LoopUnroll.cpp revision 360784
1//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements some loop unrolling utilities. It does not define any
10// actual pass or policy, but provides a single function to perform loop
11// unrolling.
12//
13// The process of unrolling can produce extraneous basic blocks linked with
14// unconditional branches.  This will be corrected in the future.
15//
16//===----------------------------------------------------------------------===//
17
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AssumptionCache.h"
21#include "llvm/Analysis/InstructionSimplify.h"
22#include "llvm/Analysis/LoopIterator.h"
23#include "llvm/Analysis/OptimizationRemarkEmitter.h"
24#include "llvm/Analysis/ScalarEvolution.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/DebugInfoMetadata.h"
28#include "llvm/IR/Dominators.h"
29#include "llvm/IR/IntrinsicInst.h"
30#include "llvm/IR/LLVMContext.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35#include "llvm/Transforms/Utils/Cloning.h"
36#include "llvm/Transforms/Utils/Local.h"
37#include "llvm/Transforms/Utils/LoopSimplify.h"
38#include "llvm/Transforms/Utils/LoopUtils.h"
39#include "llvm/Transforms/Utils/SimplifyIndVar.h"
40#include "llvm/Transforms/Utils/UnrollLoop.h"
41using namespace llvm;
42
43#define DEBUG_TYPE "loop-unroll"
44
45// TODO: Should these be here or in LoopUnroll?
46STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
47STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
48STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "
49                                 "conditional latch (completely or otherwise)");
50
51static cl::opt<bool>
52UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
53                    cl::desc("Allow runtime unrolled loops to be unrolled "
54                             "with epilog instead of prolog."));
55
56static cl::opt<bool>
57UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
58                    cl::desc("Verify domtree after unrolling"),
59#ifdef EXPENSIVE_CHECKS
60    cl::init(true)
61#else
62    cl::init(false)
63#endif
64                    );
65
66/// Convert the instruction operands from referencing the current values into
67/// those specified by VMap.
68void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
69  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
70    Value *Op = I->getOperand(op);
71
72    // Unwrap arguments of dbg.value intrinsics.
73    bool Wrapped = false;
74    if (auto *V = dyn_cast<MetadataAsValue>(Op))
75      if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
76        Op = Unwrapped->getValue();
77        Wrapped = true;
78      }
79
80    auto wrap = [&](Value *V) {
81      auto &C = I->getContext();
82      return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
83    };
84
85    ValueToValueMapTy::iterator It = VMap.find(Op);
86    if (It != VMap.end())
87      I->setOperand(op, wrap(It->second));
88  }
89
90  if (PHINode *PN = dyn_cast<PHINode>(I)) {
91    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
92      ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
93      if (It != VMap.end())
94        PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
95    }
96  }
97}
98
99/// Check if unrolling created a situation where we need to insert phi nodes to
100/// preserve LCSSA form.
101/// \param Blocks is a vector of basic blocks representing unrolled loop.
102/// \param L is the outer loop.
103/// It's possible that some of the blocks are in L, and some are not. In this
104/// case, if there is a use is outside L, and definition is inside L, we need to
105/// insert a phi-node, otherwise LCSSA will be broken.
106/// The function is just a helper function for llvm::UnrollLoop that returns
107/// true if this situation occurs, indicating that LCSSA needs to be fixed.
108static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
109                                     LoopInfo *LI) {
110  for (BasicBlock *BB : Blocks) {
111    if (LI->getLoopFor(BB) == L)
112      continue;
113    for (Instruction &I : *BB) {
114      for (Use &U : I.operands()) {
115        if (auto Def = dyn_cast<Instruction>(U)) {
116          Loop *DefLoop = LI->getLoopFor(Def->getParent());
117          if (!DefLoop)
118            continue;
119          if (DefLoop->contains(L))
120            return true;
121        }
122      }
123    }
124  }
125  return false;
126}
127
128/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
129/// and adds a mapping from the original loop to the new loop to NewLoops.
130/// Returns nullptr if no new loop was created and a pointer to the
131/// original loop OriginalBB was part of otherwise.
132const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
133                                           BasicBlock *ClonedBB, LoopInfo *LI,
134                                           NewLoopsMap &NewLoops) {
135  // Figure out which loop New is in.
136  const Loop *OldLoop = LI->getLoopFor(OriginalBB);
137  assert(OldLoop && "Should (at least) be in the loop being unrolled!");
138
139  Loop *&NewLoop = NewLoops[OldLoop];
140  if (!NewLoop) {
141    // Found a new sub-loop.
142    assert(OriginalBB == OldLoop->getHeader() &&
143           "Header should be first in RPO");
144
145    NewLoop = LI->AllocateLoop();
146    Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
147
148    if (NewLoopParent)
149      NewLoopParent->addChildLoop(NewLoop);
150    else
151      LI->addTopLevelLoop(NewLoop);
152
153    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
154    return OldLoop;
155  } else {
156    NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
157    return nullptr;
158  }
159}
160
161/// The function chooses which type of unroll (epilog or prolog) is more
162/// profitabale.
163/// Epilog unroll is more profitable when there is PHI that starts from
164/// constant.  In this case epilog will leave PHI start from constant,
165/// but prolog will convert it to non-constant.
166///
167/// loop:
168///   PN = PHI [I, Latch], [CI, PreHeader]
169///   I = foo(PN)
170///   ...
171///
172/// Epilog unroll case.
173/// loop:
174///   PN = PHI [I2, Latch], [CI, PreHeader]
175///   I1 = foo(PN)
176///   I2 = foo(I1)
177///   ...
178/// Prolog unroll case.
179///   NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
180/// loop:
181///   PN = PHI [I2, Latch], [NewPN, PreHeader]
182///   I1 = foo(PN)
183///   I2 = foo(I1)
184///   ...
185///
186static bool isEpilogProfitable(Loop *L) {
187  BasicBlock *PreHeader = L->getLoopPreheader();
188  BasicBlock *Header = L->getHeader();
189  assert(PreHeader && Header);
190  for (const PHINode &PN : Header->phis()) {
191    if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
192      return true;
193  }
194  return false;
195}
196
197/// Perform some cleanup and simplifications on loops after unrolling. It is
198/// useful to simplify the IV's in the new loop, as well as do a quick
199/// simplify/dce pass of the instructions.
200void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
201                                   ScalarEvolution *SE, DominatorTree *DT,
202                                   AssumptionCache *AC) {
203  // Simplify any new induction variables in the partially unrolled loop.
204  if (SE && SimplifyIVs) {
205    SmallVector<WeakTrackingVH, 16> DeadInsts;
206    simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
207
208    // Aggressively clean up dead instructions that simplifyLoopIVs already
209    // identified. Any remaining should be cleaned up below.
210    while (!DeadInsts.empty())
211      if (Instruction *Inst =
212              dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
213        RecursivelyDeleteTriviallyDeadInstructions(Inst);
214  }
215
216  // At this point, the code is well formed.  We now do a quick sweep over the
217  // inserted code, doing constant propagation and dead code elimination as we
218  // go.
219  const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
220  for (BasicBlock *BB : L->getBlocks()) {
221    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
222      Instruction *Inst = &*I++;
223
224      if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
225        if (LI->replacementPreservesLCSSAForm(Inst, V))
226          Inst->replaceAllUsesWith(V);
227      if (isInstructionTriviallyDead(Inst))
228        BB->getInstList().erase(Inst);
229    }
230  }
231
232  // TODO: after peeling or unrolling, previously loop variant conditions are
233  // likely to fold to constants, eagerly propagating those here will require
234  // fewer cleanup passes to be run.  Alternatively, a LoopEarlyCSE might be
235  // appropriate.
236}
237
238/// Unroll the given loop by Count. The loop must be in LCSSA form.  Unrolling
239/// can only fail when the loop's latch block is not terminated by a conditional
240/// branch instruction. However, if the trip count (and multiple) are not known,
241/// loop unrolling will mostly produce more code that is no faster.
242///
243/// TripCount is the upper bound of the iteration on which control exits
244/// LatchBlock. Control may exit the loop prior to TripCount iterations either
245/// via an early branch in other loop block or via LatchBlock terminator. This
246/// is relaxed from the general definition of trip count which is the number of
247/// times the loop header executes. Note that UnrollLoop assumes that the loop
248/// counter test is in LatchBlock in order to remove unnecesssary instances of
249/// the test.  If control can exit the loop from the LatchBlock's terminator
250/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
251///
252/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
253/// needs to be preserved.  It is needed when we use trip count upper bound to
254/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
255/// conditional branch needs to be preserved.
256///
257/// Similarly, TripMultiple divides the number of times that the LatchBlock may
258/// execute without exiting the loop.
259///
260/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
261/// have a runtime (i.e. not compile time constant) trip count.  Unrolling these
262/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
263/// iterations before branching into the unrolled loop.  UnrollLoop will not
264/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
265/// AllowExpensiveTripCount is false.
266///
267/// If we want to perform PGO-based loop peeling, PeelCount is set to the
268/// number of iterations we want to peel off.
269///
270/// The LoopInfo Analysis that is passed will be kept consistent.
271///
272/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
273/// DominatorTree if they are non-null.
274///
275/// If RemainderLoop is non-null, it will receive the remainder loop (if
276/// required and not fully unrolled).
277LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
278                                  ScalarEvolution *SE, DominatorTree *DT,
279                                  AssumptionCache *AC,
280                                  OptimizationRemarkEmitter *ORE,
281                                  bool PreserveLCSSA, Loop **RemainderLoop) {
282
283  BasicBlock *Preheader = L->getLoopPreheader();
284  if (!Preheader) {
285    LLVM_DEBUG(dbgs() << "  Can't unroll; loop preheader-insertion failed.\n");
286    return LoopUnrollResult::Unmodified;
287  }
288
289  BasicBlock *LatchBlock = L->getLoopLatch();
290  if (!LatchBlock) {
291    LLVM_DEBUG(dbgs() << "  Can't unroll; loop exit-block-insertion failed.\n");
292    return LoopUnrollResult::Unmodified;
293  }
294
295  // Loops with indirectbr cannot be cloned.
296  if (!L->isSafeToClone()) {
297    LLVM_DEBUG(dbgs() << "  Can't unroll; Loop body cannot be cloned.\n");
298    return LoopUnrollResult::Unmodified;
299  }
300
301  // The current loop unroll pass can unroll loops with a single latch or header
302  // that's a conditional branch exiting the loop.
303  // FIXME: The implementation can be extended to work with more complicated
304  // cases, e.g. loops with multiple latches.
305  BasicBlock *Header = L->getHeader();
306  BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
307  BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
308
309  // FIXME: Support loops without conditional latch and multiple exiting blocks.
310  if (!BI ||
311      (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
312                                 L->getExitingBlock() != Header))) {
313    LLVM_DEBUG(dbgs() << "  Can't unroll; loop not terminated by a conditional "
314                         "branch in the latch or header.\n");
315    return LoopUnrollResult::Unmodified;
316  }
317
318  auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
319    return BI->isConditional() && BI->getSuccessor(S1) == Header &&
320           !L->contains(BI->getSuccessor(S2));
321  };
322
323  // If we have a conditional latch, it must exit the loop.
324  if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
325      !CheckLatchSuccessors(1, 0)) {
326    LLVM_DEBUG(
327        dbgs() << "Can't unroll; a conditional latch must exit the loop");
328    return LoopUnrollResult::Unmodified;
329  }
330
331  auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
332    return HeaderBI && HeaderBI->isConditional() &&
333           L->contains(HeaderBI->getSuccessor(S1)) &&
334           !L->contains(HeaderBI->getSuccessor(S2));
335  };
336
337  // If we do not have a conditional latch, the header must exit the loop.
338  if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() &&
339      !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
340    LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop");
341    return LoopUnrollResult::Unmodified;
342  }
343
344  if (Header->hasAddressTaken()) {
345    // The loop-rotate pass can be helpful to avoid this in many cases.
346    LLVM_DEBUG(
347        dbgs() << "  Won't unroll loop: address of header block is taken.\n");
348    return LoopUnrollResult::Unmodified;
349  }
350
351  if (ULO.TripCount != 0)
352    LLVM_DEBUG(dbgs() << "  Trip Count = " << ULO.TripCount << "\n");
353  if (ULO.TripMultiple != 1)
354    LLVM_DEBUG(dbgs() << "  Trip Multiple = " << ULO.TripMultiple << "\n");
355
356  // Effectively "DCE" unrolled iterations that are beyond the tripcount
357  // and will never be executed.
358  if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
359    ULO.Count = ULO.TripCount;
360
361  // Don't enter the unroll code if there is nothing to do.
362  if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
363    LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
364    return LoopUnrollResult::Unmodified;
365  }
366
367  assert(ULO.Count > 0);
368  assert(ULO.TripMultiple > 0);
369  assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
370
371  // Are we eliminating the loop control altogether?
372  bool CompletelyUnroll = ULO.Count == ULO.TripCount;
373  SmallVector<BasicBlock *, 4> ExitBlocks;
374  L->getExitBlocks(ExitBlocks);
375  std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
376
377  // Go through all exits of L and see if there are any phi-nodes there. We just
378  // conservatively assume that they're inserted to preserve LCSSA form, which
379  // means that complete unrolling might break this form. We need to either fix
380  // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
381  // now we just recompute LCSSA for the outer loop, but it should be possible
382  // to fix it in-place.
383  bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
384                        any_of(ExitBlocks, [](const BasicBlock *BB) {
385                          return isa<PHINode>(BB->begin());
386                        });
387
388  // We assume a run-time trip count if the compiler cannot
389  // figure out the loop trip count and the unroll-runtime
390  // flag is specified.
391  bool RuntimeTripCount =
392      (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
393
394  assert((!RuntimeTripCount || !ULO.PeelCount) &&
395         "Did not expect runtime trip-count unrolling "
396         "and peeling for the same loop");
397
398  bool Peeled = false;
399  if (ULO.PeelCount) {
400    Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
401
402    // Successful peeling may result in a change in the loop preheader/trip
403    // counts. If we later unroll the loop, we want these to be updated.
404    if (Peeled) {
405      // According to our guards and profitability checks the only
406      // meaningful exit should be latch block. Other exits go to deopt,
407      // so we do not worry about them.
408      BasicBlock *ExitingBlock = L->getLoopLatch();
409      assert(ExitingBlock && "Loop without exiting block?");
410      assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
411      Preheader = L->getLoopPreheader();
412      ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
413      ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
414    }
415  }
416
417  // Loops containing convergent instructions must have a count that divides
418  // their TripMultiple.
419  LLVM_DEBUG(
420      {
421        bool HasConvergent = false;
422        for (auto &BB : L->blocks())
423          for (auto &I : *BB)
424            if (auto CS = CallSite(&I))
425              HasConvergent |= CS.isConvergent();
426        assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
427               "Unroll count must divide trip multiple if loop contains a "
428               "convergent operation.");
429      });
430
431  bool EpilogProfitability =
432      UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
433                                              : isEpilogProfitable(L);
434
435  if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
436      !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
437                                  EpilogProfitability, ULO.UnrollRemainder,
438                                  ULO.ForgetAllSCEV, LI, SE, DT, AC,
439                                  PreserveLCSSA, RemainderLoop)) {
440    if (ULO.Force)
441      RuntimeTripCount = false;
442    else {
443      LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
444                           "generated when assuming runtime trip count\n");
445      return LoopUnrollResult::Unmodified;
446    }
447  }
448
449  // If we know the trip count, we know the multiple...
450  unsigned BreakoutTrip = 0;
451  if (ULO.TripCount != 0) {
452    BreakoutTrip = ULO.TripCount % ULO.Count;
453    ULO.TripMultiple = 0;
454  } else {
455    // Figure out what multiple to use.
456    BreakoutTrip = ULO.TripMultiple =
457        (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
458  }
459
460  using namespace ore;
461  // Report the unrolling decision.
462  if (CompletelyUnroll) {
463    LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
464                      << " with trip count " << ULO.TripCount << "!\n");
465    if (ORE)
466      ORE->emit([&]() {
467        return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
468                                  L->getHeader())
469               << "completely unrolled loop with "
470               << NV("UnrollCount", ULO.TripCount) << " iterations";
471      });
472  } else if (ULO.PeelCount) {
473    LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
474                      << " with iteration count " << ULO.PeelCount << "!\n");
475    if (ORE)
476      ORE->emit([&]() {
477        return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
478                                  L->getHeader())
479               << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
480               << " iterations";
481      });
482  } else {
483    auto DiagBuilder = [&]() {
484      OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
485                              L->getHeader());
486      return Diag << "unrolled loop by a factor of "
487                  << NV("UnrollCount", ULO.Count);
488    };
489
490    LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
491                      << ULO.Count);
492    if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
493      LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
494      if (ORE)
495        ORE->emit([&]() {
496          return DiagBuilder() << " with a breakout at trip "
497                               << NV("BreakoutTrip", BreakoutTrip);
498        });
499    } else if (ULO.TripMultiple != 1) {
500      LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
501      if (ORE)
502        ORE->emit([&]() {
503          return DiagBuilder()
504                 << " with " << NV("TripMultiple", ULO.TripMultiple)
505                 << " trips per branch";
506        });
507    } else if (RuntimeTripCount) {
508      LLVM_DEBUG(dbgs() << " with run-time trip count");
509      if (ORE)
510        ORE->emit(
511            [&]() { return DiagBuilder() << " with run-time trip count"; });
512    }
513    LLVM_DEBUG(dbgs() << "!\n");
514  }
515
516  // We are going to make changes to this loop. SCEV may be keeping cached info
517  // about it, in particular about backedge taken count. The changes we make
518  // are guaranteed to invalidate this information for our loop. It is tempting
519  // to only invalidate the loop being unrolled, but it is incorrect as long as
520  // all exiting branches from all inner loops have impact on the outer loops,
521  // and if something changes inside them then any of outer loops may also
522  // change. When we forget outermost loop, we also forget all contained loops
523  // and this is what we need here.
524  if (SE) {
525    if (ULO.ForgetAllSCEV)
526      SE->forgetAllLoops();
527    else
528      SE->forgetTopmostLoop(L);
529  }
530
531  bool ContinueOnTrue;
532  bool LatchIsExiting = BI->isConditional();
533  BasicBlock *LoopExit = nullptr;
534  if (LatchIsExiting) {
535    ContinueOnTrue = L->contains(BI->getSuccessor(0));
536    LoopExit = BI->getSuccessor(ContinueOnTrue);
537  } else {
538    NumUnrolledWithHeader++;
539    ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
540    LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
541  }
542
543  // For the first iteration of the loop, we should use the precloned values for
544  // PHI nodes.  Insert associations now.
545  ValueToValueMapTy LastValueMap;
546  std::vector<PHINode*> OrigPHINode;
547  for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
548    OrigPHINode.push_back(cast<PHINode>(I));
549  }
550
551  std::vector<BasicBlock *> Headers;
552  std::vector<BasicBlock *> HeaderSucc;
553  std::vector<BasicBlock *> Latches;
554  Headers.push_back(Header);
555  Latches.push_back(LatchBlock);
556
557  if (!LatchIsExiting) {
558    auto *Term = cast<BranchInst>(Header->getTerminator());
559    if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
560      assert(L->contains(Term->getSuccessor(0)));
561      HeaderSucc.push_back(Term->getSuccessor(0));
562    } else {
563      assert(L->contains(Term->getSuccessor(1)));
564      HeaderSucc.push_back(Term->getSuccessor(1));
565    }
566  }
567
568  // The current on-the-fly SSA update requires blocks to be processed in
569  // reverse postorder so that LastValueMap contains the correct value at each
570  // exit.
571  LoopBlocksDFS DFS(L);
572  DFS.perform(LI);
573
574  // Stash the DFS iterators before adding blocks to the loop.
575  LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
576  LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
577
578  std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
579
580  // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
581  // might break loop-simplified form for these loops (as they, e.g., would
582  // share the same exit blocks). We'll keep track of loops for which we can
583  // break this so that later we can re-simplify them.
584  SmallSetVector<Loop *, 4> LoopsToSimplify;
585  for (Loop *SubLoop : *L)
586    LoopsToSimplify.insert(SubLoop);
587
588  if (Header->getParent()->isDebugInfoForProfiling())
589    for (BasicBlock *BB : L->getBlocks())
590      for (Instruction &I : *BB)
591        if (!isa<DbgInfoIntrinsic>(&I))
592          if (const DILocation *DIL = I.getDebugLoc()) {
593            auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
594            if (NewDIL)
595              I.setDebugLoc(NewDIL.getValue());
596            else
597              LLVM_DEBUG(dbgs()
598                         << "Failed to create new discriminator: "
599                         << DIL->getFilename() << " Line: " << DIL->getLine());
600          }
601
602  for (unsigned It = 1; It != ULO.Count; ++It) {
603    std::vector<BasicBlock*> NewBlocks;
604    SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
605    NewLoops[L] = L;
606
607    for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
608      ValueToValueMapTy VMap;
609      BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
610      Header->getParent()->getBasicBlockList().push_back(New);
611
612      assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
613             "Header should not be in a sub-loop");
614      // Tell LI about New.
615      const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
616      if (OldLoop)
617        LoopsToSimplify.insert(NewLoops[OldLoop]);
618
619      if (*BB == Header)
620        // Loop over all of the PHI nodes in the block, changing them to use
621        // the incoming values from the previous block.
622        for (PHINode *OrigPHI : OrigPHINode) {
623          PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
624          Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
625          if (Instruction *InValI = dyn_cast<Instruction>(InVal))
626            if (It > 1 && L->contains(InValI))
627              InVal = LastValueMap[InValI];
628          VMap[OrigPHI] = InVal;
629          New->getInstList().erase(NewPHI);
630        }
631
632      // Update our running map of newest clones
633      LastValueMap[*BB] = New;
634      for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
635           VI != VE; ++VI)
636        LastValueMap[VI->first] = VI->second;
637
638      // Add phi entries for newly created values to all exit blocks.
639      for (BasicBlock *Succ : successors(*BB)) {
640        if (L->contains(Succ))
641          continue;
642        for (PHINode &PHI : Succ->phis()) {
643          Value *Incoming = PHI.getIncomingValueForBlock(*BB);
644          ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
645          if (It != LastValueMap.end())
646            Incoming = It->second;
647          PHI.addIncoming(Incoming, New);
648        }
649      }
650      // Keep track of new headers and latches as we create them, so that
651      // we can insert the proper branches later.
652      if (*BB == Header)
653        Headers.push_back(New);
654      if (*BB == LatchBlock)
655        Latches.push_back(New);
656
657      // Keep track of the successor of the new header in the current iteration.
658      for (auto *Pred : predecessors(*BB))
659        if (Pred == Header) {
660          HeaderSucc.push_back(New);
661          break;
662        }
663
664      NewBlocks.push_back(New);
665      UnrolledLoopBlocks.push_back(New);
666
667      // Update DomTree: since we just copy the loop body, and each copy has a
668      // dedicated entry block (copy of the header block), this header's copy
669      // dominates all copied blocks. That means, dominance relations in the
670      // copied body are the same as in the original body.
671      if (DT) {
672        if (*BB == Header)
673          DT->addNewBlock(New, Latches[It - 1]);
674        else {
675          auto BBDomNode = DT->getNode(*BB);
676          auto BBIDom = BBDomNode->getIDom();
677          BasicBlock *OriginalBBIDom = BBIDom->getBlock();
678          DT->addNewBlock(
679              New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
680        }
681      }
682    }
683
684    // Remap all instructions in the most recent iteration
685    for (BasicBlock *NewBlock : NewBlocks) {
686      for (Instruction &I : *NewBlock) {
687        ::remapInstruction(&I, LastValueMap);
688        if (auto *II = dyn_cast<IntrinsicInst>(&I))
689          if (II->getIntrinsicID() == Intrinsic::assume)
690            AC->registerAssumption(II);
691      }
692    }
693  }
694
695  // Loop over the PHI nodes in the original block, setting incoming values.
696  for (PHINode *PN : OrigPHINode) {
697    if (CompletelyUnroll) {
698      PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
699      Header->getInstList().erase(PN);
700    } else if (ULO.Count > 1) {
701      Value *InVal = PN->removeIncomingValue(LatchBlock, false);
702      // If this value was defined in the loop, take the value defined by the
703      // last iteration of the loop.
704      if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
705        if (L->contains(InValI))
706          InVal = LastValueMap[InVal];
707      }
708      assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
709      PN->addIncoming(InVal, Latches.back());
710    }
711  }
712
713  auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
714                                            ArrayRef<BasicBlock *> NextBlocks,
715                                            BasicBlock *BlockInLoop,
716                                            bool NeedConditional) {
717    auto *Term = cast<BranchInst>(Src->getTerminator());
718    if (NeedConditional) {
719      // Update the conditional branch's successor for the following
720      // iteration.
721      Term->setSuccessor(!ContinueOnTrue, Dest);
722    } else {
723      // Remove phi operands at this loop exit
724      if (Dest != LoopExit) {
725        BasicBlock *BB = Src;
726        for (BasicBlock *Succ : successors(BB)) {
727          // Preserve the incoming value from BB if we are jumping to the block
728          // in the current loop.
729          if (Succ == BlockInLoop)
730            continue;
731          for (PHINode &Phi : Succ->phis())
732            Phi.removeIncomingValue(BB, false);
733        }
734      }
735      // Replace the conditional branch with an unconditional one.
736      BranchInst::Create(Dest, Term);
737      Term->eraseFromParent();
738    }
739  };
740
741  // Now that all the basic blocks for the unrolled iterations are in place,
742  // set up the branches to connect them.
743  if (LatchIsExiting) {
744    // Set up latches to branch to the new header in the unrolled iterations or
745    // the loop exit for the last latch in a fully unrolled loop.
746    for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
747      // The branch destination.
748      unsigned j = (i + 1) % e;
749      BasicBlock *Dest = Headers[j];
750      bool NeedConditional = true;
751
752      if (RuntimeTripCount && j != 0) {
753        NeedConditional = false;
754      }
755
756      // For a complete unroll, make the last iteration end with a branch
757      // to the exit block.
758      if (CompletelyUnroll) {
759        if (j == 0)
760          Dest = LoopExit;
761        // If using trip count upper bound to completely unroll, we need to keep
762        // the conditional branch except the last one because the loop may exit
763        // after any iteration.
764        assert(NeedConditional &&
765               "NeedCondition cannot be modified by both complete "
766               "unrolling and runtime unrolling");
767        NeedConditional =
768            (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
769      } else if (j != BreakoutTrip &&
770                 (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
771        // If we know the trip count or a multiple of it, we can safely use an
772        // unconditional branch for some iterations.
773        NeedConditional = false;
774      }
775
776      setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
777    }
778  } else {
779    // Setup headers to branch to their new successors in the unrolled
780    // iterations.
781    for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
782      // The branch destination.
783      unsigned j = (i + 1) % e;
784      BasicBlock *Dest = HeaderSucc[i];
785      bool NeedConditional = true;
786
787      if (RuntimeTripCount && j != 0)
788        NeedConditional = false;
789
790      if (CompletelyUnroll)
791        // We cannot drop the conditional branch for the last condition, as we
792        // may have to execute the loop body depending on the condition.
793        NeedConditional = j == 0 || ULO.PreserveCondBr;
794      else if (j != BreakoutTrip &&
795               (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
796        // If we know the trip count or a multiple of it, we can safely use an
797        // unconditional branch for some iterations.
798        NeedConditional = false;
799
800      setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
801    }
802
803    // Set up latches to branch to the new header in the unrolled iterations or
804    // the loop exit for the last latch in a fully unrolled loop.
805
806    for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
807      // The original branch was replicated in each unrolled iteration.
808      BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
809
810      // The branch destination.
811      unsigned j = (i + 1) % e;
812      BasicBlock *Dest = Headers[j];
813
814      // When completely unrolling, the last latch becomes unreachable.
815      if (CompletelyUnroll && j == 0)
816        new UnreachableInst(Term->getContext(), Term);
817      else
818        // Replace the conditional branch with an unconditional one.
819        BranchInst::Create(Dest, Term);
820
821      Term->eraseFromParent();
822    }
823  }
824
825  // Update dominators of blocks we might reach through exits.
826  // Immediate dominator of such block might change, because we add more
827  // routes which can lead to the exit: we can now reach it from the copied
828  // iterations too.
829  if (DT && ULO.Count > 1) {
830    for (auto *BB : OriginalLoopBlocks) {
831      auto *BBDomNode = DT->getNode(BB);
832      SmallVector<BasicBlock *, 16> ChildrenToUpdate;
833      for (auto *ChildDomNode : BBDomNode->getChildren()) {
834        auto *ChildBB = ChildDomNode->getBlock();
835        if (!L->contains(ChildBB))
836          ChildrenToUpdate.push_back(ChildBB);
837      }
838      BasicBlock *NewIDom;
839      BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
840      auto &TermBlocks = LatchIsExiting ? Latches : Headers;
841      if (BB == TermBlock) {
842        // The latch is special because we emit unconditional branches in
843        // some cases where the original loop contained a conditional branch.
844        // Since the latch is always at the bottom of the loop, if the latch
845        // dominated an exit before unrolling, the new dominator of that exit
846        // must also be a latch.  Specifically, the dominator is the first
847        // latch which ends in a conditional branch, or the last latch if
848        // there is no such latch.
849        // For loops exiting from the header, we limit the supported loops
850        // to have a single exiting block.
851        NewIDom = TermBlocks.back();
852        for (BasicBlock *Iter : TermBlocks) {
853          Instruction *Term = Iter->getTerminator();
854          if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
855            NewIDom = Iter;
856            break;
857          }
858        }
859      } else {
860        // The new idom of the block will be the nearest common dominator
861        // of all copies of the previous idom. This is equivalent to the
862        // nearest common dominator of the previous idom and the first latch,
863        // which dominates all copies of the previous idom.
864        NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
865      }
866      for (auto *ChildBB : ChildrenToUpdate)
867        DT->changeImmediateDominator(ChildBB, NewIDom);
868    }
869  }
870
871  assert(!DT || !UnrollVerifyDomtree ||
872         DT->verify(DominatorTree::VerificationLevel::Fast));
873
874  DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
875  // Merge adjacent basic blocks, if possible.
876  for (BasicBlock *Latch : Latches) {
877    BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
878    assert((Term ||
879            (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
880           "Need a branch as terminator, except when fully unrolling with "
881           "unconditional latch");
882    if (Term && Term->isUnconditional()) {
883      BasicBlock *Dest = Term->getSuccessor(0);
884      BasicBlock *Fold = Dest->getUniquePredecessor();
885      if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
886        // Dest has been folded into Fold. Update our worklists accordingly.
887        std::replace(Latches.begin(), Latches.end(), Dest, Fold);
888        UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
889                                             UnrolledLoopBlocks.end(), Dest),
890                                 UnrolledLoopBlocks.end());
891      }
892    }
893  }
894  // Apply updates to the DomTree.
895  DT = &DTU.getDomTree();
896
897  // At this point, the code is well formed.  We now simplify the unrolled loop,
898  // doing constant propagation and dead code elimination as we go.
899  simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
900                          SE, DT, AC);
901
902  NumCompletelyUnrolled += CompletelyUnroll;
903  ++NumUnrolled;
904
905  Loop *OuterL = L->getParentLoop();
906  // Update LoopInfo if the loop is completely removed.
907  if (CompletelyUnroll)
908    LI->erase(L);
909
910  // After complete unrolling most of the blocks should be contained in OuterL.
911  // However, some of them might happen to be out of OuterL (e.g. if they
912  // precede a loop exit). In this case we might need to insert PHI nodes in
913  // order to preserve LCSSA form.
914  // We don't need to check this if we already know that we need to fix LCSSA
915  // form.
916  // TODO: For now we just recompute LCSSA for the outer loop in this case, but
917  // it should be possible to fix it in-place.
918  if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
919    NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
920
921  // If we have a pass and a DominatorTree we should re-simplify impacted loops
922  // to ensure subsequent analyses can rely on this form. We want to simplify
923  // at least one layer outside of the loop that was unrolled so that any
924  // changes to the parent loop exposed by the unrolling are considered.
925  if (DT) {
926    if (OuterL) {
927      // OuterL includes all loops for which we can break loop-simplify, so
928      // it's sufficient to simplify only it (it'll recursively simplify inner
929      // loops too).
930      if (NeedToFixLCSSA) {
931        // LCSSA must be performed on the outermost affected loop. The unrolled
932        // loop's last loop latch is guaranteed to be in the outermost loop
933        // after LoopInfo's been updated by LoopInfo::erase.
934        Loop *LatchLoop = LI->getLoopFor(Latches.back());
935        Loop *FixLCSSALoop = OuterL;
936        if (!FixLCSSALoop->contains(LatchLoop))
937          while (FixLCSSALoop->getParentLoop() != LatchLoop)
938            FixLCSSALoop = FixLCSSALoop->getParentLoop();
939
940        formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
941      } else if (PreserveLCSSA) {
942        assert(OuterL->isLCSSAForm(*DT) &&
943               "Loops should be in LCSSA form after loop-unroll.");
944      }
945
946      // TODO: That potentially might be compile-time expensive. We should try
947      // to fix the loop-simplified form incrementally.
948      simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
949    } else {
950      // Simplify loops for which we might've broken loop-simplify form.
951      for (Loop *SubLoop : LoopsToSimplify)
952        simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
953    }
954  }
955
956  return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
957                          : LoopUnrollResult::PartiallyUnrolled;
958}
959
960/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
961/// node with the given name (for example, "llvm.loop.unroll.count"). If no
962/// such metadata node exists, then nullptr is returned.
963MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
964  // First operand should refer to the loop id itself.
965  assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
966  assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
967
968  for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
969    MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
970    if (!MD)
971      continue;
972
973    MDString *S = dyn_cast<MDString>(MD->getOperand(0));
974    if (!S)
975      continue;
976
977    if (Name.equals(S->getString()))
978      return MD;
979  }
980  return nullptr;
981}
982