CallSiteSplitting.cpp revision 360784
1//===- CallSiteSplitting.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a transformation that tries to split a call-site to pass
10// more constrained arguments if its argument is predicated in the control flow
11// so that we can expose better context to the later passes (e.g, inliner, jump
12// threading, or IPA-CP based function cloning, etc.).
13// As of now we support two cases :
14//
15// 1) Try to a split call-site with constrained arguments, if any constraints
16// on any argument can be found by following the single predecessors of the
17// all site's predecessors. Currently this pass only handles call-sites with 2
18// predecessors. For example, in the code below, we try to split the call-site
19// since we can predicate the argument(ptr) based on the OR condition.
20//
21// Split from :
22//   if (!ptr || c)
23//     callee(ptr);
24// to :
25//   if (!ptr)
26//     callee(null)         // set the known constant value
27//   else if (c)
28//     callee(nonnull ptr)  // set non-null attribute in the argument
29//
30// 2) We can also split a call-site based on constant incoming values of a PHI
31// For example,
32// from :
33//   Header:
34//    %c = icmp eq i32 %i1, %i2
35//    br i1 %c, label %Tail, label %TBB
36//   TBB:
37//    br label Tail%
38//   Tail:
39//    %p = phi i32 [ 0, %Header], [ 1, %TBB]
40//    call void @bar(i32 %p)
41// to
42//   Header:
43//    %c = icmp eq i32 %i1, %i2
44//    br i1 %c, label %Tail-split0, label %TBB
45//   TBB:
46//    br label %Tail-split1
47//   Tail-split0:
48//    call void @bar(i32 0)
49//    br label %Tail
50//   Tail-split1:
51//    call void @bar(i32 1)
52//    br label %Tail
53//   Tail:
54//    %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
55//
56//===----------------------------------------------------------------------===//
57
58#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
59#include "llvm/ADT/Statistic.h"
60#include "llvm/Analysis/TargetLibraryInfo.h"
61#include "llvm/Analysis/TargetTransformInfo.h"
62#include "llvm/IR/IntrinsicInst.h"
63#include "llvm/IR/PatternMatch.h"
64#include "llvm/InitializePasses.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Transforms/Scalar.h"
68#include "llvm/Transforms/Utils/BasicBlockUtils.h"
69#include "llvm/Transforms/Utils/Cloning.h"
70#include "llvm/Transforms/Utils/Local.h"
71
72using namespace llvm;
73using namespace PatternMatch;
74
75#define DEBUG_TYPE "callsite-splitting"
76
77STATISTIC(NumCallSiteSplit, "Number of call-site split");
78
79/// Only allow instructions before a call, if their CodeSize cost is below
80/// DuplicationThreshold. Those instructions need to be duplicated in all
81/// split blocks.
82static cl::opt<unsigned>
83    DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
84                         cl::desc("Only allow instructions before a call, if "
85                                  "their cost is below DuplicationThreshold"),
86                         cl::init(5));
87
88static void addNonNullAttribute(CallSite CS, Value *Op) {
89  unsigned ArgNo = 0;
90  for (auto &I : CS.args()) {
91    if (&*I == Op)
92      CS.addParamAttr(ArgNo, Attribute::NonNull);
93    ++ArgNo;
94  }
95}
96
97static void setConstantInArgument(CallSite CS, Value *Op,
98                                  Constant *ConstValue) {
99  unsigned ArgNo = 0;
100  for (auto &I : CS.args()) {
101    if (&*I == Op) {
102      // It is possible we have already added the non-null attribute to the
103      // parameter by using an earlier constraining condition.
104      CS.removeParamAttr(ArgNo, Attribute::NonNull);
105      CS.setArgument(ArgNo, ConstValue);
106    }
107    ++ArgNo;
108  }
109}
110
111static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallSite CS) {
112  assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
113  Value *Op0 = Cmp->getOperand(0);
114  unsigned ArgNo = 0;
115  for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end(); I != E;
116       ++I, ++ArgNo) {
117    // Don't consider constant or arguments that are already known non-null.
118    if (isa<Constant>(*I) || CS.paramHasAttr(ArgNo, Attribute::NonNull))
119      continue;
120
121    if (*I == Op0)
122      return true;
123  }
124  return false;
125}
126
127typedef std::pair<ICmpInst *, unsigned> ConditionTy;
128typedef SmallVector<ConditionTy, 2> ConditionsTy;
129
130/// If From has a conditional jump to To, add the condition to Conditions,
131/// if it is relevant to any argument at CS.
132static void recordCondition(CallSite CS, BasicBlock *From, BasicBlock *To,
133                            ConditionsTy &Conditions) {
134  auto *BI = dyn_cast<BranchInst>(From->getTerminator());
135  if (!BI || !BI->isConditional())
136    return;
137
138  CmpInst::Predicate Pred;
139  Value *Cond = BI->getCondition();
140  if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
141    return;
142
143  ICmpInst *Cmp = cast<ICmpInst>(Cond);
144  if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
145    if (isCondRelevantToAnyCallArgument(Cmp, CS))
146      Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
147                                     ? Pred
148                                     : Cmp->getInversePredicate()});
149}
150
151/// Record ICmp conditions relevant to any argument in CS following Pred's
152/// single predecessors. If there are conflicting conditions along a path, like
153/// x == 1 and x == 0, the first condition will be used. We stop once we reach
154/// an edge to StopAt.
155static void recordConditions(CallSite CS, BasicBlock *Pred,
156                             ConditionsTy &Conditions, BasicBlock *StopAt) {
157  BasicBlock *From = Pred;
158  BasicBlock *To = Pred;
159  SmallPtrSet<BasicBlock *, 4> Visited;
160  while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
161         (From = From->getSinglePredecessor())) {
162    recordCondition(CS, From, To, Conditions);
163    Visited.insert(From);
164    To = From;
165  }
166}
167
168static void addConditions(CallSite CS, const ConditionsTy &Conditions) {
169  for (auto &Cond : Conditions) {
170    Value *Arg = Cond.first->getOperand(0);
171    Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
172    if (Cond.second == ICmpInst::ICMP_EQ)
173      setConstantInArgument(CS, Arg, ConstVal);
174    else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
175      assert(Cond.second == ICmpInst::ICMP_NE);
176      addNonNullAttribute(CS, Arg);
177    }
178  }
179}
180
181static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
182  SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
183  assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
184  return Preds;
185}
186
187static bool canSplitCallSite(CallSite CS, TargetTransformInfo &TTI) {
188  if (CS.isConvergent() || CS.cannotDuplicate())
189    return false;
190
191  // FIXME: As of now we handle only CallInst. InvokeInst could be handled
192  // without too much effort.
193  Instruction *Instr = CS.getInstruction();
194  if (!isa<CallInst>(Instr))
195    return false;
196
197  BasicBlock *CallSiteBB = Instr->getParent();
198  // Need 2 predecessors and cannot split an edge from an IndirectBrInst.
199  SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
200  if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
201      isa<IndirectBrInst>(Preds[1]->getTerminator()))
202    return false;
203
204  // BasicBlock::canSplitPredecessors is more aggressive, so checking for
205  // BasicBlock::isEHPad as well.
206  if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
207    return false;
208
209  // Allow splitting a call-site only when the CodeSize cost of the
210  // instructions before the call is less then DuplicationThreshold. The
211  // instructions before the call will be duplicated in the split blocks and
212  // corresponding uses will be updated.
213  unsigned Cost = 0;
214  for (auto &InstBeforeCall :
215       llvm::make_range(CallSiteBB->begin(), Instr->getIterator())) {
216    Cost += TTI.getInstructionCost(&InstBeforeCall,
217                                   TargetTransformInfo::TCK_CodeSize);
218    if (Cost >= DuplicationThreshold)
219      return false;
220  }
221
222  return true;
223}
224
225static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
226                                         Value *V) {
227  Instruction *Copy = I->clone();
228  Copy->setName(I->getName());
229  Copy->insertBefore(Before);
230  if (V)
231    Copy->setOperand(0, V);
232  return Copy;
233}
234
235/// Copy mandatory `musttail` return sequence that follows original `CI`, and
236/// link it up to `NewCI` value instead:
237///
238///   * (optional) `bitcast NewCI to ...`
239///   * `ret bitcast or NewCI`
240///
241/// Insert this sequence right before `SplitBB`'s terminator, which will be
242/// cleaned up later in `splitCallSite` below.
243static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
244                               Instruction *NewCI) {
245  bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
246  auto II = std::next(CI->getIterator());
247
248  BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
249  if (BCI)
250    ++II;
251
252  ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
253  assert(RI && "`musttail` call must be followed by `ret` instruction");
254
255  Instruction *TI = SplitBB->getTerminator();
256  Value *V = NewCI;
257  if (BCI)
258    V = cloneInstForMustTail(BCI, TI, V);
259  cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
260
261  // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
262  // that prevents doing this now.
263}
264
265/// For each (predecessor, conditions from predecessors) pair, it will split the
266/// basic block containing the call site, hook it up to the predecessor and
267/// replace the call instruction with new call instructions, which contain
268/// constraints based on the conditions from their predecessors.
269/// For example, in the IR below with an OR condition, the call-site can
270/// be split. In this case, Preds for Tail is [(Header, a == null),
271/// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
272/// CallInst1, which has constraints based on the conditions from Head and
273/// CallInst2, which has constraints based on the conditions coming from TBB.
274///
275/// From :
276///
277///   Header:
278///     %c = icmp eq i32* %a, null
279///     br i1 %c %Tail, %TBB
280///   TBB:
281///     %c2 = icmp eq i32* %b, null
282///     br i1 %c %Tail, %End
283///   Tail:
284///     %ca = call i1  @callee (i32* %a, i32* %b)
285///
286///  to :
287///
288///   Header:                          // PredBB1 is Header
289///     %c = icmp eq i32* %a, null
290///     br i1 %c %Tail-split1, %TBB
291///   TBB:                             // PredBB2 is TBB
292///     %c2 = icmp eq i32* %b, null
293///     br i1 %c %Tail-split2, %End
294///   Tail-split1:
295///     %ca1 = call @callee (i32* null, i32* %b)         // CallInst1
296///    br %Tail
297///   Tail-split2:
298///     %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
299///    br %Tail
300///   Tail:
301///    %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
302///
303/// Note that in case any arguments at the call-site are constrained by its
304/// predecessors, new call-sites with more constrained arguments will be
305/// created in createCallSitesOnPredicatedArgument().
306static void splitCallSite(
307    CallSite CS,
308    const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
309    DomTreeUpdater &DTU) {
310  Instruction *Instr = CS.getInstruction();
311  BasicBlock *TailBB = Instr->getParent();
312  bool IsMustTailCall = CS.isMustTailCall();
313
314  PHINode *CallPN = nullptr;
315
316  // `musttail` calls must be followed by optional `bitcast`, and `ret`. The
317  // split blocks will be terminated right after that so there're no users for
318  // this phi in a `TailBB`.
319  if (!IsMustTailCall && !Instr->use_empty()) {
320    CallPN = PHINode::Create(Instr->getType(), Preds.size(), "phi.call");
321    CallPN->setDebugLoc(Instr->getDebugLoc());
322  }
323
324  LLVM_DEBUG(dbgs() << "split call-site : " << *Instr << " into \n");
325
326  assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
327  // ValueToValueMapTy is neither copy nor moveable, so we use a simple array
328  // here.
329  ValueToValueMapTy ValueToValueMaps[2];
330  for (unsigned i = 0; i < Preds.size(); i++) {
331    BasicBlock *PredBB = Preds[i].first;
332    BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
333        TailBB, PredBB, &*std::next(Instr->getIterator()), ValueToValueMaps[i],
334        DTU);
335    assert(SplitBlock && "Unexpected new basic block split.");
336
337    Instruction *NewCI =
338        &*std::prev(SplitBlock->getTerminator()->getIterator());
339    CallSite NewCS(NewCI);
340    addConditions(NewCS, Preds[i].second);
341
342    // Handle PHIs used as arguments in the call-site.
343    for (PHINode &PN : TailBB->phis()) {
344      unsigned ArgNo = 0;
345      for (auto &CI : CS.args()) {
346        if (&*CI == &PN) {
347          NewCS.setArgument(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
348        }
349        ++ArgNo;
350      }
351    }
352    LLVM_DEBUG(dbgs() << "    " << *NewCI << " in " << SplitBlock->getName()
353                      << "\n");
354    if (CallPN)
355      CallPN->addIncoming(NewCI, SplitBlock);
356
357    // Clone and place bitcast and return instructions before `TI`
358    if (IsMustTailCall)
359      copyMustTailReturn(SplitBlock, Instr, NewCI);
360  }
361
362  NumCallSiteSplit++;
363
364  // FIXME: remove TI in `copyMustTailReturn`
365  if (IsMustTailCall) {
366    // Remove superfluous `br` terminators from the end of the Split blocks
367    // NOTE: Removing terminator removes the SplitBlock from the TailBB's
368    // predecessors. Therefore we must get complete list of Splits before
369    // attempting removal.
370    SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
371    assert(Splits.size() == 2 && "Expected exactly 2 splits!");
372    for (unsigned i = 0; i < Splits.size(); i++) {
373      Splits[i]->getTerminator()->eraseFromParent();
374      DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}});
375    }
376
377    // Erase the tail block once done with musttail patching
378    DTU.deleteBB(TailBB);
379    return;
380  }
381
382  auto *OriginalBegin = &*TailBB->begin();
383  // Replace users of the original call with a PHI mering call-sites split.
384  if (CallPN) {
385    CallPN->insertBefore(OriginalBegin);
386    Instr->replaceAllUsesWith(CallPN);
387  }
388
389  // Remove instructions moved to split blocks from TailBB, from the duplicated
390  // call instruction to the beginning of the basic block. If an instruction
391  // has any uses, add a new PHI node to combine the values coming from the
392  // split blocks. The new PHI nodes are placed before the first original
393  // instruction, so we do not end up deleting them. By using reverse-order, we
394  // do not introduce unnecessary PHI nodes for def-use chains from the call
395  // instruction to the beginning of the block.
396  auto I = Instr->getReverseIterator();
397  while (I != TailBB->rend()) {
398    Instruction *CurrentI = &*I++;
399    if (!CurrentI->use_empty()) {
400      // If an existing PHI has users after the call, there is no need to create
401      // a new one.
402      if (isa<PHINode>(CurrentI))
403        continue;
404      PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
405      NewPN->setDebugLoc(CurrentI->getDebugLoc());
406      for (auto &Mapping : ValueToValueMaps)
407        NewPN->addIncoming(Mapping[CurrentI],
408                           cast<Instruction>(Mapping[CurrentI])->getParent());
409      NewPN->insertBefore(&*TailBB->begin());
410      CurrentI->replaceAllUsesWith(NewPN);
411    }
412    CurrentI->eraseFromParent();
413    // We are done once we handled the first original instruction in TailBB.
414    if (CurrentI == OriginalBegin)
415      break;
416  }
417}
418
419// Return true if the call-site has an argument which is a PHI with only
420// constant incoming values.
421static bool isPredicatedOnPHI(CallSite CS) {
422  Instruction *Instr = CS.getInstruction();
423  BasicBlock *Parent = Instr->getParent();
424  if (Instr != Parent->getFirstNonPHIOrDbg())
425    return false;
426
427  for (auto &BI : *Parent) {
428    if (PHINode *PN = dyn_cast<PHINode>(&BI)) {
429      for (auto &I : CS.args())
430        if (&*I == PN) {
431          assert(PN->getNumIncomingValues() == 2 &&
432                 "Unexpected number of incoming values");
433          if (PN->getIncomingBlock(0) == PN->getIncomingBlock(1))
434            return false;
435          if (PN->getIncomingValue(0) == PN->getIncomingValue(1))
436            continue;
437          if (isa<Constant>(PN->getIncomingValue(0)) &&
438              isa<Constant>(PN->getIncomingValue(1)))
439            return true;
440        }
441    }
442    break;
443  }
444  return false;
445}
446
447using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
448
449// Check if any of the arguments in CS are predicated on a PHI node and return
450// the set of predecessors we should use for splitting.
451static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallSite CS) {
452  if (!isPredicatedOnPHI(CS))
453    return {};
454
455  auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
456  return {{Preds[0], {}}, {Preds[1], {}}};
457}
458
459// Checks if any of the arguments in CS are predicated in a predecessor and
460// returns a list of predecessors with the conditions that hold on their edges
461// to CS.
462static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallSite CS,
463                                                        DomTreeUpdater &DTU) {
464  auto Preds = getTwoPredecessors(CS.getInstruction()->getParent());
465  if (Preds[0] == Preds[1])
466    return {};
467
468  // We can stop recording conditions once we reached the immediate dominator
469  // for the block containing the call site. Conditions in predecessors of the
470  // that node will be the same for all paths to the call site and splitting
471  // is not beneficial.
472  assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
473  auto *CSDTNode = DTU.getDomTree().getNode(CS.getInstruction()->getParent());
474  BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
475
476  SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
477  for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
478    ConditionsTy Conditions;
479    // Record condition on edge BB(CS) <- Pred
480    recordCondition(CS, Pred, CS.getInstruction()->getParent(), Conditions);
481    // Record conditions following Pred's single predecessors.
482    recordConditions(CS, Pred, Conditions, StopAt);
483    PredsCS.push_back({Pred, Conditions});
484  }
485
486  if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
487        return P.second.empty();
488      }))
489    return {};
490
491  return PredsCS;
492}
493
494static bool tryToSplitCallSite(CallSite CS, TargetTransformInfo &TTI,
495                               DomTreeUpdater &DTU) {
496  // Check if we can split the call site.
497  if (!CS.arg_size() || !canSplitCallSite(CS, TTI))
498    return false;
499
500  auto PredsWithConds = shouldSplitOnPredicatedArgument(CS, DTU);
501  if (PredsWithConds.empty())
502    PredsWithConds = shouldSplitOnPHIPredicatedArgument(CS);
503  if (PredsWithConds.empty())
504    return false;
505
506  splitCallSite(CS, PredsWithConds, DTU);
507  return true;
508}
509
510static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
511                                TargetTransformInfo &TTI, DominatorTree &DT) {
512
513  DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
514  bool Changed = false;
515  for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
516    BasicBlock &BB = *BI++;
517    auto II = BB.getFirstNonPHIOrDbg()->getIterator();
518    auto IE = BB.getTerminator()->getIterator();
519    // Iterate until we reach the terminator instruction. tryToSplitCallSite
520    // can replace BB's terminator in case BB is a successor of itself. In that
521    // case, IE will be invalidated and we also have to check the current
522    // terminator.
523    while (II != IE && &*II != BB.getTerminator()) {
524      Instruction *I = &*II++;
525      CallSite CS(cast<Value>(I));
526      if (!CS || isa<IntrinsicInst>(I) || isInstructionTriviallyDead(I, &TLI))
527        continue;
528
529      Function *Callee = CS.getCalledFunction();
530      if (!Callee || Callee->isDeclaration())
531        continue;
532
533      // Successful musttail call-site splits result in erased CI and erased BB.
534      // Check if such path is possible before attempting the splitting.
535      bool IsMustTail = CS.isMustTailCall();
536
537      Changed |= tryToSplitCallSite(CS, TTI, DTU);
538
539      // There're no interesting instructions after this. The call site
540      // itself might have been erased on splitting.
541      if (IsMustTail)
542        break;
543    }
544  }
545  return Changed;
546}
547
548namespace {
549struct CallSiteSplittingLegacyPass : public FunctionPass {
550  static char ID;
551  CallSiteSplittingLegacyPass() : FunctionPass(ID) {
552    initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
553  }
554
555  void getAnalysisUsage(AnalysisUsage &AU) const override {
556    AU.addRequired<TargetLibraryInfoWrapperPass>();
557    AU.addRequired<TargetTransformInfoWrapperPass>();
558    AU.addRequired<DominatorTreeWrapperPass>();
559    AU.addPreserved<DominatorTreeWrapperPass>();
560    FunctionPass::getAnalysisUsage(AU);
561  }
562
563  bool runOnFunction(Function &F) override {
564    if (skipFunction(F))
565      return false;
566
567    auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
568    auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
569    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
570    return doCallSiteSplitting(F, TLI, TTI, DT);
571  }
572};
573} // namespace
574
575char CallSiteSplittingLegacyPass::ID = 0;
576INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
577                      "Call-site splitting", false, false)
578INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
579INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
580INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
581INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
582                    "Call-site splitting", false, false)
583FunctionPass *llvm::createCallSiteSplittingPass() {
584  return new CallSiteSplittingLegacyPass();
585}
586
587PreservedAnalyses CallSiteSplittingPass::run(Function &F,
588                                             FunctionAnalysisManager &AM) {
589  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
590  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
591  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
592
593  if (!doCallSiteSplitting(F, TLI, TTI, DT))
594    return PreservedAnalyses::all();
595  PreservedAnalyses PA;
596  PA.preserve<DominatorTreeAnalysis>();
597  return PA;
598}
599