LCSSA.cpp revision 360784
1//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass transforms loops by placing phi nodes at the end of the loops for
10// all values that are live across the loop boundary.  For example, it turns
11// the left into the right code:
12//
13// for (...)                for (...)
14//   if (c)                   if (c)
15//     X1 = ...                 X1 = ...
16//   else                     else
17//     X2 = ...                 X2 = ...
18//   X3 = phi(X1, X2)         X3 = phi(X1, X2)
19// ... = X3 + 4             X4 = phi(X3)
20//                          ... = X4 + 4
21//
22// This is still valid LLVM; the extra phi nodes are purely redundant, and will
23// be trivially eliminated by InstCombine.  The major benefit of this
24// transformation is that it makes many other loop optimizations, such as
25// LoopUnswitching, simpler.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/Transforms/Utils/LCSSA.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/BasicAliasAnalysis.h"
34#include "llvm/Analysis/BranchProbabilityInfo.h"
35#include "llvm/Analysis/GlobalsModRef.h"
36#include "llvm/Analysis/LoopPass.h"
37#include "llvm/Analysis/MemorySSA.h"
38#include "llvm/Analysis/ScalarEvolution.h"
39#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
40#include "llvm/IR/Constants.h"
41#include "llvm/IR/Dominators.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/PredIteratorCache.h"
46#include "llvm/InitializePasses.h"
47#include "llvm/Pass.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Transforms/Utils.h"
50#include "llvm/Transforms/Utils/Local.h"
51#include "llvm/Transforms/Utils/LoopUtils.h"
52#include "llvm/Transforms/Utils/SSAUpdater.h"
53using namespace llvm;
54
55#define DEBUG_TYPE "lcssa"
56
57STATISTIC(NumLCSSA, "Number of live out of a loop variables");
58
59#ifdef EXPENSIVE_CHECKS
60static bool VerifyLoopLCSSA = true;
61#else
62static bool VerifyLoopLCSSA = false;
63#endif
64static cl::opt<bool, true>
65    VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
66                        cl::Hidden,
67                        cl::desc("Verify loop lcssa form (time consuming)"));
68
69/// Return true if the specified block is in the list.
70static bool isExitBlock(BasicBlock *BB,
71                        const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
72  return is_contained(ExitBlocks, BB);
73}
74
75/// For every instruction from the worklist, check to see if it has any uses
76/// that are outside the current loop.  If so, insert LCSSA PHI nodes and
77/// rewrite the uses.
78bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
79                                    DominatorTree &DT, LoopInfo &LI,
80                                    ScalarEvolution *SE) {
81  SmallVector<Use *, 16> UsesToRewrite;
82  SmallSetVector<PHINode *, 16> PHIsToRemove;
83  PredIteratorCache PredCache;
84  bool Changed = false;
85
86  // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
87  // instructions within the same loops, computing the exit blocks is
88  // expensive, and we're not mutating the loop structure.
89  SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
90
91  while (!Worklist.empty()) {
92    UsesToRewrite.clear();
93
94    Instruction *I = Worklist.pop_back_val();
95    assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
96    BasicBlock *InstBB = I->getParent();
97    Loop *L = LI.getLoopFor(InstBB);
98    assert(L && "Instruction belongs to a BB that's not part of a loop");
99    if (!LoopExitBlocks.count(L))
100      L->getExitBlocks(LoopExitBlocks[L]);
101    assert(LoopExitBlocks.count(L));
102    const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
103
104    if (ExitBlocks.empty())
105      continue;
106
107    for (Use &U : I->uses()) {
108      Instruction *User = cast<Instruction>(U.getUser());
109      BasicBlock *UserBB = User->getParent();
110      if (auto *PN = dyn_cast<PHINode>(User))
111        UserBB = PN->getIncomingBlock(U);
112
113      if (InstBB != UserBB && !L->contains(UserBB))
114        UsesToRewrite.push_back(&U);
115    }
116
117    // If there are no uses outside the loop, exit with no change.
118    if (UsesToRewrite.empty())
119      continue;
120
121    ++NumLCSSA; // We are applying the transformation
122
123    // Invoke instructions are special in that their result value is not
124    // available along their unwind edge. The code below tests to see whether
125    // DomBB dominates the value, so adjust DomBB to the normal destination
126    // block, which is effectively where the value is first usable.
127    BasicBlock *DomBB = InstBB;
128    if (auto *Inv = dyn_cast<InvokeInst>(I))
129      DomBB = Inv->getNormalDest();
130
131    DomTreeNode *DomNode = DT.getNode(DomBB);
132
133    SmallVector<PHINode *, 16> AddedPHIs;
134    SmallVector<PHINode *, 8> PostProcessPHIs;
135
136    SmallVector<PHINode *, 4> InsertedPHIs;
137    SSAUpdater SSAUpdate(&InsertedPHIs);
138    SSAUpdate.Initialize(I->getType(), I->getName());
139
140    // Force re-computation of I, as some users now need to use the new PHI
141    // node.
142    if (SE)
143      SE->forgetValue(I);
144
145    // Insert the LCSSA phi's into all of the exit blocks dominated by the
146    // value, and add them to the Phi's map.
147    for (BasicBlock *ExitBB : ExitBlocks) {
148      if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
149        continue;
150
151      // If we already inserted something for this BB, don't reprocess it.
152      if (SSAUpdate.HasValueForBlock(ExitBB))
153        continue;
154
155      PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
156                                    I->getName() + ".lcssa", &ExitBB->front());
157      // Get the debug location from the original instruction.
158      PN->setDebugLoc(I->getDebugLoc());
159      // Add inputs from inside the loop for this PHI.
160      for (BasicBlock *Pred : PredCache.get(ExitBB)) {
161        PN->addIncoming(I, Pred);
162
163        // If the exit block has a predecessor not within the loop, arrange for
164        // the incoming value use corresponding to that predecessor to be
165        // rewritten in terms of a different LCSSA PHI.
166        if (!L->contains(Pred))
167          UsesToRewrite.push_back(
168              &PN->getOperandUse(PN->getOperandNumForIncomingValue(
169                  PN->getNumIncomingValues() - 1)));
170      }
171
172      AddedPHIs.push_back(PN);
173
174      // Remember that this phi makes the value alive in this block.
175      SSAUpdate.AddAvailableValue(ExitBB, PN);
176
177      // LoopSimplify might fail to simplify some loops (e.g. when indirect
178      // branches are involved). In such situations, it might happen that an
179      // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
180      // create PHIs in such an exit block, we are also inserting PHIs into L2's
181      // header. This could break LCSSA form for L2 because these inserted PHIs
182      // can also have uses outside of L2. Remember all PHIs in such situation
183      // as to revisit than later on. FIXME: Remove this if indirectbr support
184      // into LoopSimplify gets improved.
185      if (auto *OtherLoop = LI.getLoopFor(ExitBB))
186        if (!L->contains(OtherLoop))
187          PostProcessPHIs.push_back(PN);
188    }
189
190    // Rewrite all uses outside the loop in terms of the new PHIs we just
191    // inserted.
192    for (Use *UseToRewrite : UsesToRewrite) {
193      // If this use is in an exit block, rewrite to use the newly inserted PHI.
194      // This is required for correctness because SSAUpdate doesn't handle uses
195      // in the same block.  It assumes the PHI we inserted is at the end of the
196      // block.
197      Instruction *User = cast<Instruction>(UseToRewrite->getUser());
198      BasicBlock *UserBB = User->getParent();
199      if (auto *PN = dyn_cast<PHINode>(User))
200        UserBB = PN->getIncomingBlock(*UseToRewrite);
201
202      if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
203        UseToRewrite->set(&UserBB->front());
204        continue;
205      }
206
207      // If we added a single PHI, it must dominate all uses and we can directly
208      // rename it.
209      if (AddedPHIs.size() == 1) {
210        UseToRewrite->set(AddedPHIs[0]);
211        continue;
212      }
213
214      // Otherwise, do full PHI insertion.
215      SSAUpdate.RewriteUse(*UseToRewrite);
216    }
217
218    SmallVector<DbgValueInst *, 4> DbgValues;
219    llvm::findDbgValues(DbgValues, I);
220
221    // Update pre-existing debug value uses that reside outside the loop.
222    auto &Ctx = I->getContext();
223    for (auto DVI : DbgValues) {
224      BasicBlock *UserBB = DVI->getParent();
225      if (InstBB == UserBB || L->contains(UserBB))
226        continue;
227      // We currently only handle debug values residing in blocks that were
228      // traversed while rewriting the uses. If we inserted just a single PHI,
229      // we will handle all relevant debug values.
230      Value *V = AddedPHIs.size() == 1 ? AddedPHIs[0]
231                                       : SSAUpdate.FindValueForBlock(UserBB);
232      if (V)
233        DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
234    }
235
236    // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
237    // to post-process them to keep LCSSA form.
238    for (PHINode *InsertedPN : InsertedPHIs) {
239      if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
240        if (!L->contains(OtherLoop))
241          PostProcessPHIs.push_back(InsertedPN);
242    }
243
244    // Post process PHI instructions that were inserted into another disjoint
245    // loop and update their exits properly.
246    for (auto *PostProcessPN : PostProcessPHIs)
247      if (!PostProcessPN->use_empty())
248        Worklist.push_back(PostProcessPN);
249
250    // Keep track of PHI nodes that we want to remove because they did not have
251    // any uses rewritten. If the new PHI is used, store it so that we can
252    // try to propagate dbg.value intrinsics to it.
253    SmallVector<PHINode *, 2> NeedDbgValues;
254    for (PHINode *PN : AddedPHIs)
255      if (PN->use_empty())
256        PHIsToRemove.insert(PN);
257      else
258        NeedDbgValues.push_back(PN);
259    insertDebugValuesForPHIs(InstBB, NeedDbgValues);
260    Changed = true;
261  }
262  // Remove PHI nodes that did not have any uses rewritten. We need to redo the
263  // use_empty() check here, because even if the PHI node wasn't used when added
264  // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
265  // not guaranteed to handle trees/cycles of PHI nodes that only are used by
266  // each other. Such situations has only been noticed when the input IR
267  // contains unreachable code, and leaving some extra redundant PHI nodes in
268  // such situations is considered a minor problem.
269  for (PHINode *PN : PHIsToRemove)
270    if (PN->use_empty())
271      PN->eraseFromParent();
272  return Changed;
273}
274
275// Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
276static void computeBlocksDominatingExits(
277    Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
278    SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
279  SmallVector<BasicBlock *, 8> BBWorklist;
280
281  // We start from the exit blocks, as every block trivially dominates itself
282  // (not strictly).
283  for (BasicBlock *BB : ExitBlocks)
284    BBWorklist.push_back(BB);
285
286  while (!BBWorklist.empty()) {
287    BasicBlock *BB = BBWorklist.pop_back_val();
288
289    // Check if this is a loop header. If this is the case, we're done.
290    if (L.getHeader() == BB)
291      continue;
292
293    // Otherwise, add its immediate predecessor in the dominator tree to the
294    // worklist, unless we visited it already.
295    BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
296
297    // Exit blocks can have an immediate dominator not beloinging to the
298    // loop. For an exit block to be immediately dominated by another block
299    // outside the loop, it implies not all paths from that dominator, to the
300    // exit block, go through the loop.
301    // Example:
302    //
303    // |---- A
304    // |     |
305    // |     B<--
306    // |     |  |
307    // |---> C --
308    //       |
309    //       D
310    //
311    // C is the exit block of the loop and it's immediately dominated by A,
312    // which doesn't belong to the loop.
313    if (!L.contains(IDomBB))
314      continue;
315
316    if (BlocksDominatingExits.insert(IDomBB))
317      BBWorklist.push_back(IDomBB);
318  }
319}
320
321bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
322                     ScalarEvolution *SE) {
323  bool Changed = false;
324
325#ifdef EXPENSIVE_CHECKS
326  // Verify all sub-loops are in LCSSA form already.
327  for (Loop *SubLoop: L)
328    assert(SubLoop->isRecursivelyLCSSAForm(DT, *LI) && "Subloop not in LCSSA!");
329#endif
330
331  SmallVector<BasicBlock *, 8> ExitBlocks;
332  L.getExitBlocks(ExitBlocks);
333  if (ExitBlocks.empty())
334    return false;
335
336  SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
337
338  // We want to avoid use-scanning leveraging dominance informations.
339  // If a block doesn't dominate any of the loop exits, the none of the values
340  // defined in the loop can be used outside.
341  // We compute the set of blocks fullfilling the conditions in advance
342  // walking the dominator tree upwards until we hit a loop header.
343  computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
344
345  SmallVector<Instruction *, 8> Worklist;
346
347  // Look at all the instructions in the loop, checking to see if they have uses
348  // outside the loop.  If so, put them into the worklist to rewrite those uses.
349  for (BasicBlock *BB : BlocksDominatingExits) {
350    // Skip blocks that are part of any sub-loops, they must be in LCSSA
351    // already.
352    if (LI->getLoopFor(BB) != &L)
353      continue;
354    for (Instruction &I : *BB) {
355      // Reject two common cases fast: instructions with no uses (like stores)
356      // and instructions with one use that is in the same block as this.
357      if (I.use_empty() ||
358          (I.hasOneUse() && I.user_back()->getParent() == BB &&
359           !isa<PHINode>(I.user_back())))
360        continue;
361
362      // Tokens cannot be used in PHI nodes, so we skip over them.
363      // We can run into tokens which are live out of a loop with catchswitch
364      // instructions in Windows EH if the catchswitch has one catchpad which
365      // is inside the loop and another which is not.
366      if (I.getType()->isTokenTy())
367        continue;
368
369      Worklist.push_back(&I);
370    }
371  }
372  Changed = formLCSSAForInstructions(Worklist, DT, *LI, SE);
373
374  // If we modified the code, remove any caches about the loop from SCEV to
375  // avoid dangling entries.
376  // FIXME: This is a big hammer, can we clear the cache more selectively?
377  if (SE && Changed)
378    SE->forgetLoop(&L);
379
380  assert(L.isLCSSAForm(DT));
381
382  return Changed;
383}
384
385/// Process a loop nest depth first.
386bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
387                                ScalarEvolution *SE) {
388  bool Changed = false;
389
390  // Recurse depth-first through inner loops.
391  for (Loop *SubLoop : L.getSubLoops())
392    Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
393
394  Changed |= formLCSSA(L, DT, LI, SE);
395  return Changed;
396}
397
398/// Process all loops in the function, inner-most out.
399static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
400                                ScalarEvolution *SE) {
401  bool Changed = false;
402  for (auto &L : *LI)
403    Changed |= formLCSSARecursively(*L, DT, LI, SE);
404  return Changed;
405}
406
407namespace {
408struct LCSSAWrapperPass : public FunctionPass {
409  static char ID; // Pass identification, replacement for typeid
410  LCSSAWrapperPass() : FunctionPass(ID) {
411    initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
412  }
413
414  // Cached analysis information for the current function.
415  DominatorTree *DT;
416  LoopInfo *LI;
417  ScalarEvolution *SE;
418
419  bool runOnFunction(Function &F) override;
420  void verifyAnalysis() const override {
421    // This check is very expensive. On the loop intensive compiles it may cause
422    // up to 10x slowdown. Currently it's disabled by default. LPPassManager
423    // always does limited form of the LCSSA verification. Similar reasoning
424    // was used for the LoopInfo verifier.
425    if (VerifyLoopLCSSA) {
426      assert(all_of(*LI,
427                    [&](Loop *L) {
428                      return L->isRecursivelyLCSSAForm(*DT, *LI);
429                    }) &&
430             "LCSSA form is broken!");
431    }
432  };
433
434  /// This transformation requires natural loop information & requires that
435  /// loop preheaders be inserted into the CFG.  It maintains both of these,
436  /// as well as the CFG.  It also requires dominator information.
437  void getAnalysisUsage(AnalysisUsage &AU) const override {
438    AU.setPreservesCFG();
439
440    AU.addRequired<DominatorTreeWrapperPass>();
441    AU.addRequired<LoopInfoWrapperPass>();
442    AU.addPreservedID(LoopSimplifyID);
443    AU.addPreserved<AAResultsWrapperPass>();
444    AU.addPreserved<BasicAAWrapperPass>();
445    AU.addPreserved<GlobalsAAWrapperPass>();
446    AU.addPreserved<ScalarEvolutionWrapperPass>();
447    AU.addPreserved<SCEVAAWrapperPass>();
448    AU.addPreserved<BranchProbabilityInfoWrapperPass>();
449    AU.addPreserved<MemorySSAWrapperPass>();
450
451    // This is needed to perform LCSSA verification inside LPPassManager
452    AU.addRequired<LCSSAVerificationPass>();
453    AU.addPreserved<LCSSAVerificationPass>();
454  }
455};
456}
457
458char LCSSAWrapperPass::ID = 0;
459INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
460                      false, false)
461INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
462INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
463INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
464INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
465                    false, false)
466
467Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
468char &llvm::LCSSAID = LCSSAWrapperPass::ID;
469
470/// Transform \p F into loop-closed SSA form.
471bool LCSSAWrapperPass::runOnFunction(Function &F) {
472  LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
473  DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
474  auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
475  SE = SEWP ? &SEWP->getSE() : nullptr;
476
477  return formLCSSAOnAllLoops(LI, *DT, SE);
478}
479
480PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
481  auto &LI = AM.getResult<LoopAnalysis>(F);
482  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
483  auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
484  if (!formLCSSAOnAllLoops(&LI, DT, SE))
485    return PreservedAnalyses::all();
486
487  PreservedAnalyses PA;
488  PA.preserveSet<CFGAnalyses>();
489  PA.preserve<BasicAA>();
490  PA.preserve<GlobalsAA>();
491  PA.preserve<SCEVAA>();
492  PA.preserve<ScalarEvolutionAnalysis>();
493  // BPI maps terminators to probabilities, since we don't modify the CFG, no
494  // updates are needed to preserve it.
495  PA.preserve<BranchProbabilityAnalysis>();
496  PA.preserve<MemorySSAAnalysis>();
497  return PA;
498}
499