) {
1175    }
1176    flags->final = 1;
1177  }
1178  if (flags->tiedness == TASK_UNTIED && !team->t.t_serialized) {
1179    // Untied task encountered causes the TSC algorithm to check entire deque of
1180    // the victim thread. If no untied task encountered, then checking the head
1181    // of the deque should be enough.
1182    KMP_CHECK_UPDATE(thread->th.th_task_team->tt.tt_untied_task_encountered, 1);
1183  }
1184
1185  // Detachable tasks are not proxy tasks yet but could be in the future. Doing
1186  // the tasking setup
1187  // when that happens is too late.
1188  if (flags->proxy == TASK_PROXY || flags->detachable == TASK_DETACHABLE) {
1189    if (flags->proxy == TASK_PROXY) {
1190      flags->tiedness = TASK_UNTIED;
1191      flags->merged_if0 = 1;
1192    }
1193    /* are we running in a sequential parallel or tskm_immediate_exec... we need
1194       tasking support enabled */
1195    if ((thread->th.th_task_team) == NULL) {
1196      /* This should only happen if the team is serialized
1197          setup a task team and propagate it to the thread */
1198      KMP_DEBUG_ASSERT(team->t.t_serialized);
1199      KA_TRACE(30,
1200               ("T#%d creating task team in __kmp_task_alloc for proxy task\n",
1201                gtid));
1202      __kmp_task_team_setup(
1203          thread, team,
1204          1); // 1 indicates setup the current team regardless of nthreads
1205      thread->th.th_task_team = team->t.t_task_team[thread->th.th_task_state];
1206    }
1207    kmp_task_team_t *task_team = thread->th.th_task_team;
1208
1209    /* tasking must be enabled now as the task might not be pushed */
1210    if (!KMP_TASKING_ENABLED(task_team)) {
1211      KA_TRACE(
1212          30,
1213          ("T#%d enabling tasking in __kmp_task_alloc for proxy task\n", gtid));
1214      __kmp_enable_tasking(task_team, thread);
1215      kmp_int32 tid = thread->th.th_info.ds.ds_tid;
1216      kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
1217      // No lock needed since only owner can allocate
1218      if (thread_data->td.td_deque == NULL) {
1219        __kmp_alloc_task_deque(thread, thread_data);
1220      }
1221    }
1222
1223    if (task_team->tt.tt_found_proxy_tasks == FALSE)
1224      TCW_4(task_team->tt.tt_found_proxy_tasks, TRUE);
1225  }
1226
1227  // Calculate shared structure offset including padding after kmp_task_t struct
1228  // to align pointers in shared struct
1229  shareds_offset = sizeof(kmp_taskdata_t) + sizeof_kmp_task_t;
1230  shareds_offset = __kmp_round_up_to_val(shareds_offset, sizeof(void *));
1231
1232  // Allocate a kmp_taskdata_t block and a kmp_task_t block.
1233  KA_TRACE(30, ("__kmp_task_alloc: T#%d First malloc size: %ld\n", gtid,
1234                shareds_offset));
1235  KA_TRACE(30, ("__kmp_task_alloc: T#%d Second malloc size: %ld\n", gtid,
1236                sizeof_shareds));
1237
1238// Avoid double allocation here by combining shareds with taskdata
1239#if USE_FAST_MEMORY
1240  taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, shareds_offset +
1241                                                               sizeof_shareds);
1242#else /* ! USE_FAST_MEMORY */
1243  taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, shareds_offset +
1244                                                               sizeof_shareds);
1245#endif /* USE_FAST_MEMORY */
1246  ANNOTATE_HAPPENS_AFTER(taskdata);
1247
1248  task = KMP_TASKDATA_TO_TASK(taskdata);
1249
1250// Make sure task & taskdata are aligned appropriately
1251#if KMP_ARCH_X86 || KMP_ARCH_PPC64 || !KMP_HAVE_QUAD
1252  KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(double) - 1)) == 0);
1253  KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(double) - 1)) == 0);
1254#else
1255  KMP_DEBUG_ASSERT((((kmp_uintptr_t)taskdata) & (sizeof(_Quad) - 1)) == 0);
1256  KMP_DEBUG_ASSERT((((kmp_uintptr_t)task) & (sizeof(_Quad) - 1)) == 0);
1257#endif
1258  if (sizeof_shareds > 0) {
1259    // Avoid double allocation here by combining shareds with taskdata
1260    task->shareds = &((char *)taskdata)[shareds_offset];
1261    // Make sure shareds struct is aligned to pointer size
1262    KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
1263                     0);
1264  } else {
1265    task->shareds = NULL;
1266  }
1267  task->routine = task_entry;
1268  task->part_id = 0; // AC: Always start with 0 part id
1269
1270  taskdata->td_task_id = KMP_GEN_TASK_ID();
1271  taskdata->td_team = team;
1272  taskdata->td_alloc_thread = thread;
1273  taskdata->td_parent = parent_task;
1274  taskdata->td_level = parent_task->td_level + 1; // increment nesting level
1275  KMP_ATOMIC_ST_RLX(&taskdata->td_untied_count, 0);
1276  taskdata->td_ident = loc_ref;
1277  taskdata->td_taskwait_ident = NULL;
1278  taskdata->td_taskwait_counter = 0;
1279  taskdata->td_taskwait_thread = 0;
1280  KMP_DEBUG_ASSERT(taskdata->td_parent != NULL);
1281  // avoid copying icvs for proxy tasks
1282  if (flags->proxy == TASK_FULL)
1283    copy_icvs(&taskdata->td_icvs, &taskdata->td_parent->td_icvs);
1284
1285  taskdata->td_flags.tiedness = flags->tiedness;
1286  taskdata->td_flags.final = flags->final;
1287  taskdata->td_flags.merged_if0 = flags->merged_if0;
1288  taskdata->td_flags.destructors_thunk = flags->destructors_thunk;
1289  taskdata->td_flags.proxy = flags->proxy;
1290  taskdata->td_flags.detachable = flags->detachable;
1291  taskdata->td_task_team = thread->th.th_task_team;
1292  taskdata->td_size_alloc = shareds_offset + sizeof_shareds;
1293  taskdata->td_flags.tasktype = TASK_EXPLICIT;
1294
1295  // GEH - TODO: fix this to copy parent task's value of tasking_ser flag
1296  taskdata->td_flags.tasking_ser = (__kmp_tasking_mode == tskm_immediate_exec);
1297
1298  // GEH - TODO: fix this to copy parent task's value of team_serial flag
1299  taskdata->td_flags.team_serial = (team->t.t_serialized) ? 1 : 0;
1300
1301  // GEH - Note we serialize the task if the team is serialized to make sure
1302  // implicit parallel region tasks are not left until program termination to
1303  // execute. Also, it helps locality to execute immediately.
1304
1305  taskdata->td_flags.task_serial =
1306      (parent_task->td_flags.final || taskdata->td_flags.team_serial ||
1307       taskdata->td_flags.tasking_ser);
1308
1309  taskdata->td_flags.started = 0;
1310  taskdata->td_flags.executing = 0;
1311  taskdata->td_flags.complete = 0;
1312  taskdata->td_flags.freed = 0;
1313
1314  taskdata->td_flags.native = flags->native;
1315
1316  KMP_ATOMIC_ST_RLX(&taskdata->td_incomplete_child_tasks, 0);
1317  // start at one because counts current task and children
1318  KMP_ATOMIC_ST_RLX(&taskdata->td_allocated_child_tasks, 1);
1319  taskdata->td_taskgroup =
1320      parent_task->td_taskgroup; // task inherits taskgroup from the parent task
1321  taskdata->td_dephash = NULL;
1322  taskdata->td_depnode = NULL;
1323  if (flags->tiedness == TASK_UNTIED)
1324    taskdata->td_last_tied = NULL; // will be set when the task is scheduled
1325  else
1326    taskdata->td_last_tied = taskdata;
1327  taskdata->td_allow_completion_event.type = KMP_EVENT_UNINITIALIZED;
1328#if OMPT_SUPPORT
1329  if (UNLIKELY(ompt_enabled.enabled))
1330    __ompt_task_init(taskdata, gtid);
1331#endif
1332// Only need to keep track of child task counts if team parallel and tasking not
1333// serialized or if it is a proxy or detachable task
1334  if (flags->proxy == TASK_PROXY ||
1335      flags->detachable == TASK_DETACHABLE ||
1336      !(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser))
1337  {
1338    KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
1339    if (parent_task->td_taskgroup)
1340      KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
1341    // Only need to keep track of allocated child tasks for explicit tasks since
1342    // implicit not deallocated
1343    if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT) {
1344      KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
1345    }
1346  }
1347
1348  KA_TRACE(20, ("__kmp_task_alloc(exit): T#%d created task %p parent=%p\n",
1349                gtid, taskdata, taskdata->td_parent));
1350  ANNOTATE_HAPPENS_BEFORE(task);
1351
1352  return task;
1353}
1354
1355kmp_task_t *__kmpc_omp_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1356                                  kmp_int32 flags, size_t sizeof_kmp_task_t,
1357                                  size_t sizeof_shareds,
1358                                  kmp_routine_entry_t task_entry) {
1359  kmp_task_t *retval;
1360  kmp_tasking_flags_t *input_flags = (kmp_tasking_flags_t *)&flags;
1361
1362  input_flags->native = FALSE;
1363// __kmp_task_alloc() sets up all other runtime flags
1364
1365  KA_TRACE(10, ("__kmpc_omp_task_alloc(enter): T#%d loc=%p, flags=(%s %s %s) "
1366                "sizeof_task=%ld sizeof_shared=%ld entry=%p\n",
1367                gtid, loc_ref, input_flags->tiedness ? "tied  " : "untied",
1368                input_flags->proxy ? "proxy" : "",
1369                input_flags->detachable ? "detachable" : "", sizeof_kmp_task_t,
1370                sizeof_shareds, task_entry));
1371
1372  retval = __kmp_task_alloc(loc_ref, gtid, input_flags, sizeof_kmp_task_t,
1373                            sizeof_shareds, task_entry);
1374
1375  KA_TRACE(20, ("__kmpc_omp_task_alloc(exit): T#%d retval %p\n", gtid, retval));
1376
1377  return retval;
1378}
1379
1380kmp_task_t *__kmpc_omp_target_task_alloc(ident_t *loc_ref, kmp_int32 gtid,
1381                                         kmp_int32 flags,
1382                                         size_t sizeof_kmp_task_t,
1383                                         size_t sizeof_shareds,
1384                                         kmp_routine_entry_t task_entry,
1385                                         kmp_int64 device_id) {
1386  return __kmpc_omp_task_alloc(loc_ref, gtid, flags, sizeof_kmp_task_t,
1387                               sizeof_shareds, task_entry);
1388}
1389
1390/*!
1391@ingroup TASKING
1392@param loc_ref location of the original task directive
1393@param gtid Global Thread ID of encountering thread
1394@param new_task task thunk allocated by __kmpc_omp_task_alloc() for the ''new
1395task''
1396@param naffins Number of affinity items
1397@param affin_list List of affinity items
1398@return Returns non-zero if registering affinity information was not successful.
1399 Returns 0 if registration was successful
1400This entry registers the affinity information attached to a task with the task
1401thunk structure kmp_taskdata_t.
1402*/
1403kmp_int32
1404__kmpc_omp_reg_task_with_affinity(ident_t *loc_ref, kmp_int32 gtid,
1405                                  kmp_task_t *new_task, kmp_int32 naffins,
1406                                  kmp_task_affinity_info_t *affin_list) {
1407  return 0;
1408}
1409
1410//  __kmp_invoke_task: invoke the specified task
1411//
1412// gtid: global thread ID of caller
1413// task: the task to invoke
1414// current_task: the task to resume after task invokation
1415static void __kmp_invoke_task(kmp_int32 gtid, kmp_task_t *task,
1416                              kmp_taskdata_t *current_task) {
1417  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
1418  kmp_info_t *thread;
1419  int discard = 0 /* false */;
1420  KA_TRACE(
1421      30, ("__kmp_invoke_task(enter): T#%d invoking task %p, current_task=%p\n",
1422           gtid, taskdata, current_task));
1423  KMP_DEBUG_ASSERT(task);
1424  if (taskdata->td_flags.proxy == TASK_PROXY &&
1425      taskdata->td_flags.complete == 1) {
1426    // This is a proxy task that was already completed but it needs to run
1427    // its bottom-half finish
1428    KA_TRACE(
1429        30,
1430        ("__kmp_invoke_task: T#%d running bottom finish for proxy task %p\n",
1431         gtid, taskdata));
1432
1433    __kmp_bottom_half_finish_proxy(gtid, task);
1434
1435    KA_TRACE(30, ("__kmp_invoke_task(exit): T#%d completed bottom finish for "
1436                  "proxy task %p, resuming task %p\n",
1437                  gtid, taskdata, current_task));
1438
1439    return;
1440  }
1441
1442#if OMPT_SUPPORT
1443  // For untied tasks, the first task executed only calls __kmpc_omp_task and
1444  // does not execute code.
1445  ompt_thread_info_t oldInfo;
1446  if (UNLIKELY(ompt_enabled.enabled)) {
1447    // Store the threads states and restore them after the task
1448    thread = __kmp_threads[gtid];
1449    oldInfo = thread->th.ompt_thread_info;
1450    thread->th.ompt_thread_info.wait_id = 0;
1451    thread->th.ompt_thread_info.state = (thread->th.th_team_serialized)
1452                                            ? ompt_state_work_serial
1453                                            : ompt_state_work_parallel;
1454    taskdata->ompt_task_info.frame.exit_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1455  }
1456#endif
1457
1458  // Proxy tasks are not handled by the runtime
1459  if (taskdata->td_flags.proxy != TASK_PROXY) {
1460    ANNOTATE_HAPPENS_AFTER(task);
1461    __kmp_task_start(gtid, task, current_task); // OMPT only if not discarded
1462  }
1463
1464  // TODO: cancel tasks if the parallel region has also been cancelled
1465  // TODO: check if this sequence can be hoisted above __kmp_task_start
1466  // if cancellation has been enabled for this run ...
1467  if (__kmp_omp_cancellation) {
1468    thread = __kmp_threads[gtid];
1469    kmp_team_t *this_team = thread->th.th_team;
1470    kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
1471    if ((taskgroup && taskgroup->cancel_request) ||
1472        (this_team->t.t_cancel_request == cancel_parallel)) {
1473#if OMPT_SUPPORT && OMPT_OPTIONAL
1474      ompt_data_t *task_data;
1475      if (UNLIKELY(ompt_enabled.ompt_callback_cancel)) {
1476        __ompt_get_task_info_internal(0, NULL, &task_data, NULL, NULL, NULL);
1477        ompt_callbacks.ompt_callback(ompt_callback_cancel)(
1478            task_data,
1479            ((taskgroup && taskgroup->cancel_request) ? ompt_cancel_taskgroup
1480                                                      : ompt_cancel_parallel) |
1481                ompt_cancel_discarded_task,
1482            NULL);
1483      }
1484#endif
1485      KMP_COUNT_BLOCK(TASK_cancelled);
1486      // this task belongs to a task group and we need to cancel it
1487      discard = 1 /* true */;
1488    }
1489  }
1490
1491  // Invoke the task routine and pass in relevant data.
1492  // Thunks generated by gcc take a different argument list.
1493  if (!discard) {
1494    if (taskdata->td_flags.tiedness == TASK_UNTIED) {
1495      taskdata->td_last_tied = current_task->td_last_tied;
1496      KMP_DEBUG_ASSERT(taskdata->td_last_tied);
1497    }
1498#if KMP_STATS_ENABLED
1499    KMP_COUNT_BLOCK(TASK_executed);
1500    switch (KMP_GET_THREAD_STATE()) {
1501    case FORK_JOIN_BARRIER:
1502      KMP_PUSH_PARTITIONED_TIMER(OMP_task_join_bar);
1503      break;
1504    case PLAIN_BARRIER:
1505      KMP_PUSH_PARTITIONED_TIMER(OMP_task_plain_bar);
1506      break;
1507    case TASKYIELD:
1508      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskyield);
1509      break;
1510    case TASKWAIT:
1511      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskwait);
1512      break;
1513    case TASKGROUP:
1514      KMP_PUSH_PARTITIONED_TIMER(OMP_task_taskgroup);
1515      break;
1516    default:
1517      KMP_PUSH_PARTITIONED_TIMER(OMP_task_immediate);
1518      break;
1519    }
1520#endif // KMP_STATS_ENABLED
1521
1522// OMPT task begin
1523#if OMPT_SUPPORT
1524    if (UNLIKELY(ompt_enabled.enabled))
1525      __ompt_task_start(task, current_task, gtid);
1526#endif
1527
1528#if USE_ITT_BUILD && USE_ITT_NOTIFY
1529    kmp_uint64 cur_time;
1530    kmp_int32 kmp_itt_count_task =
1531        __kmp_forkjoin_frames_mode == 3 && !taskdata->td_flags.task_serial &&
1532        current_task->td_flags.tasktype == TASK_IMPLICIT;
1533    if (kmp_itt_count_task) {
1534      thread = __kmp_threads[gtid];
1535      // Time outer level explicit task on barrier for adjusting imbalance time
1536      if (thread->th.th_bar_arrive_time)
1537        cur_time = __itt_get_timestamp();
1538      else
1539        kmp_itt_count_task = 0; // thread is not on a barrier - skip timing
1540    }
1541#endif
1542
1543#ifdef KMP_GOMP_COMPAT
1544    if (taskdata->td_flags.native) {
1545      ((void (*)(void *))(*(task->routine)))(task->shareds);
1546    } else
1547#endif /* KMP_GOMP_COMPAT */
1548    {
1549      (*(task->routine))(gtid, task);
1550    }
1551    KMP_POP_PARTITIONED_TIMER();
1552
1553#if USE_ITT_BUILD && USE_ITT_NOTIFY
1554    if (kmp_itt_count_task) {
1555      // Barrier imbalance - adjust arrive time with the task duration
1556      thread->th.th_bar_arrive_time += (__itt_get_timestamp() - cur_time);
1557    }
1558#endif
1559
1560  }
1561
1562
1563  // Proxy tasks are not handled by the runtime
1564  if (taskdata->td_flags.proxy != TASK_PROXY) {
1565    ANNOTATE_HAPPENS_BEFORE(taskdata->td_parent);
1566#if OMPT_SUPPORT
1567    if (UNLIKELY(ompt_enabled.enabled)) {
1568      thread->th.ompt_thread_info = oldInfo;
1569      if (taskdata->td_flags.tiedness == TASK_TIED) {
1570        taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1571      }
1572      __kmp_task_finish<true>(gtid, task, current_task);
1573    } else
1574#endif
1575      __kmp_task_finish<false>(gtid, task, current_task);
1576  }
1577
1578  KA_TRACE(
1579      30,
1580      ("__kmp_invoke_task(exit): T#%d completed task %p, resuming task %p\n",
1581       gtid, taskdata, current_task));
1582  return;
1583}
1584
1585// __kmpc_omp_task_parts: Schedule a thread-switchable task for execution
1586//
1587// loc_ref: location of original task pragma (ignored)
1588// gtid: Global Thread ID of encountering thread
1589// new_task: task thunk allocated by __kmp_omp_task_alloc() for the ''new task''
1590// Returns:
1591//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1592//    be resumed later.
1593//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1594//    resumed later.
1595kmp_int32 __kmpc_omp_task_parts(ident_t *loc_ref, kmp_int32 gtid,
1596                                kmp_task_t *new_task) {
1597  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1598
1599  KA_TRACE(10, ("__kmpc_omp_task_parts(enter): T#%d loc=%p task=%p\n", gtid,
1600                loc_ref, new_taskdata));
1601
1602#if OMPT_SUPPORT
1603  kmp_taskdata_t *parent;
1604  if (UNLIKELY(ompt_enabled.enabled)) {
1605    parent = new_taskdata->td_parent;
1606    if (ompt_enabled.ompt_callback_task_create) {
1607      ompt_data_t task_data = ompt_data_none;
1608      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1609          parent ? &(parent->ompt_task_info.task_data) : &task_data,
1610          parent ? &(parent->ompt_task_info.frame) : NULL,
1611          &(new_taskdata->ompt_task_info.task_data), ompt_task_explicit, 0,
1612          OMPT_GET_RETURN_ADDRESS(0));
1613    }
1614  }
1615#endif
1616
1617  /* Should we execute the new task or queue it? For now, let's just always try
1618     to queue it.  If the queue fills up, then we'll execute it.  */
1619
1620  if (__kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1621  { // Execute this task immediately
1622    kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1623    new_taskdata->td_flags.task_serial = 1;
1624    __kmp_invoke_task(gtid, new_task, current_task);
1625  }
1626
1627  KA_TRACE(
1628      10,
1629      ("__kmpc_omp_task_parts(exit): T#%d returning TASK_CURRENT_NOT_QUEUED: "
1630       "loc=%p task=%p, return: TASK_CURRENT_NOT_QUEUED\n",
1631       gtid, loc_ref, new_taskdata));
1632
1633  ANNOTATE_HAPPENS_BEFORE(new_task);
1634#if OMPT_SUPPORT
1635  if (UNLIKELY(ompt_enabled.enabled)) {
1636    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1637  }
1638#endif
1639  return TASK_CURRENT_NOT_QUEUED;
1640}
1641
1642// __kmp_omp_task: Schedule a non-thread-switchable task for execution
1643//
1644// gtid: Global Thread ID of encountering thread
1645// new_task:non-thread-switchable task thunk allocated by __kmp_omp_task_alloc()
1646// serialize_immediate: if TRUE then if the task is executed immediately its
1647// execution will be serialized
1648// Returns:
1649//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1650//    be resumed later.
1651//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1652//    resumed later.
1653kmp_int32 __kmp_omp_task(kmp_int32 gtid, kmp_task_t *new_task,
1654                         bool serialize_immediate) {
1655  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1656
1657  /* Should we execute the new task or queue it? For now, let's just always try
1658     to queue it.  If the queue fills up, then we'll execute it.  */
1659  if (new_taskdata->td_flags.proxy == TASK_PROXY ||
1660      __kmp_push_task(gtid, new_task) == TASK_NOT_PUSHED) // if cannot defer
1661  { // Execute this task immediately
1662    kmp_taskdata_t *current_task = __kmp_threads[gtid]->th.th_current_task;
1663    if (serialize_immediate)
1664      new_taskdata->td_flags.task_serial = 1;
1665    __kmp_invoke_task(gtid, new_task, current_task);
1666  }
1667
1668  ANNOTATE_HAPPENS_BEFORE(new_task);
1669  return TASK_CURRENT_NOT_QUEUED;
1670}
1671
1672// __kmpc_omp_task: Wrapper around __kmp_omp_task to schedule a
1673// non-thread-switchable task from the parent thread only!
1674//
1675// loc_ref: location of original task pragma (ignored)
1676// gtid: Global Thread ID of encountering thread
1677// new_task: non-thread-switchable task thunk allocated by
1678// __kmp_omp_task_alloc()
1679// Returns:
1680//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1681//    be resumed later.
1682//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1683//    resumed later.
1684kmp_int32 __kmpc_omp_task(ident_t *loc_ref, kmp_int32 gtid,
1685                          kmp_task_t *new_task) {
1686  kmp_int32 res;
1687  KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1688
1689#if KMP_DEBUG || OMPT_SUPPORT
1690  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1691#endif
1692  KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1693                new_taskdata));
1694
1695#if OMPT_SUPPORT
1696  kmp_taskdata_t *parent = NULL;
1697  if (UNLIKELY(ompt_enabled.enabled)) {
1698    if (!new_taskdata->td_flags.started) {
1699      OMPT_STORE_RETURN_ADDRESS(gtid);
1700      parent = new_taskdata->td_parent;
1701      if (!parent->ompt_task_info.frame.enter_frame.ptr) {
1702        parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1703      }
1704      if (ompt_enabled.ompt_callback_task_create) {
1705        ompt_data_t task_data = ompt_data_none;
1706        ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1707            parent ? &(parent->ompt_task_info.task_data) : &task_data,
1708            parent ? &(parent->ompt_task_info.frame) : NULL,
1709            &(new_taskdata->ompt_task_info.task_data),
1710            ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1711            OMPT_LOAD_RETURN_ADDRESS(gtid));
1712      }
1713    } else {
1714      // We are scheduling the continuation of an UNTIED task.
1715      // Scheduling back to the parent task.
1716      __ompt_task_finish(new_task,
1717                         new_taskdata->ompt_task_info.scheduling_parent,
1718                         ompt_task_switch);
1719      new_taskdata->ompt_task_info.frame.exit_frame = ompt_data_none;
1720    }
1721  }
1722#endif
1723
1724  res = __kmp_omp_task(gtid, new_task, true);
1725
1726  KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1727                "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1728                gtid, loc_ref, new_taskdata));
1729#if OMPT_SUPPORT
1730  if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1731    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1732  }
1733#endif
1734  return res;
1735}
1736
1737// __kmp_omp_taskloop_task: Wrapper around __kmp_omp_task to schedule
1738// a taskloop task with the correct OMPT return address
1739//
1740// loc_ref: location of original task pragma (ignored)
1741// gtid: Global Thread ID of encountering thread
1742// new_task: non-thread-switchable task thunk allocated by
1743// __kmp_omp_task_alloc()
1744// codeptr_ra: return address for OMPT callback
1745// Returns:
1746//    TASK_CURRENT_NOT_QUEUED (0) if did not suspend and queue current task to
1747//    be resumed later.
1748//    TASK_CURRENT_QUEUED (1) if suspended and queued the current task to be
1749//    resumed later.
1750kmp_int32 __kmp_omp_taskloop_task(ident_t *loc_ref, kmp_int32 gtid,
1751                                  kmp_task_t *new_task, void *codeptr_ra) {
1752  kmp_int32 res;
1753  KMP_SET_THREAD_STATE_BLOCK(EXPLICIT_TASK);
1754
1755#if KMP_DEBUG || OMPT_SUPPORT
1756  kmp_taskdata_t *new_taskdata = KMP_TASK_TO_TASKDATA(new_task);
1757#endif
1758  KA_TRACE(10, ("__kmpc_omp_task(enter): T#%d loc=%p task=%p\n", gtid, loc_ref,
1759                new_taskdata));
1760
1761#if OMPT_SUPPORT
1762  kmp_taskdata_t *parent = NULL;
1763  if (UNLIKELY(ompt_enabled.enabled && !new_taskdata->td_flags.started)) {
1764    parent = new_taskdata->td_parent;
1765    if (!parent->ompt_task_info.frame.enter_frame.ptr)
1766      parent->ompt_task_info.frame.enter_frame.ptr = OMPT_GET_FRAME_ADDRESS(0);
1767    if (ompt_enabled.ompt_callback_task_create) {
1768      ompt_data_t task_data = ompt_data_none;
1769      ompt_callbacks.ompt_callback(ompt_callback_task_create)(
1770          parent ? &(parent->ompt_task_info.task_data) : &task_data,
1771          parent ? &(parent->ompt_task_info.frame) : NULL,
1772          &(new_taskdata->ompt_task_info.task_data),
1773          ompt_task_explicit | TASK_TYPE_DETAILS_FORMAT(new_taskdata), 0,
1774          codeptr_ra);
1775    }
1776  }
1777#endif
1778
1779  res = __kmp_omp_task(gtid, new_task, true);
1780
1781  KA_TRACE(10, ("__kmpc_omp_task(exit): T#%d returning "
1782                "TASK_CURRENT_NOT_QUEUED: loc=%p task=%p\n",
1783                gtid, loc_ref, new_taskdata));
1784#if OMPT_SUPPORT
1785  if (UNLIKELY(ompt_enabled.enabled && parent != NULL)) {
1786    parent->ompt_task_info.frame.enter_frame = ompt_data_none;
1787  }
1788#endif
1789  return res;
1790}
1791
1792template <bool ompt>
1793static kmp_int32 __kmpc_omp_taskwait_template(ident_t *loc_ref, kmp_int32 gtid,
1794                                              void *frame_address,
1795                                              void *return_address) {
1796  kmp_taskdata_t *taskdata;
1797  kmp_info_t *thread;
1798  int thread_finished = FALSE;
1799  KMP_SET_THREAD_STATE_BLOCK(TASKWAIT);
1800
1801  KA_TRACE(10, ("__kmpc_omp_taskwait(enter): T#%d loc=%p\n", gtid, loc_ref));
1802
1803  if (__kmp_tasking_mode != tskm_immediate_exec) {
1804    thread = __kmp_threads[gtid];
1805    taskdata = thread->th.th_current_task;
1806
1807#if OMPT_SUPPORT && OMPT_OPTIONAL
1808    ompt_data_t *my_task_data;
1809    ompt_data_t *my_parallel_data;
1810
1811    if (ompt) {
1812      my_task_data = &(taskdata->ompt_task_info.task_data);
1813      my_parallel_data = OMPT_CUR_TEAM_DATA(thread);
1814
1815      taskdata->ompt_task_info.frame.enter_frame.ptr = frame_address;
1816
1817      if (ompt_enabled.ompt_callback_sync_region) {
1818        ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1819            ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1820            my_task_data, return_address);
1821      }
1822
1823      if (ompt_enabled.ompt_callback_sync_region_wait) {
1824        ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1825            ompt_sync_region_taskwait, ompt_scope_begin, my_parallel_data,
1826            my_task_data, return_address);
1827      }
1828    }
1829#endif // OMPT_SUPPORT && OMPT_OPTIONAL
1830
1831// Debugger: The taskwait is active. Store location and thread encountered the
1832// taskwait.
1833#if USE_ITT_BUILD
1834// Note: These values are used by ITT events as well.
1835#endif /* USE_ITT_BUILD */
1836    taskdata->td_taskwait_counter += 1;
1837    taskdata->td_taskwait_ident = loc_ref;
1838    taskdata->td_taskwait_thread = gtid + 1;
1839
1840#if USE_ITT_BUILD
1841    void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
1842    if (itt_sync_obj != NULL)
1843      __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
1844#endif /* USE_ITT_BUILD */
1845
1846    bool must_wait =
1847        !taskdata->td_flags.team_serial && !taskdata->td_flags.final;
1848
1849    must_wait = must_wait || (thread->th.th_task_team != NULL &&
1850                              thread->th.th_task_team->tt.tt_found_proxy_tasks);
1851    if (must_wait) {
1852      kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
1853                             &(taskdata->td_incomplete_child_tasks)),
1854                       0U);
1855      while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) != 0) {
1856        flag.execute_tasks(thread, gtid, FALSE,
1857                           &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1858                           __kmp_task_stealing_constraint);
1859      }
1860    }
1861#if USE_ITT_BUILD
1862    if (itt_sync_obj != NULL)
1863      __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
1864#endif /* USE_ITT_BUILD */
1865
1866    // Debugger:  The taskwait is completed. Location remains, but thread is
1867    // negated.
1868    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1869
1870#if OMPT_SUPPORT && OMPT_OPTIONAL
1871    if (ompt) {
1872      if (ompt_enabled.ompt_callback_sync_region_wait) {
1873        ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
1874            ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1875            my_task_data, return_address);
1876      }
1877      if (ompt_enabled.ompt_callback_sync_region) {
1878        ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
1879            ompt_sync_region_taskwait, ompt_scope_end, my_parallel_data,
1880            my_task_data, return_address);
1881      }
1882      taskdata->ompt_task_info.frame.enter_frame = ompt_data_none;
1883    }
1884#endif // OMPT_SUPPORT && OMPT_OPTIONAL
1885
1886    ANNOTATE_HAPPENS_AFTER(taskdata);
1887  }
1888
1889  KA_TRACE(10, ("__kmpc_omp_taskwait(exit): T#%d task %p finished waiting, "
1890                "returning TASK_CURRENT_NOT_QUEUED\n",
1891                gtid, taskdata));
1892
1893  return TASK_CURRENT_NOT_QUEUED;
1894}
1895
1896#if OMPT_SUPPORT && OMPT_OPTIONAL
1897OMPT_NOINLINE
1898static kmp_int32 __kmpc_omp_taskwait_ompt(ident_t *loc_ref, kmp_int32 gtid,
1899                                          void *frame_address,
1900                                          void *return_address) {
1901  return __kmpc_omp_taskwait_template<true>(loc_ref, gtid, frame_address,
1902                                            return_address);
1903}
1904#endif // OMPT_SUPPORT && OMPT_OPTIONAL
1905
1906// __kmpc_omp_taskwait: Wait until all tasks generated by the current task are
1907// complete
1908kmp_int32 __kmpc_omp_taskwait(ident_t *loc_ref, kmp_int32 gtid) {
1909#if OMPT_SUPPORT && OMPT_OPTIONAL
1910  if (UNLIKELY(ompt_enabled.enabled)) {
1911    OMPT_STORE_RETURN_ADDRESS(gtid);
1912    return __kmpc_omp_taskwait_ompt(loc_ref, gtid, OMPT_GET_FRAME_ADDRESS(0),
1913                                    OMPT_LOAD_RETURN_ADDRESS(gtid));
1914  }
1915#endif
1916  return __kmpc_omp_taskwait_template<false>(loc_ref, gtid, NULL, NULL);
1917}
1918
1919// __kmpc_omp_taskyield: switch to a different task
1920kmp_int32 __kmpc_omp_taskyield(ident_t *loc_ref, kmp_int32 gtid, int end_part) {
1921  kmp_taskdata_t *taskdata;
1922  kmp_info_t *thread;
1923  int thread_finished = FALSE;
1924
1925  KMP_COUNT_BLOCK(OMP_TASKYIELD);
1926  KMP_SET_THREAD_STATE_BLOCK(TASKYIELD);
1927
1928  KA_TRACE(10, ("__kmpc_omp_taskyield(enter): T#%d loc=%p end_part = %d\n",
1929                gtid, loc_ref, end_part));
1930
1931  if (__kmp_tasking_mode != tskm_immediate_exec && __kmp_init_parallel) {
1932    thread = __kmp_threads[gtid];
1933    taskdata = thread->th.th_current_task;
1934// Should we model this as a task wait or not?
1935// Debugger: The taskwait is active. Store location and thread encountered the
1936// taskwait.
1937#if USE_ITT_BUILD
1938// Note: These values are used by ITT events as well.
1939#endif /* USE_ITT_BUILD */
1940    taskdata->td_taskwait_counter += 1;
1941    taskdata->td_taskwait_ident = loc_ref;
1942    taskdata->td_taskwait_thread = gtid + 1;
1943
1944#if USE_ITT_BUILD
1945    void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
1946    if (itt_sync_obj != NULL)
1947      __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
1948#endif /* USE_ITT_BUILD */
1949    if (!taskdata->td_flags.team_serial) {
1950      kmp_task_team_t *task_team = thread->th.th_task_team;
1951      if (task_team != NULL) {
1952        if (KMP_TASKING_ENABLED(task_team)) {
1953#if OMPT_SUPPORT
1954          if (UNLIKELY(ompt_enabled.enabled))
1955            thread->th.ompt_thread_info.ompt_task_yielded = 1;
1956#endif
1957          __kmp_execute_tasks_32(
1958              thread, gtid, NULL, FALSE,
1959              &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
1960              __kmp_task_stealing_constraint);
1961#if OMPT_SUPPORT
1962          if (UNLIKELY(ompt_enabled.enabled))
1963            thread->th.ompt_thread_info.ompt_task_yielded = 0;
1964#endif
1965        }
1966      }
1967    }
1968#if USE_ITT_BUILD
1969    if (itt_sync_obj != NULL)
1970      __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
1971#endif /* USE_ITT_BUILD */
1972
1973    // Debugger:  The taskwait is completed. Location remains, but thread is
1974    // negated.
1975    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread;
1976  }
1977
1978  KA_TRACE(10, ("__kmpc_omp_taskyield(exit): T#%d task %p resuming, "
1979                "returning TASK_CURRENT_NOT_QUEUED\n",
1980                gtid, taskdata));
1981
1982  return TASK_CURRENT_NOT_QUEUED;
1983}
1984
1985// Task Reduction implementation
1986//
1987// Note: initial implementation didn't take into account the possibility
1988// to specify omp_orig for initializer of the UDR (user defined reduction).
1989// Corrected implementation takes into account the omp_orig object.
1990// Compiler is free to use old implementation if omp_orig is not specified.
1991
1992/*!
1993@ingroup BASIC_TYPES
1994@{
1995*/
1996
1997/*!
1998Flags for special info per task reduction item.
1999*/
2000typedef struct kmp_taskred_flags {
2001  /*! 1 - use lazy alloc/init (e.g. big objects, #tasks < #threads) */
2002  unsigned lazy_priv : 1;
2003  unsigned reserved31 : 31;
2004} kmp_taskred_flags_t;
2005
2006/*!
2007Internal struct for reduction data item related info set up by compiler.
2008*/
2009typedef struct kmp_task_red_input {
2010  void *reduce_shar; /**< shared between tasks item to reduce into */
2011  size_t reduce_size; /**< size of data item in bytes */
2012  // three compiler-generated routines (init, fini are optional):
2013  void *reduce_init; /**< data initialization routine (single parameter) */
2014  void *reduce_fini; /**< data finalization routine */
2015  void *reduce_comb; /**< data combiner routine */
2016  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2017} kmp_task_red_input_t;
2018
2019/*!
2020Internal struct for reduction data item related info saved by the library.
2021*/
2022typedef struct kmp_taskred_data {
2023  void *reduce_shar; /**< shared between tasks item to reduce into */
2024  size_t reduce_size; /**< size of data item */
2025  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2026  void *reduce_priv; /**< array of thread specific items */
2027  void *reduce_pend; /**< end of private data for faster comparison op */
2028  // three compiler-generated routines (init, fini are optional):
2029  void *reduce_comb; /**< data combiner routine */
2030  void *reduce_init; /**< data initialization routine (two parameters) */
2031  void *reduce_fini; /**< data finalization routine */
2032  void *reduce_orig; /**< original item (can be used in UDR initializer) */
2033} kmp_taskred_data_t;
2034
2035/*!
2036Internal struct for reduction data item related info set up by compiler.
2037
2038New interface: added reduce_orig field to provide omp_orig for UDR initializer.
2039*/
2040typedef struct kmp_taskred_input {
2041  void *reduce_shar; /**< shared between tasks item to reduce into */
2042  void *reduce_orig; /**< original reduction item used for initialization */
2043  size_t reduce_size; /**< size of data item */
2044  // three compiler-generated routines (init, fini are optional):
2045  void *reduce_init; /**< data initialization routine (two parameters) */
2046  void *reduce_fini; /**< data finalization routine */
2047  void *reduce_comb; /**< data combiner routine */
2048  kmp_taskred_flags_t flags; /**< flags for additional info from compiler */
2049} kmp_taskred_input_t;
2050/*!
2051@}
2052*/
2053
2054template <typename T> void __kmp_assign_orig(kmp_taskred_data_t &item, T &src);
2055template <>
2056void __kmp_assign_orig<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2057                                             kmp_task_red_input_t &src) {
2058  item.reduce_orig = NULL;
2059}
2060template <>
2061void __kmp_assign_orig<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2062                                            kmp_taskred_input_t &src) {
2063  if (src.reduce_orig != NULL) {
2064    item.reduce_orig = src.reduce_orig;
2065  } else {
2066    item.reduce_orig = src.reduce_shar;
2067  } // non-NULL reduce_orig means new interface used
2068}
2069
2070template <typename T> void __kmp_call_init(kmp_taskred_data_t &item, int j);
2071template <>
2072void __kmp_call_init<kmp_task_red_input_t>(kmp_taskred_data_t &item,
2073                                           int offset) {
2074  ((void (*)(void *))item.reduce_init)((char *)(item.reduce_priv) + offset);
2075}
2076template <>
2077void __kmp_call_init<kmp_taskred_input_t>(kmp_taskred_data_t &item,
2078                                          int offset) {
2079  ((void (*)(void *, void *))item.reduce_init)(
2080      (char *)(item.reduce_priv) + offset, item.reduce_orig);
2081}
2082
2083template <typename T>
2084void *__kmp_task_reduction_init(int gtid, int num, T *data) {
2085  kmp_info_t *thread = __kmp_threads[gtid];
2086  kmp_taskgroup_t *tg = thread->th.th_current_task->td_taskgroup;
2087  kmp_int32 nth = thread->th.th_team_nproc;
2088  kmp_taskred_data_t *arr;
2089
2090  // check input data just in case
2091  KMP_ASSERT(tg != NULL);
2092  KMP_ASSERT(data != NULL);
2093  KMP_ASSERT(num > 0);
2094  if (nth == 1) {
2095    KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, tg %p, exiting nth=1\n",
2096                  gtid, tg));
2097    return (void *)tg;
2098  }
2099  KA_TRACE(10, ("__kmpc_task_reduction_init: T#%d, taskgroup %p, #items %d\n",
2100                gtid, tg, num));
2101  arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2102      thread, num * sizeof(kmp_taskred_data_t));
2103  for (int i = 0; i < num; ++i) {
2104    size_t size = data[i].reduce_size - 1;
2105    // round the size up to cache line per thread-specific item
2106    size += CACHE_LINE - size % CACHE_LINE;
2107    KMP_ASSERT(data[i].reduce_comb != NULL); // combiner is mandatory
2108    arr[i].reduce_shar = data[i].reduce_shar;
2109    arr[i].reduce_size = size;
2110    arr[i].flags = data[i].flags;
2111    arr[i].reduce_comb = data[i].reduce_comb;
2112    arr[i].reduce_init = data[i].reduce_init;
2113    arr[i].reduce_fini = data[i].reduce_fini;
2114    __kmp_assign_orig<T>(arr[i], data[i]);
2115    if (!arr[i].flags.lazy_priv) {
2116      // allocate cache-line aligned block and fill it with zeros
2117      arr[i].reduce_priv = __kmp_allocate(nth * size);
2118      arr[i].reduce_pend = (char *)(arr[i].reduce_priv) + nth * size;
2119      if (arr[i].reduce_init != NULL) {
2120        // initialize all thread-specific items
2121        for (int j = 0; j < nth; ++j) {
2122          __kmp_call_init<T>(arr[i], j * size);
2123        }
2124      }
2125    } else {
2126      // only allocate space for pointers now,
2127      // objects will be lazily allocated/initialized if/when requested
2128      // note that __kmp_allocate zeroes the allocated memory
2129      arr[i].reduce_priv = __kmp_allocate(nth * sizeof(void *));
2130    }
2131  }
2132  tg->reduce_data = (void *)arr;
2133  tg->reduce_num_data = num;
2134  return (void *)tg;
2135}
2136
2137/*!
2138@ingroup TASKING
2139@param gtid      Global thread ID
2140@param num       Number of data items to reduce
2141@param data      Array of data for reduction
2142@return The taskgroup identifier
2143
2144Initialize task reduction for the taskgroup.
2145
2146Note: this entry supposes the optional compiler-generated initializer routine
2147has single parameter - pointer to object to be initialized. That means
2148the reduction either does not use omp_orig object, or the omp_orig is accessible
2149without help of the runtime library.
2150*/
2151void *__kmpc_task_reduction_init(int gtid, int num, void *data) {
2152  return __kmp_task_reduction_init(gtid, num, (kmp_task_red_input_t *)data);
2153}
2154
2155/*!
2156@ingroup TASKING
2157@param gtid      Global thread ID
2158@param num       Number of data items to reduce
2159@param data      Array of data for reduction
2160@return The taskgroup identifier
2161
2162Initialize task reduction for the taskgroup.
2163
2164Note: this entry supposes the optional compiler-generated initializer routine
2165has two parameters, pointer to object to be initialized and pointer to omp_orig
2166*/
2167void *__kmpc_taskred_init(int gtid, int num, void *data) {
2168  return __kmp_task_reduction_init(gtid, num, (kmp_taskred_input_t *)data);
2169}
2170
2171// Copy task reduction data (except for shared pointers).
2172template <typename T>
2173void __kmp_task_reduction_init_copy(kmp_info_t *thr, int num, T *data,
2174                                    kmp_taskgroup_t *tg, void *reduce_data) {
2175  kmp_taskred_data_t *arr;
2176  KA_TRACE(20, ("__kmp_task_reduction_init_copy: Th %p, init taskgroup %p,"
2177                " from data %p\n",
2178                thr, tg, reduce_data));
2179  arr = (kmp_taskred_data_t *)__kmp_thread_malloc(
2180      thr, num * sizeof(kmp_taskred_data_t));
2181  // threads will share private copies, thunk routines, sizes, flags, etc.:
2182  KMP_MEMCPY(arr, reduce_data, num * sizeof(kmp_taskred_data_t));
2183  for (int i = 0; i < num; ++i) {
2184    arr[i].reduce_shar = data[i].reduce_shar; // init unique shared pointers
2185  }
2186  tg->reduce_data = (void *)arr;
2187  tg->reduce_num_data = num;
2188}
2189
2190/*!
2191@ingroup TASKING
2192@param gtid    Global thread ID
2193@param tskgrp  The taskgroup ID (optional)
2194@param data    Shared location of the item
2195@return The pointer to per-thread data
2196
2197Get thread-specific location of data item
2198*/
2199void *__kmpc_task_reduction_get_th_data(int gtid, void *tskgrp, void *data) {
2200  kmp_info_t *thread = __kmp_threads[gtid];
2201  kmp_int32 nth = thread->th.th_team_nproc;
2202  if (nth == 1)
2203    return data; // nothing to do
2204
2205  kmp_taskgroup_t *tg = (kmp_taskgroup_t *)tskgrp;
2206  if (tg == NULL)
2207    tg = thread->th.th_current_task->td_taskgroup;
2208  KMP_ASSERT(tg != NULL);
2209  kmp_taskred_data_t *arr = (kmp_taskred_data_t *)(tg->reduce_data);
2210  kmp_int32 num = tg->reduce_num_data;
2211  kmp_int32 tid = thread->th.th_info.ds.ds_tid;
2212
2213  KMP_ASSERT(data != NULL);
2214  while (tg != NULL) {
2215    for (int i = 0; i < num; ++i) {
2216      if (!arr[i].flags.lazy_priv) {
2217        if (data == arr[i].reduce_shar ||
2218            (data >= arr[i].reduce_priv && data < arr[i].reduce_pend))
2219          return (char *)(arr[i].reduce_priv) + tid * arr[i].reduce_size;
2220      } else {
2221        // check shared location first
2222        void **p_priv = (void **)(arr[i].reduce_priv);
2223        if (data == arr[i].reduce_shar)
2224          goto found;
2225        // check if we get some thread specific location as parameter
2226        for (int j = 0; j < nth; ++j)
2227          if (data == p_priv[j])
2228            goto found;
2229        continue; // not found, continue search
2230      found:
2231        if (p_priv[tid] == NULL) {
2232          // allocate thread specific object lazily
2233          p_priv[tid] = __kmp_allocate(arr[i].reduce_size);
2234          if (arr[i].reduce_init != NULL) {
2235            if (arr[i].reduce_orig != NULL) { // new interface
2236              ((void (*)(void *, void *))arr[i].reduce_init)(
2237                  p_priv[tid], arr[i].reduce_orig);
2238            } else { // old interface (single parameter)
2239              ((void (*)(void *))arr[i].reduce_init)(p_priv[tid]);
2240            }
2241          }
2242        }
2243        return p_priv[tid];
2244      }
2245    }
2246    tg = tg->parent;
2247    arr = (kmp_taskred_data_t *)(tg->reduce_data);
2248    num = tg->reduce_num_data;
2249  }
2250  KMP_ASSERT2(0, "Unknown task reduction item");
2251  return NULL; // ERROR, this line never executed
2252}
2253
2254// Finalize task reduction.
2255// Called from __kmpc_end_taskgroup()
2256static void __kmp_task_reduction_fini(kmp_info_t *th, kmp_taskgroup_t *tg) {
2257  kmp_int32 nth = th->th.th_team_nproc;
2258  KMP_DEBUG_ASSERT(nth > 1); // should not be called if nth == 1
2259  kmp_taskred_data_t *arr = (kmp_taskred_data_t *)tg->reduce_data;
2260  kmp_int32 num = tg->reduce_num_data;
2261  for (int i = 0; i < num; ++i) {
2262    void *sh_data = arr[i].reduce_shar;
2263    void (*f_fini)(void *) = (void (*)(void *))(arr[i].reduce_fini);
2264    void (*f_comb)(void *, void *) =
2265        (void (*)(void *, void *))(arr[i].reduce_comb);
2266    if (!arr[i].flags.lazy_priv) {
2267      void *pr_data = arr[i].reduce_priv;
2268      size_t size = arr[i].reduce_size;
2269      for (int j = 0; j < nth; ++j) {
2270        void *priv_data = (char *)pr_data + j * size;
2271        f_comb(sh_data, priv_data); // combine results
2272        if (f_fini)
2273          f_fini(priv_data); // finalize if needed
2274      }
2275    } else {
2276      void **pr_data = (void **)(arr[i].reduce_priv);
2277      for (int j = 0; j < nth; ++j) {
2278        if (pr_data[j] != NULL) {
2279          f_comb(sh_data, pr_data[j]); // combine results
2280          if (f_fini)
2281            f_fini(pr_data[j]); // finalize if needed
2282          __kmp_free(pr_data[j]);
2283        }
2284      }
2285    }
2286    __kmp_free(arr[i].reduce_priv);
2287  }
2288  __kmp_thread_free(th, arr);
2289  tg->reduce_data = NULL;
2290  tg->reduce_num_data = 0;
2291}
2292
2293// Cleanup task reduction data for parallel or worksharing,
2294// do not touch task private data other threads still working with.
2295// Called from __kmpc_end_taskgroup()
2296static void __kmp_task_reduction_clean(kmp_info_t *th, kmp_taskgroup_t *tg) {
2297  __kmp_thread_free(th, tg->reduce_data);
2298  tg->reduce_data = NULL;
2299  tg->reduce_num_data = 0;
2300}
2301
2302template <typename T>
2303void *__kmp_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2304                                         int num, T *data) {
2305  kmp_info_t *thr = __kmp_threads[gtid];
2306  kmp_int32 nth = thr->th.th_team_nproc;
2307  __kmpc_taskgroup(loc, gtid); // form new taskgroup first
2308  if (nth == 1) {
2309    KA_TRACE(10,
2310             ("__kmpc_reduction_modifier_init: T#%d, tg %p, exiting nth=1\n",
2311              gtid, thr->th.th_current_task->td_taskgroup));
2312    return (void *)thr->th.th_current_task->td_taskgroup;
2313  }
2314  kmp_team_t *team = thr->th.th_team;
2315  void *reduce_data;
2316  kmp_taskgroup_t *tg;
2317  reduce_data = KMP_ATOMIC_LD_RLX(&team->t.t_tg_reduce_data[is_ws]);
2318  if (reduce_data == NULL &&
2319      __kmp_atomic_compare_store(&team->t.t_tg_reduce_data[is_ws], reduce_data,
2320                                 (void *)1)) {
2321    // single thread enters this block to initialize common reduction data
2322    KMP_DEBUG_ASSERT(reduce_data == NULL);
2323    // first initialize own data, then make a copy other threads can use
2324    tg = (kmp_taskgroup_t *)__kmp_task_reduction_init<T>(gtid, num, data);
2325    reduce_data = __kmp_thread_malloc(thr, num * sizeof(kmp_taskred_data_t));
2326    KMP_MEMCPY(reduce_data, tg->reduce_data, num * sizeof(kmp_taskred_data_t));
2327    // fini counters should be 0 at this point
2328    KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[0]) == 0);
2329    KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&team->t.t_tg_fini_counter[1]) == 0);
2330    KMP_ATOMIC_ST_REL(&team->t.t_tg_reduce_data[is_ws], reduce_data);
2331  } else {
2332    while (
2333        (reduce_data = KMP_ATOMIC_LD_ACQ(&team->t.t_tg_reduce_data[is_ws])) ==
2334        (void *)1) { // wait for task reduction initialization
2335      KMP_CPU_PAUSE();
2336    }
2337    KMP_DEBUG_ASSERT(reduce_data > (void *)1); // should be valid pointer here
2338    tg = thr->th.th_current_task->td_taskgroup;
2339    __kmp_task_reduction_init_copy<T>(thr, num, data, tg, reduce_data);
2340  }
2341  return tg;
2342}
2343
2344/*!
2345@ingroup TASKING
2346@param loc       Source location info
2347@param gtid      Global thread ID
2348@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2349@param num       Number of data items to reduce
2350@param data      Array of data for reduction
2351@return The taskgroup identifier
2352
2353Initialize task reduction for a parallel or worksharing.
2354
2355Note: this entry supposes the optional compiler-generated initializer routine
2356has single parameter - pointer to object to be initialized. That means
2357the reduction either does not use omp_orig object, or the omp_orig is accessible
2358without help of the runtime library.
2359*/
2360void *__kmpc_task_reduction_modifier_init(ident_t *loc, int gtid, int is_ws,
2361                                          int num, void *data) {
2362  return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2363                                            (kmp_task_red_input_t *)data);
2364}
2365
2366/*!
2367@ingroup TASKING
2368@param loc       Source location info
2369@param gtid      Global thread ID
2370@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2371@param num       Number of data items to reduce
2372@param data      Array of data for reduction
2373@return The taskgroup identifier
2374
2375Initialize task reduction for a parallel or worksharing.
2376
2377Note: this entry supposes the optional compiler-generated initializer routine
2378has two parameters, pointer to object to be initialized and pointer to omp_orig
2379*/
2380void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int is_ws, int num,
2381                                   void *data) {
2382  return __kmp_task_reduction_modifier_init(loc, gtid, is_ws, num,
2383                                            (kmp_taskred_input_t *)data);
2384}
2385
2386/*!
2387@ingroup TASKING
2388@param loc       Source location info
2389@param gtid      Global thread ID
2390@param is_ws     Is 1 if the reduction is for worksharing, 0 otherwise
2391
2392Finalize task reduction for a parallel or worksharing.
2393*/
2394void __kmpc_task_reduction_modifier_fini(ident_t *loc, int gtid, int is_ws) {
2395  __kmpc_end_taskgroup(loc, gtid);
2396}
2397
2398// __kmpc_taskgroup: Start a new taskgroup
2399void __kmpc_taskgroup(ident_t *loc, int gtid) {
2400  kmp_info_t *thread = __kmp_threads[gtid];
2401  kmp_taskdata_t *taskdata = thread->th.th_current_task;
2402  kmp_taskgroup_t *tg_new =
2403      (kmp_taskgroup_t *)__kmp_thread_malloc(thread, sizeof(kmp_taskgroup_t));
2404  KA_TRACE(10, ("__kmpc_taskgroup: T#%d loc=%p group=%p\n", gtid, loc, tg_new));
2405  KMP_ATOMIC_ST_RLX(&tg_new->count, 0);
2406  KMP_ATOMIC_ST_RLX(&tg_new->cancel_request, cancel_noreq);
2407  tg_new->parent = taskdata->td_taskgroup;
2408  tg_new->reduce_data = NULL;
2409  tg_new->reduce_num_data = 0;
2410  taskdata->td_taskgroup = tg_new;
2411
2412#if OMPT_SUPPORT && OMPT_OPTIONAL
2413  if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2414    void *codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2415    if (!codeptr)
2416      codeptr = OMPT_GET_RETURN_ADDRESS(0);
2417    kmp_team_t *team = thread->th.th_team;
2418    ompt_data_t my_task_data = taskdata->ompt_task_info.task_data;
2419    // FIXME: I think this is wrong for lwt!
2420    ompt_data_t my_parallel_data = team->t.ompt_team_info.parallel_data;
2421
2422    ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2423        ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2424        &(my_task_data), codeptr);
2425  }
2426#endif
2427}
2428
2429// __kmpc_end_taskgroup: Wait until all tasks generated by the current task
2430//                       and its descendants are complete
2431void __kmpc_end_taskgroup(ident_t *loc, int gtid) {
2432  kmp_info_t *thread = __kmp_threads[gtid];
2433  kmp_taskdata_t *taskdata = thread->th.th_current_task;
2434  kmp_taskgroup_t *taskgroup = taskdata->td_taskgroup;
2435  int thread_finished = FALSE;
2436
2437#if OMPT_SUPPORT && OMPT_OPTIONAL
2438  kmp_team_t *team;
2439  ompt_data_t my_task_data;
2440  ompt_data_t my_parallel_data;
2441  void *codeptr;
2442  if (UNLIKELY(ompt_enabled.enabled)) {
2443    team = thread->th.th_team;
2444    my_task_data = taskdata->ompt_task_info.task_data;
2445    // FIXME: I think this is wrong for lwt!
2446    my_parallel_data = team->t.ompt_team_info.parallel_data;
2447    codeptr = OMPT_LOAD_RETURN_ADDRESS(gtid);
2448    if (!codeptr)
2449      codeptr = OMPT_GET_RETURN_ADDRESS(0);
2450  }
2451#endif
2452
2453  KA_TRACE(10, ("__kmpc_end_taskgroup(enter): T#%d loc=%p\n", gtid, loc));
2454  KMP_DEBUG_ASSERT(taskgroup != NULL);
2455  KMP_SET_THREAD_STATE_BLOCK(TASKGROUP);
2456
2457  if (__kmp_tasking_mode != tskm_immediate_exec) {
2458    // mark task as waiting not on a barrier
2459    taskdata->td_taskwait_counter += 1;
2460    taskdata->td_taskwait_ident = loc;
2461    taskdata->td_taskwait_thread = gtid + 1;
2462#if USE_ITT_BUILD
2463    // For ITT the taskgroup wait is similar to taskwait until we need to
2464    // distinguish them
2465    void *itt_sync_obj = __kmp_itt_taskwait_object(gtid);
2466    if (itt_sync_obj != NULL)
2467      __kmp_itt_taskwait_starting(gtid, itt_sync_obj);
2468#endif /* USE_ITT_BUILD */
2469
2470#if OMPT_SUPPORT && OMPT_OPTIONAL
2471    if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2472      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2473          ompt_sync_region_taskgroup, ompt_scope_begin, &(my_parallel_data),
2474          &(my_task_data), codeptr);
2475    }
2476#endif
2477
2478    if (!taskdata->td_flags.team_serial ||
2479        (thread->th.th_task_team != NULL &&
2480         thread->th.th_task_team->tt.tt_found_proxy_tasks)) {
2481      kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *, &(taskgroup->count)),
2482                       0U);
2483      while (KMP_ATOMIC_LD_ACQ(&taskgroup->count) != 0) {
2484        flag.execute_tasks(thread, gtid, FALSE,
2485                           &thread_finished USE_ITT_BUILD_ARG(itt_sync_obj),
2486                           __kmp_task_stealing_constraint);
2487      }
2488    }
2489    taskdata->td_taskwait_thread = -taskdata->td_taskwait_thread; // end waiting
2490
2491#if OMPT_SUPPORT && OMPT_OPTIONAL
2492    if (UNLIKELY(ompt_enabled.ompt_callback_sync_region_wait)) {
2493      ompt_callbacks.ompt_callback(ompt_callback_sync_region_wait)(
2494          ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2495          &(my_task_data), codeptr);
2496    }
2497#endif
2498
2499#if USE_ITT_BUILD
2500    if (itt_sync_obj != NULL)
2501      __kmp_itt_taskwait_finished(gtid, itt_sync_obj);
2502#endif /* USE_ITT_BUILD */
2503  }
2504  KMP_DEBUG_ASSERT(taskgroup->count == 0);
2505
2506  if (taskgroup->reduce_data != NULL) { // need to reduce?
2507    int cnt;
2508    void *reduce_data;
2509    kmp_team_t *t = thread->th.th_team;
2510    kmp_taskred_data_t *arr = (kmp_taskred_data_t *)taskgroup->reduce_data;
2511    // check if <priv> data of the first reduction variable shared for the team
2512    void *priv0 = arr[0].reduce_priv;
2513    if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[0])) != NULL &&
2514        ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2515      // finishing task reduction on parallel
2516      cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[0]);
2517      if (cnt == thread->th.th_team_nproc - 1) {
2518        // we are the last thread passing __kmpc_reduction_modifier_fini()
2519        // finalize task reduction:
2520        __kmp_task_reduction_fini(thread, taskgroup);
2521        // cleanup fields in the team structure:
2522        // TODO: is relaxed store enough here (whole barrier should follow)?
2523        __kmp_thread_free(thread, reduce_data);
2524        KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[0], NULL);
2525        KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[0], 0);
2526      } else {
2527        // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2528        // so do not finalize reduction, just clean own copy of the data
2529        __kmp_task_reduction_clean(thread, taskgroup);
2530      }
2531    } else if ((reduce_data = KMP_ATOMIC_LD_ACQ(&t->t.t_tg_reduce_data[1])) !=
2532                   NULL &&
2533               ((kmp_taskred_data_t *)reduce_data)[0].reduce_priv == priv0) {
2534      // finishing task reduction on worksharing
2535      cnt = KMP_ATOMIC_INC(&t->t.t_tg_fini_counter[1]);
2536      if (cnt == thread->th.th_team_nproc - 1) {
2537        // we are the last thread passing __kmpc_reduction_modifier_fini()
2538        __kmp_task_reduction_fini(thread, taskgroup);
2539        // cleanup fields in team structure:
2540        // TODO: is relaxed store enough here (whole barrier should follow)?
2541        __kmp_thread_free(thread, reduce_data);
2542        KMP_ATOMIC_ST_REL(&t->t.t_tg_reduce_data[1], NULL);
2543        KMP_ATOMIC_ST_REL(&t->t.t_tg_fini_counter[1], 0);
2544      } else {
2545        // we are not the last thread passing __kmpc_reduction_modifier_fini(),
2546        // so do not finalize reduction, just clean own copy of the data
2547        __kmp_task_reduction_clean(thread, taskgroup);
2548      }
2549    } else {
2550      // finishing task reduction on taskgroup
2551      __kmp_task_reduction_fini(thread, taskgroup);
2552    }
2553  }
2554  // Restore parent taskgroup for the current task
2555  taskdata->td_taskgroup = taskgroup->parent;
2556  __kmp_thread_free(thread, taskgroup);
2557
2558  KA_TRACE(10, ("__kmpc_end_taskgroup(exit): T#%d task %p finished waiting\n",
2559                gtid, taskdata));
2560  ANNOTATE_HAPPENS_AFTER(taskdata);
2561
2562#if OMPT_SUPPORT && OMPT_OPTIONAL
2563  if (UNLIKELY(ompt_enabled.ompt_callback_sync_region)) {
2564    ompt_callbacks.ompt_callback(ompt_callback_sync_region)(
2565        ompt_sync_region_taskgroup, ompt_scope_end, &(my_parallel_data),
2566        &(my_task_data), codeptr);
2567  }
2568#endif
2569}
2570
2571// __kmp_remove_my_task: remove a task from my own deque
2572static kmp_task_t *__kmp_remove_my_task(kmp_info_t *thread, kmp_int32 gtid,
2573                                        kmp_task_team_t *task_team,
2574                                        kmp_int32 is_constrained) {
2575  kmp_task_t *task;
2576  kmp_taskdata_t *taskdata;
2577  kmp_thread_data_t *thread_data;
2578  kmp_uint32 tail;
2579
2580  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2581  KMP_DEBUG_ASSERT(task_team->tt.tt_threads_data !=
2582                   NULL); // Caller should check this condition
2583
2584  thread_data = &task_team->tt.tt_threads_data[__kmp_tid_from_gtid(gtid)];
2585
2586  KA_TRACE(10, ("__kmp_remove_my_task(enter): T#%d ntasks=%d head=%u tail=%u\n",
2587                gtid, thread_data->td.td_deque_ntasks,
2588                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2589
2590  if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2591    KA_TRACE(10,
2592             ("__kmp_remove_my_task(exit #1): T#%d No tasks to remove: "
2593              "ntasks=%d head=%u tail=%u\n",
2594              gtid, thread_data->td.td_deque_ntasks,
2595              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2596    return NULL;
2597  }
2598
2599  __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
2600
2601  if (TCR_4(thread_data->td.td_deque_ntasks) == 0) {
2602    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2603    KA_TRACE(10,
2604             ("__kmp_remove_my_task(exit #2): T#%d No tasks to remove: "
2605              "ntasks=%d head=%u tail=%u\n",
2606              gtid, thread_data->td.td_deque_ntasks,
2607              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2608    return NULL;
2609  }
2610
2611  tail = (thread_data->td.td_deque_tail - 1) &
2612         TASK_DEQUE_MASK(thread_data->td); // Wrap index.
2613  taskdata = thread_data->td.td_deque[tail];
2614
2615  if (!__kmp_task_is_allowed(gtid, is_constrained, taskdata,
2616                             thread->th.th_current_task)) {
2617    // The TSC does not allow to steal victim task
2618    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2619    KA_TRACE(10,
2620             ("__kmp_remove_my_task(exit #3): T#%d TSC blocks tail task: "
2621              "ntasks=%d head=%u tail=%u\n",
2622              gtid, thread_data->td.td_deque_ntasks,
2623              thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2624    return NULL;
2625  }
2626
2627  thread_data->td.td_deque_tail = tail;
2628  TCW_4(thread_data->td.td_deque_ntasks, thread_data->td.td_deque_ntasks - 1);
2629
2630  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
2631
2632  KA_TRACE(10, ("__kmp_remove_my_task(exit #4): T#%d task %p removed: "
2633                "ntasks=%d head=%u tail=%u\n",
2634                gtid, taskdata, thread_data->td.td_deque_ntasks,
2635                thread_data->td.td_deque_head, thread_data->td.td_deque_tail));
2636
2637  task = KMP_TASKDATA_TO_TASK(taskdata);
2638  return task;
2639}
2640
2641// __kmp_steal_task: remove a task from another thread's deque
2642// Assume that calling thread has already checked existence of
2643// task_team thread_data before calling this routine.
2644static kmp_task_t *__kmp_steal_task(kmp_info_t *victim_thr, kmp_int32 gtid,
2645                                    kmp_task_team_t *task_team,
2646                                    std::atomic<kmp_int32> *unfinished_threads,
2647                                    int *thread_finished,
2648                                    kmp_int32 is_constrained) {
2649  kmp_task_t *task;
2650  kmp_taskdata_t *taskdata;
2651  kmp_taskdata_t *current;
2652  kmp_thread_data_t *victim_td, *threads_data;
2653  kmp_int32 target;
2654  kmp_int32 victim_tid;
2655
2656  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2657
2658  threads_data = task_team->tt.tt_threads_data;
2659  KMP_DEBUG_ASSERT(threads_data != NULL); // Caller should check this condition
2660
2661  victim_tid = victim_thr->th.th_info.ds.ds_tid;
2662  victim_td = &threads_data[victim_tid];
2663
2664  KA_TRACE(10, ("__kmp_steal_task(enter): T#%d try to steal from T#%d: "
2665                "task_team=%p ntasks=%d head=%u tail=%u\n",
2666                gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2667                victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2668                victim_td->td.td_deque_tail));
2669
2670  if (TCR_4(victim_td->td.td_deque_ntasks) == 0) {
2671    KA_TRACE(10, ("__kmp_steal_task(exit #1): T#%d could not steal from T#%d: "
2672                  "task_team=%p ntasks=%d head=%u tail=%u\n",
2673                  gtid, __kmp_gtid_from_thread(victim_thr), task_team,
2674                  victim_td->td.td_deque_ntasks, victim_td->td.td_deque_head,
2675                  victim_td->td.td_deque_tail));
2676    return NULL;
2677  }
2678
2679  __kmp_acquire_bootstrap_lock(&victim_td->td.td_deque_lock);
2680
2681  int ntasks = TCR_4(victim_td->td.td_deque_ntasks);
2682  // Check again after we acquire the lock
2683  if (ntasks == 0) {
2684    __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2685    KA_TRACE(10, ("__kmp_steal_task(exit #2): T#%d could not steal from T#%d: "
2686                  "task_team=%p ntasks=%d head=%u tail=%u\n",
2687                  gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2688                  victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2689    return NULL;
2690  }
2691
2692  KMP_DEBUG_ASSERT(victim_td->td.td_deque != NULL);
2693  current = __kmp_threads[gtid]->th.th_current_task;
2694  taskdata = victim_td->td.td_deque[victim_td->td.td_deque_head];
2695  if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2696    // Bump head pointer and Wrap.
2697    victim_td->td.td_deque_head =
2698        (victim_td->td.td_deque_head + 1) & TASK_DEQUE_MASK(victim_td->td);
2699  } else {
2700    if (!task_team->tt.tt_untied_task_encountered) {
2701      // The TSC does not allow to steal victim task
2702      __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2703      KA_TRACE(10, ("__kmp_steal_task(exit #3): T#%d could not steal from "
2704                    "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2705                    gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2706                    victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2707      return NULL;
2708    }
2709    int i;
2710    // walk through victim's deque trying to steal any task
2711    target = victim_td->td.td_deque_head;
2712    taskdata = NULL;
2713    for (i = 1; i < ntasks; ++i) {
2714      target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2715      taskdata = victim_td->td.td_deque[target];
2716      if (__kmp_task_is_allowed(gtid, is_constrained, taskdata, current)) {
2717        break; // found victim task
2718      } else {
2719        taskdata = NULL;
2720      }
2721    }
2722    if (taskdata == NULL) {
2723      // No appropriate candidate to steal found
2724      __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2725      KA_TRACE(10, ("__kmp_steal_task(exit #4): T#%d could not steal from "
2726                    "T#%d: task_team=%p ntasks=%d head=%u tail=%u\n",
2727                    gtid, __kmp_gtid_from_thread(victim_thr), task_team, ntasks,
2728                    victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2729      return NULL;
2730    }
2731    int prev = target;
2732    for (i = i + 1; i < ntasks; ++i) {
2733      // shift remaining tasks in the deque left by 1
2734      target = (target + 1) & TASK_DEQUE_MASK(victim_td->td);
2735      victim_td->td.td_deque[prev] = victim_td->td.td_deque[target];
2736      prev = target;
2737    }
2738    KMP_DEBUG_ASSERT(
2739        victim_td->td.td_deque_tail ==
2740        (kmp_uint32)((target + 1) & TASK_DEQUE_MASK(victim_td->td)));
2741    victim_td->td.td_deque_tail = target; // tail -= 1 (wrapped))
2742  }
2743  if (*thread_finished) {
2744    // We need to un-mark this victim as a finished victim.  This must be done
2745    // before releasing the lock, or else other threads (starting with the
2746    // master victim) might be prematurely released from the barrier!!!
2747    kmp_int32 count;
2748
2749    count = KMP_ATOMIC_INC(unfinished_threads);
2750
2751    KA_TRACE(
2752        20,
2753        ("__kmp_steal_task: T#%d inc unfinished_threads to %d: task_team=%p\n",
2754         gtid, count + 1, task_team));
2755
2756    *thread_finished = FALSE;
2757  }
2758  TCW_4(victim_td->td.td_deque_ntasks, ntasks - 1);
2759
2760  __kmp_release_bootstrap_lock(&victim_td->td.td_deque_lock);
2761
2762  KMP_COUNT_BLOCK(TASK_stolen);
2763  KA_TRACE(10,
2764           ("__kmp_steal_task(exit #5): T#%d stole task %p from T#%d: "
2765            "task_team=%p ntasks=%d head=%u tail=%u\n",
2766            gtid, taskdata, __kmp_gtid_from_thread(victim_thr), task_team,
2767            ntasks, victim_td->td.td_deque_head, victim_td->td.td_deque_tail));
2768
2769  task = KMP_TASKDATA_TO_TASK(taskdata);
2770  return task;
2771}
2772
2773// __kmp_execute_tasks_template: Choose and execute tasks until either the
2774// condition is statisfied (return true) or there are none left (return false).
2775//
2776// final_spin is TRUE if this is the spin at the release barrier.
2777// thread_finished indicates whether the thread is finished executing all
2778// the tasks it has on its deque, and is at the release barrier.
2779// spinner is the location on which to spin.
2780// spinner == NULL means only execute a single task and return.
2781// checker is the value to check to terminate the spin.
2782template <class C>
2783static inline int __kmp_execute_tasks_template(
2784    kmp_info_t *thread, kmp_int32 gtid, C *flag, int final_spin,
2785    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2786    kmp_int32 is_constrained) {
2787  kmp_task_team_t *task_team = thread->th.th_task_team;
2788  kmp_thread_data_t *threads_data;
2789  kmp_task_t *task;
2790  kmp_info_t *other_thread;
2791  kmp_taskdata_t *current_task = thread->th.th_current_task;
2792  std::atomic<kmp_int32> *unfinished_threads;
2793  kmp_int32 nthreads, victim_tid = -2, use_own_tasks = 1, new_victim = 0,
2794                      tid = thread->th.th_info.ds.ds_tid;
2795
2796  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
2797  KMP_DEBUG_ASSERT(thread == __kmp_threads[gtid]);
2798
2799  if (task_team == NULL || current_task == NULL)
2800    return FALSE;
2801
2802  KA_TRACE(15, ("__kmp_execute_tasks_template(enter): T#%d final_spin=%d "
2803                "*thread_finished=%d\n",
2804                gtid, final_spin, *thread_finished));
2805
2806  thread->th.th_reap_state = KMP_NOT_SAFE_TO_REAP;
2807  threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
2808  KMP_DEBUG_ASSERT(threads_data != NULL);
2809
2810  nthreads = task_team->tt.tt_nproc;
2811  unfinished_threads = &(task_team->tt.tt_unfinished_threads);
2812  KMP_DEBUG_ASSERT(nthreads > 1 || task_team->tt.tt_found_proxy_tasks);
2813  KMP_DEBUG_ASSERT(*unfinished_threads >= 0);
2814
2815  while (1) { // Outer loop keeps trying to find tasks in case of single thread
2816    // getting tasks from target constructs
2817    while (1) { // Inner loop to find a task and execute it
2818      task = NULL;
2819      if (use_own_tasks) { // check on own queue first
2820        task = __kmp_remove_my_task(thread, gtid, task_team, is_constrained);
2821      }
2822      if ((task == NULL) && (nthreads > 1)) { // Steal a task
2823        int asleep = 1;
2824        use_own_tasks = 0;
2825        // Try to steal from the last place I stole from successfully.
2826        if (victim_tid == -2) { // haven't stolen anything yet
2827          victim_tid = threads_data[tid].td.td_deque_last_stolen;
2828          if (victim_tid !=
2829              -1) // if we have a last stolen from victim, get the thread
2830            other_thread = threads_data[victim_tid].td.td_thr;
2831        }
2832        if (victim_tid != -1) { // found last victim
2833          asleep = 0;
2834        } else if (!new_victim) { // no recent steals and we haven't already
2835          // used a new victim; select a random thread
2836          do { // Find a different thread to steal work from.
2837            // Pick a random thread. Initial plan was to cycle through all the
2838            // threads, and only return if we tried to steal from every thread,
2839            // and failed.  Arch says that's not such a great idea.
2840            victim_tid = __kmp_get_random(thread) % (nthreads - 1);
2841            if (victim_tid >= tid) {
2842              ++victim_tid; // Adjusts random distribution to exclude self
2843            }
2844            // Found a potential victim
2845            other_thread = threads_data[victim_tid].td.td_thr;
2846            // There is a slight chance that __kmp_enable_tasking() did not wake
2847            // up all threads waiting at the barrier.  If victim is sleeping,
2848            // then wake it up. Since we were going to pay the cache miss
2849            // penalty for referencing another thread's kmp_info_t struct
2850            // anyway,
2851            // the check shouldn't cost too much performance at this point. In
2852            // extra barrier mode, tasks do not sleep at the separate tasking
2853            // barrier, so this isn't a problem.
2854            asleep = 0;
2855            if ((__kmp_tasking_mode == tskm_task_teams) &&
2856                (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) &&
2857                (TCR_PTR(CCAST(void *, other_thread->th.th_sleep_loc)) !=
2858                 NULL)) {
2859              asleep = 1;
2860              __kmp_null_resume_wrapper(__kmp_gtid_from_thread(other_thread),
2861                                        other_thread->th.th_sleep_loc);
2862              // A sleeping thread should not have any tasks on it's queue.
2863              // There is a slight possibility that it resumes, steals a task
2864              // from another thread, which spawns more tasks, all in the time
2865              // that it takes this thread to check => don't write an assertion
2866              // that the victim's queue is empty.  Try stealing from a
2867              // different thread.
2868            }
2869          } while (asleep);
2870        }
2871
2872        if (!asleep) {
2873          // We have a victim to try to steal from
2874          task = __kmp_steal_task(other_thread, gtid, task_team,
2875                                  unfinished_threads, thread_finished,
2876                                  is_constrained);
2877        }
2878        if (task != NULL) { // set last stolen to victim
2879          if (threads_data[tid].td.td_deque_last_stolen != victim_tid) {
2880            threads_data[tid].td.td_deque_last_stolen = victim_tid;
2881            // The pre-refactored code did not try more than 1 successful new
2882            // vicitm, unless the last one generated more local tasks;
2883            // new_victim keeps track of this
2884            new_victim = 1;
2885          }
2886        } else { // No tasks found; unset last_stolen
2887          KMP_CHECK_UPDATE(threads_data[tid].td.td_deque_last_stolen, -1);
2888          victim_tid = -2; // no successful victim found
2889        }
2890      }
2891
2892      if (task == NULL) // break out of tasking loop
2893        break;
2894
2895// Found a task; execute it
2896#if USE_ITT_BUILD && USE_ITT_NOTIFY
2897      if (__itt_sync_create_ptr || KMP_ITT_DEBUG) {
2898        if (itt_sync_obj == NULL) { // we are at fork barrier where we could not
2899          // get the object reliably
2900          itt_sync_obj = __kmp_itt_barrier_object(gtid, bs_forkjoin_barrier);
2901        }
2902        __kmp_itt_task_starting(itt_sync_obj);
2903      }
2904#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
2905      __kmp_invoke_task(gtid, task, current_task);
2906#if USE_ITT_BUILD
2907      if (itt_sync_obj != NULL)
2908        __kmp_itt_task_finished(itt_sync_obj);
2909#endif /* USE_ITT_BUILD */
2910      // If this thread is only partway through the barrier and the condition is
2911      // met, then return now, so that the barrier gather/release pattern can
2912      // proceed. If this thread is in the last spin loop in the barrier,
2913      // waiting to be released, we know that the termination condition will not
2914      // be satisified, so don't waste any cycles checking it.
2915      if (flag == NULL || (!final_spin && flag->done_check())) {
2916        KA_TRACE(
2917            15,
2918            ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
2919             gtid));
2920        return TRUE;
2921      }
2922      if (thread->th.th_task_team == NULL) {
2923        break;
2924      }
2925      KMP_YIELD(__kmp_library == library_throughput); // Yield before next task
2926      // If execution of a stolen task results in more tasks being placed on our
2927      // run queue, reset use_own_tasks
2928      if (!use_own_tasks && TCR_4(threads_data[tid].td.td_deque_ntasks) != 0) {
2929        KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d stolen task spawned "
2930                      "other tasks, restart\n",
2931                      gtid));
2932        use_own_tasks = 1;
2933        new_victim = 0;
2934      }
2935    }
2936
2937    // The task source has been exhausted. If in final spin loop of barrier,
2938    // check if termination condition is satisfied. The work queue may be empty
2939    // but there might be proxy tasks still executing.
2940    if (final_spin &&
2941        KMP_ATOMIC_LD_ACQ(&current_task->td_incomplete_child_tasks) == 0) {
2942      // First, decrement the #unfinished threads, if that has not already been
2943      // done.  This decrement might be to the spin location, and result in the
2944      // termination condition being satisfied.
2945      if (!*thread_finished) {
2946        kmp_int32 count;
2947
2948        count = KMP_ATOMIC_DEC(unfinished_threads) - 1;
2949        KA_TRACE(20, ("__kmp_execute_tasks_template: T#%d dec "
2950                      "unfinished_threads to %d task_team=%p\n",
2951                      gtid, count, task_team));
2952        *thread_finished = TRUE;
2953      }
2954
2955      // It is now unsafe to reference thread->th.th_team !!!
2956      // Decrementing task_team->tt.tt_unfinished_threads can allow the master
2957      // thread to pass through the barrier, where it might reset each thread's
2958      // th.th_team field for the next parallel region. If we can steal more
2959      // work, we know that this has not happened yet.
2960      if (flag != NULL && flag->done_check()) {
2961        KA_TRACE(
2962            15,
2963            ("__kmp_execute_tasks_template: T#%d spin condition satisfied\n",
2964             gtid));
2965        return TRUE;
2966      }
2967    }
2968
2969    // If this thread's task team is NULL, master has recognized that there are
2970    // no more tasks; bail out
2971    if (thread->th.th_task_team == NULL) {
2972      KA_TRACE(15,
2973               ("__kmp_execute_tasks_template: T#%d no more tasks\n", gtid));
2974      return FALSE;
2975    }
2976
2977    // We could be getting tasks from target constructs; if this is the only
2978    // thread, keep trying to execute tasks from own queue
2979    if (nthreads == 1)
2980      use_own_tasks = 1;
2981    else {
2982      KA_TRACE(15,
2983               ("__kmp_execute_tasks_template: T#%d can't find work\n", gtid));
2984      return FALSE;
2985    }
2986  }
2987}
2988
2989int __kmp_execute_tasks_32(
2990    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_32 *flag, int final_spin,
2991    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
2992    kmp_int32 is_constrained) {
2993  return __kmp_execute_tasks_template(
2994      thread, gtid, flag, final_spin,
2995      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
2996}
2997
2998int __kmp_execute_tasks_64(
2999    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_64 *flag, int final_spin,
3000    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3001    kmp_int32 is_constrained) {
3002  return __kmp_execute_tasks_template(
3003      thread, gtid, flag, final_spin,
3004      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3005}
3006
3007int __kmp_execute_tasks_oncore(
3008    kmp_info_t *thread, kmp_int32 gtid, kmp_flag_oncore *flag, int final_spin,
3009    int *thread_finished USE_ITT_BUILD_ARG(void *itt_sync_obj),
3010    kmp_int32 is_constrained) {
3011  return __kmp_execute_tasks_template(
3012      thread, gtid, flag, final_spin,
3013      thread_finished USE_ITT_BUILD_ARG(itt_sync_obj), is_constrained);
3014}
3015
3016// __kmp_enable_tasking: Allocate task team and resume threads sleeping at the
3017// next barrier so they can assist in executing enqueued tasks.
3018// First thread in allocates the task team atomically.
3019static void __kmp_enable_tasking(kmp_task_team_t *task_team,
3020                                 kmp_info_t *this_thr) {
3021  kmp_thread_data_t *threads_data;
3022  int nthreads, i, is_init_thread;
3023
3024  KA_TRACE(10, ("__kmp_enable_tasking(enter): T#%d\n",
3025                __kmp_gtid_from_thread(this_thr)));
3026
3027  KMP_DEBUG_ASSERT(task_team != NULL);
3028  KMP_DEBUG_ASSERT(this_thr->th.th_team != NULL);
3029
3030  nthreads = task_team->tt.tt_nproc;
3031  KMP_DEBUG_ASSERT(nthreads > 0);
3032  KMP_DEBUG_ASSERT(nthreads == this_thr->th.th_team->t.t_nproc);
3033
3034  // Allocate or increase the size of threads_data if necessary
3035  is_init_thread = __kmp_realloc_task_threads_data(this_thr, task_team);
3036
3037  if (!is_init_thread) {
3038    // Some other thread already set up the array.
3039    KA_TRACE(
3040        20,
3041        ("__kmp_enable_tasking(exit): T#%d: threads array already set up.\n",
3042         __kmp_gtid_from_thread(this_thr)));
3043    return;
3044  }
3045  threads_data = (kmp_thread_data_t *)TCR_PTR(task_team->tt.tt_threads_data);
3046  KMP_DEBUG_ASSERT(threads_data != NULL);
3047
3048  if (__kmp_tasking_mode == tskm_task_teams &&
3049      (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME)) {
3050    // Release any threads sleeping at the barrier, so that they can steal
3051    // tasks and execute them.  In extra barrier mode, tasks do not sleep
3052    // at the separate tasking barrier, so this isn't a problem.
3053    for (i = 0; i < nthreads; i++) {
3054      volatile void *sleep_loc;
3055      kmp_info_t *thread = threads_data[i].td.td_thr;
3056
3057      if (i == this_thr->th.th_info.ds.ds_tid) {
3058        continue;
3059      }
3060      // Since we haven't locked the thread's suspend mutex lock at this
3061      // point, there is a small window where a thread might be putting
3062      // itself to sleep, but hasn't set the th_sleep_loc field yet.
3063      // To work around this, __kmp_execute_tasks_template() periodically checks
3064      // see if other threads are sleeping (using the same random mechanism that
3065      // is used for task stealing) and awakens them if they are.
3066      if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3067          NULL) {
3068        KF_TRACE(50, ("__kmp_enable_tasking: T#%d waking up thread T#%d\n",
3069                      __kmp_gtid_from_thread(this_thr),
3070                      __kmp_gtid_from_thread(thread)));
3071        __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3072      } else {
3073        KF_TRACE(50, ("__kmp_enable_tasking: T#%d don't wake up thread T#%d\n",
3074                      __kmp_gtid_from_thread(this_thr),
3075                      __kmp_gtid_from_thread(thread)));
3076      }
3077    }
3078  }
3079
3080  KA_TRACE(10, ("__kmp_enable_tasking(exit): T#%d\n",
3081                __kmp_gtid_from_thread(this_thr)));
3082}
3083
3084/* // TODO: Check the comment consistency
3085 * Utility routines for "task teams".  A task team (kmp_task_t) is kind of
3086 * like a shadow of the kmp_team_t data struct, with a different lifetime.
3087 * After a child * thread checks into a barrier and calls __kmp_release() from
3088 * the particular variant of __kmp_<barrier_kind>_barrier_gather(), it can no
3089 * longer assume that the kmp_team_t structure is intact (at any moment, the
3090 * master thread may exit the barrier code and free the team data structure,
3091 * and return the threads to the thread pool).
3092 *
3093 * This does not work with the tasking code, as the thread is still
3094 * expected to participate in the execution of any tasks that may have been
3095 * spawned my a member of the team, and the thread still needs access to all
3096 * to each thread in the team, so that it can steal work from it.
3097 *
3098 * Enter the existence of the kmp_task_team_t struct.  It employs a reference
3099 * counting mechanims, and is allocated by the master thread before calling
3100 * __kmp_<barrier_kind>_release, and then is release by the last thread to
3101 * exit __kmp_<barrier_kind>_release at the next barrier.  I.e. the lifetimes
3102 * of the kmp_task_team_t structs for consecutive barriers can overlap
3103 * (and will, unless the master thread is the last thread to exit the barrier
3104 * release phase, which is not typical). The existence of such a struct is
3105 * useful outside the context of tasking.
3106 *
3107 * We currently use the existence of the threads array as an indicator that
3108 * tasks were spawned since the last barrier.  If the structure is to be
3109 * useful outside the context of tasking, then this will have to change, but
3110 * not settting the field minimizes the performance impact of tasking on
3111 * barriers, when no explicit tasks were spawned (pushed, actually).
3112 */
3113
3114static kmp_task_team_t *__kmp_free_task_teams =
3115    NULL; // Free list for task_team data structures
3116// Lock for task team data structures
3117kmp_bootstrap_lock_t __kmp_task_team_lock =
3118    KMP_BOOTSTRAP_LOCK_INITIALIZER(__kmp_task_team_lock);
3119
3120// __kmp_alloc_task_deque:
3121// Allocates a task deque for a particular thread, and initialize the necessary
3122// data structures relating to the deque.  This only happens once per thread
3123// per task team since task teams are recycled. No lock is needed during
3124// allocation since each thread allocates its own deque.
3125static void __kmp_alloc_task_deque(kmp_info_t *thread,
3126                                   kmp_thread_data_t *thread_data) {
3127  __kmp_init_bootstrap_lock(&thread_data->td.td_deque_lock);
3128  KMP_DEBUG_ASSERT(thread_data->td.td_deque == NULL);
3129
3130  // Initialize last stolen task field to "none"
3131  thread_data->td.td_deque_last_stolen = -1;
3132
3133  KMP_DEBUG_ASSERT(TCR_4(thread_data->td.td_deque_ntasks) == 0);
3134  KMP_DEBUG_ASSERT(thread_data->td.td_deque_head == 0);
3135  KMP_DEBUG_ASSERT(thread_data->td.td_deque_tail == 0);
3136
3137  KE_TRACE(
3138      10,
3139      ("__kmp_alloc_task_deque: T#%d allocating deque[%d] for thread_data %p\n",
3140       __kmp_gtid_from_thread(thread), INITIAL_TASK_DEQUE_SIZE, thread_data));
3141  // Allocate space for task deque, and zero the deque
3142  // Cannot use __kmp_thread_calloc() because threads not around for
3143  // kmp_reap_task_team( ).
3144  thread_data->td.td_deque = (kmp_taskdata_t **)__kmp_allocate(
3145      INITIAL_TASK_DEQUE_SIZE * sizeof(kmp_taskdata_t *));
3146  thread_data->td.td_deque_size = INITIAL_TASK_DEQUE_SIZE;
3147}
3148
3149// __kmp_free_task_deque:
3150// Deallocates a task deque for a particular thread. Happens at library
3151// deallocation so don't need to reset all thread data fields.
3152static void __kmp_free_task_deque(kmp_thread_data_t *thread_data) {
3153  if (thread_data->td.td_deque != NULL) {
3154    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3155    TCW_4(thread_data->td.td_deque_ntasks, 0);
3156    __kmp_free(thread_data->td.td_deque);
3157    thread_data->td.td_deque = NULL;
3158    __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3159  }
3160
3161#ifdef BUILD_TIED_TASK_STACK
3162  // GEH: Figure out what to do here for td_susp_tied_tasks
3163  if (thread_data->td.td_susp_tied_tasks.ts_entries != TASK_STACK_EMPTY) {
3164    __kmp_free_task_stack(__kmp_thread_from_gtid(gtid), thread_data);
3165  }
3166#endif // BUILD_TIED_TASK_STACK
3167}
3168
3169// __kmp_realloc_task_threads_data:
3170// Allocates a threads_data array for a task team, either by allocating an
3171// initial array or enlarging an existing array.  Only the first thread to get
3172// the lock allocs or enlarges the array and re-initializes the array elements.
3173// That thread returns "TRUE", the rest return "FALSE".
3174// Assumes that the new array size is given by task_team -> tt.tt_nproc.
3175// The current size is given by task_team -> tt.tt_max_threads.
3176static int __kmp_realloc_task_threads_data(kmp_info_t *thread,
3177                                           kmp_task_team_t *task_team) {
3178  kmp_thread_data_t **threads_data_p;
3179  kmp_int32 nthreads, maxthreads;
3180  int is_init_thread = FALSE;
3181
3182  if (TCR_4(task_team->tt.tt_found_tasks)) {
3183    // Already reallocated and initialized.
3184    return FALSE;
3185  }
3186
3187  threads_data_p = &task_team->tt.tt_threads_data;
3188  nthreads = task_team->tt.tt_nproc;
3189  maxthreads = task_team->tt.tt_max_threads;
3190
3191  // All threads must lock when they encounter the first task of the implicit
3192  // task region to make sure threads_data fields are (re)initialized before
3193  // used.
3194  __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3195
3196  if (!TCR_4(task_team->tt.tt_found_tasks)) {
3197    // first thread to enable tasking
3198    kmp_team_t *team = thread->th.th_team;
3199    int i;
3200
3201    is_init_thread = TRUE;
3202    if (maxthreads < nthreads) {
3203
3204      if (*threads_data_p != NULL) {
3205        kmp_thread_data_t *old_data = *threads_data_p;
3206        kmp_thread_data_t *new_data = NULL;
3207
3208        KE_TRACE(
3209            10,
3210            ("__kmp_realloc_task_threads_data: T#%d reallocating "
3211             "threads data for task_team %p, new_size = %d, old_size = %d\n",
3212             __kmp_gtid_from_thread(thread), task_team, nthreads, maxthreads));
3213        // Reallocate threads_data to have more elements than current array
3214        // Cannot use __kmp_thread_realloc() because threads not around for
3215        // kmp_reap_task_team( ).  Note all new array entries are initialized
3216        // to zero by __kmp_allocate().
3217        new_data = (kmp_thread_data_t *)__kmp_allocate(
3218            nthreads * sizeof(kmp_thread_data_t));
3219        // copy old data to new data
3220        KMP_MEMCPY_S((void *)new_data, nthreads * sizeof(kmp_thread_data_t),
3221                     (void *)old_data, maxthreads * sizeof(kmp_thread_data_t));
3222
3223#ifdef BUILD_TIED_TASK_STACK
3224        // GEH: Figure out if this is the right thing to do
3225        for (i = maxthreads; i < nthreads; i++) {
3226          kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3227          __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3228        }
3229#endif // BUILD_TIED_TASK_STACK
3230        // Install the new data and free the old data
3231        (*threads_data_p) = new_data;
3232        __kmp_free(old_data);
3233      } else {
3234        KE_TRACE(10, ("__kmp_realloc_task_threads_data: T#%d allocating "
3235                      "threads data for task_team %p, size = %d\n",
3236                      __kmp_gtid_from_thread(thread), task_team, nthreads));
3237        // Make the initial allocate for threads_data array, and zero entries
3238        // Cannot use __kmp_thread_calloc() because threads not around for
3239        // kmp_reap_task_team( ).
3240        ANNOTATE_IGNORE_WRITES_BEGIN();
3241        *threads_data_p = (kmp_thread_data_t *)__kmp_allocate(
3242            nthreads * sizeof(kmp_thread_data_t));
3243        ANNOTATE_IGNORE_WRITES_END();
3244#ifdef BUILD_TIED_TASK_STACK
3245        // GEH: Figure out if this is the right thing to do
3246        for (i = 0; i < nthreads; i++) {
3247          kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3248          __kmp_init_task_stack(__kmp_gtid_from_thread(thread), thread_data);
3249        }
3250#endif // BUILD_TIED_TASK_STACK
3251      }
3252      task_team->tt.tt_max_threads = nthreads;
3253    } else {
3254      // If array has (more than) enough elements, go ahead and use it
3255      KMP_DEBUG_ASSERT(*threads_data_p != NULL);
3256    }
3257
3258    // initialize threads_data pointers back to thread_info structures
3259    for (i = 0; i < nthreads; i++) {
3260      kmp_thread_data_t *thread_data = &(*threads_data_p)[i];
3261      thread_data->td.td_thr = team->t.t_threads[i];
3262
3263      if (thread_data->td.td_deque_last_stolen >= nthreads) {
3264        // The last stolen field survives across teams / barrier, and the number
3265        // of threads may have changed.  It's possible (likely?) that a new
3266        // parallel region will exhibit the same behavior as previous region.
3267        thread_data->td.td_deque_last_stolen = -1;
3268      }
3269    }
3270
3271    KMP_MB();
3272    TCW_SYNC_4(task_team->tt.tt_found_tasks, TRUE);
3273  }
3274
3275  __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3276  return is_init_thread;
3277}
3278
3279// __kmp_free_task_threads_data:
3280// Deallocates a threads_data array for a task team, including any attached
3281// tasking deques.  Only occurs at library shutdown.
3282static void __kmp_free_task_threads_data(kmp_task_team_t *task_team) {
3283  __kmp_acquire_bootstrap_lock(&task_team->tt.tt_threads_lock);
3284  if (task_team->tt.tt_threads_data != NULL) {
3285    int i;
3286    for (i = 0; i < task_team->tt.tt_max_threads; i++) {
3287      __kmp_free_task_deque(&task_team->tt.tt_threads_data[i]);
3288    }
3289    __kmp_free(task_team->tt.tt_threads_data);
3290    task_team->tt.tt_threads_data = NULL;
3291  }
3292  __kmp_release_bootstrap_lock(&task_team->tt.tt_threads_lock);
3293}
3294
3295// __kmp_allocate_task_team:
3296// Allocates a task team associated with a specific team, taking it from
3297// the global task team free list if possible.  Also initializes data
3298// structures.
3299static kmp_task_team_t *__kmp_allocate_task_team(kmp_info_t *thread,
3300                                                 kmp_team_t *team) {
3301  kmp_task_team_t *task_team = NULL;
3302  int nthreads;
3303
3304  KA_TRACE(20, ("__kmp_allocate_task_team: T#%d entering; team = %p\n",
3305                (thread ? __kmp_gtid_from_thread(thread) : -1), team));
3306
3307  if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3308    // Take a task team from the task team pool
3309    __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3310    if (__kmp_free_task_teams != NULL) {
3311      task_team = __kmp_free_task_teams;
3312      TCW_PTR(__kmp_free_task_teams, task_team->tt.tt_next);
3313      task_team->tt.tt_next = NULL;
3314    }
3315    __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3316  }
3317
3318  if (task_team == NULL) {
3319    KE_TRACE(10, ("__kmp_allocate_task_team: T#%d allocating "
3320                  "task team for team %p\n",
3321                  __kmp_gtid_from_thread(thread), team));
3322    // Allocate a new task team if one is not available.
3323    // Cannot use __kmp_thread_malloc() because threads not around for
3324    // kmp_reap_task_team( ).
3325    task_team = (kmp_task_team_t *)__kmp_allocate(sizeof(kmp_task_team_t));
3326    __kmp_init_bootstrap_lock(&task_team->tt.tt_threads_lock);
3327    // AC: __kmp_allocate zeroes returned memory
3328    // task_team -> tt.tt_threads_data = NULL;
3329    // task_team -> tt.tt_max_threads = 0;
3330    // task_team -> tt.tt_next = NULL;
3331  }
3332
3333  TCW_4(task_team->tt.tt_found_tasks, FALSE);
3334  TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3335  task_team->tt.tt_nproc = nthreads = team->t.t_nproc;
3336
3337  KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads, nthreads);
3338  TCW_4(task_team->tt.tt_active, TRUE);
3339
3340  KA_TRACE(20, ("__kmp_allocate_task_team: T#%d exiting; task_team = %p "
3341                "unfinished_threads init'd to %d\n",
3342                (thread ? __kmp_gtid_from_thread(thread) : -1), task_team,
3343                KMP_ATOMIC_LD_RLX(&task_team->tt.tt_unfinished_threads)));
3344  return task_team;
3345}
3346
3347// __kmp_free_task_team:
3348// Frees the task team associated with a specific thread, and adds it
3349// to the global task team free list.
3350void __kmp_free_task_team(kmp_info_t *thread, kmp_task_team_t *task_team) {
3351  KA_TRACE(20, ("__kmp_free_task_team: T#%d task_team = %p\n",
3352                thread ? __kmp_gtid_from_thread(thread) : -1, task_team));
3353
3354  // Put task team back on free list
3355  __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3356
3357  KMP_DEBUG_ASSERT(task_team->tt.tt_next == NULL);
3358  task_team->tt.tt_next = __kmp_free_task_teams;
3359  TCW_PTR(__kmp_free_task_teams, task_team);
3360
3361  __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3362}
3363
3364// __kmp_reap_task_teams:
3365// Free all the task teams on the task team free list.
3366// Should only be done during library shutdown.
3367// Cannot do anything that needs a thread structure or gtid since they are
3368// already gone.
3369void __kmp_reap_task_teams(void) {
3370  kmp_task_team_t *task_team;
3371
3372  if (TCR_PTR(__kmp_free_task_teams) != NULL) {
3373    // Free all task_teams on the free list
3374    __kmp_acquire_bootstrap_lock(&__kmp_task_team_lock);
3375    while ((task_team = __kmp_free_task_teams) != NULL) {
3376      __kmp_free_task_teams = task_team->tt.tt_next;
3377      task_team->tt.tt_next = NULL;
3378
3379      // Free threads_data if necessary
3380      if (task_team->tt.tt_threads_data != NULL) {
3381        __kmp_free_task_threads_data(task_team);
3382      }
3383      __kmp_free(task_team);
3384    }
3385    __kmp_release_bootstrap_lock(&__kmp_task_team_lock);
3386  }
3387}
3388
3389// __kmp_wait_to_unref_task_teams:
3390// Some threads could still be in the fork barrier release code, possibly
3391// trying to steal tasks.  Wait for each thread to unreference its task team.
3392void __kmp_wait_to_unref_task_teams(void) {
3393  kmp_info_t *thread;
3394  kmp_uint32 spins;
3395  int done;
3396
3397  KMP_INIT_YIELD(spins);
3398
3399  for (;;) {
3400    done = TRUE;
3401
3402    // TODO: GEH - this may be is wrong because some sync would be necessary
3403    // in case threads are added to the pool during the traversal. Need to
3404    // verify that lock for thread pool is held when calling this routine.
3405    for (thread = CCAST(kmp_info_t *, __kmp_thread_pool); thread != NULL;
3406         thread = thread->th.th_next_pool) {
3407#if KMP_OS_WINDOWS
3408      DWORD exit_val;
3409#endif
3410      if (TCR_PTR(thread->th.th_task_team) == NULL) {
3411        KA_TRACE(10, ("__kmp_wait_to_unref_task_team: T#%d task_team == NULL\n",
3412                      __kmp_gtid_from_thread(thread)));
3413        continue;
3414      }
3415#if KMP_OS_WINDOWS
3416      // TODO: GEH - add this check for Linux* OS / OS X* as well?
3417      if (!__kmp_is_thread_alive(thread, &exit_val)) {
3418        thread->th.th_task_team = NULL;
3419        continue;
3420      }
3421#endif
3422
3423      done = FALSE; // Because th_task_team pointer is not NULL for this thread
3424
3425      KA_TRACE(10, ("__kmp_wait_to_unref_task_team: Waiting for T#%d to "
3426                    "unreference task_team\n",
3427                    __kmp_gtid_from_thread(thread)));
3428
3429      if (__kmp_dflt_blocktime != KMP_MAX_BLOCKTIME) {
3430        volatile void *sleep_loc;
3431        // If the thread is sleeping, awaken it.
3432        if ((sleep_loc = TCR_PTR(CCAST(void *, thread->th.th_sleep_loc))) !=
3433            NULL) {
3434          KA_TRACE(
3435              10,
3436              ("__kmp_wait_to_unref_task_team: T#%d waking up thread T#%d\n",
3437               __kmp_gtid_from_thread(thread), __kmp_gtid_from_thread(thread)));
3438          __kmp_null_resume_wrapper(__kmp_gtid_from_thread(thread), sleep_loc);
3439        }
3440      }
3441    }
3442    if (done) {
3443      break;
3444    }
3445
3446    // If oversubscribed or have waited a bit, yield.
3447    KMP_YIELD_OVERSUB_ELSE_SPIN(spins);
3448  }
3449}
3450
3451// __kmp_task_team_setup:  Create a task_team for the current team, but use
3452// an already created, unused one if it already exists.
3453void __kmp_task_team_setup(kmp_info_t *this_thr, kmp_team_t *team, int always) {
3454  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3455
3456  // If this task_team hasn't been created yet, allocate it. It will be used in
3457  // the region after the next.
3458  // If it exists, it is the current task team and shouldn't be touched yet as
3459  // it may still be in use.
3460  if (team->t.t_task_team[this_thr->th.th_task_state] == NULL &&
3461      (always || team->t.t_nproc > 1)) {
3462    team->t.t_task_team[this_thr->th.th_task_state] =
3463        __kmp_allocate_task_team(this_thr, team);
3464    KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created new task_team %p "
3465                  "for team %d at parity=%d\n",
3466                  __kmp_gtid_from_thread(this_thr),
3467                  team->t.t_task_team[this_thr->th.th_task_state],
3468                  ((team != NULL) ? team->t.t_id : -1),
3469                  this_thr->th.th_task_state));
3470  }
3471
3472  // After threads exit the release, they will call sync, and then point to this
3473  // other task_team; make sure it is allocated and properly initialized. As
3474  // threads spin in the barrier release phase, they will continue to use the
3475  // previous task_team struct(above), until they receive the signal to stop
3476  // checking for tasks (they can't safely reference the kmp_team_t struct,
3477  // which could be reallocated by the master thread). No task teams are formed
3478  // for serialized teams.
3479  if (team->t.t_nproc > 1) {
3480    int other_team = 1 - this_thr->th.th_task_state;
3481    if (team->t.t_task_team[other_team] == NULL) { // setup other team as well
3482      team->t.t_task_team[other_team] =
3483          __kmp_allocate_task_team(this_thr, team);
3484      KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d created second new "
3485                    "task_team %p for team %d at parity=%d\n",
3486                    __kmp_gtid_from_thread(this_thr),
3487                    team->t.t_task_team[other_team],
3488                    ((team != NULL) ? team->t.t_id : -1), other_team));
3489    } else { // Leave the old task team struct in place for the upcoming region;
3490      // adjust as needed
3491      kmp_task_team_t *task_team = team->t.t_task_team[other_team];
3492      if (!task_team->tt.tt_active ||
3493          team->t.t_nproc != task_team->tt.tt_nproc) {
3494        TCW_4(task_team->tt.tt_nproc, team->t.t_nproc);
3495        TCW_4(task_team->tt.tt_found_tasks, FALSE);
3496        TCW_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3497        KMP_ATOMIC_ST_REL(&task_team->tt.tt_unfinished_threads,
3498                          team->t.t_nproc);
3499        TCW_4(task_team->tt.tt_active, TRUE);
3500      }
3501      // if team size has changed, the first thread to enable tasking will
3502      // realloc threads_data if necessary
3503      KA_TRACE(20, ("__kmp_task_team_setup: Master T#%d reset next task_team "
3504                    "%p for team %d at parity=%d\n",
3505                    __kmp_gtid_from_thread(this_thr),
3506                    team->t.t_task_team[other_team],
3507                    ((team != NULL) ? team->t.t_id : -1), other_team));
3508    }
3509  }
3510}
3511
3512// __kmp_task_team_sync: Propagation of task team data from team to threads
3513// which happens just after the release phase of a team barrier.  This may be
3514// called by any thread, but only for teams with # threads > 1.
3515void __kmp_task_team_sync(kmp_info_t *this_thr, kmp_team_t *team) {
3516  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3517
3518  // Toggle the th_task_state field, to switch which task_team this thread
3519  // refers to
3520  this_thr->th.th_task_state = 1 - this_thr->th.th_task_state;
3521  // It is now safe to propagate the task team pointer from the team struct to
3522  // the current thread.
3523  TCW_PTR(this_thr->th.th_task_team,
3524          team->t.t_task_team[this_thr->th.th_task_state]);
3525  KA_TRACE(20,
3526           ("__kmp_task_team_sync: Thread T#%d task team switched to task_team "
3527            "%p from Team #%d (parity=%d)\n",
3528            __kmp_gtid_from_thread(this_thr), this_thr->th.th_task_team,
3529            ((team != NULL) ? team->t.t_id : -1), this_thr->th.th_task_state));
3530}
3531
3532// __kmp_task_team_wait: Master thread waits for outstanding tasks after the
3533// barrier gather phase. Only called by master thread if #threads in team > 1 or
3534// if proxy tasks were created.
3535//
3536// wait is a flag that defaults to 1 (see kmp.h), but waiting can be turned off
3537// by passing in 0 optionally as the last argument. When wait is zero, master
3538// thread does not wait for unfinished_threads to reach 0.
3539void __kmp_task_team_wait(
3540    kmp_info_t *this_thr,
3541    kmp_team_t *team USE_ITT_BUILD_ARG(void *itt_sync_obj), int wait) {
3542  kmp_task_team_t *task_team = team->t.t_task_team[this_thr->th.th_task_state];
3543
3544  KMP_DEBUG_ASSERT(__kmp_tasking_mode != tskm_immediate_exec);
3545  KMP_DEBUG_ASSERT(task_team == this_thr->th.th_task_team);
3546
3547  if ((task_team != NULL) && KMP_TASKING_ENABLED(task_team)) {
3548    if (wait) {
3549      KA_TRACE(20, ("__kmp_task_team_wait: Master T#%d waiting for all tasks "
3550                    "(for unfinished_threads to reach 0) on task_team = %p\n",
3551                    __kmp_gtid_from_thread(this_thr), task_team));
3552      // Worker threads may have dropped through to release phase, but could
3553      // still be executing tasks. Wait here for tasks to complete. To avoid
3554      // memory contention, only master thread checks termination condition.
3555      kmp_flag_32 flag(RCAST(std::atomic<kmp_uint32> *,
3556                             &task_team->tt.tt_unfinished_threads),
3557                       0U);
3558      flag.wait(this_thr, TRUE USE_ITT_BUILD_ARG(itt_sync_obj));
3559    }
3560    // Deactivate the old task team, so that the worker threads will stop
3561    // referencing it while spinning.
3562    KA_TRACE(
3563        20,
3564        ("__kmp_task_team_wait: Master T#%d deactivating task_team %p: "
3565         "setting active to false, setting local and team's pointer to NULL\n",
3566         __kmp_gtid_from_thread(this_thr), task_team));
3567    KMP_DEBUG_ASSERT(task_team->tt.tt_nproc > 1 ||
3568                     task_team->tt.tt_found_proxy_tasks == TRUE);
3569    TCW_SYNC_4(task_team->tt.tt_found_proxy_tasks, FALSE);
3570    KMP_CHECK_UPDATE(task_team->tt.tt_untied_task_encountered, 0);
3571    TCW_SYNC_4(task_team->tt.tt_active, FALSE);
3572    KMP_MB();
3573
3574    TCW_PTR(this_thr->th.th_task_team, NULL);
3575  }
3576}
3577
3578// __kmp_tasking_barrier:
3579// This routine may only called when __kmp_tasking_mode == tskm_extra_barrier.
3580// Internal function to execute all tasks prior to a regular barrier or a join
3581// barrier. It is a full barrier itself, which unfortunately turns regular
3582// barriers into double barriers and join barriers into 1 1/2 barriers.
3583void __kmp_tasking_barrier(kmp_team_t *team, kmp_info_t *thread, int gtid) {
3584  std::atomic<kmp_uint32> *spin = RCAST(
3585      std::atomic<kmp_uint32> *,
3586      &team->t.t_task_team[thread->th.th_task_state]->tt.tt_unfinished_threads);
3587  int flag = FALSE;
3588  KMP_DEBUG_ASSERT(__kmp_tasking_mode == tskm_extra_barrier);
3589
3590#if USE_ITT_BUILD
3591  KMP_FSYNC_SPIN_INIT(spin, NULL);
3592#endif /* USE_ITT_BUILD */
3593  kmp_flag_32 spin_flag(spin, 0U);
3594  while (!spin_flag.execute_tasks(thread, gtid, TRUE,
3595                                  &flag USE_ITT_BUILD_ARG(NULL), 0)) {
3596#if USE_ITT_BUILD
3597    // TODO: What about itt_sync_obj??
3598    KMP_FSYNC_SPIN_PREPARE(RCAST(void *, spin));
3599#endif /* USE_ITT_BUILD */
3600
3601    if (TCR_4(__kmp_global.g.g_done)) {
3602      if (__kmp_global.g.g_abort)
3603        __kmp_abort_thread();
3604      break;
3605    }
3606    KMP_YIELD(TRUE);
3607  }
3608#if USE_ITT_BUILD
3609  KMP_FSYNC_SPIN_ACQUIRED(RCAST(void *, spin));
3610#endif /* USE_ITT_BUILD */
3611}
3612
3613// __kmp_give_task puts a task into a given thread queue if:
3614//  - the queue for that thread was created
3615//  - there's space in that queue
3616// Because of this, __kmp_push_task needs to check if there's space after
3617// getting the lock
3618static bool __kmp_give_task(kmp_info_t *thread, kmp_int32 tid, kmp_task_t *task,
3619                            kmp_int32 pass) {
3620  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
3621  kmp_task_team_t *task_team = taskdata->td_task_team;
3622
3623  KA_TRACE(20, ("__kmp_give_task: trying to give task %p to thread %d.\n",
3624                taskdata, tid));
3625
3626  // If task_team is NULL something went really bad...
3627  KMP_DEBUG_ASSERT(task_team != NULL);
3628
3629  bool result = false;
3630  kmp_thread_data_t *thread_data = &task_team->tt.tt_threads_data[tid];
3631
3632  if (thread_data->td.td_deque == NULL) {
3633    // There's no queue in this thread, go find another one
3634    // We're guaranteed that at least one thread has a queue
3635    KA_TRACE(30,
3636             ("__kmp_give_task: thread %d has no queue while giving task %p.\n",
3637              tid, taskdata));
3638    return result;
3639  }
3640
3641  if (TCR_4(thread_data->td.td_deque_ntasks) >=
3642      TASK_DEQUE_SIZE(thread_data->td)) {
3643    KA_TRACE(
3644        30,
3645        ("__kmp_give_task: queue is full while giving task %p to thread %d.\n",
3646         taskdata, tid));
3647
3648    // if this deque is bigger than the pass ratio give a chance to another
3649    // thread
3650    if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3651      return result;
3652
3653    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3654    __kmp_realloc_task_deque(thread, thread_data);
3655
3656  } else {
3657
3658    __kmp_acquire_bootstrap_lock(&thread_data->td.td_deque_lock);
3659
3660    if (TCR_4(thread_data->td.td_deque_ntasks) >=
3661        TASK_DEQUE_SIZE(thread_data->td)) {
3662      KA_TRACE(30, ("__kmp_give_task: queue is full while giving task %p to "
3663                    "thread %d.\n",
3664                    taskdata, tid));
3665
3666      // if this deque is bigger than the pass ratio give a chance to another
3667      // thread
3668      if (TASK_DEQUE_SIZE(thread_data->td) / INITIAL_TASK_DEQUE_SIZE >= pass)
3669        goto release_and_exit;
3670
3671      __kmp_realloc_task_deque(thread, thread_data);
3672    }
3673  }
3674
3675  // lock is held here, and there is space in the deque
3676
3677  thread_data->td.td_deque[thread_data->td.td_deque_tail] = taskdata;
3678  // Wrap index.
3679  thread_data->td.td_deque_tail =
3680      (thread_data->td.td_deque_tail + 1) & TASK_DEQUE_MASK(thread_data->td);
3681  TCW_4(thread_data->td.td_deque_ntasks,
3682        TCR_4(thread_data->td.td_deque_ntasks) + 1);
3683
3684  result = true;
3685  KA_TRACE(30, ("__kmp_give_task: successfully gave task %p to thread %d.\n",
3686                taskdata, tid));
3687
3688release_and_exit:
3689  __kmp_release_bootstrap_lock(&thread_data->td.td_deque_lock);
3690
3691  return result;
3692}
3693
3694/* The finish of the proxy tasks is divided in two pieces:
3695    - the top half is the one that can be done from a thread outside the team
3696    - the bottom half must be run from a thread within the team
3697
3698   In order to run the bottom half the task gets queued back into one of the
3699   threads of the team. Once the td_incomplete_child_task counter of the parent
3700   is decremented the threads can leave the barriers. So, the bottom half needs
3701   to be queued before the counter is decremented. The top half is therefore
3702   divided in two parts:
3703    - things that can be run before queuing the bottom half
3704    - things that must be run after queuing the bottom half
3705
3706   This creates a second race as the bottom half can free the task before the
3707   second top half is executed. To avoid this we use the
3708   td_incomplete_child_task of the proxy task to synchronize the top and bottom
3709   half. */
3710static void __kmp_first_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3711  KMP_DEBUG_ASSERT(taskdata->td_flags.tasktype == TASK_EXPLICIT);
3712  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3713  KMP_DEBUG_ASSERT(taskdata->td_flags.complete == 0);
3714  KMP_DEBUG_ASSERT(taskdata->td_flags.freed == 0);
3715
3716  taskdata->td_flags.complete = 1; // mark the task as completed
3717
3718  if (taskdata->td_taskgroup)
3719    KMP_ATOMIC_DEC(&taskdata->td_taskgroup->count);
3720
3721  // Create an imaginary children for this task so the bottom half cannot
3722  // release the task before we have completed the second top half
3723  KMP_ATOMIC_INC(&taskdata->td_incomplete_child_tasks);
3724}
3725
3726static void __kmp_second_top_half_finish_proxy(kmp_taskdata_t *taskdata) {
3727  kmp_int32 children = 0;
3728
3729  // Predecrement simulated by "- 1" calculation
3730  children =
3731      KMP_ATOMIC_DEC(&taskdata->td_parent->td_incomplete_child_tasks) - 1;
3732  KMP_DEBUG_ASSERT(children >= 0);
3733
3734  // Remove the imaginary children
3735  KMP_ATOMIC_DEC(&taskdata->td_incomplete_child_tasks);
3736}
3737
3738static void __kmp_bottom_half_finish_proxy(kmp_int32 gtid, kmp_task_t *ptask) {
3739  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3740  kmp_info_t *thread = __kmp_threads[gtid];
3741
3742  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3743  KMP_DEBUG_ASSERT(taskdata->td_flags.complete ==
3744                   1); // top half must run before bottom half
3745
3746  // We need to wait to make sure the top half is finished
3747  // Spinning here should be ok as this should happen quickly
3748  while (KMP_ATOMIC_LD_ACQ(&taskdata->td_incomplete_child_tasks) > 0)
3749    ;
3750
3751  __kmp_release_deps(gtid, taskdata);
3752  __kmp_free_task_and_ancestors(gtid, taskdata, thread);
3753}
3754
3755/*!
3756@ingroup TASKING
3757@param gtid Global Thread ID of encountering thread
3758@param ptask Task which execution is completed
3759
3760Execute the completion of a proxy task from a thread of that is part of the
3761team. Run first and bottom halves directly.
3762*/
3763void __kmpc_proxy_task_completed(kmp_int32 gtid, kmp_task_t *ptask) {
3764  KMP_DEBUG_ASSERT(ptask != NULL);
3765  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3766  KA_TRACE(
3767      10, ("__kmp_proxy_task_completed(enter): T#%d proxy task %p completing\n",
3768           gtid, taskdata));
3769
3770  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3771
3772  __kmp_first_top_half_finish_proxy(taskdata);
3773  __kmp_second_top_half_finish_proxy(taskdata);
3774  __kmp_bottom_half_finish_proxy(gtid, ptask);
3775
3776  KA_TRACE(10,
3777           ("__kmp_proxy_task_completed(exit): T#%d proxy task %p completing\n",
3778            gtid, taskdata));
3779}
3780
3781/*!
3782@ingroup TASKING
3783@param ptask Task which execution is completed
3784
3785Execute the completion of a proxy task from a thread that could not belong to
3786the team.
3787*/
3788void __kmpc_proxy_task_completed_ooo(kmp_task_t *ptask) {
3789  KMP_DEBUG_ASSERT(ptask != NULL);
3790  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3791
3792  KA_TRACE(
3793      10,
3794      ("__kmp_proxy_task_completed_ooo(enter): proxy task completing ooo %p\n",
3795       taskdata));
3796
3797  KMP_DEBUG_ASSERT(taskdata->td_flags.proxy == TASK_PROXY);
3798
3799  __kmp_first_top_half_finish_proxy(taskdata);
3800
3801  // Enqueue task to complete bottom half completion from a thread within the
3802  // corresponding team
3803  kmp_team_t *team = taskdata->td_team;
3804  kmp_int32 nthreads = team->t.t_nproc;
3805  kmp_info_t *thread;
3806
3807  // This should be similar to start_k = __kmp_get_random( thread ) % nthreads
3808  // but we cannot use __kmp_get_random here
3809  kmp_int32 start_k = 0;
3810  kmp_int32 pass = 1;
3811  kmp_int32 k = start_k;
3812
3813  do {
3814    // For now we're just linearly trying to find a thread
3815    thread = team->t.t_threads[k];
3816    k = (k + 1) % nthreads;
3817
3818    // we did a full pass through all the threads
3819    if (k == start_k)
3820      pass = pass << 1;
3821
3822  } while (!__kmp_give_task(thread, k, ptask, pass));
3823
3824  __kmp_second_top_half_finish_proxy(taskdata);
3825
3826  KA_TRACE(
3827      10,
3828      ("__kmp_proxy_task_completed_ooo(exit): proxy task completing ooo %p\n",
3829       taskdata));
3830}
3831
3832kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref, int gtid,
3833                                                kmp_task_t *task) {
3834  kmp_taskdata_t *td = KMP_TASK_TO_TASKDATA(task);
3835  if (td->td_allow_completion_event.type == KMP_EVENT_UNINITIALIZED) {
3836    td->td_allow_completion_event.type = KMP_EVENT_ALLOW_COMPLETION;
3837    td->td_allow_completion_event.ed.task = task;
3838    __kmp_init_tas_lock(&td->td_allow_completion_event.lock);
3839  }
3840  return &td->td_allow_completion_event;
3841}
3842
3843void __kmp_fulfill_event(kmp_event_t *event) {
3844  if (event->type == KMP_EVENT_ALLOW_COMPLETION) {
3845    kmp_task_t *ptask = event->ed.task;
3846    kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(ptask);
3847    bool detached = false;
3848    int gtid = __kmp_get_gtid();
3849
3850    if (taskdata->td_flags.proxy == TASK_PROXY) {
3851      // The associated task code completed before this call and detached.
3852      detached = true;
3853      event->type = KMP_EVENT_UNINITIALIZED;
3854    } else {
3855      // The associated task has not completed but could be completing at this
3856      // point.
3857      // We need to take the lock to avoid races
3858      __kmp_acquire_tas_lock(&event->lock, gtid);
3859      if (taskdata->td_flags.proxy == TASK_PROXY)
3860        detached = true;
3861      event->type = KMP_EVENT_UNINITIALIZED;
3862      __kmp_release_tas_lock(&event->lock, gtid);
3863    }
3864
3865    if (detached) {
3866      // If the task detached complete the proxy task
3867      if (gtid >= 0) {
3868        kmp_team_t *team = taskdata->td_team;
3869        kmp_info_t *thread = __kmp_get_thread();
3870        if (thread->th.th_team == team) {
3871          __kmpc_proxy_task_completed(gtid, ptask);
3872          return;
3873        }
3874      }
3875
3876      // fallback
3877      __kmpc_proxy_task_completed_ooo(ptask);
3878    }
3879  }
3880}
3881
3882// __kmp_task_dup_alloc: Allocate the taskdata and make a copy of source task
3883// for taskloop
3884//
3885// thread:   allocating thread
3886// task_src: pointer to source task to be duplicated
3887// returns:  a pointer to the allocated kmp_task_t structure (task).
3888kmp_task_t *__kmp_task_dup_alloc(kmp_info_t *thread, kmp_task_t *task_src) {
3889  kmp_task_t *task;
3890  kmp_taskdata_t *taskdata;
3891  kmp_taskdata_t *taskdata_src;
3892  kmp_taskdata_t *parent_task = thread->th.th_current_task;
3893  size_t shareds_offset;
3894  size_t task_size;
3895
3896  KA_TRACE(10, ("__kmp_task_dup_alloc(enter): Th %p, source task %p\n", thread,
3897                task_src));
3898  taskdata_src = KMP_TASK_TO_TASKDATA(task_src);
3899  KMP_DEBUG_ASSERT(taskdata_src->td_flags.proxy ==
3900                   TASK_FULL); // it should not be proxy task
3901  KMP_DEBUG_ASSERT(taskdata_src->td_flags.tasktype == TASK_EXPLICIT);
3902  task_size = taskdata_src->td_size_alloc;
3903
3904  // Allocate a kmp_taskdata_t block and a kmp_task_t block.
3905  KA_TRACE(30, ("__kmp_task_dup_alloc: Th %p, malloc size %ld\n", thread,
3906                task_size));
3907#if USE_FAST_MEMORY
3908  taskdata = (kmp_taskdata_t *)__kmp_fast_allocate(thread, task_size);
3909#else
3910  taskdata = (kmp_taskdata_t *)__kmp_thread_malloc(thread, task_size);
3911#endif /* USE_FAST_MEMORY */
3912  KMP_MEMCPY(taskdata, taskdata_src, task_size);
3913
3914  task = KMP_TASKDATA_TO_TASK(taskdata);
3915
3916  // Initialize new task (only specific fields not affected by memcpy)
3917  taskdata->td_task_id = KMP_GEN_TASK_ID();
3918  if (task->shareds != NULL) { // need setup shareds pointer
3919    shareds_offset = (char *)task_src->shareds - (char *)taskdata_src;
3920    task->shareds = &((char *)taskdata)[shareds_offset];
3921    KMP_DEBUG_ASSERT((((kmp_uintptr_t)task->shareds) & (sizeof(void *) - 1)) ==
3922                     0);
3923  }
3924  taskdata->td_alloc_thread = thread;
3925  taskdata->td_parent = parent_task;
3926  taskdata->td_taskgroup =
3927      parent_task
3928          ->td_taskgroup; // task inherits the taskgroup from the parent task
3929
3930  // Only need to keep track of child task counts if team parallel and tasking
3931  // not serialized
3932  if (!(taskdata->td_flags.team_serial || taskdata->td_flags.tasking_ser)) {
3933    KMP_ATOMIC_INC(&parent_task->td_incomplete_child_tasks);
3934    if (parent_task->td_taskgroup)
3935      KMP_ATOMIC_INC(&parent_task->td_taskgroup->count);
3936    // Only need to keep track of allocated child tasks for explicit tasks since
3937    // implicit not deallocated
3938    if (taskdata->td_parent->td_flags.tasktype == TASK_EXPLICIT)
3939      KMP_ATOMIC_INC(&taskdata->td_parent->td_allocated_child_tasks);
3940  }
3941
3942  KA_TRACE(20,
3943           ("__kmp_task_dup_alloc(exit): Th %p, created task %p, parent=%p\n",
3944            thread, taskdata, taskdata->td_parent));
3945#if OMPT_SUPPORT
3946  if (UNLIKELY(ompt_enabled.enabled))
3947    __ompt_task_init(taskdata, thread->th.th_info.ds.ds_gtid);
3948#endif
3949  return task;
3950}
3951
3952// Routine optionally generated by the compiler for setting the lastprivate flag
3953// and calling needed constructors for private/firstprivate objects
3954// (used to form taskloop tasks from pattern task)
3955// Parameters: dest task, src task, lastprivate flag.
3956typedef void (*p_task_dup_t)(kmp_task_t *, kmp_task_t *, kmp_int32);
3957
3958KMP_BUILD_ASSERT(sizeof(long) == 4 || sizeof(long) == 8);
3959
3960// class to encapsulate manipulating loop bounds in a taskloop task.
3961// this abstracts away the Intel vs GOMP taskloop interface for setting/getting
3962// the loop bound variables.
3963class kmp_taskloop_bounds_t {
3964  kmp_task_t *task;
3965  const kmp_taskdata_t *taskdata;
3966  size_t lower_offset;
3967  size_t upper_offset;
3968
3969public:
3970  kmp_taskloop_bounds_t(kmp_task_t *_task, kmp_uint64 *lb, kmp_uint64 *ub)
3971      : task(_task), taskdata(KMP_TASK_TO_TASKDATA(task)),
3972        lower_offset((char *)lb - (char *)task),
3973        upper_offset((char *)ub - (char *)task) {
3974    KMP_DEBUG_ASSERT((char *)lb > (char *)_task);
3975    KMP_DEBUG_ASSERT((char *)ub > (char *)_task);
3976  }
3977  kmp_taskloop_bounds_t(kmp_task_t *_task, const kmp_taskloop_bounds_t &bounds)
3978      : task(_task), taskdata(KMP_TASK_TO_TASKDATA(_task)),
3979        lower_offset(bounds.lower_offset), upper_offset(bounds.upper_offset) {}
3980  size_t get_lower_offset() const { return lower_offset; }
3981  size_t get_upper_offset() const { return upper_offset; }
3982  kmp_uint64 get_lb() const {
3983    kmp_int64 retval;
3984#if defined(KMP_GOMP_COMPAT)
3985    // Intel task just returns the lower bound normally
3986    if (!taskdata->td_flags.native) {
3987      retval = *(kmp_int64 *)((char *)task + lower_offset);
3988    } else {
3989      // GOMP task has to take into account the sizeof(long)
3990      if (taskdata->td_size_loop_bounds == 4) {
3991        kmp_int32 *lb = RCAST(kmp_int32 *, task->shareds);
3992        retval = (kmp_int64)*lb;
3993      } else {
3994        kmp_int64 *lb = RCAST(kmp_int64 *, task->shareds);
3995        retval = (kmp_int64)*lb;
3996      }
3997    }
3998#else
3999    retval = *(kmp_int64 *)((char *)task + lower_offset);
4000#endif // defined(KMP_GOMP_COMPAT)
4001    return retval;
4002  }
4003  kmp_uint64 get_ub() const {
4004    kmp_int64 retval;
4005#if defined(KMP_GOMP_COMPAT)
4006    // Intel task just returns the upper bound normally
4007    if (!taskdata->td_flags.native) {
4008      retval = *(kmp_int64 *)((char *)task + upper_offset);
4009    } else {
4010      // GOMP task has to take into account the sizeof(long)
4011      if (taskdata->td_size_loop_bounds == 4) {
4012        kmp_int32 *ub = RCAST(kmp_int32 *, task->shareds) + 1;
4013        retval = (kmp_int64)*ub;
4014      } else {
4015        kmp_int64 *ub = RCAST(kmp_int64 *, task->shareds) + 1;
4016        retval = (kmp_int64)*ub;
4017      }
4018    }
4019#else
4020    retval = *(kmp_int64 *)((char *)task + upper_offset);
4021#endif // defined(KMP_GOMP_COMPAT)
4022    return retval;
4023  }
4024  void set_lb(kmp_uint64 lb) {
4025#if defined(KMP_GOMP_COMPAT)
4026    // Intel task just sets the lower bound normally
4027    if (!taskdata->td_flags.native) {
4028      *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4029    } else {
4030      // GOMP task has to take into account the sizeof(long)
4031      if (taskdata->td_size_loop_bounds == 4) {
4032        kmp_uint32 *lower = RCAST(kmp_uint32 *, task->shareds);
4033        *lower = (kmp_uint32)lb;
4034      } else {
4035        kmp_uint64 *lower = RCAST(kmp_uint64 *, task->shareds);
4036        *lower = (kmp_uint64)lb;
4037      }
4038    }
4039#else
4040    *(kmp_uint64 *)((char *)task + lower_offset) = lb;
4041#endif // defined(KMP_GOMP_COMPAT)
4042  }
4043  void set_ub(kmp_uint64 ub) {
4044#if defined(KMP_GOMP_COMPAT)
4045    // Intel task just sets the upper bound normally
4046    if (!taskdata->td_flags.native) {
4047      *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4048    } else {
4049      // GOMP task has to take into account the sizeof(long)
4050      if (taskdata->td_size_loop_bounds == 4) {
4051        kmp_uint32 *upper = RCAST(kmp_uint32 *, task->shareds) + 1;
4052        *upper = (kmp_uint32)ub;
4053      } else {
4054        kmp_uint64 *upper = RCAST(kmp_uint64 *, task->shareds) + 1;
4055        *upper = (kmp_uint64)ub;
4056      }
4057    }
4058#else
4059    *(kmp_uint64 *)((char *)task + upper_offset) = ub;
4060#endif // defined(KMP_GOMP_COMPAT)
4061  }
4062};
4063
4064// __kmp_taskloop_linear: Start tasks of the taskloop linearly
4065//
4066// loc        Source location information
4067// gtid       Global thread ID
4068// task       Pattern task, exposes the loop iteration range
4069// lb         Pointer to loop lower bound in task structure
4070// ub         Pointer to loop upper bound in task structure
4071// st         Loop stride
4072// ub_glob    Global upper bound (used for lastprivate check)
4073// num_tasks  Number of tasks to execute
4074// grainsize  Number of loop iterations per task
4075// extras     Number of chunks with grainsize+1 iterations
4076// tc         Iterations count
4077// task_dup   Tasks duplication routine
4078// codeptr_ra Return address for OMPT events
4079void __kmp_taskloop_linear(ident_t *loc, int gtid, kmp_task_t *task,
4080                           kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4081                           kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4082                           kmp_uint64 grainsize, kmp_uint64 extras,
4083                           kmp_uint64 tc,
4084#if OMPT_SUPPORT
4085                           void *codeptr_ra,
4086#endif
4087                           void *task_dup) {
4088  KMP_COUNT_BLOCK(OMP_TASKLOOP);
4089  KMP_TIME_PARTITIONED_BLOCK(OMP_taskloop_scheduling);
4090  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4091  // compiler provides global bounds here
4092  kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4093  kmp_uint64 lower = task_bounds.get_lb();
4094  kmp_uint64 upper = task_bounds.get_ub();
4095  kmp_uint64 i;
4096  kmp_info_t *thread = __kmp_threads[gtid];
4097  kmp_taskdata_t *current_task = thread->th.th_current_task;
4098  kmp_task_t *next_task;
4099  kmp_int32 lastpriv = 0;
4100
4101  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
4102  KMP_DEBUG_ASSERT(num_tasks > extras);
4103  KMP_DEBUG_ASSERT(num_tasks > 0);
4104  KA_TRACE(20, ("__kmp_taskloop_linear: T#%d: %lld tasks, grainsize %lld, "
4105                "extras %lld, i=%lld,%lld(%d)%lld, dup %p\n",
4106                gtid, num_tasks, grainsize, extras, lower, upper, ub_glob, st,
4107                task_dup));
4108
4109  // Launch num_tasks tasks, assign grainsize iterations each task
4110  for (i = 0; i < num_tasks; ++i) {
4111    kmp_uint64 chunk_minus_1;
4112    if (extras == 0) {
4113      chunk_minus_1 = grainsize - 1;
4114    } else {
4115      chunk_minus_1 = grainsize;
4116      --extras; // first extras iterations get bigger chunk (grainsize+1)
4117    }
4118    upper = lower + st * chunk_minus_1;
4119    if (i == num_tasks - 1) {
4120      // schedule the last task, set lastprivate flag if needed
4121      if (st == 1) { // most common case
4122        KMP_DEBUG_ASSERT(upper == *ub);
4123        if (upper == ub_glob)
4124          lastpriv = 1;
4125      } else if (st > 0) { // positive loop stride
4126        KMP_DEBUG_ASSERT((kmp_uint64)st > *ub - upper);
4127        if ((kmp_uint64)st > ub_glob - upper)
4128          lastpriv = 1;
4129      } else { // negative loop stride
4130        KMP_DEBUG_ASSERT(upper + st < *ub);
4131        if (upper - ub_glob < (kmp_uint64)(-st))
4132          lastpriv = 1;
4133      }
4134    }
4135    next_task = __kmp_task_dup_alloc(thread, task); // allocate new task
4136    kmp_taskdata_t *next_taskdata = KMP_TASK_TO_TASKDATA(next_task);
4137    kmp_taskloop_bounds_t next_task_bounds =
4138        kmp_taskloop_bounds_t(next_task, task_bounds);
4139
4140    // adjust task-specific bounds
4141    next_task_bounds.set_lb(lower);
4142    if (next_taskdata->td_flags.native) {
4143      next_task_bounds.set_ub(upper + (st > 0 ? 1 : -1));
4144    } else {
4145      next_task_bounds.set_ub(upper);
4146    }
4147    if (ptask_dup != NULL) // set lastprivate flag, construct firstprivates,
4148                           // etc.
4149      ptask_dup(next_task, task, lastpriv);
4150    KA_TRACE(40,
4151             ("__kmp_taskloop_linear: T#%d; task #%llu: task %p: lower %lld, "
4152              "upper %lld stride %lld, (offsets %p %p)\n",
4153              gtid, i, next_task, lower, upper, st,
4154              next_task_bounds.get_lower_offset(),
4155              next_task_bounds.get_upper_offset()));
4156#if OMPT_SUPPORT
4157    __kmp_omp_taskloop_task(NULL, gtid, next_task,
4158                           codeptr_ra); // schedule new task
4159#else
4160    __kmp_omp_task(gtid, next_task, true); // schedule new task
4161#endif
4162    lower = upper + st; // adjust lower bound for the next iteration
4163  }
4164  // free the pattern task and exit
4165  __kmp_task_start(gtid, task, current_task); // make internal bookkeeping
4166  // do not execute the pattern task, just do internal bookkeeping
4167  __kmp_task_finish<false>(gtid, task, current_task);
4168}
4169
4170// Structure to keep taskloop parameters for auxiliary task
4171// kept in the shareds of the task structure.
4172typedef struct __taskloop_params {
4173  kmp_task_t *task;
4174  kmp_uint64 *lb;
4175  kmp_uint64 *ub;
4176  void *task_dup;
4177  kmp_int64 st;
4178  kmp_uint64 ub_glob;
4179  kmp_uint64 num_tasks;
4180  kmp_uint64 grainsize;
4181  kmp_uint64 extras;
4182  kmp_uint64 tc;
4183  kmp_uint64 num_t_min;
4184#if OMPT_SUPPORT
4185  void *codeptr_ra;
4186#endif
4187} __taskloop_params_t;
4188
4189void __kmp_taskloop_recur(ident_t *, int, kmp_task_t *, kmp_uint64 *,
4190                          kmp_uint64 *, kmp_int64, kmp_uint64, kmp_uint64,
4191                          kmp_uint64, kmp_uint64, kmp_uint64, kmp_uint64,
4192#if OMPT_SUPPORT
4193                          void *,
4194#endif
4195                          void *);
4196
4197// Execute part of the taskloop submitted as a task.
4198int __kmp_taskloop_task(int gtid, void *ptask) {
4199  __taskloop_params_t *p =
4200      (__taskloop_params_t *)((kmp_task_t *)ptask)->shareds;
4201  kmp_task_t *task = p->task;
4202  kmp_uint64 *lb = p->lb;
4203  kmp_uint64 *ub = p->ub;
4204  void *task_dup = p->task_dup;
4205  //  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4206  kmp_int64 st = p->st;
4207  kmp_uint64 ub_glob = p->ub_glob;
4208  kmp_uint64 num_tasks = p->num_tasks;
4209  kmp_uint64 grainsize = p->grainsize;
4210  kmp_uint64 extras = p->extras;
4211  kmp_uint64 tc = p->tc;
4212  kmp_uint64 num_t_min = p->num_t_min;
4213#if OMPT_SUPPORT
4214  void *codeptr_ra = p->codeptr_ra;
4215#endif
4216#if KMP_DEBUG
4217  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4218  KMP_DEBUG_ASSERT(task != NULL);
4219  KA_TRACE(20, ("__kmp_taskloop_task: T#%d, task %p: %lld tasks, grainsize"
4220                " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
4221                gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
4222                task_dup));
4223#endif
4224  KMP_DEBUG_ASSERT(num_tasks * 2 + 1 > num_t_min);
4225  if (num_tasks > num_t_min)
4226    __kmp_taskloop_recur(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4227                         grainsize, extras, tc, num_t_min,
4228#if OMPT_SUPPORT
4229                         codeptr_ra,
4230#endif
4231                         task_dup);
4232  else
4233    __kmp_taskloop_linear(NULL, gtid, task, lb, ub, st, ub_glob, num_tasks,
4234                          grainsize, extras, tc,
4235#if OMPT_SUPPORT
4236                          codeptr_ra,
4237#endif
4238                          task_dup);
4239
4240  KA_TRACE(40, ("__kmp_taskloop_task(exit): T#%d\n", gtid));
4241  return 0;
4242}
4243
4244// Schedule part of the taskloop as a task,
4245// execute the rest of the taskloop.
4246//
4247// loc        Source location information
4248// gtid       Global thread ID
4249// task       Pattern task, exposes the loop iteration range
4250// lb         Pointer to loop lower bound in task structure
4251// ub         Pointer to loop upper bound in task structure
4252// st         Loop stride
4253// ub_glob    Global upper bound (used for lastprivate check)
4254// num_tasks  Number of tasks to execute
4255// grainsize  Number of loop iterations per task
4256// extras     Number of chunks with grainsize+1 iterations
4257// tc         Iterations count
4258// num_t_min  Threashold to launch tasks recursively
4259// task_dup   Tasks duplication routine
4260// codeptr_ra Return address for OMPT events
4261void __kmp_taskloop_recur(ident_t *loc, int gtid, kmp_task_t *task,
4262                          kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st,
4263                          kmp_uint64 ub_glob, kmp_uint64 num_tasks,
4264                          kmp_uint64 grainsize, kmp_uint64 extras,
4265                          kmp_uint64 tc, kmp_uint64 num_t_min,
4266#if OMPT_SUPPORT
4267                          void *codeptr_ra,
4268#endif
4269                          void *task_dup) {
4270#if KMP_DEBUG
4271  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4272  KMP_DEBUG_ASSERT(task != NULL);
4273  KMP_DEBUG_ASSERT(num_tasks > num_t_min);
4274  KA_TRACE(20, ("__kmp_taskloop_recur: T#%d, task %p: %lld tasks, grainsize"
4275                " %lld, extras %lld, i=%lld,%lld(%d), dup %p\n",
4276                gtid, taskdata, num_tasks, grainsize, extras, *lb, *ub, st,
4277                task_dup));
4278#endif
4279  p_task_dup_t ptask_dup = (p_task_dup_t)task_dup;
4280  kmp_uint64 lower = *lb;
4281  kmp_info_t *thread = __kmp_threads[gtid];
4282  //  kmp_taskdata_t *current_task = thread->th.th_current_task;
4283  kmp_task_t *next_task;
4284  size_t lower_offset =
4285      (char *)lb - (char *)task; // remember offset of lb in the task structure
4286  size_t upper_offset =
4287      (char *)ub - (char *)task; // remember offset of ub in the task structure
4288
4289  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
4290  KMP_DEBUG_ASSERT(num_tasks > extras);
4291  KMP_DEBUG_ASSERT(num_tasks > 0);
4292
4293  // split the loop in two halves
4294  kmp_uint64 lb1, ub0, tc0, tc1, ext0, ext1;
4295  kmp_uint64 gr_size0 = grainsize;
4296  kmp_uint64 n_tsk0 = num_tasks >> 1; // num_tasks/2 to execute
4297  kmp_uint64 n_tsk1 = num_tasks - n_tsk0; // to schedule as a task
4298  if (n_tsk0 <= extras) {
4299    gr_size0++; // integrate extras into grainsize
4300    ext0 = 0; // no extra iters in 1st half
4301    ext1 = extras - n_tsk0; // remaining extras
4302    tc0 = gr_size0 * n_tsk0;
4303    tc1 = tc - tc0;
4304  } else { // n_tsk0 > extras
4305    ext1 = 0; // no extra iters in 2nd half
4306    ext0 = extras;
4307    tc1 = grainsize * n_tsk1;
4308    tc0 = tc - tc1;
4309  }
4310  ub0 = lower + st * (tc0 - 1);
4311  lb1 = ub0 + st;
4312
4313  // create pattern task for 2nd half of the loop
4314  next_task = __kmp_task_dup_alloc(thread, task); // duplicate the task
4315  // adjust lower bound (upper bound is not changed) for the 2nd half
4316  *(kmp_uint64 *)((char *)next_task + lower_offset) = lb1;
4317  if (ptask_dup != NULL) // construct firstprivates, etc.
4318    ptask_dup(next_task, task, 0);
4319  *ub = ub0; // adjust upper bound for the 1st half
4320
4321  // create auxiliary task for 2nd half of the loop
4322  kmp_task_t *new_task =
4323      __kmpc_omp_task_alloc(loc, gtid, 1, 3 * sizeof(void *),
4324                            sizeof(__taskloop_params_t), &__kmp_taskloop_task);
4325  __taskloop_params_t *p = (__taskloop_params_t *)new_task->shareds;
4326  p->task = next_task;
4327  p->lb = (kmp_uint64 *)((char *)next_task + lower_offset);
4328  p->ub = (kmp_uint64 *)((char *)next_task + upper_offset);
4329  p->task_dup = task_dup;
4330  p->st = st;
4331  p->ub_glob = ub_glob;
4332  p->num_tasks = n_tsk1;
4333  p->grainsize = grainsize;
4334  p->extras = ext1;
4335  p->tc = tc1;
4336  p->num_t_min = num_t_min;
4337#if OMPT_SUPPORT
4338  p->codeptr_ra = codeptr_ra;
4339#endif
4340
4341#if OMPT_SUPPORT
4342  // schedule new task with correct return address for OMPT events
4343  __kmp_omp_taskloop_task(NULL, gtid, new_task, codeptr_ra);
4344#else
4345  __kmp_omp_task(gtid, new_task, true); // schedule new task
4346#endif
4347
4348  // execute the 1st half of current subrange
4349  if (n_tsk0 > num_t_min)
4350    __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0, gr_size0,
4351                         ext0, tc0, num_t_min,
4352#if OMPT_SUPPORT
4353                         codeptr_ra,
4354#endif
4355                         task_dup);
4356  else
4357    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, n_tsk0,
4358                          gr_size0, ext0, tc0,
4359#if OMPT_SUPPORT
4360                          codeptr_ra,
4361#endif
4362                          task_dup);
4363
4364  KA_TRACE(40, ("__kmpc_taskloop_recur(exit): T#%d\n", gtid));
4365}
4366
4367/*!
4368@ingroup TASKING
4369@param loc       Source location information
4370@param gtid      Global thread ID
4371@param task      Task structure
4372@param if_val    Value of the if clause
4373@param lb        Pointer to loop lower bound in task structure
4374@param ub        Pointer to loop upper bound in task structure
4375@param st        Loop stride
4376@param nogroup   Flag, 1 if no taskgroup needs to be added, 0 otherwise
4377@param sched     Schedule specified 0/1/2 for none/grainsize/num_tasks
4378@param grainsize Schedule value if specified
4379@param task_dup  Tasks duplication routine
4380
4381Execute the taskloop construct.
4382*/
4383void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int if_val,
4384                     kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup,
4385                     int sched, kmp_uint64 grainsize, void *task_dup) {
4386  kmp_taskdata_t *taskdata = KMP_TASK_TO_TASKDATA(task);
4387  KMP_DEBUG_ASSERT(task != NULL);
4388
4389  if (nogroup == 0) {
4390#if OMPT_SUPPORT && OMPT_OPTIONAL
4391    OMPT_STORE_RETURN_ADDRESS(gtid);
4392#endif
4393    __kmpc_taskgroup(loc, gtid);
4394  }
4395
4396  // =========================================================================
4397  // calculate loop parameters
4398  kmp_taskloop_bounds_t task_bounds(task, lb, ub);
4399  kmp_uint64 tc;
4400  // compiler provides global bounds here
4401  kmp_uint64 lower = task_bounds.get_lb();
4402  kmp_uint64 upper = task_bounds.get_ub();
4403  kmp_uint64 ub_glob = upper; // global upper used to calc lastprivate flag
4404  kmp_uint64 num_tasks = 0, extras = 0;
4405  kmp_uint64 num_tasks_min = __kmp_taskloop_min_tasks;
4406  kmp_info_t *thread = __kmp_threads[gtid];
4407  kmp_taskdata_t *current_task = thread->th.th_current_task;
4408
4409  KA_TRACE(20, ("__kmpc_taskloop: T#%d, task %p, lb %lld, ub %lld, st %lld, "
4410                "grain %llu(%d), dup %p\n",
4411                gtid, taskdata, lower, upper, st, grainsize, sched, task_dup));
4412
4413  // compute trip count
4414  if (st == 1) { // most common case
4415    tc = upper - lower + 1;
4416  } else if (st < 0) {
4417    tc = (lower - upper) / (-st) + 1;
4418  } else { // st > 0
4419    tc = (upper - lower) / st + 1;
4420  }
4421  if (tc == 0) {
4422    KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d zero-trip loop\n", gtid));
4423    // free the pattern task and exit
4424    __kmp_task_start(gtid, task, current_task);
4425    // do not execute anything for zero-trip loop
4426    __kmp_task_finish<false>(gtid, task, current_task);
4427    return;
4428  }
4429
4430#if OMPT_SUPPORT && OMPT_OPTIONAL
4431  ompt_team_info_t *team_info = __ompt_get_teaminfo(0, NULL);
4432  ompt_task_info_t *task_info = __ompt_get_task_info_object(0);
4433  if (ompt_enabled.ompt_callback_work) {
4434    ompt_callbacks.ompt_callback(ompt_callback_work)(
4435        ompt_work_taskloop, ompt_scope_begin, &(team_info->parallel_data),
4436        &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4437  }
4438#endif
4439
4440  if (num_tasks_min == 0)
4441    // TODO: can we choose better default heuristic?
4442    num_tasks_min =
4443        KMP_MIN(thread->th.th_team_nproc * 10, INITIAL_TASK_DEQUE_SIZE);
4444
4445  // compute num_tasks/grainsize based on the input provided
4446  switch (sched) {
4447  case 0: // no schedule clause specified, we can choose the default
4448    // let's try to schedule (team_size*10) tasks
4449    grainsize = thread->th.th_team_nproc * 10;
4450    KMP_FALLTHROUGH();
4451  case 2: // num_tasks provided
4452    if (grainsize > tc) {
4453      num_tasks = tc; // too big num_tasks requested, adjust values
4454      grainsize = 1;
4455      extras = 0;
4456    } else {
4457      num_tasks = grainsize;
4458      grainsize = tc / num_tasks;
4459      extras = tc % num_tasks;
4460    }
4461    break;
4462  case 1: // grainsize provided
4463    if (grainsize > tc) {
4464      num_tasks = 1; // too big grainsize requested, adjust values
4465      grainsize = tc;
4466      extras = 0;
4467    } else {
4468      num_tasks = tc / grainsize;
4469      // adjust grainsize for balanced distribution of iterations
4470      grainsize = tc / num_tasks;
4471      extras = tc % num_tasks;
4472    }
4473    break;
4474  default:
4475    KMP_ASSERT2(0, "unknown scheduling of taskloop");
4476  }
4477  KMP_DEBUG_ASSERT(tc == num_tasks * grainsize + extras);
4478  KMP_DEBUG_ASSERT(num_tasks > extras);
4479  KMP_DEBUG_ASSERT(num_tasks > 0);
4480  // =========================================================================
4481
4482  // check if clause value first
4483  // Also require GOMP_taskloop to reduce to linear (taskdata->td_flags.native)
4484  if (if_val == 0) { // if(0) specified, mark task as serial
4485    taskdata->td_flags.task_serial = 1;
4486    taskdata->td_flags.tiedness = TASK_TIED; // AC: serial task cannot be untied
4487    // always start serial tasks linearly
4488    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4489                          grainsize, extras, tc,
4490#if OMPT_SUPPORT
4491                          OMPT_GET_RETURN_ADDRESS(0),
4492#endif
4493                          task_dup);
4494    // !taskdata->td_flags.native => currently force linear spawning of tasks
4495    // for GOMP_taskloop
4496  } else if (num_tasks > num_tasks_min && !taskdata->td_flags.native) {
4497    KA_TRACE(20, ("__kmpc_taskloop: T#%d, go recursive: tc %llu, #tasks %llu"
4498                  "(%lld), grain %llu, extras %llu\n",
4499                  gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
4500    __kmp_taskloop_recur(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4501                         grainsize, extras, tc, num_tasks_min,
4502#if OMPT_SUPPORT
4503                         OMPT_GET_RETURN_ADDRESS(0),
4504#endif
4505                         task_dup);
4506  } else {
4507    KA_TRACE(20, ("__kmpc_taskloop: T#%d, go linear: tc %llu, #tasks %llu"
4508                  "(%lld), grain %llu, extras %llu\n",
4509                  gtid, tc, num_tasks, num_tasks_min, grainsize, extras));
4510    __kmp_taskloop_linear(loc, gtid, task, lb, ub, st, ub_glob, num_tasks,
4511                          grainsize, extras, tc,
4512#if OMPT_SUPPORT
4513                          OMPT_GET_RETURN_ADDRESS(0),
4514#endif
4515                          task_dup);
4516  }
4517
4518#if OMPT_SUPPORT && OMPT_OPTIONAL
4519  if (ompt_enabled.ompt_callback_work) {
4520    ompt_callbacks.ompt_callback(ompt_callback_work)(
4521        ompt_work_taskloop, ompt_scope_end, &(team_info->parallel_data),
4522        &(task_info->task_data), tc, OMPT_GET_RETURN_ADDRESS(0));
4523  }
4524#endif
4525
4526  if (nogroup == 0) {
4527#if OMPT_SUPPORT && OMPT_OPTIONAL
4528    OMPT_STORE_RETURN_ADDRESS(gtid);
4529#endif
4530    __kmpc_end_taskgroup(loc, gtid);
4531  }
4532  KA_TRACE(20, ("__kmpc_taskloop(exit): T#%d\n", gtid));
4533}
4534