LoopFuse.cpp revision 360784
1//===- LoopFuse.cpp - Loop Fusion Pass ------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the loop fusion pass.
11/// The implementation is largely based on the following document:
12///
13///       Code Transformations to Augment the Scope of Loop Fusion in a
14///         Production Compiler
15///       Christopher Mark Barton
16///       MSc Thesis
17///       https://webdocs.cs.ualberta.ca/~amaral/thesis/ChristopherBartonMSc.pdf
18///
19/// The general approach taken is to collect sets of control flow equivalent
20/// loops and test whether they can be fused. The necessary conditions for
21/// fusion are:
22///    1. The loops must be adjacent (there cannot be any statements between
23///       the two loops).
24///    2. The loops must be conforming (they must execute the same number of
25///       iterations).
26///    3. The loops must be control flow equivalent (if one loop executes, the
27///       other is guaranteed to execute).
28///    4. There cannot be any negative distance dependencies between the loops.
29/// If all of these conditions are satisfied, it is safe to fuse the loops.
30///
31/// This implementation creates FusionCandidates that represent the loop and the
32/// necessary information needed by fusion. It then operates on the fusion
33/// candidates, first confirming that the candidate is eligible for fusion. The
34/// candidates are then collected into control flow equivalent sets, sorted in
35/// dominance order. Each set of control flow equivalent candidates is then
36/// traversed, attempting to fuse pairs of candidates in the set. If all
37/// requirements for fusion are met, the two candidates are fused, creating a
38/// new (fused) candidate which is then added back into the set to consider for
39/// additional fusion.
40///
41/// This implementation currently does not make any modifications to remove
42/// conditions for fusion. Code transformations to make loops conform to each of
43/// the conditions for fusion are discussed in more detail in the document
44/// above. These can be added to the current implementation in the future.
45//===----------------------------------------------------------------------===//
46
47#include "llvm/Transforms/Scalar/LoopFuse.h"
48#include "llvm/ADT/Statistic.h"
49#include "llvm/Analysis/DependenceAnalysis.h"
50#include "llvm/Analysis/DomTreeUpdater.h"
51#include "llvm/Analysis/LoopInfo.h"
52#include "llvm/Analysis/OptimizationRemarkEmitter.h"
53#include "llvm/Analysis/PostDominators.h"
54#include "llvm/Analysis/ScalarEvolution.h"
55#include "llvm/Analysis/ScalarEvolutionExpressions.h"
56#include "llvm/IR/Function.h"
57#include "llvm/IR/Verifier.h"
58#include "llvm/InitializePasses.h"
59#include "llvm/Pass.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Debug.h"
62#include "llvm/Support/raw_ostream.h"
63#include "llvm/Transforms/Scalar.h"
64#include "llvm/Transforms/Utils.h"
65#include "llvm/Transforms/Utils/BasicBlockUtils.h"
66#include "llvm/Transforms/Utils/CodeMoverUtils.h"
67
68using namespace llvm;
69
70#define DEBUG_TYPE "loop-fusion"
71
72STATISTIC(FuseCounter, "Loops fused");
73STATISTIC(NumFusionCandidates, "Number of candidates for loop fusion");
74STATISTIC(InvalidPreheader, "Loop has invalid preheader");
75STATISTIC(InvalidHeader, "Loop has invalid header");
76STATISTIC(InvalidExitingBlock, "Loop has invalid exiting blocks");
77STATISTIC(InvalidExitBlock, "Loop has invalid exit block");
78STATISTIC(InvalidLatch, "Loop has invalid latch");
79STATISTIC(InvalidLoop, "Loop is invalid");
80STATISTIC(AddressTakenBB, "Basic block has address taken");
81STATISTIC(MayThrowException, "Loop may throw an exception");
82STATISTIC(ContainsVolatileAccess, "Loop contains a volatile access");
83STATISTIC(NotSimplifiedForm, "Loop is not in simplified form");
84STATISTIC(InvalidDependencies, "Dependencies prevent fusion");
85STATISTIC(UnknownTripCount, "Loop has unknown trip count");
86STATISTIC(UncomputableTripCount, "SCEV cannot compute trip count of loop");
87STATISTIC(NonEqualTripCount, "Loop trip counts are not the same");
88STATISTIC(NonAdjacent, "Loops are not adjacent");
89STATISTIC(NonEmptyPreheader, "Loop has a non-empty preheader");
90STATISTIC(FusionNotBeneficial, "Fusion is not beneficial");
91STATISTIC(NonIdenticalGuards, "Candidates have different guards");
92STATISTIC(NonEmptyExitBlock, "Candidate has a non-empty exit block");
93STATISTIC(NonEmptyGuardBlock, "Candidate has a non-empty guard block");
94STATISTIC(NotRotated, "Candidate is not rotated");
95
96enum FusionDependenceAnalysisChoice {
97  FUSION_DEPENDENCE_ANALYSIS_SCEV,
98  FUSION_DEPENDENCE_ANALYSIS_DA,
99  FUSION_DEPENDENCE_ANALYSIS_ALL,
100};
101
102static cl::opt<FusionDependenceAnalysisChoice> FusionDependenceAnalysis(
103    "loop-fusion-dependence-analysis",
104    cl::desc("Which dependence analysis should loop fusion use?"),
105    cl::values(clEnumValN(FUSION_DEPENDENCE_ANALYSIS_SCEV, "scev",
106                          "Use the scalar evolution interface"),
107               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_DA, "da",
108                          "Use the dependence analysis interface"),
109               clEnumValN(FUSION_DEPENDENCE_ANALYSIS_ALL, "all",
110                          "Use all available analyses")),
111    cl::Hidden, cl::init(FUSION_DEPENDENCE_ANALYSIS_ALL), cl::ZeroOrMore);
112
113#ifndef NDEBUG
114static cl::opt<bool>
115    VerboseFusionDebugging("loop-fusion-verbose-debug",
116                           cl::desc("Enable verbose debugging for Loop Fusion"),
117                           cl::Hidden, cl::init(false), cl::ZeroOrMore);
118#endif
119
120namespace {
121/// This class is used to represent a candidate for loop fusion. When it is
122/// constructed, it checks the conditions for loop fusion to ensure that it
123/// represents a valid candidate. It caches several parts of a loop that are
124/// used throughout loop fusion (e.g., loop preheader, loop header, etc) instead
125/// of continually querying the underlying Loop to retrieve these values. It is
126/// assumed these will not change throughout loop fusion.
127///
128/// The invalidate method should be used to indicate that the FusionCandidate is
129/// no longer a valid candidate for fusion. Similarly, the isValid() method can
130/// be used to ensure that the FusionCandidate is still valid for fusion.
131struct FusionCandidate {
132  /// Cache of parts of the loop used throughout loop fusion. These should not
133  /// need to change throughout the analysis and transformation.
134  /// These parts are cached to avoid repeatedly looking up in the Loop class.
135
136  /// Preheader of the loop this candidate represents
137  BasicBlock *Preheader;
138  /// Header of the loop this candidate represents
139  BasicBlock *Header;
140  /// Blocks in the loop that exit the loop
141  BasicBlock *ExitingBlock;
142  /// The successor block of this loop (where the exiting blocks go to)
143  BasicBlock *ExitBlock;
144  /// Latch of the loop
145  BasicBlock *Latch;
146  /// The loop that this fusion candidate represents
147  Loop *L;
148  /// Vector of instructions in this loop that read from memory
149  SmallVector<Instruction *, 16> MemReads;
150  /// Vector of instructions in this loop that write to memory
151  SmallVector<Instruction *, 16> MemWrites;
152  /// Are all of the members of this fusion candidate still valid
153  bool Valid;
154  /// Guard branch of the loop, if it exists
155  BranchInst *GuardBranch;
156
157  /// Dominator and PostDominator trees are needed for the
158  /// FusionCandidateCompare function, required by FusionCandidateSet to
159  /// determine where the FusionCandidate should be inserted into the set. These
160  /// are used to establish ordering of the FusionCandidates based on dominance.
161  const DominatorTree *DT;
162  const PostDominatorTree *PDT;
163
164  OptimizationRemarkEmitter &ORE;
165
166  FusionCandidate(Loop *L, const DominatorTree *DT,
167                  const PostDominatorTree *PDT, OptimizationRemarkEmitter &ORE)
168      : Preheader(L->getLoopPreheader()), Header(L->getHeader()),
169        ExitingBlock(L->getExitingBlock()), ExitBlock(L->getExitBlock()),
170        Latch(L->getLoopLatch()), L(L), Valid(true),
171        GuardBranch(L->getLoopGuardBranch()), DT(DT), PDT(PDT), ORE(ORE) {
172
173    // Walk over all blocks in the loop and check for conditions that may
174    // prevent fusion. For each block, walk over all instructions and collect
175    // the memory reads and writes If any instructions that prevent fusion are
176    // found, invalidate this object and return.
177    for (BasicBlock *BB : L->blocks()) {
178      if (BB->hasAddressTaken()) {
179        invalidate();
180        reportInvalidCandidate(AddressTakenBB);
181        return;
182      }
183
184      for (Instruction &I : *BB) {
185        if (I.mayThrow()) {
186          invalidate();
187          reportInvalidCandidate(MayThrowException);
188          return;
189        }
190        if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
191          if (SI->isVolatile()) {
192            invalidate();
193            reportInvalidCandidate(ContainsVolatileAccess);
194            return;
195          }
196        }
197        if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
198          if (LI->isVolatile()) {
199            invalidate();
200            reportInvalidCandidate(ContainsVolatileAccess);
201            return;
202          }
203        }
204        if (I.mayWriteToMemory())
205          MemWrites.push_back(&I);
206        if (I.mayReadFromMemory())
207          MemReads.push_back(&I);
208      }
209    }
210  }
211
212  /// Check if all members of the class are valid.
213  bool isValid() const {
214    return Preheader && Header && ExitingBlock && ExitBlock && Latch && L &&
215           !L->isInvalid() && Valid;
216  }
217
218  /// Verify that all members are in sync with the Loop object.
219  void verify() const {
220    assert(isValid() && "Candidate is not valid!!");
221    assert(!L->isInvalid() && "Loop is invalid!");
222    assert(Preheader == L->getLoopPreheader() && "Preheader is out of sync");
223    assert(Header == L->getHeader() && "Header is out of sync");
224    assert(ExitingBlock == L->getExitingBlock() &&
225           "Exiting Blocks is out of sync");
226    assert(ExitBlock == L->getExitBlock() && "Exit block is out of sync");
227    assert(Latch == L->getLoopLatch() && "Latch is out of sync");
228  }
229
230  /// Get the entry block for this fusion candidate.
231  ///
232  /// If this fusion candidate represents a guarded loop, the entry block is the
233  /// loop guard block. If it represents an unguarded loop, the entry block is
234  /// the preheader of the loop.
235  BasicBlock *getEntryBlock() const {
236    if (GuardBranch)
237      return GuardBranch->getParent();
238    else
239      return Preheader;
240  }
241
242  /// Given a guarded loop, get the successor of the guard that is not in the
243  /// loop.
244  ///
245  /// This method returns the successor of the loop guard that is not located
246  /// within the loop (i.e., the successor of the guard that is not the
247  /// preheader).
248  /// This method is only valid for guarded loops.
249  BasicBlock *getNonLoopBlock() const {
250    assert(GuardBranch && "Only valid on guarded loops.");
251    assert(GuardBranch->isConditional() &&
252           "Expecting guard to be a conditional branch.");
253    return (GuardBranch->getSuccessor(0) == Preheader)
254               ? GuardBranch->getSuccessor(1)
255               : GuardBranch->getSuccessor(0);
256  }
257
258#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
259  LLVM_DUMP_METHOD void dump() const {
260    dbgs() << "\tGuardBranch: ";
261    if (GuardBranch)
262      dbgs() << *GuardBranch;
263    else
264      dbgs() << "nullptr";
265    dbgs() << "\n"
266           << (GuardBranch ? GuardBranch->getName() : "nullptr") << "\n"
267           << "\tPreheader: " << (Preheader ? Preheader->getName() : "nullptr")
268           << "\n"
269           << "\tHeader: " << (Header ? Header->getName() : "nullptr") << "\n"
270           << "\tExitingBB: "
271           << (ExitingBlock ? ExitingBlock->getName() : "nullptr") << "\n"
272           << "\tExitBB: " << (ExitBlock ? ExitBlock->getName() : "nullptr")
273           << "\n"
274           << "\tLatch: " << (Latch ? Latch->getName() : "nullptr") << "\n"
275           << "\tEntryBlock: "
276           << (getEntryBlock() ? getEntryBlock()->getName() : "nullptr")
277           << "\n";
278  }
279#endif
280
281  /// Determine if a fusion candidate (representing a loop) is eligible for
282  /// fusion. Note that this only checks whether a single loop can be fused - it
283  /// does not check whether it is *legal* to fuse two loops together.
284  bool isEligibleForFusion(ScalarEvolution &SE) const {
285    if (!isValid()) {
286      LLVM_DEBUG(dbgs() << "FC has invalid CFG requirements!\n");
287      if (!Preheader)
288        ++InvalidPreheader;
289      if (!Header)
290        ++InvalidHeader;
291      if (!ExitingBlock)
292        ++InvalidExitingBlock;
293      if (!ExitBlock)
294        ++InvalidExitBlock;
295      if (!Latch)
296        ++InvalidLatch;
297      if (L->isInvalid())
298        ++InvalidLoop;
299
300      return false;
301    }
302
303    // Require ScalarEvolution to be able to determine a trip count.
304    if (!SE.hasLoopInvariantBackedgeTakenCount(L)) {
305      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
306                        << " trip count not computable!\n");
307      return reportInvalidCandidate(UnknownTripCount);
308    }
309
310    if (!L->isLoopSimplifyForm()) {
311      LLVM_DEBUG(dbgs() << "Loop " << L->getName()
312                        << " is not in simplified form!\n");
313      return reportInvalidCandidate(NotSimplifiedForm);
314    }
315
316    if (!L->isRotatedForm()) {
317      LLVM_DEBUG(dbgs() << "Loop " << L->getName() << " is not rotated!\n");
318      return reportInvalidCandidate(NotRotated);
319    }
320
321    return true;
322  }
323
324private:
325  // This is only used internally for now, to clear the MemWrites and MemReads
326  // list and setting Valid to false. I can't envision other uses of this right
327  // now, since once FusionCandidates are put into the FusionCandidateSet they
328  // are immutable. Thus, any time we need to change/update a FusionCandidate,
329  // we must create a new one and insert it into the FusionCandidateSet to
330  // ensure the FusionCandidateSet remains ordered correctly.
331  void invalidate() {
332    MemWrites.clear();
333    MemReads.clear();
334    Valid = false;
335  }
336
337  bool reportInvalidCandidate(llvm::Statistic &Stat) const {
338    using namespace ore;
339    assert(L && Preheader && "Fusion candidate not initialized properly!");
340    ++Stat;
341    ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, Stat.getName(),
342                                        L->getStartLoc(), Preheader)
343             << "[" << Preheader->getParent()->getName() << "]: "
344             << "Loop is not a candidate for fusion: " << Stat.getDesc());
345    return false;
346  }
347};
348
349struct FusionCandidateCompare {
350  /// Comparison functor to sort two Control Flow Equivalent fusion candidates
351  /// into dominance order.
352  /// If LHS dominates RHS and RHS post-dominates LHS, return true;
353  /// IF RHS dominates LHS and LHS post-dominates RHS, return false;
354  bool operator()(const FusionCandidate &LHS,
355                  const FusionCandidate &RHS) const {
356    const DominatorTree *DT = LHS.DT;
357
358    BasicBlock *LHSEntryBlock = LHS.getEntryBlock();
359    BasicBlock *RHSEntryBlock = RHS.getEntryBlock();
360
361    // Do not save PDT to local variable as it is only used in asserts and thus
362    // will trigger an unused variable warning if building without asserts.
363    assert(DT && LHS.PDT && "Expecting valid dominator tree");
364
365    // Do this compare first so if LHS == RHS, function returns false.
366    if (DT->dominates(RHSEntryBlock, LHSEntryBlock)) {
367      // RHS dominates LHS
368      // Verify LHS post-dominates RHS
369      assert(LHS.PDT->dominates(LHSEntryBlock, RHSEntryBlock));
370      return false;
371    }
372
373    if (DT->dominates(LHSEntryBlock, RHSEntryBlock)) {
374      // Verify RHS Postdominates LHS
375      assert(LHS.PDT->dominates(RHSEntryBlock, LHSEntryBlock));
376      return true;
377    }
378
379    // If LHS does not dominate RHS and RHS does not dominate LHS then there is
380    // no dominance relationship between the two FusionCandidates. Thus, they
381    // should not be in the same set together.
382    llvm_unreachable(
383        "No dominance relationship between these fusion candidates!");
384  }
385};
386
387using LoopVector = SmallVector<Loop *, 4>;
388
389// Set of Control Flow Equivalent (CFE) Fusion Candidates, sorted in dominance
390// order. Thus, if FC0 comes *before* FC1 in a FusionCandidateSet, then FC0
391// dominates FC1 and FC1 post-dominates FC0.
392// std::set was chosen because we want a sorted data structure with stable
393// iterators. A subsequent patch to loop fusion will enable fusing non-ajdacent
394// loops by moving intervening code around. When this intervening code contains
395// loops, those loops will be moved also. The corresponding FusionCandidates
396// will also need to be moved accordingly. As this is done, having stable
397// iterators will simplify the logic. Similarly, having an efficient insert that
398// keeps the FusionCandidateSet sorted will also simplify the implementation.
399using FusionCandidateSet = std::set<FusionCandidate, FusionCandidateCompare>;
400using FusionCandidateCollection = SmallVector<FusionCandidateSet, 4>;
401
402#if !defined(NDEBUG)
403static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
404                                     const FusionCandidate &FC) {
405  if (FC.isValid())
406    OS << FC.Preheader->getName();
407  else
408    OS << "<Invalid>";
409
410  return OS;
411}
412
413static llvm::raw_ostream &operator<<(llvm::raw_ostream &OS,
414                                     const FusionCandidateSet &CandSet) {
415  for (const FusionCandidate &FC : CandSet)
416    OS << FC << '\n';
417
418  return OS;
419}
420
421static void
422printFusionCandidates(const FusionCandidateCollection &FusionCandidates) {
423  dbgs() << "Fusion Candidates: \n";
424  for (const auto &CandidateSet : FusionCandidates) {
425    dbgs() << "*** Fusion Candidate Set ***\n";
426    dbgs() << CandidateSet;
427    dbgs() << "****************************\n";
428  }
429}
430#endif
431
432/// Collect all loops in function at the same nest level, starting at the
433/// outermost level.
434///
435/// This data structure collects all loops at the same nest level for a
436/// given function (specified by the LoopInfo object). It starts at the
437/// outermost level.
438struct LoopDepthTree {
439  using LoopsOnLevelTy = SmallVector<LoopVector, 4>;
440  using iterator = LoopsOnLevelTy::iterator;
441  using const_iterator = LoopsOnLevelTy::const_iterator;
442
443  LoopDepthTree(LoopInfo &LI) : Depth(1) {
444    if (!LI.empty())
445      LoopsOnLevel.emplace_back(LoopVector(LI.rbegin(), LI.rend()));
446  }
447
448  /// Test whether a given loop has been removed from the function, and thus is
449  /// no longer valid.
450  bool isRemovedLoop(const Loop *L) const { return RemovedLoops.count(L); }
451
452  /// Record that a given loop has been removed from the function and is no
453  /// longer valid.
454  void removeLoop(const Loop *L) { RemovedLoops.insert(L); }
455
456  /// Descend the tree to the next (inner) nesting level
457  void descend() {
458    LoopsOnLevelTy LoopsOnNextLevel;
459
460    for (const LoopVector &LV : *this)
461      for (Loop *L : LV)
462        if (!isRemovedLoop(L) && L->begin() != L->end())
463          LoopsOnNextLevel.emplace_back(LoopVector(L->begin(), L->end()));
464
465    LoopsOnLevel = LoopsOnNextLevel;
466    RemovedLoops.clear();
467    Depth++;
468  }
469
470  bool empty() const { return size() == 0; }
471  size_t size() const { return LoopsOnLevel.size() - RemovedLoops.size(); }
472  unsigned getDepth() const { return Depth; }
473
474  iterator begin() { return LoopsOnLevel.begin(); }
475  iterator end() { return LoopsOnLevel.end(); }
476  const_iterator begin() const { return LoopsOnLevel.begin(); }
477  const_iterator end() const { return LoopsOnLevel.end(); }
478
479private:
480  /// Set of loops that have been removed from the function and are no longer
481  /// valid.
482  SmallPtrSet<const Loop *, 8> RemovedLoops;
483
484  /// Depth of the current level, starting at 1 (outermost loops).
485  unsigned Depth;
486
487  /// Vector of loops at the current depth level that have the same parent loop
488  LoopsOnLevelTy LoopsOnLevel;
489};
490
491#ifndef NDEBUG
492static void printLoopVector(const LoopVector &LV) {
493  dbgs() << "****************************\n";
494  for (auto L : LV)
495    printLoop(*L, dbgs());
496  dbgs() << "****************************\n";
497}
498#endif
499
500struct LoopFuser {
501private:
502  // Sets of control flow equivalent fusion candidates for a given nest level.
503  FusionCandidateCollection FusionCandidates;
504
505  LoopDepthTree LDT;
506  DomTreeUpdater DTU;
507
508  LoopInfo &LI;
509  DominatorTree &DT;
510  DependenceInfo &DI;
511  ScalarEvolution &SE;
512  PostDominatorTree &PDT;
513  OptimizationRemarkEmitter &ORE;
514
515public:
516  LoopFuser(LoopInfo &LI, DominatorTree &DT, DependenceInfo &DI,
517            ScalarEvolution &SE, PostDominatorTree &PDT,
518            OptimizationRemarkEmitter &ORE, const DataLayout &DL)
519      : LDT(LI), DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy), LI(LI),
520        DT(DT), DI(DI), SE(SE), PDT(PDT), ORE(ORE) {}
521
522  /// This is the main entry point for loop fusion. It will traverse the
523  /// specified function and collect candidate loops to fuse, starting at the
524  /// outermost nesting level and working inwards.
525  bool fuseLoops(Function &F) {
526#ifndef NDEBUG
527    if (VerboseFusionDebugging) {
528      LI.print(dbgs());
529    }
530#endif
531
532    LLVM_DEBUG(dbgs() << "Performing Loop Fusion on function " << F.getName()
533                      << "\n");
534    bool Changed = false;
535
536    while (!LDT.empty()) {
537      LLVM_DEBUG(dbgs() << "Got " << LDT.size() << " loop sets for depth "
538                        << LDT.getDepth() << "\n";);
539
540      for (const LoopVector &LV : LDT) {
541        assert(LV.size() > 0 && "Empty loop set was build!");
542
543        // Skip singleton loop sets as they do not offer fusion opportunities on
544        // this level.
545        if (LV.size() == 1)
546          continue;
547#ifndef NDEBUG
548        if (VerboseFusionDebugging) {
549          LLVM_DEBUG({
550            dbgs() << "  Visit loop set (#" << LV.size() << "):\n";
551            printLoopVector(LV);
552          });
553        }
554#endif
555
556        collectFusionCandidates(LV);
557        Changed |= fuseCandidates();
558      }
559
560      // Finished analyzing candidates at this level.
561      // Descend to the next level and clear all of the candidates currently
562      // collected. Note that it will not be possible to fuse any of the
563      // existing candidates with new candidates because the new candidates will
564      // be at a different nest level and thus not be control flow equivalent
565      // with all of the candidates collected so far.
566      LLVM_DEBUG(dbgs() << "Descend one level!\n");
567      LDT.descend();
568      FusionCandidates.clear();
569    }
570
571    if (Changed)
572      LLVM_DEBUG(dbgs() << "Function after Loop Fusion: \n"; F.dump(););
573
574#ifndef NDEBUG
575    assert(DT.verify());
576    assert(PDT.verify());
577    LI.verify(DT);
578    SE.verify();
579#endif
580
581    LLVM_DEBUG(dbgs() << "Loop Fusion complete\n");
582    return Changed;
583  }
584
585private:
586  /// Determine if two fusion candidates are control flow equivalent.
587  ///
588  /// Two fusion candidates are control flow equivalent if when one executes,
589  /// the other is guaranteed to execute. This is determined using dominators
590  /// and post-dominators: if A dominates B and B post-dominates A then A and B
591  /// are control-flow equivalent.
592  bool isControlFlowEquivalent(const FusionCandidate &FC0,
593                               const FusionCandidate &FC1) const {
594    assert(FC0.Preheader && FC1.Preheader && "Expecting valid preheaders");
595
596    return ::isControlFlowEquivalent(*FC0.getEntryBlock(), *FC1.getEntryBlock(),
597                                     DT, PDT);
598  }
599
600  /// Iterate over all loops in the given loop set and identify the loops that
601  /// are eligible for fusion. Place all eligible fusion candidates into Control
602  /// Flow Equivalent sets, sorted by dominance.
603  void collectFusionCandidates(const LoopVector &LV) {
604    for (Loop *L : LV) {
605      FusionCandidate CurrCand(L, &DT, &PDT, ORE);
606      if (!CurrCand.isEligibleForFusion(SE))
607        continue;
608
609      // Go through each list in FusionCandidates and determine if L is control
610      // flow equivalent with the first loop in that list. If it is, append LV.
611      // If not, go to the next list.
612      // If no suitable list is found, start another list and add it to
613      // FusionCandidates.
614      bool FoundSet = false;
615
616      for (auto &CurrCandSet : FusionCandidates) {
617        if (isControlFlowEquivalent(*CurrCandSet.begin(), CurrCand)) {
618          CurrCandSet.insert(CurrCand);
619          FoundSet = true;
620#ifndef NDEBUG
621          if (VerboseFusionDebugging)
622            LLVM_DEBUG(dbgs() << "Adding " << CurrCand
623                              << " to existing candidate set\n");
624#endif
625          break;
626        }
627      }
628      if (!FoundSet) {
629        // No set was found. Create a new set and add to FusionCandidates
630#ifndef NDEBUG
631        if (VerboseFusionDebugging)
632          LLVM_DEBUG(dbgs() << "Adding " << CurrCand << " to new set\n");
633#endif
634        FusionCandidateSet NewCandSet;
635        NewCandSet.insert(CurrCand);
636        FusionCandidates.push_back(NewCandSet);
637      }
638      NumFusionCandidates++;
639    }
640  }
641
642  /// Determine if it is beneficial to fuse two loops.
643  ///
644  /// For now, this method simply returns true because we want to fuse as much
645  /// as possible (primarily to test the pass). This method will evolve, over
646  /// time, to add heuristics for profitability of fusion.
647  bool isBeneficialFusion(const FusionCandidate &FC0,
648                          const FusionCandidate &FC1) {
649    return true;
650  }
651
652  /// Determine if two fusion candidates have the same trip count (i.e., they
653  /// execute the same number of iterations).
654  ///
655  /// Note that for now this method simply returns a boolean value because there
656  /// are no mechanisms in loop fusion to handle different trip counts. In the
657  /// future, this behaviour can be extended to adjust one of the loops to make
658  /// the trip counts equal (e.g., loop peeling). When this is added, this
659  /// interface may need to change to return more information than just a
660  /// boolean value.
661  bool identicalTripCounts(const FusionCandidate &FC0,
662                           const FusionCandidate &FC1) const {
663    const SCEV *TripCount0 = SE.getBackedgeTakenCount(FC0.L);
664    if (isa<SCEVCouldNotCompute>(TripCount0)) {
665      UncomputableTripCount++;
666      LLVM_DEBUG(dbgs() << "Trip count of first loop could not be computed!");
667      return false;
668    }
669
670    const SCEV *TripCount1 = SE.getBackedgeTakenCount(FC1.L);
671    if (isa<SCEVCouldNotCompute>(TripCount1)) {
672      UncomputableTripCount++;
673      LLVM_DEBUG(dbgs() << "Trip count of second loop could not be computed!");
674      return false;
675    }
676    LLVM_DEBUG(dbgs() << "\tTrip counts: " << *TripCount0 << " & "
677                      << *TripCount1 << " are "
678                      << (TripCount0 == TripCount1 ? "identical" : "different")
679                      << "\n");
680
681    return (TripCount0 == TripCount1);
682  }
683
684  /// Walk each set of control flow equivalent fusion candidates and attempt to
685  /// fuse them. This does a single linear traversal of all candidates in the
686  /// set. The conditions for legal fusion are checked at this point. If a pair
687  /// of fusion candidates passes all legality checks, they are fused together
688  /// and a new fusion candidate is created and added to the FusionCandidateSet.
689  /// The original fusion candidates are then removed, as they are no longer
690  /// valid.
691  bool fuseCandidates() {
692    bool Fused = false;
693    LLVM_DEBUG(printFusionCandidates(FusionCandidates));
694    for (auto &CandidateSet : FusionCandidates) {
695      if (CandidateSet.size() < 2)
696        continue;
697
698      LLVM_DEBUG(dbgs() << "Attempting fusion on Candidate Set:\n"
699                        << CandidateSet << "\n");
700
701      for (auto FC0 = CandidateSet.begin(); FC0 != CandidateSet.end(); ++FC0) {
702        assert(!LDT.isRemovedLoop(FC0->L) &&
703               "Should not have removed loops in CandidateSet!");
704        auto FC1 = FC0;
705        for (++FC1; FC1 != CandidateSet.end(); ++FC1) {
706          assert(!LDT.isRemovedLoop(FC1->L) &&
707                 "Should not have removed loops in CandidateSet!");
708
709          LLVM_DEBUG(dbgs() << "Attempting to fuse candidate \n"; FC0->dump();
710                     dbgs() << " with\n"; FC1->dump(); dbgs() << "\n");
711
712          FC0->verify();
713          FC1->verify();
714
715          if (!identicalTripCounts(*FC0, *FC1)) {
716            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical trip "
717                                 "counts. Not fusing.\n");
718            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
719                                                       NonEqualTripCount);
720            continue;
721          }
722
723          if (!isAdjacent(*FC0, *FC1)) {
724            LLVM_DEBUG(dbgs()
725                       << "Fusion candidates are not adjacent. Not fusing.\n");
726            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1, NonAdjacent);
727            continue;
728          }
729
730          // Ensure that FC0 and FC1 have identical guards.
731          // If one (or both) are not guarded, this check is not necessary.
732          if (FC0->GuardBranch && FC1->GuardBranch &&
733              !haveIdenticalGuards(*FC0, *FC1)) {
734            LLVM_DEBUG(dbgs() << "Fusion candidates do not have identical "
735                                 "guards. Not Fusing.\n");
736            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
737                                                       NonIdenticalGuards);
738            continue;
739          }
740
741          // The following three checks look for empty blocks in FC0 and FC1. If
742          // any of these blocks are non-empty, we do not fuse. This is done
743          // because we currently do not have the safety checks to determine if
744          // it is safe to move the blocks past other blocks in the loop. Once
745          // these checks are added, these conditions can be relaxed.
746          if (!isEmptyPreheader(*FC1)) {
747            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty "
748                                 "preheader. Not fusing.\n");
749            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
750                                                       NonEmptyPreheader);
751            continue;
752          }
753
754          if (FC0->GuardBranch && !isEmptyExitBlock(*FC0)) {
755            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty exit "
756                                 "block. Not fusing.\n");
757            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
758                                                       NonEmptyExitBlock);
759            continue;
760          }
761
762          if (FC1->GuardBranch && !isEmptyGuardBlock(*FC1)) {
763            LLVM_DEBUG(dbgs() << "Fusion candidate does not have empty guard "
764                                 "block. Not fusing.\n");
765            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
766                                                       NonEmptyGuardBlock);
767            continue;
768          }
769
770          // Check the dependencies across the loops and do not fuse if it would
771          // violate them.
772          if (!dependencesAllowFusion(*FC0, *FC1)) {
773            LLVM_DEBUG(dbgs() << "Memory dependencies do not allow fusion!\n");
774            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
775                                                       InvalidDependencies);
776            continue;
777          }
778
779          bool BeneficialToFuse = isBeneficialFusion(*FC0, *FC1);
780          LLVM_DEBUG(dbgs()
781                     << "\tFusion appears to be "
782                     << (BeneficialToFuse ? "" : "un") << "profitable!\n");
783          if (!BeneficialToFuse) {
784            reportLoopFusion<OptimizationRemarkMissed>(*FC0, *FC1,
785                                                       FusionNotBeneficial);
786            continue;
787          }
788          // All analysis has completed and has determined that fusion is legal
789          // and profitable. At this point, start transforming the code and
790          // perform fusion.
791
792          LLVM_DEBUG(dbgs() << "\tFusion is performed: " << *FC0 << " and "
793                            << *FC1 << "\n");
794
795          // Report fusion to the Optimization Remarks.
796          // Note this needs to be done *before* performFusion because
797          // performFusion will change the original loops, making it not
798          // possible to identify them after fusion is complete.
799          reportLoopFusion<OptimizationRemark>(*FC0, *FC1, FuseCounter);
800
801          FusionCandidate FusedCand(performFusion(*FC0, *FC1), &DT, &PDT, ORE);
802          FusedCand.verify();
803          assert(FusedCand.isEligibleForFusion(SE) &&
804                 "Fused candidate should be eligible for fusion!");
805
806          // Notify the loop-depth-tree that these loops are not valid objects
807          LDT.removeLoop(FC1->L);
808
809          CandidateSet.erase(FC0);
810          CandidateSet.erase(FC1);
811
812          auto InsertPos = CandidateSet.insert(FusedCand);
813
814          assert(InsertPos.second &&
815                 "Unable to insert TargetCandidate in CandidateSet!");
816
817          // Reset FC0 and FC1 the new (fused) candidate. Subsequent iterations
818          // of the FC1 loop will attempt to fuse the new (fused) loop with the
819          // remaining candidates in the current candidate set.
820          FC0 = FC1 = InsertPos.first;
821
822          LLVM_DEBUG(dbgs() << "Candidate Set (after fusion): " << CandidateSet
823                            << "\n");
824
825          Fused = true;
826        }
827      }
828    }
829    return Fused;
830  }
831
832  /// Rewrite all additive recurrences in a SCEV to use a new loop.
833  class AddRecLoopReplacer : public SCEVRewriteVisitor<AddRecLoopReplacer> {
834  public:
835    AddRecLoopReplacer(ScalarEvolution &SE, const Loop &OldL, const Loop &NewL,
836                       bool UseMax = true)
837        : SCEVRewriteVisitor(SE), Valid(true), UseMax(UseMax), OldL(OldL),
838          NewL(NewL) {}
839
840    const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
841      const Loop *ExprL = Expr->getLoop();
842      SmallVector<const SCEV *, 2> Operands;
843      if (ExprL == &OldL) {
844        Operands.append(Expr->op_begin(), Expr->op_end());
845        return SE.getAddRecExpr(Operands, &NewL, Expr->getNoWrapFlags());
846      }
847
848      if (OldL.contains(ExprL)) {
849        bool Pos = SE.isKnownPositive(Expr->getStepRecurrence(SE));
850        if (!UseMax || !Pos || !Expr->isAffine()) {
851          Valid = false;
852          return Expr;
853        }
854        return visit(Expr->getStart());
855      }
856
857      for (const SCEV *Op : Expr->operands())
858        Operands.push_back(visit(Op));
859      return SE.getAddRecExpr(Operands, ExprL, Expr->getNoWrapFlags());
860    }
861
862    bool wasValidSCEV() const { return Valid; }
863
864  private:
865    bool Valid, UseMax;
866    const Loop &OldL, &NewL;
867  };
868
869  /// Return false if the access functions of \p I0 and \p I1 could cause
870  /// a negative dependence.
871  bool accessDiffIsPositive(const Loop &L0, const Loop &L1, Instruction &I0,
872                            Instruction &I1, bool EqualIsInvalid) {
873    Value *Ptr0 = getLoadStorePointerOperand(&I0);
874    Value *Ptr1 = getLoadStorePointerOperand(&I1);
875    if (!Ptr0 || !Ptr1)
876      return false;
877
878    const SCEV *SCEVPtr0 = SE.getSCEVAtScope(Ptr0, &L0);
879    const SCEV *SCEVPtr1 = SE.getSCEVAtScope(Ptr1, &L1);
880#ifndef NDEBUG
881    if (VerboseFusionDebugging)
882      LLVM_DEBUG(dbgs() << "    Access function check: " << *SCEVPtr0 << " vs "
883                        << *SCEVPtr1 << "\n");
884#endif
885    AddRecLoopReplacer Rewriter(SE, L0, L1);
886    SCEVPtr0 = Rewriter.visit(SCEVPtr0);
887#ifndef NDEBUG
888    if (VerboseFusionDebugging)
889      LLVM_DEBUG(dbgs() << "    Access function after rewrite: " << *SCEVPtr0
890                        << " [Valid: " << Rewriter.wasValidSCEV() << "]\n");
891#endif
892    if (!Rewriter.wasValidSCEV())
893      return false;
894
895    // TODO: isKnownPredicate doesnt work well when one SCEV is loop carried (by
896    //       L0) and the other is not. We could check if it is monotone and test
897    //       the beginning and end value instead.
898
899    BasicBlock *L0Header = L0.getHeader();
900    auto HasNonLinearDominanceRelation = [&](const SCEV *S) {
901      const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S);
902      if (!AddRec)
903        return false;
904      return !DT.dominates(L0Header, AddRec->getLoop()->getHeader()) &&
905             !DT.dominates(AddRec->getLoop()->getHeader(), L0Header);
906    };
907    if (SCEVExprContains(SCEVPtr1, HasNonLinearDominanceRelation))
908      return false;
909
910    ICmpInst::Predicate Pred =
911        EqualIsInvalid ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_SGE;
912    bool IsAlwaysGE = SE.isKnownPredicate(Pred, SCEVPtr0, SCEVPtr1);
913#ifndef NDEBUG
914    if (VerboseFusionDebugging)
915      LLVM_DEBUG(dbgs() << "    Relation: " << *SCEVPtr0
916                        << (IsAlwaysGE ? "  >=  " : "  may <  ") << *SCEVPtr1
917                        << "\n");
918#endif
919    return IsAlwaysGE;
920  }
921
922  /// Return true if the dependences between @p I0 (in @p L0) and @p I1 (in
923  /// @p L1) allow loop fusion of @p L0 and @p L1. The dependence analyses
924  /// specified by @p DepChoice are used to determine this.
925  bool dependencesAllowFusion(const FusionCandidate &FC0,
926                              const FusionCandidate &FC1, Instruction &I0,
927                              Instruction &I1, bool AnyDep,
928                              FusionDependenceAnalysisChoice DepChoice) {
929#ifndef NDEBUG
930    if (VerboseFusionDebugging) {
931      LLVM_DEBUG(dbgs() << "Check dep: " << I0 << " vs " << I1 << " : "
932                        << DepChoice << "\n");
933    }
934#endif
935    switch (DepChoice) {
936    case FUSION_DEPENDENCE_ANALYSIS_SCEV:
937      return accessDiffIsPositive(*FC0.L, *FC1.L, I0, I1, AnyDep);
938    case FUSION_DEPENDENCE_ANALYSIS_DA: {
939      auto DepResult = DI.depends(&I0, &I1, true);
940      if (!DepResult)
941        return true;
942#ifndef NDEBUG
943      if (VerboseFusionDebugging) {
944        LLVM_DEBUG(dbgs() << "DA res: "; DepResult->dump(dbgs());
945                   dbgs() << " [#l: " << DepResult->getLevels() << "][Ordered: "
946                          << (DepResult->isOrdered() ? "true" : "false")
947                          << "]\n");
948        LLVM_DEBUG(dbgs() << "DepResult Levels: " << DepResult->getLevels()
949                          << "\n");
950      }
951#endif
952
953      if (DepResult->getNextPredecessor() || DepResult->getNextSuccessor())
954        LLVM_DEBUG(
955            dbgs() << "TODO: Implement pred/succ dependence handling!\n");
956
957      // TODO: Can we actually use the dependence info analysis here?
958      return false;
959    }
960
961    case FUSION_DEPENDENCE_ANALYSIS_ALL:
962      return dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
963                                    FUSION_DEPENDENCE_ANALYSIS_SCEV) ||
964             dependencesAllowFusion(FC0, FC1, I0, I1, AnyDep,
965                                    FUSION_DEPENDENCE_ANALYSIS_DA);
966    }
967
968    llvm_unreachable("Unknown fusion dependence analysis choice!");
969  }
970
971  /// Perform a dependence check and return if @p FC0 and @p FC1 can be fused.
972  bool dependencesAllowFusion(const FusionCandidate &FC0,
973                              const FusionCandidate &FC1) {
974    LLVM_DEBUG(dbgs() << "Check if " << FC0 << " can be fused with " << FC1
975                      << "\n");
976    assert(FC0.L->getLoopDepth() == FC1.L->getLoopDepth());
977    assert(DT.dominates(FC0.getEntryBlock(), FC1.getEntryBlock()));
978
979    for (Instruction *WriteL0 : FC0.MemWrites) {
980      for (Instruction *WriteL1 : FC1.MemWrites)
981        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
982                                    /* AnyDep */ false,
983                                    FusionDependenceAnalysis)) {
984          InvalidDependencies++;
985          return false;
986        }
987      for (Instruction *ReadL1 : FC1.MemReads)
988        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *ReadL1,
989                                    /* AnyDep */ false,
990                                    FusionDependenceAnalysis)) {
991          InvalidDependencies++;
992          return false;
993        }
994    }
995
996    for (Instruction *WriteL1 : FC1.MemWrites) {
997      for (Instruction *WriteL0 : FC0.MemWrites)
998        if (!dependencesAllowFusion(FC0, FC1, *WriteL0, *WriteL1,
999                                    /* AnyDep */ false,
1000                                    FusionDependenceAnalysis)) {
1001          InvalidDependencies++;
1002          return false;
1003        }
1004      for (Instruction *ReadL0 : FC0.MemReads)
1005        if (!dependencesAllowFusion(FC0, FC1, *ReadL0, *WriteL1,
1006                                    /* AnyDep */ false,
1007                                    FusionDependenceAnalysis)) {
1008          InvalidDependencies++;
1009          return false;
1010        }
1011    }
1012
1013    // Walk through all uses in FC1. For each use, find the reaching def. If the
1014    // def is located in FC0 then it is is not safe to fuse.
1015    for (BasicBlock *BB : FC1.L->blocks())
1016      for (Instruction &I : *BB)
1017        for (auto &Op : I.operands())
1018          if (Instruction *Def = dyn_cast<Instruction>(Op))
1019            if (FC0.L->contains(Def->getParent())) {
1020              InvalidDependencies++;
1021              return false;
1022            }
1023
1024    return true;
1025  }
1026
1027  /// Determine if two fusion candidates are adjacent in the CFG.
1028  ///
1029  /// This method will determine if there are additional basic blocks in the CFG
1030  /// between the exit of \p FC0 and the entry of \p FC1.
1031  /// If the two candidates are guarded loops, then it checks whether the
1032  /// non-loop successor of the \p FC0 guard branch is the entry block of \p
1033  /// FC1. If not, then the loops are not adjacent. If the two candidates are
1034  /// not guarded loops, then it checks whether the exit block of \p FC0 is the
1035  /// preheader of \p FC1.
1036  bool isAdjacent(const FusionCandidate &FC0,
1037                  const FusionCandidate &FC1) const {
1038    // If the successor of the guard branch is FC1, then the loops are adjacent
1039    if (FC0.GuardBranch)
1040      return FC0.getNonLoopBlock() == FC1.getEntryBlock();
1041    else
1042      return FC0.ExitBlock == FC1.getEntryBlock();
1043  }
1044
1045  /// Determine if two fusion candidates have identical guards
1046  ///
1047  /// This method will determine if two fusion candidates have the same guards.
1048  /// The guards are considered the same if:
1049  ///   1. The instructions to compute the condition used in the compare are
1050  ///      identical.
1051  ///   2. The successors of the guard have the same flow into/around the loop.
1052  /// If the compare instructions are identical, then the first successor of the
1053  /// guard must go to the same place (either the preheader of the loop or the
1054  /// NonLoopBlock). In other words, the the first successor of both loops must
1055  /// both go into the loop (i.e., the preheader) or go around the loop (i.e.,
1056  /// the NonLoopBlock). The same must be true for the second successor.
1057  bool haveIdenticalGuards(const FusionCandidate &FC0,
1058                           const FusionCandidate &FC1) const {
1059    assert(FC0.GuardBranch && FC1.GuardBranch &&
1060           "Expecting FC0 and FC1 to be guarded loops.");
1061
1062    if (auto FC0CmpInst =
1063            dyn_cast<Instruction>(FC0.GuardBranch->getCondition()))
1064      if (auto FC1CmpInst =
1065              dyn_cast<Instruction>(FC1.GuardBranch->getCondition()))
1066        if (!FC0CmpInst->isIdenticalTo(FC1CmpInst))
1067          return false;
1068
1069    // The compare instructions are identical.
1070    // Now make sure the successor of the guards have the same flow into/around
1071    // the loop
1072    if (FC0.GuardBranch->getSuccessor(0) == FC0.Preheader)
1073      return (FC1.GuardBranch->getSuccessor(0) == FC1.Preheader);
1074    else
1075      return (FC1.GuardBranch->getSuccessor(1) == FC1.Preheader);
1076  }
1077
1078  /// Check that the guard for \p FC *only* contains the cmp/branch for the
1079  /// guard.
1080  /// Once we are able to handle intervening code, any code in the guard block
1081  /// for FC1 will need to be treated as intervening code and checked whether
1082  /// it can safely move around the loops.
1083  bool isEmptyGuardBlock(const FusionCandidate &FC) const {
1084    assert(FC.GuardBranch && "Expecting a fusion candidate with guard branch.");
1085    if (auto *CmpInst = dyn_cast<Instruction>(FC.GuardBranch->getCondition())) {
1086      auto *GuardBlock = FC.GuardBranch->getParent();
1087      // If the generation of the cmp value is in GuardBlock, then the size of
1088      // the guard block should be 2 (cmp + branch). If the generation of the
1089      // cmp value is in a different block, then the size of the guard block
1090      // should only be 1.
1091      if (CmpInst->getParent() == GuardBlock)
1092        return GuardBlock->size() == 2;
1093      else
1094        return GuardBlock->size() == 1;
1095    }
1096
1097    return false;
1098  }
1099
1100  bool isEmptyPreheader(const FusionCandidate &FC) const {
1101    assert(FC.Preheader && "Expecting a valid preheader");
1102    return FC.Preheader->size() == 1;
1103  }
1104
1105  bool isEmptyExitBlock(const FusionCandidate &FC) const {
1106    assert(FC.ExitBlock && "Expecting a valid exit block");
1107    return FC.ExitBlock->size() == 1;
1108  }
1109
1110  /// Simplify the condition of the latch branch of \p FC to true, when both of
1111  /// its successors are the same.
1112  void simplifyLatchBranch(const FusionCandidate &FC) const {
1113    BranchInst *FCLatchBranch = dyn_cast<BranchInst>(FC.Latch->getTerminator());
1114    if (FCLatchBranch) {
1115      assert(FCLatchBranch->isConditional() &&
1116             FCLatchBranch->getSuccessor(0) == FCLatchBranch->getSuccessor(1) &&
1117             "Expecting the two successors of FCLatchBranch to be the same");
1118      FCLatchBranch->setCondition(
1119          llvm::ConstantInt::getTrue(FCLatchBranch->getCondition()->getType()));
1120    }
1121  }
1122
1123  /// Move instructions from FC0.Latch to FC1.Latch. If FC0.Latch has an unique
1124  /// successor, then merge FC0.Latch with its unique successor.
1125  void mergeLatch(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1126    moveInstsBottomUp(*FC0.Latch, *FC1.Latch, DT, PDT, DI);
1127    if (BasicBlock *Succ = FC0.Latch->getUniqueSuccessor()) {
1128      MergeBlockIntoPredecessor(Succ, &DTU, &LI);
1129      DTU.flush();
1130    }
1131  }
1132
1133  /// Fuse two fusion candidates, creating a new fused loop.
1134  ///
1135  /// This method contains the mechanics of fusing two loops, represented by \p
1136  /// FC0 and \p FC1. It is assumed that \p FC0 dominates \p FC1 and \p FC1
1137  /// postdominates \p FC0 (making them control flow equivalent). It also
1138  /// assumes that the other conditions for fusion have been met: adjacent,
1139  /// identical trip counts, and no negative distance dependencies exist that
1140  /// would prevent fusion. Thus, there is no checking for these conditions in
1141  /// this method.
1142  ///
1143  /// Fusion is performed by rewiring the CFG to update successor blocks of the
1144  /// components of tho loop. Specifically, the following changes are done:
1145  ///
1146  ///   1. The preheader of \p FC1 is removed as it is no longer necessary
1147  ///   (because it is currently only a single statement block).
1148  ///   2. The latch of \p FC0 is modified to jump to the header of \p FC1.
1149  ///   3. The latch of \p FC1 i modified to jump to the header of \p FC0.
1150  ///   4. All blocks from \p FC1 are removed from FC1 and added to FC0.
1151  ///
1152  /// All of these modifications are done with dominator tree updates, thus
1153  /// keeping the dominator (and post dominator) information up-to-date.
1154  ///
1155  /// This can be improved in the future by actually merging blocks during
1156  /// fusion. For example, the preheader of \p FC1 can be merged with the
1157  /// preheader of \p FC0. This would allow loops with more than a single
1158  /// statement in the preheader to be fused. Similarly, the latch blocks of the
1159  /// two loops could also be fused into a single block. This will require
1160  /// analysis to prove it is safe to move the contents of the block past
1161  /// existing code, which currently has not been implemented.
1162  Loop *performFusion(const FusionCandidate &FC0, const FusionCandidate &FC1) {
1163    assert(FC0.isValid() && FC1.isValid() &&
1164           "Expecting valid fusion candidates");
1165
1166    LLVM_DEBUG(dbgs() << "Fusion Candidate 0: \n"; FC0.dump();
1167               dbgs() << "Fusion Candidate 1: \n"; FC1.dump(););
1168
1169    // Fusing guarded loops is handled slightly differently than non-guarded
1170    // loops and has been broken out into a separate method instead of trying to
1171    // intersperse the logic within a single method.
1172    if (FC0.GuardBranch)
1173      return fuseGuardedLoops(FC0, FC1);
1174
1175    assert(FC1.Preheader == FC0.ExitBlock);
1176    assert(FC1.Preheader->size() == 1 &&
1177           FC1.Preheader->getSingleSuccessor() == FC1.Header);
1178
1179    // Remember the phi nodes originally in the header of FC0 in order to rewire
1180    // them later. However, this is only necessary if the new loop carried
1181    // values might not dominate the exiting branch. While we do not generally
1182    // test if this is the case but simply insert intermediate phi nodes, we
1183    // need to make sure these intermediate phi nodes have different
1184    // predecessors. To this end, we filter the special case where the exiting
1185    // block is the latch block of the first loop. Nothing needs to be done
1186    // anyway as all loop carried values dominate the latch and thereby also the
1187    // exiting branch.
1188    SmallVector<PHINode *, 8> OriginalFC0PHIs;
1189    if (FC0.ExitingBlock != FC0.Latch)
1190      for (PHINode &PHI : FC0.Header->phis())
1191        OriginalFC0PHIs.push_back(&PHI);
1192
1193    // Replace incoming blocks for header PHIs first.
1194    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1195    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1196
1197    // Then modify the control flow and update DT and PDT.
1198    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1199
1200    // The old exiting block of the first loop (FC0) has to jump to the header
1201    // of the second as we need to execute the code in the second header block
1202    // regardless of the trip count. That is, if the trip count is 0, so the
1203    // back edge is never taken, we still have to execute both loop headers,
1204    // especially (but not only!) if the second is a do-while style loop.
1205    // However, doing so might invalidate the phi nodes of the first loop as
1206    // the new values do only need to dominate their latch and not the exiting
1207    // predicate. To remedy this potential problem we always introduce phi
1208    // nodes in the header of the second loop later that select the loop carried
1209    // value, if the second header was reached through an old latch of the
1210    // first, or undef otherwise. This is sound as exiting the first implies the
1211    // second will exit too, __without__ taking the back-edge. [Their
1212    // trip-counts are equal after all.
1213    // KB: Would this sequence be simpler to just just make FC0.ExitingBlock go
1214    // to FC1.Header? I think this is basically what the three sequences are
1215    // trying to accomplish; however, doing this directly in the CFG may mean
1216    // the DT/PDT becomes invalid
1217    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC1.Preheader,
1218                                                         FC1.Header);
1219    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1220        DominatorTree::Delete, FC0.ExitingBlock, FC1.Preheader));
1221    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1222        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1223
1224    // The pre-header of L1 is not necessary anymore.
1225    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1226    FC1.Preheader->getTerminator()->eraseFromParent();
1227    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1228    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1229        DominatorTree::Delete, FC1.Preheader, FC1.Header));
1230
1231    // Moves the phi nodes from the second to the first loops header block.
1232    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1233      if (SE.isSCEVable(PHI->getType()))
1234        SE.forgetValue(PHI);
1235      if (PHI->hasNUsesOrMore(1))
1236        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1237      else
1238        PHI->eraseFromParent();
1239    }
1240
1241    // Introduce new phi nodes in the second loop header to ensure
1242    // exiting the first and jumping to the header of the second does not break
1243    // the SSA property of the phis originally in the first loop. See also the
1244    // comment above.
1245    Instruction *L1HeaderIP = &FC1.Header->front();
1246    for (PHINode *LCPHI : OriginalFC0PHIs) {
1247      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1248      assert(L1LatchBBIdx >= 0 &&
1249             "Expected loop carried value to be rewired at this point!");
1250
1251      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1252
1253      PHINode *L1HeaderPHI = PHINode::Create(
1254          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1255      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1256      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1257                               FC0.ExitingBlock);
1258
1259      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1260    }
1261
1262    // Replace latch terminator destinations.
1263    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1264    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1265
1266    // Change the condition of FC0 latch branch to true, as both successors of
1267    // the branch are the same.
1268    simplifyLatchBranch(FC0);
1269
1270    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1271    // performed the updates above.
1272    if (FC0.Latch != FC0.ExitingBlock)
1273      TreeUpdates.emplace_back(DominatorTree::UpdateType(
1274          DominatorTree::Insert, FC0.Latch, FC1.Header));
1275
1276    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1277                                                       FC0.Latch, FC0.Header));
1278    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1279                                                       FC1.Latch, FC0.Header));
1280    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1281                                                       FC1.Latch, FC1.Header));
1282
1283    // Update DT/PDT
1284    DTU.applyUpdates(TreeUpdates);
1285
1286    LI.removeBlock(FC1.Preheader);
1287    DTU.deleteBB(FC1.Preheader);
1288    DTU.flush();
1289
1290    // Is there a way to keep SE up-to-date so we don't need to forget the loops
1291    // and rebuild the information in subsequent passes of fusion?
1292    // Note: Need to forget the loops before merging the loop latches, as
1293    // mergeLatch may remove the only block in FC1.
1294    SE.forgetLoop(FC1.L);
1295    SE.forgetLoop(FC0.L);
1296
1297    // Move instructions from FC0.Latch to FC1.Latch.
1298    // Note: mergeLatch requires an updated DT.
1299    mergeLatch(FC0, FC1);
1300
1301    // Merge the loops.
1302    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1303                                        FC1.L->block_end());
1304    for (BasicBlock *BB : Blocks) {
1305      FC0.L->addBlockEntry(BB);
1306      FC1.L->removeBlockFromLoop(BB);
1307      if (LI.getLoopFor(BB) != FC1.L)
1308        continue;
1309      LI.changeLoopFor(BB, FC0.L);
1310    }
1311    while (!FC1.L->empty()) {
1312      const auto &ChildLoopIt = FC1.L->begin();
1313      Loop *ChildLoop = *ChildLoopIt;
1314      FC1.L->removeChildLoop(ChildLoopIt);
1315      FC0.L->addChildLoop(ChildLoop);
1316    }
1317
1318    // Delete the now empty loop L1.
1319    LI.erase(FC1.L);
1320
1321#ifndef NDEBUG
1322    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1323    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1324    assert(PDT.verify());
1325    LI.verify(DT);
1326    SE.verify();
1327#endif
1328
1329    LLVM_DEBUG(dbgs() << "Fusion done:\n");
1330
1331    return FC0.L;
1332  }
1333
1334  /// Report details on loop fusion opportunities.
1335  ///
1336  /// This template function can be used to report both successful and missed
1337  /// loop fusion opportunities, based on the RemarkKind. The RemarkKind should
1338  /// be one of:
1339  ///   - OptimizationRemarkMissed to report when loop fusion is unsuccessful
1340  ///     given two valid fusion candidates.
1341  ///   - OptimizationRemark to report successful fusion of two fusion
1342  ///     candidates.
1343  /// The remarks will be printed using the form:
1344  ///    <path/filename>:<line number>:<column number>: [<function name>]:
1345  ///       <Cand1 Preheader> and <Cand2 Preheader>: <Stat Description>
1346  template <typename RemarkKind>
1347  void reportLoopFusion(const FusionCandidate &FC0, const FusionCandidate &FC1,
1348                        llvm::Statistic &Stat) {
1349    assert(FC0.Preheader && FC1.Preheader &&
1350           "Expecting valid fusion candidates");
1351    using namespace ore;
1352    ++Stat;
1353    ORE.emit(RemarkKind(DEBUG_TYPE, Stat.getName(), FC0.L->getStartLoc(),
1354                        FC0.Preheader)
1355             << "[" << FC0.Preheader->getParent()->getName()
1356             << "]: " << NV("Cand1", StringRef(FC0.Preheader->getName()))
1357             << " and " << NV("Cand2", StringRef(FC1.Preheader->getName()))
1358             << ": " << Stat.getDesc());
1359  }
1360
1361  /// Fuse two guarded fusion candidates, creating a new fused loop.
1362  ///
1363  /// Fusing guarded loops is handled much the same way as fusing non-guarded
1364  /// loops. The rewiring of the CFG is slightly different though, because of
1365  /// the presence of the guards around the loops and the exit blocks after the
1366  /// loop body. As such, the new loop is rewired as follows:
1367  ///    1. Keep the guard branch from FC0 and use the non-loop block target
1368  /// from the FC1 guard branch.
1369  ///    2. Remove the exit block from FC0 (this exit block should be empty
1370  /// right now).
1371  ///    3. Remove the guard branch for FC1
1372  ///    4. Remove the preheader for FC1.
1373  /// The exit block successor for the latch of FC0 is updated to be the header
1374  /// of FC1 and the non-exit block successor of the latch of FC1 is updated to
1375  /// be the header of FC0, thus creating the fused loop.
1376  Loop *fuseGuardedLoops(const FusionCandidate &FC0,
1377                         const FusionCandidate &FC1) {
1378    assert(FC0.GuardBranch && FC1.GuardBranch && "Expecting guarded loops");
1379
1380    BasicBlock *FC0GuardBlock = FC0.GuardBranch->getParent();
1381    BasicBlock *FC1GuardBlock = FC1.GuardBranch->getParent();
1382    BasicBlock *FC0NonLoopBlock = FC0.getNonLoopBlock();
1383    BasicBlock *FC1NonLoopBlock = FC1.getNonLoopBlock();
1384
1385    assert(FC0NonLoopBlock == FC1GuardBlock && "Loops are not adjacent");
1386
1387    SmallVector<DominatorTree::UpdateType, 8> TreeUpdates;
1388
1389    ////////////////////////////////////////////////////////////////////////////
1390    // Update the Loop Guard
1391    ////////////////////////////////////////////////////////////////////////////
1392    // The guard for FC0 is updated to guard both FC0 and FC1. This is done by
1393    // changing the NonLoopGuardBlock for FC0 to the NonLoopGuardBlock for FC1.
1394    // Thus, one path from the guard goes to the preheader for FC0 (and thus
1395    // executes the new fused loop) and the other path goes to the NonLoopBlock
1396    // for FC1 (where FC1 guard would have gone if FC1 was not executed).
1397    FC0.GuardBranch->replaceUsesOfWith(FC0NonLoopBlock, FC1NonLoopBlock);
1398    FC0.ExitBlock->getTerminator()->replaceUsesOfWith(FC1GuardBlock,
1399                                                      FC1.Header);
1400
1401    // The guard of FC1 is not necessary anymore.
1402    FC1.GuardBranch->eraseFromParent();
1403    new UnreachableInst(FC1GuardBlock->getContext(), FC1GuardBlock);
1404
1405    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1406        DominatorTree::Delete, FC1GuardBlock, FC1.Preheader));
1407    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1408        DominatorTree::Delete, FC1GuardBlock, FC1NonLoopBlock));
1409    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1410        DominatorTree::Delete, FC0GuardBlock, FC1GuardBlock));
1411    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1412        DominatorTree::Insert, FC0GuardBlock, FC1NonLoopBlock));
1413
1414    assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1415           "Expecting guard block to have no predecessors");
1416    assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1417           "Expecting guard block to have no successors");
1418
1419    // Remember the phi nodes originally in the header of FC0 in order to rewire
1420    // them later. However, this is only necessary if the new loop carried
1421    // values might not dominate the exiting branch. While we do not generally
1422    // test if this is the case but simply insert intermediate phi nodes, we
1423    // need to make sure these intermediate phi nodes have different
1424    // predecessors. To this end, we filter the special case where the exiting
1425    // block is the latch block of the first loop. Nothing needs to be done
1426    // anyway as all loop carried values dominate the latch and thereby also the
1427    // exiting branch.
1428    // KB: This is no longer necessary because FC0.ExitingBlock == FC0.Latch
1429    // (because the loops are rotated. Thus, nothing will ever be added to
1430    // OriginalFC0PHIs.
1431    SmallVector<PHINode *, 8> OriginalFC0PHIs;
1432    if (FC0.ExitingBlock != FC0.Latch)
1433      for (PHINode &PHI : FC0.Header->phis())
1434        OriginalFC0PHIs.push_back(&PHI);
1435
1436    assert(OriginalFC0PHIs.empty() && "Expecting OriginalFC0PHIs to be empty!");
1437
1438    // Replace incoming blocks for header PHIs first.
1439    FC1.Preheader->replaceSuccessorsPhiUsesWith(FC0.Preheader);
1440    FC0.Latch->replaceSuccessorsPhiUsesWith(FC1.Latch);
1441
1442    // The old exiting block of the first loop (FC0) has to jump to the header
1443    // of the second as we need to execute the code in the second header block
1444    // regardless of the trip count. That is, if the trip count is 0, so the
1445    // back edge is never taken, we still have to execute both loop headers,
1446    // especially (but not only!) if the second is a do-while style loop.
1447    // However, doing so might invalidate the phi nodes of the first loop as
1448    // the new values do only need to dominate their latch and not the exiting
1449    // predicate. To remedy this potential problem we always introduce phi
1450    // nodes in the header of the second loop later that select the loop carried
1451    // value, if the second header was reached through an old latch of the
1452    // first, or undef otherwise. This is sound as exiting the first implies the
1453    // second will exit too, __without__ taking the back-edge (their
1454    // trip-counts are equal after all).
1455    FC0.ExitingBlock->getTerminator()->replaceUsesOfWith(FC0.ExitBlock,
1456                                                         FC1.Header);
1457
1458    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1459        DominatorTree::Delete, FC0.ExitingBlock, FC0.ExitBlock));
1460    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1461        DominatorTree::Insert, FC0.ExitingBlock, FC1.Header));
1462
1463    // Remove FC0 Exit Block
1464    // The exit block for FC0 is no longer needed since control will flow
1465    // directly to the header of FC1. Since it is an empty block, it can be
1466    // removed at this point.
1467    // TODO: In the future, we can handle non-empty exit blocks my merging any
1468    // instructions from FC0 exit block into FC1 exit block prior to removing
1469    // the block.
1470    assert(pred_begin(FC0.ExitBlock) == pred_end(FC0.ExitBlock) &&
1471           "Expecting exit block to be empty");
1472    FC0.ExitBlock->getTerminator()->eraseFromParent();
1473    new UnreachableInst(FC0.ExitBlock->getContext(), FC0.ExitBlock);
1474
1475    // Remove FC1 Preheader
1476    // The pre-header of L1 is not necessary anymore.
1477    assert(pred_begin(FC1.Preheader) == pred_end(FC1.Preheader));
1478    FC1.Preheader->getTerminator()->eraseFromParent();
1479    new UnreachableInst(FC1.Preheader->getContext(), FC1.Preheader);
1480    TreeUpdates.emplace_back(DominatorTree::UpdateType(
1481        DominatorTree::Delete, FC1.Preheader, FC1.Header));
1482
1483    // Moves the phi nodes from the second to the first loops header block.
1484    while (PHINode *PHI = dyn_cast<PHINode>(&FC1.Header->front())) {
1485      if (SE.isSCEVable(PHI->getType()))
1486        SE.forgetValue(PHI);
1487      if (PHI->hasNUsesOrMore(1))
1488        PHI->moveBefore(&*FC0.Header->getFirstInsertionPt());
1489      else
1490        PHI->eraseFromParent();
1491    }
1492
1493    // Introduce new phi nodes in the second loop header to ensure
1494    // exiting the first and jumping to the header of the second does not break
1495    // the SSA property of the phis originally in the first loop. See also the
1496    // comment above.
1497    Instruction *L1HeaderIP = &FC1.Header->front();
1498    for (PHINode *LCPHI : OriginalFC0PHIs) {
1499      int L1LatchBBIdx = LCPHI->getBasicBlockIndex(FC1.Latch);
1500      assert(L1LatchBBIdx >= 0 &&
1501             "Expected loop carried value to be rewired at this point!");
1502
1503      Value *LCV = LCPHI->getIncomingValue(L1LatchBBIdx);
1504
1505      PHINode *L1HeaderPHI = PHINode::Create(
1506          LCV->getType(), 2, LCPHI->getName() + ".afterFC0", L1HeaderIP);
1507      L1HeaderPHI->addIncoming(LCV, FC0.Latch);
1508      L1HeaderPHI->addIncoming(UndefValue::get(LCV->getType()),
1509                               FC0.ExitingBlock);
1510
1511      LCPHI->setIncomingValue(L1LatchBBIdx, L1HeaderPHI);
1512    }
1513
1514    // Update the latches
1515
1516    // Replace latch terminator destinations.
1517    FC0.Latch->getTerminator()->replaceUsesOfWith(FC0.Header, FC1.Header);
1518    FC1.Latch->getTerminator()->replaceUsesOfWith(FC1.Header, FC0.Header);
1519
1520    // Change the condition of FC0 latch branch to true, as both successors of
1521    // the branch are the same.
1522    simplifyLatchBranch(FC0);
1523
1524    // If FC0.Latch and FC0.ExitingBlock are the same then we have already
1525    // performed the updates above.
1526    if (FC0.Latch != FC0.ExitingBlock)
1527      TreeUpdates.emplace_back(DominatorTree::UpdateType(
1528          DominatorTree::Insert, FC0.Latch, FC1.Header));
1529
1530    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1531                                                       FC0.Latch, FC0.Header));
1532    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Insert,
1533                                                       FC1.Latch, FC0.Header));
1534    TreeUpdates.emplace_back(DominatorTree::UpdateType(DominatorTree::Delete,
1535                                                       FC1.Latch, FC1.Header));
1536
1537    // All done
1538    // Apply the updates to the Dominator Tree and cleanup.
1539
1540    assert(succ_begin(FC1GuardBlock) == succ_end(FC1GuardBlock) &&
1541           "FC1GuardBlock has successors!!");
1542    assert(pred_begin(FC1GuardBlock) == pred_end(FC1GuardBlock) &&
1543           "FC1GuardBlock has predecessors!!");
1544
1545    // Update DT/PDT
1546    DTU.applyUpdates(TreeUpdates);
1547
1548    LI.removeBlock(FC1.Preheader);
1549    DTU.deleteBB(FC1.Preheader);
1550    DTU.deleteBB(FC0.ExitBlock);
1551    DTU.flush();
1552
1553    // Is there a way to keep SE up-to-date so we don't need to forget the loops
1554    // and rebuild the information in subsequent passes of fusion?
1555    // Note: Need to forget the loops before merging the loop latches, as
1556    // mergeLatch may remove the only block in FC1.
1557    SE.forgetLoop(FC1.L);
1558    SE.forgetLoop(FC0.L);
1559
1560    // Move instructions from FC0.Latch to FC1.Latch.
1561    // Note: mergeLatch requires an updated DT.
1562    mergeLatch(FC0, FC1);
1563
1564    // Merge the loops.
1565    SmallVector<BasicBlock *, 8> Blocks(FC1.L->block_begin(),
1566                                        FC1.L->block_end());
1567    for (BasicBlock *BB : Blocks) {
1568      FC0.L->addBlockEntry(BB);
1569      FC1.L->removeBlockFromLoop(BB);
1570      if (LI.getLoopFor(BB) != FC1.L)
1571        continue;
1572      LI.changeLoopFor(BB, FC0.L);
1573    }
1574    while (!FC1.L->empty()) {
1575      const auto &ChildLoopIt = FC1.L->begin();
1576      Loop *ChildLoop = *ChildLoopIt;
1577      FC1.L->removeChildLoop(ChildLoopIt);
1578      FC0.L->addChildLoop(ChildLoop);
1579    }
1580
1581    // Delete the now empty loop L1.
1582    LI.erase(FC1.L);
1583
1584#ifndef NDEBUG
1585    assert(!verifyFunction(*FC0.Header->getParent(), &errs()));
1586    assert(DT.verify(DominatorTree::VerificationLevel::Fast));
1587    assert(PDT.verify());
1588    LI.verify(DT);
1589    SE.verify();
1590#endif
1591
1592    LLVM_DEBUG(dbgs() << "Fusion done:\n");
1593
1594    return FC0.L;
1595  }
1596};
1597
1598struct LoopFuseLegacy : public FunctionPass {
1599
1600  static char ID;
1601
1602  LoopFuseLegacy() : FunctionPass(ID) {
1603    initializeLoopFuseLegacyPass(*PassRegistry::getPassRegistry());
1604  }
1605
1606  void getAnalysisUsage(AnalysisUsage &AU) const override {
1607    AU.addRequiredID(LoopSimplifyID);
1608    AU.addRequired<ScalarEvolutionWrapperPass>();
1609    AU.addRequired<LoopInfoWrapperPass>();
1610    AU.addRequired<DominatorTreeWrapperPass>();
1611    AU.addRequired<PostDominatorTreeWrapperPass>();
1612    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
1613    AU.addRequired<DependenceAnalysisWrapperPass>();
1614
1615    AU.addPreserved<ScalarEvolutionWrapperPass>();
1616    AU.addPreserved<LoopInfoWrapperPass>();
1617    AU.addPreserved<DominatorTreeWrapperPass>();
1618    AU.addPreserved<PostDominatorTreeWrapperPass>();
1619  }
1620
1621  bool runOnFunction(Function &F) override {
1622    if (skipFunction(F))
1623      return false;
1624    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1625    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1626    auto &DI = getAnalysis<DependenceAnalysisWrapperPass>().getDI();
1627    auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1628    auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
1629    auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
1630
1631    const DataLayout &DL = F.getParent()->getDataLayout();
1632    LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1633    return LF.fuseLoops(F);
1634  }
1635};
1636} // namespace
1637
1638PreservedAnalyses LoopFusePass::run(Function &F, FunctionAnalysisManager &AM) {
1639  auto &LI = AM.getResult<LoopAnalysis>(F);
1640  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1641  auto &DI = AM.getResult<DependenceAnalysis>(F);
1642  auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
1643  auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
1644  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1645
1646  const DataLayout &DL = F.getParent()->getDataLayout();
1647  LoopFuser LF(LI, DT, DI, SE, PDT, ORE, DL);
1648  bool Changed = LF.fuseLoops(F);
1649  if (!Changed)
1650    return PreservedAnalyses::all();
1651
1652  PreservedAnalyses PA;
1653  PA.preserve<DominatorTreeAnalysis>();
1654  PA.preserve<PostDominatorTreeAnalysis>();
1655  PA.preserve<ScalarEvolutionAnalysis>();
1656  PA.preserve<LoopAnalysis>();
1657  return PA;
1658}
1659
1660char LoopFuseLegacy::ID = 0;
1661
1662INITIALIZE_PASS_BEGIN(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false,
1663                      false)
1664INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
1665INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1666INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1667INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1668INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1669INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1670INITIALIZE_PASS_END(LoopFuseLegacy, "loop-fusion", "Loop Fusion", false, false)
1671
1672FunctionPass *llvm::createLoopFusePass() { return new LoopFuseLegacy(); }
1673