VNCoercion.cpp revision 360784
1#include "llvm/Transforms/Utils/VNCoercion.h"
2#include "llvm/Analysis/AliasAnalysis.h"
3#include "llvm/Analysis/ConstantFolding.h"
4#include "llvm/Analysis/MemoryDependenceAnalysis.h"
5#include "llvm/Analysis/ValueTracking.h"
6#include "llvm/IR/IRBuilder.h"
7#include "llvm/IR/IntrinsicInst.h"
8#include "llvm/Support/Debug.h"
9
10#define DEBUG_TYPE "vncoerce"
11namespace llvm {
12namespace VNCoercion {
13
14/// Return true if coerceAvailableValueToLoadType will succeed.
15bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
16                                     const DataLayout &DL) {
17  Type *StoredTy = StoredVal->getType();
18  if (StoredTy == LoadTy)
19    return true;
20
21  // If the loaded or stored value is an first class array or struct, don't try
22  // to transform them.  We need to be able to bitcast to integer.
23  if (LoadTy->isStructTy() || LoadTy->isArrayTy() || StoredTy->isStructTy() ||
24      StoredTy->isArrayTy())
25    return false;
26
27  uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy);
28
29  // The store size must be byte-aligned to support future type casts.
30  if (llvm::alignTo(StoreSize, 8) != StoreSize)
31    return false;
32
33  // The store has to be at least as big as the load.
34  if (StoreSize < DL.getTypeSizeInBits(LoadTy))
35    return false;
36
37  // Don't coerce non-integral pointers to integers or vice versa.
38  if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
39      DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
40    // As a special case, allow coercion of memset used to initialize
41    // an array w/null.  Despite non-integral pointers not generally having a
42    // specific bit pattern, we do assume null is zero.
43    if (auto *CI = dyn_cast<Constant>(StoredVal))
44      return CI->isNullValue();
45    return false;
46  }
47
48  return true;
49}
50
51template <class T, class HelperClass>
52static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
53                                               HelperClass &Helper,
54                                               const DataLayout &DL) {
55  assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
56         "precondition violation - materialization can't fail");
57  if (auto *C = dyn_cast<Constant>(StoredVal))
58    if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
59      StoredVal = FoldedStoredVal;
60
61  // If this is already the right type, just return it.
62  Type *StoredValTy = StoredVal->getType();
63
64  uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy);
65  uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy);
66
67  // If the store and reload are the same size, we can always reuse it.
68  if (StoredValSize == LoadedValSize) {
69    // Pointer to Pointer -> use bitcast.
70    if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
71      StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
72    } else {
73      // Convert source pointers to integers, which can be bitcast.
74      if (StoredValTy->isPtrOrPtrVectorTy()) {
75        StoredValTy = DL.getIntPtrType(StoredValTy);
76        StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
77      }
78
79      Type *TypeToCastTo = LoadedTy;
80      if (TypeToCastTo->isPtrOrPtrVectorTy())
81        TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
82
83      if (StoredValTy != TypeToCastTo)
84        StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
85
86      // Cast to pointer if the load needs a pointer type.
87      if (LoadedTy->isPtrOrPtrVectorTy())
88        StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
89    }
90
91    if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
92      if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
93        StoredVal = FoldedStoredVal;
94
95    return StoredVal;
96  }
97  // If the loaded value is smaller than the available value, then we can
98  // extract out a piece from it.  If the available value is too small, then we
99  // can't do anything.
100  assert(StoredValSize >= LoadedValSize &&
101         "canCoerceMustAliasedValueToLoad fail");
102
103  // Convert source pointers to integers, which can be manipulated.
104  if (StoredValTy->isPtrOrPtrVectorTy()) {
105    StoredValTy = DL.getIntPtrType(StoredValTy);
106    StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
107  }
108
109  // Convert vectors and fp to integer, which can be manipulated.
110  if (!StoredValTy->isIntegerTy()) {
111    StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
112    StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
113  }
114
115  // If this is a big-endian system, we need to shift the value down to the low
116  // bits so that a truncate will work.
117  if (DL.isBigEndian()) {
118    uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy) -
119                        DL.getTypeStoreSizeInBits(LoadedTy);
120    StoredVal = Helper.CreateLShr(
121        StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
122  }
123
124  // Truncate the integer to the right size now.
125  Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
126  StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
127
128  if (LoadedTy != NewIntTy) {
129    // If the result is a pointer, inttoptr.
130    if (LoadedTy->isPtrOrPtrVectorTy())
131      StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
132    else
133      // Otherwise, bitcast.
134      StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
135  }
136
137  if (auto *C = dyn_cast<Constant>(StoredVal))
138    if (auto *FoldedStoredVal = ConstantFoldConstant(C, DL))
139      StoredVal = FoldedStoredVal;
140
141  return StoredVal;
142}
143
144/// If we saw a store of a value to memory, and
145/// then a load from a must-aliased pointer of a different type, try to coerce
146/// the stored value.  LoadedTy is the type of the load we want to replace.
147/// IRB is IRBuilder used to insert new instructions.
148///
149/// If we can't do it, return null.
150Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
151                                      IRBuilder<> &IRB, const DataLayout &DL) {
152  return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
153}
154
155/// This function is called when we have a memdep query of a load that ends up
156/// being a clobbering memory write (store, memset, memcpy, memmove).  This
157/// means that the write *may* provide bits used by the load but we can't be
158/// sure because the pointers don't must-alias.
159///
160/// Check this case to see if there is anything more we can do before we give
161/// up.  This returns -1 if we have to give up, or a byte number in the stored
162/// value of the piece that feeds the load.
163static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
164                                          Value *WritePtr,
165                                          uint64_t WriteSizeInBits,
166                                          const DataLayout &DL) {
167  // If the loaded or stored value is a first class array or struct, don't try
168  // to transform them.  We need to be able to bitcast to integer.
169  if (LoadTy->isStructTy() || LoadTy->isArrayTy())
170    return -1;
171
172  int64_t StoreOffset = 0, LoadOffset = 0;
173  Value *StoreBase =
174      GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
175  Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
176  if (StoreBase != LoadBase)
177    return -1;
178
179  // If the load and store are to the exact same address, they should have been
180  // a must alias.  AA must have gotten confused.
181  // FIXME: Study to see if/when this happens.  One case is forwarding a memset
182  // to a load from the base of the memset.
183
184  // If the load and store don't overlap at all, the store doesn't provide
185  // anything to the load.  In this case, they really don't alias at all, AA
186  // must have gotten confused.
187  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
188
189  if ((WriteSizeInBits & 7) | (LoadSize & 7))
190    return -1;
191  uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
192  LoadSize /= 8;
193
194  bool isAAFailure = false;
195  if (StoreOffset < LoadOffset)
196    isAAFailure = StoreOffset + int64_t(StoreSize) <= LoadOffset;
197  else
198    isAAFailure = LoadOffset + int64_t(LoadSize) <= StoreOffset;
199
200  if (isAAFailure)
201    return -1;
202
203  // If the Load isn't completely contained within the stored bits, we don't
204  // have all the bits to feed it.  We could do something crazy in the future
205  // (issue a smaller load then merge the bits in) but this seems unlikely to be
206  // valuable.
207  if (StoreOffset > LoadOffset ||
208      StoreOffset + StoreSize < LoadOffset + LoadSize)
209    return -1;
210
211  // Okay, we can do this transformation.  Return the number of bytes into the
212  // store that the load is.
213  return LoadOffset - StoreOffset;
214}
215
216/// This function is called when we have a
217/// memdep query of a load that ends up being a clobbering store.
218int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
219                                   StoreInst *DepSI, const DataLayout &DL) {
220  auto *StoredVal = DepSI->getValueOperand();
221
222  // Cannot handle reading from store of first-class aggregate yet.
223  if (StoredVal->getType()->isStructTy() ||
224      StoredVal->getType()->isArrayTy())
225    return -1;
226
227  // Don't coerce non-integral pointers to integers or vice versa.
228  if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()) !=
229      DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
230    // Allow casts of zero values to null as a special case
231    auto *CI = dyn_cast<Constant>(StoredVal);
232    if (!CI || !CI->isNullValue())
233      return -1;
234  }
235
236  Value *StorePtr = DepSI->getPointerOperand();
237  uint64_t StoreSize =
238      DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
239  return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
240                                        DL);
241}
242
243/// This function is called when we have a
244/// memdep query of a load that ends up being clobbered by another load.  See if
245/// the other load can feed into the second load.
246int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
247                                  const DataLayout &DL) {
248  // Cannot handle reading from store of first-class aggregate yet.
249  if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
250    return -1;
251
252  // Don't coerce non-integral pointers to integers or vice versa.
253  if (DL.isNonIntegralPointerType(DepLI->getType()->getScalarType()) !=
254      DL.isNonIntegralPointerType(LoadTy->getScalarType()))
255    return -1;
256
257  Value *DepPtr = DepLI->getPointerOperand();
258  uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
259  int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
260  if (R != -1)
261    return R;
262
263  // If we have a load/load clobber an DepLI can be widened to cover this load,
264  // then we should widen it!
265  int64_t LoadOffs = 0;
266  const Value *LoadBase =
267      GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
268  unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
269
270  unsigned Size = MemoryDependenceResults::getLoadLoadClobberFullWidthSize(
271      LoadBase, LoadOffs, LoadSize, DepLI);
272  if (Size == 0)
273    return -1;
274
275  // Check non-obvious conditions enforced by MDA which we rely on for being
276  // able to materialize this potentially available value
277  assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
278  assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
279
280  return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
281}
282
283int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
284                                     MemIntrinsic *MI, const DataLayout &DL) {
285  // If the mem operation is a non-constant size, we can't handle it.
286  ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
287  if (!SizeCst)
288    return -1;
289  uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
290
291  // If this is memset, we just need to see if the offset is valid in the size
292  // of the memset..
293  if (MI->getIntrinsicID() == Intrinsic::memset) {
294    if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
295      auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
296      if (!CI || !CI->isZero())
297        return -1;
298    }
299    return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
300                                          MemSizeInBits, DL);
301  }
302
303  // If we have a memcpy/memmove, the only case we can handle is if this is a
304  // copy from constant memory.  In that case, we can read directly from the
305  // constant memory.
306  MemTransferInst *MTI = cast<MemTransferInst>(MI);
307
308  Constant *Src = dyn_cast<Constant>(MTI->getSource());
309  if (!Src)
310    return -1;
311
312  GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
313  if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
314    return -1;
315
316  // See if the access is within the bounds of the transfer.
317  int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
318                                              MemSizeInBits, DL);
319  if (Offset == -1)
320    return Offset;
321
322  // Don't coerce non-integral pointers to integers or vice versa, and the
323  // memtransfer is implicitly a raw byte code
324  if (DL.isNonIntegralPointerType(LoadTy->getScalarType()))
325    // TODO: Can allow nullptrs from constant zeros
326    return -1;
327
328  unsigned AS = Src->getType()->getPointerAddressSpace();
329  // Otherwise, see if we can constant fold a load from the constant with the
330  // offset applied as appropriate.
331  Src =
332      ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
333  Constant *OffsetCst =
334      ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
335  Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
336                                       OffsetCst);
337  Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
338  if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
339    return Offset;
340  return -1;
341}
342
343template <class T, class HelperClass>
344static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
345                                     HelperClass &Helper,
346                                     const DataLayout &DL) {
347  LLVMContext &Ctx = SrcVal->getType()->getContext();
348
349  // If two pointers are in the same address space, they have the same size,
350  // so we don't need to do any truncation, etc. This avoids introducing
351  // ptrtoint instructions for pointers that may be non-integral.
352  if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
353      cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
354          cast<PointerType>(LoadTy)->getAddressSpace()) {
355    return SrcVal;
356  }
357
358  uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
359  uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
360  // Compute which bits of the stored value are being used by the load.  Convert
361  // to an integer type to start with.
362  if (SrcVal->getType()->isPtrOrPtrVectorTy())
363    SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
364  if (!SrcVal->getType()->isIntegerTy())
365    SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
366
367  // Shift the bits to the least significant depending on endianness.
368  unsigned ShiftAmt;
369  if (DL.isLittleEndian())
370    ShiftAmt = Offset * 8;
371  else
372    ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
373  if (ShiftAmt)
374    SrcVal = Helper.CreateLShr(SrcVal,
375                               ConstantInt::get(SrcVal->getType(), ShiftAmt));
376
377  if (LoadSize != StoreSize)
378    SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
379                                         IntegerType::get(Ctx, LoadSize * 8));
380  return SrcVal;
381}
382
383/// This function is called when we have a memdep query of a load that ends up
384/// being a clobbering store.  This means that the store provides bits used by
385/// the load but the pointers don't must-alias.  Check this case to see if
386/// there is anything more we can do before we give up.
387Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
388                            Instruction *InsertPt, const DataLayout &DL) {
389
390  IRBuilder<> Builder(InsertPt);
391  SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
392  return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
393}
394
395Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
396                                       Type *LoadTy, const DataLayout &DL) {
397  ConstantFolder F;
398  SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
399  return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
400}
401
402/// This function is called when we have a memdep query of a load that ends up
403/// being a clobbering load.  This means that the load *may* provide bits used
404/// by the load but we can't be sure because the pointers don't must-alias.
405/// Check this case to see if there is anything more we can do before we give
406/// up.
407Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
408                           Instruction *InsertPt, const DataLayout &DL) {
409  // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
410  // widen SrcVal out to a larger load.
411  unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
412  unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
413  if (Offset + LoadSize > SrcValStoreSize) {
414    assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
415    assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
416    // If we have a load/load clobber an DepLI can be widened to cover this
417    // load, then we should widen it to the next power of 2 size big enough!
418    unsigned NewLoadSize = Offset + LoadSize;
419    if (!isPowerOf2_32(NewLoadSize))
420      NewLoadSize = NextPowerOf2(NewLoadSize);
421
422    Value *PtrVal = SrcVal->getPointerOperand();
423    // Insert the new load after the old load.  This ensures that subsequent
424    // memdep queries will find the new load.  We can't easily remove the old
425    // load completely because it is already in the value numbering table.
426    IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
427    Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
428    Type *DestPTy =
429        PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
430    Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
431    PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
432    LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
433    NewLoad->takeName(SrcVal);
434    NewLoad->setAlignment(MaybeAlign(SrcVal->getAlignment()));
435
436    LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
437    LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
438
439    // Replace uses of the original load with the wider load.  On a big endian
440    // system, we need to shift down to get the relevant bits.
441    Value *RV = NewLoad;
442    if (DL.isBigEndian())
443      RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
444    RV = Builder.CreateTrunc(RV, SrcVal->getType());
445    SrcVal->replaceAllUsesWith(RV);
446
447    SrcVal = NewLoad;
448  }
449
450  return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
451}
452
453Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
454                                      Type *LoadTy, const DataLayout &DL) {
455  unsigned SrcValStoreSize = DL.getTypeStoreSize(SrcVal->getType());
456  unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
457  if (Offset + LoadSize > SrcValStoreSize)
458    return nullptr;
459  return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
460}
461
462template <class T, class HelperClass>
463T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
464                                Type *LoadTy, HelperClass &Helper,
465                                const DataLayout &DL) {
466  LLVMContext &Ctx = LoadTy->getContext();
467  uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy) / 8;
468
469  // We know that this method is only called when the mem transfer fully
470  // provides the bits for the load.
471  if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
472    // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
473    // independently of what the offset is.
474    T *Val = cast<T>(MSI->getValue());
475    if (LoadSize != 1)
476      Val =
477          Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
478    T *OneElt = Val;
479
480    // Splat the value out to the right number of bits.
481    for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
482      // If we can double the number of bytes set, do it.
483      if (NumBytesSet * 2 <= LoadSize) {
484        T *ShVal = Helper.CreateShl(
485            Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
486        Val = Helper.CreateOr(Val, ShVal);
487        NumBytesSet <<= 1;
488        continue;
489      }
490
491      // Otherwise insert one byte at a time.
492      T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
493      Val = Helper.CreateOr(OneElt, ShVal);
494      ++NumBytesSet;
495    }
496
497    return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
498  }
499
500  // Otherwise, this is a memcpy/memmove from a constant global.
501  MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
502  Constant *Src = cast<Constant>(MTI->getSource());
503  unsigned AS = Src->getType()->getPointerAddressSpace();
504
505  // Otherwise, see if we can constant fold a load from the constant with the
506  // offset applied as appropriate.
507  Src =
508      ConstantExpr::getBitCast(Src, Type::getInt8PtrTy(Src->getContext(), AS));
509  Constant *OffsetCst =
510      ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
511  Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
512                                       OffsetCst);
513  Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
514  return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
515}
516
517/// This function is called when we have a
518/// memdep query of a load that ends up being a clobbering mem intrinsic.
519Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
520                              Type *LoadTy, Instruction *InsertPt,
521                              const DataLayout &DL) {
522  IRBuilder<> Builder(InsertPt);
523  return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
524                                                          LoadTy, Builder, DL);
525}
526
527Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
528                                         Type *LoadTy, const DataLayout &DL) {
529  // The only case analyzeLoadFromClobberingMemInst cannot be converted to a
530  // constant is when it's a memset of a non-constant.
531  if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
532    if (!isa<Constant>(MSI->getValue()))
533      return nullptr;
534  ConstantFolder F;
535  return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
536                                                                LoadTy, F, DL);
537}
538} // namespace VNCoercion
539} // namespace llvm
540