MemCpyOptimizer.cpp revision 360784
172172Sphantom//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
272172Sphantom//
372172Sphantom// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
472172Sphantom// See https://llvm.org/LICENSE.txt for license information.
572172Sphantom// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
672172Sphantom//
772267Sache//===----------------------------------------------------------------------===//
872172Sphantom//
972172Sphantom// This pass performs various transformations related to eliminating memcpy
1072172Sphantom// calls, or transforming sets of stores into memset's.
1172172Sphantom//
1272172Sphantom//===----------------------------------------------------------------------===//
1372172Sphantom
1472275Sache#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
1572275Sache#include "llvm/ADT/DenseSet.h"
1672172Sphantom#include "llvm/ADT/None.h"
1772172Sphantom#include "llvm/ADT/STLExtras.h"
1872172Sphantom#include "llvm/ADT/SmallVector.h"
1972172Sphantom#include "llvm/ADT/Statistic.h"
2072172Sphantom#include "llvm/ADT/iterator_range.h"
2172172Sphantom#include "llvm/Analysis/AliasAnalysis.h"
2272172Sphantom#include "llvm/Analysis/AssumptionCache.h"
2372172Sphantom#include "llvm/Analysis/GlobalsModRef.h"
2472172Sphantom#include "llvm/Analysis/MemoryDependenceAnalysis.h"
2572172Sphantom#include "llvm/Analysis/MemoryLocation.h"
2672172Sphantom#include "llvm/Analysis/TargetLibraryInfo.h"
2772172Sphantom#include "llvm/Analysis/ValueTracking.h"
2872172Sphantom#include "llvm/IR/Argument.h"
2972172Sphantom#include "llvm/IR/BasicBlock.h"
3072172Sphantom#include "llvm/IR/CallSite.h"
3172172Sphantom#include "llvm/IR/Constants.h"
3272172Sphantom#include "llvm/IR/DataLayout.h"
3372172Sphantom#include "llvm/IR/DerivedTypes.h"
3472172Sphantom#include "llvm/IR/Dominators.h"
3572172Sphantom#include "llvm/IR/Function.h"
3672172Sphantom#include "llvm/IR/GetElementPtrTypeIterator.h"
37#include "llvm/IR/GlobalVariable.h"
38#include "llvm/IR/IRBuilder.h"
39#include "llvm/IR/InstrTypes.h"
40#include "llvm/IR/Instruction.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/Module.h"
46#include "llvm/IR/Operator.h"
47#include "llvm/IR/PassManager.h"
48#include "llvm/IR/Type.h"
49#include "llvm/IR/User.h"
50#include "llvm/IR/Value.h"
51#include "llvm/InitializePasses.h"
52#include "llvm/Pass.h"
53#include "llvm/Support/Casting.h"
54#include "llvm/Support/Debug.h"
55#include "llvm/Support/MathExtras.h"
56#include "llvm/Support/raw_ostream.h"
57#include "llvm/Transforms/Scalar.h"
58#include "llvm/Transforms/Utils/Local.h"
59#include <algorithm>
60#include <cassert>
61#include <cstdint>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "memcpyopt"
67
68STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
69STATISTIC(NumMemSetInfer, "Number of memsets inferred");
70STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
71STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
72
73namespace {
74
75/// Represents a range of memset'd bytes with the ByteVal value.
76/// This allows us to analyze stores like:
77///   store 0 -> P+1
78///   store 0 -> P+0
79///   store 0 -> P+3
80///   store 0 -> P+2
81/// which sometimes happens with stores to arrays of structs etc.  When we see
82/// the first store, we make a range [1, 2).  The second store extends the range
83/// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
84/// two ranges into [0, 3) which is memset'able.
85struct MemsetRange {
86  // Start/End - A semi range that describes the span that this range covers.
87  // The range is closed at the start and open at the end: [Start, End).
88  int64_t Start, End;
89
90  /// StartPtr - The getelementptr instruction that points to the start of the
91  /// range.
92  Value *StartPtr;
93
94  /// Alignment - The known alignment of the first store.
95  unsigned Alignment;
96
97  /// TheStores - The actual stores that make up this range.
98  SmallVector<Instruction*, 16> TheStores;
99
100  bool isProfitableToUseMemset(const DataLayout &DL) const;
101};
102
103} // end anonymous namespace
104
105bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
106  // If we found more than 4 stores to merge or 16 bytes, use memset.
107  if (TheStores.size() >= 4 || End-Start >= 16) return true;
108
109  // If there is nothing to merge, don't do anything.
110  if (TheStores.size() < 2) return false;
111
112  // If any of the stores are a memset, then it is always good to extend the
113  // memset.
114  for (Instruction *SI : TheStores)
115    if (!isa<StoreInst>(SI))
116      return true;
117
118  // Assume that the code generator is capable of merging pairs of stores
119  // together if it wants to.
120  if (TheStores.size() == 2) return false;
121
122  // If we have fewer than 8 stores, it can still be worthwhile to do this.
123  // For example, merging 4 i8 stores into an i32 store is useful almost always.
124  // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
125  // memset will be split into 2 32-bit stores anyway) and doing so can
126  // pessimize the llvm optimizer.
127  //
128  // Since we don't have perfect knowledge here, make some assumptions: assume
129  // the maximum GPR width is the same size as the largest legal integer
130  // size. If so, check to see whether we will end up actually reducing the
131  // number of stores used.
132  unsigned Bytes = unsigned(End-Start);
133  unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
134  if (MaxIntSize == 0)
135    MaxIntSize = 1;
136  unsigned NumPointerStores = Bytes / MaxIntSize;
137
138  // Assume the remaining bytes if any are done a byte at a time.
139  unsigned NumByteStores = Bytes % MaxIntSize;
140
141  // If we will reduce the # stores (according to this heuristic), do the
142  // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
143  // etc.
144  return TheStores.size() > NumPointerStores+NumByteStores;
145}
146
147namespace {
148
149class MemsetRanges {
150  using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
151
152  /// A sorted list of the memset ranges.
153  SmallVector<MemsetRange, 8> Ranges;
154
155  const DataLayout &DL;
156
157public:
158  MemsetRanges(const DataLayout &DL) : DL(DL) {}
159
160  using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
161
162  const_iterator begin() const { return Ranges.begin(); }
163  const_iterator end() const { return Ranges.end(); }
164  bool empty() const { return Ranges.empty(); }
165
166  void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
167    if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
168      addStore(OffsetFromFirst, SI);
169    else
170      addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
171  }
172
173  void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
174    int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
175
176    addRange(OffsetFromFirst, StoreSize,
177             SI->getPointerOperand(), SI->getAlignment(), SI);
178  }
179
180  void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
181    int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
182    addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlignment(), MSI);
183  }
184
185  void addRange(int64_t Start, int64_t Size, Value *Ptr,
186                unsigned Alignment, Instruction *Inst);
187};
188
189} // end anonymous namespace
190
191/// Add a new store to the MemsetRanges data structure.  This adds a
192/// new range for the specified store at the specified offset, merging into
193/// existing ranges as appropriate.
194void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
195                            unsigned Alignment, Instruction *Inst) {
196  int64_t End = Start+Size;
197
198  range_iterator I = partition_point(
199      Ranges, [=](const MemsetRange &O) { return O.End < Start; });
200
201  // We now know that I == E, in which case we didn't find anything to merge
202  // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
203  // to insert a new range.  Handle this now.
204  if (I == Ranges.end() || End < I->Start) {
205    MemsetRange &R = *Ranges.insert(I, MemsetRange());
206    R.Start        = Start;
207    R.End          = End;
208    R.StartPtr     = Ptr;
209    R.Alignment    = Alignment;
210    R.TheStores.push_back(Inst);
211    return;
212  }
213
214  // This store overlaps with I, add it.
215  I->TheStores.push_back(Inst);
216
217  // At this point, we may have an interval that completely contains our store.
218  // If so, just add it to the interval and return.
219  if (I->Start <= Start && I->End >= End)
220    return;
221
222  // Now we know that Start <= I->End and End >= I->Start so the range overlaps
223  // but is not entirely contained within the range.
224
225  // See if the range extends the start of the range.  In this case, it couldn't
226  // possibly cause it to join the prior range, because otherwise we would have
227  // stopped on *it*.
228  if (Start < I->Start) {
229    I->Start = Start;
230    I->StartPtr = Ptr;
231    I->Alignment = Alignment;
232  }
233
234  // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
235  // is in or right at the end of I), and that End >= I->Start.  Extend I out to
236  // End.
237  if (End > I->End) {
238    I->End = End;
239    range_iterator NextI = I;
240    while (++NextI != Ranges.end() && End >= NextI->Start) {
241      // Merge the range in.
242      I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
243      if (NextI->End > I->End)
244        I->End = NextI->End;
245      Ranges.erase(NextI);
246      NextI = I;
247    }
248  }
249}
250
251//===----------------------------------------------------------------------===//
252//                         MemCpyOptLegacyPass Pass
253//===----------------------------------------------------------------------===//
254
255namespace {
256
257class MemCpyOptLegacyPass : public FunctionPass {
258  MemCpyOptPass Impl;
259
260public:
261  static char ID; // Pass identification, replacement for typeid
262
263  MemCpyOptLegacyPass() : FunctionPass(ID) {
264    initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
265  }
266
267  bool runOnFunction(Function &F) override;
268
269private:
270  // This transformation requires dominator postdominator info
271  void getAnalysisUsage(AnalysisUsage &AU) const override {
272    AU.setPreservesCFG();
273    AU.addRequired<AssumptionCacheTracker>();
274    AU.addRequired<DominatorTreeWrapperPass>();
275    AU.addRequired<MemoryDependenceWrapperPass>();
276    AU.addRequired<AAResultsWrapperPass>();
277    AU.addRequired<TargetLibraryInfoWrapperPass>();
278    AU.addPreserved<GlobalsAAWrapperPass>();
279    AU.addPreserved<MemoryDependenceWrapperPass>();
280  }
281};
282
283} // end anonymous namespace
284
285char MemCpyOptLegacyPass::ID = 0;
286
287/// The public interface to this file...
288FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
289
290INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
291                      false, false)
292INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
293INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
294INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
295INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
296INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
297INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
298INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
299                    false, false)
300
301/// When scanning forward over instructions, we look for some other patterns to
302/// fold away. In particular, this looks for stores to neighboring locations of
303/// memory. If it sees enough consecutive ones, it attempts to merge them
304/// together into a memcpy/memset.
305Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
306                                                 Value *StartPtr,
307                                                 Value *ByteVal) {
308  const DataLayout &DL = StartInst->getModule()->getDataLayout();
309
310  // Okay, so we now have a single store that can be splatable.  Scan to find
311  // all subsequent stores of the same value to offset from the same pointer.
312  // Join these together into ranges, so we can decide whether contiguous blocks
313  // are stored.
314  MemsetRanges Ranges(DL);
315
316  BasicBlock::iterator BI(StartInst);
317  for (++BI; !BI->isTerminator(); ++BI) {
318    if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
319      // If the instruction is readnone, ignore it, otherwise bail out.  We
320      // don't even allow readonly here because we don't want something like:
321      // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
322      if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
323        break;
324      continue;
325    }
326
327    if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
328      // If this is a store, see if we can merge it in.
329      if (!NextStore->isSimple()) break;
330
331      // Check to see if this stored value is of the same byte-splattable value.
332      Value *StoredByte = isBytewiseValue(NextStore->getOperand(0), DL);
333      if (isa<UndefValue>(ByteVal) && StoredByte)
334        ByteVal = StoredByte;
335      if (ByteVal != StoredByte)
336        break;
337
338      // Check to see if this store is to a constant offset from the start ptr.
339      Optional<int64_t> Offset =
340          isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
341      if (!Offset)
342        break;
343
344      Ranges.addStore(*Offset, NextStore);
345    } else {
346      MemSetInst *MSI = cast<MemSetInst>(BI);
347
348      if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
349          !isa<ConstantInt>(MSI->getLength()))
350        break;
351
352      // Check to see if this store is to a constant offset from the start ptr.
353      Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
354      if (!Offset)
355        break;
356
357      Ranges.addMemSet(*Offset, MSI);
358    }
359  }
360
361  // If we have no ranges, then we just had a single store with nothing that
362  // could be merged in.  This is a very common case of course.
363  if (Ranges.empty())
364    return nullptr;
365
366  // If we had at least one store that could be merged in, add the starting
367  // store as well.  We try to avoid this unless there is at least something
368  // interesting as a small compile-time optimization.
369  Ranges.addInst(0, StartInst);
370
371  // If we create any memsets, we put it right before the first instruction that
372  // isn't part of the memset block.  This ensure that the memset is dominated
373  // by any addressing instruction needed by the start of the block.
374  IRBuilder<> Builder(&*BI);
375
376  // Now that we have full information about ranges, loop over the ranges and
377  // emit memset's for anything big enough to be worthwhile.
378  Instruction *AMemSet = nullptr;
379  for (const MemsetRange &Range : Ranges) {
380    if (Range.TheStores.size() == 1) continue;
381
382    // If it is profitable to lower this range to memset, do so now.
383    if (!Range.isProfitableToUseMemset(DL))
384      continue;
385
386    // Otherwise, we do want to transform this!  Create a new memset.
387    // Get the starting pointer of the block.
388    StartPtr = Range.StartPtr;
389
390    // Determine alignment
391    const Align Alignment = DL.getValueOrABITypeAlignment(
392        MaybeAlign(Range.Alignment),
393        cast<PointerType>(StartPtr->getType())->getElementType());
394
395    AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
396                                   Alignment);
397    LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
398                                                   : Range.TheStores) dbgs()
399                                              << *SI << '\n';
400               dbgs() << "With: " << *AMemSet << '\n');
401
402    if (!Range.TheStores.empty())
403      AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
404
405    // Zap all the stores.
406    for (Instruction *SI : Range.TheStores) {
407      MD->removeInstruction(SI);
408      SI->eraseFromParent();
409    }
410    ++NumMemSetInfer;
411  }
412
413  return AMemSet;
414}
415
416static Align findStoreAlignment(const DataLayout &DL, const StoreInst *SI) {
417  return DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()),
418                                       SI->getOperand(0)->getType());
419}
420
421static Align findLoadAlignment(const DataLayout &DL, const LoadInst *LI) {
422  return DL.getValueOrABITypeAlignment(MaybeAlign(LI->getAlignment()),
423                                       LI->getType());
424}
425
426static Align findCommonAlignment(const DataLayout &DL, const StoreInst *SI,
427                                 const LoadInst *LI) {
428  Align StoreAlign = findStoreAlignment(DL, SI);
429  Align LoadAlign = findLoadAlignment(DL, LI);
430  return commonAlignment(StoreAlign, LoadAlign);
431}
432
433// This method try to lift a store instruction before position P.
434// It will lift the store and its argument + that anything that
435// may alias with these.
436// The method returns true if it was successful.
437static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P,
438                   const LoadInst *LI) {
439  // If the store alias this position, early bail out.
440  MemoryLocation StoreLoc = MemoryLocation::get(SI);
441  if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc)))
442    return false;
443
444  // Keep track of the arguments of all instruction we plan to lift
445  // so we can make sure to lift them as well if appropriate.
446  DenseSet<Instruction*> Args;
447  if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand()))
448    if (Ptr->getParent() == SI->getParent())
449      Args.insert(Ptr);
450
451  // Instruction to lift before P.
452  SmallVector<Instruction*, 8> ToLift;
453
454  // Memory locations of lifted instructions.
455  SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
456
457  // Lifted calls.
458  SmallVector<const CallBase *, 8> Calls;
459
460  const MemoryLocation LoadLoc = MemoryLocation::get(LI);
461
462  for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
463    auto *C = &*I;
464
465    bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None));
466
467    bool NeedLift = false;
468    if (Args.erase(C))
469      NeedLift = true;
470    else if (MayAlias) {
471      NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) {
472        return isModOrRefSet(AA.getModRefInfo(C, ML));
473      });
474
475      if (!NeedLift)
476        NeedLift = llvm::any_of(Calls, [C, &AA](const CallBase *Call) {
477          return isModOrRefSet(AA.getModRefInfo(C, Call));
478        });
479    }
480
481    if (!NeedLift)
482      continue;
483
484    if (MayAlias) {
485      // Since LI is implicitly moved downwards past the lifted instructions,
486      // none of them may modify its source.
487      if (isModSet(AA.getModRefInfo(C, LoadLoc)))
488        return false;
489      else if (const auto *Call = dyn_cast<CallBase>(C)) {
490        // If we can't lift this before P, it's game over.
491        if (isModOrRefSet(AA.getModRefInfo(P, Call)))
492          return false;
493
494        Calls.push_back(Call);
495      } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
496        // If we can't lift this before P, it's game over.
497        auto ML = MemoryLocation::get(C);
498        if (isModOrRefSet(AA.getModRefInfo(P, ML)))
499          return false;
500
501        MemLocs.push_back(ML);
502      } else
503        // We don't know how to lift this instruction.
504        return false;
505    }
506
507    ToLift.push_back(C);
508    for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k)
509      if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) {
510        if (A->getParent() == SI->getParent()) {
511          // Cannot hoist user of P above P
512          if(A == P) return false;
513          Args.insert(A);
514        }
515      }
516  }
517
518  // We made it, we need to lift
519  for (auto *I : llvm::reverse(ToLift)) {
520    LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
521    I->moveBefore(P);
522  }
523
524  return true;
525}
526
527bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
528  if (!SI->isSimple()) return false;
529
530  // Avoid merging nontemporal stores since the resulting
531  // memcpy/memset would not be able to preserve the nontemporal hint.
532  // In theory we could teach how to propagate the !nontemporal metadata to
533  // memset calls. However, that change would force the backend to
534  // conservatively expand !nontemporal memset calls back to sequences of
535  // store instructions (effectively undoing the merging).
536  if (SI->getMetadata(LLVMContext::MD_nontemporal))
537    return false;
538
539  const DataLayout &DL = SI->getModule()->getDataLayout();
540
541  // Load to store forwarding can be interpreted as memcpy.
542  if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
543    if (LI->isSimple() && LI->hasOneUse() &&
544        LI->getParent() == SI->getParent()) {
545
546      auto *T = LI->getType();
547      if (T->isAggregateType()) {
548        AliasAnalysis &AA = LookupAliasAnalysis();
549        MemoryLocation LoadLoc = MemoryLocation::get(LI);
550
551        // We use alias analysis to check if an instruction may store to
552        // the memory we load from in between the load and the store. If
553        // such an instruction is found, we try to promote there instead
554        // of at the store position.
555        Instruction *P = SI;
556        for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
557          if (isModSet(AA.getModRefInfo(&I, LoadLoc))) {
558            P = &I;
559            break;
560          }
561        }
562
563        // We found an instruction that may write to the loaded memory.
564        // We can try to promote at this position instead of the store
565        // position if nothing alias the store memory after this and the store
566        // destination is not in the range.
567        if (P && P != SI) {
568          if (!moveUp(AA, SI, P, LI))
569            P = nullptr;
570        }
571
572        // If a valid insertion position is found, then we can promote
573        // the load/store pair to a memcpy.
574        if (P) {
575          // If we load from memory that may alias the memory we store to,
576          // memmove must be used to preserve semantic. If not, memcpy can
577          // be used.
578          bool UseMemMove = false;
579          if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc))
580            UseMemMove = true;
581
582          uint64_t Size = DL.getTypeStoreSize(T);
583
584          IRBuilder<> Builder(P);
585          Instruction *M;
586          if (UseMemMove)
587            M = Builder.CreateMemMove(
588                SI->getPointerOperand(), findStoreAlignment(DL, SI),
589                LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
590          else
591            M = Builder.CreateMemCpy(
592                SI->getPointerOperand(), findStoreAlignment(DL, SI),
593                LI->getPointerOperand(), findLoadAlignment(DL, LI), Size);
594
595          LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
596                            << *M << "\n");
597
598          MD->removeInstruction(SI);
599          SI->eraseFromParent();
600          MD->removeInstruction(LI);
601          LI->eraseFromParent();
602          ++NumMemCpyInstr;
603
604          // Make sure we do not invalidate the iterator.
605          BBI = M->getIterator();
606          return true;
607        }
608      }
609
610      // Detect cases where we're performing call slot forwarding, but
611      // happen to be using a load-store pair to implement it, rather than
612      // a memcpy.
613      MemDepResult ldep = MD->getDependency(LI);
614      CallInst *C = nullptr;
615      if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
616        C = dyn_cast<CallInst>(ldep.getInst());
617
618      if (C) {
619        // Check that nothing touches the dest of the "copy" between
620        // the call and the store.
621        Value *CpyDest = SI->getPointerOperand()->stripPointerCasts();
622        bool CpyDestIsLocal = isa<AllocaInst>(CpyDest);
623        AliasAnalysis &AA = LookupAliasAnalysis();
624        MemoryLocation StoreLoc = MemoryLocation::get(SI);
625        for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator();
626             I != E; --I) {
627          if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) {
628            C = nullptr;
629            break;
630          }
631          // The store to dest may never happen if an exception can be thrown
632          // between the load and the store.
633          if (I->mayThrow() && !CpyDestIsLocal) {
634            C = nullptr;
635            break;
636          }
637        }
638      }
639
640      if (C) {
641        bool changed = performCallSlotOptzn(
642            LI, SI->getPointerOperand()->stripPointerCasts(),
643            LI->getPointerOperand()->stripPointerCasts(),
644            DL.getTypeStoreSize(SI->getOperand(0)->getType()),
645            findCommonAlignment(DL, SI, LI).value(), C);
646        if (changed) {
647          MD->removeInstruction(SI);
648          SI->eraseFromParent();
649          MD->removeInstruction(LI);
650          LI->eraseFromParent();
651          ++NumMemCpyInstr;
652          return true;
653        }
654      }
655    }
656  }
657
658  // There are two cases that are interesting for this code to handle: memcpy
659  // and memset.  Right now we only handle memset.
660
661  // Ensure that the value being stored is something that can be memset'able a
662  // byte at a time like "0" or "-1" or any width, as well as things like
663  // 0xA0A0A0A0 and 0.0.
664  auto *V = SI->getOperand(0);
665  if (Value *ByteVal = isBytewiseValue(V, DL)) {
666    if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
667                                              ByteVal)) {
668      BBI = I->getIterator(); // Don't invalidate iterator.
669      return true;
670    }
671
672    // If we have an aggregate, we try to promote it to memset regardless
673    // of opportunity for merging as it can expose optimization opportunities
674    // in subsequent passes.
675    auto *T = V->getType();
676    if (T->isAggregateType()) {
677      uint64_t Size = DL.getTypeStoreSize(T);
678      const Align MA =
679          DL.getValueOrABITypeAlignment(MaybeAlign(SI->getAlignment()), T);
680      IRBuilder<> Builder(SI);
681      auto *M =
682          Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size, MA);
683
684      LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
685
686      MD->removeInstruction(SI);
687      SI->eraseFromParent();
688      NumMemSetInfer++;
689
690      // Make sure we do not invalidate the iterator.
691      BBI = M->getIterator();
692      return true;
693    }
694  }
695
696  return false;
697}
698
699bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
700  // See if there is another memset or store neighboring this memset which
701  // allows us to widen out the memset to do a single larger store.
702  if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
703    if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
704                                              MSI->getValue())) {
705      BBI = I->getIterator(); // Don't invalidate iterator.
706      return true;
707    }
708  return false;
709}
710
711/// Takes a memcpy and a call that it depends on,
712/// and checks for the possibility of a call slot optimization by having
713/// the call write its result directly into the destination of the memcpy.
714bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest,
715                                         Value *cpySrc, uint64_t cpyLen,
716                                         unsigned cpyAlign, CallInst *C) {
717  // The general transformation to keep in mind is
718  //
719  //   call @func(..., src, ...)
720  //   memcpy(dest, src, ...)
721  //
722  // ->
723  //
724  //   memcpy(dest, src, ...)
725  //   call @func(..., dest, ...)
726  //
727  // Since moving the memcpy is technically awkward, we additionally check that
728  // src only holds uninitialized values at the moment of the call, meaning that
729  // the memcpy can be discarded rather than moved.
730
731  // Lifetime marks shouldn't be operated on.
732  if (Function *F = C->getCalledFunction())
733    if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
734      return false;
735
736  // Deliberately get the source and destination with bitcasts stripped away,
737  // because we'll need to do type comparisons based on the underlying type.
738  CallSite CS(C);
739
740  // Require that src be an alloca.  This simplifies the reasoning considerably.
741  AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
742  if (!srcAlloca)
743    return false;
744
745  ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
746  if (!srcArraySize)
747    return false;
748
749  const DataLayout &DL = cpy->getModule()->getDataLayout();
750  uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
751                     srcArraySize->getZExtValue();
752
753  if (cpyLen < srcSize)
754    return false;
755
756  // Check that accessing the first srcSize bytes of dest will not cause a
757  // trap.  Otherwise the transform is invalid since it might cause a trap
758  // to occur earlier than it otherwise would.
759  if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
760    // The destination is an alloca.  Check it is larger than srcSize.
761    ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
762    if (!destArraySize)
763      return false;
764
765    uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) *
766                        destArraySize->getZExtValue();
767
768    if (destSize < srcSize)
769      return false;
770  } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
771    // The store to dest may never happen if the call can throw.
772    if (C->mayThrow())
773      return false;
774
775    if (A->getDereferenceableBytes() < srcSize) {
776      // If the destination is an sret parameter then only accesses that are
777      // outside of the returned struct type can trap.
778      if (!A->hasStructRetAttr())
779        return false;
780
781      Type *StructTy = cast<PointerType>(A->getType())->getElementType();
782      if (!StructTy->isSized()) {
783        // The call may never return and hence the copy-instruction may never
784        // be executed, and therefore it's not safe to say "the destination
785        // has at least <cpyLen> bytes, as implied by the copy-instruction",
786        return false;
787      }
788
789      uint64_t destSize = DL.getTypeAllocSize(StructTy);
790      if (destSize < srcSize)
791        return false;
792    }
793  } else {
794    return false;
795  }
796
797  // Check that dest points to memory that is at least as aligned as src.
798  unsigned srcAlign = srcAlloca->getAlignment();
799  if (!srcAlign)
800    srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType());
801  bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
802  // If dest is not aligned enough and we can't increase its alignment then
803  // bail out.
804  if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest))
805    return false;
806
807  // Check that src is not accessed except via the call and the memcpy.  This
808  // guarantees that it holds only undefined values when passed in (so the final
809  // memcpy can be dropped), that it is not read or written between the call and
810  // the memcpy, and that writing beyond the end of it is undefined.
811  SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(),
812                                   srcAlloca->user_end());
813  while (!srcUseList.empty()) {
814    User *U = srcUseList.pop_back_val();
815
816    if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
817      for (User *UU : U->users())
818        srcUseList.push_back(UU);
819      continue;
820    }
821    if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) {
822      if (!G->hasAllZeroIndices())
823        return false;
824
825      for (User *UU : U->users())
826        srcUseList.push_back(UU);
827      continue;
828    }
829    if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U))
830      if (IT->isLifetimeStartOrEnd())
831        continue;
832
833    if (U != C && U != cpy)
834      return false;
835  }
836
837  // Check that src isn't captured by the called function since the
838  // transformation can cause aliasing issues in that case.
839  for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
840    if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i))
841      return false;
842
843  // Since we're changing the parameter to the callsite, we need to make sure
844  // that what would be the new parameter dominates the callsite.
845  DominatorTree &DT = LookupDomTree();
846  if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
847    if (!DT.dominates(cpyDestInst, C))
848      return false;
849
850  // In addition to knowing that the call does not access src in some
851  // unexpected manner, for example via a global, which we deduce from
852  // the use analysis, we also need to know that it does not sneakily
853  // access dest.  We rely on AA to figure this out for us.
854  AliasAnalysis &AA = LookupAliasAnalysis();
855  ModRefInfo MR = AA.getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
856  // If necessary, perform additional analysis.
857  if (isModOrRefSet(MR))
858    MR = AA.callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), &DT);
859  if (isModOrRefSet(MR))
860    return false;
861
862  // We can't create address space casts here because we don't know if they're
863  // safe for the target.
864  if (cpySrc->getType()->getPointerAddressSpace() !=
865      cpyDest->getType()->getPointerAddressSpace())
866    return false;
867  for (unsigned i = 0; i < CS.arg_size(); ++i)
868    if (CS.getArgument(i)->stripPointerCasts() == cpySrc &&
869        cpySrc->getType()->getPointerAddressSpace() !=
870        CS.getArgument(i)->getType()->getPointerAddressSpace())
871      return false;
872
873  // All the checks have passed, so do the transformation.
874  bool changedArgument = false;
875  for (unsigned i = 0; i < CS.arg_size(); ++i)
876    if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
877      Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest
878        : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
879                                      cpyDest->getName(), C);
880      changedArgument = true;
881      if (CS.getArgument(i)->getType() == Dest->getType())
882        CS.setArgument(i, Dest);
883      else
884        CS.setArgument(i, CastInst::CreatePointerCast(Dest,
885                          CS.getArgument(i)->getType(), Dest->getName(), C));
886    }
887
888  if (!changedArgument)
889    return false;
890
891  // If the destination wasn't sufficiently aligned then increase its alignment.
892  if (!isDestSufficientlyAligned) {
893    assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
894    cast<AllocaInst>(cpyDest)->setAlignment(MaybeAlign(srcAlign));
895  }
896
897  // Drop any cached information about the call, because we may have changed
898  // its dependence information by changing its parameter.
899  MD->removeInstruction(C);
900
901  // Update AA metadata
902  // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
903  // handled here, but combineMetadata doesn't support them yet
904  unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
905                         LLVMContext::MD_noalias,
906                         LLVMContext::MD_invariant_group,
907                         LLVMContext::MD_access_group};
908  combineMetadata(C, cpy, KnownIDs, true);
909
910  // Remove the memcpy.
911  MD->removeInstruction(cpy);
912  ++NumMemCpyInstr;
913
914  return true;
915}
916
917/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
918/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
919bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
920                                                  MemCpyInst *MDep) {
921  // We can only transforms memcpy's where the dest of one is the source of the
922  // other.
923  if (M->getSource() != MDep->getDest() || MDep->isVolatile())
924    return false;
925
926  // If dep instruction is reading from our current input, then it is a noop
927  // transfer and substituting the input won't change this instruction.  Just
928  // ignore the input and let someone else zap MDep.  This handles cases like:
929  //    memcpy(a <- a)
930  //    memcpy(b <- a)
931  if (M->getSource() == MDep->getSource())
932    return false;
933
934  // Second, the length of the memcpy's must be the same, or the preceding one
935  // must be larger than the following one.
936  ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
937  ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
938  if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
939    return false;
940
941  AliasAnalysis &AA = LookupAliasAnalysis();
942
943  // Verify that the copied-from memory doesn't change in between the two
944  // transfers.  For example, in:
945  //    memcpy(a <- b)
946  //    *b = 42;
947  //    memcpy(c <- a)
948  // It would be invalid to transform the second memcpy into memcpy(c <- b).
949  //
950  // TODO: If the code between M and MDep is transparent to the destination "c",
951  // then we could still perform the xform by moving M up to the first memcpy.
952  //
953  // NOTE: This is conservative, it will stop on any read from the source loc,
954  // not just the defining memcpy.
955  MemDepResult SourceDep =
956      MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false,
957                                   M->getIterator(), M->getParent());
958  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
959    return false;
960
961  // If the dest of the second might alias the source of the first, then the
962  // source and dest might overlap.  We still want to eliminate the intermediate
963  // value, but we have to generate a memmove instead of memcpy.
964  bool UseMemMove = false;
965  if (!AA.isNoAlias(MemoryLocation::getForDest(M),
966                    MemoryLocation::getForSource(MDep)))
967    UseMemMove = true;
968
969  // If all checks passed, then we can transform M.
970  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
971                    << *MDep << '\n' << *M << '\n');
972
973  // TODO: Is this worth it if we're creating a less aligned memcpy? For
974  // example we could be moving from movaps -> movq on x86.
975  IRBuilder<> Builder(M);
976  if (UseMemMove)
977    Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
978                          MDep->getRawSource(), MDep->getSourceAlign(),
979                          M->getLength(), M->isVolatile());
980  else
981    Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
982                         MDep->getRawSource(), MDep->getSourceAlign(),
983                         M->getLength(), M->isVolatile());
984
985  // Remove the instruction we're replacing.
986  MD->removeInstruction(M);
987  M->eraseFromParent();
988  ++NumMemCpyInstr;
989  return true;
990}
991
992/// We've found that the (upward scanning) memory dependence of \p MemCpy is
993/// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that
994/// weren't copied over by \p MemCpy.
995///
996/// In other words, transform:
997/// \code
998///   memset(dst, c, dst_size);
999///   memcpy(dst, src, src_size);
1000/// \endcode
1001/// into:
1002/// \code
1003///   memcpy(dst, src, src_size);
1004///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1005/// \endcode
1006bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
1007                                                  MemSetInst *MemSet) {
1008  // We can only transform memset/memcpy with the same destination.
1009  if (MemSet->getDest() != MemCpy->getDest())
1010    return false;
1011
1012  // Check that there are no other dependencies on the memset destination.
1013  MemDepResult DstDepInfo =
1014      MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false,
1015                                   MemCpy->getIterator(), MemCpy->getParent());
1016  if (DstDepInfo.getInst() != MemSet)
1017    return false;
1018
1019  // Use the same i8* dest as the memcpy, killing the memset dest if different.
1020  Value *Dest = MemCpy->getRawDest();
1021  Value *DestSize = MemSet->getLength();
1022  Value *SrcSize = MemCpy->getLength();
1023
1024  // By default, create an unaligned memset.
1025  unsigned Align = 1;
1026  // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1027  // of the sum.
1028  const unsigned DestAlign =
1029      std::max(MemSet->getDestAlignment(), MemCpy->getDestAlignment());
1030  if (DestAlign > 1)
1031    if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
1032      Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign);
1033
1034  IRBuilder<> Builder(MemCpy);
1035
1036  // If the sizes have different types, zext the smaller one.
1037  if (DestSize->getType() != SrcSize->getType()) {
1038    if (DestSize->getType()->getIntegerBitWidth() >
1039        SrcSize->getType()->getIntegerBitWidth())
1040      SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
1041    else
1042      DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
1043  }
1044
1045  Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
1046  Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
1047  Value *MemsetLen = Builder.CreateSelect(
1048      Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
1049  Builder.CreateMemSet(
1050      Builder.CreateGEP(Dest->getType()->getPointerElementType(), Dest,
1051                        SrcSize),
1052      MemSet->getOperand(1), MemsetLen, MaybeAlign(Align));
1053
1054  MD->removeInstruction(MemSet);
1055  MemSet->eraseFromParent();
1056  return true;
1057}
1058
1059/// Determine whether the instruction has undefined content for the given Size,
1060/// either because it was freshly alloca'd or started its lifetime.
1061static bool hasUndefContents(Instruction *I, ConstantInt *Size) {
1062  if (isa<AllocaInst>(I))
1063    return true;
1064
1065  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1066    if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1067      if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0)))
1068        if (LTSize->getZExtValue() >= Size->getZExtValue())
1069          return true;
1070
1071  return false;
1072}
1073
1074/// Transform memcpy to memset when its source was just memset.
1075/// In other words, turn:
1076/// \code
1077///   memset(dst1, c, dst1_size);
1078///   memcpy(dst2, dst1, dst2_size);
1079/// \endcode
1080/// into:
1081/// \code
1082///   memset(dst1, c, dst1_size);
1083///   memset(dst2, c, dst2_size);
1084/// \endcode
1085/// When dst2_size <= dst1_size.
1086///
1087/// The \p MemCpy must have a Constant length.
1088bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
1089                                               MemSetInst *MemSet) {
1090  AliasAnalysis &AA = LookupAliasAnalysis();
1091
1092  // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1093  // memcpying from the same address. Otherwise it is hard to reason about.
1094  if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
1095    return false;
1096
1097  // A known memset size is required.
1098  ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength());
1099  if (!MemSetSize)
1100    return false;
1101
1102  // Make sure the memcpy doesn't read any more than what the memset wrote.
1103  // Don't worry about sizes larger than i64.
1104  ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength());
1105  if (CopySize->getZExtValue() > MemSetSize->getZExtValue()) {
1106    // If the memcpy is larger than the memset, but the memory was undef prior
1107    // to the memset, we can just ignore the tail. Technically we're only
1108    // interested in the bytes from MemSetSize..CopySize here, but as we can't
1109    // easily represent this location, we use the full 0..CopySize range.
1110    MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
1111    MemDepResult DepInfo = MD->getPointerDependencyFrom(
1112        MemCpyLoc, true, MemSet->getIterator(), MemSet->getParent());
1113    if (DepInfo.isDef() && hasUndefContents(DepInfo.getInst(), CopySize))
1114      CopySize = MemSetSize;
1115    else
1116      return false;
1117  }
1118
1119  IRBuilder<> Builder(MemCpy);
1120  Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), CopySize,
1121                       MaybeAlign(MemCpy->getDestAlignment()));
1122  return true;
1123}
1124
1125/// Perform simplification of memcpy's.  If we have memcpy A
1126/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1127/// B to be a memcpy from X to Z (or potentially a memmove, depending on
1128/// circumstances). This allows later passes to remove the first memcpy
1129/// altogether.
1130bool MemCpyOptPass::processMemCpy(MemCpyInst *M) {
1131  // We can only optimize non-volatile memcpy's.
1132  if (M->isVolatile()) return false;
1133
1134  // If the source and destination of the memcpy are the same, then zap it.
1135  if (M->getSource() == M->getDest()) {
1136    MD->removeInstruction(M);
1137    M->eraseFromParent();
1138    return false;
1139  }
1140
1141  // If copying from a constant, try to turn the memcpy into a memset.
1142  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
1143    if (GV->isConstant() && GV->hasDefinitiveInitializer())
1144      if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
1145                                           M->getModule()->getDataLayout())) {
1146        IRBuilder<> Builder(M);
1147        Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
1148                             MaybeAlign(M->getDestAlignment()), false);
1149        MD->removeInstruction(M);
1150        M->eraseFromParent();
1151        ++NumCpyToSet;
1152        return true;
1153      }
1154
1155  MemDepResult DepInfo = MD->getDependency(M);
1156
1157  // Try to turn a partially redundant memset + memcpy into
1158  // memcpy + smaller memset.  We don't need the memcpy size for this.
1159  if (DepInfo.isClobber())
1160    if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst()))
1161      if (processMemSetMemCpyDependence(M, MDep))
1162        return true;
1163
1164  // The optimizations after this point require the memcpy size.
1165  ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
1166  if (!CopySize) return false;
1167
1168  // There are four possible optimizations we can do for memcpy:
1169  //   a) memcpy-memcpy xform which exposes redundance for DSE.
1170  //   b) call-memcpy xform for return slot optimization.
1171  //   c) memcpy from freshly alloca'd space or space that has just started its
1172  //      lifetime copies undefined data, and we can therefore eliminate the
1173  //      memcpy in favor of the data that was already at the destination.
1174  //   d) memcpy from a just-memset'd source can be turned into memset.
1175  if (DepInfo.isClobber()) {
1176    if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
1177      // FIXME: Can we pass in either of dest/src alignment here instead
1178      // of conservatively taking the minimum?
1179      unsigned Align = MinAlign(M->getDestAlignment(), M->getSourceAlignment());
1180      if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
1181                               CopySize->getZExtValue(), Align,
1182                               C)) {
1183        MD->removeInstruction(M);
1184        M->eraseFromParent();
1185        return true;
1186      }
1187    }
1188  }
1189
1190  MemoryLocation SrcLoc = MemoryLocation::getForSource(M);
1191  MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(
1192      SrcLoc, true, M->getIterator(), M->getParent());
1193
1194  if (SrcDepInfo.isClobber()) {
1195    if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
1196      return processMemCpyMemCpyDependence(M, MDep);
1197  } else if (SrcDepInfo.isDef()) {
1198    if (hasUndefContents(SrcDepInfo.getInst(), CopySize)) {
1199      MD->removeInstruction(M);
1200      M->eraseFromParent();
1201      ++NumMemCpyInstr;
1202      return true;
1203    }
1204  }
1205
1206  if (SrcDepInfo.isClobber())
1207    if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst()))
1208      if (performMemCpyToMemSetOptzn(M, MDep)) {
1209        MD->removeInstruction(M);
1210        M->eraseFromParent();
1211        ++NumCpyToSet;
1212        return true;
1213      }
1214
1215  return false;
1216}
1217
1218/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1219/// not to alias.
1220bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
1221  AliasAnalysis &AA = LookupAliasAnalysis();
1222
1223  if (!TLI->has(LibFunc_memmove))
1224    return false;
1225
1226  // See if the pointers alias.
1227  if (!AA.isNoAlias(MemoryLocation::getForDest(M),
1228                    MemoryLocation::getForSource(M)))
1229    return false;
1230
1231  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1232                    << "\n");
1233
1234  // If not, then we know we can transform this.
1235  Type *ArgTys[3] = { M->getRawDest()->getType(),
1236                      M->getRawSource()->getType(),
1237                      M->getLength()->getType() };
1238  M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
1239                                                 Intrinsic::memcpy, ArgTys));
1240
1241  // MemDep may have over conservative information about this instruction, just
1242  // conservatively flush it from the cache.
1243  MD->removeInstruction(M);
1244
1245  ++NumMoveToCpy;
1246  return true;
1247}
1248
1249/// This is called on every byval argument in call sites.
1250bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) {
1251  const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout();
1252  // Find out what feeds this byval argument.
1253  Value *ByValArg = CS.getArgument(ArgNo);
1254  Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
1255  uint64_t ByValSize = DL.getTypeAllocSize(ByValTy);
1256  MemDepResult DepInfo = MD->getPointerDependencyFrom(
1257      MemoryLocation(ByValArg, LocationSize::precise(ByValSize)), true,
1258      CS.getInstruction()->getIterator(), CS.getInstruction()->getParent());
1259  if (!DepInfo.isClobber())
1260    return false;
1261
1262  // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
1263  // a memcpy, see if we can byval from the source of the memcpy instead of the
1264  // result.
1265  MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
1266  if (!MDep || MDep->isVolatile() ||
1267      ByValArg->stripPointerCasts() != MDep->getDest())
1268    return false;
1269
1270  // The length of the memcpy must be larger or equal to the size of the byval.
1271  ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
1272  if (!C1 || C1->getValue().getZExtValue() < ByValSize)
1273    return false;
1274
1275  // Get the alignment of the byval.  If the call doesn't specify the alignment,
1276  // then it is some target specific value that we can't know.
1277  unsigned ByValAlign = CS.getParamAlignment(ArgNo);
1278  if (ByValAlign == 0) return false;
1279
1280  // If it is greater than the memcpy, then we check to see if we can force the
1281  // source of the memcpy to the alignment we need.  If we fail, we bail out.
1282  AssumptionCache &AC = LookupAssumptionCache();
1283  DominatorTree &DT = LookupDomTree();
1284  if (MDep->getSourceAlignment() < ByValAlign &&
1285      getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL,
1286                                 CS.getInstruction(), &AC, &DT) < ByValAlign)
1287    return false;
1288
1289  // The address space of the memcpy source must match the byval argument
1290  if (MDep->getSource()->getType()->getPointerAddressSpace() !=
1291      ByValArg->getType()->getPointerAddressSpace())
1292    return false;
1293
1294  // Verify that the copied-from memory doesn't change in between the memcpy and
1295  // the byval call.
1296  //    memcpy(a <- b)
1297  //    *b = 42;
1298  //    foo(*a)
1299  // It would be invalid to transform the second memcpy into foo(*b).
1300  //
1301  // NOTE: This is conservative, it will stop on any read from the source loc,
1302  // not just the defining memcpy.
1303  MemDepResult SourceDep = MD->getPointerDependencyFrom(
1304      MemoryLocation::getForSource(MDep), false,
1305      CS.getInstruction()->getIterator(), MDep->getParent());
1306  if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
1307    return false;
1308
1309  Value *TmpCast = MDep->getSource();
1310  if (MDep->getSource()->getType() != ByValArg->getType())
1311    TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
1312                              "tmpcast", CS.getInstruction());
1313
1314  LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1315                    << "  " << *MDep << "\n"
1316                    << "  " << *CS.getInstruction() << "\n");
1317
1318  // Otherwise we're good!  Update the byval argument.
1319  CS.setArgument(ArgNo, TmpCast);
1320  ++NumMemCpyInstr;
1321  return true;
1322}
1323
1324/// Executes one iteration of MemCpyOptPass.
1325bool MemCpyOptPass::iterateOnFunction(Function &F) {
1326  bool MadeChange = false;
1327
1328  DominatorTree &DT = LookupDomTree();
1329
1330  // Walk all instruction in the function.
1331  for (BasicBlock &BB : F) {
1332    // Skip unreachable blocks. For example processStore assumes that an
1333    // instruction in a BB can't be dominated by a later instruction in the
1334    // same BB (which is a scenario that can happen for an unreachable BB that
1335    // has itself as a predecessor).
1336    if (!DT.isReachableFromEntry(&BB))
1337      continue;
1338
1339    for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
1340        // Avoid invalidating the iterator.
1341      Instruction *I = &*BI++;
1342
1343      bool RepeatInstruction = false;
1344
1345      if (StoreInst *SI = dyn_cast<StoreInst>(I))
1346        MadeChange |= processStore(SI, BI);
1347      else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
1348        RepeatInstruction = processMemSet(M, BI);
1349      else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
1350        RepeatInstruction = processMemCpy(M);
1351      else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
1352        RepeatInstruction = processMemMove(M);
1353      else if (auto CS = CallSite(I)) {
1354        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
1355          if (CS.isByValArgument(i))
1356            MadeChange |= processByValArgument(CS, i);
1357      }
1358
1359      // Reprocess the instruction if desired.
1360      if (RepeatInstruction) {
1361        if (BI != BB.begin())
1362          --BI;
1363        MadeChange = true;
1364      }
1365    }
1366  }
1367
1368  return MadeChange;
1369}
1370
1371PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
1372  auto &MD = AM.getResult<MemoryDependenceAnalysis>(F);
1373  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1374
1375  auto LookupAliasAnalysis = [&]() -> AliasAnalysis & {
1376    return AM.getResult<AAManager>(F);
1377  };
1378  auto LookupAssumptionCache = [&]() -> AssumptionCache & {
1379    return AM.getResult<AssumptionAnalysis>(F);
1380  };
1381  auto LookupDomTree = [&]() -> DominatorTree & {
1382    return AM.getResult<DominatorTreeAnalysis>(F);
1383  };
1384
1385  bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis,
1386                            LookupAssumptionCache, LookupDomTree);
1387  if (!MadeChange)
1388    return PreservedAnalyses::all();
1389
1390  PreservedAnalyses PA;
1391  PA.preserveSet<CFGAnalyses>();
1392  PA.preserve<GlobalsAA>();
1393  PA.preserve<MemoryDependenceAnalysis>();
1394  return PA;
1395}
1396
1397bool MemCpyOptPass::runImpl(
1398    Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_,
1399    std::function<AliasAnalysis &()> LookupAliasAnalysis_,
1400    std::function<AssumptionCache &()> LookupAssumptionCache_,
1401    std::function<DominatorTree &()> LookupDomTree_) {
1402  bool MadeChange = false;
1403  MD = MD_;
1404  TLI = TLI_;
1405  LookupAliasAnalysis = std::move(LookupAliasAnalysis_);
1406  LookupAssumptionCache = std::move(LookupAssumptionCache_);
1407  LookupDomTree = std::move(LookupDomTree_);
1408
1409  // If we don't have at least memset and memcpy, there is little point of doing
1410  // anything here.  These are required by a freestanding implementation, so if
1411  // even they are disabled, there is no point in trying hard.
1412  if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy))
1413    return false;
1414
1415  while (true) {
1416    if (!iterateOnFunction(F))
1417      break;
1418    MadeChange = true;
1419  }
1420
1421  MD = nullptr;
1422  return MadeChange;
1423}
1424
1425/// This is the main transformation entry point for a function.
1426bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
1427  if (skipFunction(F))
1428    return false;
1429
1430  auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
1431  auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1432
1433  auto LookupAliasAnalysis = [this]() -> AliasAnalysis & {
1434    return getAnalysis<AAResultsWrapperPass>().getAAResults();
1435  };
1436  auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & {
1437    return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1438  };
1439  auto LookupDomTree = [this]() -> DominatorTree & {
1440    return getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1441  };
1442
1443  return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache,
1444                      LookupDomTree);
1445}
1446