SimplifyLibCalls.cpp revision 360784
1//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the library calls simplifier. It does not implement
10// any pass, but can't be used by other passes to do simplifications.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
15#include "llvm/ADT/APSInt.h"
16#include "llvm/ADT/SmallString.h"
17#include "llvm/ADT/StringMap.h"
18#include "llvm/ADT/Triple.h"
19#include "llvm/Analysis/BlockFrequencyInfo.h"
20#include "llvm/Analysis/ConstantFolding.h"
21#include "llvm/Analysis/OptimizationRemarkEmitter.h"
22#include "llvm/Analysis/ProfileSummaryInfo.h"
23#include "llvm/Analysis/TargetLibraryInfo.h"
24#include "llvm/Transforms/Utils/Local.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/Analysis/CaptureTracking.h"
27#include "llvm/Analysis/Loads.h"
28#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/Function.h"
30#include "llvm/IR/IRBuilder.h"
31#include "llvm/IR/IntrinsicInst.h"
32#include "llvm/IR/Intrinsics.h"
33#include "llvm/IR/LLVMContext.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/PatternMatch.h"
36#include "llvm/Support/CommandLine.h"
37#include "llvm/Support/KnownBits.h"
38#include "llvm/Support/MathExtras.h"
39#include "llvm/Transforms/Utils/BuildLibCalls.h"
40#include "llvm/Transforms/Utils/SizeOpts.h"
41
42using namespace llvm;
43using namespace PatternMatch;
44
45static cl::opt<bool>
46    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
47                         cl::init(false),
48                         cl::desc("Enable unsafe double to float "
49                                  "shrinking for math lib calls"));
50
51//===----------------------------------------------------------------------===//
52// Helper Functions
53//===----------------------------------------------------------------------===//
54
55static bool ignoreCallingConv(LibFunc Func) {
56  return Func == LibFunc_abs || Func == LibFunc_labs ||
57         Func == LibFunc_llabs || Func == LibFunc_strlen;
58}
59
60static bool isCallingConvCCompatible(CallInst *CI) {
61  switch(CI->getCallingConv()) {
62  default:
63    return false;
64  case llvm::CallingConv::C:
65    return true;
66  case llvm::CallingConv::ARM_APCS:
67  case llvm::CallingConv::ARM_AAPCS:
68  case llvm::CallingConv::ARM_AAPCS_VFP: {
69
70    // The iOS ABI diverges from the standard in some cases, so for now don't
71    // try to simplify those calls.
72    if (Triple(CI->getModule()->getTargetTriple()).isiOS())
73      return false;
74
75    auto *FuncTy = CI->getFunctionType();
76
77    if (!FuncTy->getReturnType()->isPointerTy() &&
78        !FuncTy->getReturnType()->isIntegerTy() &&
79        !FuncTy->getReturnType()->isVoidTy())
80      return false;
81
82    for (auto Param : FuncTy->params()) {
83      if (!Param->isPointerTy() && !Param->isIntegerTy())
84        return false;
85    }
86    return true;
87  }
88  }
89  return false;
90}
91
92/// Return true if it is only used in equality comparisons with With.
93static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
94  for (User *U : V->users()) {
95    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
96      if (IC->isEquality() && IC->getOperand(1) == With)
97        continue;
98    // Unknown instruction.
99    return false;
100  }
101  return true;
102}
103
104static bool callHasFloatingPointArgument(const CallInst *CI) {
105  return any_of(CI->operands(), [](const Use &OI) {
106    return OI->getType()->isFloatingPointTy();
107  });
108}
109
110static bool callHasFP128Argument(const CallInst *CI) {
111  return any_of(CI->operands(), [](const Use &OI) {
112    return OI->getType()->isFP128Ty();
113  });
114}
115
116static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
117  if (Base < 2 || Base > 36)
118    // handle special zero base
119    if (Base != 0)
120      return nullptr;
121
122  char *End;
123  std::string nptr = Str.str();
124  errno = 0;
125  long long int Result = strtoll(nptr.c_str(), &End, Base);
126  if (errno)
127    return nullptr;
128
129  // if we assume all possible target locales are ASCII supersets,
130  // then if strtoll successfully parses a number on the host,
131  // it will also successfully parse the same way on the target
132  if (*End != '\0')
133    return nullptr;
134
135  if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
136    return nullptr;
137
138  return ConstantInt::get(CI->getType(), Result);
139}
140
141static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
142                                const TargetLibraryInfo *TLI) {
143  CallInst *FOpen = dyn_cast<CallInst>(File);
144  if (!FOpen)
145    return false;
146
147  Function *InnerCallee = FOpen->getCalledFunction();
148  if (!InnerCallee)
149    return false;
150
151  LibFunc Func;
152  if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
153      Func != LibFunc_fopen)
154    return false;
155
156  inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
157  if (PointerMayBeCaptured(File, true, true))
158    return false;
159
160  return true;
161}
162
163static bool isOnlyUsedInComparisonWithZero(Value *V) {
164  for (User *U : V->users()) {
165    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
166      if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
167        if (C->isNullValue())
168          continue;
169    // Unknown instruction.
170    return false;
171  }
172  return true;
173}
174
175static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len,
176                                 const DataLayout &DL) {
177  if (!isOnlyUsedInComparisonWithZero(CI))
178    return false;
179
180  if (!isDereferenceableAndAlignedPointer(Str, Align::None(), APInt(64, Len),
181                                          DL))
182    return false;
183
184  if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory))
185    return false;
186
187  return true;
188}
189
190static void annotateDereferenceableBytes(CallInst *CI,
191                                         ArrayRef<unsigned> ArgNos,
192                                         uint64_t DereferenceableBytes) {
193  const Function *F = CI->getCaller();
194  if (!F)
195    return;
196  for (unsigned ArgNo : ArgNos) {
197    uint64_t DerefBytes = DereferenceableBytes;
198    unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
199    if (!llvm::NullPointerIsDefined(F, AS) ||
200        CI->paramHasAttr(ArgNo, Attribute::NonNull))
201      DerefBytes = std::max(CI->getDereferenceableOrNullBytes(
202                                ArgNo + AttributeList::FirstArgIndex),
203                            DereferenceableBytes);
204
205    if (CI->getDereferenceableBytes(ArgNo + AttributeList::FirstArgIndex) <
206        DerefBytes) {
207      CI->removeParamAttr(ArgNo, Attribute::Dereferenceable);
208      if (!llvm::NullPointerIsDefined(F, AS) ||
209          CI->paramHasAttr(ArgNo, Attribute::NonNull))
210        CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull);
211      CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes(
212                                  CI->getContext(), DerefBytes));
213    }
214  }
215}
216
217static void annotateNonNullBasedOnAccess(CallInst *CI,
218                                         ArrayRef<unsigned> ArgNos) {
219  Function *F = CI->getCaller();
220  if (!F)
221    return;
222
223  for (unsigned ArgNo : ArgNos) {
224    if (CI->paramHasAttr(ArgNo, Attribute::NonNull))
225      continue;
226    unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace();
227    if (llvm::NullPointerIsDefined(F, AS))
228      continue;
229
230    CI->addParamAttr(ArgNo, Attribute::NonNull);
231    annotateDereferenceableBytes(CI, ArgNo, 1);
232  }
233}
234
235static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos,
236                               Value *Size, const DataLayout &DL) {
237  if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) {
238    annotateNonNullBasedOnAccess(CI, ArgNos);
239    annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue());
240  } else if (isKnownNonZero(Size, DL)) {
241    annotateNonNullBasedOnAccess(CI, ArgNos);
242    const APInt *X, *Y;
243    uint64_t DerefMin = 1;
244    if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) {
245      DerefMin = std::min(X->getZExtValue(), Y->getZExtValue());
246      annotateDereferenceableBytes(CI, ArgNos, DerefMin);
247    }
248  }
249}
250
251//===----------------------------------------------------------------------===//
252// String and Memory Library Call Optimizations
253//===----------------------------------------------------------------------===//
254
255Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
256  // Extract some information from the instruction
257  Value *Dst = CI->getArgOperand(0);
258  Value *Src = CI->getArgOperand(1);
259  annotateNonNullBasedOnAccess(CI, {0, 1});
260
261  // See if we can get the length of the input string.
262  uint64_t Len = GetStringLength(Src);
263  if (Len)
264    annotateDereferenceableBytes(CI, 1, Len);
265  else
266    return nullptr;
267  --Len; // Unbias length.
268
269  // Handle the simple, do-nothing case: strcat(x, "") -> x
270  if (Len == 0)
271    return Dst;
272
273  return emitStrLenMemCpy(Src, Dst, Len, B);
274}
275
276Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
277                                           IRBuilder<> &B) {
278  // We need to find the end of the destination string.  That's where the
279  // memory is to be moved to. We just generate a call to strlen.
280  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
281  if (!DstLen)
282    return nullptr;
283
284  // Now that we have the destination's length, we must index into the
285  // destination's pointer to get the actual memcpy destination (end of
286  // the string .. we're concatenating).
287  Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");
288
289  // We have enough information to now generate the memcpy call to do the
290  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
291  B.CreateMemCpy(
292      CpyDst, Align::None(), Src, Align::None(),
293      ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
294  return Dst;
295}
296
297Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
298  // Extract some information from the instruction.
299  Value *Dst = CI->getArgOperand(0);
300  Value *Src = CI->getArgOperand(1);
301  Value *Size = CI->getArgOperand(2);
302  uint64_t Len;
303  annotateNonNullBasedOnAccess(CI, 0);
304  if (isKnownNonZero(Size, DL))
305    annotateNonNullBasedOnAccess(CI, 1);
306
307  // We don't do anything if length is not constant.
308  ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size);
309  if (LengthArg) {
310    Len = LengthArg->getZExtValue();
311    // strncat(x, c, 0) -> x
312    if (!Len)
313      return Dst;
314  } else {
315    return nullptr;
316  }
317
318  // See if we can get the length of the input string.
319  uint64_t SrcLen = GetStringLength(Src);
320  if (SrcLen) {
321    annotateDereferenceableBytes(CI, 1, SrcLen);
322    --SrcLen; // Unbias length.
323  } else {
324    return nullptr;
325  }
326
327  // strncat(x, "", c) -> x
328  if (SrcLen == 0)
329    return Dst;
330
331  // We don't optimize this case.
332  if (Len < SrcLen)
333    return nullptr;
334
335  // strncat(x, s, c) -> strcat(x, s)
336  // s is constant so the strcat can be optimized further.
337  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
338}
339
340Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
341  Function *Callee = CI->getCalledFunction();
342  FunctionType *FT = Callee->getFunctionType();
343  Value *SrcStr = CI->getArgOperand(0);
344  annotateNonNullBasedOnAccess(CI, 0);
345
346  // If the second operand is non-constant, see if we can compute the length
347  // of the input string and turn this into memchr.
348  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
349  if (!CharC) {
350    uint64_t Len = GetStringLength(SrcStr);
351    if (Len)
352      annotateDereferenceableBytes(CI, 0, Len);
353    else
354      return nullptr;
355    if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
356      return nullptr;
357
358    return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
359                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
360                      B, DL, TLI);
361  }
362
363  // Otherwise, the character is a constant, see if the first argument is
364  // a string literal.  If so, we can constant fold.
365  StringRef Str;
366  if (!getConstantStringInfo(SrcStr, Str)) {
367    if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
368      if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI))
369        return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr");
370    return nullptr;
371  }
372
373  // Compute the offset, make sure to handle the case when we're searching for
374  // zero (a weird way to spell strlen).
375  size_t I = (0xFF & CharC->getSExtValue()) == 0
376                 ? Str.size()
377                 : Str.find(CharC->getSExtValue());
378  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
379    return Constant::getNullValue(CI->getType());
380
381  // strchr(s+n,c)  -> gep(s+n+i,c)
382  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
383}
384
385Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
386  Value *SrcStr = CI->getArgOperand(0);
387  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
388  annotateNonNullBasedOnAccess(CI, 0);
389
390  // Cannot fold anything if we're not looking for a constant.
391  if (!CharC)
392    return nullptr;
393
394  StringRef Str;
395  if (!getConstantStringInfo(SrcStr, Str)) {
396    // strrchr(s, 0) -> strchr(s, 0)
397    if (CharC->isZero())
398      return emitStrChr(SrcStr, '\0', B, TLI);
399    return nullptr;
400  }
401
402  // Compute the offset.
403  size_t I = (0xFF & CharC->getSExtValue()) == 0
404                 ? Str.size()
405                 : Str.rfind(CharC->getSExtValue());
406  if (I == StringRef::npos) // Didn't find the char. Return null.
407    return Constant::getNullValue(CI->getType());
408
409  // strrchr(s+n,c) -> gep(s+n+i,c)
410  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
411}
412
413Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
414  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
415  if (Str1P == Str2P) // strcmp(x,x)  -> 0
416    return ConstantInt::get(CI->getType(), 0);
417
418  StringRef Str1, Str2;
419  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
420  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
421
422  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
423  if (HasStr1 && HasStr2)
424    return ConstantInt::get(CI->getType(), Str1.compare(Str2));
425
426  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
427    return B.CreateNeg(B.CreateZExt(
428        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
429
430  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
431    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
432                        CI->getType());
433
434  // strcmp(P, "x") -> memcmp(P, "x", 2)
435  uint64_t Len1 = GetStringLength(Str1P);
436  if (Len1)
437    annotateDereferenceableBytes(CI, 0, Len1);
438  uint64_t Len2 = GetStringLength(Str2P);
439  if (Len2)
440    annotateDereferenceableBytes(CI, 1, Len2);
441
442  if (Len1 && Len2) {
443    return emitMemCmp(Str1P, Str2P,
444                      ConstantInt::get(DL.getIntPtrType(CI->getContext()),
445                                       std::min(Len1, Len2)),
446                      B, DL, TLI);
447  }
448
449  // strcmp to memcmp
450  if (!HasStr1 && HasStr2) {
451    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
452      return emitMemCmp(
453          Str1P, Str2P,
454          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
455          TLI);
456  } else if (HasStr1 && !HasStr2) {
457    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
458      return emitMemCmp(
459          Str1P, Str2P,
460          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
461          TLI);
462  }
463
464  annotateNonNullBasedOnAccess(CI, {0, 1});
465  return nullptr;
466}
467
468Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
469  Value *Str1P = CI->getArgOperand(0);
470  Value *Str2P = CI->getArgOperand(1);
471  Value *Size = CI->getArgOperand(2);
472  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
473    return ConstantInt::get(CI->getType(), 0);
474
475  if (isKnownNonZero(Size, DL))
476    annotateNonNullBasedOnAccess(CI, {0, 1});
477  // Get the length argument if it is constant.
478  uint64_t Length;
479  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
480    Length = LengthArg->getZExtValue();
481  else
482    return nullptr;
483
484  if (Length == 0) // strncmp(x,y,0)   -> 0
485    return ConstantInt::get(CI->getType(), 0);
486
487  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
488    return emitMemCmp(Str1P, Str2P, Size, B, DL, TLI);
489
490  StringRef Str1, Str2;
491  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
492  bool HasStr2 = getConstantStringInfo(Str2P, Str2);
493
494  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
495  if (HasStr1 && HasStr2) {
496    StringRef SubStr1 = Str1.substr(0, Length);
497    StringRef SubStr2 = Str2.substr(0, Length);
498    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
499  }
500
501  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
502    return B.CreateNeg(B.CreateZExt(
503        B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType()));
504
505  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
506    return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"),
507                        CI->getType());
508
509  uint64_t Len1 = GetStringLength(Str1P);
510  if (Len1)
511    annotateDereferenceableBytes(CI, 0, Len1);
512  uint64_t Len2 = GetStringLength(Str2P);
513  if (Len2)
514    annotateDereferenceableBytes(CI, 1, Len2);
515
516  // strncmp to memcmp
517  if (!HasStr1 && HasStr2) {
518    Len2 = std::min(Len2, Length);
519    if (canTransformToMemCmp(CI, Str1P, Len2, DL))
520      return emitMemCmp(
521          Str1P, Str2P,
522          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL,
523          TLI);
524  } else if (HasStr1 && !HasStr2) {
525    Len1 = std::min(Len1, Length);
526    if (canTransformToMemCmp(CI, Str2P, Len1, DL))
527      return emitMemCmp(
528          Str1P, Str2P,
529          ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL,
530          TLI);
531  }
532
533  return nullptr;
534}
535
536Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilder<> &B) {
537  Value *Src = CI->getArgOperand(0);
538  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
539  uint64_t SrcLen = GetStringLength(Src);
540  if (SrcLen && Size) {
541    annotateDereferenceableBytes(CI, 0, SrcLen);
542    if (SrcLen <= Size->getZExtValue() + 1)
543      return emitStrDup(Src, B, TLI);
544  }
545
546  return nullptr;
547}
548
549Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
550  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
551  if (Dst == Src) // strcpy(x,x)  -> x
552    return Src;
553
554  annotateNonNullBasedOnAccess(CI, {0, 1});
555  // See if we can get the length of the input string.
556  uint64_t Len = GetStringLength(Src);
557  if (Len)
558    annotateDereferenceableBytes(CI, 1, Len);
559  else
560    return nullptr;
561
562  // We have enough information to now generate the memcpy call to do the
563  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
564  CallInst *NewCI =
565      B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
566                     ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
567  NewCI->setAttributes(CI->getAttributes());
568  return Dst;
569}
570
571Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
572  Function *Callee = CI->getCalledFunction();
573  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
574  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
575    Value *StrLen = emitStrLen(Src, B, DL, TLI);
576    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
577  }
578
579  // See if we can get the length of the input string.
580  uint64_t Len = GetStringLength(Src);
581  if (Len)
582    annotateDereferenceableBytes(CI, 1, Len);
583  else
584    return nullptr;
585
586  Type *PT = Callee->getFunctionType()->getParamType(0);
587  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
588  Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
589                              ConstantInt::get(DL.getIntPtrType(PT), Len - 1));
590
591  // We have enough information to now generate the memcpy call to do the
592  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
593  CallInst *NewCI =
594      B.CreateMemCpy(Dst, Align::None(), Src, Align::None(), LenV);
595  NewCI->setAttributes(CI->getAttributes());
596  return DstEnd;
597}
598
599Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
600  Function *Callee = CI->getCalledFunction();
601  Value *Dst = CI->getArgOperand(0);
602  Value *Src = CI->getArgOperand(1);
603  Value *Size = CI->getArgOperand(2);
604  annotateNonNullBasedOnAccess(CI, 0);
605  if (isKnownNonZero(Size, DL))
606    annotateNonNullBasedOnAccess(CI, 1);
607
608  uint64_t Len;
609  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size))
610    Len = LengthArg->getZExtValue();
611  else
612    return nullptr;
613
614  // strncpy(x, y, 0) -> x
615  if (Len == 0)
616    return Dst;
617
618  // See if we can get the length of the input string.
619  uint64_t SrcLen = GetStringLength(Src);
620  if (SrcLen) {
621    annotateDereferenceableBytes(CI, 1, SrcLen);
622    --SrcLen; // Unbias length.
623  } else {
624    return nullptr;
625  }
626
627  if (SrcLen == 0) {
628    // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
629    CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, Align::None());
630    AttrBuilder ArgAttrs(CI->getAttributes().getParamAttributes(0));
631    NewCI->setAttributes(NewCI->getAttributes().addParamAttributes(
632        CI->getContext(), 0, ArgAttrs));
633    return Dst;
634  }
635
636  // Let strncpy handle the zero padding
637  if (Len > SrcLen + 1)
638    return nullptr;
639
640  Type *PT = Callee->getFunctionType()->getParamType(0);
641  // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
642  CallInst *NewCI = B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
643                                   ConstantInt::get(DL.getIntPtrType(PT), Len));
644  NewCI->setAttributes(CI->getAttributes());
645  return Dst;
646}
647
648Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
649                                               unsigned CharSize) {
650  Value *Src = CI->getArgOperand(0);
651
652  // Constant folding: strlen("xyz") -> 3
653  if (uint64_t Len = GetStringLength(Src, CharSize))
654    return ConstantInt::get(CI->getType(), Len - 1);
655
656  // If s is a constant pointer pointing to a string literal, we can fold
657  // strlen(s + x) to strlen(s) - x, when x is known to be in the range
658  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
659  // We only try to simplify strlen when the pointer s points to an array
660  // of i8. Otherwise, we would need to scale the offset x before doing the
661  // subtraction. This will make the optimization more complex, and it's not
662  // very useful because calling strlen for a pointer of other types is
663  // very uncommon.
664  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
665    if (!isGEPBasedOnPointerToString(GEP, CharSize))
666      return nullptr;
667
668    ConstantDataArraySlice Slice;
669    if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
670      uint64_t NullTermIdx;
671      if (Slice.Array == nullptr) {
672        NullTermIdx = 0;
673      } else {
674        NullTermIdx = ~((uint64_t)0);
675        for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
676          if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
677            NullTermIdx = I;
678            break;
679          }
680        }
681        // If the string does not have '\0', leave it to strlen to compute
682        // its length.
683        if (NullTermIdx == ~((uint64_t)0))
684          return nullptr;
685      }
686
687      Value *Offset = GEP->getOperand(2);
688      KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
689      Known.Zero.flipAllBits();
690      uint64_t ArrSize =
691             cast<ArrayType>(GEP->getSourceElementType())->getNumElements();
692
693      // KnownZero's bits are flipped, so zeros in KnownZero now represent
694      // bits known to be zeros in Offset, and ones in KnowZero represent
695      // bits unknown in Offset. Therefore, Offset is known to be in range
696      // [0, NullTermIdx] when the flipped KnownZero is non-negative and
697      // unsigned-less-than NullTermIdx.
698      //
699      // If Offset is not provably in the range [0, NullTermIdx], we can still
700      // optimize if we can prove that the program has undefined behavior when
701      // Offset is outside that range. That is the case when GEP->getOperand(0)
702      // is a pointer to an object whose memory extent is NullTermIdx+1.
703      if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
704          (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
705           NullTermIdx == ArrSize - 1)) {
706        Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
707        return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
708                           Offset);
709      }
710    }
711
712    return nullptr;
713  }
714
715  // strlen(x?"foo":"bars") --> x ? 3 : 4
716  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
717    uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
718    uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
719    if (LenTrue && LenFalse) {
720      ORE.emit([&]() {
721        return OptimizationRemark("instcombine", "simplify-libcalls", CI)
722               << "folded strlen(select) to select of constants";
723      });
724      return B.CreateSelect(SI->getCondition(),
725                            ConstantInt::get(CI->getType(), LenTrue - 1),
726                            ConstantInt::get(CI->getType(), LenFalse - 1));
727    }
728  }
729
730  // strlen(x) != 0 --> *x != 0
731  // strlen(x) == 0 --> *x == 0
732  if (isOnlyUsedInZeroEqualityComparison(CI))
733    return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"),
734                        CI->getType());
735
736  return nullptr;
737}
738
739Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
740  if (Value *V = optimizeStringLength(CI, B, 8))
741    return V;
742  annotateNonNullBasedOnAccess(CI, 0);
743  return nullptr;
744}
745
746Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
747  Module &M = *CI->getModule();
748  unsigned WCharSize = TLI->getWCharSize(M) * 8;
749  // We cannot perform this optimization without wchar_size metadata.
750  if (WCharSize == 0)
751    return nullptr;
752
753  return optimizeStringLength(CI, B, WCharSize);
754}
755
756Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
757  StringRef S1, S2;
758  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
759  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
760
761  // strpbrk(s, "") -> nullptr
762  // strpbrk("", s) -> nullptr
763  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
764    return Constant::getNullValue(CI->getType());
765
766  // Constant folding.
767  if (HasS1 && HasS2) {
768    size_t I = S1.find_first_of(S2);
769    if (I == StringRef::npos) // No match.
770      return Constant::getNullValue(CI->getType());
771
772    return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
773                       "strpbrk");
774  }
775
776  // strpbrk(s, "a") -> strchr(s, 'a')
777  if (HasS2 && S2.size() == 1)
778    return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);
779
780  return nullptr;
781}
782
783Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
784  Value *EndPtr = CI->getArgOperand(1);
785  if (isa<ConstantPointerNull>(EndPtr)) {
786    // With a null EndPtr, this function won't capture the main argument.
787    // It would be readonly too, except that it still may write to errno.
788    CI->addParamAttr(0, Attribute::NoCapture);
789  }
790
791  return nullptr;
792}
793
794Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
795  StringRef S1, S2;
796  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
797  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
798
799  // strspn(s, "") -> 0
800  // strspn("", s) -> 0
801  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
802    return Constant::getNullValue(CI->getType());
803
804  // Constant folding.
805  if (HasS1 && HasS2) {
806    size_t Pos = S1.find_first_not_of(S2);
807    if (Pos == StringRef::npos)
808      Pos = S1.size();
809    return ConstantInt::get(CI->getType(), Pos);
810  }
811
812  return nullptr;
813}
814
815Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
816  StringRef S1, S2;
817  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
818  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);
819
820  // strcspn("", s) -> 0
821  if (HasS1 && S1.empty())
822    return Constant::getNullValue(CI->getType());
823
824  // Constant folding.
825  if (HasS1 && HasS2) {
826    size_t Pos = S1.find_first_of(S2);
827    if (Pos == StringRef::npos)
828      Pos = S1.size();
829    return ConstantInt::get(CI->getType(), Pos);
830  }
831
832  // strcspn(s, "") -> strlen(s)
833  if (HasS2 && S2.empty())
834    return emitStrLen(CI->getArgOperand(0), B, DL, TLI);
835
836  return nullptr;
837}
838
839Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
840  // fold strstr(x, x) -> x.
841  if (CI->getArgOperand(0) == CI->getArgOperand(1))
842    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
843
844  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
845  if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
846    Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
847    if (!StrLen)
848      return nullptr;
849    Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
850                                 StrLen, B, DL, TLI);
851    if (!StrNCmp)
852      return nullptr;
853    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
854      ICmpInst *Old = cast<ICmpInst>(*UI++);
855      Value *Cmp =
856          B.CreateICmp(Old->getPredicate(), StrNCmp,
857                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
858      replaceAllUsesWith(Old, Cmp);
859    }
860    return CI;
861  }
862
863  // See if either input string is a constant string.
864  StringRef SearchStr, ToFindStr;
865  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
866  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);
867
868  // fold strstr(x, "") -> x.
869  if (HasStr2 && ToFindStr.empty())
870    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());
871
872  // If both strings are known, constant fold it.
873  if (HasStr1 && HasStr2) {
874    size_t Offset = SearchStr.find(ToFindStr);
875
876    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
877      return Constant::getNullValue(CI->getType());
878
879    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
880    Value *Result = castToCStr(CI->getArgOperand(0), B);
881    Result =
882        B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr");
883    return B.CreateBitCast(Result, CI->getType());
884  }
885
886  // fold strstr(x, "y") -> strchr(x, 'y').
887  if (HasStr2 && ToFindStr.size() == 1) {
888    Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
889    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
890  }
891
892  annotateNonNullBasedOnAccess(CI, {0, 1});
893  return nullptr;
894}
895
896Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilder<> &B) {
897  if (isKnownNonZero(CI->getOperand(2), DL))
898    annotateNonNullBasedOnAccess(CI, 0);
899  return nullptr;
900}
901
902Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
903  Value *SrcStr = CI->getArgOperand(0);
904  Value *Size = CI->getArgOperand(2);
905  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
906  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
907  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
908
909  // memchr(x, y, 0) -> null
910  if (LenC) {
911    if (LenC->isZero())
912      return Constant::getNullValue(CI->getType());
913  } else {
914    // From now on we need at least constant length and string.
915    return nullptr;
916  }
917
918  StringRef Str;
919  if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
920    return nullptr;
921
922  // Truncate the string to LenC. If Str is smaller than LenC we will still only
923  // scan the string, as reading past the end of it is undefined and we can just
924  // return null if we don't find the char.
925  Str = Str.substr(0, LenC->getZExtValue());
926
927  // If the char is variable but the input str and length are not we can turn
928  // this memchr call into a simple bit field test. Of course this only works
929  // when the return value is only checked against null.
930  //
931  // It would be really nice to reuse switch lowering here but we can't change
932  // the CFG at this point.
933  //
934  // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n')))
935  // != 0
936  //   after bounds check.
937  if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
938    unsigned char Max =
939        *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
940                          reinterpret_cast<const unsigned char *>(Str.end()));
941
942    // Make sure the bit field we're about to create fits in a register on the
943    // target.
944    // FIXME: On a 64 bit architecture this prevents us from using the
945    // interesting range of alpha ascii chars. We could do better by emitting
946    // two bitfields or shifting the range by 64 if no lower chars are used.
947    if (!DL.fitsInLegalInteger(Max + 1))
948      return nullptr;
949
950    // For the bit field use a power-of-2 type with at least 8 bits to avoid
951    // creating unnecessary illegal types.
952    unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));
953
954    // Now build the bit field.
955    APInt Bitfield(Width, 0);
956    for (char C : Str)
957      Bitfield.setBit((unsigned char)C);
958    Value *BitfieldC = B.getInt(Bitfield);
959
960    // Adjust width of "C" to the bitfield width, then mask off the high bits.
961    Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
962    C = B.CreateAnd(C, B.getIntN(Width, 0xFF));
963
964    // First check that the bit field access is within bounds.
965    Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
966                                 "memchr.bounds");
967
968    // Create code that checks if the given bit is set in the field.
969    Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
970    Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");
971
972    // Finally merge both checks and cast to pointer type. The inttoptr
973    // implicitly zexts the i1 to intptr type.
974    return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
975  }
976
977  // Check if all arguments are constants.  If so, we can constant fold.
978  if (!CharC)
979    return nullptr;
980
981  // Compute the offset.
982  size_t I = Str.find(CharC->getSExtValue() & 0xFF);
983  if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
984    return Constant::getNullValue(CI->getType());
985
986  // memchr(s+n,c,l) -> gep(s+n+i,c)
987  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
988}
989
990static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS,
991                                         uint64_t Len, IRBuilder<> &B,
992                                         const DataLayout &DL) {
993  if (Len == 0) // memcmp(s1,s2,0) -> 0
994    return Constant::getNullValue(CI->getType());
995
996  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
997  if (Len == 1) {
998    Value *LHSV =
999        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"),
1000                     CI->getType(), "lhsv");
1001    Value *RHSV =
1002        B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"),
1003                     CI->getType(), "rhsv");
1004    return B.CreateSub(LHSV, RHSV, "chardiff");
1005  }
1006
1007  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
1008  // TODO: The case where both inputs are constants does not need to be limited
1009  // to legal integers or equality comparison. See block below this.
1010  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
1011    IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
1012    unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);
1013
1014    // First, see if we can fold either argument to a constant.
1015    Value *LHSV = nullptr;
1016    if (auto *LHSC = dyn_cast<Constant>(LHS)) {
1017      LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
1018      LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
1019    }
1020    Value *RHSV = nullptr;
1021    if (auto *RHSC = dyn_cast<Constant>(RHS)) {
1022      RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
1023      RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
1024    }
1025
1026    // Don't generate unaligned loads. If either source is constant data,
1027    // alignment doesn't matter for that source because there is no load.
1028    if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
1029        (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
1030      if (!LHSV) {
1031        Type *LHSPtrTy =
1032            IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
1033        LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
1034      }
1035      if (!RHSV) {
1036        Type *RHSPtrTy =
1037            IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
1038        RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
1039      }
1040      return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
1041    }
1042  }
1043
1044  // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
1045  // TODO: This is limited to i8 arrays.
1046  StringRef LHSStr, RHSStr;
1047  if (getConstantStringInfo(LHS, LHSStr) &&
1048      getConstantStringInfo(RHS, RHSStr)) {
1049    // Make sure we're not reading out-of-bounds memory.
1050    if (Len > LHSStr.size() || Len > RHSStr.size())
1051      return nullptr;
1052    // Fold the memcmp and normalize the result.  This way we get consistent
1053    // results across multiple platforms.
1054    uint64_t Ret = 0;
1055    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
1056    if (Cmp < 0)
1057      Ret = -1;
1058    else if (Cmp > 0)
1059      Ret = 1;
1060    return ConstantInt::get(CI->getType(), Ret);
1061  }
1062
1063  return nullptr;
1064}
1065
1066// Most simplifications for memcmp also apply to bcmp.
1067Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI,
1068                                                   IRBuilder<> &B) {
1069  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);
1070  Value *Size = CI->getArgOperand(2);
1071
1072  if (LHS == RHS) // memcmp(s,s,x) -> 0
1073    return Constant::getNullValue(CI->getType());
1074
1075  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1076  // Handle constant lengths.
1077  ConstantInt *LenC = dyn_cast<ConstantInt>(Size);
1078  if (!LenC)
1079    return nullptr;
1080
1081  // memcmp(d,s,0) -> 0
1082  if (LenC->getZExtValue() == 0)
1083    return Constant::getNullValue(CI->getType());
1084
1085  if (Value *Res =
1086          optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL))
1087    return Res;
1088  return nullptr;
1089}
1090
1091Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
1092  if (Value *V = optimizeMemCmpBCmpCommon(CI, B))
1093    return V;
1094
1095  // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0
1096  // bcmp can be more efficient than memcmp because it only has to know that
1097  // there is a difference, not how different one is to the other.
1098  if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) {
1099    Value *LHS = CI->getArgOperand(0);
1100    Value *RHS = CI->getArgOperand(1);
1101    Value *Size = CI->getArgOperand(2);
1102    return emitBCmp(LHS, RHS, Size, B, DL, TLI);
1103  }
1104
1105  return nullptr;
1106}
1107
1108Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) {
1109  return optimizeMemCmpBCmpCommon(CI, B);
1110}
1111
1112Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
1113  Value *Size = CI->getArgOperand(2);
1114  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1115  if (isa<IntrinsicInst>(CI))
1116    return nullptr;
1117
1118  // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
1119  CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align::None(),
1120                                   CI->getArgOperand(1), Align::None(), Size);
1121  NewCI->setAttributes(CI->getAttributes());
1122  return CI->getArgOperand(0);
1123}
1124
1125Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilder<> &B) {
1126  Value *Dst = CI->getArgOperand(0);
1127  Value *Src = CI->getArgOperand(1);
1128  ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2));
1129  ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3));
1130  StringRef SrcStr;
1131  if (CI->use_empty() && Dst == Src)
1132    return Dst;
1133  // memccpy(d, s, c, 0) -> nullptr
1134  if (N) {
1135    if (N->isNullValue())
1136      return Constant::getNullValue(CI->getType());
1137    if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0,
1138                               /*TrimAtNul=*/false) ||
1139        !StopChar)
1140      return nullptr;
1141  } else {
1142    return nullptr;
1143  }
1144
1145  // Wrap arg 'c' of type int to char
1146  size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF);
1147  if (Pos == StringRef::npos) {
1148    if (N->getZExtValue() <= SrcStr.size()) {
1149      B.CreateMemCpy(Dst, Align::None(), Src, Align::None(),
1150                     CI->getArgOperand(3));
1151      return Constant::getNullValue(CI->getType());
1152    }
1153    return nullptr;
1154  }
1155
1156  Value *NewN =
1157      ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue()));
1158  // memccpy -> llvm.memcpy
1159  B.CreateMemCpy(Dst, Align::None(), Src, Align::None(), NewN);
1160  return Pos + 1 <= N->getZExtValue()
1161             ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN)
1162             : Constant::getNullValue(CI->getType());
1163}
1164
1165Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilder<> &B) {
1166  Value *Dst = CI->getArgOperand(0);
1167  Value *N = CI->getArgOperand(2);
1168  // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n
1169  CallInst *NewCI = B.CreateMemCpy(Dst, Align::None(), CI->getArgOperand(1),
1170                                   Align::None(), N);
1171  NewCI->setAttributes(CI->getAttributes());
1172  return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N);
1173}
1174
1175Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
1176  Value *Size = CI->getArgOperand(2);
1177  annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL);
1178  if (isa<IntrinsicInst>(CI))
1179    return nullptr;
1180
1181  // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
1182  CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align::None(),
1183                                    CI->getArgOperand(1), Align::None(), Size);
1184  NewCI->setAttributes(CI->getAttributes());
1185  return CI->getArgOperand(0);
1186}
1187
1188/// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
1189Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) {
1190  // This has to be a memset of zeros (bzero).
1191  auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
1192  if (!FillValue || FillValue->getZExtValue() != 0)
1193    return nullptr;
1194
1195  // TODO: We should handle the case where the malloc has more than one use.
1196  // This is necessary to optimize common patterns such as when the result of
1197  // the malloc is checked against null or when a memset intrinsic is used in
1198  // place of a memset library call.
1199  auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
1200  if (!Malloc || !Malloc->hasOneUse())
1201    return nullptr;
1202
1203  // Is the inner call really malloc()?
1204  Function *InnerCallee = Malloc->getCalledFunction();
1205  if (!InnerCallee)
1206    return nullptr;
1207
1208  LibFunc Func;
1209  if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
1210      Func != LibFunc_malloc)
1211    return nullptr;
1212
1213  // The memset must cover the same number of bytes that are malloc'd.
1214  if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
1215    return nullptr;
1216
1217  // Replace the malloc with a calloc. We need the data layout to know what the
1218  // actual size of a 'size_t' parameter is.
1219  B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
1220  const DataLayout &DL = Malloc->getModule()->getDataLayout();
1221  IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
1222  if (Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
1223                                 Malloc->getArgOperand(0),
1224                                 Malloc->getAttributes(), B, *TLI)) {
1225    substituteInParent(Malloc, Calloc);
1226    return Calloc;
1227  }
1228
1229  return nullptr;
1230}
1231
1232Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
1233  Value *Size = CI->getArgOperand(2);
1234  annotateNonNullAndDereferenceable(CI, 0, Size, DL);
1235  if (isa<IntrinsicInst>(CI))
1236    return nullptr;
1237
1238  if (auto *Calloc = foldMallocMemset(CI, B))
1239    return Calloc;
1240
1241  // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
1242  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
1243  CallInst *NewCI =
1244      B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align::None());
1245  NewCI->setAttributes(CI->getAttributes());
1246  return CI->getArgOperand(0);
1247}
1248
1249Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
1250  if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
1251    return emitMalloc(CI->getArgOperand(1), B, DL, TLI);
1252
1253  return nullptr;
1254}
1255
1256//===----------------------------------------------------------------------===//
1257// Math Library Optimizations
1258//===----------------------------------------------------------------------===//
1259
1260// Replace a libcall \p CI with a call to intrinsic \p IID
1261static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
1262  // Propagate fast-math flags from the existing call to the new call.
1263  IRBuilder<>::FastMathFlagGuard Guard(B);
1264  B.setFastMathFlags(CI->getFastMathFlags());
1265
1266  Module *M = CI->getModule();
1267  Value *V = CI->getArgOperand(0);
1268  Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
1269  CallInst *NewCall = B.CreateCall(F, V);
1270  NewCall->takeName(CI);
1271  return NewCall;
1272}
1273
1274/// Return a variant of Val with float type.
1275/// Currently this works in two cases: If Val is an FPExtension of a float
1276/// value to something bigger, simply return the operand.
1277/// If Val is a ConstantFP but can be converted to a float ConstantFP without
1278/// loss of precision do so.
1279static Value *valueHasFloatPrecision(Value *Val) {
1280  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
1281    Value *Op = Cast->getOperand(0);
1282    if (Op->getType()->isFloatTy())
1283      return Op;
1284  }
1285  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
1286    APFloat F = Const->getValueAPF();
1287    bool losesInfo;
1288    (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
1289                    &losesInfo);
1290    if (!losesInfo)
1291      return ConstantFP::get(Const->getContext(), F);
1292  }
1293  return nullptr;
1294}
1295
1296/// Shrink double -> float functions.
1297static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B,
1298                               bool isBinary, bool isPrecise = false) {
1299  Function *CalleeFn = CI->getCalledFunction();
1300  if (!CI->getType()->isDoubleTy() || !CalleeFn)
1301    return nullptr;
1302
1303  // If not all the uses of the function are converted to float, then bail out.
1304  // This matters if the precision of the result is more important than the
1305  // precision of the arguments.
1306  if (isPrecise)
1307    for (User *U : CI->users()) {
1308      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
1309      if (!Cast || !Cast->getType()->isFloatTy())
1310        return nullptr;
1311    }
1312
1313  // If this is something like 'g((double) float)', convert to 'gf(float)'.
1314  Value *V[2];
1315  V[0] = valueHasFloatPrecision(CI->getArgOperand(0));
1316  V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr;
1317  if (!V[0] || (isBinary && !V[1]))
1318    return nullptr;
1319
1320  // If call isn't an intrinsic, check that it isn't within a function with the
1321  // same name as the float version of this call, otherwise the result is an
1322  // infinite loop.  For example, from MinGW-w64:
1323  //
1324  // float expf(float val) { return (float) exp((double) val); }
1325  StringRef CalleeName = CalleeFn->getName();
1326  bool IsIntrinsic = CalleeFn->isIntrinsic();
1327  if (!IsIntrinsic) {
1328    StringRef CallerName = CI->getFunction()->getName();
1329    if (!CallerName.empty() && CallerName.back() == 'f' &&
1330        CallerName.size() == (CalleeName.size() + 1) &&
1331        CallerName.startswith(CalleeName))
1332      return nullptr;
1333  }
1334
1335  // Propagate the math semantics from the current function to the new function.
1336  IRBuilder<>::FastMathFlagGuard Guard(B);
1337  B.setFastMathFlags(CI->getFastMathFlags());
1338
1339  // g((double) float) -> (double) gf(float)
1340  Value *R;
1341  if (IsIntrinsic) {
1342    Module *M = CI->getModule();
1343    Intrinsic::ID IID = CalleeFn->getIntrinsicID();
1344    Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
1345    R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]);
1346  } else {
1347    AttributeList CalleeAttrs = CalleeFn->getAttributes();
1348    R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs)
1349                 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs);
1350  }
1351  return B.CreateFPExt(R, B.getDoubleTy());
1352}
1353
1354/// Shrink double -> float for unary functions.
1355static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1356                                    bool isPrecise = false) {
1357  return optimizeDoubleFP(CI, B, false, isPrecise);
1358}
1359
1360/// Shrink double -> float for binary functions.
1361static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B,
1362                                     bool isPrecise = false) {
1363  return optimizeDoubleFP(CI, B, true, isPrecise);
1364}
1365
1366// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
1367Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
1368  if (!CI->isFast())
1369    return nullptr;
1370
1371  // Propagate fast-math flags from the existing call to new instructions.
1372  IRBuilder<>::FastMathFlagGuard Guard(B);
1373  B.setFastMathFlags(CI->getFastMathFlags());
1374
1375  Value *Real, *Imag;
1376  if (CI->getNumArgOperands() == 1) {
1377    Value *Op = CI->getArgOperand(0);
1378    assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
1379    Real = B.CreateExtractValue(Op, 0, "real");
1380    Imag = B.CreateExtractValue(Op, 1, "imag");
1381  } else {
1382    assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
1383    Real = CI->getArgOperand(0);
1384    Imag = CI->getArgOperand(1);
1385  }
1386
1387  Value *RealReal = B.CreateFMul(Real, Real);
1388  Value *ImagImag = B.CreateFMul(Imag, Imag);
1389
1390  Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
1391                                              CI->getType());
1392  return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
1393}
1394
1395static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func,
1396                                      IRBuilder<> &B) {
1397  if (!isa<FPMathOperator>(Call))
1398    return nullptr;
1399
1400  IRBuilder<>::FastMathFlagGuard Guard(B);
1401  B.setFastMathFlags(Call->getFastMathFlags());
1402
1403  // TODO: Can this be shared to also handle LLVM intrinsics?
1404  Value *X;
1405  switch (Func) {
1406  case LibFunc_sin:
1407  case LibFunc_sinf:
1408  case LibFunc_sinl:
1409  case LibFunc_tan:
1410  case LibFunc_tanf:
1411  case LibFunc_tanl:
1412    // sin(-X) --> -sin(X)
1413    // tan(-X) --> -tan(X)
1414    if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X)))))
1415      return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X));
1416    break;
1417  case LibFunc_cos:
1418  case LibFunc_cosf:
1419  case LibFunc_cosl:
1420    // cos(-X) --> cos(X)
1421    if (match(Call->getArgOperand(0), m_FNeg(m_Value(X))))
1422      return B.CreateCall(Call->getCalledFunction(), X, "cos");
1423    break;
1424  default:
1425    break;
1426  }
1427  return nullptr;
1428}
1429
1430static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
1431  // Multiplications calculated using Addition Chains.
1432  // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
1433
1434  assert(Exp != 0 && "Incorrect exponent 0 not handled");
1435
1436  if (InnerChain[Exp])
1437    return InnerChain[Exp];
1438
1439  static const unsigned AddChain[33][2] = {
1440      {0, 0}, // Unused.
1441      {0, 0}, // Unused (base case = pow1).
1442      {1, 1}, // Unused (pre-computed).
1443      {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
1444      {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
1445      {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
1446      {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
1447      {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
1448  };
1449
1450  InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
1451                                 getPow(InnerChain, AddChain[Exp][1], B));
1452  return InnerChain[Exp];
1453}
1454
1455// Return a properly extended 32-bit integer if the operation is an itofp.
1456static Value *getIntToFPVal(Value *I2F, IRBuilder<> &B) {
1457  if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) {
1458    Value *Op = cast<Instruction>(I2F)->getOperand(0);
1459    // Make sure that the exponent fits inside an int32_t,
1460    // thus avoiding any range issues that FP has not.
1461    unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits();
1462    if (BitWidth < 32 ||
1463        (BitWidth == 32 && isa<SIToFPInst>(I2F)))
1464      return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getInt32Ty())
1465                                  : B.CreateZExt(Op, B.getInt32Ty());
1466  }
1467
1468  return nullptr;
1469}
1470
1471/// Use exp{,2}(x * y) for pow(exp{,2}(x), y);
1472/// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x);
1473/// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x).
1474Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) {
1475  Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1476  AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1477  Module *Mod = Pow->getModule();
1478  Type *Ty = Pow->getType();
1479  bool Ignored;
1480
1481  // Evaluate special cases related to a nested function as the base.
1482
1483  // pow(exp(x), y) -> exp(x * y)
1484  // pow(exp2(x), y) -> exp2(x * y)
1485  // If exp{,2}() is used only once, it is better to fold two transcendental
1486  // math functions into one.  If used again, exp{,2}() would still have to be
1487  // called with the original argument, then keep both original transcendental
1488  // functions.  However, this transformation is only safe with fully relaxed
1489  // math semantics, since, besides rounding differences, it changes overflow
1490  // and underflow behavior quite dramatically.  For example:
1491  //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf
1492  // Whereas:
1493  //   exp(1000 * 0.001) = exp(1)
1494  // TODO: Loosen the requirement for fully relaxed math semantics.
1495  // TODO: Handle exp10() when more targets have it available.
1496  CallInst *BaseFn = dyn_cast<CallInst>(Base);
1497  if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) {
1498    LibFunc LibFn;
1499
1500    Function *CalleeFn = BaseFn->getCalledFunction();
1501    if (CalleeFn &&
1502        TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) {
1503      StringRef ExpName;
1504      Intrinsic::ID ID;
1505      Value *ExpFn;
1506      LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble;
1507
1508      switch (LibFn) {
1509      default:
1510        return nullptr;
1511      case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl:
1512        ExpName = TLI->getName(LibFunc_exp);
1513        ID = Intrinsic::exp;
1514        LibFnFloat = LibFunc_expf;
1515        LibFnDouble = LibFunc_exp;
1516        LibFnLongDouble = LibFunc_expl;
1517        break;
1518      case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l:
1519        ExpName = TLI->getName(LibFunc_exp2);
1520        ID = Intrinsic::exp2;
1521        LibFnFloat = LibFunc_exp2f;
1522        LibFnDouble = LibFunc_exp2;
1523        LibFnLongDouble = LibFunc_exp2l;
1524        break;
1525      }
1526
1527      // Create new exp{,2}() with the product as its argument.
1528      Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
1529      ExpFn = BaseFn->doesNotAccessMemory()
1530              ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty),
1531                             FMul, ExpName)
1532              : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat,
1533                                     LibFnLongDouble, B,
1534                                     BaseFn->getAttributes());
1535
1536      // Since the new exp{,2}() is different from the original one, dead code
1537      // elimination cannot be trusted to remove it, since it may have side
1538      // effects (e.g., errno).  When the only consumer for the original
1539      // exp{,2}() is pow(), then it has to be explicitly erased.
1540      substituteInParent(BaseFn, ExpFn);
1541      return ExpFn;
1542    }
1543  }
1544
1545  // Evaluate special cases related to a constant base.
1546
1547  const APFloat *BaseF;
1548  if (!match(Pow->getArgOperand(0), m_APFloat(BaseF)))
1549    return nullptr;
1550
1551  // pow(2.0, itofp(x)) -> ldexp(1.0, x)
1552  if (match(Base, m_SpecificFP(2.0)) &&
1553      (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) &&
1554      hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1555    if (Value *ExpoI = getIntToFPVal(Expo, B))
1556      return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, TLI,
1557                                   LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1558                                   B, Attrs);
1559  }
1560
1561  // pow(2.0 ** n, x) -> exp2(n * x)
1562  if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) {
1563    APFloat BaseR = APFloat(1.0);
1564    BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored);
1565    BaseR = BaseR / *BaseF;
1566    bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger();
1567    const APFloat *NF = IsReciprocal ? &BaseR : BaseF;
1568    APSInt NI(64, false);
1569    if ((IsInteger || IsReciprocal) &&
1570        NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) ==
1571            APFloat::opOK &&
1572        NI > 1 && NI.isPowerOf2()) {
1573      double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0);
1574      Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul");
1575      if (Pow->doesNotAccessMemory())
1576        return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1577                            FMul, "exp2");
1578      else
1579        return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1580                                    LibFunc_exp2l, B, Attrs);
1581    }
1582  }
1583
1584  // pow(10.0, x) -> exp10(x)
1585  // TODO: There is no exp10() intrinsic yet, but some day there shall be one.
1586  if (match(Base, m_SpecificFP(10.0)) &&
1587      hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
1588    return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f,
1589                                LibFunc_exp10l, B, Attrs);
1590
1591  // pow(n, x) -> exp2(log2(n) * x)
1592  if (Pow->hasOneUse() && Pow->hasApproxFunc() && Pow->hasNoNaNs() &&
1593      Pow->hasNoInfs() && BaseF->isNormal() && !BaseF->isNegative()) {
1594    Value *Log = nullptr;
1595    if (Ty->isFloatTy())
1596      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat()));
1597    else if (Ty->isDoubleTy())
1598      Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble()));
1599
1600    if (Log) {
1601      Value *FMul = B.CreateFMul(Log, Expo, "mul");
1602      if (Pow->doesNotAccessMemory())
1603        return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty),
1604                            FMul, "exp2");
1605      else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l))
1606        return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f,
1607                                    LibFunc_exp2l, B, Attrs);
1608    }
1609  }
1610
1611  return nullptr;
1612}
1613
1614static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno,
1615                          Module *M, IRBuilder<> &B,
1616                          const TargetLibraryInfo *TLI) {
1617  // If errno is never set, then use the intrinsic for sqrt().
1618  if (NoErrno) {
1619    Function *SqrtFn =
1620        Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType());
1621    return B.CreateCall(SqrtFn, V, "sqrt");
1622  }
1623
1624  // Otherwise, use the libcall for sqrt().
1625  if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
1626    // TODO: We also should check that the target can in fact lower the sqrt()
1627    // libcall. We currently have no way to ask this question, so we ask if
1628    // the target has a sqrt() libcall, which is not exactly the same.
1629    return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf,
1630                                LibFunc_sqrtl, B, Attrs);
1631
1632  return nullptr;
1633}
1634
1635/// Use square root in place of pow(x, +/-0.5).
1636Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
1637  Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
1638  AttributeList Attrs = Pow->getCalledFunction()->getAttributes();
1639  Module *Mod = Pow->getModule();
1640  Type *Ty = Pow->getType();
1641
1642  const APFloat *ExpoF;
1643  if (!match(Expo, m_APFloat(ExpoF)) ||
1644      (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
1645    return nullptr;
1646
1647  // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step,
1648  // so that requires fast-math-flags (afn or reassoc).
1649  if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc()))
1650    return nullptr;
1651
1652  Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI);
1653  if (!Sqrt)
1654    return nullptr;
1655
1656  // Handle signed zero base by expanding to fabs(sqrt(x)).
1657  if (!Pow->hasNoSignedZeros()) {
1658    Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty);
1659    Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs");
1660  }
1661
1662  // Handle non finite base by expanding to
1663  // (x == -infinity ? +infinity : sqrt(x)).
1664  if (!Pow->hasNoInfs()) {
1665    Value *PosInf = ConstantFP::getInfinity(Ty),
1666          *NegInf = ConstantFP::getInfinity(Ty, true);
1667    Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
1668    Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt);
1669  }
1670
1671  // If the exponent is negative, then get the reciprocal.
1672  if (ExpoF->isNegative())
1673    Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");
1674
1675  return Sqrt;
1676}
1677
1678static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M,
1679                                           IRBuilder<> &B) {
1680  Value *Args[] = {Base, Expo};
1681  Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Base->getType());
1682  return B.CreateCall(F, Args);
1683}
1684
1685Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
1686  Value *Base = Pow->getArgOperand(0);
1687  Value *Expo = Pow->getArgOperand(1);
1688  Function *Callee = Pow->getCalledFunction();
1689  StringRef Name = Callee->getName();
1690  Type *Ty = Pow->getType();
1691  Module *M = Pow->getModule();
1692  Value *Shrunk = nullptr;
1693  bool AllowApprox = Pow->hasApproxFunc();
1694  bool Ignored;
1695
1696  // Bail out if simplifying libcalls to pow() is disabled.
1697  if (!hasFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl))
1698    return nullptr;
1699
1700  // Propagate the math semantics from the call to any created instructions.
1701  IRBuilder<>::FastMathFlagGuard Guard(B);
1702  B.setFastMathFlags(Pow->getFastMathFlags());
1703
1704  // Shrink pow() to powf() if the arguments are single precision,
1705  // unless the result is expected to be double precision.
1706  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) &&
1707      hasFloatVersion(Name))
1708    Shrunk = optimizeBinaryDoubleFP(Pow, B, true);
1709
1710  // Evaluate special cases related to the base.
1711
1712  // pow(1.0, x) -> 1.0
1713  if (match(Base, m_FPOne()))
1714    return Base;
1715
1716  if (Value *Exp = replacePowWithExp(Pow, B))
1717    return Exp;
1718
1719  // Evaluate special cases related to the exponent.
1720
1721  // pow(x, -1.0) -> 1.0 / x
1722  if (match(Expo, m_SpecificFP(-1.0)))
1723    return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");
1724
1725  // pow(x, +/-0.0) -> 1.0
1726  if (match(Expo, m_AnyZeroFP()))
1727    return ConstantFP::get(Ty, 1.0);
1728
1729  // pow(x, 1.0) -> x
1730  if (match(Expo, m_FPOne()))
1731    return Base;
1732
1733  // pow(x, 2.0) -> x * x
1734  if (match(Expo, m_SpecificFP(2.0)))
1735    return B.CreateFMul(Base, Base, "square");
1736
1737  if (Value *Sqrt = replacePowWithSqrt(Pow, B))
1738    return Sqrt;
1739
1740  // pow(x, n) -> x * x * x * ...
1741  const APFloat *ExpoF;
1742  if (AllowApprox && match(Expo, m_APFloat(ExpoF))) {
1743    // We limit to a max of 7 multiplications, thus the maximum exponent is 32.
1744    // If the exponent is an integer+0.5 we generate a call to sqrt and an
1745    // additional fmul.
1746    // TODO: This whole transformation should be backend specific (e.g. some
1747    //       backends might prefer libcalls or the limit for the exponent might
1748    //       be different) and it should also consider optimizing for size.
1749    APFloat LimF(ExpoF->getSemantics(), 33),
1750            ExpoA(abs(*ExpoF));
1751    if (ExpoA.compare(LimF) == APFloat::cmpLessThan) {
1752      // This transformation applies to integer or integer+0.5 exponents only.
1753      // For integer+0.5, we create a sqrt(Base) call.
1754      Value *Sqrt = nullptr;
1755      if (!ExpoA.isInteger()) {
1756        APFloat Expo2 = ExpoA;
1757        // To check if ExpoA is an integer + 0.5, we add it to itself. If there
1758        // is no floating point exception and the result is an integer, then
1759        // ExpoA == integer + 0.5
1760        if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK)
1761          return nullptr;
1762
1763        if (!Expo2.isInteger())
1764          return nullptr;
1765
1766        Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(),
1767                           Pow->doesNotAccessMemory(), M, B, TLI);
1768      }
1769
1770      // We will memoize intermediate products of the Addition Chain.
1771      Value *InnerChain[33] = {nullptr};
1772      InnerChain[1] = Base;
1773      InnerChain[2] = B.CreateFMul(Base, Base, "square");
1774
1775      // We cannot readily convert a non-double type (like float) to a double.
1776      // So we first convert it to something which could be converted to double.
1777      ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
1778      Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);
1779
1780      // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x).
1781      if (Sqrt)
1782        FMul = B.CreateFMul(FMul, Sqrt);
1783
1784      // If the exponent is negative, then get the reciprocal.
1785      if (ExpoF->isNegative())
1786        FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
1787
1788      return FMul;
1789    }
1790
1791    APSInt IntExpo(32, /*isUnsigned=*/false);
1792    // powf(x, n) -> powi(x, n) if n is a constant signed integer value
1793    if (ExpoF->isInteger() &&
1794        ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) ==
1795            APFloat::opOK) {
1796      return createPowWithIntegerExponent(
1797          Base, ConstantInt::get(B.getInt32Ty(), IntExpo), M, B);
1798    }
1799  }
1800
1801  // powf(x, itofp(y)) -> powi(x, y)
1802  if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) {
1803    if (Value *ExpoI = getIntToFPVal(Expo, B))
1804      return createPowWithIntegerExponent(Base, ExpoI, M, B);
1805  }
1806
1807  return Shrunk;
1808}
1809
1810Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
1811  Function *Callee = CI->getCalledFunction();
1812  StringRef Name = Callee->getName();
1813  Value *Ret = nullptr;
1814  if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) &&
1815      hasFloatVersion(Name))
1816    Ret = optimizeUnaryDoubleFP(CI, B, true);
1817
1818  Type *Ty = CI->getType();
1819  Value *Op = CI->getArgOperand(0);
1820
1821  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
1822  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
1823  if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) &&
1824      hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) {
1825    if (Value *Exp = getIntToFPVal(Op, B))
1826      return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI,
1827                                   LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl,
1828                                   B, CI->getCalledFunction()->getAttributes());
1829  }
1830
1831  return Ret;
1832}
1833
1834Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
1835  // If we can shrink the call to a float function rather than a double
1836  // function, do that first.
1837  Function *Callee = CI->getCalledFunction();
1838  StringRef Name = Callee->getName();
1839  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
1840    if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
1841      return Ret;
1842
1843  // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to
1844  // the intrinsics for improved optimization (for example, vectorization).
1845  // No-signed-zeros is implied by the definitions of fmax/fmin themselves.
1846  // From the C standard draft WG14/N1256:
1847  // "Ideally, fmax would be sensitive to the sign of zero, for example
1848  // fmax(-0.0, +0.0) would return +0; however, implementation in software
1849  // might be impractical."
1850  IRBuilder<>::FastMathFlagGuard Guard(B);
1851  FastMathFlags FMF = CI->getFastMathFlags();
1852  FMF.setNoSignedZeros();
1853  B.setFastMathFlags(FMF);
1854
1855  Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum
1856                                                           : Intrinsic::maxnum;
1857  Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType());
1858  return B.CreateCall(F, { CI->getArgOperand(0), CI->getArgOperand(1) });
1859}
1860
1861Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilder<> &B) {
1862  Function *LogFn = Log->getCalledFunction();
1863  AttributeList Attrs = LogFn->getAttributes();
1864  StringRef LogNm = LogFn->getName();
1865  Intrinsic::ID LogID = LogFn->getIntrinsicID();
1866  Module *Mod = Log->getModule();
1867  Type *Ty = Log->getType();
1868  Value *Ret = nullptr;
1869
1870  if (UnsafeFPShrink && hasFloatVersion(LogNm))
1871    Ret = optimizeUnaryDoubleFP(Log, B, true);
1872
1873  // The earlier call must also be 'fast' in order to do these transforms.
1874  CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0));
1875  if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse())
1876    return Ret;
1877
1878  LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb;
1879
1880  // This is only applicable to log(), log2(), log10().
1881  if (TLI->getLibFunc(LogNm, LogLb))
1882    switch (LogLb) {
1883    case LibFunc_logf:
1884      LogID = Intrinsic::log;
1885      ExpLb = LibFunc_expf;
1886      Exp2Lb = LibFunc_exp2f;
1887      Exp10Lb = LibFunc_exp10f;
1888      PowLb = LibFunc_powf;
1889      break;
1890    case LibFunc_log:
1891      LogID = Intrinsic::log;
1892      ExpLb = LibFunc_exp;
1893      Exp2Lb = LibFunc_exp2;
1894      Exp10Lb = LibFunc_exp10;
1895      PowLb = LibFunc_pow;
1896      break;
1897    case LibFunc_logl:
1898      LogID = Intrinsic::log;
1899      ExpLb = LibFunc_expl;
1900      Exp2Lb = LibFunc_exp2l;
1901      Exp10Lb = LibFunc_exp10l;
1902      PowLb = LibFunc_powl;
1903      break;
1904    case LibFunc_log2f:
1905      LogID = Intrinsic::log2;
1906      ExpLb = LibFunc_expf;
1907      Exp2Lb = LibFunc_exp2f;
1908      Exp10Lb = LibFunc_exp10f;
1909      PowLb = LibFunc_powf;
1910      break;
1911    case LibFunc_log2:
1912      LogID = Intrinsic::log2;
1913      ExpLb = LibFunc_exp;
1914      Exp2Lb = LibFunc_exp2;
1915      Exp10Lb = LibFunc_exp10;
1916      PowLb = LibFunc_pow;
1917      break;
1918    case LibFunc_log2l:
1919      LogID = Intrinsic::log2;
1920      ExpLb = LibFunc_expl;
1921      Exp2Lb = LibFunc_exp2l;
1922      Exp10Lb = LibFunc_exp10l;
1923      PowLb = LibFunc_powl;
1924      break;
1925    case LibFunc_log10f:
1926      LogID = Intrinsic::log10;
1927      ExpLb = LibFunc_expf;
1928      Exp2Lb = LibFunc_exp2f;
1929      Exp10Lb = LibFunc_exp10f;
1930      PowLb = LibFunc_powf;
1931      break;
1932    case LibFunc_log10:
1933      LogID = Intrinsic::log10;
1934      ExpLb = LibFunc_exp;
1935      Exp2Lb = LibFunc_exp2;
1936      Exp10Lb = LibFunc_exp10;
1937      PowLb = LibFunc_pow;
1938      break;
1939    case LibFunc_log10l:
1940      LogID = Intrinsic::log10;
1941      ExpLb = LibFunc_expl;
1942      Exp2Lb = LibFunc_exp2l;
1943      Exp10Lb = LibFunc_exp10l;
1944      PowLb = LibFunc_powl;
1945      break;
1946    default:
1947      return Ret;
1948    }
1949  else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 ||
1950           LogID == Intrinsic::log10) {
1951    if (Ty->getScalarType()->isFloatTy()) {
1952      ExpLb = LibFunc_expf;
1953      Exp2Lb = LibFunc_exp2f;
1954      Exp10Lb = LibFunc_exp10f;
1955      PowLb = LibFunc_powf;
1956    } else if (Ty->getScalarType()->isDoubleTy()) {
1957      ExpLb = LibFunc_exp;
1958      Exp2Lb = LibFunc_exp2;
1959      Exp10Lb = LibFunc_exp10;
1960      PowLb = LibFunc_pow;
1961    } else
1962      return Ret;
1963  } else
1964    return Ret;
1965
1966  IRBuilder<>::FastMathFlagGuard Guard(B);
1967  B.setFastMathFlags(FastMathFlags::getFast());
1968
1969  Intrinsic::ID ArgID = Arg->getIntrinsicID();
1970  LibFunc ArgLb = NotLibFunc;
1971  TLI->getLibFunc(Arg, ArgLb);
1972
1973  // log(pow(x,y)) -> y*log(x)
1974  if (ArgLb == PowLb || ArgID == Intrinsic::pow) {
1975    Value *LogX =
1976        Log->doesNotAccessMemory()
1977            ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
1978                           Arg->getOperand(0), "log")
1979            : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs);
1980    Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul");
1981    // Since pow() may have side effects, e.g. errno,
1982    // dead code elimination may not be trusted to remove it.
1983    substituteInParent(Arg, MulY);
1984    return MulY;
1985  }
1986
1987  // log(exp{,2,10}(y)) -> y*log({e,2,10})
1988  // TODO: There is no exp10() intrinsic yet.
1989  if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb ||
1990           ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) {
1991    Constant *Eul;
1992    if (ArgLb == ExpLb || ArgID == Intrinsic::exp)
1993      // FIXME: Add more precise value of e for long double.
1994      Eul = ConstantFP::get(Log->getType(), numbers::e);
1995    else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2)
1996      Eul = ConstantFP::get(Log->getType(), 2.0);
1997    else
1998      Eul = ConstantFP::get(Log->getType(), 10.0);
1999    Value *LogE = Log->doesNotAccessMemory()
2000                      ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty),
2001                                     Eul, "log")
2002                      : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs);
2003    Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul");
2004    // Since exp() may have side effects, e.g. errno,
2005    // dead code elimination may not be trusted to remove it.
2006    substituteInParent(Arg, MulY);
2007    return MulY;
2008  }
2009
2010  return Ret;
2011}
2012
2013Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
2014  Function *Callee = CI->getCalledFunction();
2015  Value *Ret = nullptr;
2016  // TODO: Once we have a way (other than checking for the existince of the
2017  // libcall) to tell whether our target can lower @llvm.sqrt, relax the
2018  // condition below.
2019  if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
2020                                  Callee->getIntrinsicID() == Intrinsic::sqrt))
2021    Ret = optimizeUnaryDoubleFP(CI, B, true);
2022
2023  if (!CI->isFast())
2024    return Ret;
2025
2026  Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
2027  if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
2028    return Ret;
2029
2030  // We're looking for a repeated factor in a multiplication tree,
2031  // so we can do this fold: sqrt(x * x) -> fabs(x);
2032  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
2033  Value *Op0 = I->getOperand(0);
2034  Value *Op1 = I->getOperand(1);
2035  Value *RepeatOp = nullptr;
2036  Value *OtherOp = nullptr;
2037  if (Op0 == Op1) {
2038    // Simple match: the operands of the multiply are identical.
2039    RepeatOp = Op0;
2040  } else {
2041    // Look for a more complicated pattern: one of the operands is itself
2042    // a multiply, so search for a common factor in that multiply.
2043    // Note: We don't bother looking any deeper than this first level or for
2044    // variations of this pattern because instcombine's visitFMUL and/or the
2045    // reassociation pass should give us this form.
2046    Value *OtherMul0, *OtherMul1;
2047    if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
2048      // Pattern: sqrt((x * y) * z)
2049      if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
2050        // Matched: sqrt((x * x) * z)
2051        RepeatOp = OtherMul0;
2052        OtherOp = Op1;
2053      }
2054    }
2055  }
2056  if (!RepeatOp)
2057    return Ret;
2058
2059  // Fast math flags for any created instructions should match the sqrt
2060  // and multiply.
2061  IRBuilder<>::FastMathFlagGuard Guard(B);
2062  B.setFastMathFlags(I->getFastMathFlags());
2063
2064  // If we found a repeated factor, hoist it out of the square root and
2065  // replace it with the fabs of that factor.
2066  Module *M = Callee->getParent();
2067  Type *ArgType = I->getType();
2068  Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
2069  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
2070  if (OtherOp) {
2071    // If we found a non-repeated factor, we still need to get its square
2072    // root. We then multiply that by the value that was simplified out
2073    // of the square root calculation.
2074    Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
2075    Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
2076    return B.CreateFMul(FabsCall, SqrtCall);
2077  }
2078  return FabsCall;
2079}
2080
2081// TODO: Generalize to handle any trig function and its inverse.
2082Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
2083  Function *Callee = CI->getCalledFunction();
2084  Value *Ret = nullptr;
2085  StringRef Name = Callee->getName();
2086  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
2087    Ret = optimizeUnaryDoubleFP(CI, B, true);
2088
2089  Value *Op1 = CI->getArgOperand(0);
2090  auto *OpC = dyn_cast<CallInst>(Op1);
2091  if (!OpC)
2092    return Ret;
2093
2094  // Both calls must be 'fast' in order to remove them.
2095  if (!CI->isFast() || !OpC->isFast())
2096    return Ret;
2097
2098  // tan(atan(x)) -> x
2099  // tanf(atanf(x)) -> x
2100  // tanl(atanl(x)) -> x
2101  LibFunc Func;
2102  Function *F = OpC->getCalledFunction();
2103  if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
2104      ((Func == LibFunc_atan && Callee->getName() == "tan") ||
2105       (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
2106       (Func == LibFunc_atanl && Callee->getName() == "tanl")))
2107    Ret = OpC->getArgOperand(0);
2108  return Ret;
2109}
2110
2111static bool isTrigLibCall(CallInst *CI) {
2112  // We can only hope to do anything useful if we can ignore things like errno
2113  // and floating-point exceptions.
2114  // We already checked the prototype.
2115  return CI->hasFnAttr(Attribute::NoUnwind) &&
2116         CI->hasFnAttr(Attribute::ReadNone);
2117}
2118
2119static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
2120                             bool UseFloat, Value *&Sin, Value *&Cos,
2121                             Value *&SinCos) {
2122  Type *ArgTy = Arg->getType();
2123  Type *ResTy;
2124  StringRef Name;
2125
2126  Triple T(OrigCallee->getParent()->getTargetTriple());
2127  if (UseFloat) {
2128    Name = "__sincospif_stret";
2129
2130    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
2131    // x86_64 can't use {float, float} since that would be returned in both
2132    // xmm0 and xmm1, which isn't what a real struct would do.
2133    ResTy = T.getArch() == Triple::x86_64
2134                ? static_cast<Type *>(VectorType::get(ArgTy, 2))
2135                : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
2136  } else {
2137    Name = "__sincospi_stret";
2138    ResTy = StructType::get(ArgTy, ArgTy);
2139  }
2140
2141  Module *M = OrigCallee->getParent();
2142  FunctionCallee Callee =
2143      M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy);
2144
2145  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
2146    // If the argument is an instruction, it must dominate all uses so put our
2147    // sincos call there.
2148    B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
2149  } else {
2150    // Otherwise (e.g. for a constant) the beginning of the function is as
2151    // good a place as any.
2152    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
2153    B.SetInsertPoint(&EntryBB, EntryBB.begin());
2154  }
2155
2156  SinCos = B.CreateCall(Callee, Arg, "sincospi");
2157
2158  if (SinCos->getType()->isStructTy()) {
2159    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
2160    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
2161  } else {
2162    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
2163                                 "sinpi");
2164    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
2165                                 "cospi");
2166  }
2167}
2168
2169Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
2170  // Make sure the prototype is as expected, otherwise the rest of the
2171  // function is probably invalid and likely to abort.
2172  if (!isTrigLibCall(CI))
2173    return nullptr;
2174
2175  Value *Arg = CI->getArgOperand(0);
2176  SmallVector<CallInst *, 1> SinCalls;
2177  SmallVector<CallInst *, 1> CosCalls;
2178  SmallVector<CallInst *, 1> SinCosCalls;
2179
2180  bool IsFloat = Arg->getType()->isFloatTy();
2181
2182  // Look for all compatible sinpi, cospi and sincospi calls with the same
2183  // argument. If there are enough (in some sense) we can make the
2184  // substitution.
2185  Function *F = CI->getFunction();
2186  for (User *U : Arg->users())
2187    classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);
2188
2189  // It's only worthwhile if both sinpi and cospi are actually used.
2190  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
2191    return nullptr;
2192
2193  Value *Sin, *Cos, *SinCos;
2194  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);
2195
2196  auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
2197                                 Value *Res) {
2198    for (CallInst *C : Calls)
2199      replaceAllUsesWith(C, Res);
2200  };
2201
2202  replaceTrigInsts(SinCalls, Sin);
2203  replaceTrigInsts(CosCalls, Cos);
2204  replaceTrigInsts(SinCosCalls, SinCos);
2205
2206  return nullptr;
2207}
2208
2209void LibCallSimplifier::classifyArgUse(
2210    Value *Val, Function *F, bool IsFloat,
2211    SmallVectorImpl<CallInst *> &SinCalls,
2212    SmallVectorImpl<CallInst *> &CosCalls,
2213    SmallVectorImpl<CallInst *> &SinCosCalls) {
2214  CallInst *CI = dyn_cast<CallInst>(Val);
2215
2216  if (!CI)
2217    return;
2218
2219  // Don't consider calls in other functions.
2220  if (CI->getFunction() != F)
2221    return;
2222
2223  Function *Callee = CI->getCalledFunction();
2224  LibFunc Func;
2225  if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
2226      !isTrigLibCall(CI))
2227    return;
2228
2229  if (IsFloat) {
2230    if (Func == LibFunc_sinpif)
2231      SinCalls.push_back(CI);
2232    else if (Func == LibFunc_cospif)
2233      CosCalls.push_back(CI);
2234    else if (Func == LibFunc_sincospif_stret)
2235      SinCosCalls.push_back(CI);
2236  } else {
2237    if (Func == LibFunc_sinpi)
2238      SinCalls.push_back(CI);
2239    else if (Func == LibFunc_cospi)
2240      CosCalls.push_back(CI);
2241    else if (Func == LibFunc_sincospi_stret)
2242      SinCosCalls.push_back(CI);
2243  }
2244}
2245
2246//===----------------------------------------------------------------------===//
2247// Integer Library Call Optimizations
2248//===----------------------------------------------------------------------===//
2249
2250Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
2251  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
2252  Value *Op = CI->getArgOperand(0);
2253  Type *ArgType = Op->getType();
2254  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2255                                          Intrinsic::cttz, ArgType);
2256  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
2257  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
2258  V = B.CreateIntCast(V, B.getInt32Ty(), false);
2259
2260  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
2261  return B.CreateSelect(Cond, V, B.getInt32(0));
2262}
2263
2264Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
2265  // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
2266  Value *Op = CI->getArgOperand(0);
2267  Type *ArgType = Op->getType();
2268  Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
2269                                          Intrinsic::ctlz, ArgType);
2270  Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
2271  V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
2272                  V);
2273  return B.CreateIntCast(V, CI->getType(), false);
2274}
2275
2276Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
2277  // abs(x) -> x <s 0 ? -x : x
2278  // The negation has 'nsw' because abs of INT_MIN is undefined.
2279  Value *X = CI->getArgOperand(0);
2280  Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
2281  Value *NegX = B.CreateNSWNeg(X, "neg");
2282  return B.CreateSelect(IsNeg, NegX, X);
2283}
2284
2285Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
2286  // isdigit(c) -> (c-'0') <u 10
2287  Value *Op = CI->getArgOperand(0);
2288  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
2289  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
2290  return B.CreateZExt(Op, CI->getType());
2291}
2292
2293Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
2294  // isascii(c) -> c <u 128
2295  Value *Op = CI->getArgOperand(0);
2296  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
2297  return B.CreateZExt(Op, CI->getType());
2298}
2299
2300Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
2301  // toascii(c) -> c & 0x7f
2302  return B.CreateAnd(CI->getArgOperand(0),
2303                     ConstantInt::get(CI->getType(), 0x7F));
2304}
2305
2306Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
2307  StringRef Str;
2308  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2309    return nullptr;
2310
2311  return convertStrToNumber(CI, Str, 10);
2312}
2313
2314Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
2315  StringRef Str;
2316  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
2317    return nullptr;
2318
2319  if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
2320    return nullptr;
2321
2322  if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
2323    return convertStrToNumber(CI, Str, CInt->getSExtValue());
2324  }
2325
2326  return nullptr;
2327}
2328
2329//===----------------------------------------------------------------------===//
2330// Formatting and IO Library Call Optimizations
2331//===----------------------------------------------------------------------===//
2332
2333static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);
2334
2335Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
2336                                                 int StreamArg) {
2337  Function *Callee = CI->getCalledFunction();
2338  // Error reporting calls should be cold, mark them as such.
2339  // This applies even to non-builtin calls: it is only a hint and applies to
2340  // functions that the frontend might not understand as builtins.
2341
2342  // This heuristic was suggested in:
2343  // Improving Static Branch Prediction in a Compiler
2344  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
2345  // Proceedings of PACT'98, Oct. 1998, IEEE
2346  if (!CI->hasFnAttr(Attribute::Cold) &&
2347      isReportingError(Callee, CI, StreamArg)) {
2348    CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
2349  }
2350
2351  return nullptr;
2352}
2353
2354static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
2355  if (!Callee || !Callee->isDeclaration())
2356    return false;
2357
2358  if (StreamArg < 0)
2359    return true;
2360
2361  // These functions might be considered cold, but only if their stream
2362  // argument is stderr.
2363
2364  if (StreamArg >= (int)CI->getNumArgOperands())
2365    return false;
2366  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
2367  if (!LI)
2368    return false;
2369  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
2370  if (!GV || !GV->isDeclaration())
2371    return false;
2372  return GV->getName() == "stderr";
2373}
2374
2375Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
2376  // Check for a fixed format string.
2377  StringRef FormatStr;
2378  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
2379    return nullptr;
2380
2381  // Empty format string -> noop.
2382  if (FormatStr.empty()) // Tolerate printf's declared void.
2383    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);
2384
2385  // Do not do any of the following transformations if the printf return value
2386  // is used, in general the printf return value is not compatible with either
2387  // putchar() or puts().
2388  if (!CI->use_empty())
2389    return nullptr;
2390
2391  // printf("x") -> putchar('x'), even for "%" and "%%".
2392  if (FormatStr.size() == 1 || FormatStr == "%%")
2393    return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);
2394
2395  // printf("%s", "a") --> putchar('a')
2396  if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
2397    StringRef ChrStr;
2398    if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
2399      return nullptr;
2400    if (ChrStr.size() != 1)
2401      return nullptr;
2402    return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
2403  }
2404
2405  // printf("foo\n") --> puts("foo")
2406  if (FormatStr[FormatStr.size() - 1] == '\n' &&
2407      FormatStr.find('%') == StringRef::npos) { // No format characters.
2408    // Create a string literal with no \n on it.  We expect the constant merge
2409    // pass to be run after this pass, to merge duplicate strings.
2410    FormatStr = FormatStr.drop_back();
2411    Value *GV = B.CreateGlobalString(FormatStr, "str");
2412    return emitPutS(GV, B, TLI);
2413  }
2414
2415  // Optimize specific format strings.
2416  // printf("%c", chr) --> putchar(chr)
2417  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
2418      CI->getArgOperand(1)->getType()->isIntegerTy())
2419    return emitPutChar(CI->getArgOperand(1), B, TLI);
2420
2421  // printf("%s\n", str) --> puts(str)
2422  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
2423      CI->getArgOperand(1)->getType()->isPointerTy())
2424    return emitPutS(CI->getArgOperand(1), B, TLI);
2425  return nullptr;
2426}
2427
2428Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {
2429
2430  Function *Callee = CI->getCalledFunction();
2431  FunctionType *FT = Callee->getFunctionType();
2432  if (Value *V = optimizePrintFString(CI, B)) {
2433    return V;
2434  }
2435
2436  // printf(format, ...) -> iprintf(format, ...) if no floating point
2437  // arguments.
2438  if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
2439    Module *M = B.GetInsertBlock()->getParent()->getParent();
2440    FunctionCallee IPrintFFn =
2441        M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
2442    CallInst *New = cast<CallInst>(CI->clone());
2443    New->setCalledFunction(IPrintFFn);
2444    B.Insert(New);
2445    return New;
2446  }
2447
2448  // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point
2449  // arguments.
2450  if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) {
2451    Module *M = B.GetInsertBlock()->getParent()->getParent();
2452    auto SmallPrintFFn =
2453        M->getOrInsertFunction(TLI->getName(LibFunc_small_printf),
2454                               FT, Callee->getAttributes());
2455    CallInst *New = cast<CallInst>(CI->clone());
2456    New->setCalledFunction(SmallPrintFFn);
2457    B.Insert(New);
2458    return New;
2459  }
2460
2461  annotateNonNullBasedOnAccess(CI, 0);
2462  return nullptr;
2463}
2464
2465Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
2466  // Check for a fixed format string.
2467  StringRef FormatStr;
2468  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2469    return nullptr;
2470
2471  // If we just have a format string (nothing else crazy) transform it.
2472  if (CI->getNumArgOperands() == 2) {
2473    // Make sure there's no % in the constant array.  We could try to handle
2474    // %% -> % in the future if we cared.
2475    if (FormatStr.find('%') != StringRef::npos)
2476      return nullptr; // we found a format specifier, bail out.
2477
2478    // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
2479    B.CreateMemCpy(
2480        CI->getArgOperand(0), Align::None(), CI->getArgOperand(1),
2481        Align::None(),
2482        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2483                         FormatStr.size() + 1)); // Copy the null byte.
2484    return ConstantInt::get(CI->getType(), FormatStr.size());
2485  }
2486
2487  // The remaining optimizations require the format string to be "%s" or "%c"
2488  // and have an extra operand.
2489  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2490      CI->getNumArgOperands() < 3)
2491    return nullptr;
2492
2493  // Decode the second character of the format string.
2494  if (FormatStr[1] == 'c') {
2495    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2496    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2497      return nullptr;
2498    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
2499    Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2500    B.CreateStore(V, Ptr);
2501    Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2502    B.CreateStore(B.getInt8(0), Ptr);
2503
2504    return ConstantInt::get(CI->getType(), 1);
2505  }
2506
2507  if (FormatStr[1] == 's') {
2508    // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str,
2509    // strlen(str)+1)
2510    if (!CI->getArgOperand(2)->getType()->isPointerTy())
2511      return nullptr;
2512
2513    Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
2514    if (!Len)
2515      return nullptr;
2516    Value *IncLen =
2517        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
2518    B.CreateMemCpy(CI->getArgOperand(0), Align::None(), CI->getArgOperand(2),
2519                   Align::None(), IncLen);
2520
2521    // The sprintf result is the unincremented number of bytes in the string.
2522    return B.CreateIntCast(Len, CI->getType(), false);
2523  }
2524  return nullptr;
2525}
2526
2527Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
2528  Function *Callee = CI->getCalledFunction();
2529  FunctionType *FT = Callee->getFunctionType();
2530  if (Value *V = optimizeSPrintFString(CI, B)) {
2531    return V;
2532  }
2533
2534  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
2535  // point arguments.
2536  if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
2537    Module *M = B.GetInsertBlock()->getParent()->getParent();
2538    FunctionCallee SIPrintFFn =
2539        M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
2540    CallInst *New = cast<CallInst>(CI->clone());
2541    New->setCalledFunction(SIPrintFFn);
2542    B.Insert(New);
2543    return New;
2544  }
2545
2546  // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit
2547  // floating point arguments.
2548  if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) {
2549    Module *M = B.GetInsertBlock()->getParent()->getParent();
2550    auto SmallSPrintFFn =
2551        M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf),
2552                               FT, Callee->getAttributes());
2553    CallInst *New = cast<CallInst>(CI->clone());
2554    New->setCalledFunction(SmallSPrintFFn);
2555    B.Insert(New);
2556    return New;
2557  }
2558
2559  annotateNonNullBasedOnAccess(CI, {0, 1});
2560  return nullptr;
2561}
2562
2563Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
2564  // Check for size
2565  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2566  if (!Size)
2567    return nullptr;
2568
2569  uint64_t N = Size->getZExtValue();
2570  // Check for a fixed format string.
2571  StringRef FormatStr;
2572  if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
2573    return nullptr;
2574
2575  // If we just have a format string (nothing else crazy) transform it.
2576  if (CI->getNumArgOperands() == 3) {
2577    // Make sure there's no % in the constant array.  We could try to handle
2578    // %% -> % in the future if we cared.
2579    if (FormatStr.find('%') != StringRef::npos)
2580      return nullptr; // we found a format specifier, bail out.
2581
2582    if (N == 0)
2583      return ConstantInt::get(CI->getType(), FormatStr.size());
2584    else if (N < FormatStr.size() + 1)
2585      return nullptr;
2586
2587    // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt,
2588    // strlen(fmt)+1)
2589    B.CreateMemCpy(
2590        CI->getArgOperand(0), Align::None(), CI->getArgOperand(2),
2591        Align::None(),
2592        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
2593                         FormatStr.size() + 1)); // Copy the null byte.
2594    return ConstantInt::get(CI->getType(), FormatStr.size());
2595  }
2596
2597  // The remaining optimizations require the format string to be "%s" or "%c"
2598  // and have an extra operand.
2599  if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
2600      CI->getNumArgOperands() == 4) {
2601
2602    // Decode the second character of the format string.
2603    if (FormatStr[1] == 'c') {
2604      if (N == 0)
2605        return ConstantInt::get(CI->getType(), 1);
2606      else if (N == 1)
2607        return nullptr;
2608
2609      // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
2610      if (!CI->getArgOperand(3)->getType()->isIntegerTy())
2611        return nullptr;
2612      Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
2613      Value *Ptr = castToCStr(CI->getArgOperand(0), B);
2614      B.CreateStore(V, Ptr);
2615      Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
2616      B.CreateStore(B.getInt8(0), Ptr);
2617
2618      return ConstantInt::get(CI->getType(), 1);
2619    }
2620
2621    if (FormatStr[1] == 's') {
2622      // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
2623      StringRef Str;
2624      if (!getConstantStringInfo(CI->getArgOperand(3), Str))
2625        return nullptr;
2626
2627      if (N == 0)
2628        return ConstantInt::get(CI->getType(), Str.size());
2629      else if (N < Str.size() + 1)
2630        return nullptr;
2631
2632      B.CreateMemCpy(CI->getArgOperand(0), Align::None(), CI->getArgOperand(3),
2633                     Align::None(),
2634                     ConstantInt::get(CI->getType(), Str.size() + 1));
2635
2636      // The snprintf result is the unincremented number of bytes in the string.
2637      return ConstantInt::get(CI->getType(), Str.size());
2638    }
2639  }
2640  return nullptr;
2641}
2642
2643Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
2644  if (Value *V = optimizeSnPrintFString(CI, B)) {
2645    return V;
2646  }
2647
2648  if (isKnownNonZero(CI->getOperand(1), DL))
2649    annotateNonNullBasedOnAccess(CI, 0);
2650  return nullptr;
2651}
2652
2653Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
2654  optimizeErrorReporting(CI, B, 0);
2655
2656  // All the optimizations depend on the format string.
2657  StringRef FormatStr;
2658  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
2659    return nullptr;
2660
2661  // Do not do any of the following transformations if the fprintf return
2662  // value is used, in general the fprintf return value is not compatible
2663  // with fwrite(), fputc() or fputs().
2664  if (!CI->use_empty())
2665    return nullptr;
2666
2667  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
2668  if (CI->getNumArgOperands() == 2) {
2669    // Could handle %% -> % if we cared.
2670    if (FormatStr.find('%') != StringRef::npos)
2671      return nullptr; // We found a format specifier.
2672
2673    return emitFWrite(
2674        CI->getArgOperand(1),
2675        ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
2676        CI->getArgOperand(0), B, DL, TLI);
2677  }
2678
2679  // The remaining optimizations require the format string to be "%s" or "%c"
2680  // and have an extra operand.
2681  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
2682      CI->getNumArgOperands() < 3)
2683    return nullptr;
2684
2685  // Decode the second character of the format string.
2686  if (FormatStr[1] == 'c') {
2687    // fprintf(F, "%c", chr) --> fputc(chr, F)
2688    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
2689      return nullptr;
2690    return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2691  }
2692
2693  if (FormatStr[1] == 's') {
2694    // fprintf(F, "%s", str) --> fputs(str, F)
2695    if (!CI->getArgOperand(2)->getType()->isPointerTy())
2696      return nullptr;
2697    return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
2698  }
2699  return nullptr;
2700}
2701
2702Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
2703  Function *Callee = CI->getCalledFunction();
2704  FunctionType *FT = Callee->getFunctionType();
2705  if (Value *V = optimizeFPrintFString(CI, B)) {
2706    return V;
2707  }
2708
2709  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
2710  // floating point arguments.
2711  if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
2712    Module *M = B.GetInsertBlock()->getParent()->getParent();
2713    FunctionCallee FIPrintFFn =
2714        M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
2715    CallInst *New = cast<CallInst>(CI->clone());
2716    New->setCalledFunction(FIPrintFFn);
2717    B.Insert(New);
2718    return New;
2719  }
2720
2721  // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no
2722  // 128-bit floating point arguments.
2723  if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) {
2724    Module *M = B.GetInsertBlock()->getParent()->getParent();
2725    auto SmallFPrintFFn =
2726        M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf),
2727                               FT, Callee->getAttributes());
2728    CallInst *New = cast<CallInst>(CI->clone());
2729    New->setCalledFunction(SmallFPrintFFn);
2730    B.Insert(New);
2731    return New;
2732  }
2733
2734  return nullptr;
2735}
2736
2737Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
2738  optimizeErrorReporting(CI, B, 3);
2739
2740  // Get the element size and count.
2741  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
2742  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
2743  if (SizeC && CountC) {
2744    uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();
2745
2746    // If this is writing zero records, remove the call (it's a noop).
2747    if (Bytes == 0)
2748      return ConstantInt::get(CI->getType(), 0);
2749
2750    // If this is writing one byte, turn it into fputc.
2751    // This optimisation is only valid, if the return value is unused.
2752    if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
2753      Value *Char = B.CreateLoad(B.getInt8Ty(),
2754                                 castToCStr(CI->getArgOperand(0), B), "char");
2755      Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
2756      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
2757    }
2758  }
2759
2760  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2761    return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2762                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2763                              TLI);
2764
2765  return nullptr;
2766}
2767
2768Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
2769  optimizeErrorReporting(CI, B, 1);
2770
2771  // Don't rewrite fputs to fwrite when optimising for size because fwrite
2772  // requires more arguments and thus extra MOVs are required.
2773  bool OptForSize = CI->getFunction()->hasOptSize() ||
2774                    llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI,
2775                                                PGSOQueryType::IRPass);
2776  if (OptForSize)
2777    return nullptr;
2778
2779  // Check if has any use
2780  if (!CI->use_empty()) {
2781    if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2782      return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2783                               TLI);
2784    else
2785      // We can't optimize if return value is used.
2786      return nullptr;
2787  }
2788
2789  // fputs(s,F) --> fwrite(s,strlen(s),1,F)
2790  uint64_t Len = GetStringLength(CI->getArgOperand(0));
2791  if (!Len)
2792    return nullptr;
2793
2794  // Known to have no uses (see above).
2795  return emitFWrite(
2796      CI->getArgOperand(0),
2797      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
2798      CI->getArgOperand(1), B, DL, TLI);
2799}
2800
2801Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
2802  optimizeErrorReporting(CI, B, 1);
2803
2804  if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
2805    return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
2806                             TLI);
2807
2808  return nullptr;
2809}
2810
2811Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
2812  if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
2813    return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);
2814
2815  return nullptr;
2816}
2817
2818Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
2819  if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
2820    return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2821                             CI->getArgOperand(2), B, TLI);
2822
2823  return nullptr;
2824}
2825
2826Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
2827  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
2828    return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
2829                             CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
2830                             TLI);
2831
2832  return nullptr;
2833}
2834
2835Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
2836  annotateNonNullBasedOnAccess(CI, 0);
2837  if (!CI->use_empty())
2838    return nullptr;
2839
2840  // Check for a constant string.
2841  // puts("") -> putchar('\n')
2842  StringRef Str;
2843  if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty())
2844    return emitPutChar(B.getInt32('\n'), B, TLI);
2845
2846  return nullptr;
2847}
2848
2849Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilder<> &B) {
2850  // bcopy(src, dst, n) -> llvm.memmove(dst, src, n)
2851  return B.CreateMemMove(CI->getArgOperand(1), Align::None(),
2852                         CI->getArgOperand(0), Align::None(),
2853                         CI->getArgOperand(2));
2854}
2855
2856bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
2857  LibFunc Func;
2858  SmallString<20> FloatFuncName = FuncName;
2859  FloatFuncName += 'f';
2860  if (TLI->getLibFunc(FloatFuncName, Func))
2861    return TLI->has(Func);
2862  return false;
2863}
2864
2865Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
2866                                                      IRBuilder<> &Builder) {
2867  LibFunc Func;
2868  Function *Callee = CI->getCalledFunction();
2869  // Check for string/memory library functions.
2870  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
2871    // Make sure we never change the calling convention.
2872    assert((ignoreCallingConv(Func) ||
2873            isCallingConvCCompatible(CI)) &&
2874      "Optimizing string/memory libcall would change the calling convention");
2875    switch (Func) {
2876    case LibFunc_strcat:
2877      return optimizeStrCat(CI, Builder);
2878    case LibFunc_strncat:
2879      return optimizeStrNCat(CI, Builder);
2880    case LibFunc_strchr:
2881      return optimizeStrChr(CI, Builder);
2882    case LibFunc_strrchr:
2883      return optimizeStrRChr(CI, Builder);
2884    case LibFunc_strcmp:
2885      return optimizeStrCmp(CI, Builder);
2886    case LibFunc_strncmp:
2887      return optimizeStrNCmp(CI, Builder);
2888    case LibFunc_strcpy:
2889      return optimizeStrCpy(CI, Builder);
2890    case LibFunc_stpcpy:
2891      return optimizeStpCpy(CI, Builder);
2892    case LibFunc_strncpy:
2893      return optimizeStrNCpy(CI, Builder);
2894    case LibFunc_strlen:
2895      return optimizeStrLen(CI, Builder);
2896    case LibFunc_strpbrk:
2897      return optimizeStrPBrk(CI, Builder);
2898    case LibFunc_strndup:
2899      return optimizeStrNDup(CI, Builder);
2900    case LibFunc_strtol:
2901    case LibFunc_strtod:
2902    case LibFunc_strtof:
2903    case LibFunc_strtoul:
2904    case LibFunc_strtoll:
2905    case LibFunc_strtold:
2906    case LibFunc_strtoull:
2907      return optimizeStrTo(CI, Builder);
2908    case LibFunc_strspn:
2909      return optimizeStrSpn(CI, Builder);
2910    case LibFunc_strcspn:
2911      return optimizeStrCSpn(CI, Builder);
2912    case LibFunc_strstr:
2913      return optimizeStrStr(CI, Builder);
2914    case LibFunc_memchr:
2915      return optimizeMemChr(CI, Builder);
2916    case LibFunc_memrchr:
2917      return optimizeMemRChr(CI, Builder);
2918    case LibFunc_bcmp:
2919      return optimizeBCmp(CI, Builder);
2920    case LibFunc_memcmp:
2921      return optimizeMemCmp(CI, Builder);
2922    case LibFunc_memcpy:
2923      return optimizeMemCpy(CI, Builder);
2924    case LibFunc_memccpy:
2925      return optimizeMemCCpy(CI, Builder);
2926    case LibFunc_mempcpy:
2927      return optimizeMemPCpy(CI, Builder);
2928    case LibFunc_memmove:
2929      return optimizeMemMove(CI, Builder);
2930    case LibFunc_memset:
2931      return optimizeMemSet(CI, Builder);
2932    case LibFunc_realloc:
2933      return optimizeRealloc(CI, Builder);
2934    case LibFunc_wcslen:
2935      return optimizeWcslen(CI, Builder);
2936    case LibFunc_bcopy:
2937      return optimizeBCopy(CI, Builder);
2938    default:
2939      break;
2940    }
2941  }
2942  return nullptr;
2943}
2944
2945Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
2946                                                       LibFunc Func,
2947                                                       IRBuilder<> &Builder) {
2948  // Don't optimize calls that require strict floating point semantics.
2949  if (CI->isStrictFP())
2950    return nullptr;
2951
2952  if (Value *V = optimizeTrigReflections(CI, Func, Builder))
2953    return V;
2954
2955  switch (Func) {
2956  case LibFunc_sinpif:
2957  case LibFunc_sinpi:
2958  case LibFunc_cospif:
2959  case LibFunc_cospi:
2960    return optimizeSinCosPi(CI, Builder);
2961  case LibFunc_powf:
2962  case LibFunc_pow:
2963  case LibFunc_powl:
2964    return optimizePow(CI, Builder);
2965  case LibFunc_exp2l:
2966  case LibFunc_exp2:
2967  case LibFunc_exp2f:
2968    return optimizeExp2(CI, Builder);
2969  case LibFunc_fabsf:
2970  case LibFunc_fabs:
2971  case LibFunc_fabsl:
2972    return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
2973  case LibFunc_sqrtf:
2974  case LibFunc_sqrt:
2975  case LibFunc_sqrtl:
2976    return optimizeSqrt(CI, Builder);
2977  case LibFunc_logf:
2978  case LibFunc_log:
2979  case LibFunc_logl:
2980  case LibFunc_log10f:
2981  case LibFunc_log10:
2982  case LibFunc_log10l:
2983  case LibFunc_log1pf:
2984  case LibFunc_log1p:
2985  case LibFunc_log1pl:
2986  case LibFunc_log2f:
2987  case LibFunc_log2:
2988  case LibFunc_log2l:
2989  case LibFunc_logbf:
2990  case LibFunc_logb:
2991  case LibFunc_logbl:
2992    return optimizeLog(CI, Builder);
2993  case LibFunc_tan:
2994  case LibFunc_tanf:
2995  case LibFunc_tanl:
2996    return optimizeTan(CI, Builder);
2997  case LibFunc_ceil:
2998    return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
2999  case LibFunc_floor:
3000    return replaceUnaryCall(CI, Builder, Intrinsic::floor);
3001  case LibFunc_round:
3002    return replaceUnaryCall(CI, Builder, Intrinsic::round);
3003  case LibFunc_nearbyint:
3004    return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
3005  case LibFunc_rint:
3006    return replaceUnaryCall(CI, Builder, Intrinsic::rint);
3007  case LibFunc_trunc:
3008    return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
3009  case LibFunc_acos:
3010  case LibFunc_acosh:
3011  case LibFunc_asin:
3012  case LibFunc_asinh:
3013  case LibFunc_atan:
3014  case LibFunc_atanh:
3015  case LibFunc_cbrt:
3016  case LibFunc_cosh:
3017  case LibFunc_exp:
3018  case LibFunc_exp10:
3019  case LibFunc_expm1:
3020  case LibFunc_cos:
3021  case LibFunc_sin:
3022  case LibFunc_sinh:
3023  case LibFunc_tanh:
3024    if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
3025      return optimizeUnaryDoubleFP(CI, Builder, true);
3026    return nullptr;
3027  case LibFunc_copysign:
3028    if (hasFloatVersion(CI->getCalledFunction()->getName()))
3029      return optimizeBinaryDoubleFP(CI, Builder);
3030    return nullptr;
3031  case LibFunc_fminf:
3032  case LibFunc_fmin:
3033  case LibFunc_fminl:
3034  case LibFunc_fmaxf:
3035  case LibFunc_fmax:
3036  case LibFunc_fmaxl:
3037    return optimizeFMinFMax(CI, Builder);
3038  case LibFunc_cabs:
3039  case LibFunc_cabsf:
3040  case LibFunc_cabsl:
3041    return optimizeCAbs(CI, Builder);
3042  default:
3043    return nullptr;
3044  }
3045}
3046
3047Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
3048  // TODO: Split out the code below that operates on FP calls so that
3049  //       we can all non-FP calls with the StrictFP attribute to be
3050  //       optimized.
3051  if (CI->isNoBuiltin())
3052    return nullptr;
3053
3054  LibFunc Func;
3055  Function *Callee = CI->getCalledFunction();
3056
3057  SmallVector<OperandBundleDef, 2> OpBundles;
3058  CI->getOperandBundlesAsDefs(OpBundles);
3059  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3060  bool isCallingConvC = isCallingConvCCompatible(CI);
3061
3062  // Command-line parameter overrides instruction attribute.
3063  // This can't be moved to optimizeFloatingPointLibCall() because it may be
3064  // used by the intrinsic optimizations.
3065  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
3066    UnsafeFPShrink = EnableUnsafeFPShrink;
3067  else if (isa<FPMathOperator>(CI) && CI->isFast())
3068    UnsafeFPShrink = true;
3069
3070  // First, check for intrinsics.
3071  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
3072    if (!isCallingConvC)
3073      return nullptr;
3074    // The FP intrinsics have corresponding constrained versions so we don't
3075    // need to check for the StrictFP attribute here.
3076    switch (II->getIntrinsicID()) {
3077    case Intrinsic::pow:
3078      return optimizePow(CI, Builder);
3079    case Intrinsic::exp2:
3080      return optimizeExp2(CI, Builder);
3081    case Intrinsic::log:
3082    case Intrinsic::log2:
3083    case Intrinsic::log10:
3084      return optimizeLog(CI, Builder);
3085    case Intrinsic::sqrt:
3086      return optimizeSqrt(CI, Builder);
3087    // TODO: Use foldMallocMemset() with memset intrinsic.
3088    case Intrinsic::memset:
3089      return optimizeMemSet(CI, Builder);
3090    case Intrinsic::memcpy:
3091      return optimizeMemCpy(CI, Builder);
3092    case Intrinsic::memmove:
3093      return optimizeMemMove(CI, Builder);
3094    default:
3095      return nullptr;
3096    }
3097  }
3098
3099  // Also try to simplify calls to fortified library functions.
3100  if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
3101    // Try to further simplify the result.
3102    CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
3103    if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
3104      // Use an IR Builder from SimplifiedCI if available instead of CI
3105      // to guarantee we reach all uses we might replace later on.
3106      IRBuilder<> TmpBuilder(SimplifiedCI);
3107      if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
3108        // If we were able to further simplify, remove the now redundant call.
3109        substituteInParent(SimplifiedCI, V);
3110        return V;
3111      }
3112    }
3113    return SimplifiedFortifiedCI;
3114  }
3115
3116  // Then check for known library functions.
3117  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
3118    // We never change the calling convention.
3119    if (!ignoreCallingConv(Func) && !isCallingConvC)
3120      return nullptr;
3121    if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
3122      return V;
3123    if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
3124      return V;
3125    switch (Func) {
3126    case LibFunc_ffs:
3127    case LibFunc_ffsl:
3128    case LibFunc_ffsll:
3129      return optimizeFFS(CI, Builder);
3130    case LibFunc_fls:
3131    case LibFunc_flsl:
3132    case LibFunc_flsll:
3133      return optimizeFls(CI, Builder);
3134    case LibFunc_abs:
3135    case LibFunc_labs:
3136    case LibFunc_llabs:
3137      return optimizeAbs(CI, Builder);
3138    case LibFunc_isdigit:
3139      return optimizeIsDigit(CI, Builder);
3140    case LibFunc_isascii:
3141      return optimizeIsAscii(CI, Builder);
3142    case LibFunc_toascii:
3143      return optimizeToAscii(CI, Builder);
3144    case LibFunc_atoi:
3145    case LibFunc_atol:
3146    case LibFunc_atoll:
3147      return optimizeAtoi(CI, Builder);
3148    case LibFunc_strtol:
3149    case LibFunc_strtoll:
3150      return optimizeStrtol(CI, Builder);
3151    case LibFunc_printf:
3152      return optimizePrintF(CI, Builder);
3153    case LibFunc_sprintf:
3154      return optimizeSPrintF(CI, Builder);
3155    case LibFunc_snprintf:
3156      return optimizeSnPrintF(CI, Builder);
3157    case LibFunc_fprintf:
3158      return optimizeFPrintF(CI, Builder);
3159    case LibFunc_fwrite:
3160      return optimizeFWrite(CI, Builder);
3161    case LibFunc_fread:
3162      return optimizeFRead(CI, Builder);
3163    case LibFunc_fputs:
3164      return optimizeFPuts(CI, Builder);
3165    case LibFunc_fgets:
3166      return optimizeFGets(CI, Builder);
3167    case LibFunc_fputc:
3168      return optimizeFPutc(CI, Builder);
3169    case LibFunc_fgetc:
3170      return optimizeFGetc(CI, Builder);
3171    case LibFunc_puts:
3172      return optimizePuts(CI, Builder);
3173    case LibFunc_perror:
3174      return optimizeErrorReporting(CI, Builder);
3175    case LibFunc_vfprintf:
3176    case LibFunc_fiprintf:
3177      return optimizeErrorReporting(CI, Builder, 0);
3178    default:
3179      return nullptr;
3180    }
3181  }
3182  return nullptr;
3183}
3184
3185LibCallSimplifier::LibCallSimplifier(
3186    const DataLayout &DL, const TargetLibraryInfo *TLI,
3187    OptimizationRemarkEmitter &ORE,
3188    BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
3189    function_ref<void(Instruction *, Value *)> Replacer,
3190    function_ref<void(Instruction *)> Eraser)
3191    : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI),
3192      UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {}
3193
3194void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
3195  // Indirect through the replacer used in this instance.
3196  Replacer(I, With);
3197}
3198
3199void LibCallSimplifier::eraseFromParent(Instruction *I) {
3200  Eraser(I);
3201}
3202
3203// TODO:
3204//   Additional cases that we need to add to this file:
3205//
3206// cbrt:
3207//   * cbrt(expN(X))  -> expN(x/3)
3208//   * cbrt(sqrt(x))  -> pow(x,1/6)
3209//   * cbrt(cbrt(x))  -> pow(x,1/9)
3210//
3211// exp, expf, expl:
3212//   * exp(log(x))  -> x
3213//
3214// log, logf, logl:
3215//   * log(exp(x))   -> x
3216//   * log(exp(y))   -> y*log(e)
3217//   * log(exp10(y)) -> y*log(10)
3218//   * log(sqrt(x))  -> 0.5*log(x)
3219//
3220// pow, powf, powl:
3221//   * pow(sqrt(x),y) -> pow(x,y*0.5)
3222//   * pow(pow(x,y),z)-> pow(x,y*z)
3223//
3224// signbit:
3225//   * signbit(cnst) -> cnst'
3226//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
3227//
3228// sqrt, sqrtf, sqrtl:
3229//   * sqrt(expN(x))  -> expN(x*0.5)
3230//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
3231//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
3232//
3233
3234//===----------------------------------------------------------------------===//
3235// Fortified Library Call Optimizations
3236//===----------------------------------------------------------------------===//
3237
3238bool
3239FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
3240                                                    unsigned ObjSizeOp,
3241                                                    Optional<unsigned> SizeOp,
3242                                                    Optional<unsigned> StrOp,
3243                                                    Optional<unsigned> FlagOp) {
3244  // If this function takes a flag argument, the implementation may use it to
3245  // perform extra checks. Don't fold into the non-checking variant.
3246  if (FlagOp) {
3247    ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp));
3248    if (!Flag || !Flag->isZero())
3249      return false;
3250  }
3251
3252  if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp))
3253    return true;
3254
3255  if (ConstantInt *ObjSizeCI =
3256          dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
3257    if (ObjSizeCI->isMinusOne())
3258      return true;
3259    // If the object size wasn't -1 (unknown), bail out if we were asked to.
3260    if (OnlyLowerUnknownSize)
3261      return false;
3262    if (StrOp) {
3263      uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp));
3264      // If the length is 0 we don't know how long it is and so we can't
3265      // remove the check.
3266      if (Len)
3267        annotateDereferenceableBytes(CI, *StrOp, Len);
3268      else
3269        return false;
3270      return ObjSizeCI->getZExtValue() >= Len;
3271    }
3272
3273    if (SizeOp) {
3274      if (ConstantInt *SizeCI =
3275              dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp)))
3276        return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
3277    }
3278  }
3279  return false;
3280}
3281
3282Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
3283                                                     IRBuilder<> &B) {
3284  if (isFortifiedCallFoldable(CI, 3, 2)) {
3285    CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align::None(),
3286                                     CI->getArgOperand(1), Align::None(),
3287                                     CI->getArgOperand(2));
3288    NewCI->setAttributes(CI->getAttributes());
3289    return CI->getArgOperand(0);
3290  }
3291  return nullptr;
3292}
3293
3294Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
3295                                                      IRBuilder<> &B) {
3296  if (isFortifiedCallFoldable(CI, 3, 2)) {
3297    CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align::None(),
3298                                      CI->getArgOperand(1), Align::None(),
3299                                      CI->getArgOperand(2));
3300    NewCI->setAttributes(CI->getAttributes());
3301    return CI->getArgOperand(0);
3302  }
3303  return nullptr;
3304}
3305
3306Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
3307                                                     IRBuilder<> &B) {
3308  // TODO: Try foldMallocMemset() here.
3309
3310  if (isFortifiedCallFoldable(CI, 3, 2)) {
3311    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
3312    CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val,
3313                                     CI->getArgOperand(2), Align::None());
3314    NewCI->setAttributes(CI->getAttributes());
3315    return CI->getArgOperand(0);
3316  }
3317  return nullptr;
3318}
3319
3320Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
3321                                                      IRBuilder<> &B,
3322                                                      LibFunc Func) {
3323  const DataLayout &DL = CI->getModule()->getDataLayout();
3324  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
3325        *ObjSize = CI->getArgOperand(2);
3326
3327  // __stpcpy_chk(x,x,...)  -> x+strlen(x)
3328  if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
3329    Value *StrLen = emitStrLen(Src, B, DL, TLI);
3330    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
3331  }
3332
3333  // If a) we don't have any length information, or b) we know this will
3334  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
3335  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
3336  // TODO: It might be nice to get a maximum length out of the possible
3337  // string lengths for varying.
3338  if (isFortifiedCallFoldable(CI, 2, None, 1)) {
3339    if (Func == LibFunc_strcpy_chk)
3340      return emitStrCpy(Dst, Src, B, TLI);
3341    else
3342      return emitStpCpy(Dst, Src, B, TLI);
3343  }
3344
3345  if (OnlyLowerUnknownSize)
3346    return nullptr;
3347
3348  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
3349  uint64_t Len = GetStringLength(Src);
3350  if (Len)
3351    annotateDereferenceableBytes(CI, 1, Len);
3352  else
3353    return nullptr;
3354
3355  Type *SizeTTy = DL.getIntPtrType(CI->getContext());
3356  Value *LenV = ConstantInt::get(SizeTTy, Len);
3357  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
3358  // If the function was an __stpcpy_chk, and we were able to fold it into
3359  // a __memcpy_chk, we still need to return the correct end pointer.
3360  if (Ret && Func == LibFunc_stpcpy_chk)
3361    return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
3362  return Ret;
3363}
3364
3365Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
3366                                                       IRBuilder<> &B,
3367                                                       LibFunc Func) {
3368  if (isFortifiedCallFoldable(CI, 3, 2)) {
3369    if (Func == LibFunc_strncpy_chk)
3370      return emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3371                               CI->getArgOperand(2), B, TLI);
3372    else
3373      return emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3374                         CI->getArgOperand(2), B, TLI);
3375  }
3376
3377  return nullptr;
3378}
3379
3380Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI,
3381                                                      IRBuilder<> &B) {
3382  if (isFortifiedCallFoldable(CI, 4, 3))
3383    return emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3384                       CI->getArgOperand(2), CI->getArgOperand(3), B, TLI);
3385
3386  return nullptr;
3387}
3388
3389Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI,
3390                                                       IRBuilder<> &B) {
3391  if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) {
3392    SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 5, CI->arg_end());
3393    return emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3394                        CI->getArgOperand(4), VariadicArgs, B, TLI);
3395  }
3396
3397  return nullptr;
3398}
3399
3400Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI,
3401                                                      IRBuilder<> &B) {
3402  if (isFortifiedCallFoldable(CI, 2, None, None, 1)) {
3403    SmallVector<Value *, 8> VariadicArgs(CI->arg_begin() + 4, CI->arg_end());
3404    return emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), VariadicArgs,
3405                       B, TLI);
3406  }
3407
3408  return nullptr;
3409}
3410
3411Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI,
3412                                                     IRBuilder<> &B) {
3413  if (isFortifiedCallFoldable(CI, 2))
3414    return emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI);
3415
3416  return nullptr;
3417}
3418
3419Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI,
3420                                                   IRBuilder<> &B) {
3421  if (isFortifiedCallFoldable(CI, 3))
3422    return emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1),
3423                       CI->getArgOperand(2), B, TLI);
3424
3425  return nullptr;
3426}
3427
3428Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI,
3429                                                      IRBuilder<> &B) {
3430  if (isFortifiedCallFoldable(CI, 3))
3431    return emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1),
3432                       CI->getArgOperand(2), B, TLI);
3433
3434  return nullptr;
3435}
3436
3437Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI,
3438                                                      IRBuilder<> &B) {
3439  if (isFortifiedCallFoldable(CI, 3))
3440    return emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1),
3441                       CI->getArgOperand(2), B, TLI);
3442
3443  return nullptr;
3444}
3445
3446Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI,
3447                                                        IRBuilder<> &B) {
3448  if (isFortifiedCallFoldable(CI, 3, 1, None, 2))
3449    return emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1),
3450                         CI->getArgOperand(4), CI->getArgOperand(5), B, TLI);
3451
3452  return nullptr;
3453}
3454
3455Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI,
3456                                                       IRBuilder<> &B) {
3457  if (isFortifiedCallFoldable(CI, 2, None, None, 1))
3458    return emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3),
3459                        CI->getArgOperand(4), B, TLI);
3460
3461  return nullptr;
3462}
3463
3464Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
3465  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
3466  // Some clang users checked for _chk libcall availability using:
3467  //   __has_builtin(__builtin___memcpy_chk)
3468  // When compiling with -fno-builtin, this is always true.
3469  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
3470  // end up with fortified libcalls, which isn't acceptable in a freestanding
3471  // environment which only provides their non-fortified counterparts.
3472  //
3473  // Until we change clang and/or teach external users to check for availability
3474  // differently, disregard the "nobuiltin" attribute and TLI::has.
3475  //
3476  // PR23093.
3477
3478  LibFunc Func;
3479  Function *Callee = CI->getCalledFunction();
3480
3481  SmallVector<OperandBundleDef, 2> OpBundles;
3482  CI->getOperandBundlesAsDefs(OpBundles);
3483  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
3484  bool isCallingConvC = isCallingConvCCompatible(CI);
3485
3486  // First, check that this is a known library functions and that the prototype
3487  // is correct.
3488  if (!TLI->getLibFunc(*Callee, Func))
3489    return nullptr;
3490
3491  // We never change the calling convention.
3492  if (!ignoreCallingConv(Func) && !isCallingConvC)
3493    return nullptr;
3494
3495  switch (Func) {
3496  case LibFunc_memcpy_chk:
3497    return optimizeMemCpyChk(CI, Builder);
3498  case LibFunc_memmove_chk:
3499    return optimizeMemMoveChk(CI, Builder);
3500  case LibFunc_memset_chk:
3501    return optimizeMemSetChk(CI, Builder);
3502  case LibFunc_stpcpy_chk:
3503  case LibFunc_strcpy_chk:
3504    return optimizeStrpCpyChk(CI, Builder, Func);
3505  case LibFunc_stpncpy_chk:
3506  case LibFunc_strncpy_chk:
3507    return optimizeStrpNCpyChk(CI, Builder, Func);
3508  case LibFunc_memccpy_chk:
3509    return optimizeMemCCpyChk(CI, Builder);
3510  case LibFunc_snprintf_chk:
3511    return optimizeSNPrintfChk(CI, Builder);
3512  case LibFunc_sprintf_chk:
3513    return optimizeSPrintfChk(CI, Builder);
3514  case LibFunc_strcat_chk:
3515    return optimizeStrCatChk(CI, Builder);
3516  case LibFunc_strlcat_chk:
3517    return optimizeStrLCat(CI, Builder);
3518  case LibFunc_strncat_chk:
3519    return optimizeStrNCatChk(CI, Builder);
3520  case LibFunc_strlcpy_chk:
3521    return optimizeStrLCpyChk(CI, Builder);
3522  case LibFunc_vsnprintf_chk:
3523    return optimizeVSNPrintfChk(CI, Builder);
3524  case LibFunc_vsprintf_chk:
3525    return optimizeVSPrintfChk(CI, Builder);
3526  default:
3527    break;
3528  }
3529  return nullptr;
3530}
3531
3532FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
3533    const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
3534    : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}
3535