NewGVN.cpp revision 360784
1//===- NewGVN.cpp - Global Value Numbering Pass ---------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
20/// A brief overview of the algorithm: The algorithm is essentially the same as
21/// the standard RPO value numbering algorithm (a good reference is the paper
22/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23/// The RPO algorithm proceeds, on every iteration, to process every reachable
24/// block and every instruction in that block.  This is because the standard RPO
25/// algorithm does not track what things have the same value number, it only
26/// tracks what the value number of a given operation is (the mapping is
27/// operation -> value number).  Thus, when a value number of an operation
28/// changes, it must reprocess everything to ensure all uses of a value number
29/// get updated properly.  In constrast, the sparse algorithm we use *also*
30/// tracks what operations have a given value number (IE it also tracks the
31/// reverse mapping from value number -> operations with that value number), so
32/// that it only needs to reprocess the instructions that are affected when
33/// something's value number changes.  The vast majority of complexity and code
34/// in this file is devoted to tracking what value numbers could change for what
35/// instructions when various things happen.  The rest of the algorithm is
36/// devoted to performing symbolic evaluation, forward propagation, and
37/// simplification of operations based on the value numbers deduced so far
38///
39/// In order to make the GVN mostly-complete, we use a technique derived from
40/// "Detection of Redundant Expressions: A Complete and Polynomial-time
41/// Algorithm in SSA" by R.R. Pai.  The source of incompleteness in most SSA
42/// based GVN algorithms is related to their inability to detect equivalence
43/// between phi of ops (IE phi(a+b, c+d)) and op of phis (phi(a,c) + phi(b, d)).
44/// We resolve this issue by generating the equivalent "phi of ops" form for
45/// each op of phis we see, in a way that only takes polynomial time to resolve.
46///
47/// We also do not perform elimination by using any published algorithm.  All
48/// published algorithms are O(Instructions). Instead, we use a technique that
49/// is O(number of operations with the same value number), enabling us to skip
50/// trying to eliminate things that have unique value numbers.
51//
52//===----------------------------------------------------------------------===//
53
54#include "llvm/Transforms/Scalar/NewGVN.h"
55#include "llvm/ADT/ArrayRef.h"
56#include "llvm/ADT/BitVector.h"
57#include "llvm/ADT/DenseMap.h"
58#include "llvm/ADT/DenseMapInfo.h"
59#include "llvm/ADT/DenseSet.h"
60#include "llvm/ADT/DepthFirstIterator.h"
61#include "llvm/ADT/GraphTraits.h"
62#include "llvm/ADT/Hashing.h"
63#include "llvm/ADT/PointerIntPair.h"
64#include "llvm/ADT/PostOrderIterator.h"
65#include "llvm/ADT/SmallPtrSet.h"
66#include "llvm/ADT/SmallVector.h"
67#include "llvm/ADT/SparseBitVector.h"
68#include "llvm/ADT/Statistic.h"
69#include "llvm/ADT/iterator_range.h"
70#include "llvm/Analysis/AliasAnalysis.h"
71#include "llvm/Analysis/AssumptionCache.h"
72#include "llvm/Analysis/CFGPrinter.h"
73#include "llvm/Analysis/ConstantFolding.h"
74#include "llvm/Analysis/GlobalsModRef.h"
75#include "llvm/Analysis/InstructionSimplify.h"
76#include "llvm/Analysis/MemoryBuiltins.h"
77#include "llvm/Analysis/MemorySSA.h"
78#include "llvm/Analysis/TargetLibraryInfo.h"
79#include "llvm/IR/Argument.h"
80#include "llvm/IR/BasicBlock.h"
81#include "llvm/IR/Constant.h"
82#include "llvm/IR/Constants.h"
83#include "llvm/IR/Dominators.h"
84#include "llvm/IR/Function.h"
85#include "llvm/IR/InstrTypes.h"
86#include "llvm/IR/Instruction.h"
87#include "llvm/IR/Instructions.h"
88#include "llvm/IR/IntrinsicInst.h"
89#include "llvm/IR/Intrinsics.h"
90#include "llvm/IR/LLVMContext.h"
91#include "llvm/IR/PatternMatch.h"
92#include "llvm/IR/Type.h"
93#include "llvm/IR/Use.h"
94#include "llvm/IR/User.h"
95#include "llvm/IR/Value.h"
96#include "llvm/InitializePasses.h"
97#include "llvm/Pass.h"
98#include "llvm/Support/Allocator.h"
99#include "llvm/Support/ArrayRecycler.h"
100#include "llvm/Support/Casting.h"
101#include "llvm/Support/CommandLine.h"
102#include "llvm/Support/Debug.h"
103#include "llvm/Support/DebugCounter.h"
104#include "llvm/Support/ErrorHandling.h"
105#include "llvm/Support/PointerLikeTypeTraits.h"
106#include "llvm/Support/raw_ostream.h"
107#include "llvm/Transforms/Scalar.h"
108#include "llvm/Transforms/Scalar/GVNExpression.h"
109#include "llvm/Transforms/Utils/Local.h"
110#include "llvm/Transforms/Utils/PredicateInfo.h"
111#include "llvm/Transforms/Utils/VNCoercion.h"
112#include <algorithm>
113#include <cassert>
114#include <cstdint>
115#include <iterator>
116#include <map>
117#include <memory>
118#include <set>
119#include <string>
120#include <tuple>
121#include <utility>
122#include <vector>
123
124using namespace llvm;
125using namespace llvm::GVNExpression;
126using namespace llvm::VNCoercion;
127using namespace llvm::PatternMatch;
128
129#define DEBUG_TYPE "newgvn"
130
131STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted");
132STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted");
133STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified");
134STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same");
135STATISTIC(NumGVNMaxIterations,
136          "Maximum Number of iterations it took to converge GVN");
137STATISTIC(NumGVNLeaderChanges, "Number of leader changes");
138STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes");
139STATISTIC(NumGVNAvoidedSortedLeaderChanges,
140          "Number of avoided sorted leader changes");
141STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated");
142STATISTIC(NumGVNPHIOfOpsCreated, "Number of PHI of ops created");
143STATISTIC(NumGVNPHIOfOpsEliminations,
144          "Number of things eliminated using PHI of ops");
145DEBUG_COUNTER(VNCounter, "newgvn-vn",
146              "Controls which instructions are value numbered");
147DEBUG_COUNTER(PHIOfOpsCounter, "newgvn-phi",
148              "Controls which instructions we create phi of ops for");
149// Currently store defining access refinement is too slow due to basicaa being
150// egregiously slow.  This flag lets us keep it working while we work on this
151// issue.
152static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
153                                           cl::init(false), cl::Hidden);
154
155/// Currently, the generation "phi of ops" can result in correctness issues.
156static cl::opt<bool> EnablePhiOfOps("enable-phi-of-ops", cl::init(true),
157                                    cl::Hidden);
158
159//===----------------------------------------------------------------------===//
160//                                GVN Pass
161//===----------------------------------------------------------------------===//
162
163// Anchor methods.
164namespace llvm {
165namespace GVNExpression {
166
167Expression::~Expression() = default;
168BasicExpression::~BasicExpression() = default;
169CallExpression::~CallExpression() = default;
170LoadExpression::~LoadExpression() = default;
171StoreExpression::~StoreExpression() = default;
172AggregateValueExpression::~AggregateValueExpression() = default;
173PHIExpression::~PHIExpression() = default;
174
175} // end namespace GVNExpression
176} // end namespace llvm
177
178namespace {
179
180// Tarjan's SCC finding algorithm with Nuutila's improvements
181// SCCIterator is actually fairly complex for the simple thing we want.
182// It also wants to hand us SCC's that are unrelated to the phi node we ask
183// about, and have us process them there or risk redoing work.
184// Graph traits over a filter iterator also doesn't work that well here.
185// This SCC finder is specialized to walk use-def chains, and only follows
186// instructions,
187// not generic values (arguments, etc).
188struct TarjanSCC {
189  TarjanSCC() : Components(1) {}
190
191  void Start(const Instruction *Start) {
192    if (Root.lookup(Start) == 0)
193      FindSCC(Start);
194  }
195
196  const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
197    unsigned ComponentID = ValueToComponent.lookup(V);
198
199    assert(ComponentID > 0 &&
200           "Asking for a component for a value we never processed");
201    return Components[ComponentID];
202  }
203
204private:
205  void FindSCC(const Instruction *I) {
206    Root[I] = ++DFSNum;
207    // Store the DFS Number we had before it possibly gets incremented.
208    unsigned int OurDFS = DFSNum;
209    for (auto &Op : I->operands()) {
210      if (auto *InstOp = dyn_cast<Instruction>(Op)) {
211        if (Root.lookup(Op) == 0)
212          FindSCC(InstOp);
213        if (!InComponent.count(Op))
214          Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
215      }
216    }
217    // See if we really were the root of a component, by seeing if we still have
218    // our DFSNumber.  If we do, we are the root of the component, and we have
219    // completed a component. If we do not, we are not the root of a component,
220    // and belong on the component stack.
221    if (Root.lookup(I) == OurDFS) {
222      unsigned ComponentID = Components.size();
223      Components.resize(Components.size() + 1);
224      auto &Component = Components.back();
225      Component.insert(I);
226      LLVM_DEBUG(dbgs() << "Component root is " << *I << "\n");
227      InComponent.insert(I);
228      ValueToComponent[I] = ComponentID;
229      // Pop a component off the stack and label it.
230      while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
231        auto *Member = Stack.back();
232        LLVM_DEBUG(dbgs() << "Component member is " << *Member << "\n");
233        Component.insert(Member);
234        InComponent.insert(Member);
235        ValueToComponent[Member] = ComponentID;
236        Stack.pop_back();
237      }
238    } else {
239      // Part of a component, push to stack
240      Stack.push_back(I);
241    }
242  }
243
244  unsigned int DFSNum = 1;
245  SmallPtrSet<const Value *, 8> InComponent;
246  DenseMap<const Value *, unsigned int> Root;
247  SmallVector<const Value *, 8> Stack;
248
249  // Store the components as vector of ptr sets, because we need the topo order
250  // of SCC's, but not individual member order
251  SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
252
253  DenseMap<const Value *, unsigned> ValueToComponent;
254};
255
256// Congruence classes represent the set of expressions/instructions
257// that are all the same *during some scope in the function*.
258// That is, because of the way we perform equality propagation, and
259// because of memory value numbering, it is not correct to assume
260// you can willy-nilly replace any member with any other at any
261// point in the function.
262//
263// For any Value in the Member set, it is valid to replace any dominated member
264// with that Value.
265//
266// Every congruence class has a leader, and the leader is used to symbolize
267// instructions in a canonical way (IE every operand of an instruction that is a
268// member of the same congruence class will always be replaced with leader
269// during symbolization).  To simplify symbolization, we keep the leader as a
270// constant if class can be proved to be a constant value.  Otherwise, the
271// leader is the member of the value set with the smallest DFS number.  Each
272// congruence class also has a defining expression, though the expression may be
273// null.  If it exists, it can be used for forward propagation and reassociation
274// of values.
275
276// For memory, we also track a representative MemoryAccess, and a set of memory
277// members for MemoryPhis (which have no real instructions). Note that for
278// memory, it seems tempting to try to split the memory members into a
279// MemoryCongruenceClass or something.  Unfortunately, this does not work
280// easily.  The value numbering of a given memory expression depends on the
281// leader of the memory congruence class, and the leader of memory congruence
282// class depends on the value numbering of a given memory expression.  This
283// leads to wasted propagation, and in some cases, missed optimization.  For
284// example: If we had value numbered two stores together before, but now do not,
285// we move them to a new value congruence class.  This in turn will move at one
286// of the memorydefs to a new memory congruence class.  Which in turn, affects
287// the value numbering of the stores we just value numbered (because the memory
288// congruence class is part of the value number).  So while theoretically
289// possible to split them up, it turns out to be *incredibly* complicated to get
290// it to work right, because of the interdependency.  While structurally
291// slightly messier, it is algorithmically much simpler and faster to do what we
292// do here, and track them both at once in the same class.
293// Note: The default iterators for this class iterate over values
294class CongruenceClass {
295public:
296  using MemberType = Value;
297  using MemberSet = SmallPtrSet<MemberType *, 4>;
298  using MemoryMemberType = MemoryPhi;
299  using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
300
301  explicit CongruenceClass(unsigned ID) : ID(ID) {}
302  CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
303      : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
304
305  unsigned getID() const { return ID; }
306
307  // True if this class has no members left.  This is mainly used for assertion
308  // purposes, and for skipping empty classes.
309  bool isDead() const {
310    // If it's both dead from a value perspective, and dead from a memory
311    // perspective, it's really dead.
312    return empty() && memory_empty();
313  }
314
315  // Leader functions
316  Value *getLeader() const { return RepLeader; }
317  void setLeader(Value *Leader) { RepLeader = Leader; }
318  const std::pair<Value *, unsigned int> &getNextLeader() const {
319    return NextLeader;
320  }
321  void resetNextLeader() { NextLeader = {nullptr, ~0}; }
322  void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
323    if (LeaderPair.second < NextLeader.second)
324      NextLeader = LeaderPair;
325  }
326
327  Value *getStoredValue() const { return RepStoredValue; }
328  void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
329  const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
330  void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
331
332  // Forward propagation info
333  const Expression *getDefiningExpr() const { return DefiningExpr; }
334
335  // Value member set
336  bool empty() const { return Members.empty(); }
337  unsigned size() const { return Members.size(); }
338  MemberSet::const_iterator begin() const { return Members.begin(); }
339  MemberSet::const_iterator end() const { return Members.end(); }
340  void insert(MemberType *M) { Members.insert(M); }
341  void erase(MemberType *M) { Members.erase(M); }
342  void swap(MemberSet &Other) { Members.swap(Other); }
343
344  // Memory member set
345  bool memory_empty() const { return MemoryMembers.empty(); }
346  unsigned memory_size() const { return MemoryMembers.size(); }
347  MemoryMemberSet::const_iterator memory_begin() const {
348    return MemoryMembers.begin();
349  }
350  MemoryMemberSet::const_iterator memory_end() const {
351    return MemoryMembers.end();
352  }
353  iterator_range<MemoryMemberSet::const_iterator> memory() const {
354    return make_range(memory_begin(), memory_end());
355  }
356
357  void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
358  void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
359
360  // Store count
361  unsigned getStoreCount() const { return StoreCount; }
362  void incStoreCount() { ++StoreCount; }
363  void decStoreCount() {
364    assert(StoreCount != 0 && "Store count went negative");
365    --StoreCount;
366  }
367
368  // True if this class has no memory members.
369  bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
370
371  // Return true if two congruence classes are equivalent to each other. This
372  // means that every field but the ID number and the dead field are equivalent.
373  bool isEquivalentTo(const CongruenceClass *Other) const {
374    if (!Other)
375      return false;
376    if (this == Other)
377      return true;
378
379    if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
380        std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
381                 Other->RepMemoryAccess))
382      return false;
383    if (DefiningExpr != Other->DefiningExpr)
384      if (!DefiningExpr || !Other->DefiningExpr ||
385          *DefiningExpr != *Other->DefiningExpr)
386        return false;
387
388    if (Members.size() != Other->Members.size())
389      return false;
390
391    return all_of(Members,
392                  [&](const Value *V) { return Other->Members.count(V); });
393  }
394
395private:
396  unsigned ID;
397
398  // Representative leader.
399  Value *RepLeader = nullptr;
400
401  // The most dominating leader after our current leader, because the member set
402  // is not sorted and is expensive to keep sorted all the time.
403  std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
404
405  // If this is represented by a store, the value of the store.
406  Value *RepStoredValue = nullptr;
407
408  // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
409  // access.
410  const MemoryAccess *RepMemoryAccess = nullptr;
411
412  // Defining Expression.
413  const Expression *DefiningExpr = nullptr;
414
415  // Actual members of this class.
416  MemberSet Members;
417
418  // This is the set of MemoryPhis that exist in the class. MemoryDefs and
419  // MemoryUses have real instructions representing them, so we only need to
420  // track MemoryPhis here.
421  MemoryMemberSet MemoryMembers;
422
423  // Number of stores in this congruence class.
424  // This is used so we can detect store equivalence changes properly.
425  int StoreCount = 0;
426};
427
428} // end anonymous namespace
429
430namespace llvm {
431
432struct ExactEqualsExpression {
433  const Expression &E;
434
435  explicit ExactEqualsExpression(const Expression &E) : E(E) {}
436
437  hash_code getComputedHash() const { return E.getComputedHash(); }
438
439  bool operator==(const Expression &Other) const {
440    return E.exactlyEquals(Other);
441  }
442};
443
444template <> struct DenseMapInfo<const Expression *> {
445  static const Expression *getEmptyKey() {
446    auto Val = static_cast<uintptr_t>(-1);
447    Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
448    return reinterpret_cast<const Expression *>(Val);
449  }
450
451  static const Expression *getTombstoneKey() {
452    auto Val = static_cast<uintptr_t>(~1U);
453    Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
454    return reinterpret_cast<const Expression *>(Val);
455  }
456
457  static unsigned getHashValue(const Expression *E) {
458    return E->getComputedHash();
459  }
460
461  static unsigned getHashValue(const ExactEqualsExpression &E) {
462    return E.getComputedHash();
463  }
464
465  static bool isEqual(const ExactEqualsExpression &LHS, const Expression *RHS) {
466    if (RHS == getTombstoneKey() || RHS == getEmptyKey())
467      return false;
468    return LHS == *RHS;
469  }
470
471  static bool isEqual(const Expression *LHS, const Expression *RHS) {
472    if (LHS == RHS)
473      return true;
474    if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
475        LHS == getEmptyKey() || RHS == getEmptyKey())
476      return false;
477    // Compare hashes before equality.  This is *not* what the hashtable does,
478    // since it is computing it modulo the number of buckets, whereas we are
479    // using the full hash keyspace.  Since the hashes are precomputed, this
480    // check is *much* faster than equality.
481    if (LHS->getComputedHash() != RHS->getComputedHash())
482      return false;
483    return *LHS == *RHS;
484  }
485};
486
487} // end namespace llvm
488
489namespace {
490
491class NewGVN {
492  Function &F;
493  DominatorTree *DT = nullptr;
494  const TargetLibraryInfo *TLI = nullptr;
495  AliasAnalysis *AA = nullptr;
496  MemorySSA *MSSA = nullptr;
497  MemorySSAWalker *MSSAWalker = nullptr;
498  const DataLayout &DL;
499  std::unique_ptr<PredicateInfo> PredInfo;
500
501  // These are the only two things the create* functions should have
502  // side-effects on due to allocating memory.
503  mutable BumpPtrAllocator ExpressionAllocator;
504  mutable ArrayRecycler<Value *> ArgRecycler;
505  mutable TarjanSCC SCCFinder;
506  const SimplifyQuery SQ;
507
508  // Number of function arguments, used by ranking
509  unsigned int NumFuncArgs = 0;
510
511  // RPOOrdering of basic blocks
512  DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
513
514  // Congruence class info.
515
516  // This class is called INITIAL in the paper. It is the class everything
517  // startsout in, and represents any value. Being an optimistic analysis,
518  // anything in the TOP class has the value TOP, which is indeterminate and
519  // equivalent to everything.
520  CongruenceClass *TOPClass = nullptr;
521  std::vector<CongruenceClass *> CongruenceClasses;
522  unsigned NextCongruenceNum = 0;
523
524  // Value Mappings.
525  DenseMap<Value *, CongruenceClass *> ValueToClass;
526  DenseMap<Value *, const Expression *> ValueToExpression;
527
528  // Value PHI handling, used to make equivalence between phi(op, op) and
529  // op(phi, phi).
530  // These mappings just store various data that would normally be part of the
531  // IR.
532  SmallPtrSet<const Instruction *, 8> PHINodeUses;
533
534  DenseMap<const Value *, bool> OpSafeForPHIOfOps;
535
536  // Map a temporary instruction we created to a parent block.
537  DenseMap<const Value *, BasicBlock *> TempToBlock;
538
539  // Map between the already in-program instructions and the temporary phis we
540  // created that they are known equivalent to.
541  DenseMap<const Value *, PHINode *> RealToTemp;
542
543  // In order to know when we should re-process instructions that have
544  // phi-of-ops, we track the set of expressions that they needed as
545  // leaders. When we discover new leaders for those expressions, we process the
546  // associated phi-of-op instructions again in case they have changed.  The
547  // other way they may change is if they had leaders, and those leaders
548  // disappear.  However, at the point they have leaders, there are uses of the
549  // relevant operands in the created phi node, and so they will get reprocessed
550  // through the normal user marking we perform.
551  mutable DenseMap<const Value *, SmallPtrSet<Value *, 2>> AdditionalUsers;
552  DenseMap<const Expression *, SmallPtrSet<Instruction *, 2>>
553      ExpressionToPhiOfOps;
554
555  // Map from temporary operation to MemoryAccess.
556  DenseMap<const Instruction *, MemoryUseOrDef *> TempToMemory;
557
558  // Set of all temporary instructions we created.
559  // Note: This will include instructions that were just created during value
560  // numbering.  The way to test if something is using them is to check
561  // RealToTemp.
562  DenseSet<Instruction *> AllTempInstructions;
563
564  // This is the set of instructions to revisit on a reachability change.  At
565  // the end of the main iteration loop it will contain at least all the phi of
566  // ops instructions that will be changed to phis, as well as regular phis.
567  // During the iteration loop, it may contain other things, such as phi of ops
568  // instructions that used edge reachability to reach a result, and so need to
569  // be revisited when the edge changes, independent of whether the phi they
570  // depended on changes.
571  DenseMap<BasicBlock *, SparseBitVector<>> RevisitOnReachabilityChange;
572
573  // Mapping from predicate info we used to the instructions we used it with.
574  // In order to correctly ensure propagation, we must keep track of what
575  // comparisons we used, so that when the values of the comparisons change, we
576  // propagate the information to the places we used the comparison.
577  mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
578      PredicateToUsers;
579
580  // the same reasoning as PredicateToUsers.  When we skip MemoryAccesses for
581  // stores, we no longer can rely solely on the def-use chains of MemorySSA.
582  mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
583      MemoryToUsers;
584
585  // A table storing which memorydefs/phis represent a memory state provably
586  // equivalent to another memory state.
587  // We could use the congruence class machinery, but the MemoryAccess's are
588  // abstract memory states, so they can only ever be equivalent to each other,
589  // and not to constants, etc.
590  DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
591
592  // We could, if we wanted, build MemoryPhiExpressions and
593  // MemoryVariableExpressions, etc, and value number them the same way we value
594  // number phi expressions.  For the moment, this seems like overkill.  They
595  // can only exist in one of three states: they can be TOP (equal to
596  // everything), Equivalent to something else, or unique.  Because we do not
597  // create expressions for them, we need to simulate leader change not just
598  // when they change class, but when they change state.  Note: We can do the
599  // same thing for phis, and avoid having phi expressions if we wanted, We
600  // should eventually unify in one direction or the other, so this is a little
601  // bit of an experiment in which turns out easier to maintain.
602  enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
603  DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
604
605  enum InstCycleState { ICS_Unknown, ICS_CycleFree, ICS_Cycle };
606  mutable DenseMap<const Instruction *, InstCycleState> InstCycleState;
607
608  // Expression to class mapping.
609  using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
610  ExpressionClassMap ExpressionToClass;
611
612  // We have a single expression that represents currently DeadExpressions.
613  // For dead expressions we can prove will stay dead, we mark them with
614  // DFS number zero.  However, it's possible in the case of phi nodes
615  // for us to assume/prove all arguments are dead during fixpointing.
616  // We use DeadExpression for that case.
617  DeadExpression *SingletonDeadExpression = nullptr;
618
619  // Which values have changed as a result of leader changes.
620  SmallPtrSet<Value *, 8> LeaderChanges;
621
622  // Reachability info.
623  using BlockEdge = BasicBlockEdge;
624  DenseSet<BlockEdge> ReachableEdges;
625  SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
626
627  // This is a bitvector because, on larger functions, we may have
628  // thousands of touched instructions at once (entire blocks,
629  // instructions with hundreds of uses, etc).  Even with optimization
630  // for when we mark whole blocks as touched, when this was a
631  // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
632  // the time in GVN just managing this list.  The bitvector, on the
633  // other hand, efficiently supports test/set/clear of both
634  // individual and ranges, as well as "find next element" This
635  // enables us to use it as a worklist with essentially 0 cost.
636  BitVector TouchedInstructions;
637
638  DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
639
640#ifndef NDEBUG
641  // Debugging for how many times each block and instruction got processed.
642  DenseMap<const Value *, unsigned> ProcessedCount;
643#endif
644
645  // DFS info.
646  // This contains a mapping from Instructions to DFS numbers.
647  // The numbering starts at 1. An instruction with DFS number zero
648  // means that the instruction is dead.
649  DenseMap<const Value *, unsigned> InstrDFS;
650
651  // This contains the mapping DFS numbers to instructions.
652  SmallVector<Value *, 32> DFSToInstr;
653
654  // Deletion info.
655  SmallPtrSet<Instruction *, 8> InstructionsToErase;
656
657public:
658  NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
659         TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
660         const DataLayout &DL)
661      : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
662        PredInfo(std::make_unique<PredicateInfo>(F, *DT, *AC)),
663        SQ(DL, TLI, DT, AC, /*CtxI=*/nullptr, /*UseInstrInfo=*/false) {}
664
665  bool runGVN();
666
667private:
668  // Expression handling.
669  const Expression *createExpression(Instruction *) const;
670  const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *,
671                                           Instruction *) const;
672
673  // Our canonical form for phi arguments is a pair of incoming value, incoming
674  // basic block.
675  using ValPair = std::pair<Value *, BasicBlock *>;
676
677  PHIExpression *createPHIExpression(ArrayRef<ValPair>, const Instruction *,
678                                     BasicBlock *, bool &HasBackEdge,
679                                     bool &OriginalOpsConstant) const;
680  const DeadExpression *createDeadExpression() const;
681  const VariableExpression *createVariableExpression(Value *) const;
682  const ConstantExpression *createConstantExpression(Constant *) const;
683  const Expression *createVariableOrConstant(Value *V) const;
684  const UnknownExpression *createUnknownExpression(Instruction *) const;
685  const StoreExpression *createStoreExpression(StoreInst *,
686                                               const MemoryAccess *) const;
687  LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
688                                       const MemoryAccess *) const;
689  const CallExpression *createCallExpression(CallInst *,
690                                             const MemoryAccess *) const;
691  const AggregateValueExpression *
692  createAggregateValueExpression(Instruction *) const;
693  bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
694
695  // Congruence class handling.
696  CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
697    auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
698    CongruenceClasses.emplace_back(result);
699    return result;
700  }
701
702  CongruenceClass *createMemoryClass(MemoryAccess *MA) {
703    auto *CC = createCongruenceClass(nullptr, nullptr);
704    CC->setMemoryLeader(MA);
705    return CC;
706  }
707
708  CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
709    auto *CC = getMemoryClass(MA);
710    if (CC->getMemoryLeader() != MA)
711      CC = createMemoryClass(MA);
712    return CC;
713  }
714
715  CongruenceClass *createSingletonCongruenceClass(Value *Member) {
716    CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
717    CClass->insert(Member);
718    ValueToClass[Member] = CClass;
719    return CClass;
720  }
721
722  void initializeCongruenceClasses(Function &F);
723  const Expression *makePossiblePHIOfOps(Instruction *,
724                                         SmallPtrSetImpl<Value *> &);
725  Value *findLeaderForInst(Instruction *ValueOp,
726                           SmallPtrSetImpl<Value *> &Visited,
727                           MemoryAccess *MemAccess, Instruction *OrigInst,
728                           BasicBlock *PredBB);
729  bool OpIsSafeForPHIOfOpsHelper(Value *V, const BasicBlock *PHIBlock,
730                                 SmallPtrSetImpl<const Value *> &Visited,
731                                 SmallVectorImpl<Instruction *> &Worklist);
732  bool OpIsSafeForPHIOfOps(Value *Op, const BasicBlock *PHIBlock,
733                           SmallPtrSetImpl<const Value *> &);
734  void addPhiOfOps(PHINode *Op, BasicBlock *BB, Instruction *ExistingValue);
735  void removePhiOfOps(Instruction *I, PHINode *PHITemp);
736
737  // Value number an Instruction or MemoryPhi.
738  void valueNumberMemoryPhi(MemoryPhi *);
739  void valueNumberInstruction(Instruction *);
740
741  // Symbolic evaluation.
742  const Expression *checkSimplificationResults(Expression *, Instruction *,
743                                               Value *) const;
744  const Expression *performSymbolicEvaluation(Value *,
745                                              SmallPtrSetImpl<Value *> &) const;
746  const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
747                                                Instruction *,
748                                                MemoryAccess *) const;
749  const Expression *performSymbolicLoadEvaluation(Instruction *) const;
750  const Expression *performSymbolicStoreEvaluation(Instruction *) const;
751  const Expression *performSymbolicCallEvaluation(Instruction *) const;
752  void sortPHIOps(MutableArrayRef<ValPair> Ops) const;
753  const Expression *performSymbolicPHIEvaluation(ArrayRef<ValPair>,
754                                                 Instruction *I,
755                                                 BasicBlock *PHIBlock) const;
756  const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
757  const Expression *performSymbolicCmpEvaluation(Instruction *) const;
758  const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
759
760  // Congruence finding.
761  bool someEquivalentDominates(const Instruction *, const Instruction *) const;
762  Value *lookupOperandLeader(Value *) const;
763  CongruenceClass *getClassForExpression(const Expression *E) const;
764  void performCongruenceFinding(Instruction *, const Expression *);
765  void moveValueToNewCongruenceClass(Instruction *, const Expression *,
766                                     CongruenceClass *, CongruenceClass *);
767  void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
768                                      CongruenceClass *, CongruenceClass *);
769  Value *getNextValueLeader(CongruenceClass *) const;
770  const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
771  bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
772  CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
773  const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
774  bool isMemoryAccessTOP(const MemoryAccess *) const;
775
776  // Ranking
777  unsigned int getRank(const Value *) const;
778  bool shouldSwapOperands(const Value *, const Value *) const;
779
780  // Reachability handling.
781  void updateReachableEdge(BasicBlock *, BasicBlock *);
782  void processOutgoingEdges(Instruction *, BasicBlock *);
783  Value *findConditionEquivalence(Value *) const;
784
785  // Elimination.
786  struct ValueDFS;
787  void convertClassToDFSOrdered(const CongruenceClass &,
788                                SmallVectorImpl<ValueDFS> &,
789                                DenseMap<const Value *, unsigned int> &,
790                                SmallPtrSetImpl<Instruction *> &) const;
791  void convertClassToLoadsAndStores(const CongruenceClass &,
792                                    SmallVectorImpl<ValueDFS> &) const;
793
794  bool eliminateInstructions(Function &);
795  void replaceInstruction(Instruction *, Value *);
796  void markInstructionForDeletion(Instruction *);
797  void deleteInstructionsInBlock(BasicBlock *);
798  Value *findPHIOfOpsLeader(const Expression *, const Instruction *,
799                            const BasicBlock *) const;
800
801  // New instruction creation.
802  void handleNewInstruction(Instruction *) {}
803
804  // Various instruction touch utilities
805  template <typename Map, typename KeyType, typename Func>
806  void for_each_found(Map &, const KeyType &, Func);
807  template <typename Map, typename KeyType>
808  void touchAndErase(Map &, const KeyType &);
809  void markUsersTouched(Value *);
810  void markMemoryUsersTouched(const MemoryAccess *);
811  void markMemoryDefTouched(const MemoryAccess *);
812  void markPredicateUsersTouched(Instruction *);
813  void markValueLeaderChangeTouched(CongruenceClass *CC);
814  void markMemoryLeaderChangeTouched(CongruenceClass *CC);
815  void markPhiOfOpsChanged(const Expression *E);
816  void addPredicateUsers(const PredicateBase *, Instruction *) const;
817  void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
818  void addAdditionalUsers(Value *To, Value *User) const;
819
820  // Main loop of value numbering
821  void iterateTouchedInstructions();
822
823  // Utilities.
824  void cleanupTables();
825  std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
826  void updateProcessedCount(const Value *V);
827  void verifyMemoryCongruency() const;
828  void verifyIterationSettled(Function &F);
829  void verifyStoreExpressions() const;
830  bool singleReachablePHIPath(SmallPtrSet<const MemoryAccess *, 8> &,
831                              const MemoryAccess *, const MemoryAccess *) const;
832  BasicBlock *getBlockForValue(Value *V) const;
833  void deleteExpression(const Expression *E) const;
834  MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
835  MemoryAccess *getDefiningAccess(const MemoryAccess *) const;
836  MemoryPhi *getMemoryAccess(const BasicBlock *) const;
837  template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
838
839  unsigned InstrToDFSNum(const Value *V) const {
840    assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses");
841    return InstrDFS.lookup(V);
842  }
843
844  unsigned InstrToDFSNum(const MemoryAccess *MA) const {
845    return MemoryToDFSNum(MA);
846  }
847
848  Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
849
850  // Given a MemoryAccess, return the relevant instruction DFS number.  Note:
851  // This deliberately takes a value so it can be used with Use's, which will
852  // auto-convert to Value's but not to MemoryAccess's.
853  unsigned MemoryToDFSNum(const Value *MA) const {
854    assert(isa<MemoryAccess>(MA) &&
855           "This should not be used with instructions");
856    return isa<MemoryUseOrDef>(MA)
857               ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
858               : InstrDFS.lookup(MA);
859  }
860
861  bool isCycleFree(const Instruction *) const;
862  bool isBackedge(BasicBlock *From, BasicBlock *To) const;
863
864  // Debug counter info.  When verifying, we have to reset the value numbering
865  // debug counter to the same state it started in to get the same results.
866  int64_t StartingVNCounter = 0;
867};
868
869} // end anonymous namespace
870
871template <typename T>
872static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
873  if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
874    return false;
875  return LHS.MemoryExpression::equals(RHS);
876}
877
878bool LoadExpression::equals(const Expression &Other) const {
879  return equalsLoadStoreHelper(*this, Other);
880}
881
882bool StoreExpression::equals(const Expression &Other) const {
883  if (!equalsLoadStoreHelper(*this, Other))
884    return false;
885  // Make sure that store vs store includes the value operand.
886  if (const auto *S = dyn_cast<StoreExpression>(&Other))
887    if (getStoredValue() != S->getStoredValue())
888      return false;
889  return true;
890}
891
892// Determine if the edge From->To is a backedge
893bool NewGVN::isBackedge(BasicBlock *From, BasicBlock *To) const {
894  return From == To ||
895         RPOOrdering.lookup(DT->getNode(From)) >=
896             RPOOrdering.lookup(DT->getNode(To));
897}
898
899#ifndef NDEBUG
900static std::string getBlockName(const BasicBlock *B) {
901  return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
902}
903#endif
904
905// Get a MemoryAccess for an instruction, fake or real.
906MemoryUseOrDef *NewGVN::getMemoryAccess(const Instruction *I) const {
907  auto *Result = MSSA->getMemoryAccess(I);
908  return Result ? Result : TempToMemory.lookup(I);
909}
910
911// Get a MemoryPhi for a basic block. These are all real.
912MemoryPhi *NewGVN::getMemoryAccess(const BasicBlock *BB) const {
913  return MSSA->getMemoryAccess(BB);
914}
915
916// Get the basic block from an instruction/memory value.
917BasicBlock *NewGVN::getBlockForValue(Value *V) const {
918  if (auto *I = dyn_cast<Instruction>(V)) {
919    auto *Parent = I->getParent();
920    if (Parent)
921      return Parent;
922    Parent = TempToBlock.lookup(V);
923    assert(Parent && "Every fake instruction should have a block");
924    return Parent;
925  }
926
927  auto *MP = dyn_cast<MemoryPhi>(V);
928  assert(MP && "Should have been an instruction or a MemoryPhi");
929  return MP->getBlock();
930}
931
932// Delete a definitely dead expression, so it can be reused by the expression
933// allocator.  Some of these are not in creation functions, so we have to accept
934// const versions.
935void NewGVN::deleteExpression(const Expression *E) const {
936  assert(isa<BasicExpression>(E));
937  auto *BE = cast<BasicExpression>(E);
938  const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
939  ExpressionAllocator.Deallocate(E);
940}
941
942// If V is a predicateinfo copy, get the thing it is a copy of.
943static Value *getCopyOf(const Value *V) {
944  if (auto *II = dyn_cast<IntrinsicInst>(V))
945    if (II->getIntrinsicID() == Intrinsic::ssa_copy)
946      return II->getOperand(0);
947  return nullptr;
948}
949
950// Return true if V is really PN, even accounting for predicateinfo copies.
951static bool isCopyOfPHI(const Value *V, const PHINode *PN) {
952  return V == PN || getCopyOf(V) == PN;
953}
954
955static bool isCopyOfAPHI(const Value *V) {
956  auto *CO = getCopyOf(V);
957  return CO && isa<PHINode>(CO);
958}
959
960// Sort PHI Operands into a canonical order.  What we use here is an RPO
961// order. The BlockInstRange numbers are generated in an RPO walk of the basic
962// blocks.
963void NewGVN::sortPHIOps(MutableArrayRef<ValPair> Ops) const {
964  llvm::sort(Ops, [&](const ValPair &P1, const ValPair &P2) {
965    return BlockInstRange.lookup(P1.second).first <
966           BlockInstRange.lookup(P2.second).first;
967  });
968}
969
970// Return true if V is a value that will always be available (IE can
971// be placed anywhere) in the function.  We don't do globals here
972// because they are often worse to put in place.
973static bool alwaysAvailable(Value *V) {
974  return isa<Constant>(V) || isa<Argument>(V);
975}
976
977// Create a PHIExpression from an array of {incoming edge, value} pairs.  I is
978// the original instruction we are creating a PHIExpression for (but may not be
979// a phi node). We require, as an invariant, that all the PHIOperands in the
980// same block are sorted the same way. sortPHIOps will sort them into a
981// canonical order.
982PHIExpression *NewGVN::createPHIExpression(ArrayRef<ValPair> PHIOperands,
983                                           const Instruction *I,
984                                           BasicBlock *PHIBlock,
985                                           bool &HasBackedge,
986                                           bool &OriginalOpsConstant) const {
987  unsigned NumOps = PHIOperands.size();
988  auto *E = new (ExpressionAllocator) PHIExpression(NumOps, PHIBlock);
989
990  E->allocateOperands(ArgRecycler, ExpressionAllocator);
991  E->setType(PHIOperands.begin()->first->getType());
992  E->setOpcode(Instruction::PHI);
993
994  // Filter out unreachable phi operands.
995  auto Filtered = make_filter_range(PHIOperands, [&](const ValPair &P) {
996    auto *BB = P.second;
997    if (auto *PHIOp = dyn_cast<PHINode>(I))
998      if (isCopyOfPHI(P.first, PHIOp))
999        return false;
1000    if (!ReachableEdges.count({BB, PHIBlock}))
1001      return false;
1002    // Things in TOPClass are equivalent to everything.
1003    if (ValueToClass.lookup(P.first) == TOPClass)
1004      return false;
1005    OriginalOpsConstant = OriginalOpsConstant && isa<Constant>(P.first);
1006    HasBackedge = HasBackedge || isBackedge(BB, PHIBlock);
1007    return lookupOperandLeader(P.first) != I;
1008  });
1009  std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
1010                 [&](const ValPair &P) -> Value * {
1011                   return lookupOperandLeader(P.first);
1012                 });
1013  return E;
1014}
1015
1016// Set basic expression info (Arguments, type, opcode) for Expression
1017// E from Instruction I in block B.
1018bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
1019  bool AllConstant = true;
1020  if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
1021    E->setType(GEP->getSourceElementType());
1022  else
1023    E->setType(I->getType());
1024  E->setOpcode(I->getOpcode());
1025  E->allocateOperands(ArgRecycler, ExpressionAllocator);
1026
1027  // Transform the operand array into an operand leader array, and keep track of
1028  // whether all members are constant.
1029  std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
1030    auto Operand = lookupOperandLeader(O);
1031    AllConstant = AllConstant && isa<Constant>(Operand);
1032    return Operand;
1033  });
1034
1035  return AllConstant;
1036}
1037
1038const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
1039                                                 Value *Arg1, Value *Arg2,
1040                                                 Instruction *I) const {
1041  auto *E = new (ExpressionAllocator) BasicExpression(2);
1042
1043  E->setType(T);
1044  E->setOpcode(Opcode);
1045  E->allocateOperands(ArgRecycler, ExpressionAllocator);
1046  if (Instruction::isCommutative(Opcode)) {
1047    // Ensure that commutative instructions that only differ by a permutation
1048    // of their operands get the same value number by sorting the operand value
1049    // numbers.  Since all commutative instructions have two operands it is more
1050    // efficient to sort by hand rather than using, say, std::sort.
1051    if (shouldSwapOperands(Arg1, Arg2))
1052      std::swap(Arg1, Arg2);
1053  }
1054  E->op_push_back(lookupOperandLeader(Arg1));
1055  E->op_push_back(lookupOperandLeader(Arg2));
1056
1057  Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
1058  if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1059    return SimplifiedE;
1060  return E;
1061}
1062
1063// Take a Value returned by simplification of Expression E/Instruction
1064// I, and see if it resulted in a simpler expression. If so, return
1065// that expression.
1066const Expression *NewGVN::checkSimplificationResults(Expression *E,
1067                                                     Instruction *I,
1068                                                     Value *V) const {
1069  if (!V)
1070    return nullptr;
1071  if (auto *C = dyn_cast<Constant>(V)) {
1072    if (I)
1073      LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1074                        << " constant " << *C << "\n");
1075    NumGVNOpsSimplified++;
1076    assert(isa<BasicExpression>(E) &&
1077           "We should always have had a basic expression here");
1078    deleteExpression(E);
1079    return createConstantExpression(C);
1080  } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1081    if (I)
1082      LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1083                        << " variable " << *V << "\n");
1084    deleteExpression(E);
1085    return createVariableExpression(V);
1086  }
1087
1088  CongruenceClass *CC = ValueToClass.lookup(V);
1089  if (CC) {
1090    if (CC->getLeader() && CC->getLeader() != I) {
1091      // If we simplified to something else, we need to communicate
1092      // that we're users of the value we simplified to.
1093      if (I != V) {
1094        // Don't add temporary instructions to the user lists.
1095        if (!AllTempInstructions.count(I))
1096          addAdditionalUsers(V, I);
1097      }
1098      return createVariableOrConstant(CC->getLeader());
1099    }
1100    if (CC->getDefiningExpr()) {
1101      // If we simplified to something else, we need to communicate
1102      // that we're users of the value we simplified to.
1103      if (I != V) {
1104        // Don't add temporary instructions to the user lists.
1105        if (!AllTempInstructions.count(I))
1106          addAdditionalUsers(V, I);
1107      }
1108
1109      if (I)
1110        LLVM_DEBUG(dbgs() << "Simplified " << *I << " to "
1111                          << " expression " << *CC->getDefiningExpr() << "\n");
1112      NumGVNOpsSimplified++;
1113      deleteExpression(E);
1114      return CC->getDefiningExpr();
1115    }
1116  }
1117
1118  return nullptr;
1119}
1120
1121// Create a value expression from the instruction I, replacing operands with
1122// their leaders.
1123
1124const Expression *NewGVN::createExpression(Instruction *I) const {
1125  auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
1126
1127  bool AllConstant = setBasicExpressionInfo(I, E);
1128
1129  if (I->isCommutative()) {
1130    // Ensure that commutative instructions that only differ by a permutation
1131    // of their operands get the same value number by sorting the operand value
1132    // numbers.  Since all commutative instructions have two operands it is more
1133    // efficient to sort by hand rather than using, say, std::sort.
1134    assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
1135    if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
1136      E->swapOperands(0, 1);
1137  }
1138  // Perform simplification.
1139  if (auto *CI = dyn_cast<CmpInst>(I)) {
1140    // Sort the operand value numbers so x<y and y>x get the same value
1141    // number.
1142    CmpInst::Predicate Predicate = CI->getPredicate();
1143    if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
1144      E->swapOperands(0, 1);
1145      Predicate = CmpInst::getSwappedPredicate(Predicate);
1146    }
1147    E->setOpcode((CI->getOpcode() << 8) | Predicate);
1148    // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
1149    assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&
1150           "Wrong types on cmp instruction");
1151    assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&
1152            E->getOperand(1)->getType() == I->getOperand(1)->getType()));
1153    Value *V =
1154        SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
1155    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1156      return SimplifiedE;
1157  } else if (isa<SelectInst>(I)) {
1158    if (isa<Constant>(E->getOperand(0)) ||
1159        E->getOperand(1) == E->getOperand(2)) {
1160      assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&
1161             E->getOperand(2)->getType() == I->getOperand(2)->getType());
1162      Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
1163                                    E->getOperand(2), SQ);
1164      if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1165        return SimplifiedE;
1166    }
1167  } else if (I->isBinaryOp()) {
1168    Value *V =
1169        SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
1170    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1171      return SimplifiedE;
1172  } else if (auto *CI = dyn_cast<CastInst>(I)) {
1173    Value *V =
1174        SimplifyCastInst(CI->getOpcode(), E->getOperand(0), CI->getType(), SQ);
1175    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1176      return SimplifiedE;
1177  } else if (isa<GetElementPtrInst>(I)) {
1178    Value *V = SimplifyGEPInst(
1179        E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
1180    if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1181      return SimplifiedE;
1182  } else if (AllConstant) {
1183    // We don't bother trying to simplify unless all of the operands
1184    // were constant.
1185    // TODO: There are a lot of Simplify*'s we could call here, if we
1186    // wanted to.  The original motivating case for this code was a
1187    // zext i1 false to i8, which we don't have an interface to
1188    // simplify (IE there is no SimplifyZExt).
1189
1190    SmallVector<Constant *, 8> C;
1191    for (Value *Arg : E->operands())
1192      C.emplace_back(cast<Constant>(Arg));
1193
1194    if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
1195      if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
1196        return SimplifiedE;
1197  }
1198  return E;
1199}
1200
1201const AggregateValueExpression *
1202NewGVN::createAggregateValueExpression(Instruction *I) const {
1203  if (auto *II = dyn_cast<InsertValueInst>(I)) {
1204    auto *E = new (ExpressionAllocator)
1205        AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
1206    setBasicExpressionInfo(I, E);
1207    E->allocateIntOperands(ExpressionAllocator);
1208    std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
1209    return E;
1210  } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1211    auto *E = new (ExpressionAllocator)
1212        AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
1213    setBasicExpressionInfo(EI, E);
1214    E->allocateIntOperands(ExpressionAllocator);
1215    std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
1216    return E;
1217  }
1218  llvm_unreachable("Unhandled type of aggregate value operation");
1219}
1220
1221const DeadExpression *NewGVN::createDeadExpression() const {
1222  // DeadExpression has no arguments and all DeadExpression's are the same,
1223  // so we only need one of them.
1224  return SingletonDeadExpression;
1225}
1226
1227const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
1228  auto *E = new (ExpressionAllocator) VariableExpression(V);
1229  E->setOpcode(V->getValueID());
1230  return E;
1231}
1232
1233const Expression *NewGVN::createVariableOrConstant(Value *V) const {
1234  if (auto *C = dyn_cast<Constant>(V))
1235    return createConstantExpression(C);
1236  return createVariableExpression(V);
1237}
1238
1239const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
1240  auto *E = new (ExpressionAllocator) ConstantExpression(C);
1241  E->setOpcode(C->getValueID());
1242  return E;
1243}
1244
1245const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
1246  auto *E = new (ExpressionAllocator) UnknownExpression(I);
1247  E->setOpcode(I->getOpcode());
1248  return E;
1249}
1250
1251const CallExpression *
1252NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
1253  // FIXME: Add operand bundles for calls.
1254  auto *E =
1255      new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
1256  setBasicExpressionInfo(CI, E);
1257  return E;
1258}
1259
1260// Return true if some equivalent of instruction Inst dominates instruction U.
1261bool NewGVN::someEquivalentDominates(const Instruction *Inst,
1262                                     const Instruction *U) const {
1263  auto *CC = ValueToClass.lookup(Inst);
1264   // This must be an instruction because we are only called from phi nodes
1265  // in the case that the value it needs to check against is an instruction.
1266
1267  // The most likely candidates for dominance are the leader and the next leader.
1268  // The leader or nextleader will dominate in all cases where there is an
1269  // equivalent that is higher up in the dom tree.
1270  // We can't *only* check them, however, because the
1271  // dominator tree could have an infinite number of non-dominating siblings
1272  // with instructions that are in the right congruence class.
1273  //       A
1274  // B C D E F G
1275  // |
1276  // H
1277  // Instruction U could be in H,  with equivalents in every other sibling.
1278  // Depending on the rpo order picked, the leader could be the equivalent in
1279  // any of these siblings.
1280  if (!CC)
1281    return false;
1282  if (alwaysAvailable(CC->getLeader()))
1283    return true;
1284  if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1285    return true;
1286  if (CC->getNextLeader().first &&
1287      DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1288    return true;
1289  return llvm::any_of(*CC, [&](const Value *Member) {
1290    return Member != CC->getLeader() &&
1291           DT->dominates(cast<Instruction>(Member), U);
1292  });
1293}
1294
1295// See if we have a congruence class and leader for this operand, and if so,
1296// return it. Otherwise, return the operand itself.
1297Value *NewGVN::lookupOperandLeader(Value *V) const {
1298  CongruenceClass *CC = ValueToClass.lookup(V);
1299  if (CC) {
1300    // Everything in TOP is represented by undef, as it can be any value.
1301    // We do have to make sure we get the type right though, so we can't set the
1302    // RepLeader to undef.
1303    if (CC == TOPClass)
1304      return UndefValue::get(V->getType());
1305    return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1306  }
1307
1308  return V;
1309}
1310
1311const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1312  auto *CC = getMemoryClass(MA);
1313  assert(CC->getMemoryLeader() &&
1314         "Every MemoryAccess should be mapped to a congruence class with a "
1315         "representative memory access");
1316  return CC->getMemoryLeader();
1317}
1318
1319// Return true if the MemoryAccess is really equivalent to everything. This is
1320// equivalent to the lattice value "TOP" in most lattices.  This is the initial
1321// state of all MemoryAccesses.
1322bool NewGVN::isMemoryAccessTOP(const MemoryAccess *MA) const {
1323  return getMemoryClass(MA) == TOPClass;
1324}
1325
1326LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1327                                             LoadInst *LI,
1328                                             const MemoryAccess *MA) const {
1329  auto *E =
1330      new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1331  E->allocateOperands(ArgRecycler, ExpressionAllocator);
1332  E->setType(LoadType);
1333
1334  // Give store and loads same opcode so they value number together.
1335  E->setOpcode(0);
1336  E->op_push_back(PointerOp);
1337  if (LI)
1338    E->setAlignment(MaybeAlign(LI->getAlignment()));
1339
1340  // TODO: Value number heap versions. We may be able to discover
1341  // things alias analysis can't on it's own (IE that a store and a
1342  // load have the same value, and thus, it isn't clobbering the load).
1343  return E;
1344}
1345
1346const StoreExpression *
1347NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1348  auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1349  auto *E = new (ExpressionAllocator)
1350      StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1351  E->allocateOperands(ArgRecycler, ExpressionAllocator);
1352  E->setType(SI->getValueOperand()->getType());
1353
1354  // Give store and loads same opcode so they value number together.
1355  E->setOpcode(0);
1356  E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1357
1358  // TODO: Value number heap versions. We may be able to discover
1359  // things alias analysis can't on it's own (IE that a store and a
1360  // load have the same value, and thus, it isn't clobbering the load).
1361  return E;
1362}
1363
1364const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1365  // Unlike loads, we never try to eliminate stores, so we do not check if they
1366  // are simple and avoid value numbering them.
1367  auto *SI = cast<StoreInst>(I);
1368  auto *StoreAccess = getMemoryAccess(SI);
1369  // Get the expression, if any, for the RHS of the MemoryDef.
1370  const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1371  if (EnableStoreRefinement)
1372    StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1373  // If we bypassed the use-def chains, make sure we add a use.
1374  StoreRHS = lookupMemoryLeader(StoreRHS);
1375  if (StoreRHS != StoreAccess->getDefiningAccess())
1376    addMemoryUsers(StoreRHS, StoreAccess);
1377  // If we are defined by ourselves, use the live on entry def.
1378  if (StoreRHS == StoreAccess)
1379    StoreRHS = MSSA->getLiveOnEntryDef();
1380
1381  if (SI->isSimple()) {
1382    // See if we are defined by a previous store expression, it already has a
1383    // value, and it's the same value as our current store. FIXME: Right now, we
1384    // only do this for simple stores, we should expand to cover memcpys, etc.
1385    const auto *LastStore = createStoreExpression(SI, StoreRHS);
1386    const auto *LastCC = ExpressionToClass.lookup(LastStore);
1387    // We really want to check whether the expression we matched was a store. No
1388    // easy way to do that. However, we can check that the class we found has a
1389    // store, which, assuming the value numbering state is not corrupt, is
1390    // sufficient, because we must also be equivalent to that store's expression
1391    // for it to be in the same class as the load.
1392    if (LastCC && LastCC->getStoredValue() == LastStore->getStoredValue())
1393      return LastStore;
1394    // Also check if our value operand is defined by a load of the same memory
1395    // location, and the memory state is the same as it was then (otherwise, it
1396    // could have been overwritten later. See test32 in
1397    // transforms/DeadStoreElimination/simple.ll).
1398    if (auto *LI = dyn_cast<LoadInst>(LastStore->getStoredValue()))
1399      if ((lookupOperandLeader(LI->getPointerOperand()) ==
1400           LastStore->getOperand(0)) &&
1401          (lookupMemoryLeader(getMemoryAccess(LI)->getDefiningAccess()) ==
1402           StoreRHS))
1403        return LastStore;
1404    deleteExpression(LastStore);
1405  }
1406
1407  // If the store is not equivalent to anything, value number it as a store that
1408  // produces a unique memory state (instead of using it's MemoryUse, we use
1409  // it's MemoryDef).
1410  return createStoreExpression(SI, StoreAccess);
1411}
1412
1413// See if we can extract the value of a loaded pointer from a load, a store, or
1414// a memory instruction.
1415const Expression *
1416NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1417                                    LoadInst *LI, Instruction *DepInst,
1418                                    MemoryAccess *DefiningAccess) const {
1419  assert((!LI || LI->isSimple()) && "Not a simple load");
1420  if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
1421    // Can't forward from non-atomic to atomic without violating memory model.
1422    // Also don't need to coerce if they are the same type, we will just
1423    // propagate.
1424    if (LI->isAtomic() > DepSI->isAtomic() ||
1425        LoadType == DepSI->getValueOperand()->getType())
1426      return nullptr;
1427    int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1428    if (Offset >= 0) {
1429      if (auto *C = dyn_cast<Constant>(
1430              lookupOperandLeader(DepSI->getValueOperand()))) {
1431        LLVM_DEBUG(dbgs() << "Coercing load from store " << *DepSI
1432                          << " to constant " << *C << "\n");
1433        return createConstantExpression(
1434            getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1435      }
1436    }
1437  } else if (auto *DepLI = dyn_cast<LoadInst>(DepInst)) {
1438    // Can't forward from non-atomic to atomic without violating memory model.
1439    if (LI->isAtomic() > DepLI->isAtomic())
1440      return nullptr;
1441    int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1442    if (Offset >= 0) {
1443      // We can coerce a constant load into a load.
1444      if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1445        if (auto *PossibleConstant =
1446                getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1447          LLVM_DEBUG(dbgs() << "Coercing load from load " << *LI
1448                            << " to constant " << *PossibleConstant << "\n");
1449          return createConstantExpression(PossibleConstant);
1450        }
1451    }
1452  } else if (auto *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1453    int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1454    if (Offset >= 0) {
1455      if (auto *PossibleConstant =
1456              getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1457        LLVM_DEBUG(dbgs() << "Coercing load from meminst " << *DepMI
1458                          << " to constant " << *PossibleConstant << "\n");
1459        return createConstantExpression(PossibleConstant);
1460      }
1461    }
1462  }
1463
1464  // All of the below are only true if the loaded pointer is produced
1465  // by the dependent instruction.
1466  if (LoadPtr != lookupOperandLeader(DepInst) &&
1467      !AA->isMustAlias(LoadPtr, DepInst))
1468    return nullptr;
1469  // If this load really doesn't depend on anything, then we must be loading an
1470  // undef value.  This can happen when loading for a fresh allocation with no
1471  // intervening stores, for example.  Note that this is only true in the case
1472  // that the result of the allocation is pointer equal to the load ptr.
1473  if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1474    return createConstantExpression(UndefValue::get(LoadType));
1475  }
1476  // If this load occurs either right after a lifetime begin,
1477  // then the loaded value is undefined.
1478  else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1479    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1480      return createConstantExpression(UndefValue::get(LoadType));
1481  }
1482  // If this load follows a calloc (which zero initializes memory),
1483  // then the loaded value is zero
1484  else if (isCallocLikeFn(DepInst, TLI)) {
1485    return createConstantExpression(Constant::getNullValue(LoadType));
1486  }
1487
1488  return nullptr;
1489}
1490
1491const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1492  auto *LI = cast<LoadInst>(I);
1493
1494  // We can eliminate in favor of non-simple loads, but we won't be able to
1495  // eliminate the loads themselves.
1496  if (!LI->isSimple())
1497    return nullptr;
1498
1499  Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1500  // Load of undef is undef.
1501  if (isa<UndefValue>(LoadAddressLeader))
1502    return createConstantExpression(UndefValue::get(LI->getType()));
1503  MemoryAccess *OriginalAccess = getMemoryAccess(I);
1504  MemoryAccess *DefiningAccess =
1505      MSSAWalker->getClobberingMemoryAccess(OriginalAccess);
1506
1507  if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1508    if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1509      Instruction *DefiningInst = MD->getMemoryInst();
1510      // If the defining instruction is not reachable, replace with undef.
1511      if (!ReachableBlocks.count(DefiningInst->getParent()))
1512        return createConstantExpression(UndefValue::get(LI->getType()));
1513      // This will handle stores and memory insts.  We only do if it the
1514      // defining access has a different type, or it is a pointer produced by
1515      // certain memory operations that cause the memory to have a fixed value
1516      // (IE things like calloc).
1517      if (const auto *CoercionResult =
1518              performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1519                                          DefiningInst, DefiningAccess))
1520        return CoercionResult;
1521    }
1522  }
1523
1524  const auto *LE = createLoadExpression(LI->getType(), LoadAddressLeader, LI,
1525                                        DefiningAccess);
1526  // If our MemoryLeader is not our defining access, add a use to the
1527  // MemoryLeader, so that we get reprocessed when it changes.
1528  if (LE->getMemoryLeader() != DefiningAccess)
1529    addMemoryUsers(LE->getMemoryLeader(), OriginalAccess);
1530  return LE;
1531}
1532
1533const Expression *
1534NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1535  auto *PI = PredInfo->getPredicateInfoFor(I);
1536  if (!PI)
1537    return nullptr;
1538
1539  LLVM_DEBUG(dbgs() << "Found predicate info from instruction !\n");
1540
1541  auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1542  if (!PWC)
1543    return nullptr;
1544
1545  auto *CopyOf = I->getOperand(0);
1546  auto *Cond = PWC->Condition;
1547
1548  // If this a copy of the condition, it must be either true or false depending
1549  // on the predicate info type and edge.
1550  if (CopyOf == Cond) {
1551    // We should not need to add predicate users because the predicate info is
1552    // already a use of this operand.
1553    if (isa<PredicateAssume>(PI))
1554      return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1555    if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1556      if (PBranch->TrueEdge)
1557        return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1558      return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1559    }
1560    if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1561      return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1562  }
1563
1564  // Not a copy of the condition, so see what the predicates tell us about this
1565  // value.  First, though, we check to make sure the value is actually a copy
1566  // of one of the condition operands. It's possible, in certain cases, for it
1567  // to be a copy of a predicateinfo copy. In particular, if two branch
1568  // operations use the same condition, and one branch dominates the other, we
1569  // will end up with a copy of a copy.  This is currently a small deficiency in
1570  // predicateinfo.  What will end up happening here is that we will value
1571  // number both copies the same anyway.
1572
1573  // Everything below relies on the condition being a comparison.
1574  auto *Cmp = dyn_cast<CmpInst>(Cond);
1575  if (!Cmp)
1576    return nullptr;
1577
1578  if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1579    LLVM_DEBUG(dbgs() << "Copy is not of any condition operands!\n");
1580    return nullptr;
1581  }
1582  Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1583  Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1584  bool SwappedOps = false;
1585  // Sort the ops.
1586  if (shouldSwapOperands(FirstOp, SecondOp)) {
1587    std::swap(FirstOp, SecondOp);
1588    SwappedOps = true;
1589  }
1590  CmpInst::Predicate Predicate =
1591      SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1592
1593  if (isa<PredicateAssume>(PI)) {
1594    // If we assume the operands are equal, then they are equal.
1595    if (Predicate == CmpInst::ICMP_EQ) {
1596      addPredicateUsers(PI, I);
1597      addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1598                         I);
1599      return createVariableOrConstant(FirstOp);
1600    }
1601  }
1602  if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1603    // If we are *not* a copy of the comparison, we may equal to the other
1604    // operand when the predicate implies something about equality of
1605    // operations.  In particular, if the comparison is true/false when the
1606    // operands are equal, and we are on the right edge, we know this operation
1607    // is equal to something.
1608    if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1609        (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1610      addPredicateUsers(PI, I);
1611      addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1612                         I);
1613      return createVariableOrConstant(FirstOp);
1614    }
1615    // Handle the special case of floating point.
1616    if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1617         (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1618        isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1619      addPredicateUsers(PI, I);
1620      addAdditionalUsers(SwappedOps ? Cmp->getOperand(1) : Cmp->getOperand(0),
1621                         I);
1622      return createConstantExpression(cast<Constant>(FirstOp));
1623    }
1624  }
1625  return nullptr;
1626}
1627
1628// Evaluate read only and pure calls, and create an expression result.
1629const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1630  auto *CI = cast<CallInst>(I);
1631  if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1632    // Intrinsics with the returned attribute are copies of arguments.
1633    if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1634      if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1635        if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1636          return Result;
1637      return createVariableOrConstant(ReturnedValue);
1638    }
1639  }
1640  if (AA->doesNotAccessMemory(CI)) {
1641    return createCallExpression(CI, TOPClass->getMemoryLeader());
1642  } else if (AA->onlyReadsMemory(CI)) {
1643    if (auto *MA = MSSA->getMemoryAccess(CI)) {
1644      auto *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(MA);
1645      return createCallExpression(CI, DefiningAccess);
1646    } else // MSSA determined that CI does not access memory.
1647      return createCallExpression(CI, TOPClass->getMemoryLeader());
1648  }
1649  return nullptr;
1650}
1651
1652// Retrieve the memory class for a given MemoryAccess.
1653CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1654  auto *Result = MemoryAccessToClass.lookup(MA);
1655  assert(Result && "Should have found memory class");
1656  return Result;
1657}
1658
1659// Update the MemoryAccess equivalence table to say that From is equal to To,
1660// and return true if this is different from what already existed in the table.
1661bool NewGVN::setMemoryClass(const MemoryAccess *From,
1662                            CongruenceClass *NewClass) {
1663  assert(NewClass &&
1664         "Every MemoryAccess should be getting mapped to a non-null class");
1665  LLVM_DEBUG(dbgs() << "Setting " << *From);
1666  LLVM_DEBUG(dbgs() << " equivalent to congruence class ");
1667  LLVM_DEBUG(dbgs() << NewClass->getID()
1668                    << " with current MemoryAccess leader ");
1669  LLVM_DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n");
1670
1671  auto LookupResult = MemoryAccessToClass.find(From);
1672  bool Changed = false;
1673  // If it's already in the table, see if the value changed.
1674  if (LookupResult != MemoryAccessToClass.end()) {
1675    auto *OldClass = LookupResult->second;
1676    if (OldClass != NewClass) {
1677      // If this is a phi, we have to handle memory member updates.
1678      if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1679        OldClass->memory_erase(MP);
1680        NewClass->memory_insert(MP);
1681        // This may have killed the class if it had no non-memory members
1682        if (OldClass->getMemoryLeader() == From) {
1683          if (OldClass->definesNoMemory()) {
1684            OldClass->setMemoryLeader(nullptr);
1685          } else {
1686            OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1687            LLVM_DEBUG(dbgs() << "Memory class leader change for class "
1688                              << OldClass->getID() << " to "
1689                              << *OldClass->getMemoryLeader()
1690                              << " due to removal of a memory member " << *From
1691                              << "\n");
1692            markMemoryLeaderChangeTouched(OldClass);
1693          }
1694        }
1695      }
1696      // It wasn't equivalent before, and now it is.
1697      LookupResult->second = NewClass;
1698      Changed = true;
1699    }
1700  }
1701
1702  return Changed;
1703}
1704
1705// Determine if a instruction is cycle-free.  That means the values in the
1706// instruction don't depend on any expressions that can change value as a result
1707// of the instruction.  For example, a non-cycle free instruction would be v =
1708// phi(0, v+1).
1709bool NewGVN::isCycleFree(const Instruction *I) const {
1710  // In order to compute cycle-freeness, we do SCC finding on the instruction,
1711  // and see what kind of SCC it ends up in.  If it is a singleton, it is
1712  // cycle-free.  If it is not in a singleton, it is only cycle free if the
1713  // other members are all phi nodes (as they do not compute anything, they are
1714  // copies).
1715  auto ICS = InstCycleState.lookup(I);
1716  if (ICS == ICS_Unknown) {
1717    SCCFinder.Start(I);
1718    auto &SCC = SCCFinder.getComponentFor(I);
1719    // It's cycle free if it's size 1 or the SCC is *only* phi nodes.
1720    if (SCC.size() == 1)
1721      InstCycleState.insert({I, ICS_CycleFree});
1722    else {
1723      bool AllPhis = llvm::all_of(SCC, [](const Value *V) {
1724        return isa<PHINode>(V) || isCopyOfAPHI(V);
1725      });
1726      ICS = AllPhis ? ICS_CycleFree : ICS_Cycle;
1727      for (auto *Member : SCC)
1728        if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1729          InstCycleState.insert({MemberPhi, ICS});
1730    }
1731  }
1732  if (ICS == ICS_Cycle)
1733    return false;
1734  return true;
1735}
1736
1737// Evaluate PHI nodes symbolically and create an expression result.
1738const Expression *
1739NewGVN::performSymbolicPHIEvaluation(ArrayRef<ValPair> PHIOps,
1740                                     Instruction *I,
1741                                     BasicBlock *PHIBlock) const {
1742  // True if one of the incoming phi edges is a backedge.
1743  bool HasBackedge = false;
1744  // All constant tracks the state of whether all the *original* phi operands
1745  // This is really shorthand for "this phi cannot cycle due to forward
1746  // change in value of the phi is guaranteed not to later change the value of
1747  // the phi. IE it can't be v = phi(undef, v+1)
1748  bool OriginalOpsConstant = true;
1749  auto *E = cast<PHIExpression>(createPHIExpression(
1750      PHIOps, I, PHIBlock, HasBackedge, OriginalOpsConstant));
1751  // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1752  // See if all arguments are the same.
1753  // We track if any were undef because they need special handling.
1754  bool HasUndef = false;
1755  auto Filtered = make_filter_range(E->operands(), [&](Value *Arg) {
1756    if (isa<UndefValue>(Arg)) {
1757      HasUndef = true;
1758      return false;
1759    }
1760    return true;
1761  });
1762  // If we are left with no operands, it's dead.
1763  if (Filtered.empty()) {
1764    // If it has undef at this point, it means there are no-non-undef arguments,
1765    // and thus, the value of the phi node must be undef.
1766    if (HasUndef) {
1767      LLVM_DEBUG(
1768          dbgs() << "PHI Node " << *I
1769                 << " has no non-undef arguments, valuing it as undef\n");
1770      return createConstantExpression(UndefValue::get(I->getType()));
1771    }
1772
1773    LLVM_DEBUG(dbgs() << "No arguments of PHI node " << *I << " are live\n");
1774    deleteExpression(E);
1775    return createDeadExpression();
1776  }
1777  Value *AllSameValue = *(Filtered.begin());
1778  ++Filtered.begin();
1779  // Can't use std::equal here, sadly, because filter.begin moves.
1780  if (llvm::all_of(Filtered, [&](Value *Arg) { return Arg == AllSameValue; })) {
1781    // In LLVM's non-standard representation of phi nodes, it's possible to have
1782    // phi nodes with cycles (IE dependent on other phis that are .... dependent
1783    // on the original phi node), especially in weird CFG's where some arguments
1784    // are unreachable, or uninitialized along certain paths.  This can cause
1785    // infinite loops during evaluation. We work around this by not trying to
1786    // really evaluate them independently, but instead using a variable
1787    // expression to say if one is equivalent to the other.
1788    // We also special case undef, so that if we have an undef, we can't use the
1789    // common value unless it dominates the phi block.
1790    if (HasUndef) {
1791      // If we have undef and at least one other value, this is really a
1792      // multivalued phi, and we need to know if it's cycle free in order to
1793      // evaluate whether we can ignore the undef.  The other parts of this are
1794      // just shortcuts.  If there is no backedge, or all operands are
1795      // constants, it also must be cycle free.
1796      if (HasBackedge && !OriginalOpsConstant &&
1797          !isa<UndefValue>(AllSameValue) && !isCycleFree(I))
1798        return E;
1799
1800      // Only have to check for instructions
1801      if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1802        if (!someEquivalentDominates(AllSameInst, I))
1803          return E;
1804    }
1805    // Can't simplify to something that comes later in the iteration.
1806    // Otherwise, when and if it changes congruence class, we will never catch
1807    // up. We will always be a class behind it.
1808    if (isa<Instruction>(AllSameValue) &&
1809        InstrToDFSNum(AllSameValue) > InstrToDFSNum(I))
1810      return E;
1811    NumGVNPhisAllSame++;
1812    LLVM_DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue
1813                      << "\n");
1814    deleteExpression(E);
1815    return createVariableOrConstant(AllSameValue);
1816  }
1817  return E;
1818}
1819
1820const Expression *
1821NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1822  if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1823    auto *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand());
1824    if (WO && EI->getNumIndices() == 1 && *EI->idx_begin() == 0)
1825      // EI is an extract from one of our with.overflow intrinsics. Synthesize
1826      // a semantically equivalent expression instead of an extract value
1827      // expression.
1828      return createBinaryExpression(WO->getBinaryOp(), EI->getType(),
1829                                    WO->getLHS(), WO->getRHS(), I);
1830  }
1831
1832  return createAggregateValueExpression(I);
1833}
1834
1835const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1836  assert(isa<CmpInst>(I) && "Expected a cmp instruction.");
1837
1838  auto *CI = cast<CmpInst>(I);
1839  // See if our operands are equal to those of a previous predicate, and if so,
1840  // if it implies true or false.
1841  auto Op0 = lookupOperandLeader(CI->getOperand(0));
1842  auto Op1 = lookupOperandLeader(CI->getOperand(1));
1843  auto OurPredicate = CI->getPredicate();
1844  if (shouldSwapOperands(Op0, Op1)) {
1845    std::swap(Op0, Op1);
1846    OurPredicate = CI->getSwappedPredicate();
1847  }
1848
1849  // Avoid processing the same info twice.
1850  const PredicateBase *LastPredInfo = nullptr;
1851  // See if we know something about the comparison itself, like it is the target
1852  // of an assume.
1853  auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1854  if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1855    return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1856
1857  if (Op0 == Op1) {
1858    // This condition does not depend on predicates, no need to add users
1859    if (CI->isTrueWhenEqual())
1860      return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1861    else if (CI->isFalseWhenEqual())
1862      return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1863  }
1864
1865  // NOTE: Because we are comparing both operands here and below, and using
1866  // previous comparisons, we rely on fact that predicateinfo knows to mark
1867  // comparisons that use renamed operands as users of the earlier comparisons.
1868  // It is *not* enough to just mark predicateinfo renamed operands as users of
1869  // the earlier comparisons, because the *other* operand may have changed in a
1870  // previous iteration.
1871  // Example:
1872  // icmp slt %a, %b
1873  // %b.0 = ssa.copy(%b)
1874  // false branch:
1875  // icmp slt %c, %b.0
1876
1877  // %c and %a may start out equal, and thus, the code below will say the second
1878  // %icmp is false.  c may become equal to something else, and in that case the
1879  // %second icmp *must* be reexamined, but would not if only the renamed
1880  // %operands are considered users of the icmp.
1881
1882  // *Currently* we only check one level of comparisons back, and only mark one
1883  // level back as touched when changes happen.  If you modify this code to look
1884  // back farther through comparisons, you *must* mark the appropriate
1885  // comparisons as users in PredicateInfo.cpp, or you will cause bugs.  See if
1886  // we know something just from the operands themselves
1887
1888  // See if our operands have predicate info, so that we may be able to derive
1889  // something from a previous comparison.
1890  for (const auto &Op : CI->operands()) {
1891    auto *PI = PredInfo->getPredicateInfoFor(Op);
1892    if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1893      if (PI == LastPredInfo)
1894        continue;
1895      LastPredInfo = PI;
1896      // In phi of ops cases, we may have predicate info that we are evaluating
1897      // in a different context.
1898      if (!DT->dominates(PBranch->To, getBlockForValue(I)))
1899        continue;
1900      // TODO: Along the false edge, we may know more things too, like
1901      // icmp of
1902      // same operands is false.
1903      // TODO: We only handle actual comparison conditions below, not
1904      // and/or.
1905      auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1906      if (!BranchCond)
1907        continue;
1908      auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1909      auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1910      auto BranchPredicate = BranchCond->getPredicate();
1911      if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1912        std::swap(BranchOp0, BranchOp1);
1913        BranchPredicate = BranchCond->getSwappedPredicate();
1914      }
1915      if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1916        if (PBranch->TrueEdge) {
1917          // If we know the previous predicate is true and we are in the true
1918          // edge then we may be implied true or false.
1919          if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1920                                                  OurPredicate)) {
1921            addPredicateUsers(PI, I);
1922            return createConstantExpression(
1923                ConstantInt::getTrue(CI->getType()));
1924          }
1925
1926          if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1927                                                   OurPredicate)) {
1928            addPredicateUsers(PI, I);
1929            return createConstantExpression(
1930                ConstantInt::getFalse(CI->getType()));
1931          }
1932        } else {
1933          // Just handle the ne and eq cases, where if we have the same
1934          // operands, we may know something.
1935          if (BranchPredicate == OurPredicate) {
1936            addPredicateUsers(PI, I);
1937            // Same predicate, same ops,we know it was false, so this is false.
1938            return createConstantExpression(
1939                ConstantInt::getFalse(CI->getType()));
1940          } else if (BranchPredicate ==
1941                     CmpInst::getInversePredicate(OurPredicate)) {
1942            addPredicateUsers(PI, I);
1943            // Inverse predicate, we know the other was false, so this is true.
1944            return createConstantExpression(
1945                ConstantInt::getTrue(CI->getType()));
1946          }
1947        }
1948      }
1949    }
1950  }
1951  // Create expression will take care of simplifyCmpInst
1952  return createExpression(I);
1953}
1954
1955// Substitute and symbolize the value before value numbering.
1956const Expression *
1957NewGVN::performSymbolicEvaluation(Value *V,
1958                                  SmallPtrSetImpl<Value *> &Visited) const {
1959  const Expression *E = nullptr;
1960  if (auto *C = dyn_cast<Constant>(V))
1961    E = createConstantExpression(C);
1962  else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1963    E = createVariableExpression(V);
1964  } else {
1965    // TODO: memory intrinsics.
1966    // TODO: Some day, we should do the forward propagation and reassociation
1967    // parts of the algorithm.
1968    auto *I = cast<Instruction>(V);
1969    switch (I->getOpcode()) {
1970    case Instruction::ExtractValue:
1971    case Instruction::InsertValue:
1972      E = performSymbolicAggrValueEvaluation(I);
1973      break;
1974    case Instruction::PHI: {
1975      SmallVector<ValPair, 3> Ops;
1976      auto *PN = cast<PHINode>(I);
1977      for (unsigned i = 0; i < PN->getNumOperands(); ++i)
1978        Ops.push_back({PN->getIncomingValue(i), PN->getIncomingBlock(i)});
1979      // Sort to ensure the invariant createPHIExpression requires is met.
1980      sortPHIOps(Ops);
1981      E = performSymbolicPHIEvaluation(Ops, I, getBlockForValue(I));
1982    } break;
1983    case Instruction::Call:
1984      E = performSymbolicCallEvaluation(I);
1985      break;
1986    case Instruction::Store:
1987      E = performSymbolicStoreEvaluation(I);
1988      break;
1989    case Instruction::Load:
1990      E = performSymbolicLoadEvaluation(I);
1991      break;
1992    case Instruction::BitCast:
1993    case Instruction::AddrSpaceCast:
1994      E = createExpression(I);
1995      break;
1996    case Instruction::ICmp:
1997    case Instruction::FCmp:
1998      E = performSymbolicCmpEvaluation(I);
1999      break;
2000    case Instruction::FNeg:
2001    case Instruction::Add:
2002    case Instruction::FAdd:
2003    case Instruction::Sub:
2004    case Instruction::FSub:
2005    case Instruction::Mul:
2006    case Instruction::FMul:
2007    case Instruction::UDiv:
2008    case Instruction::SDiv:
2009    case Instruction::FDiv:
2010    case Instruction::URem:
2011    case Instruction::SRem:
2012    case Instruction::FRem:
2013    case Instruction::Shl:
2014    case Instruction::LShr:
2015    case Instruction::AShr:
2016    case Instruction::And:
2017    case Instruction::Or:
2018    case Instruction::Xor:
2019    case Instruction::Trunc:
2020    case Instruction::ZExt:
2021    case Instruction::SExt:
2022    case Instruction::FPToUI:
2023    case Instruction::FPToSI:
2024    case Instruction::UIToFP:
2025    case Instruction::SIToFP:
2026    case Instruction::FPTrunc:
2027    case Instruction::FPExt:
2028    case Instruction::PtrToInt:
2029    case Instruction::IntToPtr:
2030    case Instruction::Select:
2031    case Instruction::ExtractElement:
2032    case Instruction::InsertElement:
2033    case Instruction::ShuffleVector:
2034    case Instruction::GetElementPtr:
2035      E = createExpression(I);
2036      break;
2037    default:
2038      return nullptr;
2039    }
2040  }
2041  return E;
2042}
2043
2044// Look up a container in a map, and then call a function for each thing in the
2045// found container.
2046template <typename Map, typename KeyType, typename Func>
2047void NewGVN::for_each_found(Map &M, const KeyType &Key, Func F) {
2048  const auto Result = M.find_as(Key);
2049  if (Result != M.end())
2050    for (typename Map::mapped_type::value_type Mapped : Result->second)
2051      F(Mapped);
2052}
2053
2054// Look up a container of values/instructions in a map, and touch all the
2055// instructions in the container.  Then erase value from the map.
2056template <typename Map, typename KeyType>
2057void NewGVN::touchAndErase(Map &M, const KeyType &Key) {
2058  const auto Result = M.find_as(Key);
2059  if (Result != M.end()) {
2060    for (const typename Map::mapped_type::value_type Mapped : Result->second)
2061      TouchedInstructions.set(InstrToDFSNum(Mapped));
2062    M.erase(Result);
2063  }
2064}
2065
2066void NewGVN::addAdditionalUsers(Value *To, Value *User) const {
2067  assert(User && To != User);
2068  if (isa<Instruction>(To))
2069    AdditionalUsers[To].insert(User);
2070}
2071
2072void NewGVN::markUsersTouched(Value *V) {
2073  // Now mark the users as touched.
2074  for (auto *User : V->users()) {
2075    assert(isa<Instruction>(User) && "Use of value not within an instruction?");
2076    TouchedInstructions.set(InstrToDFSNum(User));
2077  }
2078  touchAndErase(AdditionalUsers, V);
2079}
2080
2081void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
2082  LLVM_DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n");
2083  MemoryToUsers[To].insert(U);
2084}
2085
2086void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
2087  TouchedInstructions.set(MemoryToDFSNum(MA));
2088}
2089
2090void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
2091  if (isa<MemoryUse>(MA))
2092    return;
2093  for (auto U : MA->users())
2094    TouchedInstructions.set(MemoryToDFSNum(U));
2095  touchAndErase(MemoryToUsers, MA);
2096}
2097
2098// Add I to the set of users of a given predicate.
2099void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
2100  // Don't add temporary instructions to the user lists.
2101  if (AllTempInstructions.count(I))
2102    return;
2103
2104  if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
2105    PredicateToUsers[PBranch->Condition].insert(I);
2106  else if (auto *PAssume = dyn_cast<PredicateAssume>(PB))
2107    PredicateToUsers[PAssume->Condition].insert(I);
2108}
2109
2110// Touch all the predicates that depend on this instruction.
2111void NewGVN::markPredicateUsersTouched(Instruction *I) {
2112  touchAndErase(PredicateToUsers, I);
2113}
2114
2115// Mark users affected by a memory leader change.
2116void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
2117  for (auto M : CC->memory())
2118    markMemoryDefTouched(M);
2119}
2120
2121// Touch the instructions that need to be updated after a congruence class has a
2122// leader change, and mark changed values.
2123void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
2124  for (auto M : *CC) {
2125    if (auto *I = dyn_cast<Instruction>(M))
2126      TouchedInstructions.set(InstrToDFSNum(I));
2127    LeaderChanges.insert(M);
2128  }
2129}
2130
2131// Give a range of things that have instruction DFS numbers, this will return
2132// the member of the range with the smallest dfs number.
2133template <class T, class Range>
2134T *NewGVN::getMinDFSOfRange(const Range &R) const {
2135  std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
2136  for (const auto X : R) {
2137    auto DFSNum = InstrToDFSNum(X);
2138    if (DFSNum < MinDFS.second)
2139      MinDFS = {X, DFSNum};
2140  }
2141  return MinDFS.first;
2142}
2143
2144// This function returns the MemoryAccess that should be the next leader of
2145// congruence class CC, under the assumption that the current leader is going to
2146// disappear.
2147const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
2148  // TODO: If this ends up to slow, we can maintain a next memory leader like we
2149  // do for regular leaders.
2150  // Make sure there will be a leader to find.
2151  assert(!CC->definesNoMemory() && "Can't get next leader if there is none");
2152  if (CC->getStoreCount() > 0) {
2153    if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
2154      return getMemoryAccess(NL);
2155    // Find the store with the minimum DFS number.
2156    auto *V = getMinDFSOfRange<Value>(make_filter_range(
2157        *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
2158    return getMemoryAccess(cast<StoreInst>(V));
2159  }
2160  assert(CC->getStoreCount() == 0);
2161
2162  // Given our assertion, hitting this part must mean
2163  // !OldClass->memory_empty()
2164  if (CC->memory_size() == 1)
2165    return *CC->memory_begin();
2166  return getMinDFSOfRange<const MemoryPhi>(CC->memory());
2167}
2168
2169// This function returns the next value leader of a congruence class, under the
2170// assumption that the current leader is going away.  This should end up being
2171// the next most dominating member.
2172Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
2173  // We don't need to sort members if there is only 1, and we don't care about
2174  // sorting the TOP class because everything either gets out of it or is
2175  // unreachable.
2176
2177  if (CC->size() == 1 || CC == TOPClass) {
2178    return *(CC->begin());
2179  } else if (CC->getNextLeader().first) {
2180    ++NumGVNAvoidedSortedLeaderChanges;
2181    return CC->getNextLeader().first;
2182  } else {
2183    ++NumGVNSortedLeaderChanges;
2184    // NOTE: If this ends up to slow, we can maintain a dual structure for
2185    // member testing/insertion, or keep things mostly sorted, and sort only
2186    // here, or use SparseBitVector or ....
2187    return getMinDFSOfRange<Value>(*CC);
2188  }
2189}
2190
2191// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
2192// the memory members, etc for the move.
2193//
2194// The invariants of this function are:
2195//
2196// - I must be moving to NewClass from OldClass
2197// - The StoreCount of OldClass and NewClass is expected to have been updated
2198//   for I already if it is a store.
2199// - The OldClass memory leader has not been updated yet if I was the leader.
2200void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
2201                                            MemoryAccess *InstMA,
2202                                            CongruenceClass *OldClass,
2203                                            CongruenceClass *NewClass) {
2204  // If the leader is I, and we had a representative MemoryAccess, it should
2205  // be the MemoryAccess of OldClass.
2206  assert((!InstMA || !OldClass->getMemoryLeader() ||
2207          OldClass->getLeader() != I ||
2208          MemoryAccessToClass.lookup(OldClass->getMemoryLeader()) ==
2209              MemoryAccessToClass.lookup(InstMA)) &&
2210         "Representative MemoryAccess mismatch");
2211  // First, see what happens to the new class
2212  if (!NewClass->getMemoryLeader()) {
2213    // Should be a new class, or a store becoming a leader of a new class.
2214    assert(NewClass->size() == 1 ||
2215           (isa<StoreInst>(I) && NewClass->getStoreCount() == 1));
2216    NewClass->setMemoryLeader(InstMA);
2217    // Mark it touched if we didn't just create a singleton
2218    LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2219                      << NewClass->getID()
2220                      << " due to new memory instruction becoming leader\n");
2221    markMemoryLeaderChangeTouched(NewClass);
2222  }
2223  setMemoryClass(InstMA, NewClass);
2224  // Now, fixup the old class if necessary
2225  if (OldClass->getMemoryLeader() == InstMA) {
2226    if (!OldClass->definesNoMemory()) {
2227      OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
2228      LLVM_DEBUG(dbgs() << "Memory class leader change for class "
2229                        << OldClass->getID() << " to "
2230                        << *OldClass->getMemoryLeader()
2231                        << " due to removal of old leader " << *InstMA << "\n");
2232      markMemoryLeaderChangeTouched(OldClass);
2233    } else
2234      OldClass->setMemoryLeader(nullptr);
2235  }
2236}
2237
2238// Move a value, currently in OldClass, to be part of NewClass
2239// Update OldClass and NewClass for the move (including changing leaders, etc).
2240void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
2241                                           CongruenceClass *OldClass,
2242                                           CongruenceClass *NewClass) {
2243  if (I == OldClass->getNextLeader().first)
2244    OldClass->resetNextLeader();
2245
2246  OldClass->erase(I);
2247  NewClass->insert(I);
2248
2249  if (NewClass->getLeader() != I)
2250    NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
2251  // Handle our special casing of stores.
2252  if (auto *SI = dyn_cast<StoreInst>(I)) {
2253    OldClass->decStoreCount();
2254    // Okay, so when do we want to make a store a leader of a class?
2255    // If we have a store defined by an earlier load, we want the earlier load
2256    // to lead the class.
2257    // If we have a store defined by something else, we want the store to lead
2258    // the class so everything else gets the "something else" as a value.
2259    // If we have a store as the single member of the class, we want the store
2260    // as the leader
2261    if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
2262      // If it's a store expression we are using, it means we are not equivalent
2263      // to something earlier.
2264      if (auto *SE = dyn_cast<StoreExpression>(E)) {
2265        NewClass->setStoredValue(SE->getStoredValue());
2266        markValueLeaderChangeTouched(NewClass);
2267        // Shift the new class leader to be the store
2268        LLVM_DEBUG(dbgs() << "Changing leader of congruence class "
2269                          << NewClass->getID() << " from "
2270                          << *NewClass->getLeader() << " to  " << *SI
2271                          << " because store joined class\n");
2272        // If we changed the leader, we have to mark it changed because we don't
2273        // know what it will do to symbolic evaluation.
2274        NewClass->setLeader(SI);
2275      }
2276      // We rely on the code below handling the MemoryAccess change.
2277    }
2278    NewClass->incStoreCount();
2279  }
2280  // True if there is no memory instructions left in a class that had memory
2281  // instructions before.
2282
2283  // If it's not a memory use, set the MemoryAccess equivalence
2284  auto *InstMA = dyn_cast_or_null<MemoryDef>(getMemoryAccess(I));
2285  if (InstMA)
2286    moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2287  ValueToClass[I] = NewClass;
2288  // See if we destroyed the class or need to swap leaders.
2289  if (OldClass->empty() && OldClass != TOPClass) {
2290    if (OldClass->getDefiningExpr()) {
2291      LLVM_DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()
2292                        << " from table\n");
2293      // We erase it as an exact expression to make sure we don't just erase an
2294      // equivalent one.
2295      auto Iter = ExpressionToClass.find_as(
2296          ExactEqualsExpression(*OldClass->getDefiningExpr()));
2297      if (Iter != ExpressionToClass.end())
2298        ExpressionToClass.erase(Iter);
2299#ifdef EXPENSIVE_CHECKS
2300      assert(
2301          (*OldClass->getDefiningExpr() != *E || ExpressionToClass.lookup(E)) &&
2302          "We erased the expression we just inserted, which should not happen");
2303#endif
2304    }
2305  } else if (OldClass->getLeader() == I) {
2306    // When the leader changes, the value numbering of
2307    // everything may change due to symbolization changes, so we need to
2308    // reprocess.
2309    LLVM_DEBUG(dbgs() << "Value class leader change for class "
2310                      << OldClass->getID() << "\n");
2311    ++NumGVNLeaderChanges;
2312    // Destroy the stored value if there are no more stores to represent it.
2313    // Note that this is basically clean up for the expression removal that
2314    // happens below.  If we remove stores from a class, we may leave it as a
2315    // class of equivalent memory phis.
2316    if (OldClass->getStoreCount() == 0) {
2317      if (OldClass->getStoredValue())
2318        OldClass->setStoredValue(nullptr);
2319    }
2320    OldClass->setLeader(getNextValueLeader(OldClass));
2321    OldClass->resetNextLeader();
2322    markValueLeaderChangeTouched(OldClass);
2323  }
2324}
2325
2326// For a given expression, mark the phi of ops instructions that could have
2327// changed as a result.
2328void NewGVN::markPhiOfOpsChanged(const Expression *E) {
2329  touchAndErase(ExpressionToPhiOfOps, E);
2330}
2331
2332// Perform congruence finding on a given value numbering expression.
2333void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2334  // This is guaranteed to return something, since it will at least find
2335  // TOP.
2336
2337  CongruenceClass *IClass = ValueToClass.lookup(I);
2338  assert(IClass && "Should have found a IClass");
2339  // Dead classes should have been eliminated from the mapping.
2340  assert(!IClass->isDead() && "Found a dead class");
2341
2342  CongruenceClass *EClass = nullptr;
2343  if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2344    EClass = ValueToClass.lookup(VE->getVariableValue());
2345  } else if (isa<DeadExpression>(E)) {
2346    EClass = TOPClass;
2347  }
2348  if (!EClass) {
2349    auto lookupResult = ExpressionToClass.insert({E, nullptr});
2350
2351    // If it's not in the value table, create a new congruence class.
2352    if (lookupResult.second) {
2353      CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2354      auto place = lookupResult.first;
2355      place->second = NewClass;
2356
2357      // Constants and variables should always be made the leader.
2358      if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2359        NewClass->setLeader(CE->getConstantValue());
2360      } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2361        StoreInst *SI = SE->getStoreInst();
2362        NewClass->setLeader(SI);
2363        NewClass->setStoredValue(SE->getStoredValue());
2364        // The RepMemoryAccess field will be filled in properly by the
2365        // moveValueToNewCongruenceClass call.
2366      } else {
2367        NewClass->setLeader(I);
2368      }
2369      assert(!isa<VariableExpression>(E) &&
2370             "VariableExpression should have been handled already");
2371
2372      EClass = NewClass;
2373      LLVM_DEBUG(dbgs() << "Created new congruence class for " << *I
2374                        << " using expression " << *E << " at "
2375                        << NewClass->getID() << " and leader "
2376                        << *(NewClass->getLeader()));
2377      if (NewClass->getStoredValue())
2378        LLVM_DEBUG(dbgs() << " and stored value "
2379                          << *(NewClass->getStoredValue()));
2380      LLVM_DEBUG(dbgs() << "\n");
2381    } else {
2382      EClass = lookupResult.first->second;
2383      if (isa<ConstantExpression>(E))
2384        assert((isa<Constant>(EClass->getLeader()) ||
2385                (EClass->getStoredValue() &&
2386                 isa<Constant>(EClass->getStoredValue()))) &&
2387               "Any class with a constant expression should have a "
2388               "constant leader");
2389
2390      assert(EClass && "Somehow don't have an eclass");
2391
2392      assert(!EClass->isDead() && "We accidentally looked up a dead class");
2393    }
2394  }
2395  bool ClassChanged = IClass != EClass;
2396  bool LeaderChanged = LeaderChanges.erase(I);
2397  if (ClassChanged || LeaderChanged) {
2398    LLVM_DEBUG(dbgs() << "New class " << EClass->getID() << " for expression "
2399                      << *E << "\n");
2400    if (ClassChanged) {
2401      moveValueToNewCongruenceClass(I, E, IClass, EClass);
2402      markPhiOfOpsChanged(E);
2403    }
2404
2405    markUsersTouched(I);
2406    if (MemoryAccess *MA = getMemoryAccess(I))
2407      markMemoryUsersTouched(MA);
2408    if (auto *CI = dyn_cast<CmpInst>(I))
2409      markPredicateUsersTouched(CI);
2410  }
2411  // If we changed the class of the store, we want to ensure nothing finds the
2412  // old store expression.  In particular, loads do not compare against stored
2413  // value, so they will find old store expressions (and associated class
2414  // mappings) if we leave them in the table.
2415  if (ClassChanged && isa<StoreInst>(I)) {
2416    auto *OldE = ValueToExpression.lookup(I);
2417    // It could just be that the old class died. We don't want to erase it if we
2418    // just moved classes.
2419    if (OldE && isa<StoreExpression>(OldE) && *E != *OldE) {
2420      // Erase this as an exact expression to ensure we don't erase expressions
2421      // equivalent to it.
2422      auto Iter = ExpressionToClass.find_as(ExactEqualsExpression(*OldE));
2423      if (Iter != ExpressionToClass.end())
2424        ExpressionToClass.erase(Iter);
2425    }
2426  }
2427  ValueToExpression[I] = E;
2428}
2429
2430// Process the fact that Edge (from, to) is reachable, including marking
2431// any newly reachable blocks and instructions for processing.
2432void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2433  // Check if the Edge was reachable before.
2434  if (ReachableEdges.insert({From, To}).second) {
2435    // If this block wasn't reachable before, all instructions are touched.
2436    if (ReachableBlocks.insert(To).second) {
2437      LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2438                        << " marked reachable\n");
2439      const auto &InstRange = BlockInstRange.lookup(To);
2440      TouchedInstructions.set(InstRange.first, InstRange.second);
2441    } else {
2442      LLVM_DEBUG(dbgs() << "Block " << getBlockName(To)
2443                        << " was reachable, but new edge {"
2444                        << getBlockName(From) << "," << getBlockName(To)
2445                        << "} to it found\n");
2446
2447      // We've made an edge reachable to an existing block, which may
2448      // impact predicates. Otherwise, only mark the phi nodes as touched, as
2449      // they are the only thing that depend on new edges. Anything using their
2450      // values will get propagated to if necessary.
2451      if (MemoryAccess *MemPhi = getMemoryAccess(To))
2452        TouchedInstructions.set(InstrToDFSNum(MemPhi));
2453
2454      // FIXME: We should just add a union op on a Bitvector and
2455      // SparseBitVector.  We can do it word by word faster than we are doing it
2456      // here.
2457      for (auto InstNum : RevisitOnReachabilityChange[To])
2458        TouchedInstructions.set(InstNum);
2459    }
2460  }
2461}
2462
2463// Given a predicate condition (from a switch, cmp, or whatever) and a block,
2464// see if we know some constant value for it already.
2465Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2466  auto Result = lookupOperandLeader(Cond);
2467  return isa<Constant>(Result) ? Result : nullptr;
2468}
2469
2470// Process the outgoing edges of a block for reachability.
2471void NewGVN::processOutgoingEdges(Instruction *TI, BasicBlock *B) {
2472  // Evaluate reachability of terminator instruction.
2473  Value *Cond;
2474  BasicBlock *TrueSucc, *FalseSucc;
2475  if (match(TI, m_Br(m_Value(Cond), TrueSucc, FalseSucc))) {
2476    Value *CondEvaluated = findConditionEquivalence(Cond);
2477    if (!CondEvaluated) {
2478      if (auto *I = dyn_cast<Instruction>(Cond)) {
2479        const Expression *E = createExpression(I);
2480        if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2481          CondEvaluated = CE->getConstantValue();
2482        }
2483      } else if (isa<ConstantInt>(Cond)) {
2484        CondEvaluated = Cond;
2485      }
2486    }
2487    ConstantInt *CI;
2488    if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2489      if (CI->isOne()) {
2490        LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2491                          << " evaluated to true\n");
2492        updateReachableEdge(B, TrueSucc);
2493      } else if (CI->isZero()) {
2494        LLVM_DEBUG(dbgs() << "Condition for Terminator " << *TI
2495                          << " evaluated to false\n");
2496        updateReachableEdge(B, FalseSucc);
2497      }
2498    } else {
2499      updateReachableEdge(B, TrueSucc);
2500      updateReachableEdge(B, FalseSucc);
2501    }
2502  } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2503    // For switches, propagate the case values into the case
2504    // destinations.
2505
2506    Value *SwitchCond = SI->getCondition();
2507    Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2508    // See if we were able to turn this switch statement into a constant.
2509    if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2510      auto *CondVal = cast<ConstantInt>(CondEvaluated);
2511      // We should be able to get case value for this.
2512      auto Case = *SI->findCaseValue(CondVal);
2513      if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2514        // We proved the value is outside of the range of the case.
2515        // We can't do anything other than mark the default dest as reachable,
2516        // and go home.
2517        updateReachableEdge(B, SI->getDefaultDest());
2518        return;
2519      }
2520      // Now get where it goes and mark it reachable.
2521      BasicBlock *TargetBlock = Case.getCaseSuccessor();
2522      updateReachableEdge(B, TargetBlock);
2523    } else {
2524      for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2525        BasicBlock *TargetBlock = SI->getSuccessor(i);
2526        updateReachableEdge(B, TargetBlock);
2527      }
2528    }
2529  } else {
2530    // Otherwise this is either unconditional, or a type we have no
2531    // idea about. Just mark successors as reachable.
2532    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2533      BasicBlock *TargetBlock = TI->getSuccessor(i);
2534      updateReachableEdge(B, TargetBlock);
2535    }
2536
2537    // This also may be a memory defining terminator, in which case, set it
2538    // equivalent only to itself.
2539    //
2540    auto *MA = getMemoryAccess(TI);
2541    if (MA && !isa<MemoryUse>(MA)) {
2542      auto *CC = ensureLeaderOfMemoryClass(MA);
2543      if (setMemoryClass(MA, CC))
2544        markMemoryUsersTouched(MA);
2545    }
2546  }
2547}
2548
2549// Remove the PHI of Ops PHI for I
2550void NewGVN::removePhiOfOps(Instruction *I, PHINode *PHITemp) {
2551  InstrDFS.erase(PHITemp);
2552  // It's still a temp instruction. We keep it in the array so it gets erased.
2553  // However, it's no longer used by I, or in the block
2554  TempToBlock.erase(PHITemp);
2555  RealToTemp.erase(I);
2556  // We don't remove the users from the phi node uses. This wastes a little
2557  // time, but such is life.  We could use two sets to track which were there
2558  // are the start of NewGVN, and which were added, but right nowt he cost of
2559  // tracking is more than the cost of checking for more phi of ops.
2560}
2561
2562// Add PHI Op in BB as a PHI of operations version of ExistingValue.
2563void NewGVN::addPhiOfOps(PHINode *Op, BasicBlock *BB,
2564                         Instruction *ExistingValue) {
2565  InstrDFS[Op] = InstrToDFSNum(ExistingValue);
2566  AllTempInstructions.insert(Op);
2567  TempToBlock[Op] = BB;
2568  RealToTemp[ExistingValue] = Op;
2569  // Add all users to phi node use, as they are now uses of the phi of ops phis
2570  // and may themselves be phi of ops.
2571  for (auto *U : ExistingValue->users())
2572    if (auto *UI = dyn_cast<Instruction>(U))
2573      PHINodeUses.insert(UI);
2574}
2575
2576static bool okayForPHIOfOps(const Instruction *I) {
2577  if (!EnablePhiOfOps)
2578    return false;
2579  return isa<BinaryOperator>(I) || isa<SelectInst>(I) || isa<CmpInst>(I) ||
2580         isa<LoadInst>(I);
2581}
2582
2583bool NewGVN::OpIsSafeForPHIOfOpsHelper(
2584    Value *V, const BasicBlock *PHIBlock,
2585    SmallPtrSetImpl<const Value *> &Visited,
2586    SmallVectorImpl<Instruction *> &Worklist) {
2587
2588  if (!isa<Instruction>(V))
2589    return true;
2590  auto OISIt = OpSafeForPHIOfOps.find(V);
2591  if (OISIt != OpSafeForPHIOfOps.end())
2592    return OISIt->second;
2593
2594  // Keep walking until we either dominate the phi block, or hit a phi, or run
2595  // out of things to check.
2596  if (DT->properlyDominates(getBlockForValue(V), PHIBlock)) {
2597    OpSafeForPHIOfOps.insert({V, true});
2598    return true;
2599  }
2600  // PHI in the same block.
2601  if (isa<PHINode>(V) && getBlockForValue(V) == PHIBlock) {
2602    OpSafeForPHIOfOps.insert({V, false});
2603    return false;
2604  }
2605
2606  auto *OrigI = cast<Instruction>(V);
2607  for (auto *Op : OrigI->operand_values()) {
2608    if (!isa<Instruction>(Op))
2609      continue;
2610    // Stop now if we find an unsafe operand.
2611    auto OISIt = OpSafeForPHIOfOps.find(OrigI);
2612    if (OISIt != OpSafeForPHIOfOps.end()) {
2613      if (!OISIt->second) {
2614        OpSafeForPHIOfOps.insert({V, false});
2615        return false;
2616      }
2617      continue;
2618    }
2619    if (!Visited.insert(Op).second)
2620      continue;
2621    Worklist.push_back(cast<Instruction>(Op));
2622  }
2623  return true;
2624}
2625
2626// Return true if this operand will be safe to use for phi of ops.
2627//
2628// The reason some operands are unsafe is that we are not trying to recursively
2629// translate everything back through phi nodes.  We actually expect some lookups
2630// of expressions to fail.  In particular, a lookup where the expression cannot
2631// exist in the predecessor.  This is true even if the expression, as shown, can
2632// be determined to be constant.
2633bool NewGVN::OpIsSafeForPHIOfOps(Value *V, const BasicBlock *PHIBlock,
2634                                 SmallPtrSetImpl<const Value *> &Visited) {
2635  SmallVector<Instruction *, 4> Worklist;
2636  if (!OpIsSafeForPHIOfOpsHelper(V, PHIBlock, Visited, Worklist))
2637    return false;
2638  while (!Worklist.empty()) {
2639    auto *I = Worklist.pop_back_val();
2640    if (!OpIsSafeForPHIOfOpsHelper(I, PHIBlock, Visited, Worklist))
2641      return false;
2642  }
2643  OpSafeForPHIOfOps.insert({V, true});
2644  return true;
2645}
2646
2647// Try to find a leader for instruction TransInst, which is a phi translated
2648// version of something in our original program.  Visited is used to ensure we
2649// don't infinite loop during translations of cycles.  OrigInst is the
2650// instruction in the original program, and PredBB is the predecessor we
2651// translated it through.
2652Value *NewGVN::findLeaderForInst(Instruction *TransInst,
2653                                 SmallPtrSetImpl<Value *> &Visited,
2654                                 MemoryAccess *MemAccess, Instruction *OrigInst,
2655                                 BasicBlock *PredBB) {
2656  unsigned IDFSNum = InstrToDFSNum(OrigInst);
2657  // Make sure it's marked as a temporary instruction.
2658  AllTempInstructions.insert(TransInst);
2659  // and make sure anything that tries to add it's DFS number is
2660  // redirected to the instruction we are making a phi of ops
2661  // for.
2662  TempToBlock.insert({TransInst, PredBB});
2663  InstrDFS.insert({TransInst, IDFSNum});
2664
2665  const Expression *E = performSymbolicEvaluation(TransInst, Visited);
2666  InstrDFS.erase(TransInst);
2667  AllTempInstructions.erase(TransInst);
2668  TempToBlock.erase(TransInst);
2669  if (MemAccess)
2670    TempToMemory.erase(TransInst);
2671  if (!E)
2672    return nullptr;
2673  auto *FoundVal = findPHIOfOpsLeader(E, OrigInst, PredBB);
2674  if (!FoundVal) {
2675    ExpressionToPhiOfOps[E].insert(OrigInst);
2676    LLVM_DEBUG(dbgs() << "Cannot find phi of ops operand for " << *TransInst
2677                      << " in block " << getBlockName(PredBB) << "\n");
2678    return nullptr;
2679  }
2680  if (auto *SI = dyn_cast<StoreInst>(FoundVal))
2681    FoundVal = SI->getValueOperand();
2682  return FoundVal;
2683}
2684
2685// When we see an instruction that is an op of phis, generate the equivalent phi
2686// of ops form.
2687const Expression *
2688NewGVN::makePossiblePHIOfOps(Instruction *I,
2689                             SmallPtrSetImpl<Value *> &Visited) {
2690  if (!okayForPHIOfOps(I))
2691    return nullptr;
2692
2693  if (!Visited.insert(I).second)
2694    return nullptr;
2695  // For now, we require the instruction be cycle free because we don't
2696  // *always* create a phi of ops for instructions that could be done as phi
2697  // of ops, we only do it if we think it is useful.  If we did do it all the
2698  // time, we could remove the cycle free check.
2699  if (!isCycleFree(I))
2700    return nullptr;
2701
2702  SmallPtrSet<const Value *, 8> ProcessedPHIs;
2703  // TODO: We don't do phi translation on memory accesses because it's
2704  // complicated. For a load, we'd need to be able to simulate a new memoryuse,
2705  // which we don't have a good way of doing ATM.
2706  auto *MemAccess = getMemoryAccess(I);
2707  // If the memory operation is defined by a memory operation this block that
2708  // isn't a MemoryPhi, transforming the pointer backwards through a scalar phi
2709  // can't help, as it would still be killed by that memory operation.
2710  if (MemAccess && !isa<MemoryPhi>(MemAccess->getDefiningAccess()) &&
2711      MemAccess->getDefiningAccess()->getBlock() == I->getParent())
2712    return nullptr;
2713
2714  // Convert op of phis to phi of ops
2715  SmallPtrSet<const Value *, 10> VisitedOps;
2716  SmallVector<Value *, 4> Ops(I->operand_values());
2717  BasicBlock *SamePHIBlock = nullptr;
2718  PHINode *OpPHI = nullptr;
2719  if (!DebugCounter::shouldExecute(PHIOfOpsCounter))
2720    return nullptr;
2721  for (auto *Op : Ops) {
2722    if (!isa<PHINode>(Op)) {
2723      auto *ValuePHI = RealToTemp.lookup(Op);
2724      if (!ValuePHI)
2725        continue;
2726      LLVM_DEBUG(dbgs() << "Found possible dependent phi of ops\n");
2727      Op = ValuePHI;
2728    }
2729    OpPHI = cast<PHINode>(Op);
2730    if (!SamePHIBlock) {
2731      SamePHIBlock = getBlockForValue(OpPHI);
2732    } else if (SamePHIBlock != getBlockForValue(OpPHI)) {
2733      LLVM_DEBUG(
2734          dbgs()
2735          << "PHIs for operands are not all in the same block, aborting\n");
2736      return nullptr;
2737    }
2738    // No point in doing this for one-operand phis.
2739    if (OpPHI->getNumOperands() == 1) {
2740      OpPHI = nullptr;
2741      continue;
2742    }
2743  }
2744
2745  if (!OpPHI)
2746    return nullptr;
2747
2748  SmallVector<ValPair, 4> PHIOps;
2749  SmallPtrSet<Value *, 4> Deps;
2750  auto *PHIBlock = getBlockForValue(OpPHI);
2751  RevisitOnReachabilityChange[PHIBlock].reset(InstrToDFSNum(I));
2752  for (unsigned PredNum = 0; PredNum < OpPHI->getNumOperands(); ++PredNum) {
2753    auto *PredBB = OpPHI->getIncomingBlock(PredNum);
2754    Value *FoundVal = nullptr;
2755    SmallPtrSet<Value *, 4> CurrentDeps;
2756    // We could just skip unreachable edges entirely but it's tricky to do
2757    // with rewriting existing phi nodes.
2758    if (ReachableEdges.count({PredBB, PHIBlock})) {
2759      // Clone the instruction, create an expression from it that is
2760      // translated back into the predecessor, and see if we have a leader.
2761      Instruction *ValueOp = I->clone();
2762      if (MemAccess)
2763        TempToMemory.insert({ValueOp, MemAccess});
2764      bool SafeForPHIOfOps = true;
2765      VisitedOps.clear();
2766      for (auto &Op : ValueOp->operands()) {
2767        auto *OrigOp = &*Op;
2768        // When these operand changes, it could change whether there is a
2769        // leader for us or not, so we have to add additional users.
2770        if (isa<PHINode>(Op)) {
2771          Op = Op->DoPHITranslation(PHIBlock, PredBB);
2772          if (Op != OrigOp && Op != I)
2773            CurrentDeps.insert(Op);
2774        } else if (auto *ValuePHI = RealToTemp.lookup(Op)) {
2775          if (getBlockForValue(ValuePHI) == PHIBlock)
2776            Op = ValuePHI->getIncomingValueForBlock(PredBB);
2777        }
2778        // If we phi-translated the op, it must be safe.
2779        SafeForPHIOfOps =
2780            SafeForPHIOfOps &&
2781            (Op != OrigOp || OpIsSafeForPHIOfOps(Op, PHIBlock, VisitedOps));
2782      }
2783      // FIXME: For those things that are not safe we could generate
2784      // expressions all the way down, and see if this comes out to a
2785      // constant.  For anything where that is true, and unsafe, we should
2786      // have made a phi-of-ops (or value numbered it equivalent to something)
2787      // for the pieces already.
2788      FoundVal = !SafeForPHIOfOps ? nullptr
2789                                  : findLeaderForInst(ValueOp, Visited,
2790                                                      MemAccess, I, PredBB);
2791      ValueOp->deleteValue();
2792      if (!FoundVal) {
2793        // We failed to find a leader for the current ValueOp, but this might
2794        // change in case of the translated operands change.
2795        if (SafeForPHIOfOps)
2796          for (auto Dep : CurrentDeps)
2797            addAdditionalUsers(Dep, I);
2798
2799        return nullptr;
2800      }
2801      Deps.insert(CurrentDeps.begin(), CurrentDeps.end());
2802    } else {
2803      LLVM_DEBUG(dbgs() << "Skipping phi of ops operand for incoming block "
2804                        << getBlockName(PredBB)
2805                        << " because the block is unreachable\n");
2806      FoundVal = UndefValue::get(I->getType());
2807      RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2808    }
2809
2810    PHIOps.push_back({FoundVal, PredBB});
2811    LLVM_DEBUG(dbgs() << "Found phi of ops operand " << *FoundVal << " in "
2812                      << getBlockName(PredBB) << "\n");
2813  }
2814  for (auto Dep : Deps)
2815    addAdditionalUsers(Dep, I);
2816  sortPHIOps(PHIOps);
2817  auto *E = performSymbolicPHIEvaluation(PHIOps, I, PHIBlock);
2818  if (isa<ConstantExpression>(E) || isa<VariableExpression>(E)) {
2819    LLVM_DEBUG(
2820        dbgs()
2821        << "Not creating real PHI of ops because it simplified to existing "
2822           "value or constant\n");
2823    return E;
2824  }
2825  auto *ValuePHI = RealToTemp.lookup(I);
2826  bool NewPHI = false;
2827  if (!ValuePHI) {
2828    ValuePHI =
2829        PHINode::Create(I->getType(), OpPHI->getNumOperands(), "phiofops");
2830    addPhiOfOps(ValuePHI, PHIBlock, I);
2831    NewPHI = true;
2832    NumGVNPHIOfOpsCreated++;
2833  }
2834  if (NewPHI) {
2835    for (auto PHIOp : PHIOps)
2836      ValuePHI->addIncoming(PHIOp.first, PHIOp.second);
2837  } else {
2838    TempToBlock[ValuePHI] = PHIBlock;
2839    unsigned int i = 0;
2840    for (auto PHIOp : PHIOps) {
2841      ValuePHI->setIncomingValue(i, PHIOp.first);
2842      ValuePHI->setIncomingBlock(i, PHIOp.second);
2843      ++i;
2844    }
2845  }
2846  RevisitOnReachabilityChange[PHIBlock].set(InstrToDFSNum(I));
2847  LLVM_DEBUG(dbgs() << "Created phi of ops " << *ValuePHI << " for " << *I
2848                    << "\n");
2849
2850  return E;
2851}
2852
2853// The algorithm initially places the values of the routine in the TOP
2854// congruence class. The leader of TOP is the undetermined value `undef`.
2855// When the algorithm has finished, values still in TOP are unreachable.
2856void NewGVN::initializeCongruenceClasses(Function &F) {
2857  NextCongruenceNum = 0;
2858
2859  // Note that even though we use the live on entry def as a representative
2860  // MemoryAccess, it is *not* the same as the actual live on entry def. We
2861  // have no real equivalemnt to undef for MemoryAccesses, and so we really
2862  // should be checking whether the MemoryAccess is top if we want to know if it
2863  // is equivalent to everything.  Otherwise, what this really signifies is that
2864  // the access "it reaches all the way back to the beginning of the function"
2865
2866  // Initialize all other instructions to be in TOP class.
2867  TOPClass = createCongruenceClass(nullptr, nullptr);
2868  TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2869  //  The live on entry def gets put into it's own class
2870  MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2871      createMemoryClass(MSSA->getLiveOnEntryDef());
2872
2873  for (auto DTN : nodes(DT)) {
2874    BasicBlock *BB = DTN->getBlock();
2875    // All MemoryAccesses are equivalent to live on entry to start. They must
2876    // be initialized to something so that initial changes are noticed. For
2877    // the maximal answer, we initialize them all to be the same as
2878    // liveOnEntry.
2879    auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2880    if (MemoryBlockDefs)
2881      for (const auto &Def : *MemoryBlockDefs) {
2882        MemoryAccessToClass[&Def] = TOPClass;
2883        auto *MD = dyn_cast<MemoryDef>(&Def);
2884        // Insert the memory phis into the member list.
2885        if (!MD) {
2886          const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2887          TOPClass->memory_insert(MP);
2888          MemoryPhiState.insert({MP, MPS_TOP});
2889        }
2890
2891        if (MD && isa<StoreInst>(MD->getMemoryInst()))
2892          TOPClass->incStoreCount();
2893      }
2894
2895    // FIXME: This is trying to discover which instructions are uses of phi
2896    // nodes.  We should move this into one of the myriad of places that walk
2897    // all the operands already.
2898    for (auto &I : *BB) {
2899      if (isa<PHINode>(&I))
2900        for (auto *U : I.users())
2901          if (auto *UInst = dyn_cast<Instruction>(U))
2902            if (InstrToDFSNum(UInst) != 0 && okayForPHIOfOps(UInst))
2903              PHINodeUses.insert(UInst);
2904      // Don't insert void terminators into the class. We don't value number
2905      // them, and they just end up sitting in TOP.
2906      if (I.isTerminator() && I.getType()->isVoidTy())
2907        continue;
2908      TOPClass->insert(&I);
2909      ValueToClass[&I] = TOPClass;
2910    }
2911  }
2912
2913  // Initialize arguments to be in their own unique congruence classes
2914  for (auto &FA : F.args())
2915    createSingletonCongruenceClass(&FA);
2916}
2917
2918void NewGVN::cleanupTables() {
2919  for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2920    LLVM_DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()
2921                      << " has " << CongruenceClasses[i]->size()
2922                      << " members\n");
2923    // Make sure we delete the congruence class (probably worth switching to
2924    // a unique_ptr at some point.
2925    delete CongruenceClasses[i];
2926    CongruenceClasses[i] = nullptr;
2927  }
2928
2929  // Destroy the value expressions
2930  SmallVector<Instruction *, 8> TempInst(AllTempInstructions.begin(),
2931                                         AllTempInstructions.end());
2932  AllTempInstructions.clear();
2933
2934  // We have to drop all references for everything first, so there are no uses
2935  // left as we delete them.
2936  for (auto *I : TempInst) {
2937    I->dropAllReferences();
2938  }
2939
2940  while (!TempInst.empty()) {
2941    auto *I = TempInst.back();
2942    TempInst.pop_back();
2943    I->deleteValue();
2944  }
2945
2946  ValueToClass.clear();
2947  ArgRecycler.clear(ExpressionAllocator);
2948  ExpressionAllocator.Reset();
2949  CongruenceClasses.clear();
2950  ExpressionToClass.clear();
2951  ValueToExpression.clear();
2952  RealToTemp.clear();
2953  AdditionalUsers.clear();
2954  ExpressionToPhiOfOps.clear();
2955  TempToBlock.clear();
2956  TempToMemory.clear();
2957  PHINodeUses.clear();
2958  OpSafeForPHIOfOps.clear();
2959  ReachableBlocks.clear();
2960  ReachableEdges.clear();
2961#ifndef NDEBUG
2962  ProcessedCount.clear();
2963#endif
2964  InstrDFS.clear();
2965  InstructionsToErase.clear();
2966  DFSToInstr.clear();
2967  BlockInstRange.clear();
2968  TouchedInstructions.clear();
2969  MemoryAccessToClass.clear();
2970  PredicateToUsers.clear();
2971  MemoryToUsers.clear();
2972  RevisitOnReachabilityChange.clear();
2973}
2974
2975// Assign local DFS number mapping to instructions, and leave space for Value
2976// PHI's.
2977std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2978                                                       unsigned Start) {
2979  unsigned End = Start;
2980  if (MemoryAccess *MemPhi = getMemoryAccess(B)) {
2981    InstrDFS[MemPhi] = End++;
2982    DFSToInstr.emplace_back(MemPhi);
2983  }
2984
2985  // Then the real block goes next.
2986  for (auto &I : *B) {
2987    // There's no need to call isInstructionTriviallyDead more than once on
2988    // an instruction. Therefore, once we know that an instruction is dead
2989    // we change its DFS number so that it doesn't get value numbered.
2990    if (isInstructionTriviallyDead(&I, TLI)) {
2991      InstrDFS[&I] = 0;
2992      LLVM_DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n");
2993      markInstructionForDeletion(&I);
2994      continue;
2995    }
2996    if (isa<PHINode>(&I))
2997      RevisitOnReachabilityChange[B].set(End);
2998    InstrDFS[&I] = End++;
2999    DFSToInstr.emplace_back(&I);
3000  }
3001
3002  // All of the range functions taken half-open ranges (open on the end side).
3003  // So we do not subtract one from count, because at this point it is one
3004  // greater than the last instruction.
3005  return std::make_pair(Start, End);
3006}
3007
3008void NewGVN::updateProcessedCount(const Value *V) {
3009#ifndef NDEBUG
3010  if (ProcessedCount.count(V) == 0) {
3011    ProcessedCount.insert({V, 1});
3012  } else {
3013    ++ProcessedCount[V];
3014    assert(ProcessedCount[V] < 100 &&
3015           "Seem to have processed the same Value a lot");
3016  }
3017#endif
3018}
3019
3020// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
3021void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
3022  // If all the arguments are the same, the MemoryPhi has the same value as the
3023  // argument.  Filter out unreachable blocks and self phis from our operands.
3024  // TODO: We could do cycle-checking on the memory phis to allow valueizing for
3025  // self-phi checking.
3026  const BasicBlock *PHIBlock = MP->getBlock();
3027  auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
3028    return cast<MemoryAccess>(U) != MP &&
3029           !isMemoryAccessTOP(cast<MemoryAccess>(U)) &&
3030           ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
3031  });
3032  // If all that is left is nothing, our memoryphi is undef. We keep it as
3033  // InitialClass.  Note: The only case this should happen is if we have at
3034  // least one self-argument.
3035  if (Filtered.begin() == Filtered.end()) {
3036    if (setMemoryClass(MP, TOPClass))
3037      markMemoryUsersTouched(MP);
3038    return;
3039  }
3040
3041  // Transform the remaining operands into operand leaders.
3042  // FIXME: mapped_iterator should have a range version.
3043  auto LookupFunc = [&](const Use &U) {
3044    return lookupMemoryLeader(cast<MemoryAccess>(U));
3045  };
3046  auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
3047  auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
3048
3049  // and now check if all the elements are equal.
3050  // Sadly, we can't use std::equals since these are random access iterators.
3051  const auto *AllSameValue = *MappedBegin;
3052  ++MappedBegin;
3053  bool AllEqual = std::all_of(
3054      MappedBegin, MappedEnd,
3055      [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
3056
3057  if (AllEqual)
3058    LLVM_DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue
3059                      << "\n");
3060  else
3061    LLVM_DEBUG(dbgs() << "Memory Phi value numbered to itself\n");
3062  // If it's equal to something, it's in that class. Otherwise, it has to be in
3063  // a class where it is the leader (other things may be equivalent to it, but
3064  // it needs to start off in its own class, which means it must have been the
3065  // leader, and it can't have stopped being the leader because it was never
3066  // removed).
3067  CongruenceClass *CC =
3068      AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
3069  auto OldState = MemoryPhiState.lookup(MP);
3070  assert(OldState != MPS_Invalid && "Invalid memory phi state");
3071  auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
3072  MemoryPhiState[MP] = NewState;
3073  if (setMemoryClass(MP, CC) || OldState != NewState)
3074    markMemoryUsersTouched(MP);
3075}
3076
3077// Value number a single instruction, symbolically evaluating, performing
3078// congruence finding, and updating mappings.
3079void NewGVN::valueNumberInstruction(Instruction *I) {
3080  LLVM_DEBUG(dbgs() << "Processing instruction " << *I << "\n");
3081  if (!I->isTerminator()) {
3082    const Expression *Symbolized = nullptr;
3083    SmallPtrSet<Value *, 2> Visited;
3084    if (DebugCounter::shouldExecute(VNCounter)) {
3085      Symbolized = performSymbolicEvaluation(I, Visited);
3086      // Make a phi of ops if necessary
3087      if (Symbolized && !isa<ConstantExpression>(Symbolized) &&
3088          !isa<VariableExpression>(Symbolized) && PHINodeUses.count(I)) {
3089        auto *PHIE = makePossiblePHIOfOps(I, Visited);
3090        // If we created a phi of ops, use it.
3091        // If we couldn't create one, make sure we don't leave one lying around
3092        if (PHIE) {
3093          Symbolized = PHIE;
3094        } else if (auto *Op = RealToTemp.lookup(I)) {
3095          removePhiOfOps(I, Op);
3096        }
3097      }
3098    } else {
3099      // Mark the instruction as unused so we don't value number it again.
3100      InstrDFS[I] = 0;
3101    }
3102    // If we couldn't come up with a symbolic expression, use the unknown
3103    // expression
3104    if (Symbolized == nullptr)
3105      Symbolized = createUnknownExpression(I);
3106    performCongruenceFinding(I, Symbolized);
3107  } else {
3108    // Handle terminators that return values. All of them produce values we
3109    // don't currently understand.  We don't place non-value producing
3110    // terminators in a class.
3111    if (!I->getType()->isVoidTy()) {
3112      auto *Symbolized = createUnknownExpression(I);
3113      performCongruenceFinding(I, Symbolized);
3114    }
3115    processOutgoingEdges(I, I->getParent());
3116  }
3117}
3118
3119// Check if there is a path, using single or equal argument phi nodes, from
3120// First to Second.
3121bool NewGVN::singleReachablePHIPath(
3122    SmallPtrSet<const MemoryAccess *, 8> &Visited, const MemoryAccess *First,
3123    const MemoryAccess *Second) const {
3124  if (First == Second)
3125    return true;
3126  if (MSSA->isLiveOnEntryDef(First))
3127    return false;
3128
3129  // This is not perfect, but as we're just verifying here, we can live with
3130  // the loss of precision. The real solution would be that of doing strongly
3131  // connected component finding in this routine, and it's probably not worth
3132  // the complexity for the time being. So, we just keep a set of visited
3133  // MemoryAccess and return true when we hit a cycle.
3134  if (Visited.count(First))
3135    return true;
3136  Visited.insert(First);
3137
3138  const auto *EndDef = First;
3139  for (auto *ChainDef : optimized_def_chain(First)) {
3140    if (ChainDef == Second)
3141      return true;
3142    if (MSSA->isLiveOnEntryDef(ChainDef))
3143      return false;
3144    EndDef = ChainDef;
3145  }
3146  auto *MP = cast<MemoryPhi>(EndDef);
3147  auto ReachableOperandPred = [&](const Use &U) {
3148    return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
3149  };
3150  auto FilteredPhiArgs =
3151      make_filter_range(MP->operands(), ReachableOperandPred);
3152  SmallVector<const Value *, 32> OperandList;
3153  llvm::copy(FilteredPhiArgs, std::back_inserter(OperandList));
3154  bool Okay = is_splat(OperandList);
3155  if (Okay)
3156    return singleReachablePHIPath(Visited, cast<MemoryAccess>(OperandList[0]),
3157                                  Second);
3158  return false;
3159}
3160
3161// Verify the that the memory equivalence table makes sense relative to the
3162// congruence classes.  Note that this checking is not perfect, and is currently
3163// subject to very rare false negatives. It is only useful for
3164// testing/debugging.
3165void NewGVN::verifyMemoryCongruency() const {
3166#ifndef NDEBUG
3167  // Verify that the memory table equivalence and memory member set match
3168  for (const auto *CC : CongruenceClasses) {
3169    if (CC == TOPClass || CC->isDead())
3170      continue;
3171    if (CC->getStoreCount() != 0) {
3172      assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&
3173             "Any class with a store as a leader should have a "
3174             "representative stored value");
3175      assert(CC->getMemoryLeader() &&
3176             "Any congruence class with a store should have a "
3177             "representative access");
3178    }
3179
3180    if (CC->getMemoryLeader())
3181      assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
3182             "Representative MemoryAccess does not appear to be reverse "
3183             "mapped properly");
3184    for (auto M : CC->memory())
3185      assert(MemoryAccessToClass.lookup(M) == CC &&
3186             "Memory member does not appear to be reverse mapped properly");
3187  }
3188
3189  // Anything equivalent in the MemoryAccess table should be in the same
3190  // congruence class.
3191
3192  // Filter out the unreachable and trivially dead entries, because they may
3193  // never have been updated if the instructions were not processed.
3194  auto ReachableAccessPred =
3195      [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
3196        bool Result = ReachableBlocks.count(Pair.first->getBlock());
3197        if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
3198            MemoryToDFSNum(Pair.first) == 0)
3199          return false;
3200        if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
3201          return !isInstructionTriviallyDead(MemDef->getMemoryInst());
3202
3203        // We could have phi nodes which operands are all trivially dead,
3204        // so we don't process them.
3205        if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
3206          for (auto &U : MemPHI->incoming_values()) {
3207            if (auto *I = dyn_cast<Instruction>(&*U)) {
3208              if (!isInstructionTriviallyDead(I))
3209                return true;
3210            }
3211          }
3212          return false;
3213        }
3214
3215        return true;
3216      };
3217
3218  auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
3219  for (auto KV : Filtered) {
3220    if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
3221      auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
3222      if (FirstMUD && SecondMUD) {
3223        SmallPtrSet<const MemoryAccess *, 8> VisitedMAS;
3224        assert((singleReachablePHIPath(VisitedMAS, FirstMUD, SecondMUD) ||
3225                ValueToClass.lookup(FirstMUD->getMemoryInst()) ==
3226                    ValueToClass.lookup(SecondMUD->getMemoryInst())) &&
3227               "The instructions for these memory operations should have "
3228               "been in the same congruence class or reachable through"
3229               "a single argument phi");
3230      }
3231    } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
3232      // We can only sanely verify that MemoryDefs in the operand list all have
3233      // the same class.
3234      auto ReachableOperandPred = [&](const Use &U) {
3235        return ReachableEdges.count(
3236                   {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
3237               isa<MemoryDef>(U);
3238
3239      };
3240      // All arguments should in the same class, ignoring unreachable arguments
3241      auto FilteredPhiArgs =
3242          make_filter_range(FirstMP->operands(), ReachableOperandPred);
3243      SmallVector<const CongruenceClass *, 16> PhiOpClasses;
3244      std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
3245                     std::back_inserter(PhiOpClasses), [&](const Use &U) {
3246                       const MemoryDef *MD = cast<MemoryDef>(U);
3247                       return ValueToClass.lookup(MD->getMemoryInst());
3248                     });
3249      assert(is_splat(PhiOpClasses) &&
3250             "All MemoryPhi arguments should be in the same class");
3251    }
3252  }
3253#endif
3254}
3255
3256// Verify that the sparse propagation we did actually found the maximal fixpoint
3257// We do this by storing the value to class mapping, touching all instructions,
3258// and redoing the iteration to see if anything changed.
3259void NewGVN::verifyIterationSettled(Function &F) {
3260#ifndef NDEBUG
3261  LLVM_DEBUG(dbgs() << "Beginning iteration verification\n");
3262  if (DebugCounter::isCounterSet(VNCounter))
3263    DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
3264
3265  // Note that we have to store the actual classes, as we may change existing
3266  // classes during iteration.  This is because our memory iteration propagation
3267  // is not perfect, and so may waste a little work.  But it should generate
3268  // exactly the same congruence classes we have now, with different IDs.
3269  std::map<const Value *, CongruenceClass> BeforeIteration;
3270
3271  for (auto &KV : ValueToClass) {
3272    if (auto *I = dyn_cast<Instruction>(KV.first))
3273      // Skip unused/dead instructions.
3274      if (InstrToDFSNum(I) == 0)
3275        continue;
3276    BeforeIteration.insert({KV.first, *KV.second});
3277  }
3278
3279  TouchedInstructions.set();
3280  TouchedInstructions.reset(0);
3281  iterateTouchedInstructions();
3282  DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
3283      EqualClasses;
3284  for (const auto &KV : ValueToClass) {
3285    if (auto *I = dyn_cast<Instruction>(KV.first))
3286      // Skip unused/dead instructions.
3287      if (InstrToDFSNum(I) == 0)
3288        continue;
3289    // We could sink these uses, but i think this adds a bit of clarity here as
3290    // to what we are comparing.
3291    auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
3292    auto *AfterCC = KV.second;
3293    // Note that the classes can't change at this point, so we memoize the set
3294    // that are equal.
3295    if (!EqualClasses.count({BeforeCC, AfterCC})) {
3296      assert(BeforeCC->isEquivalentTo(AfterCC) &&
3297             "Value number changed after main loop completed!");
3298      EqualClasses.insert({BeforeCC, AfterCC});
3299    }
3300  }
3301#endif
3302}
3303
3304// Verify that for each store expression in the expression to class mapping,
3305// only the latest appears, and multiple ones do not appear.
3306// Because loads do not use the stored value when doing equality with stores,
3307// if we don't erase the old store expressions from the table, a load can find
3308// a no-longer valid StoreExpression.
3309void NewGVN::verifyStoreExpressions() const {
3310#ifndef NDEBUG
3311  // This is the only use of this, and it's not worth defining a complicated
3312  // densemapinfo hash/equality function for it.
3313  std::set<
3314      std::pair<const Value *,
3315                std::tuple<const Value *, const CongruenceClass *, Value *>>>
3316      StoreExpressionSet;
3317  for (const auto &KV : ExpressionToClass) {
3318    if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
3319      // Make sure a version that will conflict with loads is not already there
3320      auto Res = StoreExpressionSet.insert(
3321          {SE->getOperand(0), std::make_tuple(SE->getMemoryLeader(), KV.second,
3322                                              SE->getStoredValue())});
3323      bool Okay = Res.second;
3324      // It's okay to have the same expression already in there if it is
3325      // identical in nature.
3326      // This can happen when the leader of the stored value changes over time.
3327      if (!Okay)
3328        Okay = (std::get<1>(Res.first->second) == KV.second) &&
3329               (lookupOperandLeader(std::get<2>(Res.first->second)) ==
3330                lookupOperandLeader(SE->getStoredValue()));
3331      assert(Okay && "Stored expression conflict exists in expression table");
3332      auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
3333      assert(ValueExpr && ValueExpr->equals(*SE) &&
3334             "StoreExpression in ExpressionToClass is not latest "
3335             "StoreExpression for value");
3336    }
3337  }
3338#endif
3339}
3340
3341// This is the main value numbering loop, it iterates over the initial touched
3342// instruction set, propagating value numbers, marking things touched, etc,
3343// until the set of touched instructions is completely empty.
3344void NewGVN::iterateTouchedInstructions() {
3345  unsigned int Iterations = 0;
3346  // Figure out where touchedinstructions starts
3347  int FirstInstr = TouchedInstructions.find_first();
3348  // Nothing set, nothing to iterate, just return.
3349  if (FirstInstr == -1)
3350    return;
3351  const BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
3352  while (TouchedInstructions.any()) {
3353    ++Iterations;
3354    // Walk through all the instructions in all the blocks in RPO.
3355    // TODO: As we hit a new block, we should push and pop equalities into a
3356    // table lookupOperandLeader can use, to catch things PredicateInfo
3357    // might miss, like edge-only equivalences.
3358    for (unsigned InstrNum : TouchedInstructions.set_bits()) {
3359
3360      // This instruction was found to be dead. We don't bother looking
3361      // at it again.
3362      if (InstrNum == 0) {
3363        TouchedInstructions.reset(InstrNum);
3364        continue;
3365      }
3366
3367      Value *V = InstrFromDFSNum(InstrNum);
3368      const BasicBlock *CurrBlock = getBlockForValue(V);
3369
3370      // If we hit a new block, do reachability processing.
3371      if (CurrBlock != LastBlock) {
3372        LastBlock = CurrBlock;
3373        bool BlockReachable = ReachableBlocks.count(CurrBlock);
3374        const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
3375
3376        // If it's not reachable, erase any touched instructions and move on.
3377        if (!BlockReachable) {
3378          TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
3379          LLVM_DEBUG(dbgs() << "Skipping instructions in block "
3380                            << getBlockName(CurrBlock)
3381                            << " because it is unreachable\n");
3382          continue;
3383        }
3384        updateProcessedCount(CurrBlock);
3385      }
3386      // Reset after processing (because we may mark ourselves as touched when
3387      // we propagate equalities).
3388      TouchedInstructions.reset(InstrNum);
3389
3390      if (auto *MP = dyn_cast<MemoryPhi>(V)) {
3391        LLVM_DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n");
3392        valueNumberMemoryPhi(MP);
3393      } else if (auto *I = dyn_cast<Instruction>(V)) {
3394        valueNumberInstruction(I);
3395      } else {
3396        llvm_unreachable("Should have been a MemoryPhi or Instruction");
3397      }
3398      updateProcessedCount(V);
3399    }
3400  }
3401  NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
3402}
3403
3404// This is the main transformation entry point.
3405bool NewGVN::runGVN() {
3406  if (DebugCounter::isCounterSet(VNCounter))
3407    StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
3408  bool Changed = false;
3409  NumFuncArgs = F.arg_size();
3410  MSSAWalker = MSSA->getWalker();
3411  SingletonDeadExpression = new (ExpressionAllocator) DeadExpression();
3412
3413  // Count number of instructions for sizing of hash tables, and come
3414  // up with a global dfs numbering for instructions.
3415  unsigned ICount = 1;
3416  // Add an empty instruction to account for the fact that we start at 1
3417  DFSToInstr.emplace_back(nullptr);
3418  // Note: We want ideal RPO traversal of the blocks, which is not quite the
3419  // same as dominator tree order, particularly with regard whether backedges
3420  // get visited first or second, given a block with multiple successors.
3421  // If we visit in the wrong order, we will end up performing N times as many
3422  // iterations.
3423  // The dominator tree does guarantee that, for a given dom tree node, it's
3424  // parent must occur before it in the RPO ordering. Thus, we only need to sort
3425  // the siblings.
3426  ReversePostOrderTraversal<Function *> RPOT(&F);
3427  unsigned Counter = 0;
3428  for (auto &B : RPOT) {
3429    auto *Node = DT->getNode(B);
3430    assert(Node && "RPO and Dominator tree should have same reachability");
3431    RPOOrdering[Node] = ++Counter;
3432  }
3433  // Sort dominator tree children arrays into RPO.
3434  for (auto &B : RPOT) {
3435    auto *Node = DT->getNode(B);
3436    if (Node->getChildren().size() > 1)
3437      llvm::sort(Node->begin(), Node->end(),
3438                 [&](const DomTreeNode *A, const DomTreeNode *B) {
3439                   return RPOOrdering[A] < RPOOrdering[B];
3440                 });
3441  }
3442
3443  // Now a standard depth first ordering of the domtree is equivalent to RPO.
3444  for (auto DTN : depth_first(DT->getRootNode())) {
3445    BasicBlock *B = DTN->getBlock();
3446    const auto &BlockRange = assignDFSNumbers(B, ICount);
3447    BlockInstRange.insert({B, BlockRange});
3448    ICount += BlockRange.second - BlockRange.first;
3449  }
3450  initializeCongruenceClasses(F);
3451
3452  TouchedInstructions.resize(ICount);
3453  // Ensure we don't end up resizing the expressionToClass map, as
3454  // that can be quite expensive. At most, we have one expression per
3455  // instruction.
3456  ExpressionToClass.reserve(ICount);
3457
3458  // Initialize the touched instructions to include the entry block.
3459  const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
3460  TouchedInstructions.set(InstRange.first, InstRange.second);
3461  LLVM_DEBUG(dbgs() << "Block " << getBlockName(&F.getEntryBlock())
3462                    << " marked reachable\n");
3463  ReachableBlocks.insert(&F.getEntryBlock());
3464
3465  iterateTouchedInstructions();
3466  verifyMemoryCongruency();
3467  verifyIterationSettled(F);
3468  verifyStoreExpressions();
3469
3470  Changed |= eliminateInstructions(F);
3471
3472  // Delete all instructions marked for deletion.
3473  for (Instruction *ToErase : InstructionsToErase) {
3474    if (!ToErase->use_empty())
3475      ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
3476
3477    assert(ToErase->getParent() &&
3478           "BB containing ToErase deleted unexpectedly!");
3479    ToErase->eraseFromParent();
3480  }
3481  Changed |= !InstructionsToErase.empty();
3482
3483  // Delete all unreachable blocks.
3484  auto UnreachableBlockPred = [&](const BasicBlock &BB) {
3485    return !ReachableBlocks.count(&BB);
3486  };
3487
3488  for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
3489    LLVM_DEBUG(dbgs() << "We believe block " << getBlockName(&BB)
3490                      << " is unreachable\n");
3491    deleteInstructionsInBlock(&BB);
3492    Changed = true;
3493  }
3494
3495  cleanupTables();
3496  return Changed;
3497}
3498
3499struct NewGVN::ValueDFS {
3500  int DFSIn = 0;
3501  int DFSOut = 0;
3502  int LocalNum = 0;
3503
3504  // Only one of Def and U will be set.
3505  // The bool in the Def tells us whether the Def is the stored value of a
3506  // store.
3507  PointerIntPair<Value *, 1, bool> Def;
3508  Use *U = nullptr;
3509
3510  bool operator<(const ValueDFS &Other) const {
3511    // It's not enough that any given field be less than - we have sets
3512    // of fields that need to be evaluated together to give a proper ordering.
3513    // For example, if you have;
3514    // DFS (1, 3)
3515    // Val 0
3516    // DFS (1, 2)
3517    // Val 50
3518    // We want the second to be less than the first, but if we just go field
3519    // by field, we will get to Val 0 < Val 50 and say the first is less than
3520    // the second. We only want it to be less than if the DFS orders are equal.
3521    //
3522    // Each LLVM instruction only produces one value, and thus the lowest-level
3523    // differentiator that really matters for the stack (and what we use as as a
3524    // replacement) is the local dfs number.
3525    // Everything else in the structure is instruction level, and only affects
3526    // the order in which we will replace operands of a given instruction.
3527    //
3528    // For a given instruction (IE things with equal dfsin, dfsout, localnum),
3529    // the order of replacement of uses does not matter.
3530    // IE given,
3531    //  a = 5
3532    //  b = a + a
3533    // When you hit b, you will have two valuedfs with the same dfsin, out, and
3534    // localnum.
3535    // The .val will be the same as well.
3536    // The .u's will be different.
3537    // You will replace both, and it does not matter what order you replace them
3538    // in (IE whether you replace operand 2, then operand 1, or operand 1, then
3539    // operand 2).
3540    // Similarly for the case of same dfsin, dfsout, localnum, but different
3541    // .val's
3542    //  a = 5
3543    //  b  = 6
3544    //  c = a + b
3545    // in c, we will a valuedfs for a, and one for b,with everything the same
3546    // but .val  and .u.
3547    // It does not matter what order we replace these operands in.
3548    // You will always end up with the same IR, and this is guaranteed.
3549    return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
3550           std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
3551                    Other.U);
3552  }
3553};
3554
3555// This function converts the set of members for a congruence class from values,
3556// to sets of defs and uses with associated DFS info.  The total number of
3557// reachable uses for each value is stored in UseCount, and instructions that
3558// seem
3559// dead (have no non-dead uses) are stored in ProbablyDead.
3560void NewGVN::convertClassToDFSOrdered(
3561    const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
3562    DenseMap<const Value *, unsigned int> &UseCounts,
3563    SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
3564  for (auto D : Dense) {
3565    // First add the value.
3566    BasicBlock *BB = getBlockForValue(D);
3567    // Constants are handled prior to ever calling this function, so
3568    // we should only be left with instructions as members.
3569    assert(BB && "Should have figured out a basic block for value");
3570    ValueDFS VDDef;
3571    DomTreeNode *DomNode = DT->getNode(BB);
3572    VDDef.DFSIn = DomNode->getDFSNumIn();
3573    VDDef.DFSOut = DomNode->getDFSNumOut();
3574    // If it's a store, use the leader of the value operand, if it's always
3575    // available, or the value operand.  TODO: We could do dominance checks to
3576    // find a dominating leader, but not worth it ATM.
3577    if (auto *SI = dyn_cast<StoreInst>(D)) {
3578      auto Leader = lookupOperandLeader(SI->getValueOperand());
3579      if (alwaysAvailable(Leader)) {
3580        VDDef.Def.setPointer(Leader);
3581      } else {
3582        VDDef.Def.setPointer(SI->getValueOperand());
3583        VDDef.Def.setInt(true);
3584      }
3585    } else {
3586      VDDef.Def.setPointer(D);
3587    }
3588    assert(isa<Instruction>(D) &&
3589           "The dense set member should always be an instruction");
3590    Instruction *Def = cast<Instruction>(D);
3591    VDDef.LocalNum = InstrToDFSNum(D);
3592    DFSOrderedSet.push_back(VDDef);
3593    // If there is a phi node equivalent, add it
3594    if (auto *PN = RealToTemp.lookup(Def)) {
3595      auto *PHIE =
3596          dyn_cast_or_null<PHIExpression>(ValueToExpression.lookup(Def));
3597      if (PHIE) {
3598        VDDef.Def.setInt(false);
3599        VDDef.Def.setPointer(PN);
3600        VDDef.LocalNum = 0;
3601        DFSOrderedSet.push_back(VDDef);
3602      }
3603    }
3604
3605    unsigned int UseCount = 0;
3606    // Now add the uses.
3607    for (auto &U : Def->uses()) {
3608      if (auto *I = dyn_cast<Instruction>(U.getUser())) {
3609        // Don't try to replace into dead uses
3610        if (InstructionsToErase.count(I))
3611          continue;
3612        ValueDFS VDUse;
3613        // Put the phi node uses in the incoming block.
3614        BasicBlock *IBlock;
3615        if (auto *P = dyn_cast<PHINode>(I)) {
3616          IBlock = P->getIncomingBlock(U);
3617          // Make phi node users appear last in the incoming block
3618          // they are from.
3619          VDUse.LocalNum = InstrDFS.size() + 1;
3620        } else {
3621          IBlock = getBlockForValue(I);
3622          VDUse.LocalNum = InstrToDFSNum(I);
3623        }
3624
3625        // Skip uses in unreachable blocks, as we're going
3626        // to delete them.
3627        if (ReachableBlocks.count(IBlock) == 0)
3628          continue;
3629
3630        DomTreeNode *DomNode = DT->getNode(IBlock);
3631        VDUse.DFSIn = DomNode->getDFSNumIn();
3632        VDUse.DFSOut = DomNode->getDFSNumOut();
3633        VDUse.U = &U;
3634        ++UseCount;
3635        DFSOrderedSet.emplace_back(VDUse);
3636      }
3637    }
3638
3639    // If there are no uses, it's probably dead (but it may have side-effects,
3640    // so not definitely dead. Otherwise, store the number of uses so we can
3641    // track if it becomes dead later).
3642    if (UseCount == 0)
3643      ProbablyDead.insert(Def);
3644    else
3645      UseCounts[Def] = UseCount;
3646  }
3647}
3648
3649// This function converts the set of members for a congruence class from values,
3650// to the set of defs for loads and stores, with associated DFS info.
3651void NewGVN::convertClassToLoadsAndStores(
3652    const CongruenceClass &Dense,
3653    SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
3654  for (auto D : Dense) {
3655    if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
3656      continue;
3657
3658    BasicBlock *BB = getBlockForValue(D);
3659    ValueDFS VD;
3660    DomTreeNode *DomNode = DT->getNode(BB);
3661    VD.DFSIn = DomNode->getDFSNumIn();
3662    VD.DFSOut = DomNode->getDFSNumOut();
3663    VD.Def.setPointer(D);
3664
3665    // If it's an instruction, use the real local dfs number.
3666    if (auto *I = dyn_cast<Instruction>(D))
3667      VD.LocalNum = InstrToDFSNum(I);
3668    else
3669      llvm_unreachable("Should have been an instruction");
3670
3671    LoadsAndStores.emplace_back(VD);
3672  }
3673}
3674
3675static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3676  patchReplacementInstruction(I, Repl);
3677  I->replaceAllUsesWith(Repl);
3678}
3679
3680void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3681  LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB);
3682  ++NumGVNBlocksDeleted;
3683
3684  // Delete the instructions backwards, as it has a reduced likelihood of having
3685  // to update as many def-use and use-def chains. Start after the terminator.
3686  auto StartPoint = BB->rbegin();
3687  ++StartPoint;
3688  // Note that we explicitly recalculate BB->rend() on each iteration,
3689  // as it may change when we remove the first instruction.
3690  for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3691    Instruction &Inst = *I++;
3692    if (!Inst.use_empty())
3693      Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3694    if (isa<LandingPadInst>(Inst))
3695      continue;
3696
3697    Inst.eraseFromParent();
3698    ++NumGVNInstrDeleted;
3699  }
3700  // Now insert something that simplifycfg will turn into an unreachable.
3701  Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3702  new StoreInst(UndefValue::get(Int8Ty),
3703                Constant::getNullValue(Int8Ty->getPointerTo()),
3704                BB->getTerminator());
3705}
3706
3707void NewGVN::markInstructionForDeletion(Instruction *I) {
3708  LLVM_DEBUG(dbgs() << "Marking " << *I << " for deletion\n");
3709  InstructionsToErase.insert(I);
3710}
3711
3712void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3713  LLVM_DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n");
3714  patchAndReplaceAllUsesWith(I, V);
3715  // We save the actual erasing to avoid invalidating memory
3716  // dependencies until we are done with everything.
3717  markInstructionForDeletion(I);
3718}
3719
3720namespace {
3721
3722// This is a stack that contains both the value and dfs info of where
3723// that value is valid.
3724class ValueDFSStack {
3725public:
3726  Value *back() const { return ValueStack.back(); }
3727  std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3728
3729  void push_back(Value *V, int DFSIn, int DFSOut) {
3730    ValueStack.emplace_back(V);
3731    DFSStack.emplace_back(DFSIn, DFSOut);
3732  }
3733
3734  bool empty() const { return DFSStack.empty(); }
3735
3736  bool isInScope(int DFSIn, int DFSOut) const {
3737    if (empty())
3738      return false;
3739    return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3740  }
3741
3742  void popUntilDFSScope(int DFSIn, int DFSOut) {
3743
3744    // These two should always be in sync at this point.
3745    assert(ValueStack.size() == DFSStack.size() &&
3746           "Mismatch between ValueStack and DFSStack");
3747    while (
3748        !DFSStack.empty() &&
3749        !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3750      DFSStack.pop_back();
3751      ValueStack.pop_back();
3752    }
3753  }
3754
3755private:
3756  SmallVector<Value *, 8> ValueStack;
3757  SmallVector<std::pair<int, int>, 8> DFSStack;
3758};
3759
3760} // end anonymous namespace
3761
3762// Given an expression, get the congruence class for it.
3763CongruenceClass *NewGVN::getClassForExpression(const Expression *E) const {
3764  if (auto *VE = dyn_cast<VariableExpression>(E))
3765    return ValueToClass.lookup(VE->getVariableValue());
3766  else if (isa<DeadExpression>(E))
3767    return TOPClass;
3768  return ExpressionToClass.lookup(E);
3769}
3770
3771// Given a value and a basic block we are trying to see if it is available in,
3772// see if the value has a leader available in that block.
3773Value *NewGVN::findPHIOfOpsLeader(const Expression *E,
3774                                  const Instruction *OrigInst,
3775                                  const BasicBlock *BB) const {
3776  // It would already be constant if we could make it constant
3777  if (auto *CE = dyn_cast<ConstantExpression>(E))
3778    return CE->getConstantValue();
3779  if (auto *VE = dyn_cast<VariableExpression>(E)) {
3780    auto *V = VE->getVariableValue();
3781    if (alwaysAvailable(V) || DT->dominates(getBlockForValue(V), BB))
3782      return VE->getVariableValue();
3783  }
3784
3785  auto *CC = getClassForExpression(E);
3786  if (!CC)
3787    return nullptr;
3788  if (alwaysAvailable(CC->getLeader()))
3789    return CC->getLeader();
3790
3791  for (auto Member : *CC) {
3792    auto *MemberInst = dyn_cast<Instruction>(Member);
3793    if (MemberInst == OrigInst)
3794      continue;
3795    // Anything that isn't an instruction is always available.
3796    if (!MemberInst)
3797      return Member;
3798    if (DT->dominates(getBlockForValue(MemberInst), BB))
3799      return Member;
3800  }
3801  return nullptr;
3802}
3803
3804bool NewGVN::eliminateInstructions(Function &F) {
3805  // This is a non-standard eliminator. The normal way to eliminate is
3806  // to walk the dominator tree in order, keeping track of available
3807  // values, and eliminating them.  However, this is mildly
3808  // pointless. It requires doing lookups on every instruction,
3809  // regardless of whether we will ever eliminate it.  For
3810  // instructions part of most singleton congruence classes, we know we
3811  // will never eliminate them.
3812
3813  // Instead, this eliminator looks at the congruence classes directly, sorts
3814  // them into a DFS ordering of the dominator tree, and then we just
3815  // perform elimination straight on the sets by walking the congruence
3816  // class member uses in order, and eliminate the ones dominated by the
3817  // last member.   This is worst case O(E log E) where E = number of
3818  // instructions in a single congruence class.  In theory, this is all
3819  // instructions.   In practice, it is much faster, as most instructions are
3820  // either in singleton congruence classes or can't possibly be eliminated
3821  // anyway (if there are no overlapping DFS ranges in class).
3822  // When we find something not dominated, it becomes the new leader
3823  // for elimination purposes.
3824  // TODO: If we wanted to be faster, We could remove any members with no
3825  // overlapping ranges while sorting, as we will never eliminate anything
3826  // with those members, as they don't dominate anything else in our set.
3827
3828  bool AnythingReplaced = false;
3829
3830  // Since we are going to walk the domtree anyway, and we can't guarantee the
3831  // DFS numbers are updated, we compute some ourselves.
3832  DT->updateDFSNumbers();
3833
3834  // Go through all of our phi nodes, and kill the arguments associated with
3835  // unreachable edges.
3836  auto ReplaceUnreachablePHIArgs = [&](PHINode *PHI, BasicBlock *BB) {
3837    for (auto &Operand : PHI->incoming_values())
3838      if (!ReachableEdges.count({PHI->getIncomingBlock(Operand), BB})) {
3839        LLVM_DEBUG(dbgs() << "Replacing incoming value of " << PHI
3840                          << " for block "
3841                          << getBlockName(PHI->getIncomingBlock(Operand))
3842                          << " with undef due to it being unreachable\n");
3843        Operand.set(UndefValue::get(PHI->getType()));
3844      }
3845  };
3846  // Replace unreachable phi arguments.
3847  // At this point, RevisitOnReachabilityChange only contains:
3848  //
3849  // 1. PHIs
3850  // 2. Temporaries that will convert to PHIs
3851  // 3. Operations that are affected by an unreachable edge but do not fit into
3852  // 1 or 2 (rare).
3853  // So it is a slight overshoot of what we want. We could make it exact by
3854  // using two SparseBitVectors per block.
3855  DenseMap<const BasicBlock *, unsigned> ReachablePredCount;
3856  for (auto &KV : ReachableEdges)
3857    ReachablePredCount[KV.getEnd()]++;
3858  for (auto &BBPair : RevisitOnReachabilityChange) {
3859    for (auto InstNum : BBPair.second) {
3860      auto *Inst = InstrFromDFSNum(InstNum);
3861      auto *PHI = dyn_cast<PHINode>(Inst);
3862      PHI = PHI ? PHI : dyn_cast_or_null<PHINode>(RealToTemp.lookup(Inst));
3863      if (!PHI)
3864        continue;
3865      auto *BB = BBPair.first;
3866      if (ReachablePredCount.lookup(BB) != PHI->getNumIncomingValues())
3867        ReplaceUnreachablePHIArgs(PHI, BB);
3868    }
3869  }
3870
3871  // Map to store the use counts
3872  DenseMap<const Value *, unsigned int> UseCounts;
3873  for (auto *CC : reverse(CongruenceClasses)) {
3874    LLVM_DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()
3875                      << "\n");
3876    // Track the equivalent store info so we can decide whether to try
3877    // dead store elimination.
3878    SmallVector<ValueDFS, 8> PossibleDeadStores;
3879    SmallPtrSet<Instruction *, 8> ProbablyDead;
3880    if (CC->isDead() || CC->empty())
3881      continue;
3882    // Everything still in the TOP class is unreachable or dead.
3883    if (CC == TOPClass) {
3884      for (auto M : *CC) {
3885        auto *VTE = ValueToExpression.lookup(M);
3886        if (VTE && isa<DeadExpression>(VTE))
3887          markInstructionForDeletion(cast<Instruction>(M));
3888        assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||
3889                InstructionsToErase.count(cast<Instruction>(M))) &&
3890               "Everything in TOP should be unreachable or dead at this "
3891               "point");
3892      }
3893      continue;
3894    }
3895
3896    assert(CC->getLeader() && "We should have had a leader");
3897    // If this is a leader that is always available, and it's a
3898    // constant or has no equivalences, just replace everything with
3899    // it. We then update the congruence class with whatever members
3900    // are left.
3901    Value *Leader =
3902        CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3903    if (alwaysAvailable(Leader)) {
3904      CongruenceClass::MemberSet MembersLeft;
3905      for (auto M : *CC) {
3906        Value *Member = M;
3907        // Void things have no uses we can replace.
3908        if (Member == Leader || !isa<Instruction>(Member) ||
3909            Member->getType()->isVoidTy()) {
3910          MembersLeft.insert(Member);
3911          continue;
3912        }
3913        LLVM_DEBUG(dbgs() << "Found replacement " << *(Leader) << " for "
3914                          << *Member << "\n");
3915        auto *I = cast<Instruction>(Member);
3916        assert(Leader != I && "About to accidentally remove our leader");
3917        replaceInstruction(I, Leader);
3918        AnythingReplaced = true;
3919      }
3920      CC->swap(MembersLeft);
3921    } else {
3922      // If this is a singleton, we can skip it.
3923      if (CC->size() != 1 || RealToTemp.count(Leader)) {
3924        // This is a stack because equality replacement/etc may place
3925        // constants in the middle of the member list, and we want to use
3926        // those constant values in preference to the current leader, over
3927        // the scope of those constants.
3928        ValueDFSStack EliminationStack;
3929
3930        // Convert the members to DFS ordered sets and then merge them.
3931        SmallVector<ValueDFS, 8> DFSOrderedSet;
3932        convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3933
3934        // Sort the whole thing.
3935        llvm::sort(DFSOrderedSet);
3936        for (auto &VD : DFSOrderedSet) {
3937          int MemberDFSIn = VD.DFSIn;
3938          int MemberDFSOut = VD.DFSOut;
3939          Value *Def = VD.Def.getPointer();
3940          bool FromStore = VD.Def.getInt();
3941          Use *U = VD.U;
3942          // We ignore void things because we can't get a value from them.
3943          if (Def && Def->getType()->isVoidTy())
3944            continue;
3945          auto *DefInst = dyn_cast_or_null<Instruction>(Def);
3946          if (DefInst && AllTempInstructions.count(DefInst)) {
3947            auto *PN = cast<PHINode>(DefInst);
3948
3949            // If this is a value phi and that's the expression we used, insert
3950            // it into the program
3951            // remove from temp instruction list.
3952            AllTempInstructions.erase(PN);
3953            auto *DefBlock = getBlockForValue(Def);
3954            LLVM_DEBUG(dbgs() << "Inserting fully real phi of ops" << *Def
3955                              << " into block "
3956                              << getBlockName(getBlockForValue(Def)) << "\n");
3957            PN->insertBefore(&DefBlock->front());
3958            Def = PN;
3959            NumGVNPHIOfOpsEliminations++;
3960          }
3961
3962          if (EliminationStack.empty()) {
3963            LLVM_DEBUG(dbgs() << "Elimination Stack is empty\n");
3964          } else {
3965            LLVM_DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("
3966                              << EliminationStack.dfs_back().first << ","
3967                              << EliminationStack.dfs_back().second << ")\n");
3968          }
3969
3970          LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","
3971                            << MemberDFSOut << ")\n");
3972          // First, we see if we are out of scope or empty.  If so,
3973          // and there equivalences, we try to replace the top of
3974          // stack with equivalences (if it's on the stack, it must
3975          // not have been eliminated yet).
3976          // Then we synchronize to our current scope, by
3977          // popping until we are back within a DFS scope that
3978          // dominates the current member.
3979          // Then, what happens depends on a few factors
3980          // If the stack is now empty, we need to push
3981          // If we have a constant or a local equivalence we want to
3982          // start using, we also push.
3983          // Otherwise, we walk along, processing members who are
3984          // dominated by this scope, and eliminate them.
3985          bool ShouldPush = Def && EliminationStack.empty();
3986          bool OutOfScope =
3987              !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3988
3989          if (OutOfScope || ShouldPush) {
3990            // Sync to our current scope.
3991            EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3992            bool ShouldPush = Def && EliminationStack.empty();
3993            if (ShouldPush) {
3994              EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3995            }
3996          }
3997
3998          // Skip the Def's, we only want to eliminate on their uses.  But mark
3999          // dominated defs as dead.
4000          if (Def) {
4001            // For anything in this case, what and how we value number
4002            // guarantees that any side-effets that would have occurred (ie
4003            // throwing, etc) can be proven to either still occur (because it's
4004            // dominated by something that has the same side-effects), or never
4005            // occur.  Otherwise, we would not have been able to prove it value
4006            // equivalent to something else. For these things, we can just mark
4007            // it all dead.  Note that this is different from the "ProbablyDead"
4008            // set, which may not be dominated by anything, and thus, are only
4009            // easy to prove dead if they are also side-effect free. Note that
4010            // because stores are put in terms of the stored value, we skip
4011            // stored values here. If the stored value is really dead, it will
4012            // still be marked for deletion when we process it in its own class.
4013            if (!EliminationStack.empty() && Def != EliminationStack.back() &&
4014                isa<Instruction>(Def) && !FromStore)
4015              markInstructionForDeletion(cast<Instruction>(Def));
4016            continue;
4017          }
4018          // At this point, we know it is a Use we are trying to possibly
4019          // replace.
4020
4021          assert(isa<Instruction>(U->get()) &&
4022                 "Current def should have been an instruction");
4023          assert(isa<Instruction>(U->getUser()) &&
4024                 "Current user should have been an instruction");
4025
4026          // If the thing we are replacing into is already marked to be dead,
4027          // this use is dead.  Note that this is true regardless of whether
4028          // we have anything dominating the use or not.  We do this here
4029          // because we are already walking all the uses anyway.
4030          Instruction *InstUse = cast<Instruction>(U->getUser());
4031          if (InstructionsToErase.count(InstUse)) {
4032            auto &UseCount = UseCounts[U->get()];
4033            if (--UseCount == 0) {
4034              ProbablyDead.insert(cast<Instruction>(U->get()));
4035            }
4036          }
4037
4038          // If we get to this point, and the stack is empty we must have a use
4039          // with nothing we can use to eliminate this use, so just skip it.
4040          if (EliminationStack.empty())
4041            continue;
4042
4043          Value *DominatingLeader = EliminationStack.back();
4044
4045          auto *II = dyn_cast<IntrinsicInst>(DominatingLeader);
4046          bool isSSACopy = II && II->getIntrinsicID() == Intrinsic::ssa_copy;
4047          if (isSSACopy)
4048            DominatingLeader = II->getOperand(0);
4049
4050          // Don't replace our existing users with ourselves.
4051          if (U->get() == DominatingLeader)
4052            continue;
4053          LLVM_DEBUG(dbgs()
4054                     << "Found replacement " << *DominatingLeader << " for "
4055                     << *U->get() << " in " << *(U->getUser()) << "\n");
4056
4057          // If we replaced something in an instruction, handle the patching of
4058          // metadata.  Skip this if we are replacing predicateinfo with its
4059          // original operand, as we already know we can just drop it.
4060          auto *ReplacedInst = cast<Instruction>(U->get());
4061          auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
4062          if (!PI || DominatingLeader != PI->OriginalOp)
4063            patchReplacementInstruction(ReplacedInst, DominatingLeader);
4064          U->set(DominatingLeader);
4065          // This is now a use of the dominating leader, which means if the
4066          // dominating leader was dead, it's now live!
4067          auto &LeaderUseCount = UseCounts[DominatingLeader];
4068          // It's about to be alive again.
4069          if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
4070            ProbablyDead.erase(cast<Instruction>(DominatingLeader));
4071          // For copy instructions, we use their operand as a leader,
4072          // which means we remove a user of the copy and it may become dead.
4073          if (isSSACopy) {
4074            unsigned &IIUseCount = UseCounts[II];
4075            if (--IIUseCount == 0)
4076              ProbablyDead.insert(II);
4077          }
4078          ++LeaderUseCount;
4079          AnythingReplaced = true;
4080        }
4081      }
4082    }
4083
4084    // At this point, anything still in the ProbablyDead set is actually dead if
4085    // would be trivially dead.
4086    for (auto *I : ProbablyDead)
4087      if (wouldInstructionBeTriviallyDead(I))
4088        markInstructionForDeletion(I);
4089
4090    // Cleanup the congruence class.
4091    CongruenceClass::MemberSet MembersLeft;
4092    for (auto *Member : *CC)
4093      if (!isa<Instruction>(Member) ||
4094          !InstructionsToErase.count(cast<Instruction>(Member)))
4095        MembersLeft.insert(Member);
4096    CC->swap(MembersLeft);
4097
4098    // If we have possible dead stores to look at, try to eliminate them.
4099    if (CC->getStoreCount() > 0) {
4100      convertClassToLoadsAndStores(*CC, PossibleDeadStores);
4101      llvm::sort(PossibleDeadStores);
4102      ValueDFSStack EliminationStack;
4103      for (auto &VD : PossibleDeadStores) {
4104        int MemberDFSIn = VD.DFSIn;
4105        int MemberDFSOut = VD.DFSOut;
4106        Instruction *Member = cast<Instruction>(VD.Def.getPointer());
4107        if (EliminationStack.empty() ||
4108            !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
4109          // Sync to our current scope.
4110          EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
4111          if (EliminationStack.empty()) {
4112            EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
4113            continue;
4114          }
4115        }
4116        // We already did load elimination, so nothing to do here.
4117        if (isa<LoadInst>(Member))
4118          continue;
4119        assert(!EliminationStack.empty());
4120        Instruction *Leader = cast<Instruction>(EliminationStack.back());
4121        (void)Leader;
4122        assert(DT->dominates(Leader->getParent(), Member->getParent()));
4123        // Member is dominater by Leader, and thus dead
4124        LLVM_DEBUG(dbgs() << "Marking dead store " << *Member
4125                          << " that is dominated by " << *Leader << "\n");
4126        markInstructionForDeletion(Member);
4127        CC->erase(Member);
4128        ++NumGVNDeadStores;
4129      }
4130    }
4131  }
4132  return AnythingReplaced;
4133}
4134
4135// This function provides global ranking of operations so that we can place them
4136// in a canonical order.  Note that rank alone is not necessarily enough for a
4137// complete ordering, as constants all have the same rank.  However, generally,
4138// we will simplify an operation with all constants so that it doesn't matter
4139// what order they appear in.
4140unsigned int NewGVN::getRank(const Value *V) const {
4141  // Prefer constants to undef to anything else
4142  // Undef is a constant, have to check it first.
4143  // Prefer smaller constants to constantexprs
4144  if (isa<ConstantExpr>(V))
4145    return 2;
4146  if (isa<UndefValue>(V))
4147    return 1;
4148  if (isa<Constant>(V))
4149    return 0;
4150  else if (auto *A = dyn_cast<Argument>(V))
4151    return 3 + A->getArgNo();
4152
4153  // Need to shift the instruction DFS by number of arguments + 3 to account for
4154  // the constant and argument ranking above.
4155  unsigned Result = InstrToDFSNum(V);
4156  if (Result > 0)
4157    return 4 + NumFuncArgs + Result;
4158  // Unreachable or something else, just return a really large number.
4159  return ~0;
4160}
4161
4162// This is a function that says whether two commutative operations should
4163// have their order swapped when canonicalizing.
4164bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
4165  // Because we only care about a total ordering, and don't rewrite expressions
4166  // in this order, we order by rank, which will give a strict weak ordering to
4167  // everything but constants, and then we order by pointer address.
4168  return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
4169}
4170
4171namespace {
4172
4173class NewGVNLegacyPass : public FunctionPass {
4174public:
4175  // Pass identification, replacement for typeid.
4176  static char ID;
4177
4178  NewGVNLegacyPass() : FunctionPass(ID) {
4179    initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
4180  }
4181
4182  bool runOnFunction(Function &F) override;
4183
4184private:
4185  void getAnalysisUsage(AnalysisUsage &AU) const override {
4186    AU.addRequired<AssumptionCacheTracker>();
4187    AU.addRequired<DominatorTreeWrapperPass>();
4188    AU.addRequired<TargetLibraryInfoWrapperPass>();
4189    AU.addRequired<MemorySSAWrapperPass>();
4190    AU.addRequired<AAResultsWrapperPass>();
4191    AU.addPreserved<DominatorTreeWrapperPass>();
4192    AU.addPreserved<GlobalsAAWrapperPass>();
4193  }
4194};
4195
4196} // end anonymous namespace
4197
4198bool NewGVNLegacyPass::runOnFunction(Function &F) {
4199  if (skipFunction(F))
4200    return false;
4201  return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4202                &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
4203                &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
4204                &getAnalysis<AAResultsWrapperPass>().getAAResults(),
4205                &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
4206                F.getParent()->getDataLayout())
4207      .runGVN();
4208}
4209
4210char NewGVNLegacyPass::ID = 0;
4211
4212INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",
4213                      false, false)
4214INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4215INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
4216INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4217INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
4218INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
4219INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
4220INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,
4221                    false)
4222
4223// createGVNPass - The public interface to this file.
4224FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
4225
4226PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
4227  // Apparently the order in which we get these results matter for
4228  // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
4229  // the same order here, just in case.
4230  auto &AC = AM.getResult<AssumptionAnalysis>(F);
4231  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
4232  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
4233  auto &AA = AM.getResult<AAManager>(F);
4234  auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
4235  bool Changed =
4236      NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
4237          .runGVN();
4238  if (!Changed)
4239    return PreservedAnalyses::all();
4240  PreservedAnalyses PA;
4241  PA.preserve<DominatorTreeAnalysis>();
4242  PA.preserve<GlobalsAA>();
4243  return PA;
4244}
4245