SROA.cpp revision 360784
1//===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9/// This transformation implements the well known scalar replacement of
10/// aggregates transformation. It tries to identify promotable elements of an
11/// aggregate alloca, and promote them to registers. It will also try to
12/// convert uses of an element (or set of elements) of an alloca into a vector
13/// or bitfield-style integer scalar if appropriate.
14///
15/// It works to do this with minimal slicing of the alloca so that regions
16/// which are merely transferred in and out of external memory remain unchanged
17/// and are not decomposed to scalar code.
18///
19/// Because this also performs alloca promotion, it can be thought of as also
20/// serving the purpose of SSA formation. The algorithm iterates on the
21/// function until all opportunities for promotion have been realized.
22///
23//===----------------------------------------------------------------------===//
24
25#include "llvm/Transforms/Scalar/SROA.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/PointerIntPair.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SetVector.h"
32#include "llvm/ADT/SmallBitVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallVector.h"
35#include "llvm/ADT/Statistic.h"
36#include "llvm/ADT/StringRef.h"
37#include "llvm/ADT/Twine.h"
38#include "llvm/ADT/iterator.h"
39#include "llvm/ADT/iterator_range.h"
40#include "llvm/Analysis/AssumptionCache.h"
41#include "llvm/Analysis/GlobalsModRef.h"
42#include "llvm/Analysis/Loads.h"
43#include "llvm/Analysis/PtrUseVisitor.h"
44#include "llvm/Config/llvm-config.h"
45#include "llvm/IR/BasicBlock.h"
46#include "llvm/IR/Constant.h"
47#include "llvm/IR/ConstantFolder.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DIBuilder.h"
50#include "llvm/IR/DataLayout.h"
51#include "llvm/IR/DebugInfoMetadata.h"
52#include "llvm/IR/DerivedTypes.h"
53#include "llvm/IR/Dominators.h"
54#include "llvm/IR/Function.h"
55#include "llvm/IR/GetElementPtrTypeIterator.h"
56#include "llvm/IR/GlobalAlias.h"
57#include "llvm/IR/IRBuilder.h"
58#include "llvm/IR/InstVisitor.h"
59#include "llvm/IR/InstrTypes.h"
60#include "llvm/IR/Instruction.h"
61#include "llvm/IR/Instructions.h"
62#include "llvm/IR/IntrinsicInst.h"
63#include "llvm/IR/Intrinsics.h"
64#include "llvm/IR/LLVMContext.h"
65#include "llvm/IR/Metadata.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/Operator.h"
68#include "llvm/IR/PassManager.h"
69#include "llvm/IR/Type.h"
70#include "llvm/IR/Use.h"
71#include "llvm/IR/User.h"
72#include "llvm/IR/Value.h"
73#include "llvm/InitializePasses.h"
74#include "llvm/Pass.h"
75#include "llvm/Support/Casting.h"
76#include "llvm/Support/CommandLine.h"
77#include "llvm/Support/Compiler.h"
78#include "llvm/Support/Debug.h"
79#include "llvm/Support/ErrorHandling.h"
80#include "llvm/Support/MathExtras.h"
81#include "llvm/Support/raw_ostream.h"
82#include "llvm/Transforms/Scalar.h"
83#include "llvm/Transforms/Utils/Local.h"
84#include "llvm/Transforms/Utils/PromoteMemToReg.h"
85#include <algorithm>
86#include <cassert>
87#include <chrono>
88#include <cstddef>
89#include <cstdint>
90#include <cstring>
91#include <iterator>
92#include <string>
93#include <tuple>
94#include <utility>
95#include <vector>
96
97#ifndef NDEBUG
98// We only use this for a debug check.
99#include <random>
100#endif
101
102using namespace llvm;
103using namespace llvm::sroa;
104
105#define DEBUG_TYPE "sroa"
106
107STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
108STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
109STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
110STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
111STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
112STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
113STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
114STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
115STATISTIC(NumDeleted, "Number of instructions deleted");
116STATISTIC(NumVectorized, "Number of vectorized aggregates");
117
118/// Hidden option to enable randomly shuffling the slices to help uncover
119/// instability in their order.
120static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
121                                             cl::init(false), cl::Hidden);
122
123/// Hidden option to experiment with completely strict handling of inbounds
124/// GEPs.
125static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
126                                        cl::Hidden);
127
128namespace {
129
130/// A custom IRBuilder inserter which prefixes all names, but only in
131/// Assert builds.
132class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter {
133  std::string Prefix;
134
135  const Twine getNameWithPrefix(const Twine &Name) const {
136    return Name.isTriviallyEmpty() ? Name : Prefix + Name;
137  }
138
139public:
140  void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
141
142protected:
143  void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
144                    BasicBlock::iterator InsertPt) const {
145    IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
146                                           InsertPt);
147  }
148};
149
150/// Provide a type for IRBuilder that drops names in release builds.
151using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
152
153/// A used slice of an alloca.
154///
155/// This structure represents a slice of an alloca used by some instruction. It
156/// stores both the begin and end offsets of this use, a pointer to the use
157/// itself, and a flag indicating whether we can classify the use as splittable
158/// or not when forming partitions of the alloca.
159class Slice {
160  /// The beginning offset of the range.
161  uint64_t BeginOffset = 0;
162
163  /// The ending offset, not included in the range.
164  uint64_t EndOffset = 0;
165
166  /// Storage for both the use of this slice and whether it can be
167  /// split.
168  PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
169
170public:
171  Slice() = default;
172
173  Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
174      : BeginOffset(BeginOffset), EndOffset(EndOffset),
175        UseAndIsSplittable(U, IsSplittable) {}
176
177  uint64_t beginOffset() const { return BeginOffset; }
178  uint64_t endOffset() const { return EndOffset; }
179
180  bool isSplittable() const { return UseAndIsSplittable.getInt(); }
181  void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
182
183  Use *getUse() const { return UseAndIsSplittable.getPointer(); }
184
185  bool isDead() const { return getUse() == nullptr; }
186  void kill() { UseAndIsSplittable.setPointer(nullptr); }
187
188  /// Support for ordering ranges.
189  ///
190  /// This provides an ordering over ranges such that start offsets are
191  /// always increasing, and within equal start offsets, the end offsets are
192  /// decreasing. Thus the spanning range comes first in a cluster with the
193  /// same start position.
194  bool operator<(const Slice &RHS) const {
195    if (beginOffset() < RHS.beginOffset())
196      return true;
197    if (beginOffset() > RHS.beginOffset())
198      return false;
199    if (isSplittable() != RHS.isSplittable())
200      return !isSplittable();
201    if (endOffset() > RHS.endOffset())
202      return true;
203    return false;
204  }
205
206  /// Support comparison with a single offset to allow binary searches.
207  friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
208                                              uint64_t RHSOffset) {
209    return LHS.beginOffset() < RHSOffset;
210  }
211  friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
212                                              const Slice &RHS) {
213    return LHSOffset < RHS.beginOffset();
214  }
215
216  bool operator==(const Slice &RHS) const {
217    return isSplittable() == RHS.isSplittable() &&
218           beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
219  }
220  bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
221};
222
223} // end anonymous namespace
224
225/// Representation of the alloca slices.
226///
227/// This class represents the slices of an alloca which are formed by its
228/// various uses. If a pointer escapes, we can't fully build a representation
229/// for the slices used and we reflect that in this structure. The uses are
230/// stored, sorted by increasing beginning offset and with unsplittable slices
231/// starting at a particular offset before splittable slices.
232class llvm::sroa::AllocaSlices {
233public:
234  /// Construct the slices of a particular alloca.
235  AllocaSlices(const DataLayout &DL, AllocaInst &AI);
236
237  /// Test whether a pointer to the allocation escapes our analysis.
238  ///
239  /// If this is true, the slices are never fully built and should be
240  /// ignored.
241  bool isEscaped() const { return PointerEscapingInstr; }
242
243  /// Support for iterating over the slices.
244  /// @{
245  using iterator = SmallVectorImpl<Slice>::iterator;
246  using range = iterator_range<iterator>;
247
248  iterator begin() { return Slices.begin(); }
249  iterator end() { return Slices.end(); }
250
251  using const_iterator = SmallVectorImpl<Slice>::const_iterator;
252  using const_range = iterator_range<const_iterator>;
253
254  const_iterator begin() const { return Slices.begin(); }
255  const_iterator end() const { return Slices.end(); }
256  /// @}
257
258  /// Erase a range of slices.
259  void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
260
261  /// Insert new slices for this alloca.
262  ///
263  /// This moves the slices into the alloca's slices collection, and re-sorts
264  /// everything so that the usual ordering properties of the alloca's slices
265  /// hold.
266  void insert(ArrayRef<Slice> NewSlices) {
267    int OldSize = Slices.size();
268    Slices.append(NewSlices.begin(), NewSlices.end());
269    auto SliceI = Slices.begin() + OldSize;
270    llvm::sort(SliceI, Slices.end());
271    std::inplace_merge(Slices.begin(), SliceI, Slices.end());
272  }
273
274  // Forward declare the iterator and range accessor for walking the
275  // partitions.
276  class partition_iterator;
277  iterator_range<partition_iterator> partitions();
278
279  /// Access the dead users for this alloca.
280  ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
281
282  /// Access the dead operands referring to this alloca.
283  ///
284  /// These are operands which have cannot actually be used to refer to the
285  /// alloca as they are outside its range and the user doesn't correct for
286  /// that. These mostly consist of PHI node inputs and the like which we just
287  /// need to replace with undef.
288  ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
289
290#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
291  void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
292  void printSlice(raw_ostream &OS, const_iterator I,
293                  StringRef Indent = "  ") const;
294  void printUse(raw_ostream &OS, const_iterator I,
295                StringRef Indent = "  ") const;
296  void print(raw_ostream &OS) const;
297  void dump(const_iterator I) const;
298  void dump() const;
299#endif
300
301private:
302  template <typename DerivedT, typename RetT = void> class BuilderBase;
303  class SliceBuilder;
304
305  friend class AllocaSlices::SliceBuilder;
306
307#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
308  /// Handle to alloca instruction to simplify method interfaces.
309  AllocaInst &AI;
310#endif
311
312  /// The instruction responsible for this alloca not having a known set
313  /// of slices.
314  ///
315  /// When an instruction (potentially) escapes the pointer to the alloca, we
316  /// store a pointer to that here and abort trying to form slices of the
317  /// alloca. This will be null if the alloca slices are analyzed successfully.
318  Instruction *PointerEscapingInstr;
319
320  /// The slices of the alloca.
321  ///
322  /// We store a vector of the slices formed by uses of the alloca here. This
323  /// vector is sorted by increasing begin offset, and then the unsplittable
324  /// slices before the splittable ones. See the Slice inner class for more
325  /// details.
326  SmallVector<Slice, 8> Slices;
327
328  /// Instructions which will become dead if we rewrite the alloca.
329  ///
330  /// Note that these are not separated by slice. This is because we expect an
331  /// alloca to be completely rewritten or not rewritten at all. If rewritten,
332  /// all these instructions can simply be removed and replaced with undef as
333  /// they come from outside of the allocated space.
334  SmallVector<Instruction *, 8> DeadUsers;
335
336  /// Operands which will become dead if we rewrite the alloca.
337  ///
338  /// These are operands that in their particular use can be replaced with
339  /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
340  /// to PHI nodes and the like. They aren't entirely dead (there might be
341  /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
342  /// want to swap this particular input for undef to simplify the use lists of
343  /// the alloca.
344  SmallVector<Use *, 8> DeadOperands;
345};
346
347/// A partition of the slices.
348///
349/// An ephemeral representation for a range of slices which can be viewed as
350/// a partition of the alloca. This range represents a span of the alloca's
351/// memory which cannot be split, and provides access to all of the slices
352/// overlapping some part of the partition.
353///
354/// Objects of this type are produced by traversing the alloca's slices, but
355/// are only ephemeral and not persistent.
356class llvm::sroa::Partition {
357private:
358  friend class AllocaSlices;
359  friend class AllocaSlices::partition_iterator;
360
361  using iterator = AllocaSlices::iterator;
362
363  /// The beginning and ending offsets of the alloca for this
364  /// partition.
365  uint64_t BeginOffset = 0, EndOffset = 0;
366
367  /// The start and end iterators of this partition.
368  iterator SI, SJ;
369
370  /// A collection of split slice tails overlapping the partition.
371  SmallVector<Slice *, 4> SplitTails;
372
373  /// Raw constructor builds an empty partition starting and ending at
374  /// the given iterator.
375  Partition(iterator SI) : SI(SI), SJ(SI) {}
376
377public:
378  /// The start offset of this partition.
379  ///
380  /// All of the contained slices start at or after this offset.
381  uint64_t beginOffset() const { return BeginOffset; }
382
383  /// The end offset of this partition.
384  ///
385  /// All of the contained slices end at or before this offset.
386  uint64_t endOffset() const { return EndOffset; }
387
388  /// The size of the partition.
389  ///
390  /// Note that this can never be zero.
391  uint64_t size() const {
392    assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
393    return EndOffset - BeginOffset;
394  }
395
396  /// Test whether this partition contains no slices, and merely spans
397  /// a region occupied by split slices.
398  bool empty() const { return SI == SJ; }
399
400  /// \name Iterate slices that start within the partition.
401  /// These may be splittable or unsplittable. They have a begin offset >= the
402  /// partition begin offset.
403  /// @{
404  // FIXME: We should probably define a "concat_iterator" helper and use that
405  // to stitch together pointee_iterators over the split tails and the
406  // contiguous iterators of the partition. That would give a much nicer
407  // interface here. We could then additionally expose filtered iterators for
408  // split, unsplit, and unsplittable splices based on the usage patterns.
409  iterator begin() const { return SI; }
410  iterator end() const { return SJ; }
411  /// @}
412
413  /// Get the sequence of split slice tails.
414  ///
415  /// These tails are of slices which start before this partition but are
416  /// split and overlap into the partition. We accumulate these while forming
417  /// partitions.
418  ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
419};
420
421/// An iterator over partitions of the alloca's slices.
422///
423/// This iterator implements the core algorithm for partitioning the alloca's
424/// slices. It is a forward iterator as we don't support backtracking for
425/// efficiency reasons, and re-use a single storage area to maintain the
426/// current set of split slices.
427///
428/// It is templated on the slice iterator type to use so that it can operate
429/// with either const or non-const slice iterators.
430class AllocaSlices::partition_iterator
431    : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
432                                  Partition> {
433  friend class AllocaSlices;
434
435  /// Most of the state for walking the partitions is held in a class
436  /// with a nice interface for examining them.
437  Partition P;
438
439  /// We need to keep the end of the slices to know when to stop.
440  AllocaSlices::iterator SE;
441
442  /// We also need to keep track of the maximum split end offset seen.
443  /// FIXME: Do we really?
444  uint64_t MaxSplitSliceEndOffset = 0;
445
446  /// Sets the partition to be empty at given iterator, and sets the
447  /// end iterator.
448  partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
449      : P(SI), SE(SE) {
450    // If not already at the end, advance our state to form the initial
451    // partition.
452    if (SI != SE)
453      advance();
454  }
455
456  /// Advance the iterator to the next partition.
457  ///
458  /// Requires that the iterator not be at the end of the slices.
459  void advance() {
460    assert((P.SI != SE || !P.SplitTails.empty()) &&
461           "Cannot advance past the end of the slices!");
462
463    // Clear out any split uses which have ended.
464    if (!P.SplitTails.empty()) {
465      if (P.EndOffset >= MaxSplitSliceEndOffset) {
466        // If we've finished all splits, this is easy.
467        P.SplitTails.clear();
468        MaxSplitSliceEndOffset = 0;
469      } else {
470        // Remove the uses which have ended in the prior partition. This
471        // cannot change the max split slice end because we just checked that
472        // the prior partition ended prior to that max.
473        P.SplitTails.erase(llvm::remove_if(P.SplitTails,
474                                           [&](Slice *S) {
475                                             return S->endOffset() <=
476                                                    P.EndOffset;
477                                           }),
478                           P.SplitTails.end());
479        assert(llvm::any_of(P.SplitTails,
480                            [&](Slice *S) {
481                              return S->endOffset() == MaxSplitSliceEndOffset;
482                            }) &&
483               "Could not find the current max split slice offset!");
484        assert(llvm::all_of(P.SplitTails,
485                            [&](Slice *S) {
486                              return S->endOffset() <= MaxSplitSliceEndOffset;
487                            }) &&
488               "Max split slice end offset is not actually the max!");
489      }
490    }
491
492    // If P.SI is already at the end, then we've cleared the split tail and
493    // now have an end iterator.
494    if (P.SI == SE) {
495      assert(P.SplitTails.empty() && "Failed to clear the split slices!");
496      return;
497    }
498
499    // If we had a non-empty partition previously, set up the state for
500    // subsequent partitions.
501    if (P.SI != P.SJ) {
502      // Accumulate all the splittable slices which started in the old
503      // partition into the split list.
504      for (Slice &S : P)
505        if (S.isSplittable() && S.endOffset() > P.EndOffset) {
506          P.SplitTails.push_back(&S);
507          MaxSplitSliceEndOffset =
508              std::max(S.endOffset(), MaxSplitSliceEndOffset);
509        }
510
511      // Start from the end of the previous partition.
512      P.SI = P.SJ;
513
514      // If P.SI is now at the end, we at most have a tail of split slices.
515      if (P.SI == SE) {
516        P.BeginOffset = P.EndOffset;
517        P.EndOffset = MaxSplitSliceEndOffset;
518        return;
519      }
520
521      // If the we have split slices and the next slice is after a gap and is
522      // not splittable immediately form an empty partition for the split
523      // slices up until the next slice begins.
524      if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
525          !P.SI->isSplittable()) {
526        P.BeginOffset = P.EndOffset;
527        P.EndOffset = P.SI->beginOffset();
528        return;
529      }
530    }
531
532    // OK, we need to consume new slices. Set the end offset based on the
533    // current slice, and step SJ past it. The beginning offset of the
534    // partition is the beginning offset of the next slice unless we have
535    // pre-existing split slices that are continuing, in which case we begin
536    // at the prior end offset.
537    P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
538    P.EndOffset = P.SI->endOffset();
539    ++P.SJ;
540
541    // There are two strategies to form a partition based on whether the
542    // partition starts with an unsplittable slice or a splittable slice.
543    if (!P.SI->isSplittable()) {
544      // When we're forming an unsplittable region, it must always start at
545      // the first slice and will extend through its end.
546      assert(P.BeginOffset == P.SI->beginOffset());
547
548      // Form a partition including all of the overlapping slices with this
549      // unsplittable slice.
550      while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
551        if (!P.SJ->isSplittable())
552          P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
553        ++P.SJ;
554      }
555
556      // We have a partition across a set of overlapping unsplittable
557      // partitions.
558      return;
559    }
560
561    // If we're starting with a splittable slice, then we need to form
562    // a synthetic partition spanning it and any other overlapping splittable
563    // splices.
564    assert(P.SI->isSplittable() && "Forming a splittable partition!");
565
566    // Collect all of the overlapping splittable slices.
567    while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
568           P.SJ->isSplittable()) {
569      P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
570      ++P.SJ;
571    }
572
573    // Back upiP.EndOffset if we ended the span early when encountering an
574    // unsplittable slice. This synthesizes the early end offset of
575    // a partition spanning only splittable slices.
576    if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
577      assert(!P.SJ->isSplittable());
578      P.EndOffset = P.SJ->beginOffset();
579    }
580  }
581
582public:
583  bool operator==(const partition_iterator &RHS) const {
584    assert(SE == RHS.SE &&
585           "End iterators don't match between compared partition iterators!");
586
587    // The observed positions of partitions is marked by the P.SI iterator and
588    // the emptiness of the split slices. The latter is only relevant when
589    // P.SI == SE, as the end iterator will additionally have an empty split
590    // slices list, but the prior may have the same P.SI and a tail of split
591    // slices.
592    if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
593      assert(P.SJ == RHS.P.SJ &&
594             "Same set of slices formed two different sized partitions!");
595      assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
596             "Same slice position with differently sized non-empty split "
597             "slice tails!");
598      return true;
599    }
600    return false;
601  }
602
603  partition_iterator &operator++() {
604    advance();
605    return *this;
606  }
607
608  Partition &operator*() { return P; }
609};
610
611/// A forward range over the partitions of the alloca's slices.
612///
613/// This accesses an iterator range over the partitions of the alloca's
614/// slices. It computes these partitions on the fly based on the overlapping
615/// offsets of the slices and the ability to split them. It will visit "empty"
616/// partitions to cover regions of the alloca only accessed via split
617/// slices.
618iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
619  return make_range(partition_iterator(begin(), end()),
620                    partition_iterator(end(), end()));
621}
622
623static Value *foldSelectInst(SelectInst &SI) {
624  // If the condition being selected on is a constant or the same value is
625  // being selected between, fold the select. Yes this does (rarely) happen
626  // early on.
627  if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
628    return SI.getOperand(1 + CI->isZero());
629  if (SI.getOperand(1) == SI.getOperand(2))
630    return SI.getOperand(1);
631
632  return nullptr;
633}
634
635/// A helper that folds a PHI node or a select.
636static Value *foldPHINodeOrSelectInst(Instruction &I) {
637  if (PHINode *PN = dyn_cast<PHINode>(&I)) {
638    // If PN merges together the same value, return that value.
639    return PN->hasConstantValue();
640  }
641  return foldSelectInst(cast<SelectInst>(I));
642}
643
644/// Builder for the alloca slices.
645///
646/// This class builds a set of alloca slices by recursively visiting the uses
647/// of an alloca and making a slice for each load and store at each offset.
648class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
649  friend class PtrUseVisitor<SliceBuilder>;
650  friend class InstVisitor<SliceBuilder>;
651
652  using Base = PtrUseVisitor<SliceBuilder>;
653
654  const uint64_t AllocSize;
655  AllocaSlices &AS;
656
657  SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
658  SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
659
660  /// Set to de-duplicate dead instructions found in the use walk.
661  SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
662
663public:
664  SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
665      : PtrUseVisitor<SliceBuilder>(DL),
666        AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
667
668private:
669  void markAsDead(Instruction &I) {
670    if (VisitedDeadInsts.insert(&I).second)
671      AS.DeadUsers.push_back(&I);
672  }
673
674  void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
675                 bool IsSplittable = false) {
676    // Completely skip uses which have a zero size or start either before or
677    // past the end of the allocation.
678    if (Size == 0 || Offset.uge(AllocSize)) {
679      LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
680                        << Offset
681                        << " which has zero size or starts outside of the "
682                        << AllocSize << " byte alloca:\n"
683                        << "    alloca: " << AS.AI << "\n"
684                        << "       use: " << I << "\n");
685      return markAsDead(I);
686    }
687
688    uint64_t BeginOffset = Offset.getZExtValue();
689    uint64_t EndOffset = BeginOffset + Size;
690
691    // Clamp the end offset to the end of the allocation. Note that this is
692    // formulated to handle even the case where "BeginOffset + Size" overflows.
693    // This may appear superficially to be something we could ignore entirely,
694    // but that is not so! There may be widened loads or PHI-node uses where
695    // some instructions are dead but not others. We can't completely ignore
696    // them, and so have to record at least the information here.
697    assert(AllocSize >= BeginOffset); // Established above.
698    if (Size > AllocSize - BeginOffset) {
699      LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
700                        << Offset << " to remain within the " << AllocSize
701                        << " byte alloca:\n"
702                        << "    alloca: " << AS.AI << "\n"
703                        << "       use: " << I << "\n");
704      EndOffset = AllocSize;
705    }
706
707    AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
708  }
709
710  void visitBitCastInst(BitCastInst &BC) {
711    if (BC.use_empty())
712      return markAsDead(BC);
713
714    return Base::visitBitCastInst(BC);
715  }
716
717  void visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
718    if (ASC.use_empty())
719      return markAsDead(ASC);
720
721    return Base::visitAddrSpaceCastInst(ASC);
722  }
723
724  void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
725    if (GEPI.use_empty())
726      return markAsDead(GEPI);
727
728    if (SROAStrictInbounds && GEPI.isInBounds()) {
729      // FIXME: This is a manually un-factored variant of the basic code inside
730      // of GEPs with checking of the inbounds invariant specified in the
731      // langref in a very strict sense. If we ever want to enable
732      // SROAStrictInbounds, this code should be factored cleanly into
733      // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
734      // by writing out the code here where we have the underlying allocation
735      // size readily available.
736      APInt GEPOffset = Offset;
737      const DataLayout &DL = GEPI.getModule()->getDataLayout();
738      for (gep_type_iterator GTI = gep_type_begin(GEPI),
739                             GTE = gep_type_end(GEPI);
740           GTI != GTE; ++GTI) {
741        ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
742        if (!OpC)
743          break;
744
745        // Handle a struct index, which adds its field offset to the pointer.
746        if (StructType *STy = GTI.getStructTypeOrNull()) {
747          unsigned ElementIdx = OpC->getZExtValue();
748          const StructLayout *SL = DL.getStructLayout(STy);
749          GEPOffset +=
750              APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
751        } else {
752          // For array or vector indices, scale the index by the size of the
753          // type.
754          APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
755          GEPOffset += Index * APInt(Offset.getBitWidth(),
756                                     DL.getTypeAllocSize(GTI.getIndexedType()));
757        }
758
759        // If this index has computed an intermediate pointer which is not
760        // inbounds, then the result of the GEP is a poison value and we can
761        // delete it and all uses.
762        if (GEPOffset.ugt(AllocSize))
763          return markAsDead(GEPI);
764      }
765    }
766
767    return Base::visitGetElementPtrInst(GEPI);
768  }
769
770  void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
771                         uint64_t Size, bool IsVolatile) {
772    // We allow splitting of non-volatile loads and stores where the type is an
773    // integer type. These may be used to implement 'memcpy' or other "transfer
774    // of bits" patterns.
775    bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
776
777    insertUse(I, Offset, Size, IsSplittable);
778  }
779
780  void visitLoadInst(LoadInst &LI) {
781    assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
782           "All simple FCA loads should have been pre-split");
783
784    if (!IsOffsetKnown)
785      return PI.setAborted(&LI);
786
787    if (LI.isVolatile() &&
788        LI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
789      return PI.setAborted(&LI);
790
791    uint64_t Size = DL.getTypeStoreSize(LI.getType());
792    return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
793  }
794
795  void visitStoreInst(StoreInst &SI) {
796    Value *ValOp = SI.getValueOperand();
797    if (ValOp == *U)
798      return PI.setEscapedAndAborted(&SI);
799    if (!IsOffsetKnown)
800      return PI.setAborted(&SI);
801
802    if (SI.isVolatile() &&
803        SI.getPointerAddressSpace() != DL.getAllocaAddrSpace())
804      return PI.setAborted(&SI);
805
806    uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
807
808    // If this memory access can be shown to *statically* extend outside the
809    // bounds of the allocation, it's behavior is undefined, so simply
810    // ignore it. Note that this is more strict than the generic clamping
811    // behavior of insertUse. We also try to handle cases which might run the
812    // risk of overflow.
813    // FIXME: We should instead consider the pointer to have escaped if this
814    // function is being instrumented for addressing bugs or race conditions.
815    if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
816      LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
817                        << Offset << " which extends past the end of the "
818                        << AllocSize << " byte alloca:\n"
819                        << "    alloca: " << AS.AI << "\n"
820                        << "       use: " << SI << "\n");
821      return markAsDead(SI);
822    }
823
824    assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
825           "All simple FCA stores should have been pre-split");
826    handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
827  }
828
829  void visitMemSetInst(MemSetInst &II) {
830    assert(II.getRawDest() == *U && "Pointer use is not the destination?");
831    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
832    if ((Length && Length->getValue() == 0) ||
833        (IsOffsetKnown && Offset.uge(AllocSize)))
834      // Zero-length mem transfer intrinsics can be ignored entirely.
835      return markAsDead(II);
836
837    if (!IsOffsetKnown)
838      return PI.setAborted(&II);
839
840    // Don't replace this with a store with a different address space.  TODO:
841    // Use a store with the casted new alloca?
842    if (II.isVolatile() && II.getDestAddressSpace() != DL.getAllocaAddrSpace())
843      return PI.setAborted(&II);
844
845    insertUse(II, Offset, Length ? Length->getLimitedValue()
846                                 : AllocSize - Offset.getLimitedValue(),
847              (bool)Length);
848  }
849
850  void visitMemTransferInst(MemTransferInst &II) {
851    ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
852    if (Length && Length->getValue() == 0)
853      // Zero-length mem transfer intrinsics can be ignored entirely.
854      return markAsDead(II);
855
856    // Because we can visit these intrinsics twice, also check to see if the
857    // first time marked this instruction as dead. If so, skip it.
858    if (VisitedDeadInsts.count(&II))
859      return;
860
861    if (!IsOffsetKnown)
862      return PI.setAborted(&II);
863
864    // Don't replace this with a load/store with a different address space.
865    // TODO: Use a store with the casted new alloca?
866    if (II.isVolatile() &&
867        (II.getDestAddressSpace() != DL.getAllocaAddrSpace() ||
868         II.getSourceAddressSpace() != DL.getAllocaAddrSpace()))
869      return PI.setAborted(&II);
870
871    // This side of the transfer is completely out-of-bounds, and so we can
872    // nuke the entire transfer. However, we also need to nuke the other side
873    // if already added to our partitions.
874    // FIXME: Yet another place we really should bypass this when
875    // instrumenting for ASan.
876    if (Offset.uge(AllocSize)) {
877      SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
878          MemTransferSliceMap.find(&II);
879      if (MTPI != MemTransferSliceMap.end())
880        AS.Slices[MTPI->second].kill();
881      return markAsDead(II);
882    }
883
884    uint64_t RawOffset = Offset.getLimitedValue();
885    uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
886
887    // Check for the special case where the same exact value is used for both
888    // source and dest.
889    if (*U == II.getRawDest() && *U == II.getRawSource()) {
890      // For non-volatile transfers this is a no-op.
891      if (!II.isVolatile())
892        return markAsDead(II);
893
894      return insertUse(II, Offset, Size, /*IsSplittable=*/false);
895    }
896
897    // If we have seen both source and destination for a mem transfer, then
898    // they both point to the same alloca.
899    bool Inserted;
900    SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
901    std::tie(MTPI, Inserted) =
902        MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
903    unsigned PrevIdx = MTPI->second;
904    if (!Inserted) {
905      Slice &PrevP = AS.Slices[PrevIdx];
906
907      // Check if the begin offsets match and this is a non-volatile transfer.
908      // In that case, we can completely elide the transfer.
909      if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
910        PrevP.kill();
911        return markAsDead(II);
912      }
913
914      // Otherwise we have an offset transfer within the same alloca. We can't
915      // split those.
916      PrevP.makeUnsplittable();
917    }
918
919    // Insert the use now that we've fixed up the splittable nature.
920    insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
921
922    // Check that we ended up with a valid index in the map.
923    assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
924           "Map index doesn't point back to a slice with this user.");
925  }
926
927  // Disable SRoA for any intrinsics except for lifetime invariants.
928  // FIXME: What about debug intrinsics? This matches old behavior, but
929  // doesn't make sense.
930  void visitIntrinsicInst(IntrinsicInst &II) {
931    if (!IsOffsetKnown)
932      return PI.setAborted(&II);
933
934    if (II.isLifetimeStartOrEnd()) {
935      ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
936      uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
937                               Length->getLimitedValue());
938      insertUse(II, Offset, Size, true);
939      return;
940    }
941
942    Base::visitIntrinsicInst(II);
943  }
944
945  Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
946    // We consider any PHI or select that results in a direct load or store of
947    // the same offset to be a viable use for slicing purposes. These uses
948    // are considered unsplittable and the size is the maximum loaded or stored
949    // size.
950    SmallPtrSet<Instruction *, 4> Visited;
951    SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
952    Visited.insert(Root);
953    Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
954    const DataLayout &DL = Root->getModule()->getDataLayout();
955    // If there are no loads or stores, the access is dead. We mark that as
956    // a size zero access.
957    Size = 0;
958    do {
959      Instruction *I, *UsedI;
960      std::tie(UsedI, I) = Uses.pop_back_val();
961
962      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
963        Size = std::max(Size,
964                        DL.getTypeStoreSize(LI->getType()).getFixedSize());
965        continue;
966      }
967      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
968        Value *Op = SI->getOperand(0);
969        if (Op == UsedI)
970          return SI;
971        Size = std::max(Size,
972                        DL.getTypeStoreSize(Op->getType()).getFixedSize());
973        continue;
974      }
975
976      if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
977        if (!GEP->hasAllZeroIndices())
978          return GEP;
979      } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
980                 !isa<SelectInst>(I) && !isa<AddrSpaceCastInst>(I)) {
981        return I;
982      }
983
984      for (User *U : I->users())
985        if (Visited.insert(cast<Instruction>(U)).second)
986          Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
987    } while (!Uses.empty());
988
989    return nullptr;
990  }
991
992  void visitPHINodeOrSelectInst(Instruction &I) {
993    assert(isa<PHINode>(I) || isa<SelectInst>(I));
994    if (I.use_empty())
995      return markAsDead(I);
996
997    // TODO: We could use SimplifyInstruction here to fold PHINodes and
998    // SelectInsts. However, doing so requires to change the current
999    // dead-operand-tracking mechanism. For instance, suppose neither loading
1000    // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
1001    // trap either.  However, if we simply replace %U with undef using the
1002    // current dead-operand-tracking mechanism, "load (select undef, undef,
1003    // %other)" may trap because the select may return the first operand
1004    // "undef".
1005    if (Value *Result = foldPHINodeOrSelectInst(I)) {
1006      if (Result == *U)
1007        // If the result of the constant fold will be the pointer, recurse
1008        // through the PHI/select as if we had RAUW'ed it.
1009        enqueueUsers(I);
1010      else
1011        // Otherwise the operand to the PHI/select is dead, and we can replace
1012        // it with undef.
1013        AS.DeadOperands.push_back(U);
1014
1015      return;
1016    }
1017
1018    if (!IsOffsetKnown)
1019      return PI.setAborted(&I);
1020
1021    // See if we already have computed info on this node.
1022    uint64_t &Size = PHIOrSelectSizes[&I];
1023    if (!Size) {
1024      // This is a new PHI/Select, check for an unsafe use of it.
1025      if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1026        return PI.setAborted(UnsafeI);
1027    }
1028
1029    // For PHI and select operands outside the alloca, we can't nuke the entire
1030    // phi or select -- the other side might still be relevant, so we special
1031    // case them here and use a separate structure to track the operands
1032    // themselves which should be replaced with undef.
1033    // FIXME: This should instead be escaped in the event we're instrumenting
1034    // for address sanitization.
1035    if (Offset.uge(AllocSize)) {
1036      AS.DeadOperands.push_back(U);
1037      return;
1038    }
1039
1040    insertUse(I, Offset, Size);
1041  }
1042
1043  void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1044
1045  void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1046
1047  /// Disable SROA entirely if there are unhandled users of the alloca.
1048  void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1049};
1050
1051AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1052    :
1053#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1054      AI(AI),
1055#endif
1056      PointerEscapingInstr(nullptr) {
1057  SliceBuilder PB(DL, AI, *this);
1058  SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1059  if (PtrI.isEscaped() || PtrI.isAborted()) {
1060    // FIXME: We should sink the escape vs. abort info into the caller nicely,
1061    // possibly by just storing the PtrInfo in the AllocaSlices.
1062    PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1063                                                  : PtrI.getAbortingInst();
1064    assert(PointerEscapingInstr && "Did not track a bad instruction");
1065    return;
1066  }
1067
1068  Slices.erase(
1069      llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
1070      Slices.end());
1071
1072#ifndef NDEBUG
1073  if (SROARandomShuffleSlices) {
1074    std::mt19937 MT(static_cast<unsigned>(
1075        std::chrono::system_clock::now().time_since_epoch().count()));
1076    std::shuffle(Slices.begin(), Slices.end(), MT);
1077  }
1078#endif
1079
1080  // Sort the uses. This arranges for the offsets to be in ascending order,
1081  // and the sizes to be in descending order.
1082  llvm::sort(Slices);
1083}
1084
1085#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1086
1087void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1088                         StringRef Indent) const {
1089  printSlice(OS, I, Indent);
1090  OS << "\n";
1091  printUse(OS, I, Indent);
1092}
1093
1094void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1095                              StringRef Indent) const {
1096  OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1097     << " slice #" << (I - begin())
1098     << (I->isSplittable() ? " (splittable)" : "");
1099}
1100
1101void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1102                            StringRef Indent) const {
1103  OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1104}
1105
1106void AllocaSlices::print(raw_ostream &OS) const {
1107  if (PointerEscapingInstr) {
1108    OS << "Can't analyze slices for alloca: " << AI << "\n"
1109       << "  A pointer to this alloca escaped by:\n"
1110       << "  " << *PointerEscapingInstr << "\n";
1111    return;
1112  }
1113
1114  OS << "Slices of alloca: " << AI << "\n";
1115  for (const_iterator I = begin(), E = end(); I != E; ++I)
1116    print(OS, I);
1117}
1118
1119LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1120  print(dbgs(), I);
1121}
1122LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1123
1124#endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1125
1126/// Walk the range of a partitioning looking for a common type to cover this
1127/// sequence of slices.
1128static Type *findCommonType(AllocaSlices::const_iterator B,
1129                            AllocaSlices::const_iterator E,
1130                            uint64_t EndOffset) {
1131  Type *Ty = nullptr;
1132  bool TyIsCommon = true;
1133  IntegerType *ITy = nullptr;
1134
1135  // Note that we need to look at *every* alloca slice's Use to ensure we
1136  // always get consistent results regardless of the order of slices.
1137  for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1138    Use *U = I->getUse();
1139    if (isa<IntrinsicInst>(*U->getUser()))
1140      continue;
1141    if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1142      continue;
1143
1144    Type *UserTy = nullptr;
1145    if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1146      UserTy = LI->getType();
1147    } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1148      UserTy = SI->getValueOperand()->getType();
1149    }
1150
1151    if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1152      // If the type is larger than the partition, skip it. We only encounter
1153      // this for split integer operations where we want to use the type of the
1154      // entity causing the split. Also skip if the type is not a byte width
1155      // multiple.
1156      if (UserITy->getBitWidth() % 8 != 0 ||
1157          UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1158        continue;
1159
1160      // Track the largest bitwidth integer type used in this way in case there
1161      // is no common type.
1162      if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1163        ITy = UserITy;
1164    }
1165
1166    // To avoid depending on the order of slices, Ty and TyIsCommon must not
1167    // depend on types skipped above.
1168    if (!UserTy || (Ty && Ty != UserTy))
1169      TyIsCommon = false; // Give up on anything but an iN type.
1170    else
1171      Ty = UserTy;
1172  }
1173
1174  return TyIsCommon ? Ty : ITy;
1175}
1176
1177/// PHI instructions that use an alloca and are subsequently loaded can be
1178/// rewritten to load both input pointers in the pred blocks and then PHI the
1179/// results, allowing the load of the alloca to be promoted.
1180/// From this:
1181///   %P2 = phi [i32* %Alloca, i32* %Other]
1182///   %V = load i32* %P2
1183/// to:
1184///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1185///   ...
1186///   %V2 = load i32* %Other
1187///   ...
1188///   %V = phi [i32 %V1, i32 %V2]
1189///
1190/// We can do this to a select if its only uses are loads and if the operands
1191/// to the select can be loaded unconditionally.
1192///
1193/// FIXME: This should be hoisted into a generic utility, likely in
1194/// Transforms/Util/Local.h
1195static bool isSafePHIToSpeculate(PHINode &PN) {
1196  const DataLayout &DL = PN.getModule()->getDataLayout();
1197
1198  // For now, we can only do this promotion if the load is in the same block
1199  // as the PHI, and if there are no stores between the phi and load.
1200  // TODO: Allow recursive phi users.
1201  // TODO: Allow stores.
1202  BasicBlock *BB = PN.getParent();
1203  MaybeAlign MaxAlign;
1204  uint64_t APWidth = DL.getIndexTypeSizeInBits(PN.getType());
1205  APInt MaxSize(APWidth, 0);
1206  bool HaveLoad = false;
1207  for (User *U : PN.users()) {
1208    LoadInst *LI = dyn_cast<LoadInst>(U);
1209    if (!LI || !LI->isSimple())
1210      return false;
1211
1212    // For now we only allow loads in the same block as the PHI.  This is
1213    // a common case that happens when instcombine merges two loads through
1214    // a PHI.
1215    if (LI->getParent() != BB)
1216      return false;
1217
1218    // Ensure that there are no instructions between the PHI and the load that
1219    // could store.
1220    for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1221      if (BBI->mayWriteToMemory())
1222        return false;
1223
1224    uint64_t Size = DL.getTypeStoreSize(LI->getType());
1225    MaxAlign = std::max(MaxAlign, MaybeAlign(LI->getAlignment()));
1226    MaxSize = MaxSize.ult(Size) ? APInt(APWidth, Size) : MaxSize;
1227    HaveLoad = true;
1228  }
1229
1230  if (!HaveLoad)
1231    return false;
1232
1233  // We can only transform this if it is safe to push the loads into the
1234  // predecessor blocks. The only thing to watch out for is that we can't put
1235  // a possibly trapping load in the predecessor if it is a critical edge.
1236  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1237    Instruction *TI = PN.getIncomingBlock(Idx)->getTerminator();
1238    Value *InVal = PN.getIncomingValue(Idx);
1239
1240    // If the value is produced by the terminator of the predecessor (an
1241    // invoke) or it has side-effects, there is no valid place to put a load
1242    // in the predecessor.
1243    if (TI == InVal || TI->mayHaveSideEffects())
1244      return false;
1245
1246    // If the predecessor has a single successor, then the edge isn't
1247    // critical.
1248    if (TI->getNumSuccessors() == 1)
1249      continue;
1250
1251    // If this pointer is always safe to load, or if we can prove that there
1252    // is already a load in the block, then we can move the load to the pred
1253    // block.
1254    if (isSafeToLoadUnconditionally(InVal, MaxAlign, MaxSize, DL, TI))
1255      continue;
1256
1257    return false;
1258  }
1259
1260  return true;
1261}
1262
1263static void speculatePHINodeLoads(PHINode &PN) {
1264  LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1265
1266  LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1267  Type *LoadTy = SomeLoad->getType();
1268  IRBuilderTy PHIBuilder(&PN);
1269  PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1270                                        PN.getName() + ".sroa.speculated");
1271
1272  // Get the AA tags and alignment to use from one of the loads. It does not
1273  // matter which one we get and if any differ.
1274  AAMDNodes AATags;
1275  SomeLoad->getAAMetadata(AATags);
1276  const MaybeAlign Align = MaybeAlign(SomeLoad->getAlignment());
1277
1278  // Rewrite all loads of the PN to use the new PHI.
1279  while (!PN.use_empty()) {
1280    LoadInst *LI = cast<LoadInst>(PN.user_back());
1281    LI->replaceAllUsesWith(NewPN);
1282    LI->eraseFromParent();
1283  }
1284
1285  // Inject loads into all of the pred blocks.
1286  DenseMap<BasicBlock*, Value*> InjectedLoads;
1287  for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1288    BasicBlock *Pred = PN.getIncomingBlock(Idx);
1289    Value *InVal = PN.getIncomingValue(Idx);
1290
1291    // A PHI node is allowed to have multiple (duplicated) entries for the same
1292    // basic block, as long as the value is the same. So if we already injected
1293    // a load in the predecessor, then we should reuse the same load for all
1294    // duplicated entries.
1295    if (Value* V = InjectedLoads.lookup(Pred)) {
1296      NewPN->addIncoming(V, Pred);
1297      continue;
1298    }
1299
1300    Instruction *TI = Pred->getTerminator();
1301    IRBuilderTy PredBuilder(TI);
1302
1303    LoadInst *Load = PredBuilder.CreateLoad(
1304        LoadTy, InVal,
1305        (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1306    ++NumLoadsSpeculated;
1307    Load->setAlignment(Align);
1308    if (AATags)
1309      Load->setAAMetadata(AATags);
1310    NewPN->addIncoming(Load, Pred);
1311    InjectedLoads[Pred] = Load;
1312  }
1313
1314  LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1315  PN.eraseFromParent();
1316}
1317
1318/// Select instructions that use an alloca and are subsequently loaded can be
1319/// rewritten to load both input pointers and then select between the result,
1320/// allowing the load of the alloca to be promoted.
1321/// From this:
1322///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1323///   %V = load i32* %P2
1324/// to:
1325///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1326///   %V2 = load i32* %Other
1327///   %V = select i1 %cond, i32 %V1, i32 %V2
1328///
1329/// We can do this to a select if its only uses are loads and if the operand
1330/// to the select can be loaded unconditionally.
1331static bool isSafeSelectToSpeculate(SelectInst &SI) {
1332  Value *TValue = SI.getTrueValue();
1333  Value *FValue = SI.getFalseValue();
1334  const DataLayout &DL = SI.getModule()->getDataLayout();
1335
1336  for (User *U : SI.users()) {
1337    LoadInst *LI = dyn_cast<LoadInst>(U);
1338    if (!LI || !LI->isSimple())
1339      return false;
1340
1341    // Both operands to the select need to be dereferenceable, either
1342    // absolutely (e.g. allocas) or at this point because we can see other
1343    // accesses to it.
1344    if (!isSafeToLoadUnconditionally(TValue, LI->getType(),
1345                                     MaybeAlign(LI->getAlignment()), DL, LI))
1346      return false;
1347    if (!isSafeToLoadUnconditionally(FValue, LI->getType(),
1348                                     MaybeAlign(LI->getAlignment()), DL, LI))
1349      return false;
1350  }
1351
1352  return true;
1353}
1354
1355static void speculateSelectInstLoads(SelectInst &SI) {
1356  LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1357
1358  IRBuilderTy IRB(&SI);
1359  Value *TV = SI.getTrueValue();
1360  Value *FV = SI.getFalseValue();
1361  // Replace the loads of the select with a select of two loads.
1362  while (!SI.use_empty()) {
1363    LoadInst *LI = cast<LoadInst>(SI.user_back());
1364    assert(LI->isSimple() && "We only speculate simple loads");
1365
1366    IRB.SetInsertPoint(LI);
1367    LoadInst *TL = IRB.CreateLoad(LI->getType(), TV,
1368                                  LI->getName() + ".sroa.speculate.load.true");
1369    LoadInst *FL = IRB.CreateLoad(LI->getType(), FV,
1370                                  LI->getName() + ".sroa.speculate.load.false");
1371    NumLoadsSpeculated += 2;
1372
1373    // Transfer alignment and AA info if present.
1374    TL->setAlignment(MaybeAlign(LI->getAlignment()));
1375    FL->setAlignment(MaybeAlign(LI->getAlignment()));
1376
1377    AAMDNodes Tags;
1378    LI->getAAMetadata(Tags);
1379    if (Tags) {
1380      TL->setAAMetadata(Tags);
1381      FL->setAAMetadata(Tags);
1382    }
1383
1384    Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1385                                LI->getName() + ".sroa.speculated");
1386
1387    LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1388    LI->replaceAllUsesWith(V);
1389    LI->eraseFromParent();
1390  }
1391  SI.eraseFromParent();
1392}
1393
1394/// Build a GEP out of a base pointer and indices.
1395///
1396/// This will return the BasePtr if that is valid, or build a new GEP
1397/// instruction using the IRBuilder if GEP-ing is needed.
1398static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1399                       SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1400  if (Indices.empty())
1401    return BasePtr;
1402
1403  // A single zero index is a no-op, so check for this and avoid building a GEP
1404  // in that case.
1405  if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1406    return BasePtr;
1407
1408  return IRB.CreateInBoundsGEP(BasePtr->getType()->getPointerElementType(),
1409                               BasePtr, Indices, NamePrefix + "sroa_idx");
1410}
1411
1412/// Get a natural GEP off of the BasePtr walking through Ty toward
1413/// TargetTy without changing the offset of the pointer.
1414///
1415/// This routine assumes we've already established a properly offset GEP with
1416/// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1417/// zero-indices down through type layers until we find one the same as
1418/// TargetTy. If we can't find one with the same type, we at least try to use
1419/// one with the same size. If none of that works, we just produce the GEP as
1420/// indicated by Indices to have the correct offset.
1421static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1422                                    Value *BasePtr, Type *Ty, Type *TargetTy,
1423                                    SmallVectorImpl<Value *> &Indices,
1424                                    Twine NamePrefix) {
1425  if (Ty == TargetTy)
1426    return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1427
1428  // Offset size to use for the indices.
1429  unsigned OffsetSize = DL.getIndexTypeSizeInBits(BasePtr->getType());
1430
1431  // See if we can descend into a struct and locate a field with the correct
1432  // type.
1433  unsigned NumLayers = 0;
1434  Type *ElementTy = Ty;
1435  do {
1436    if (ElementTy->isPointerTy())
1437      break;
1438
1439    if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1440      ElementTy = ArrayTy->getElementType();
1441      Indices.push_back(IRB.getIntN(OffsetSize, 0));
1442    } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1443      ElementTy = VectorTy->getElementType();
1444      Indices.push_back(IRB.getInt32(0));
1445    } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1446      if (STy->element_begin() == STy->element_end())
1447        break; // Nothing left to descend into.
1448      ElementTy = *STy->element_begin();
1449      Indices.push_back(IRB.getInt32(0));
1450    } else {
1451      break;
1452    }
1453    ++NumLayers;
1454  } while (ElementTy != TargetTy);
1455  if (ElementTy != TargetTy)
1456    Indices.erase(Indices.end() - NumLayers, Indices.end());
1457
1458  return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1459}
1460
1461/// Recursively compute indices for a natural GEP.
1462///
1463/// This is the recursive step for getNaturalGEPWithOffset that walks down the
1464/// element types adding appropriate indices for the GEP.
1465static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1466                                       Value *Ptr, Type *Ty, APInt &Offset,
1467                                       Type *TargetTy,
1468                                       SmallVectorImpl<Value *> &Indices,
1469                                       Twine NamePrefix) {
1470  if (Offset == 0)
1471    return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1472                                 NamePrefix);
1473
1474  // We can't recurse through pointer types.
1475  if (Ty->isPointerTy())
1476    return nullptr;
1477
1478  // We try to analyze GEPs over vectors here, but note that these GEPs are
1479  // extremely poorly defined currently. The long-term goal is to remove GEPing
1480  // over a vector from the IR completely.
1481  if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1482    unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1483    if (ElementSizeInBits % 8 != 0) {
1484      // GEPs over non-multiple of 8 size vector elements are invalid.
1485      return nullptr;
1486    }
1487    APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1488    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1489    if (NumSkippedElements.ugt(VecTy->getNumElements()))
1490      return nullptr;
1491    Offset -= NumSkippedElements * ElementSize;
1492    Indices.push_back(IRB.getInt(NumSkippedElements));
1493    return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1494                                    Offset, TargetTy, Indices, NamePrefix);
1495  }
1496
1497  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1498    Type *ElementTy = ArrTy->getElementType();
1499    APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1500    APInt NumSkippedElements = Offset.sdiv(ElementSize);
1501    if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1502      return nullptr;
1503
1504    Offset -= NumSkippedElements * ElementSize;
1505    Indices.push_back(IRB.getInt(NumSkippedElements));
1506    return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1507                                    Indices, NamePrefix);
1508  }
1509
1510  StructType *STy = dyn_cast<StructType>(Ty);
1511  if (!STy)
1512    return nullptr;
1513
1514  const StructLayout *SL = DL.getStructLayout(STy);
1515  uint64_t StructOffset = Offset.getZExtValue();
1516  if (StructOffset >= SL->getSizeInBytes())
1517    return nullptr;
1518  unsigned Index = SL->getElementContainingOffset(StructOffset);
1519  Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1520  Type *ElementTy = STy->getElementType(Index);
1521  if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1522    return nullptr; // The offset points into alignment padding.
1523
1524  Indices.push_back(IRB.getInt32(Index));
1525  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1526                                  Indices, NamePrefix);
1527}
1528
1529/// Get a natural GEP from a base pointer to a particular offset and
1530/// resulting in a particular type.
1531///
1532/// The goal is to produce a "natural" looking GEP that works with the existing
1533/// composite types to arrive at the appropriate offset and element type for
1534/// a pointer. TargetTy is the element type the returned GEP should point-to if
1535/// possible. We recurse by decreasing Offset, adding the appropriate index to
1536/// Indices, and setting Ty to the result subtype.
1537///
1538/// If no natural GEP can be constructed, this function returns null.
1539static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1540                                      Value *Ptr, APInt Offset, Type *TargetTy,
1541                                      SmallVectorImpl<Value *> &Indices,
1542                                      Twine NamePrefix) {
1543  PointerType *Ty = cast<PointerType>(Ptr->getType());
1544
1545  // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1546  // an i8.
1547  if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1548    return nullptr;
1549
1550  Type *ElementTy = Ty->getElementType();
1551  if (!ElementTy->isSized())
1552    return nullptr; // We can't GEP through an unsized element.
1553  APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1554  if (ElementSize == 0)
1555    return nullptr; // Zero-length arrays can't help us build a natural GEP.
1556  APInt NumSkippedElements = Offset.sdiv(ElementSize);
1557
1558  Offset -= NumSkippedElements * ElementSize;
1559  Indices.push_back(IRB.getInt(NumSkippedElements));
1560  return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1561                                  Indices, NamePrefix);
1562}
1563
1564/// Compute an adjusted pointer from Ptr by Offset bytes where the
1565/// resulting pointer has PointerTy.
1566///
1567/// This tries very hard to compute a "natural" GEP which arrives at the offset
1568/// and produces the pointer type desired. Where it cannot, it will try to use
1569/// the natural GEP to arrive at the offset and bitcast to the type. Where that
1570/// fails, it will try to use an existing i8* and GEP to the byte offset and
1571/// bitcast to the type.
1572///
1573/// The strategy for finding the more natural GEPs is to peel off layers of the
1574/// pointer, walking back through bit casts and GEPs, searching for a base
1575/// pointer from which we can compute a natural GEP with the desired
1576/// properties. The algorithm tries to fold as many constant indices into
1577/// a single GEP as possible, thus making each GEP more independent of the
1578/// surrounding code.
1579static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1580                             APInt Offset, Type *PointerTy, Twine NamePrefix) {
1581  // Even though we don't look through PHI nodes, we could be called on an
1582  // instruction in an unreachable block, which may be on a cycle.
1583  SmallPtrSet<Value *, 4> Visited;
1584  Visited.insert(Ptr);
1585  SmallVector<Value *, 4> Indices;
1586
1587  // We may end up computing an offset pointer that has the wrong type. If we
1588  // never are able to compute one directly that has the correct type, we'll
1589  // fall back to it, so keep it and the base it was computed from around here.
1590  Value *OffsetPtr = nullptr;
1591  Value *OffsetBasePtr;
1592
1593  // Remember any i8 pointer we come across to re-use if we need to do a raw
1594  // byte offset.
1595  Value *Int8Ptr = nullptr;
1596  APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1597
1598  PointerType *TargetPtrTy = cast<PointerType>(PointerTy);
1599  Type *TargetTy = TargetPtrTy->getElementType();
1600
1601  // As `addrspacecast` is , `Ptr` (the storage pointer) may have different
1602  // address space from the expected `PointerTy` (the pointer to be used).
1603  // Adjust the pointer type based the original storage pointer.
1604  auto AS = cast<PointerType>(Ptr->getType())->getAddressSpace();
1605  PointerTy = TargetTy->getPointerTo(AS);
1606
1607  do {
1608    // First fold any existing GEPs into the offset.
1609    while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1610      APInt GEPOffset(Offset.getBitWidth(), 0);
1611      if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1612        break;
1613      Offset += GEPOffset;
1614      Ptr = GEP->getPointerOperand();
1615      if (!Visited.insert(Ptr).second)
1616        break;
1617    }
1618
1619    // See if we can perform a natural GEP here.
1620    Indices.clear();
1621    if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1622                                           Indices, NamePrefix)) {
1623      // If we have a new natural pointer at the offset, clear out any old
1624      // offset pointer we computed. Unless it is the base pointer or
1625      // a non-instruction, we built a GEP we don't need. Zap it.
1626      if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1627        if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1628          assert(I->use_empty() && "Built a GEP with uses some how!");
1629          I->eraseFromParent();
1630        }
1631      OffsetPtr = P;
1632      OffsetBasePtr = Ptr;
1633      // If we also found a pointer of the right type, we're done.
1634      if (P->getType() == PointerTy)
1635        break;
1636    }
1637
1638    // Stash this pointer if we've found an i8*.
1639    if (Ptr->getType()->isIntegerTy(8)) {
1640      Int8Ptr = Ptr;
1641      Int8PtrOffset = Offset;
1642    }
1643
1644    // Peel off a layer of the pointer and update the offset appropriately.
1645    if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1646      Ptr = cast<Operator>(Ptr)->getOperand(0);
1647    } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1648      if (GA->isInterposable())
1649        break;
1650      Ptr = GA->getAliasee();
1651    } else {
1652      break;
1653    }
1654    assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1655  } while (Visited.insert(Ptr).second);
1656
1657  if (!OffsetPtr) {
1658    if (!Int8Ptr) {
1659      Int8Ptr = IRB.CreateBitCast(
1660          Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1661          NamePrefix + "sroa_raw_cast");
1662      Int8PtrOffset = Offset;
1663    }
1664
1665    OffsetPtr = Int8PtrOffset == 0
1666                    ? Int8Ptr
1667                    : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1668                                            IRB.getInt(Int8PtrOffset),
1669                                            NamePrefix + "sroa_raw_idx");
1670  }
1671  Ptr = OffsetPtr;
1672
1673  // On the off chance we were targeting i8*, guard the bitcast here.
1674  if (cast<PointerType>(Ptr->getType()) != TargetPtrTy) {
1675    Ptr = IRB.CreatePointerBitCastOrAddrSpaceCast(Ptr,
1676                                                  TargetPtrTy,
1677                                                  NamePrefix + "sroa_cast");
1678  }
1679
1680  return Ptr;
1681}
1682
1683/// Compute the adjusted alignment for a load or store from an offset.
1684static Align getAdjustedAlignment(Instruction *I, uint64_t Offset,
1685                                  const DataLayout &DL) {
1686  MaybeAlign Alignment;
1687  Type *Ty;
1688  if (auto *LI = dyn_cast<LoadInst>(I)) {
1689    Alignment = MaybeAlign(LI->getAlignment());
1690    Ty = LI->getType();
1691  } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1692    Alignment = MaybeAlign(SI->getAlignment());
1693    Ty = SI->getValueOperand()->getType();
1694  } else {
1695    llvm_unreachable("Only loads and stores are allowed!");
1696  }
1697  return commonAlignment(DL.getValueOrABITypeAlignment(Alignment, Ty), Offset);
1698}
1699
1700/// Test whether we can convert a value from the old to the new type.
1701///
1702/// This predicate should be used to guard calls to convertValue in order to
1703/// ensure that we only try to convert viable values. The strategy is that we
1704/// will peel off single element struct and array wrappings to get to an
1705/// underlying value, and convert that value.
1706static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1707  if (OldTy == NewTy)
1708    return true;
1709
1710  // For integer types, we can't handle any bit-width differences. This would
1711  // break both vector conversions with extension and introduce endianness
1712  // issues when in conjunction with loads and stores.
1713  if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1714    assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1715               cast<IntegerType>(NewTy)->getBitWidth() &&
1716           "We can't have the same bitwidth for different int types");
1717    return false;
1718  }
1719
1720  if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1721    return false;
1722  if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1723    return false;
1724
1725  // We can convert pointers to integers and vice-versa. Same for vectors
1726  // of pointers and integers.
1727  OldTy = OldTy->getScalarType();
1728  NewTy = NewTy->getScalarType();
1729  if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1730    if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1731      return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
1732        cast<PointerType>(OldTy)->getPointerAddressSpace();
1733    }
1734
1735    // We can convert integers to integral pointers, but not to non-integral
1736    // pointers.
1737    if (OldTy->isIntegerTy())
1738      return !DL.isNonIntegralPointerType(NewTy);
1739
1740    // We can convert integral pointers to integers, but non-integral pointers
1741    // need to remain pointers.
1742    if (!DL.isNonIntegralPointerType(OldTy))
1743      return NewTy->isIntegerTy();
1744
1745    return false;
1746  }
1747
1748  return true;
1749}
1750
1751/// Generic routine to convert an SSA value to a value of a different
1752/// type.
1753///
1754/// This will try various different casting techniques, such as bitcasts,
1755/// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1756/// two types for viability with this routine.
1757static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1758                           Type *NewTy) {
1759  Type *OldTy = V->getType();
1760  assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1761
1762  if (OldTy == NewTy)
1763    return V;
1764
1765  assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1766         "Integer types must be the exact same to convert.");
1767
1768  // See if we need inttoptr for this type pair. A cast involving both scalars
1769  // and vectors requires and additional bitcast.
1770  if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1771    // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1772    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1773      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1774                                NewTy);
1775
1776    // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1777    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1778      return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1779                                NewTy);
1780
1781    return IRB.CreateIntToPtr(V, NewTy);
1782  }
1783
1784  // See if we need ptrtoint for this type pair. A cast involving both scalars
1785  // and vectors requires and additional bitcast.
1786  if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1787    // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1788    if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1789      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1790                               NewTy);
1791
1792    // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1793    if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1794      return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1795                               NewTy);
1796
1797    return IRB.CreatePtrToInt(V, NewTy);
1798  }
1799
1800  return IRB.CreateBitCast(V, NewTy);
1801}
1802
1803/// Test whether the given slice use can be promoted to a vector.
1804///
1805/// This function is called to test each entry in a partition which is slated
1806/// for a single slice.
1807static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1808                                            VectorType *Ty,
1809                                            uint64_t ElementSize,
1810                                            const DataLayout &DL) {
1811  // First validate the slice offsets.
1812  uint64_t BeginOffset =
1813      std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1814  uint64_t BeginIndex = BeginOffset / ElementSize;
1815  if (BeginIndex * ElementSize != BeginOffset ||
1816      BeginIndex >= Ty->getNumElements())
1817    return false;
1818  uint64_t EndOffset =
1819      std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1820  uint64_t EndIndex = EndOffset / ElementSize;
1821  if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1822    return false;
1823
1824  assert(EndIndex > BeginIndex && "Empty vector!");
1825  uint64_t NumElements = EndIndex - BeginIndex;
1826  Type *SliceTy = (NumElements == 1)
1827                      ? Ty->getElementType()
1828                      : VectorType::get(Ty->getElementType(), NumElements);
1829
1830  Type *SplitIntTy =
1831      Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1832
1833  Use *U = S.getUse();
1834
1835  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1836    if (MI->isVolatile())
1837      return false;
1838    if (!S.isSplittable())
1839      return false; // Skip any unsplittable intrinsics.
1840  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1841    if (!II->isLifetimeStartOrEnd())
1842      return false;
1843  } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1844    // Disable vector promotion when there are loads or stores of an FCA.
1845    return false;
1846  } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1847    if (LI->isVolatile())
1848      return false;
1849    Type *LTy = LI->getType();
1850    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1851      assert(LTy->isIntegerTy());
1852      LTy = SplitIntTy;
1853    }
1854    if (!canConvertValue(DL, SliceTy, LTy))
1855      return false;
1856  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1857    if (SI->isVolatile())
1858      return false;
1859    Type *STy = SI->getValueOperand()->getType();
1860    if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1861      assert(STy->isIntegerTy());
1862      STy = SplitIntTy;
1863    }
1864    if (!canConvertValue(DL, STy, SliceTy))
1865      return false;
1866  } else {
1867    return false;
1868  }
1869
1870  return true;
1871}
1872
1873/// Test whether the given alloca partitioning and range of slices can be
1874/// promoted to a vector.
1875///
1876/// This is a quick test to check whether we can rewrite a particular alloca
1877/// partition (and its newly formed alloca) into a vector alloca with only
1878/// whole-vector loads and stores such that it could be promoted to a vector
1879/// SSA value. We only can ensure this for a limited set of operations, and we
1880/// don't want to do the rewrites unless we are confident that the result will
1881/// be promotable, so we have an early test here.
1882static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1883  // Collect the candidate types for vector-based promotion. Also track whether
1884  // we have different element types.
1885  SmallVector<VectorType *, 4> CandidateTys;
1886  Type *CommonEltTy = nullptr;
1887  bool HaveCommonEltTy = true;
1888  auto CheckCandidateType = [&](Type *Ty) {
1889    if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1890      // Return if bitcast to vectors is different for total size in bits.
1891      if (!CandidateTys.empty()) {
1892        VectorType *V = CandidateTys[0];
1893        if (DL.getTypeSizeInBits(VTy) != DL.getTypeSizeInBits(V)) {
1894          CandidateTys.clear();
1895          return;
1896        }
1897      }
1898      CandidateTys.push_back(VTy);
1899      if (!CommonEltTy)
1900        CommonEltTy = VTy->getElementType();
1901      else if (CommonEltTy != VTy->getElementType())
1902        HaveCommonEltTy = false;
1903    }
1904  };
1905  // Consider any loads or stores that are the exact size of the slice.
1906  for (const Slice &S : P)
1907    if (S.beginOffset() == P.beginOffset() &&
1908        S.endOffset() == P.endOffset()) {
1909      if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1910        CheckCandidateType(LI->getType());
1911      else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1912        CheckCandidateType(SI->getValueOperand()->getType());
1913    }
1914
1915  // If we didn't find a vector type, nothing to do here.
1916  if (CandidateTys.empty())
1917    return nullptr;
1918
1919  // Remove non-integer vector types if we had multiple common element types.
1920  // FIXME: It'd be nice to replace them with integer vector types, but we can't
1921  // do that until all the backends are known to produce good code for all
1922  // integer vector types.
1923  if (!HaveCommonEltTy) {
1924    CandidateTys.erase(
1925        llvm::remove_if(CandidateTys,
1926                        [](VectorType *VTy) {
1927                          return !VTy->getElementType()->isIntegerTy();
1928                        }),
1929        CandidateTys.end());
1930
1931    // If there were no integer vector types, give up.
1932    if (CandidateTys.empty())
1933      return nullptr;
1934
1935    // Rank the remaining candidate vector types. This is easy because we know
1936    // they're all integer vectors. We sort by ascending number of elements.
1937    auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1938      (void)DL;
1939      assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1940             "Cannot have vector types of different sizes!");
1941      assert(RHSTy->getElementType()->isIntegerTy() &&
1942             "All non-integer types eliminated!");
1943      assert(LHSTy->getElementType()->isIntegerTy() &&
1944             "All non-integer types eliminated!");
1945      return RHSTy->getNumElements() < LHSTy->getNumElements();
1946    };
1947    llvm::sort(CandidateTys, RankVectorTypes);
1948    CandidateTys.erase(
1949        std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1950        CandidateTys.end());
1951  } else {
1952// The only way to have the same element type in every vector type is to
1953// have the same vector type. Check that and remove all but one.
1954#ifndef NDEBUG
1955    for (VectorType *VTy : CandidateTys) {
1956      assert(VTy->getElementType() == CommonEltTy &&
1957             "Unaccounted for element type!");
1958      assert(VTy == CandidateTys[0] &&
1959             "Different vector types with the same element type!");
1960    }
1961#endif
1962    CandidateTys.resize(1);
1963  }
1964
1965  // Try each vector type, and return the one which works.
1966  auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1967    uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1968
1969    // While the definition of LLVM vectors is bitpacked, we don't support sizes
1970    // that aren't byte sized.
1971    if (ElementSize % 8)
1972      return false;
1973    assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1974           "vector size not a multiple of element size?");
1975    ElementSize /= 8;
1976
1977    for (const Slice &S : P)
1978      if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1979        return false;
1980
1981    for (const Slice *S : P.splitSliceTails())
1982      if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1983        return false;
1984
1985    return true;
1986  };
1987  for (VectorType *VTy : CandidateTys)
1988    if (CheckVectorTypeForPromotion(VTy))
1989      return VTy;
1990
1991  return nullptr;
1992}
1993
1994/// Test whether a slice of an alloca is valid for integer widening.
1995///
1996/// This implements the necessary checking for the \c isIntegerWideningViable
1997/// test below on a single slice of the alloca.
1998static bool isIntegerWideningViableForSlice(const Slice &S,
1999                                            uint64_t AllocBeginOffset,
2000                                            Type *AllocaTy,
2001                                            const DataLayout &DL,
2002                                            bool &WholeAllocaOp) {
2003  uint64_t Size = DL.getTypeStoreSize(AllocaTy);
2004
2005  uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
2006  uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
2007
2008  // We can't reasonably handle cases where the load or store extends past
2009  // the end of the alloca's type and into its padding.
2010  if (RelEnd > Size)
2011    return false;
2012
2013  Use *U = S.getUse();
2014
2015  if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
2016    if (LI->isVolatile())
2017      return false;
2018    // We can't handle loads that extend past the allocated memory.
2019    if (DL.getTypeStoreSize(LI->getType()) > Size)
2020      return false;
2021    // So far, AllocaSliceRewriter does not support widening split slice tails
2022    // in rewriteIntegerLoad.
2023    if (S.beginOffset() < AllocBeginOffset)
2024      return false;
2025    // Note that we don't count vector loads or stores as whole-alloca
2026    // operations which enable integer widening because we would prefer to use
2027    // vector widening instead.
2028    if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
2029      WholeAllocaOp = true;
2030    if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
2031      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2032        return false;
2033    } else if (RelBegin != 0 || RelEnd != Size ||
2034               !canConvertValue(DL, AllocaTy, LI->getType())) {
2035      // Non-integer loads need to be convertible from the alloca type so that
2036      // they are promotable.
2037      return false;
2038    }
2039  } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2040    Type *ValueTy = SI->getValueOperand()->getType();
2041    if (SI->isVolatile())
2042      return false;
2043    // We can't handle stores that extend past the allocated memory.
2044    if (DL.getTypeStoreSize(ValueTy) > Size)
2045      return false;
2046    // So far, AllocaSliceRewriter does not support widening split slice tails
2047    // in rewriteIntegerStore.
2048    if (S.beginOffset() < AllocBeginOffset)
2049      return false;
2050    // Note that we don't count vector loads or stores as whole-alloca
2051    // operations which enable integer widening because we would prefer to use
2052    // vector widening instead.
2053    if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2054      WholeAllocaOp = true;
2055    if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2056      if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2057        return false;
2058    } else if (RelBegin != 0 || RelEnd != Size ||
2059               !canConvertValue(DL, ValueTy, AllocaTy)) {
2060      // Non-integer stores need to be convertible to the alloca type so that
2061      // they are promotable.
2062      return false;
2063    }
2064  } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2065    if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2066      return false;
2067    if (!S.isSplittable())
2068      return false; // Skip any unsplittable intrinsics.
2069  } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2070    if (!II->isLifetimeStartOrEnd())
2071      return false;
2072  } else {
2073    return false;
2074  }
2075
2076  return true;
2077}
2078
2079/// Test whether the given alloca partition's integer operations can be
2080/// widened to promotable ones.
2081///
2082/// This is a quick test to check whether we can rewrite the integer loads and
2083/// stores to a particular alloca into wider loads and stores and be able to
2084/// promote the resulting alloca.
2085static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2086                                    const DataLayout &DL) {
2087  uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
2088  // Don't create integer types larger than the maximum bitwidth.
2089  if (SizeInBits > IntegerType::MAX_INT_BITS)
2090    return false;
2091
2092  // Don't try to handle allocas with bit-padding.
2093  if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
2094    return false;
2095
2096  // We need to ensure that an integer type with the appropriate bitwidth can
2097  // be converted to the alloca type, whatever that is. We don't want to force
2098  // the alloca itself to have an integer type if there is a more suitable one.
2099  Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2100  if (!canConvertValue(DL, AllocaTy, IntTy) ||
2101      !canConvertValue(DL, IntTy, AllocaTy))
2102    return false;
2103
2104  // While examining uses, we ensure that the alloca has a covering load or
2105  // store. We don't want to widen the integer operations only to fail to
2106  // promote due to some other unsplittable entry (which we may make splittable
2107  // later). However, if there are only splittable uses, go ahead and assume
2108  // that we cover the alloca.
2109  // FIXME: We shouldn't consider split slices that happen to start in the
2110  // partition here...
2111  bool WholeAllocaOp =
2112      P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2113
2114  for (const Slice &S : P)
2115    if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2116                                         WholeAllocaOp))
2117      return false;
2118
2119  for (const Slice *S : P.splitSliceTails())
2120    if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2121                                         WholeAllocaOp))
2122      return false;
2123
2124  return WholeAllocaOp;
2125}
2126
2127static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2128                             IntegerType *Ty, uint64_t Offset,
2129                             const Twine &Name) {
2130  LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2131  IntegerType *IntTy = cast<IntegerType>(V->getType());
2132  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2133         "Element extends past full value");
2134  uint64_t ShAmt = 8 * Offset;
2135  if (DL.isBigEndian())
2136    ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2137  if (ShAmt) {
2138    V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2139    LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2140  }
2141  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2142         "Cannot extract to a larger integer!");
2143  if (Ty != IntTy) {
2144    V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2145    LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2146  }
2147  return V;
2148}
2149
2150static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2151                            Value *V, uint64_t Offset, const Twine &Name) {
2152  IntegerType *IntTy = cast<IntegerType>(Old->getType());
2153  IntegerType *Ty = cast<IntegerType>(V->getType());
2154  assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2155         "Cannot insert a larger integer!");
2156  LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2157  if (Ty != IntTy) {
2158    V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2159    LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2160  }
2161  assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2162         "Element store outside of alloca store");
2163  uint64_t ShAmt = 8 * Offset;
2164  if (DL.isBigEndian())
2165    ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2166  if (ShAmt) {
2167    V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2168    LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2169  }
2170
2171  if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2172    APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2173    Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2174    LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2175    V = IRB.CreateOr(Old, V, Name + ".insert");
2176    LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2177  }
2178  return V;
2179}
2180
2181static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2182                            unsigned EndIndex, const Twine &Name) {
2183  VectorType *VecTy = cast<VectorType>(V->getType());
2184  unsigned NumElements = EndIndex - BeginIndex;
2185  assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2186
2187  if (NumElements == VecTy->getNumElements())
2188    return V;
2189
2190  if (NumElements == 1) {
2191    V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2192                                 Name + ".extract");
2193    LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2194    return V;
2195  }
2196
2197  SmallVector<Constant *, 8> Mask;
2198  Mask.reserve(NumElements);
2199  for (unsigned i = BeginIndex; i != EndIndex; ++i)
2200    Mask.push_back(IRB.getInt32(i));
2201  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2202                              ConstantVector::get(Mask), Name + ".extract");
2203  LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2204  return V;
2205}
2206
2207static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2208                           unsigned BeginIndex, const Twine &Name) {
2209  VectorType *VecTy = cast<VectorType>(Old->getType());
2210  assert(VecTy && "Can only insert a vector into a vector");
2211
2212  VectorType *Ty = dyn_cast<VectorType>(V->getType());
2213  if (!Ty) {
2214    // Single element to insert.
2215    V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2216                                Name + ".insert");
2217    LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2218    return V;
2219  }
2220
2221  assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2222         "Too many elements!");
2223  if (Ty->getNumElements() == VecTy->getNumElements()) {
2224    assert(V->getType() == VecTy && "Vector type mismatch");
2225    return V;
2226  }
2227  unsigned EndIndex = BeginIndex + Ty->getNumElements();
2228
2229  // When inserting a smaller vector into the larger to store, we first
2230  // use a shuffle vector to widen it with undef elements, and then
2231  // a second shuffle vector to select between the loaded vector and the
2232  // incoming vector.
2233  SmallVector<Constant *, 8> Mask;
2234  Mask.reserve(VecTy->getNumElements());
2235  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2236    if (i >= BeginIndex && i < EndIndex)
2237      Mask.push_back(IRB.getInt32(i - BeginIndex));
2238    else
2239      Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2240  V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2241                              ConstantVector::get(Mask), Name + ".expand");
2242  LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2243
2244  Mask.clear();
2245  for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2246    Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2247
2248  V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2249
2250  LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2251  return V;
2252}
2253
2254/// Visitor to rewrite instructions using p particular slice of an alloca
2255/// to use a new alloca.
2256///
2257/// Also implements the rewriting to vector-based accesses when the partition
2258/// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2259/// lives here.
2260class llvm::sroa::AllocaSliceRewriter
2261    : public InstVisitor<AllocaSliceRewriter, bool> {
2262  // Befriend the base class so it can delegate to private visit methods.
2263  friend class InstVisitor<AllocaSliceRewriter, bool>;
2264
2265  using Base = InstVisitor<AllocaSliceRewriter, bool>;
2266
2267  const DataLayout &DL;
2268  AllocaSlices &AS;
2269  SROA &Pass;
2270  AllocaInst &OldAI, &NewAI;
2271  const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2272  Type *NewAllocaTy;
2273
2274  // This is a convenience and flag variable that will be null unless the new
2275  // alloca's integer operations should be widened to this integer type due to
2276  // passing isIntegerWideningViable above. If it is non-null, the desired
2277  // integer type will be stored here for easy access during rewriting.
2278  IntegerType *IntTy;
2279
2280  // If we are rewriting an alloca partition which can be written as pure
2281  // vector operations, we stash extra information here. When VecTy is
2282  // non-null, we have some strict guarantees about the rewritten alloca:
2283  //   - The new alloca is exactly the size of the vector type here.
2284  //   - The accesses all either map to the entire vector or to a single
2285  //     element.
2286  //   - The set of accessing instructions is only one of those handled above
2287  //     in isVectorPromotionViable. Generally these are the same access kinds
2288  //     which are promotable via mem2reg.
2289  VectorType *VecTy;
2290  Type *ElementTy;
2291  uint64_t ElementSize;
2292
2293  // The original offset of the slice currently being rewritten relative to
2294  // the original alloca.
2295  uint64_t BeginOffset = 0;
2296  uint64_t EndOffset = 0;
2297
2298  // The new offsets of the slice currently being rewritten relative to the
2299  // original alloca.
2300  uint64_t NewBeginOffset = 0, NewEndOffset = 0;
2301
2302  uint64_t SliceSize = 0;
2303  bool IsSplittable = false;
2304  bool IsSplit = false;
2305  Use *OldUse = nullptr;
2306  Instruction *OldPtr = nullptr;
2307
2308  // Track post-rewrite users which are PHI nodes and Selects.
2309  SmallSetVector<PHINode *, 8> &PHIUsers;
2310  SmallSetVector<SelectInst *, 8> &SelectUsers;
2311
2312  // Utility IR builder, whose name prefix is setup for each visited use, and
2313  // the insertion point is set to point to the user.
2314  IRBuilderTy IRB;
2315
2316public:
2317  AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2318                      AllocaInst &OldAI, AllocaInst &NewAI,
2319                      uint64_t NewAllocaBeginOffset,
2320                      uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2321                      VectorType *PromotableVecTy,
2322                      SmallSetVector<PHINode *, 8> &PHIUsers,
2323                      SmallSetVector<SelectInst *, 8> &SelectUsers)
2324      : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2325        NewAllocaBeginOffset(NewAllocaBeginOffset),
2326        NewAllocaEndOffset(NewAllocaEndOffset),
2327        NewAllocaTy(NewAI.getAllocatedType()),
2328        IntTy(IsIntegerPromotable
2329                  ? Type::getIntNTy(
2330                        NewAI.getContext(),
2331                        DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2332                  : nullptr),
2333        VecTy(PromotableVecTy),
2334        ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2335        ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2336        PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2337        IRB(NewAI.getContext(), ConstantFolder()) {
2338    if (VecTy) {
2339      assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2340             "Only multiple-of-8 sized vector elements are viable");
2341      ++NumVectorized;
2342    }
2343    assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2344  }
2345
2346  bool visit(AllocaSlices::const_iterator I) {
2347    bool CanSROA = true;
2348    BeginOffset = I->beginOffset();
2349    EndOffset = I->endOffset();
2350    IsSplittable = I->isSplittable();
2351    IsSplit =
2352        BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2353    LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2354    LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2355    LLVM_DEBUG(dbgs() << "\n");
2356
2357    // Compute the intersecting offset range.
2358    assert(BeginOffset < NewAllocaEndOffset);
2359    assert(EndOffset > NewAllocaBeginOffset);
2360    NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2361    NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2362
2363    SliceSize = NewEndOffset - NewBeginOffset;
2364
2365    OldUse = I->getUse();
2366    OldPtr = cast<Instruction>(OldUse->get());
2367
2368    Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2369    IRB.SetInsertPoint(OldUserI);
2370    IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2371    IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2372
2373    CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2374    if (VecTy || IntTy)
2375      assert(CanSROA);
2376    return CanSROA;
2377  }
2378
2379private:
2380  // Make sure the other visit overloads are visible.
2381  using Base::visit;
2382
2383  // Every instruction which can end up as a user must have a rewrite rule.
2384  bool visitInstruction(Instruction &I) {
2385    LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2386    llvm_unreachable("No rewrite rule for this instruction!");
2387  }
2388
2389  Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2390    // Note that the offset computation can use BeginOffset or NewBeginOffset
2391    // interchangeably for unsplit slices.
2392    assert(IsSplit || BeginOffset == NewBeginOffset);
2393    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2394
2395#ifndef NDEBUG
2396    StringRef OldName = OldPtr->getName();
2397    // Skip through the last '.sroa.' component of the name.
2398    size_t LastSROAPrefix = OldName.rfind(".sroa.");
2399    if (LastSROAPrefix != StringRef::npos) {
2400      OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2401      // Look for an SROA slice index.
2402      size_t IndexEnd = OldName.find_first_not_of("0123456789");
2403      if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2404        // Strip the index and look for the offset.
2405        OldName = OldName.substr(IndexEnd + 1);
2406        size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2407        if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2408          // Strip the offset.
2409          OldName = OldName.substr(OffsetEnd + 1);
2410      }
2411    }
2412    // Strip any SROA suffixes as well.
2413    OldName = OldName.substr(0, OldName.find(".sroa_"));
2414#endif
2415
2416    return getAdjustedPtr(IRB, DL, &NewAI,
2417                          APInt(DL.getIndexTypeSizeInBits(PointerTy), Offset),
2418                          PointerTy,
2419#ifndef NDEBUG
2420                          Twine(OldName) + "."
2421#else
2422                          Twine()
2423#endif
2424                          );
2425  }
2426
2427  /// Compute suitable alignment to access this slice of the *new*
2428  /// alloca.
2429  ///
2430  /// You can optionally pass a type to this routine and if that type's ABI
2431  /// alignment is itself suitable, this will return zero.
2432  MaybeAlign getSliceAlign(Type *Ty = nullptr) {
2433    const MaybeAlign NewAIAlign = DL.getValueOrABITypeAlignment(
2434        MaybeAlign(NewAI.getAlignment()), NewAI.getAllocatedType());
2435    const MaybeAlign Align =
2436        commonAlignment(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2437    return (Ty && Align && Align->value() == DL.getABITypeAlignment(Ty))
2438               ? None
2439               : Align;
2440  }
2441
2442  unsigned getIndex(uint64_t Offset) {
2443    assert(VecTy && "Can only call getIndex when rewriting a vector");
2444    uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2445    assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2446    uint32_t Index = RelOffset / ElementSize;
2447    assert(Index * ElementSize == RelOffset);
2448    return Index;
2449  }
2450
2451  void deleteIfTriviallyDead(Value *V) {
2452    Instruction *I = cast<Instruction>(V);
2453    if (isInstructionTriviallyDead(I))
2454      Pass.DeadInsts.insert(I);
2455  }
2456
2457  Value *rewriteVectorizedLoadInst() {
2458    unsigned BeginIndex = getIndex(NewBeginOffset);
2459    unsigned EndIndex = getIndex(NewEndOffset);
2460    assert(EndIndex > BeginIndex && "Empty vector!");
2461
2462    Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2463                                     NewAI.getAlignment(), "load");
2464    return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2465  }
2466
2467  Value *rewriteIntegerLoad(LoadInst &LI) {
2468    assert(IntTy && "We cannot insert an integer to the alloca");
2469    assert(!LI.isVolatile());
2470    Value *V = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2471                                     NewAI.getAlignment(), "load");
2472    V = convertValue(DL, IRB, V, IntTy);
2473    assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2474    uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2475    if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2476      IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2477      V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2478    }
2479    // It is possible that the extracted type is not the load type. This
2480    // happens if there is a load past the end of the alloca, and as
2481    // a consequence the slice is narrower but still a candidate for integer
2482    // lowering. To handle this case, we just zero extend the extracted
2483    // integer.
2484    assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2485           "Can only handle an extract for an overly wide load");
2486    if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2487      V = IRB.CreateZExt(V, LI.getType());
2488    return V;
2489  }
2490
2491  bool visitLoadInst(LoadInst &LI) {
2492    LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2493    Value *OldOp = LI.getOperand(0);
2494    assert(OldOp == OldPtr);
2495
2496    AAMDNodes AATags;
2497    LI.getAAMetadata(AATags);
2498
2499    unsigned AS = LI.getPointerAddressSpace();
2500
2501    Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2502                             : LI.getType();
2503    const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2504    bool IsPtrAdjusted = false;
2505    Value *V;
2506    if (VecTy) {
2507      V = rewriteVectorizedLoadInst();
2508    } else if (IntTy && LI.getType()->isIntegerTy()) {
2509      V = rewriteIntegerLoad(LI);
2510    } else if (NewBeginOffset == NewAllocaBeginOffset &&
2511               NewEndOffset == NewAllocaEndOffset &&
2512               (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2513                (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2514                 TargetTy->isIntegerTy()))) {
2515      LoadInst *NewLI = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2516                                              NewAI.getAlignment(),
2517                                              LI.isVolatile(), LI.getName());
2518      if (AATags)
2519        NewLI->setAAMetadata(AATags);
2520      if (LI.isVolatile())
2521        NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2522      if (NewLI->isAtomic())
2523        NewLI->setAlignment(LI.getAlign());
2524
2525      // Any !nonnull metadata or !range metadata on the old load is also valid
2526      // on the new load. This is even true in some cases even when the loads
2527      // are different types, for example by mapping !nonnull metadata to
2528      // !range metadata by modeling the null pointer constant converted to the
2529      // integer type.
2530      // FIXME: Add support for range metadata here. Currently the utilities
2531      // for this don't propagate range metadata in trivial cases from one
2532      // integer load to another, don't handle non-addrspace-0 null pointers
2533      // correctly, and don't have any support for mapping ranges as the
2534      // integer type becomes winder or narrower.
2535      if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2536        copyNonnullMetadata(LI, N, *NewLI);
2537
2538      // Try to preserve nonnull metadata
2539      V = NewLI;
2540
2541      // If this is an integer load past the end of the slice (which means the
2542      // bytes outside the slice are undef or this load is dead) just forcibly
2543      // fix the integer size with correct handling of endianness.
2544      if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2545        if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2546          if (AITy->getBitWidth() < TITy->getBitWidth()) {
2547            V = IRB.CreateZExt(V, TITy, "load.ext");
2548            if (DL.isBigEndian())
2549              V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2550                                "endian_shift");
2551          }
2552    } else {
2553      Type *LTy = TargetTy->getPointerTo(AS);
2554      LoadInst *NewLI = IRB.CreateAlignedLoad(
2555          TargetTy, getNewAllocaSlicePtr(IRB, LTy), getSliceAlign(TargetTy),
2556          LI.isVolatile(), LI.getName());
2557      if (AATags)
2558        NewLI->setAAMetadata(AATags);
2559      if (LI.isVolatile())
2560        NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2561
2562      V = NewLI;
2563      IsPtrAdjusted = true;
2564    }
2565    V = convertValue(DL, IRB, V, TargetTy);
2566
2567    if (IsSplit) {
2568      assert(!LI.isVolatile());
2569      assert(LI.getType()->isIntegerTy() &&
2570             "Only integer type loads and stores are split");
2571      assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2572             "Split load isn't smaller than original load");
2573      assert(DL.typeSizeEqualsStoreSize(LI.getType()) &&
2574             "Non-byte-multiple bit width");
2575      // Move the insertion point just past the load so that we can refer to it.
2576      IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2577      // Create a placeholder value with the same type as LI to use as the
2578      // basis for the new value. This allows us to replace the uses of LI with
2579      // the computed value, and then replace the placeholder with LI, leaving
2580      // LI only used for this computation.
2581      Value *Placeholder = new LoadInst(
2582          LI.getType(), UndefValue::get(LI.getType()->getPointerTo(AS)));
2583      V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2584                        "insert");
2585      LI.replaceAllUsesWith(V);
2586      Placeholder->replaceAllUsesWith(&LI);
2587      Placeholder->deleteValue();
2588    } else {
2589      LI.replaceAllUsesWith(V);
2590    }
2591
2592    Pass.DeadInsts.insert(&LI);
2593    deleteIfTriviallyDead(OldOp);
2594    LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2595    return !LI.isVolatile() && !IsPtrAdjusted;
2596  }
2597
2598  bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2599                                  AAMDNodes AATags) {
2600    if (V->getType() != VecTy) {
2601      unsigned BeginIndex = getIndex(NewBeginOffset);
2602      unsigned EndIndex = getIndex(NewEndOffset);
2603      assert(EndIndex > BeginIndex && "Empty vector!");
2604      unsigned NumElements = EndIndex - BeginIndex;
2605      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2606      Type *SliceTy = (NumElements == 1)
2607                          ? ElementTy
2608                          : VectorType::get(ElementTy, NumElements);
2609      if (V->getType() != SliceTy)
2610        V = convertValue(DL, IRB, V, SliceTy);
2611
2612      // Mix in the existing elements.
2613      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2614                                         NewAI.getAlignment(), "load");
2615      V = insertVector(IRB, Old, V, BeginIndex, "vec");
2616    }
2617    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2618    if (AATags)
2619      Store->setAAMetadata(AATags);
2620    Pass.DeadInsts.insert(&SI);
2621
2622    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2623    return true;
2624  }
2625
2626  bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2627    assert(IntTy && "We cannot extract an integer from the alloca");
2628    assert(!SI.isVolatile());
2629    if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2630      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2631                                         NewAI.getAlignment(), "oldload");
2632      Old = convertValue(DL, IRB, Old, IntTy);
2633      assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2634      uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2635      V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2636    }
2637    V = convertValue(DL, IRB, V, NewAllocaTy);
2638    StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2639    Store->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2640                             LLVMContext::MD_access_group});
2641    if (AATags)
2642      Store->setAAMetadata(AATags);
2643    Pass.DeadInsts.insert(&SI);
2644    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2645    return true;
2646  }
2647
2648  bool visitStoreInst(StoreInst &SI) {
2649    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2650    Value *OldOp = SI.getOperand(1);
2651    assert(OldOp == OldPtr);
2652
2653    AAMDNodes AATags;
2654    SI.getAAMetadata(AATags);
2655
2656    Value *V = SI.getValueOperand();
2657
2658    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2659    // alloca that should be re-examined after promoting this alloca.
2660    if (V->getType()->isPointerTy())
2661      if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2662        Pass.PostPromotionWorklist.insert(AI);
2663
2664    if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2665      assert(!SI.isVolatile());
2666      assert(V->getType()->isIntegerTy() &&
2667             "Only integer type loads and stores are split");
2668      assert(DL.typeSizeEqualsStoreSize(V->getType()) &&
2669             "Non-byte-multiple bit width");
2670      IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2671      V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2672                         "extract");
2673    }
2674
2675    if (VecTy)
2676      return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2677    if (IntTy && V->getType()->isIntegerTy())
2678      return rewriteIntegerStore(V, SI, AATags);
2679
2680    const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2681    StoreInst *NewSI;
2682    if (NewBeginOffset == NewAllocaBeginOffset &&
2683        NewEndOffset == NewAllocaEndOffset &&
2684        (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2685         (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2686          V->getType()->isIntegerTy()))) {
2687      // If this is an integer store past the end of slice (and thus the bytes
2688      // past that point are irrelevant or this is unreachable), truncate the
2689      // value prior to storing.
2690      if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2691        if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2692          if (VITy->getBitWidth() > AITy->getBitWidth()) {
2693            if (DL.isBigEndian())
2694              V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2695                                 "endian_shift");
2696            V = IRB.CreateTrunc(V, AITy, "load.trunc");
2697          }
2698
2699      V = convertValue(DL, IRB, V, NewAllocaTy);
2700      NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2701                                     SI.isVolatile());
2702    } else {
2703      unsigned AS = SI.getPointerAddressSpace();
2704      Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2705      NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2706                                     SI.isVolatile());
2707    }
2708    NewSI->copyMetadata(SI, {LLVMContext::MD_mem_parallel_loop_access,
2709                             LLVMContext::MD_access_group});
2710    if (AATags)
2711      NewSI->setAAMetadata(AATags);
2712    if (SI.isVolatile())
2713      NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2714    if (NewSI->isAtomic())
2715      NewSI->setAlignment(SI.getAlign());
2716    Pass.DeadInsts.insert(&SI);
2717    deleteIfTriviallyDead(OldOp);
2718
2719    LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2720    return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2721  }
2722
2723  /// Compute an integer value from splatting an i8 across the given
2724  /// number of bytes.
2725  ///
2726  /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2727  /// call this routine.
2728  /// FIXME: Heed the advice above.
2729  ///
2730  /// \param V The i8 value to splat.
2731  /// \param Size The number of bytes in the output (assuming i8 is one byte)
2732  Value *getIntegerSplat(Value *V, unsigned Size) {
2733    assert(Size > 0 && "Expected a positive number of bytes.");
2734    IntegerType *VTy = cast<IntegerType>(V->getType());
2735    assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2736    if (Size == 1)
2737      return V;
2738
2739    Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2740    V = IRB.CreateMul(
2741        IRB.CreateZExt(V, SplatIntTy, "zext"),
2742        ConstantExpr::getUDiv(
2743            Constant::getAllOnesValue(SplatIntTy),
2744            ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2745                                  SplatIntTy)),
2746        "isplat");
2747    return V;
2748  }
2749
2750  /// Compute a vector splat for a given element value.
2751  Value *getVectorSplat(Value *V, unsigned NumElements) {
2752    V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2753    LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2754    return V;
2755  }
2756
2757  bool visitMemSetInst(MemSetInst &II) {
2758    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2759    assert(II.getRawDest() == OldPtr);
2760
2761    AAMDNodes AATags;
2762    II.getAAMetadata(AATags);
2763
2764    // If the memset has a variable size, it cannot be split, just adjust the
2765    // pointer to the new alloca.
2766    if (!isa<Constant>(II.getLength())) {
2767      assert(!IsSplit);
2768      assert(NewBeginOffset == BeginOffset);
2769      II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2770      II.setDestAlignment(getSliceAlign());
2771
2772      deleteIfTriviallyDead(OldPtr);
2773      return false;
2774    }
2775
2776    // Record this instruction for deletion.
2777    Pass.DeadInsts.insert(&II);
2778
2779    Type *AllocaTy = NewAI.getAllocatedType();
2780    Type *ScalarTy = AllocaTy->getScalarType();
2781
2782    const bool CanContinue = [&]() {
2783      if (VecTy || IntTy)
2784        return true;
2785      if (BeginOffset > NewAllocaBeginOffset ||
2786          EndOffset < NewAllocaEndOffset)
2787        return false;
2788      auto *C = cast<ConstantInt>(II.getLength());
2789      if (C->getBitWidth() > 64)
2790        return false;
2791      const auto Len = C->getZExtValue();
2792      auto *Int8Ty = IntegerType::getInt8Ty(NewAI.getContext());
2793      auto *SrcTy = VectorType::get(Int8Ty, Len);
2794      return canConvertValue(DL, SrcTy, AllocaTy) &&
2795        DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy));
2796    }();
2797
2798    // If this doesn't map cleanly onto the alloca type, and that type isn't
2799    // a single value type, just emit a memset.
2800    if (!CanContinue) {
2801      Type *SizeTy = II.getLength()->getType();
2802      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2803      CallInst *New = IRB.CreateMemSet(
2804          getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2805          MaybeAlign(getSliceAlign()), II.isVolatile());
2806      if (AATags)
2807        New->setAAMetadata(AATags);
2808      LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2809      return false;
2810    }
2811
2812    // If we can represent this as a simple value, we have to build the actual
2813    // value to store, which requires expanding the byte present in memset to
2814    // a sensible representation for the alloca type. This is essentially
2815    // splatting the byte to a sufficiently wide integer, splatting it across
2816    // any desired vector width, and bitcasting to the final type.
2817    Value *V;
2818
2819    if (VecTy) {
2820      // If this is a memset of a vectorized alloca, insert it.
2821      assert(ElementTy == ScalarTy);
2822
2823      unsigned BeginIndex = getIndex(NewBeginOffset);
2824      unsigned EndIndex = getIndex(NewEndOffset);
2825      assert(EndIndex > BeginIndex && "Empty vector!");
2826      unsigned NumElements = EndIndex - BeginIndex;
2827      assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2828
2829      Value *Splat =
2830          getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2831      Splat = convertValue(DL, IRB, Splat, ElementTy);
2832      if (NumElements > 1)
2833        Splat = getVectorSplat(Splat, NumElements);
2834
2835      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2836                                         NewAI.getAlignment(), "oldload");
2837      V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2838    } else if (IntTy) {
2839      // If this is a memset on an alloca where we can widen stores, insert the
2840      // set integer.
2841      assert(!II.isVolatile());
2842
2843      uint64_t Size = NewEndOffset - NewBeginOffset;
2844      V = getIntegerSplat(II.getValue(), Size);
2845
2846      if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2847                    EndOffset != NewAllocaBeginOffset)) {
2848        Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
2849                                           NewAI.getAlignment(), "oldload");
2850        Old = convertValue(DL, IRB, Old, IntTy);
2851        uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2852        V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2853      } else {
2854        assert(V->getType() == IntTy &&
2855               "Wrong type for an alloca wide integer!");
2856      }
2857      V = convertValue(DL, IRB, V, AllocaTy);
2858    } else {
2859      // Established these invariants above.
2860      assert(NewBeginOffset == NewAllocaBeginOffset);
2861      assert(NewEndOffset == NewAllocaEndOffset);
2862
2863      V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2864      if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2865        V = getVectorSplat(V, AllocaVecTy->getNumElements());
2866
2867      V = convertValue(DL, IRB, V, AllocaTy);
2868    }
2869
2870    StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2871                                            II.isVolatile());
2872    if (AATags)
2873      New->setAAMetadata(AATags);
2874    LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2875    return !II.isVolatile();
2876  }
2877
2878  bool visitMemTransferInst(MemTransferInst &II) {
2879    // Rewriting of memory transfer instructions can be a bit tricky. We break
2880    // them into two categories: split intrinsics and unsplit intrinsics.
2881
2882    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2883
2884    AAMDNodes AATags;
2885    II.getAAMetadata(AATags);
2886
2887    bool IsDest = &II.getRawDestUse() == OldUse;
2888    assert((IsDest && II.getRawDest() == OldPtr) ||
2889           (!IsDest && II.getRawSource() == OldPtr));
2890
2891    MaybeAlign SliceAlign = getSliceAlign();
2892
2893    // For unsplit intrinsics, we simply modify the source and destination
2894    // pointers in place. This isn't just an optimization, it is a matter of
2895    // correctness. With unsplit intrinsics we may be dealing with transfers
2896    // within a single alloca before SROA ran, or with transfers that have
2897    // a variable length. We may also be dealing with memmove instead of
2898    // memcpy, and so simply updating the pointers is the necessary for us to
2899    // update both source and dest of a single call.
2900    if (!IsSplittable) {
2901      Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2902      if (IsDest) {
2903        II.setDest(AdjustedPtr);
2904        II.setDestAlignment(SliceAlign);
2905      }
2906      else {
2907        II.setSource(AdjustedPtr);
2908        II.setSourceAlignment(SliceAlign);
2909      }
2910
2911      LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2912      deleteIfTriviallyDead(OldPtr);
2913      return false;
2914    }
2915    // For split transfer intrinsics we have an incredibly useful assurance:
2916    // the source and destination do not reside within the same alloca, and at
2917    // least one of them does not escape. This means that we can replace
2918    // memmove with memcpy, and we don't need to worry about all manner of
2919    // downsides to splitting and transforming the operations.
2920
2921    // If this doesn't map cleanly onto the alloca type, and that type isn't
2922    // a single value type, just emit a memcpy.
2923    bool EmitMemCpy =
2924        !VecTy && !IntTy &&
2925        (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2926         SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2927         !NewAI.getAllocatedType()->isSingleValueType());
2928
2929    // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2930    // size hasn't been shrunk based on analysis of the viable range, this is
2931    // a no-op.
2932    if (EmitMemCpy && &OldAI == &NewAI) {
2933      // Ensure the start lines up.
2934      assert(NewBeginOffset == BeginOffset);
2935
2936      // Rewrite the size as needed.
2937      if (NewEndOffset != EndOffset)
2938        II.setLength(ConstantInt::get(II.getLength()->getType(),
2939                                      NewEndOffset - NewBeginOffset));
2940      return false;
2941    }
2942    // Record this instruction for deletion.
2943    Pass.DeadInsts.insert(&II);
2944
2945    // Strip all inbounds GEPs and pointer casts to try to dig out any root
2946    // alloca that should be re-examined after rewriting this instruction.
2947    Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2948    if (AllocaInst *AI =
2949            dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2950      assert(AI != &OldAI && AI != &NewAI &&
2951             "Splittable transfers cannot reach the same alloca on both ends.");
2952      Pass.Worklist.insert(AI);
2953    }
2954
2955    Type *OtherPtrTy = OtherPtr->getType();
2956    unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2957
2958    // Compute the relative offset for the other pointer within the transfer.
2959    unsigned OffsetWidth = DL.getIndexSizeInBits(OtherAS);
2960    APInt OtherOffset(OffsetWidth, NewBeginOffset - BeginOffset);
2961    Align OtherAlign =
2962        assumeAligned(IsDest ? II.getSourceAlignment() : II.getDestAlignment());
2963    OtherAlign =
2964        commonAlignment(OtherAlign, OtherOffset.zextOrTrunc(64).getZExtValue());
2965
2966    if (EmitMemCpy) {
2967      // Compute the other pointer, folding as much as possible to produce
2968      // a single, simple GEP in most cases.
2969      OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2970                                OtherPtr->getName() + ".");
2971
2972      Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2973      Type *SizeTy = II.getLength()->getType();
2974      Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2975
2976      Value *DestPtr, *SrcPtr;
2977      MaybeAlign DestAlign, SrcAlign;
2978      // Note: IsDest is true iff we're copying into the new alloca slice
2979      if (IsDest) {
2980        DestPtr = OurPtr;
2981        DestAlign = SliceAlign;
2982        SrcPtr = OtherPtr;
2983        SrcAlign = OtherAlign;
2984      } else {
2985        DestPtr = OtherPtr;
2986        DestAlign = OtherAlign;
2987        SrcPtr = OurPtr;
2988        SrcAlign = SliceAlign;
2989      }
2990      CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2991                                       Size, II.isVolatile());
2992      if (AATags)
2993        New->setAAMetadata(AATags);
2994      LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2995      return false;
2996    }
2997
2998    bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2999                         NewEndOffset == NewAllocaEndOffset;
3000    uint64_t Size = NewEndOffset - NewBeginOffset;
3001    unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
3002    unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
3003    unsigned NumElements = EndIndex - BeginIndex;
3004    IntegerType *SubIntTy =
3005        IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
3006
3007    // Reset the other pointer type to match the register type we're going to
3008    // use, but using the address space of the original other pointer.
3009    Type *OtherTy;
3010    if (VecTy && !IsWholeAlloca) {
3011      if (NumElements == 1)
3012        OtherTy = VecTy->getElementType();
3013      else
3014        OtherTy = VectorType::get(VecTy->getElementType(), NumElements);
3015    } else if (IntTy && !IsWholeAlloca) {
3016      OtherTy = SubIntTy;
3017    } else {
3018      OtherTy = NewAllocaTy;
3019    }
3020    OtherPtrTy = OtherTy->getPointerTo(OtherAS);
3021
3022    Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
3023                                   OtherPtr->getName() + ".");
3024    MaybeAlign SrcAlign = OtherAlign;
3025    Value *DstPtr = &NewAI;
3026    MaybeAlign DstAlign = SliceAlign;
3027    if (!IsDest) {
3028      std::swap(SrcPtr, DstPtr);
3029      std::swap(SrcAlign, DstAlign);
3030    }
3031
3032    Value *Src;
3033    if (VecTy && !IsWholeAlloca && !IsDest) {
3034      Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3035                                  NewAI.getAlignment(), "load");
3036      Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
3037    } else if (IntTy && !IsWholeAlloca && !IsDest) {
3038      Src = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3039                                  NewAI.getAlignment(), "load");
3040      Src = convertValue(DL, IRB, Src, IntTy);
3041      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3042      Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
3043    } else {
3044      LoadInst *Load = IRB.CreateAlignedLoad(OtherTy, SrcPtr, SrcAlign,
3045                                             II.isVolatile(), "copyload");
3046      if (AATags)
3047        Load->setAAMetadata(AATags);
3048      Src = Load;
3049    }
3050
3051    if (VecTy && !IsWholeAlloca && IsDest) {
3052      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3053                                         NewAI.getAlignment(), "oldload");
3054      Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
3055    } else if (IntTy && !IsWholeAlloca && IsDest) {
3056      Value *Old = IRB.CreateAlignedLoad(NewAI.getAllocatedType(), &NewAI,
3057                                         NewAI.getAlignment(), "oldload");
3058      Old = convertValue(DL, IRB, Old, IntTy);
3059      uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3060      Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3061      Src = convertValue(DL, IRB, Src, NewAllocaTy);
3062    }
3063
3064    StoreInst *Store = cast<StoreInst>(
3065        IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3066    if (AATags)
3067      Store->setAAMetadata(AATags);
3068    LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3069    return !II.isVolatile();
3070  }
3071
3072  bool visitIntrinsicInst(IntrinsicInst &II) {
3073    assert(II.isLifetimeStartOrEnd());
3074    LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3075    assert(II.getArgOperand(1) == OldPtr);
3076
3077    // Record this instruction for deletion.
3078    Pass.DeadInsts.insert(&II);
3079
3080    // Lifetime intrinsics are only promotable if they cover the whole alloca.
3081    // Therefore, we drop lifetime intrinsics which don't cover the whole
3082    // alloca.
3083    // (In theory, intrinsics which partially cover an alloca could be
3084    // promoted, but PromoteMemToReg doesn't handle that case.)
3085    // FIXME: Check whether the alloca is promotable before dropping the
3086    // lifetime intrinsics?
3087    if (NewBeginOffset != NewAllocaBeginOffset ||
3088        NewEndOffset != NewAllocaEndOffset)
3089      return true;
3090
3091    ConstantInt *Size =
3092        ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3093                         NewEndOffset - NewBeginOffset);
3094    // Lifetime intrinsics always expect an i8* so directly get such a pointer
3095    // for the new alloca slice.
3096    Type *PointerTy = IRB.getInt8PtrTy(OldPtr->getType()->getPointerAddressSpace());
3097    Value *Ptr = getNewAllocaSlicePtr(IRB, PointerTy);
3098    Value *New;
3099    if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3100      New = IRB.CreateLifetimeStart(Ptr, Size);
3101    else
3102      New = IRB.CreateLifetimeEnd(Ptr, Size);
3103
3104    (void)New;
3105    LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3106
3107    return true;
3108  }
3109
3110  void fixLoadStoreAlign(Instruction &Root) {
3111    // This algorithm implements the same visitor loop as
3112    // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3113    // or store found.
3114    SmallPtrSet<Instruction *, 4> Visited;
3115    SmallVector<Instruction *, 4> Uses;
3116    Visited.insert(&Root);
3117    Uses.push_back(&Root);
3118    do {
3119      Instruction *I = Uses.pop_back_val();
3120
3121      if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3122        MaybeAlign LoadAlign = DL.getValueOrABITypeAlignment(
3123            MaybeAlign(LI->getAlignment()), LI->getType());
3124        LI->setAlignment(std::min(LoadAlign, getSliceAlign()));
3125        continue;
3126      }
3127      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3128          Value *Op = SI->getOperand(0);
3129          MaybeAlign StoreAlign = DL.getValueOrABITypeAlignment(
3130              MaybeAlign(SI->getAlignment()), Op->getType());
3131          SI->setAlignment(std::min(StoreAlign, getSliceAlign()));
3132          continue;
3133      }
3134
3135      assert(isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I) ||
3136             isa<PHINode>(I) || isa<SelectInst>(I) ||
3137             isa<GetElementPtrInst>(I));
3138      for (User *U : I->users())
3139        if (Visited.insert(cast<Instruction>(U)).second)
3140          Uses.push_back(cast<Instruction>(U));
3141    } while (!Uses.empty());
3142  }
3143
3144  bool visitPHINode(PHINode &PN) {
3145    LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3146    assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3147    assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3148
3149    // We would like to compute a new pointer in only one place, but have it be
3150    // as local as possible to the PHI. To do that, we re-use the location of
3151    // the old pointer, which necessarily must be in the right position to
3152    // dominate the PHI.
3153    IRBuilderTy PtrBuilder(IRB);
3154    if (isa<PHINode>(OldPtr))
3155      PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3156    else
3157      PtrBuilder.SetInsertPoint(OldPtr);
3158    PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3159
3160    Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
3161    // Replace the operands which were using the old pointer.
3162    std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3163
3164    LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3165    deleteIfTriviallyDead(OldPtr);
3166
3167    // Fix the alignment of any loads or stores using this PHI node.
3168    fixLoadStoreAlign(PN);
3169
3170    // PHIs can't be promoted on their own, but often can be speculated. We
3171    // check the speculation outside of the rewriter so that we see the
3172    // fully-rewritten alloca.
3173    PHIUsers.insert(&PN);
3174    return true;
3175  }
3176
3177  bool visitSelectInst(SelectInst &SI) {
3178    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3179    assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3180           "Pointer isn't an operand!");
3181    assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3182    assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3183
3184    Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3185    // Replace the operands which were using the old pointer.
3186    if (SI.getOperand(1) == OldPtr)
3187      SI.setOperand(1, NewPtr);
3188    if (SI.getOperand(2) == OldPtr)
3189      SI.setOperand(2, NewPtr);
3190
3191    LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3192    deleteIfTriviallyDead(OldPtr);
3193
3194    // Fix the alignment of any loads or stores using this select.
3195    fixLoadStoreAlign(SI);
3196
3197    // Selects can't be promoted on their own, but often can be speculated. We
3198    // check the speculation outside of the rewriter so that we see the
3199    // fully-rewritten alloca.
3200    SelectUsers.insert(&SI);
3201    return true;
3202  }
3203};
3204
3205namespace {
3206
3207/// Visitor to rewrite aggregate loads and stores as scalar.
3208///
3209/// This pass aggressively rewrites all aggregate loads and stores on
3210/// a particular pointer (or any pointer derived from it which we can identify)
3211/// with scalar loads and stores.
3212class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3213  // Befriend the base class so it can delegate to private visit methods.
3214  friend class InstVisitor<AggLoadStoreRewriter, bool>;
3215
3216  /// Queue of pointer uses to analyze and potentially rewrite.
3217  SmallVector<Use *, 8> Queue;
3218
3219  /// Set to prevent us from cycling with phi nodes and loops.
3220  SmallPtrSet<User *, 8> Visited;
3221
3222  /// The current pointer use being rewritten. This is used to dig up the used
3223  /// value (as opposed to the user).
3224  Use *U = nullptr;
3225
3226  /// Used to calculate offsets, and hence alignment, of subobjects.
3227  const DataLayout &DL;
3228
3229public:
3230  AggLoadStoreRewriter(const DataLayout &DL) : DL(DL) {}
3231
3232  /// Rewrite loads and stores through a pointer and all pointers derived from
3233  /// it.
3234  bool rewrite(Instruction &I) {
3235    LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3236    enqueueUsers(I);
3237    bool Changed = false;
3238    while (!Queue.empty()) {
3239      U = Queue.pop_back_val();
3240      Changed |= visit(cast<Instruction>(U->getUser()));
3241    }
3242    return Changed;
3243  }
3244
3245private:
3246  /// Enqueue all the users of the given instruction for further processing.
3247  /// This uses a set to de-duplicate users.
3248  void enqueueUsers(Instruction &I) {
3249    for (Use &U : I.uses())
3250      if (Visited.insert(U.getUser()).second)
3251        Queue.push_back(&U);
3252  }
3253
3254  // Conservative default is to not rewrite anything.
3255  bool visitInstruction(Instruction &I) { return false; }
3256
3257  /// Generic recursive split emission class.
3258  template <typename Derived> class OpSplitter {
3259  protected:
3260    /// The builder used to form new instructions.
3261    IRBuilderTy IRB;
3262
3263    /// The indices which to be used with insert- or extractvalue to select the
3264    /// appropriate value within the aggregate.
3265    SmallVector<unsigned, 4> Indices;
3266
3267    /// The indices to a GEP instruction which will move Ptr to the correct slot
3268    /// within the aggregate.
3269    SmallVector<Value *, 4> GEPIndices;
3270
3271    /// The base pointer of the original op, used as a base for GEPing the
3272    /// split operations.
3273    Value *Ptr;
3274
3275    /// The base pointee type being GEPed into.
3276    Type *BaseTy;
3277
3278    /// Known alignment of the base pointer.
3279    Align BaseAlign;
3280
3281    /// To calculate offset of each component so we can correctly deduce
3282    /// alignments.
3283    const DataLayout &DL;
3284
3285    /// Initialize the splitter with an insertion point, Ptr and start with a
3286    /// single zero GEP index.
3287    OpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3288               Align BaseAlign, const DataLayout &DL)
3289        : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr),
3290          BaseTy(BaseTy), BaseAlign(BaseAlign), DL(DL) {}
3291
3292  public:
3293    /// Generic recursive split emission routine.
3294    ///
3295    /// This method recursively splits an aggregate op (load or store) into
3296    /// scalar or vector ops. It splits recursively until it hits a single value
3297    /// and emits that single value operation via the template argument.
3298    ///
3299    /// The logic of this routine relies on GEPs and insertvalue and
3300    /// extractvalue all operating with the same fundamental index list, merely
3301    /// formatted differently (GEPs need actual values).
3302    ///
3303    /// \param Ty  The type being split recursively into smaller ops.
3304    /// \param Agg The aggregate value being built up or stored, depending on
3305    /// whether this is splitting a load or a store respectively.
3306    void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3307      if (Ty->isSingleValueType()) {
3308        unsigned Offset = DL.getIndexedOffsetInType(BaseTy, GEPIndices);
3309        return static_cast<Derived *>(this)->emitFunc(
3310            Ty, Agg, commonAlignment(BaseAlign, Offset), Name);
3311      }
3312
3313      if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3314        unsigned OldSize = Indices.size();
3315        (void)OldSize;
3316        for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3317             ++Idx) {
3318          assert(Indices.size() == OldSize && "Did not return to the old size");
3319          Indices.push_back(Idx);
3320          GEPIndices.push_back(IRB.getInt32(Idx));
3321          emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3322          GEPIndices.pop_back();
3323          Indices.pop_back();
3324        }
3325        return;
3326      }
3327
3328      if (StructType *STy = dyn_cast<StructType>(Ty)) {
3329        unsigned OldSize = Indices.size();
3330        (void)OldSize;
3331        for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3332             ++Idx) {
3333          assert(Indices.size() == OldSize && "Did not return to the old size");
3334          Indices.push_back(Idx);
3335          GEPIndices.push_back(IRB.getInt32(Idx));
3336          emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3337          GEPIndices.pop_back();
3338          Indices.pop_back();
3339        }
3340        return;
3341      }
3342
3343      llvm_unreachable("Only arrays and structs are aggregate loadable types");
3344    }
3345  };
3346
3347  struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3348    AAMDNodes AATags;
3349
3350    LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3351                   AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3352        : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3353                                     DL),
3354          AATags(AATags) {}
3355
3356    /// Emit a leaf load of a single value. This is called at the leaves of the
3357    /// recursive emission to actually load values.
3358    void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3359      assert(Ty->isSingleValueType());
3360      // Load the single value and insert it using the indices.
3361      Value *GEP =
3362          IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3363      LoadInst *Load =
3364          IRB.CreateAlignedLoad(Ty, GEP, Alignment.value(), Name + ".load");
3365      if (AATags)
3366        Load->setAAMetadata(AATags);
3367      Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3368      LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3369    }
3370  };
3371
3372  bool visitLoadInst(LoadInst &LI) {
3373    assert(LI.getPointerOperand() == *U);
3374    if (!LI.isSimple() || LI.getType()->isSingleValueType())
3375      return false;
3376
3377    // We have an aggregate being loaded, split it apart.
3378    LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3379    AAMDNodes AATags;
3380    LI.getAAMetadata(AATags);
3381    LoadOpSplitter Splitter(&LI, *U, LI.getType(), AATags,
3382                            getAdjustedAlignment(&LI, 0, DL), DL);
3383    Value *V = UndefValue::get(LI.getType());
3384    Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3385    LI.replaceAllUsesWith(V);
3386    LI.eraseFromParent();
3387    return true;
3388  }
3389
3390  struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3391    StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, Type *BaseTy,
3392                    AAMDNodes AATags, Align BaseAlign, const DataLayout &DL)
3393        : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr, BaseTy, BaseAlign,
3394                                      DL),
3395          AATags(AATags) {}
3396    AAMDNodes AATags;
3397    /// Emit a leaf store of a single value. This is called at the leaves of the
3398    /// recursive emission to actually produce stores.
3399    void emitFunc(Type *Ty, Value *&Agg, Align Alignment, const Twine &Name) {
3400      assert(Ty->isSingleValueType());
3401      // Extract the single value and store it using the indices.
3402      //
3403      // The gep and extractvalue values are factored out of the CreateStore
3404      // call to make the output independent of the argument evaluation order.
3405      Value *ExtractValue =
3406          IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3407      Value *InBoundsGEP =
3408          IRB.CreateInBoundsGEP(BaseTy, Ptr, GEPIndices, Name + ".gep");
3409      StoreInst *Store =
3410          IRB.CreateAlignedStore(ExtractValue, InBoundsGEP, Alignment.value());
3411      if (AATags)
3412        Store->setAAMetadata(AATags);
3413      LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3414    }
3415  };
3416
3417  bool visitStoreInst(StoreInst &SI) {
3418    if (!SI.isSimple() || SI.getPointerOperand() != *U)
3419      return false;
3420    Value *V = SI.getValueOperand();
3421    if (V->getType()->isSingleValueType())
3422      return false;
3423
3424    // We have an aggregate being stored, split it apart.
3425    LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3426    AAMDNodes AATags;
3427    SI.getAAMetadata(AATags);
3428    StoreOpSplitter Splitter(&SI, *U, V->getType(), AATags,
3429                             getAdjustedAlignment(&SI, 0, DL), DL);
3430    Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3431    SI.eraseFromParent();
3432    return true;
3433  }
3434
3435  bool visitBitCastInst(BitCastInst &BC) {
3436    enqueueUsers(BC);
3437    return false;
3438  }
3439
3440  bool visitAddrSpaceCastInst(AddrSpaceCastInst &ASC) {
3441    enqueueUsers(ASC);
3442    return false;
3443  }
3444
3445  bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3446    enqueueUsers(GEPI);
3447    return false;
3448  }
3449
3450  bool visitPHINode(PHINode &PN) {
3451    enqueueUsers(PN);
3452    return false;
3453  }
3454
3455  bool visitSelectInst(SelectInst &SI) {
3456    enqueueUsers(SI);
3457    return false;
3458  }
3459};
3460
3461} // end anonymous namespace
3462
3463/// Strip aggregate type wrapping.
3464///
3465/// This removes no-op aggregate types wrapping an underlying type. It will
3466/// strip as many layers of types as it can without changing either the type
3467/// size or the allocated size.
3468static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3469  if (Ty->isSingleValueType())
3470    return Ty;
3471
3472  uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3473  uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3474
3475  Type *InnerTy;
3476  if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3477    InnerTy = ArrTy->getElementType();
3478  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3479    const StructLayout *SL = DL.getStructLayout(STy);
3480    unsigned Index = SL->getElementContainingOffset(0);
3481    InnerTy = STy->getElementType(Index);
3482  } else {
3483    return Ty;
3484  }
3485
3486  if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3487      TypeSize > DL.getTypeSizeInBits(InnerTy))
3488    return Ty;
3489
3490  return stripAggregateTypeWrapping(DL, InnerTy);
3491}
3492
3493/// Try to find a partition of the aggregate type passed in for a given
3494/// offset and size.
3495///
3496/// This recurses through the aggregate type and tries to compute a subtype
3497/// based on the offset and size. When the offset and size span a sub-section
3498/// of an array, it will even compute a new array type for that sub-section,
3499/// and the same for structs.
3500///
3501/// Note that this routine is very strict and tries to find a partition of the
3502/// type which produces the *exact* right offset and size. It is not forgiving
3503/// when the size or offset cause either end of type-based partition to be off.
3504/// Also, this is a best-effort routine. It is reasonable to give up and not
3505/// return a type if necessary.
3506static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3507                              uint64_t Size) {
3508  if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3509    return stripAggregateTypeWrapping(DL, Ty);
3510  if (Offset > DL.getTypeAllocSize(Ty) ||
3511      (DL.getTypeAllocSize(Ty) - Offset) < Size)
3512    return nullptr;
3513
3514  if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3515    Type *ElementTy = SeqTy->getElementType();
3516    uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3517    uint64_t NumSkippedElements = Offset / ElementSize;
3518    if (NumSkippedElements >= SeqTy->getNumElements())
3519      return nullptr;
3520    Offset -= NumSkippedElements * ElementSize;
3521
3522    // First check if we need to recurse.
3523    if (Offset > 0 || Size < ElementSize) {
3524      // Bail if the partition ends in a different array element.
3525      if ((Offset + Size) > ElementSize)
3526        return nullptr;
3527      // Recurse through the element type trying to peel off offset bytes.
3528      return getTypePartition(DL, ElementTy, Offset, Size);
3529    }
3530    assert(Offset == 0);
3531
3532    if (Size == ElementSize)
3533      return stripAggregateTypeWrapping(DL, ElementTy);
3534    assert(Size > ElementSize);
3535    uint64_t NumElements = Size / ElementSize;
3536    if (NumElements * ElementSize != Size)
3537      return nullptr;
3538    return ArrayType::get(ElementTy, NumElements);
3539  }
3540
3541  StructType *STy = dyn_cast<StructType>(Ty);
3542  if (!STy)
3543    return nullptr;
3544
3545  const StructLayout *SL = DL.getStructLayout(STy);
3546  if (Offset >= SL->getSizeInBytes())
3547    return nullptr;
3548  uint64_t EndOffset = Offset + Size;
3549  if (EndOffset > SL->getSizeInBytes())
3550    return nullptr;
3551
3552  unsigned Index = SL->getElementContainingOffset(Offset);
3553  Offset -= SL->getElementOffset(Index);
3554
3555  Type *ElementTy = STy->getElementType(Index);
3556  uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3557  if (Offset >= ElementSize)
3558    return nullptr; // The offset points into alignment padding.
3559
3560  // See if any partition must be contained by the element.
3561  if (Offset > 0 || Size < ElementSize) {
3562    if ((Offset + Size) > ElementSize)
3563      return nullptr;
3564    return getTypePartition(DL, ElementTy, Offset, Size);
3565  }
3566  assert(Offset == 0);
3567
3568  if (Size == ElementSize)
3569    return stripAggregateTypeWrapping(DL, ElementTy);
3570
3571  StructType::element_iterator EI = STy->element_begin() + Index,
3572                               EE = STy->element_end();
3573  if (EndOffset < SL->getSizeInBytes()) {
3574    unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3575    if (Index == EndIndex)
3576      return nullptr; // Within a single element and its padding.
3577
3578    // Don't try to form "natural" types if the elements don't line up with the
3579    // expected size.
3580    // FIXME: We could potentially recurse down through the last element in the
3581    // sub-struct to find a natural end point.
3582    if (SL->getElementOffset(EndIndex) != EndOffset)
3583      return nullptr;
3584
3585    assert(Index < EndIndex);
3586    EE = STy->element_begin() + EndIndex;
3587  }
3588
3589  // Try to build up a sub-structure.
3590  StructType *SubTy =
3591      StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3592  const StructLayout *SubSL = DL.getStructLayout(SubTy);
3593  if (Size != SubSL->getSizeInBytes())
3594    return nullptr; // The sub-struct doesn't have quite the size needed.
3595
3596  return SubTy;
3597}
3598
3599/// Pre-split loads and stores to simplify rewriting.
3600///
3601/// We want to break up the splittable load+store pairs as much as
3602/// possible. This is important to do as a preprocessing step, as once we
3603/// start rewriting the accesses to partitions of the alloca we lose the
3604/// necessary information to correctly split apart paired loads and stores
3605/// which both point into this alloca. The case to consider is something like
3606/// the following:
3607///
3608///   %a = alloca [12 x i8]
3609///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3610///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3611///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3612///   %iptr1 = bitcast i8* %gep1 to i64*
3613///   %iptr2 = bitcast i8* %gep2 to i64*
3614///   %fptr1 = bitcast i8* %gep1 to float*
3615///   %fptr2 = bitcast i8* %gep2 to float*
3616///   %fptr3 = bitcast i8* %gep3 to float*
3617///   store float 0.0, float* %fptr1
3618///   store float 1.0, float* %fptr2
3619///   %v = load i64* %iptr1
3620///   store i64 %v, i64* %iptr2
3621///   %f1 = load float* %fptr2
3622///   %f2 = load float* %fptr3
3623///
3624/// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3625/// promote everything so we recover the 2 SSA values that should have been
3626/// there all along.
3627///
3628/// \returns true if any changes are made.
3629bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3630  LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3631
3632  // Track the loads and stores which are candidates for pre-splitting here, in
3633  // the order they first appear during the partition scan. These give stable
3634  // iteration order and a basis for tracking which loads and stores we
3635  // actually split.
3636  SmallVector<LoadInst *, 4> Loads;
3637  SmallVector<StoreInst *, 4> Stores;
3638
3639  // We need to accumulate the splits required of each load or store where we
3640  // can find them via a direct lookup. This is important to cross-check loads
3641  // and stores against each other. We also track the slice so that we can kill
3642  // all the slices that end up split.
3643  struct SplitOffsets {
3644    Slice *S;
3645    std::vector<uint64_t> Splits;
3646  };
3647  SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3648
3649  // Track loads out of this alloca which cannot, for any reason, be pre-split.
3650  // This is important as we also cannot pre-split stores of those loads!
3651  // FIXME: This is all pretty gross. It means that we can be more aggressive
3652  // in pre-splitting when the load feeding the store happens to come from
3653  // a separate alloca. Put another way, the effectiveness of SROA would be
3654  // decreased by a frontend which just concatenated all of its local allocas
3655  // into one big flat alloca. But defeating such patterns is exactly the job
3656  // SROA is tasked with! Sadly, to not have this discrepancy we would have
3657  // change store pre-splitting to actually force pre-splitting of the load
3658  // that feeds it *and all stores*. That makes pre-splitting much harder, but
3659  // maybe it would make it more principled?
3660  SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3661
3662  LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3663  for (auto &P : AS.partitions()) {
3664    for (Slice &S : P) {
3665      Instruction *I = cast<Instruction>(S.getUse()->getUser());
3666      if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3667        // If this is a load we have to track that it can't participate in any
3668        // pre-splitting. If this is a store of a load we have to track that
3669        // that load also can't participate in any pre-splitting.
3670        if (auto *LI = dyn_cast<LoadInst>(I))
3671          UnsplittableLoads.insert(LI);
3672        else if (auto *SI = dyn_cast<StoreInst>(I))
3673          if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3674            UnsplittableLoads.insert(LI);
3675        continue;
3676      }
3677      assert(P.endOffset() > S.beginOffset() &&
3678             "Empty or backwards partition!");
3679
3680      // Determine if this is a pre-splittable slice.
3681      if (auto *LI = dyn_cast<LoadInst>(I)) {
3682        assert(!LI->isVolatile() && "Cannot split volatile loads!");
3683
3684        // The load must be used exclusively to store into other pointers for
3685        // us to be able to arbitrarily pre-split it. The stores must also be
3686        // simple to avoid changing semantics.
3687        auto IsLoadSimplyStored = [](LoadInst *LI) {
3688          for (User *LU : LI->users()) {
3689            auto *SI = dyn_cast<StoreInst>(LU);
3690            if (!SI || !SI->isSimple())
3691              return false;
3692          }
3693          return true;
3694        };
3695        if (!IsLoadSimplyStored(LI)) {
3696          UnsplittableLoads.insert(LI);
3697          continue;
3698        }
3699
3700        Loads.push_back(LI);
3701      } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3702        if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3703          // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3704          continue;
3705        auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3706        if (!StoredLoad || !StoredLoad->isSimple())
3707          continue;
3708        assert(!SI->isVolatile() && "Cannot split volatile stores!");
3709
3710        Stores.push_back(SI);
3711      } else {
3712        // Other uses cannot be pre-split.
3713        continue;
3714      }
3715
3716      // Record the initial split.
3717      LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3718      auto &Offsets = SplitOffsetsMap[I];
3719      assert(Offsets.Splits.empty() &&
3720             "Should not have splits the first time we see an instruction!");
3721      Offsets.S = &S;
3722      Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3723    }
3724
3725    // Now scan the already split slices, and add a split for any of them which
3726    // we're going to pre-split.
3727    for (Slice *S : P.splitSliceTails()) {
3728      auto SplitOffsetsMapI =
3729          SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3730      if (SplitOffsetsMapI == SplitOffsetsMap.end())
3731        continue;
3732      auto &Offsets = SplitOffsetsMapI->second;
3733
3734      assert(Offsets.S == S && "Found a mismatched slice!");
3735      assert(!Offsets.Splits.empty() &&
3736             "Cannot have an empty set of splits on the second partition!");
3737      assert(Offsets.Splits.back() ==
3738                 P.beginOffset() - Offsets.S->beginOffset() &&
3739             "Previous split does not end where this one begins!");
3740
3741      // Record each split. The last partition's end isn't needed as the size
3742      // of the slice dictates that.
3743      if (S->endOffset() > P.endOffset())
3744        Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3745    }
3746  }
3747
3748  // We may have split loads where some of their stores are split stores. For
3749  // such loads and stores, we can only pre-split them if their splits exactly
3750  // match relative to their starting offset. We have to verify this prior to
3751  // any rewriting.
3752  Stores.erase(
3753      llvm::remove_if(Stores,
3754                      [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3755                        // Lookup the load we are storing in our map of split
3756                        // offsets.
3757                        auto *LI = cast<LoadInst>(SI->getValueOperand());
3758                        // If it was completely unsplittable, then we're done,
3759                        // and this store can't be pre-split.
3760                        if (UnsplittableLoads.count(LI))
3761                          return true;
3762
3763                        auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3764                        if (LoadOffsetsI == SplitOffsetsMap.end())
3765                          return false; // Unrelated loads are definitely safe.
3766                        auto &LoadOffsets = LoadOffsetsI->second;
3767
3768                        // Now lookup the store's offsets.
3769                        auto &StoreOffsets = SplitOffsetsMap[SI];
3770
3771                        // If the relative offsets of each split in the load and
3772                        // store match exactly, then we can split them and we
3773                        // don't need to remove them here.
3774                        if (LoadOffsets.Splits == StoreOffsets.Splits)
3775                          return false;
3776
3777                        LLVM_DEBUG(
3778                            dbgs()
3779                            << "    Mismatched splits for load and store:\n"
3780                            << "      " << *LI << "\n"
3781                            << "      " << *SI << "\n");
3782
3783                        // We've found a store and load that we need to split
3784                        // with mismatched relative splits. Just give up on them
3785                        // and remove both instructions from our list of
3786                        // candidates.
3787                        UnsplittableLoads.insert(LI);
3788                        return true;
3789                      }),
3790      Stores.end());
3791  // Now we have to go *back* through all the stores, because a later store may
3792  // have caused an earlier store's load to become unsplittable and if it is
3793  // unsplittable for the later store, then we can't rely on it being split in
3794  // the earlier store either.
3795  Stores.erase(llvm::remove_if(Stores,
3796                               [&UnsplittableLoads](StoreInst *SI) {
3797                                 auto *LI =
3798                                     cast<LoadInst>(SI->getValueOperand());
3799                                 return UnsplittableLoads.count(LI);
3800                               }),
3801               Stores.end());
3802  // Once we've established all the loads that can't be split for some reason,
3803  // filter any that made it into our list out.
3804  Loads.erase(llvm::remove_if(Loads,
3805                              [&UnsplittableLoads](LoadInst *LI) {
3806                                return UnsplittableLoads.count(LI);
3807                              }),
3808              Loads.end());
3809
3810  // If no loads or stores are left, there is no pre-splitting to be done for
3811  // this alloca.
3812  if (Loads.empty() && Stores.empty())
3813    return false;
3814
3815  // From here on, we can't fail and will be building new accesses, so rig up
3816  // an IR builder.
3817  IRBuilderTy IRB(&AI);
3818
3819  // Collect the new slices which we will merge into the alloca slices.
3820  SmallVector<Slice, 4> NewSlices;
3821
3822  // Track any allocas we end up splitting loads and stores for so we iterate
3823  // on them.
3824  SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3825
3826  // At this point, we have collected all of the loads and stores we can
3827  // pre-split, and the specific splits needed for them. We actually do the
3828  // splitting in a specific order in order to handle when one of the loads in
3829  // the value operand to one of the stores.
3830  //
3831  // First, we rewrite all of the split loads, and just accumulate each split
3832  // load in a parallel structure. We also build the slices for them and append
3833  // them to the alloca slices.
3834  SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3835  std::vector<LoadInst *> SplitLoads;
3836  const DataLayout &DL = AI.getModule()->getDataLayout();
3837  for (LoadInst *LI : Loads) {
3838    SplitLoads.clear();
3839
3840    IntegerType *Ty = cast<IntegerType>(LI->getType());
3841    uint64_t LoadSize = Ty->getBitWidth() / 8;
3842    assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3843
3844    auto &Offsets = SplitOffsetsMap[LI];
3845    assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3846           "Slice size should always match load size exactly!");
3847    uint64_t BaseOffset = Offsets.S->beginOffset();
3848    assert(BaseOffset + LoadSize > BaseOffset &&
3849           "Cannot represent alloca access size using 64-bit integers!");
3850
3851    Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3852    IRB.SetInsertPoint(LI);
3853
3854    LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3855
3856    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3857    int Idx = 0, Size = Offsets.Splits.size();
3858    for (;;) {
3859      auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3860      auto AS = LI->getPointerAddressSpace();
3861      auto *PartPtrTy = PartTy->getPointerTo(AS);
3862      LoadInst *PLoad = IRB.CreateAlignedLoad(
3863          PartTy,
3864          getAdjustedPtr(IRB, DL, BasePtr,
3865                         APInt(DL.getIndexSizeInBits(AS), PartOffset),
3866                         PartPtrTy, BasePtr->getName() + "."),
3867          getAdjustedAlignment(LI, PartOffset, DL).value(),
3868          /*IsVolatile*/ false, LI->getName());
3869      PLoad->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3870                                LLVMContext::MD_access_group});
3871
3872      // Append this load onto the list of split loads so we can find it later
3873      // to rewrite the stores.
3874      SplitLoads.push_back(PLoad);
3875
3876      // Now build a new slice for the alloca.
3877      NewSlices.push_back(
3878          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3879                &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3880                /*IsSplittable*/ false));
3881      LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3882                        << ", " << NewSlices.back().endOffset()
3883                        << "): " << *PLoad << "\n");
3884
3885      // See if we've handled all the splits.
3886      if (Idx >= Size)
3887        break;
3888
3889      // Setup the next partition.
3890      PartOffset = Offsets.Splits[Idx];
3891      ++Idx;
3892      PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3893    }
3894
3895    // Now that we have the split loads, do the slow walk over all uses of the
3896    // load and rewrite them as split stores, or save the split loads to use
3897    // below if the store is going to be split there anyways.
3898    bool DeferredStores = false;
3899    for (User *LU : LI->users()) {
3900      StoreInst *SI = cast<StoreInst>(LU);
3901      if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3902        DeferredStores = true;
3903        LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
3904                          << "\n");
3905        continue;
3906      }
3907
3908      Value *StoreBasePtr = SI->getPointerOperand();
3909      IRB.SetInsertPoint(SI);
3910
3911      LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
3912
3913      for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3914        LoadInst *PLoad = SplitLoads[Idx];
3915        uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3916        auto *PartPtrTy =
3917            PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3918
3919        auto AS = SI->getPointerAddressSpace();
3920        StoreInst *PStore = IRB.CreateAlignedStore(
3921            PLoad,
3922            getAdjustedPtr(IRB, DL, StoreBasePtr,
3923                           APInt(DL.getIndexSizeInBits(AS), PartOffset),
3924                           PartPtrTy, StoreBasePtr->getName() + "."),
3925            getAdjustedAlignment(SI, PartOffset, DL).value(),
3926            /*IsVolatile*/ false);
3927        PStore->copyMetadata(*LI, {LLVMContext::MD_mem_parallel_loop_access,
3928                                   LLVMContext::MD_access_group});
3929        LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
3930      }
3931
3932      // We want to immediately iterate on any allocas impacted by splitting
3933      // this store, and we have to track any promotable alloca (indicated by
3934      // a direct store) as needing to be resplit because it is no longer
3935      // promotable.
3936      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3937        ResplitPromotableAllocas.insert(OtherAI);
3938        Worklist.insert(OtherAI);
3939      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3940                     StoreBasePtr->stripInBoundsOffsets())) {
3941        Worklist.insert(OtherAI);
3942      }
3943
3944      // Mark the original store as dead.
3945      DeadInsts.insert(SI);
3946    }
3947
3948    // Save the split loads if there are deferred stores among the users.
3949    if (DeferredStores)
3950      SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3951
3952    // Mark the original load as dead and kill the original slice.
3953    DeadInsts.insert(LI);
3954    Offsets.S->kill();
3955  }
3956
3957  // Second, we rewrite all of the split stores. At this point, we know that
3958  // all loads from this alloca have been split already. For stores of such
3959  // loads, we can simply look up the pre-existing split loads. For stores of
3960  // other loads, we split those loads first and then write split stores of
3961  // them.
3962  for (StoreInst *SI : Stores) {
3963    auto *LI = cast<LoadInst>(SI->getValueOperand());
3964    IntegerType *Ty = cast<IntegerType>(LI->getType());
3965    uint64_t StoreSize = Ty->getBitWidth() / 8;
3966    assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3967
3968    auto &Offsets = SplitOffsetsMap[SI];
3969    assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3970           "Slice size should always match load size exactly!");
3971    uint64_t BaseOffset = Offsets.S->beginOffset();
3972    assert(BaseOffset + StoreSize > BaseOffset &&
3973           "Cannot represent alloca access size using 64-bit integers!");
3974
3975    Value *LoadBasePtr = LI->getPointerOperand();
3976    Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3977
3978    LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
3979
3980    // Check whether we have an already split load.
3981    auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3982    std::vector<LoadInst *> *SplitLoads = nullptr;
3983    if (SplitLoadsMapI != SplitLoadsMap.end()) {
3984      SplitLoads = &SplitLoadsMapI->second;
3985      assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3986             "Too few split loads for the number of splits in the store!");
3987    } else {
3988      LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
3989    }
3990
3991    uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3992    int Idx = 0, Size = Offsets.Splits.size();
3993    for (;;) {
3994      auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3995      auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3996      auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3997
3998      // Either lookup a split load or create one.
3999      LoadInst *PLoad;
4000      if (SplitLoads) {
4001        PLoad = (*SplitLoads)[Idx];
4002      } else {
4003        IRB.SetInsertPoint(LI);
4004        auto AS = LI->getPointerAddressSpace();
4005        PLoad = IRB.CreateAlignedLoad(
4006            PartTy,
4007            getAdjustedPtr(IRB, DL, LoadBasePtr,
4008                           APInt(DL.getIndexSizeInBits(AS), PartOffset),
4009                           LoadPartPtrTy, LoadBasePtr->getName() + "."),
4010            getAdjustedAlignment(LI, PartOffset, DL).value(),
4011            /*IsVolatile*/ false, LI->getName());
4012      }
4013
4014      // And store this partition.
4015      IRB.SetInsertPoint(SI);
4016      auto AS = SI->getPointerAddressSpace();
4017      StoreInst *PStore = IRB.CreateAlignedStore(
4018          PLoad,
4019          getAdjustedPtr(IRB, DL, StoreBasePtr,
4020                         APInt(DL.getIndexSizeInBits(AS), PartOffset),
4021                         StorePartPtrTy, StoreBasePtr->getName() + "."),
4022          getAdjustedAlignment(SI, PartOffset, DL).value(),
4023          /*IsVolatile*/ false);
4024
4025      // Now build a new slice for the alloca.
4026      NewSlices.push_back(
4027          Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
4028                &PStore->getOperandUse(PStore->getPointerOperandIndex()),
4029                /*IsSplittable*/ false));
4030      LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
4031                        << ", " << NewSlices.back().endOffset()
4032                        << "): " << *PStore << "\n");
4033      if (!SplitLoads) {
4034        LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
4035      }
4036
4037      // See if we've finished all the splits.
4038      if (Idx >= Size)
4039        break;
4040
4041      // Setup the next partition.
4042      PartOffset = Offsets.Splits[Idx];
4043      ++Idx;
4044      PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
4045    }
4046
4047    // We want to immediately iterate on any allocas impacted by splitting
4048    // this load, which is only relevant if it isn't a load of this alloca and
4049    // thus we didn't already split the loads above. We also have to keep track
4050    // of any promotable allocas we split loads on as they can no longer be
4051    // promoted.
4052    if (!SplitLoads) {
4053      if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
4054        assert(OtherAI != &AI && "We can't re-split our own alloca!");
4055        ResplitPromotableAllocas.insert(OtherAI);
4056        Worklist.insert(OtherAI);
4057      } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
4058                     LoadBasePtr->stripInBoundsOffsets())) {
4059        assert(OtherAI != &AI && "We can't re-split our own alloca!");
4060        Worklist.insert(OtherAI);
4061      }
4062    }
4063
4064    // Mark the original store as dead now that we've split it up and kill its
4065    // slice. Note that we leave the original load in place unless this store
4066    // was its only use. It may in turn be split up if it is an alloca load
4067    // for some other alloca, but it may be a normal load. This may introduce
4068    // redundant loads, but where those can be merged the rest of the optimizer
4069    // should handle the merging, and this uncovers SSA splits which is more
4070    // important. In practice, the original loads will almost always be fully
4071    // split and removed eventually, and the splits will be merged by any
4072    // trivial CSE, including instcombine.
4073    if (LI->hasOneUse()) {
4074      assert(*LI->user_begin() == SI && "Single use isn't this store!");
4075      DeadInsts.insert(LI);
4076    }
4077    DeadInsts.insert(SI);
4078    Offsets.S->kill();
4079  }
4080
4081  // Remove the killed slices that have ben pre-split.
4082  AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
4083           AS.end());
4084
4085  // Insert our new slices. This will sort and merge them into the sorted
4086  // sequence.
4087  AS.insert(NewSlices);
4088
4089  LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
4090#ifndef NDEBUG
4091  for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
4092    LLVM_DEBUG(AS.print(dbgs(), I, "    "));
4093#endif
4094
4095  // Finally, don't try to promote any allocas that new require re-splitting.
4096  // They have already been added to the worklist above.
4097  PromotableAllocas.erase(
4098      llvm::remove_if(
4099          PromotableAllocas,
4100          [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
4101      PromotableAllocas.end());
4102
4103  return true;
4104}
4105
4106/// Rewrite an alloca partition's users.
4107///
4108/// This routine drives both of the rewriting goals of the SROA pass. It tries
4109/// to rewrite uses of an alloca partition to be conducive for SSA value
4110/// promotion. If the partition needs a new, more refined alloca, this will
4111/// build that new alloca, preserving as much type information as possible, and
4112/// rewrite the uses of the old alloca to point at the new one and have the
4113/// appropriate new offsets. It also evaluates how successful the rewrite was
4114/// at enabling promotion and if it was successful queues the alloca to be
4115/// promoted.
4116AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4117                                   Partition &P) {
4118  // Try to compute a friendly type for this partition of the alloca. This
4119  // won't always succeed, in which case we fall back to a legal integer type
4120  // or an i8 array of an appropriate size.
4121  Type *SliceTy = nullptr;
4122  const DataLayout &DL = AI.getModule()->getDataLayout();
4123  if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
4124    if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
4125      SliceTy = CommonUseTy;
4126  if (!SliceTy)
4127    if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4128                                                 P.beginOffset(), P.size()))
4129      SliceTy = TypePartitionTy;
4130  if ((!SliceTy || (SliceTy->isArrayTy() &&
4131                    SliceTy->getArrayElementType()->isIntegerTy())) &&
4132      DL.isLegalInteger(P.size() * 8))
4133    SliceTy = Type::getIntNTy(*C, P.size() * 8);
4134  if (!SliceTy)
4135    SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4136  assert(DL.getTypeAllocSize(SliceTy) >= P.size());
4137
4138  bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4139
4140  VectorType *VecTy =
4141      IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4142  if (VecTy)
4143    SliceTy = VecTy;
4144
4145  // Check for the case where we're going to rewrite to a new alloca of the
4146  // exact same type as the original, and with the same access offsets. In that
4147  // case, re-use the existing alloca, but still run through the rewriter to
4148  // perform phi and select speculation.
4149  // P.beginOffset() can be non-zero even with the same type in a case with
4150  // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4151  AllocaInst *NewAI;
4152  if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4153    NewAI = &AI;
4154    // FIXME: We should be able to bail at this point with "nothing changed".
4155    // FIXME: We might want to defer PHI speculation until after here.
4156    // FIXME: return nullptr;
4157  } else {
4158    // If alignment is unspecified we fallback on the one required by the ABI
4159    // for this type. We also make sure the alignment is compatible with
4160    // P.beginOffset().
4161    const Align Alignment = commonAlignment(
4162        DL.getValueOrABITypeAlignment(MaybeAlign(AI.getAlignment()),
4163                                      AI.getAllocatedType()),
4164        P.beginOffset());
4165    // If we will get at least this much alignment from the type alone, leave
4166    // the alloca's alignment unconstrained.
4167    const bool IsUnconstrained = Alignment <= DL.getABITypeAlignment(SliceTy);
4168    NewAI = new AllocaInst(
4169        SliceTy, AI.getType()->getAddressSpace(), nullptr,
4170        IsUnconstrained ? MaybeAlign() : Alignment,
4171        AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4172    // Copy the old AI debug location over to the new one.
4173    NewAI->setDebugLoc(AI.getDebugLoc());
4174    ++NumNewAllocas;
4175  }
4176
4177  LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4178                    << "[" << P.beginOffset() << "," << P.endOffset()
4179                    << ") to: " << *NewAI << "\n");
4180
4181  // Track the high watermark on the worklist as it is only relevant for
4182  // promoted allocas. We will reset it to this point if the alloca is not in
4183  // fact scheduled for promotion.
4184  unsigned PPWOldSize = PostPromotionWorklist.size();
4185  unsigned NumUses = 0;
4186  SmallSetVector<PHINode *, 8> PHIUsers;
4187  SmallSetVector<SelectInst *, 8> SelectUsers;
4188
4189  AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4190                               P.endOffset(), IsIntegerPromotable, VecTy,
4191                               PHIUsers, SelectUsers);
4192  bool Promotable = true;
4193  for (Slice *S : P.splitSliceTails()) {
4194    Promotable &= Rewriter.visit(S);
4195    ++NumUses;
4196  }
4197  for (Slice &S : P) {
4198    Promotable &= Rewriter.visit(&S);
4199    ++NumUses;
4200  }
4201
4202  NumAllocaPartitionUses += NumUses;
4203  MaxUsesPerAllocaPartition.updateMax(NumUses);
4204
4205  // Now that we've processed all the slices in the new partition, check if any
4206  // PHIs or Selects would block promotion.
4207  for (PHINode *PHI : PHIUsers)
4208    if (!isSafePHIToSpeculate(*PHI)) {
4209      Promotable = false;
4210      PHIUsers.clear();
4211      SelectUsers.clear();
4212      break;
4213    }
4214
4215  for (SelectInst *Sel : SelectUsers)
4216    if (!isSafeSelectToSpeculate(*Sel)) {
4217      Promotable = false;
4218      PHIUsers.clear();
4219      SelectUsers.clear();
4220      break;
4221    }
4222
4223  if (Promotable) {
4224    if (PHIUsers.empty() && SelectUsers.empty()) {
4225      // Promote the alloca.
4226      PromotableAllocas.push_back(NewAI);
4227    } else {
4228      // If we have either PHIs or Selects to speculate, add them to those
4229      // worklists and re-queue the new alloca so that we promote in on the
4230      // next iteration.
4231      for (PHINode *PHIUser : PHIUsers)
4232        SpeculatablePHIs.insert(PHIUser);
4233      for (SelectInst *SelectUser : SelectUsers)
4234        SpeculatableSelects.insert(SelectUser);
4235      Worklist.insert(NewAI);
4236    }
4237  } else {
4238    // Drop any post-promotion work items if promotion didn't happen.
4239    while (PostPromotionWorklist.size() > PPWOldSize)
4240      PostPromotionWorklist.pop_back();
4241
4242    // We couldn't promote and we didn't create a new partition, nothing
4243    // happened.
4244    if (NewAI == &AI)
4245      return nullptr;
4246
4247    // If we can't promote the alloca, iterate on it to check for new
4248    // refinements exposed by splitting the current alloca. Don't iterate on an
4249    // alloca which didn't actually change and didn't get promoted.
4250    Worklist.insert(NewAI);
4251  }
4252
4253  return NewAI;
4254}
4255
4256/// Walks the slices of an alloca and form partitions based on them,
4257/// rewriting each of their uses.
4258bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4259  if (AS.begin() == AS.end())
4260    return false;
4261
4262  unsigned NumPartitions = 0;
4263  bool Changed = false;
4264  const DataLayout &DL = AI.getModule()->getDataLayout();
4265
4266  // First try to pre-split loads and stores.
4267  Changed |= presplitLoadsAndStores(AI, AS);
4268
4269  // Now that we have identified any pre-splitting opportunities,
4270  // mark loads and stores unsplittable except for the following case.
4271  // We leave a slice splittable if all other slices are disjoint or fully
4272  // included in the slice, such as whole-alloca loads and stores.
4273  // If we fail to split these during pre-splitting, we want to force them
4274  // to be rewritten into a partition.
4275  bool IsSorted = true;
4276
4277  uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType());
4278  const uint64_t MaxBitVectorSize = 1024;
4279  if (AllocaSize <= MaxBitVectorSize) {
4280    // If a byte boundary is included in any load or store, a slice starting or
4281    // ending at the boundary is not splittable.
4282    SmallBitVector SplittableOffset(AllocaSize + 1, true);
4283    for (Slice &S : AS)
4284      for (unsigned O = S.beginOffset() + 1;
4285           O < S.endOffset() && O < AllocaSize; O++)
4286        SplittableOffset.reset(O);
4287
4288    for (Slice &S : AS) {
4289      if (!S.isSplittable())
4290        continue;
4291
4292      if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4293          (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4294        continue;
4295
4296      if (isa<LoadInst>(S.getUse()->getUser()) ||
4297          isa<StoreInst>(S.getUse()->getUser())) {
4298        S.makeUnsplittable();
4299        IsSorted = false;
4300      }
4301    }
4302  }
4303  else {
4304    // We only allow whole-alloca splittable loads and stores
4305    // for a large alloca to avoid creating too large BitVector.
4306    for (Slice &S : AS) {
4307      if (!S.isSplittable())
4308        continue;
4309
4310      if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4311        continue;
4312
4313      if (isa<LoadInst>(S.getUse()->getUser()) ||
4314          isa<StoreInst>(S.getUse()->getUser())) {
4315        S.makeUnsplittable();
4316        IsSorted = false;
4317      }
4318    }
4319  }
4320
4321  if (!IsSorted)
4322    llvm::sort(AS);
4323
4324  /// Describes the allocas introduced by rewritePartition in order to migrate
4325  /// the debug info.
4326  struct Fragment {
4327    AllocaInst *Alloca;
4328    uint64_t Offset;
4329    uint64_t Size;
4330    Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4331      : Alloca(AI), Offset(O), Size(S) {}
4332  };
4333  SmallVector<Fragment, 4> Fragments;
4334
4335  // Rewrite each partition.
4336  for (auto &P : AS.partitions()) {
4337    if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4338      Changed = true;
4339      if (NewAI != &AI) {
4340        uint64_t SizeOfByte = 8;
4341        uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4342        // Don't include any padding.
4343        uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4344        Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4345      }
4346    }
4347    ++NumPartitions;
4348  }
4349
4350  NumAllocaPartitions += NumPartitions;
4351  MaxPartitionsPerAlloca.updateMax(NumPartitions);
4352
4353  // Migrate debug information from the old alloca to the new alloca(s)
4354  // and the individual partitions.
4355  TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4356  if (!DbgDeclares.empty()) {
4357    auto *Var = DbgDeclares.front()->getVariable();
4358    auto *Expr = DbgDeclares.front()->getExpression();
4359    auto VarSize = Var->getSizeInBits();
4360    DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4361    uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType());
4362    for (auto Fragment : Fragments) {
4363      // Create a fragment expression describing the new partition or reuse AI's
4364      // expression if there is only one partition.
4365      auto *FragmentExpr = Expr;
4366      if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4367        // If this alloca is already a scalar replacement of a larger aggregate,
4368        // Fragment.Offset describes the offset inside the scalar.
4369        auto ExprFragment = Expr->getFragmentInfo();
4370        uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4371        uint64_t Start = Offset + Fragment.Offset;
4372        uint64_t Size = Fragment.Size;
4373        if (ExprFragment) {
4374          uint64_t AbsEnd =
4375              ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4376          if (Start >= AbsEnd)
4377            // No need to describe a SROAed padding.
4378            continue;
4379          Size = std::min(Size, AbsEnd - Start);
4380        }
4381        // The new, smaller fragment is stenciled out from the old fragment.
4382        if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4383          assert(Start >= OrigFragment->OffsetInBits &&
4384                 "new fragment is outside of original fragment");
4385          Start -= OrigFragment->OffsetInBits;
4386        }
4387
4388        // The alloca may be larger than the variable.
4389        if (VarSize) {
4390          if (Size > *VarSize)
4391            Size = *VarSize;
4392          if (Size == 0 || Start + Size > *VarSize)
4393            continue;
4394        }
4395
4396        // Avoid creating a fragment expression that covers the entire variable.
4397        if (!VarSize || *VarSize != Size) {
4398          if (auto E =
4399                  DIExpression::createFragmentExpression(Expr, Start, Size))
4400            FragmentExpr = *E;
4401          else
4402            continue;
4403        }
4404      }
4405
4406      // Remove any existing intrinsics describing the same alloca.
4407      for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
4408        OldDII->eraseFromParent();
4409
4410      DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
4411                        DbgDeclares.front()->getDebugLoc(), &AI);
4412    }
4413  }
4414  return Changed;
4415}
4416
4417/// Clobber a use with undef, deleting the used value if it becomes dead.
4418void SROA::clobberUse(Use &U) {
4419  Value *OldV = U;
4420  // Replace the use with an undef value.
4421  U = UndefValue::get(OldV->getType());
4422
4423  // Check for this making an instruction dead. We have to garbage collect
4424  // all the dead instructions to ensure the uses of any alloca end up being
4425  // minimal.
4426  if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4427    if (isInstructionTriviallyDead(OldI)) {
4428      DeadInsts.insert(OldI);
4429    }
4430}
4431
4432/// Analyze an alloca for SROA.
4433///
4434/// This analyzes the alloca to ensure we can reason about it, builds
4435/// the slices of the alloca, and then hands it off to be split and
4436/// rewritten as needed.
4437bool SROA::runOnAlloca(AllocaInst &AI) {
4438  LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4439  ++NumAllocasAnalyzed;
4440
4441  // Special case dead allocas, as they're trivial.
4442  if (AI.use_empty()) {
4443    AI.eraseFromParent();
4444    return true;
4445  }
4446  const DataLayout &DL = AI.getModule()->getDataLayout();
4447
4448  // Skip alloca forms that this analysis can't handle.
4449  if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4450      DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4451    return false;
4452
4453  bool Changed = false;
4454
4455  // First, split any FCA loads and stores touching this alloca to promote
4456  // better splitting and promotion opportunities.
4457  AggLoadStoreRewriter AggRewriter(DL);
4458  Changed |= AggRewriter.rewrite(AI);
4459
4460  // Build the slices using a recursive instruction-visiting builder.
4461  AllocaSlices AS(DL, AI);
4462  LLVM_DEBUG(AS.print(dbgs()));
4463  if (AS.isEscaped())
4464    return Changed;
4465
4466  // Delete all the dead users of this alloca before splitting and rewriting it.
4467  for (Instruction *DeadUser : AS.getDeadUsers()) {
4468    // Free up everything used by this instruction.
4469    for (Use &DeadOp : DeadUser->operands())
4470      clobberUse(DeadOp);
4471
4472    // Now replace the uses of this instruction.
4473    DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4474
4475    // And mark it for deletion.
4476    DeadInsts.insert(DeadUser);
4477    Changed = true;
4478  }
4479  for (Use *DeadOp : AS.getDeadOperands()) {
4480    clobberUse(*DeadOp);
4481    Changed = true;
4482  }
4483
4484  // No slices to split. Leave the dead alloca for a later pass to clean up.
4485  if (AS.begin() == AS.end())
4486    return Changed;
4487
4488  Changed |= splitAlloca(AI, AS);
4489
4490  LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4491  while (!SpeculatablePHIs.empty())
4492    speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4493
4494  LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4495  while (!SpeculatableSelects.empty())
4496    speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4497
4498  return Changed;
4499}
4500
4501/// Delete the dead instructions accumulated in this run.
4502///
4503/// Recursively deletes the dead instructions we've accumulated. This is done
4504/// at the very end to maximize locality of the recursive delete and to
4505/// minimize the problems of invalidated instruction pointers as such pointers
4506/// are used heavily in the intermediate stages of the algorithm.
4507///
4508/// We also record the alloca instructions deleted here so that they aren't
4509/// subsequently handed to mem2reg to promote.
4510bool SROA::deleteDeadInstructions(
4511    SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4512  bool Changed = false;
4513  while (!DeadInsts.empty()) {
4514    Instruction *I = DeadInsts.pop_back_val();
4515    LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4516
4517    // If the instruction is an alloca, find the possible dbg.declare connected
4518    // to it, and remove it too. We must do this before calling RAUW or we will
4519    // not be able to find it.
4520    if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4521      DeletedAllocas.insert(AI);
4522      for (DbgVariableIntrinsic *OldDII : FindDbgAddrUses(AI))
4523        OldDII->eraseFromParent();
4524    }
4525
4526    I->replaceAllUsesWith(UndefValue::get(I->getType()));
4527
4528    for (Use &Operand : I->operands())
4529      if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4530        // Zero out the operand and see if it becomes trivially dead.
4531        Operand = nullptr;
4532        if (isInstructionTriviallyDead(U))
4533          DeadInsts.insert(U);
4534      }
4535
4536    ++NumDeleted;
4537    I->eraseFromParent();
4538    Changed = true;
4539  }
4540  return Changed;
4541}
4542
4543/// Promote the allocas, using the best available technique.
4544///
4545/// This attempts to promote whatever allocas have been identified as viable in
4546/// the PromotableAllocas list. If that list is empty, there is nothing to do.
4547/// This function returns whether any promotion occurred.
4548bool SROA::promoteAllocas(Function &F) {
4549  if (PromotableAllocas.empty())
4550    return false;
4551
4552  NumPromoted += PromotableAllocas.size();
4553
4554  LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4555  PromoteMemToReg(PromotableAllocas, *DT, AC);
4556  PromotableAllocas.clear();
4557  return true;
4558}
4559
4560PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4561                                AssumptionCache &RunAC) {
4562  LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4563  C = &F.getContext();
4564  DT = &RunDT;
4565  AC = &RunAC;
4566
4567  BasicBlock &EntryBB = F.getEntryBlock();
4568  for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4569       I != E; ++I) {
4570    if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4571      Worklist.insert(AI);
4572  }
4573
4574  bool Changed = false;
4575  // A set of deleted alloca instruction pointers which should be removed from
4576  // the list of promotable allocas.
4577  SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4578
4579  do {
4580    while (!Worklist.empty()) {
4581      Changed |= runOnAlloca(*Worklist.pop_back_val());
4582      Changed |= deleteDeadInstructions(DeletedAllocas);
4583
4584      // Remove the deleted allocas from various lists so that we don't try to
4585      // continue processing them.
4586      if (!DeletedAllocas.empty()) {
4587        auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4588        Worklist.remove_if(IsInSet);
4589        PostPromotionWorklist.remove_if(IsInSet);
4590        PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
4591                                PromotableAllocas.end());
4592        DeletedAllocas.clear();
4593      }
4594    }
4595
4596    Changed |= promoteAllocas(F);
4597
4598    Worklist = PostPromotionWorklist;
4599    PostPromotionWorklist.clear();
4600  } while (!Worklist.empty());
4601
4602  if (!Changed)
4603    return PreservedAnalyses::all();
4604
4605  PreservedAnalyses PA;
4606  PA.preserveSet<CFGAnalyses>();
4607  PA.preserve<GlobalsAA>();
4608  return PA;
4609}
4610
4611PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4612  return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4613                 AM.getResult<AssumptionAnalysis>(F));
4614}
4615
4616/// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4617///
4618/// This is in the llvm namespace purely to allow it to be a friend of the \c
4619/// SROA pass.
4620class llvm::sroa::SROALegacyPass : public FunctionPass {
4621  /// The SROA implementation.
4622  SROA Impl;
4623
4624public:
4625  static char ID;
4626
4627  SROALegacyPass() : FunctionPass(ID) {
4628    initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4629  }
4630
4631  bool runOnFunction(Function &F) override {
4632    if (skipFunction(F))
4633      return false;
4634
4635    auto PA = Impl.runImpl(
4636        F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4637        getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4638    return !PA.areAllPreserved();
4639  }
4640
4641  void getAnalysisUsage(AnalysisUsage &AU) const override {
4642    AU.addRequired<AssumptionCacheTracker>();
4643    AU.addRequired<DominatorTreeWrapperPass>();
4644    AU.addPreserved<GlobalsAAWrapperPass>();
4645    AU.setPreservesCFG();
4646  }
4647
4648  StringRef getPassName() const override { return "SROA"; }
4649};
4650
4651char SROALegacyPass::ID = 0;
4652
4653FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4654
4655INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4656                      "Scalar Replacement Of Aggregates", false, false)
4657INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4658INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4659INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4660                    false, false)
4661