InstCombineShifts.cpp revision 360784
1251881Speter//===- InstCombineShifts.cpp ----------------------------------------------===//
2251881Speter//
3251881Speter// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4251881Speter// See https://llvm.org/LICENSE.txt for license information.
5251881Speter// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6251881Speter//
7251881Speter//===----------------------------------------------------------------------===//
8251881Speter//
9251881Speter// This file implements the visitShl, visitLShr, and visitAShr functions.
10251881Speter//
11251881Speter//===----------------------------------------------------------------------===//
12251881Speter
13251881Speter#include "InstCombineInternal.h"
14251881Speter#include "llvm/Analysis/ConstantFolding.h"
15251881Speter#include "llvm/Analysis/InstructionSimplify.h"
16251881Speter#include "llvm/IR/IntrinsicInst.h"
17251881Speter#include "llvm/IR/PatternMatch.h"
18251881Speterusing namespace llvm;
19251881Speterusing namespace PatternMatch;
20251881Speter
21251881Speter#define DEBUG_TYPE "instcombine"
22251881Speter
23251881Speter// Given pattern:
24251881Speter//   (x shiftopcode Q) shiftopcode K
25251881Speter// we should rewrite it as
26251881Speter//   x shiftopcode (Q+K)  iff (Q+K) u< bitwidth(x) and
27251881Speter//
28251881Speter// This is valid for any shift, but they must be identical, and we must be
29251881Speter// careful in case we have (zext(Q)+zext(K)) and look past extensions,
30251881Speter// (Q+K) must not overflow or else (Q+K) u< bitwidth(x) is bogus.
31251881Speter//
32251881Speter// AnalyzeForSignBitExtraction indicates that we will only analyze whether this
33251881Speter// pattern has any 2 right-shifts that sum to 1 less than original bit width.
34251881SpeterValue *InstCombiner::reassociateShiftAmtsOfTwoSameDirectionShifts(
35251881Speter    BinaryOperator *Sh0, const SimplifyQuery &SQ,
36251881Speter    bool AnalyzeForSignBitExtraction) {
37251881Speter  // Look for a shift of some instruction, ignore zext of shift amount if any.
38251881Speter  Instruction *Sh0Op0;
39251881Speter  Value *ShAmt0;
40251881Speter  if (!match(Sh0,
41251881Speter             m_Shift(m_Instruction(Sh0Op0), m_ZExtOrSelf(m_Value(ShAmt0)))))
42251881Speter    return nullptr;
43251881Speter
44251881Speter  // If there is a truncation between the two shifts, we must make note of it
45251881Speter  // and look through it. The truncation imposes additional constraints on the
46251881Speter  // transform.
47251881Speter  Instruction *Sh1;
48251881Speter  Value *Trunc = nullptr;
49251881Speter  match(Sh0Op0,
50        m_CombineOr(m_CombineAnd(m_Trunc(m_Instruction(Sh1)), m_Value(Trunc)),
51                    m_Instruction(Sh1)));
52
53  // Inner shift: (x shiftopcode ShAmt1)
54  // Like with other shift, ignore zext of shift amount if any.
55  Value *X, *ShAmt1;
56  if (!match(Sh1, m_Shift(m_Value(X), m_ZExtOrSelf(m_Value(ShAmt1)))))
57    return nullptr;
58
59  // We have two shift amounts from two different shifts. The types of those
60  // shift amounts may not match. If that's the case let's bailout now..
61  if (ShAmt0->getType() != ShAmt1->getType())
62    return nullptr;
63
64  // As input, we have the following pattern:
65  //   Sh0 (Sh1 X, Q), K
66  // We want to rewrite that as:
67  //   Sh x, (Q+K)  iff (Q+K) u< bitwidth(x)
68  // While we know that originally (Q+K) would not overflow
69  // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
70  // shift amounts. so it may now overflow in smaller bitwidth.
71  // To ensure that does not happen, we need to ensure that the total maximal
72  // shift amount is still representable in that smaller bit width.
73  unsigned MaximalPossibleTotalShiftAmount =
74      (Sh0->getType()->getScalarSizeInBits() - 1) +
75      (Sh1->getType()->getScalarSizeInBits() - 1);
76  APInt MaximalRepresentableShiftAmount =
77      APInt::getAllOnesValue(ShAmt0->getType()->getScalarSizeInBits());
78  if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
79    return nullptr;
80
81  // We are only looking for signbit extraction if we have two right shifts.
82  bool HadTwoRightShifts = match(Sh0, m_Shr(m_Value(), m_Value())) &&
83                           match(Sh1, m_Shr(m_Value(), m_Value()));
84  // ... and if it's not two right-shifts, we know the answer already.
85  if (AnalyzeForSignBitExtraction && !HadTwoRightShifts)
86    return nullptr;
87
88  // The shift opcodes must be identical, unless we are just checking whether
89  // this pattern can be interpreted as a sign-bit-extraction.
90  Instruction::BinaryOps ShiftOpcode = Sh0->getOpcode();
91  bool IdenticalShOpcodes = Sh0->getOpcode() == Sh1->getOpcode();
92  if (!IdenticalShOpcodes && !AnalyzeForSignBitExtraction)
93    return nullptr;
94
95  // If we saw truncation, we'll need to produce extra instruction,
96  // and for that one of the operands of the shift must be one-use,
97  // unless of course we don't actually plan to produce any instructions here.
98  if (Trunc && !AnalyzeForSignBitExtraction &&
99      !match(Sh0, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
100    return nullptr;
101
102  // Can we fold (ShAmt0+ShAmt1) ?
103  auto *NewShAmt = dyn_cast_or_null<Constant>(
104      SimplifyAddInst(ShAmt0, ShAmt1, /*isNSW=*/false, /*isNUW=*/false,
105                      SQ.getWithInstruction(Sh0)));
106  if (!NewShAmt)
107    return nullptr; // Did not simplify.
108  unsigned NewShAmtBitWidth = NewShAmt->getType()->getScalarSizeInBits();
109  unsigned XBitWidth = X->getType()->getScalarSizeInBits();
110  // Is the new shift amount smaller than the bit width of inner/new shift?
111  if (!match(NewShAmt, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
112                                          APInt(NewShAmtBitWidth, XBitWidth))))
113    return nullptr; // FIXME: could perform constant-folding.
114
115  // If there was a truncation, and we have a right-shift, we can only fold if
116  // we are left with the original sign bit. Likewise, if we were just checking
117  // that this is a sighbit extraction, this is the place to check it.
118  // FIXME: zero shift amount is also legal here, but we can't *easily* check
119  // more than one predicate so it's not really worth it.
120  if (HadTwoRightShifts && (Trunc || AnalyzeForSignBitExtraction)) {
121    // If it's not a sign bit extraction, then we're done.
122    if (!match(NewShAmt,
123               m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
124                                  APInt(NewShAmtBitWidth, XBitWidth - 1))))
125      return nullptr;
126    // If it is, and that was the question, return the base value.
127    if (AnalyzeForSignBitExtraction)
128      return X;
129  }
130
131  assert(IdenticalShOpcodes && "Should not get here with different shifts.");
132
133  // All good, we can do this fold.
134  NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, X->getType());
135
136  BinaryOperator *NewShift = BinaryOperator::Create(ShiftOpcode, X, NewShAmt);
137
138  // The flags can only be propagated if there wasn't a trunc.
139  if (!Trunc) {
140    // If the pattern did not involve trunc, and both of the original shifts
141    // had the same flag set, preserve the flag.
142    if (ShiftOpcode == Instruction::BinaryOps::Shl) {
143      NewShift->setHasNoUnsignedWrap(Sh0->hasNoUnsignedWrap() &&
144                                     Sh1->hasNoUnsignedWrap());
145      NewShift->setHasNoSignedWrap(Sh0->hasNoSignedWrap() &&
146                                   Sh1->hasNoSignedWrap());
147    } else {
148      NewShift->setIsExact(Sh0->isExact() && Sh1->isExact());
149    }
150  }
151
152  Instruction *Ret = NewShift;
153  if (Trunc) {
154    Builder.Insert(NewShift);
155    Ret = CastInst::Create(Instruction::Trunc, NewShift, Sh0->getType());
156  }
157
158  return Ret;
159}
160
161// If we have some pattern that leaves only some low bits set, and then performs
162// left-shift of those bits, if none of the bits that are left after the final
163// shift are modified by the mask, we can omit the mask.
164//
165// There are many variants to this pattern:
166//   a)  (x & ((1 << MaskShAmt) - 1)) << ShiftShAmt
167//   b)  (x & (~(-1 << MaskShAmt))) << ShiftShAmt
168//   c)  (x & (-1 >> MaskShAmt)) << ShiftShAmt
169//   d)  (x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt
170//   e)  ((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt
171//   f)  ((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt
172// All these patterns can be simplified to just:
173//   x << ShiftShAmt
174// iff:
175//   a,b)     (MaskShAmt+ShiftShAmt) u>= bitwidth(x)
176//   c,d,e,f) (ShiftShAmt-MaskShAmt) s>= 0 (i.e. ShiftShAmt u>= MaskShAmt)
177static Instruction *
178dropRedundantMaskingOfLeftShiftInput(BinaryOperator *OuterShift,
179                                     const SimplifyQuery &Q,
180                                     InstCombiner::BuilderTy &Builder) {
181  assert(OuterShift->getOpcode() == Instruction::BinaryOps::Shl &&
182         "The input must be 'shl'!");
183
184  Value *Masked, *ShiftShAmt;
185  match(OuterShift,
186        m_Shift(m_Value(Masked), m_ZExtOrSelf(m_Value(ShiftShAmt))));
187
188  // *If* there is a truncation between an outer shift and a possibly-mask,
189  // then said truncation *must* be one-use, else we can't perform the fold.
190  Value *Trunc;
191  if (match(Masked, m_CombineAnd(m_Trunc(m_Value(Masked)), m_Value(Trunc))) &&
192      !Trunc->hasOneUse())
193    return nullptr;
194
195  Type *NarrowestTy = OuterShift->getType();
196  Type *WidestTy = Masked->getType();
197  bool HadTrunc = WidestTy != NarrowestTy;
198
199  // The mask must be computed in a type twice as wide to ensure
200  // that no bits are lost if the sum-of-shifts is wider than the base type.
201  Type *ExtendedTy = WidestTy->getExtendedType();
202
203  Value *MaskShAmt;
204
205  // ((1 << MaskShAmt) - 1)
206  auto MaskA = m_Add(m_Shl(m_One(), m_Value(MaskShAmt)), m_AllOnes());
207  // (~(-1 << maskNbits))
208  auto MaskB = m_Xor(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_AllOnes());
209  // (-1 >> MaskShAmt)
210  auto MaskC = m_Shr(m_AllOnes(), m_Value(MaskShAmt));
211  // ((-1 << MaskShAmt) >> MaskShAmt)
212  auto MaskD =
213      m_Shr(m_Shl(m_AllOnes(), m_Value(MaskShAmt)), m_Deferred(MaskShAmt));
214
215  Value *X;
216  Constant *NewMask;
217
218  if (match(Masked, m_c_And(m_CombineOr(MaskA, MaskB), m_Value(X)))) {
219    // Peek through an optional zext of the shift amount.
220    match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
221
222    // We have two shift amounts from two different shifts. The types of those
223    // shift amounts may not match. If that's the case let's bailout now.
224    if (MaskShAmt->getType() != ShiftShAmt->getType())
225      return nullptr;
226
227    // Can we simplify (MaskShAmt+ShiftShAmt) ?
228    auto *SumOfShAmts = dyn_cast_or_null<Constant>(SimplifyAddInst(
229        MaskShAmt, ShiftShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
230    if (!SumOfShAmts)
231      return nullptr; // Did not simplify.
232    // In this pattern SumOfShAmts correlates with the number of low bits
233    // that shall remain in the root value (OuterShift).
234
235    // An extend of an undef value becomes zero because the high bits are never
236    // completely unknown. Replace the the `undef` shift amounts with final
237    // shift bitwidth to ensure that the value remains undef when creating the
238    // subsequent shift op.
239    SumOfShAmts = Constant::replaceUndefsWith(
240        SumOfShAmts, ConstantInt::get(SumOfShAmts->getType()->getScalarType(),
241                                      ExtendedTy->getScalarSizeInBits()));
242    auto *ExtendedSumOfShAmts = ConstantExpr::getZExt(SumOfShAmts, ExtendedTy);
243    // And compute the mask as usual: ~(-1 << (SumOfShAmts))
244    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
245    auto *ExtendedInvertedMask =
246        ConstantExpr::getShl(ExtendedAllOnes, ExtendedSumOfShAmts);
247    NewMask = ConstantExpr::getNot(ExtendedInvertedMask);
248  } else if (match(Masked, m_c_And(m_CombineOr(MaskC, MaskD), m_Value(X))) ||
249             match(Masked, m_Shr(m_Shl(m_Value(X), m_Value(MaskShAmt)),
250                                 m_Deferred(MaskShAmt)))) {
251    // Peek through an optional zext of the shift amount.
252    match(MaskShAmt, m_ZExtOrSelf(m_Value(MaskShAmt)));
253
254    // We have two shift amounts from two different shifts. The types of those
255    // shift amounts may not match. If that's the case let's bailout now.
256    if (MaskShAmt->getType() != ShiftShAmt->getType())
257      return nullptr;
258
259    // Can we simplify (ShiftShAmt-MaskShAmt) ?
260    auto *ShAmtsDiff = dyn_cast_or_null<Constant>(SimplifySubInst(
261        ShiftShAmt, MaskShAmt, /*IsNSW=*/false, /*IsNUW=*/false, Q));
262    if (!ShAmtsDiff)
263      return nullptr; // Did not simplify.
264    // In this pattern ShAmtsDiff correlates with the number of high bits that
265    // shall be unset in the root value (OuterShift).
266
267    // An extend of an undef value becomes zero because the high bits are never
268    // completely unknown. Replace the the `undef` shift amounts with negated
269    // bitwidth of innermost shift to ensure that the value remains undef when
270    // creating the subsequent shift op.
271    unsigned WidestTyBitWidth = WidestTy->getScalarSizeInBits();
272    ShAmtsDiff = Constant::replaceUndefsWith(
273        ShAmtsDiff, ConstantInt::get(ShAmtsDiff->getType()->getScalarType(),
274                                     -WidestTyBitWidth));
275    auto *ExtendedNumHighBitsToClear = ConstantExpr::getZExt(
276        ConstantExpr::getSub(ConstantInt::get(ShAmtsDiff->getType(),
277                                              WidestTyBitWidth,
278                                              /*isSigned=*/false),
279                             ShAmtsDiff),
280        ExtendedTy);
281    // And compute the mask as usual: (-1 l>> (NumHighBitsToClear))
282    auto *ExtendedAllOnes = ConstantExpr::getAllOnesValue(ExtendedTy);
283    NewMask =
284        ConstantExpr::getLShr(ExtendedAllOnes, ExtendedNumHighBitsToClear);
285  } else
286    return nullptr; // Don't know anything about this pattern.
287
288  NewMask = ConstantExpr::getTrunc(NewMask, NarrowestTy);
289
290  // Does this mask has any unset bits? If not then we can just not apply it.
291  bool NeedMask = !match(NewMask, m_AllOnes());
292
293  // If we need to apply a mask, there are several more restrictions we have.
294  if (NeedMask) {
295    // The old masking instruction must go away.
296    if (!Masked->hasOneUse())
297      return nullptr;
298    // The original "masking" instruction must not have been`ashr`.
299    if (match(Masked, m_AShr(m_Value(), m_Value())))
300      return nullptr;
301  }
302
303  // If we need to apply truncation, let's do it first, since we can.
304  // We have already ensured that the old truncation will go away.
305  if (HadTrunc)
306    X = Builder.CreateTrunc(X, NarrowestTy);
307
308  // No 'NUW'/'NSW'! We no longer know that we won't shift-out non-0 bits.
309  // We didn't change the Type of this outermost shift, so we can just do it.
310  auto *NewShift = BinaryOperator::Create(OuterShift->getOpcode(), X,
311                                          OuterShift->getOperand(1));
312  if (!NeedMask)
313    return NewShift;
314
315  Builder.Insert(NewShift);
316  return BinaryOperator::Create(Instruction::And, NewShift, NewMask);
317}
318
319/// If we have a shift-by-constant of a bitwise logic op that itself has a
320/// shift-by-constant operand with identical opcode, we may be able to convert
321/// that into 2 independent shifts followed by the logic op. This eliminates a
322/// a use of an intermediate value (reduces dependency chain).
323static Instruction *foldShiftOfShiftedLogic(BinaryOperator &I,
324                                            InstCombiner::BuilderTy &Builder) {
325  assert(I.isShift() && "Expected a shift as input");
326  auto *LogicInst = dyn_cast<BinaryOperator>(I.getOperand(0));
327  if (!LogicInst || !LogicInst->isBitwiseLogicOp() || !LogicInst->hasOneUse())
328    return nullptr;
329
330  const APInt *C0, *C1;
331  if (!match(I.getOperand(1), m_APInt(C1)))
332    return nullptr;
333
334  Instruction::BinaryOps ShiftOpcode = I.getOpcode();
335  Type *Ty = I.getType();
336
337  // Find a matching one-use shift by constant. The fold is not valid if the sum
338  // of the shift values equals or exceeds bitwidth.
339  // TODO: Remove the one-use check if the other logic operand (Y) is constant.
340  Value *X, *Y;
341  auto matchFirstShift = [&](Value *V) {
342    return !isa<ConstantExpr>(V) &&
343           match(V, m_OneUse(m_Shift(m_Value(X), m_APInt(C0)))) &&
344           cast<BinaryOperator>(V)->getOpcode() == ShiftOpcode &&
345           (*C0 + *C1).ult(Ty->getScalarSizeInBits());
346  };
347
348  // Logic ops are commutative, so check each operand for a match.
349  if (matchFirstShift(LogicInst->getOperand(0)))
350    Y = LogicInst->getOperand(1);
351  else if (matchFirstShift(LogicInst->getOperand(1)))
352    Y = LogicInst->getOperand(0);
353  else
354    return nullptr;
355
356  // shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
357  Constant *ShiftSumC = ConstantInt::get(Ty, *C0 + *C1);
358  Value *NewShift1 = Builder.CreateBinOp(ShiftOpcode, X, ShiftSumC);
359  Value *NewShift2 = Builder.CreateBinOp(ShiftOpcode, Y, I.getOperand(1));
360  return BinaryOperator::Create(LogicInst->getOpcode(), NewShift1, NewShift2);
361}
362
363Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
364  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
365  assert(Op0->getType() == Op1->getType());
366
367  // If the shift amount is a one-use `sext`, we can demote it to `zext`.
368  Value *Y;
369  if (match(Op1, m_OneUse(m_SExt(m_Value(Y))))) {
370    Value *NewExt = Builder.CreateZExt(Y, I.getType(), Op1->getName());
371    return BinaryOperator::Create(I.getOpcode(), Op0, NewExt);
372  }
373
374  // See if we can fold away this shift.
375  if (SimplifyDemandedInstructionBits(I))
376    return &I;
377
378  // Try to fold constant and into select arguments.
379  if (isa<Constant>(Op0))
380    if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
381      if (Instruction *R = FoldOpIntoSelect(I, SI))
382        return R;
383
384  if (Constant *CUI = dyn_cast<Constant>(Op1))
385    if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
386      return Res;
387
388  if (auto *NewShift = cast_or_null<Instruction>(
389          reassociateShiftAmtsOfTwoSameDirectionShifts(&I, SQ)))
390    return NewShift;
391
392  // (C1 shift (A add C2)) -> (C1 shift C2) shift A)
393  // iff A and C2 are both positive.
394  Value *A;
395  Constant *C;
396  if (match(Op0, m_Constant()) && match(Op1, m_Add(m_Value(A), m_Constant(C))))
397    if (isKnownNonNegative(A, DL, 0, &AC, &I, &DT) &&
398        isKnownNonNegative(C, DL, 0, &AC, &I, &DT))
399      return BinaryOperator::Create(
400          I.getOpcode(), Builder.CreateBinOp(I.getOpcode(), Op0, C), A);
401
402  // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2.
403  // Because shifts by negative values (which could occur if A were negative)
404  // are undefined.
405  const APInt *B;
406  if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) {
407    // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't
408    // demand the sign bit (and many others) here??
409    Value *Rem = Builder.CreateAnd(A, ConstantInt::get(I.getType(), *B - 1),
410                                   Op1->getName());
411    I.setOperand(1, Rem);
412    return &I;
413  }
414
415  if (Instruction *Logic = foldShiftOfShiftedLogic(I, Builder))
416    return Logic;
417
418  return nullptr;
419}
420
421/// Return true if we can simplify two logical (either left or right) shifts
422/// that have constant shift amounts: OuterShift (InnerShift X, C1), C2.
423static bool canEvaluateShiftedShift(unsigned OuterShAmt, bool IsOuterShl,
424                                    Instruction *InnerShift, InstCombiner &IC,
425                                    Instruction *CxtI) {
426  assert(InnerShift->isLogicalShift() && "Unexpected instruction type");
427
428  // We need constant scalar or constant splat shifts.
429  const APInt *InnerShiftConst;
430  if (!match(InnerShift->getOperand(1), m_APInt(InnerShiftConst)))
431    return false;
432
433  // Two logical shifts in the same direction:
434  // shl (shl X, C1), C2 -->  shl X, C1 + C2
435  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
436  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
437  if (IsInnerShl == IsOuterShl)
438    return true;
439
440  // Equal shift amounts in opposite directions become bitwise 'and':
441  // lshr (shl X, C), C --> and X, C'
442  // shl (lshr X, C), C --> and X, C'
443  if (*InnerShiftConst == OuterShAmt)
444    return true;
445
446  // If the 2nd shift is bigger than the 1st, we can fold:
447  // lshr (shl X, C1), C2 -->  and (shl X, C1 - C2), C3
448  // shl (lshr X, C1), C2 --> and (lshr X, C1 - C2), C3
449  // but it isn't profitable unless we know the and'd out bits are already zero.
450  // Also, check that the inner shift is valid (less than the type width) or
451  // we'll crash trying to produce the bit mask for the 'and'.
452  unsigned TypeWidth = InnerShift->getType()->getScalarSizeInBits();
453  if (InnerShiftConst->ugt(OuterShAmt) && InnerShiftConst->ult(TypeWidth)) {
454    unsigned InnerShAmt = InnerShiftConst->getZExtValue();
455    unsigned MaskShift =
456        IsInnerShl ? TypeWidth - InnerShAmt : InnerShAmt - OuterShAmt;
457    APInt Mask = APInt::getLowBitsSet(TypeWidth, OuterShAmt) << MaskShift;
458    if (IC.MaskedValueIsZero(InnerShift->getOperand(0), Mask, 0, CxtI))
459      return true;
460  }
461
462  return false;
463}
464
465/// See if we can compute the specified value, but shifted logically to the left
466/// or right by some number of bits. This should return true if the expression
467/// can be computed for the same cost as the current expression tree. This is
468/// used to eliminate extraneous shifting from things like:
469///      %C = shl i128 %A, 64
470///      %D = shl i128 %B, 96
471///      %E = or i128 %C, %D
472///      %F = lshr i128 %E, 64
473/// where the client will ask if E can be computed shifted right by 64-bits. If
474/// this succeeds, getShiftedValue() will be called to produce the value.
475static bool canEvaluateShifted(Value *V, unsigned NumBits, bool IsLeftShift,
476                               InstCombiner &IC, Instruction *CxtI) {
477  // We can always evaluate constants shifted.
478  if (isa<Constant>(V))
479    return true;
480
481  Instruction *I = dyn_cast<Instruction>(V);
482  if (!I) return false;
483
484  // If this is the opposite shift, we can directly reuse the input of the shift
485  // if the needed bits are already zero in the input.  This allows us to reuse
486  // the value which means that we don't care if the shift has multiple uses.
487  //  TODO:  Handle opposite shift by exact value.
488  ConstantInt *CI = nullptr;
489  if ((IsLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) ||
490      (!IsLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) {
491    if (CI->getValue() == NumBits) {
492      // TODO: Check that the input bits are already zero with MaskedValueIsZero
493#if 0
494      // If this is a truncate of a logical shr, we can truncate it to a smaller
495      // lshr iff we know that the bits we would otherwise be shifting in are
496      // already zeros.
497      uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
498      uint32_t BitWidth = Ty->getScalarSizeInBits();
499      if (MaskedValueIsZero(I->getOperand(0),
500            APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
501          CI->getLimitedValue(BitWidth) < BitWidth) {
502        return CanEvaluateTruncated(I->getOperand(0), Ty);
503      }
504#endif
505
506    }
507  }
508
509  // We can't mutate something that has multiple uses: doing so would
510  // require duplicating the instruction in general, which isn't profitable.
511  if (!I->hasOneUse()) return false;
512
513  switch (I->getOpcode()) {
514  default: return false;
515  case Instruction::And:
516  case Instruction::Or:
517  case Instruction::Xor:
518    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
519    return canEvaluateShifted(I->getOperand(0), NumBits, IsLeftShift, IC, I) &&
520           canEvaluateShifted(I->getOperand(1), NumBits, IsLeftShift, IC, I);
521
522  case Instruction::Shl:
523  case Instruction::LShr:
524    return canEvaluateShiftedShift(NumBits, IsLeftShift, I, IC, CxtI);
525
526  case Instruction::Select: {
527    SelectInst *SI = cast<SelectInst>(I);
528    Value *TrueVal = SI->getTrueValue();
529    Value *FalseVal = SI->getFalseValue();
530    return canEvaluateShifted(TrueVal, NumBits, IsLeftShift, IC, SI) &&
531           canEvaluateShifted(FalseVal, NumBits, IsLeftShift, IC, SI);
532  }
533  case Instruction::PHI: {
534    // We can change a phi if we can change all operands.  Note that we never
535    // get into trouble with cyclic PHIs here because we only consider
536    // instructions with a single use.
537    PHINode *PN = cast<PHINode>(I);
538    for (Value *IncValue : PN->incoming_values())
539      if (!canEvaluateShifted(IncValue, NumBits, IsLeftShift, IC, PN))
540        return false;
541    return true;
542  }
543  }
544}
545
546/// Fold OuterShift (InnerShift X, C1), C2.
547/// See canEvaluateShiftedShift() for the constraints on these instructions.
548static Value *foldShiftedShift(BinaryOperator *InnerShift, unsigned OuterShAmt,
549                               bool IsOuterShl,
550                               InstCombiner::BuilderTy &Builder) {
551  bool IsInnerShl = InnerShift->getOpcode() == Instruction::Shl;
552  Type *ShType = InnerShift->getType();
553  unsigned TypeWidth = ShType->getScalarSizeInBits();
554
555  // We only accept shifts-by-a-constant in canEvaluateShifted().
556  const APInt *C1;
557  match(InnerShift->getOperand(1), m_APInt(C1));
558  unsigned InnerShAmt = C1->getZExtValue();
559
560  // Change the shift amount and clear the appropriate IR flags.
561  auto NewInnerShift = [&](unsigned ShAmt) {
562    InnerShift->setOperand(1, ConstantInt::get(ShType, ShAmt));
563    if (IsInnerShl) {
564      InnerShift->setHasNoUnsignedWrap(false);
565      InnerShift->setHasNoSignedWrap(false);
566    } else {
567      InnerShift->setIsExact(false);
568    }
569    return InnerShift;
570  };
571
572  // Two logical shifts in the same direction:
573  // shl (shl X, C1), C2 -->  shl X, C1 + C2
574  // lshr (lshr X, C1), C2 --> lshr X, C1 + C2
575  if (IsInnerShl == IsOuterShl) {
576    // If this is an oversized composite shift, then unsigned shifts get 0.
577    if (InnerShAmt + OuterShAmt >= TypeWidth)
578      return Constant::getNullValue(ShType);
579
580    return NewInnerShift(InnerShAmt + OuterShAmt);
581  }
582
583  // Equal shift amounts in opposite directions become bitwise 'and':
584  // lshr (shl X, C), C --> and X, C'
585  // shl (lshr X, C), C --> and X, C'
586  if (InnerShAmt == OuterShAmt) {
587    APInt Mask = IsInnerShl
588                     ? APInt::getLowBitsSet(TypeWidth, TypeWidth - OuterShAmt)
589                     : APInt::getHighBitsSet(TypeWidth, TypeWidth - OuterShAmt);
590    Value *And = Builder.CreateAnd(InnerShift->getOperand(0),
591                                   ConstantInt::get(ShType, Mask));
592    if (auto *AndI = dyn_cast<Instruction>(And)) {
593      AndI->moveBefore(InnerShift);
594      AndI->takeName(InnerShift);
595    }
596    return And;
597  }
598
599  assert(InnerShAmt > OuterShAmt &&
600         "Unexpected opposite direction logical shift pair");
601
602  // In general, we would need an 'and' for this transform, but
603  // canEvaluateShiftedShift() guarantees that the masked-off bits are not used.
604  // lshr (shl X, C1), C2 -->  shl X, C1 - C2
605  // shl (lshr X, C1), C2 --> lshr X, C1 - C2
606  return NewInnerShift(InnerShAmt - OuterShAmt);
607}
608
609/// When canEvaluateShifted() returns true for an expression, this function
610/// inserts the new computation that produces the shifted value.
611static Value *getShiftedValue(Value *V, unsigned NumBits, bool isLeftShift,
612                              InstCombiner &IC, const DataLayout &DL) {
613  // We can always evaluate constants shifted.
614  if (Constant *C = dyn_cast<Constant>(V)) {
615    if (isLeftShift)
616      V = IC.Builder.CreateShl(C, NumBits);
617    else
618      V = IC.Builder.CreateLShr(C, NumBits);
619    // If we got a constantexpr back, try to simplify it with TD info.
620    if (auto *C = dyn_cast<Constant>(V))
621      if (auto *FoldedC =
622              ConstantFoldConstant(C, DL, &IC.getTargetLibraryInfo()))
623        V = FoldedC;
624    return V;
625  }
626
627  Instruction *I = cast<Instruction>(V);
628  IC.Worklist.Add(I);
629
630  switch (I->getOpcode()) {
631  default: llvm_unreachable("Inconsistency with CanEvaluateShifted");
632  case Instruction::And:
633  case Instruction::Or:
634  case Instruction::Xor:
635    // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted.
636    I->setOperand(
637        0, getShiftedValue(I->getOperand(0), NumBits, isLeftShift, IC, DL));
638    I->setOperand(
639        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
640    return I;
641
642  case Instruction::Shl:
643  case Instruction::LShr:
644    return foldShiftedShift(cast<BinaryOperator>(I), NumBits, isLeftShift,
645                            IC.Builder);
646
647  case Instruction::Select:
648    I->setOperand(
649        1, getShiftedValue(I->getOperand(1), NumBits, isLeftShift, IC, DL));
650    I->setOperand(
651        2, getShiftedValue(I->getOperand(2), NumBits, isLeftShift, IC, DL));
652    return I;
653  case Instruction::PHI: {
654    // We can change a phi if we can change all operands.  Note that we never
655    // get into trouble with cyclic PHIs here because we only consider
656    // instructions with a single use.
657    PHINode *PN = cast<PHINode>(I);
658    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
659      PN->setIncomingValue(i, getShiftedValue(PN->getIncomingValue(i), NumBits,
660                                              isLeftShift, IC, DL));
661    return PN;
662  }
663  }
664}
665
666// If this is a bitwise operator or add with a constant RHS we might be able
667// to pull it through a shift.
668static bool canShiftBinOpWithConstantRHS(BinaryOperator &Shift,
669                                         BinaryOperator *BO) {
670  switch (BO->getOpcode()) {
671  default:
672    return false; // Do not perform transform!
673  case Instruction::Add:
674    return Shift.getOpcode() == Instruction::Shl;
675  case Instruction::Or:
676  case Instruction::Xor:
677  case Instruction::And:
678    return true;
679  }
680}
681
682Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, Constant *Op1,
683                                               BinaryOperator &I) {
684  bool isLeftShift = I.getOpcode() == Instruction::Shl;
685
686  const APInt *Op1C;
687  if (!match(Op1, m_APInt(Op1C)))
688    return nullptr;
689
690  // See if we can propagate this shift into the input, this covers the trivial
691  // cast of lshr(shl(x,c1),c2) as well as other more complex cases.
692  if (I.getOpcode() != Instruction::AShr &&
693      canEvaluateShifted(Op0, Op1C->getZExtValue(), isLeftShift, *this, &I)) {
694    LLVM_DEBUG(
695        dbgs() << "ICE: GetShiftedValue propagating shift through expression"
696                  " to eliminate shift:\n  IN: "
697               << *Op0 << "\n  SH: " << I << "\n");
698
699    return replaceInstUsesWith(
700        I, getShiftedValue(Op0, Op1C->getZExtValue(), isLeftShift, *this, DL));
701  }
702
703  // See if we can simplify any instructions used by the instruction whose sole
704  // purpose is to compute bits we don't care about.
705  unsigned TypeBits = Op0->getType()->getScalarSizeInBits();
706
707  assert(!Op1C->uge(TypeBits) &&
708         "Shift over the type width should have been removed already");
709
710  if (Instruction *FoldedShift = foldBinOpIntoSelectOrPhi(I))
711    return FoldedShift;
712
713  // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2))
714  if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) {
715    Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0));
716    // If 'shift2' is an ashr, we would have to get the sign bit into a funny
717    // place.  Don't try to do this transformation in this case.  Also, we
718    // require that the input operand is a shift-by-constant so that we have
719    // confidence that the shifts will get folded together.  We could do this
720    // xform in more cases, but it is unlikely to be profitable.
721    if (TrOp && I.isLogicalShift() && TrOp->isShift() &&
722        isa<ConstantInt>(TrOp->getOperand(1))) {
723      // Okay, we'll do this xform.  Make the shift of shift.
724      Constant *ShAmt =
725          ConstantExpr::getZExt(cast<Constant>(Op1), TrOp->getType());
726      // (shift2 (shift1 & 0x00FF), c2)
727      Value *NSh = Builder.CreateBinOp(I.getOpcode(), TrOp, ShAmt, I.getName());
728
729      // For logical shifts, the truncation has the effect of making the high
730      // part of the register be zeros.  Emulate this by inserting an AND to
731      // clear the top bits as needed.  This 'and' will usually be zapped by
732      // other xforms later if dead.
733      unsigned SrcSize = TrOp->getType()->getScalarSizeInBits();
734      unsigned DstSize = TI->getType()->getScalarSizeInBits();
735      APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize));
736
737      // The mask we constructed says what the trunc would do if occurring
738      // between the shifts.  We want to know the effect *after* the second
739      // shift.  We know that it is a logical shift by a constant, so adjust the
740      // mask as appropriate.
741      if (I.getOpcode() == Instruction::Shl)
742        MaskV <<= Op1C->getZExtValue();
743      else {
744        assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift");
745        MaskV.lshrInPlace(Op1C->getZExtValue());
746      }
747
748      // shift1 & 0x00FF
749      Value *And = Builder.CreateAnd(NSh,
750                                     ConstantInt::get(I.getContext(), MaskV),
751                                     TI->getName());
752
753      // Return the value truncated to the interesting size.
754      return new TruncInst(And, I.getType());
755    }
756  }
757
758  if (Op0->hasOneUse()) {
759    if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
760      // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
761      Value *V1, *V2;
762      ConstantInt *CC;
763      switch (Op0BO->getOpcode()) {
764      default: break;
765      case Instruction::Add:
766      case Instruction::And:
767      case Instruction::Or:
768      case Instruction::Xor: {
769        // These operators commute.
770        // Turn (Y + (X >> C)) << C  ->  (X + (Y << C)) & (~0 << C)
771        if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
772            match(Op0BO->getOperand(1), m_Shr(m_Value(V1),
773                  m_Specific(Op1)))) {
774          Value *YS =         // (Y << C)
775            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
776          // (X + (Y << C))
777          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), YS, V1,
778                                         Op0BO->getOperand(1)->getName());
779          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
780
781          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
782          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
783          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
784            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
785          return BinaryOperator::CreateAnd(X, Mask);
786        }
787
788        // Turn (Y + ((X >> C) & CC)) << C  ->  ((X & (CC << C)) + (Y << C))
789        Value *Op0BOOp1 = Op0BO->getOperand(1);
790        if (isLeftShift && Op0BOOp1->hasOneUse() &&
791            match(Op0BOOp1,
792                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))),
793                        m_ConstantInt(CC)))) {
794          Value *YS =   // (Y << C)
795            Builder.CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName());
796          // X & (CC << C)
797          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
798                                        V1->getName()+".mask");
799          return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM);
800        }
801        LLVM_FALLTHROUGH;
802      }
803
804      case Instruction::Sub: {
805        // Turn ((X >> C) + Y) << C  ->  (X + (Y << C)) & (~0 << C)
806        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
807            match(Op0BO->getOperand(0), m_Shr(m_Value(V1),
808                  m_Specific(Op1)))) {
809          Value *YS =  // (Y << C)
810            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
811          // (X + (Y << C))
812          Value *X = Builder.CreateBinOp(Op0BO->getOpcode(), V1, YS,
813                                         Op0BO->getOperand(0)->getName());
814          unsigned Op1Val = Op1C->getLimitedValue(TypeBits);
815
816          APInt Bits = APInt::getHighBitsSet(TypeBits, TypeBits - Op1Val);
817          Constant *Mask = ConstantInt::get(I.getContext(), Bits);
818          if (VectorType *VT = dyn_cast<VectorType>(X->getType()))
819            Mask = ConstantVector::getSplat(VT->getNumElements(), Mask);
820          return BinaryOperator::CreateAnd(X, Mask);
821        }
822
823        // Turn (((X >> C)&CC) + Y) << C  ->  (X + (Y << C)) & (CC << C)
824        if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
825            match(Op0BO->getOperand(0),
826                  m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))),
827                        m_ConstantInt(CC))) && V2 == Op1) {
828          Value *YS = // (Y << C)
829            Builder.CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName());
830          // X & (CC << C)
831          Value *XM = Builder.CreateAnd(V1, ConstantExpr::getShl(CC, Op1),
832                                        V1->getName()+".mask");
833
834          return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS);
835        }
836
837        break;
838      }
839      }
840
841
842      // If the operand is a bitwise operator with a constant RHS, and the
843      // shift is the only use, we can pull it out of the shift.
844      const APInt *Op0C;
845      if (match(Op0BO->getOperand(1), m_APInt(Op0C))) {
846        if (canShiftBinOpWithConstantRHS(I, Op0BO)) {
847          Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
848                                     cast<Constant>(Op0BO->getOperand(1)), Op1);
849
850          Value *NewShift =
851            Builder.CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1);
852          NewShift->takeName(Op0BO);
853
854          return BinaryOperator::Create(Op0BO->getOpcode(), NewShift,
855                                        NewRHS);
856        }
857      }
858
859      // If the operand is a subtract with a constant LHS, and the shift
860      // is the only use, we can pull it out of the shift.
861      // This folds (shl (sub C1, X), C2) -> (sub (C1 << C2), (shl X, C2))
862      if (isLeftShift && Op0BO->getOpcode() == Instruction::Sub &&
863          match(Op0BO->getOperand(0), m_APInt(Op0C))) {
864        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
865                                   cast<Constant>(Op0BO->getOperand(0)), Op1);
866
867        Value *NewShift = Builder.CreateShl(Op0BO->getOperand(1), Op1);
868        NewShift->takeName(Op0BO);
869
870        return BinaryOperator::CreateSub(NewRHS, NewShift);
871      }
872    }
873
874    // If we have a select that conditionally executes some binary operator,
875    // see if we can pull it the select and operator through the shift.
876    //
877    // For example, turning:
878    //   shl (select C, (add X, C1), X), C2
879    // Into:
880    //   Y = shl X, C2
881    //   select C, (add Y, C1 << C2), Y
882    Value *Cond;
883    BinaryOperator *TBO;
884    Value *FalseVal;
885    if (match(Op0, m_Select(m_Value(Cond), m_OneUse(m_BinOp(TBO)),
886                            m_Value(FalseVal)))) {
887      const APInt *C;
888      if (!isa<Constant>(FalseVal) && TBO->getOperand(0) == FalseVal &&
889          match(TBO->getOperand(1), m_APInt(C)) &&
890          canShiftBinOpWithConstantRHS(I, TBO)) {
891        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
892                                       cast<Constant>(TBO->getOperand(1)), Op1);
893
894        Value *NewShift =
895          Builder.CreateBinOp(I.getOpcode(), FalseVal, Op1);
896        Value *NewOp = Builder.CreateBinOp(TBO->getOpcode(), NewShift,
897                                           NewRHS);
898        return SelectInst::Create(Cond, NewOp, NewShift);
899      }
900    }
901
902    BinaryOperator *FBO;
903    Value *TrueVal;
904    if (match(Op0, m_Select(m_Value(Cond), m_Value(TrueVal),
905                            m_OneUse(m_BinOp(FBO))))) {
906      const APInt *C;
907      if (!isa<Constant>(TrueVal) && FBO->getOperand(0) == TrueVal &&
908          match(FBO->getOperand(1), m_APInt(C)) &&
909          canShiftBinOpWithConstantRHS(I, FBO)) {
910        Constant *NewRHS = ConstantExpr::get(I.getOpcode(),
911                                       cast<Constant>(FBO->getOperand(1)), Op1);
912
913        Value *NewShift =
914          Builder.CreateBinOp(I.getOpcode(), TrueVal, Op1);
915        Value *NewOp = Builder.CreateBinOp(FBO->getOpcode(), NewShift,
916                                           NewRHS);
917        return SelectInst::Create(Cond, NewShift, NewOp);
918      }
919    }
920  }
921
922  return nullptr;
923}
924
925Instruction *InstCombiner::visitShl(BinaryOperator &I) {
926  const SimplifyQuery Q = SQ.getWithInstruction(&I);
927
928  if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1),
929                                 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), Q))
930    return replaceInstUsesWith(I, V);
931
932  if (Instruction *X = foldVectorBinop(I))
933    return X;
934
935  if (Instruction *V = commonShiftTransforms(I))
936    return V;
937
938  if (Instruction *V = dropRedundantMaskingOfLeftShiftInput(&I, Q, Builder))
939    return V;
940
941  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
942  Type *Ty = I.getType();
943  unsigned BitWidth = Ty->getScalarSizeInBits();
944
945  const APInt *ShAmtAPInt;
946  if (match(Op1, m_APInt(ShAmtAPInt))) {
947    unsigned ShAmt = ShAmtAPInt->getZExtValue();
948
949    // shl (zext X), ShAmt --> zext (shl X, ShAmt)
950    // This is only valid if X would have zeros shifted out.
951    Value *X;
952    if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
953      unsigned SrcWidth = X->getType()->getScalarSizeInBits();
954      if (ShAmt < SrcWidth &&
955          MaskedValueIsZero(X, APInt::getHighBitsSet(SrcWidth, ShAmt), 0, &I))
956        return new ZExtInst(Builder.CreateShl(X, ShAmt), Ty);
957    }
958
959    // (X >> C) << C --> X & (-1 << C)
960    if (match(Op0, m_Shr(m_Value(X), m_Specific(Op1)))) {
961      APInt Mask(APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt));
962      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
963    }
964
965    // FIXME: we do not yet transform non-exact shr's. The backend (DAGCombine)
966    // needs a few fixes for the rotate pattern recognition first.
967    const APInt *ShOp1;
968    if (match(Op0, m_Exact(m_Shr(m_Value(X), m_APInt(ShOp1))))) {
969      unsigned ShrAmt = ShOp1->getZExtValue();
970      if (ShrAmt < ShAmt) {
971        // If C1 < C2: (X >>?,exact C1) << C2 --> X << (C2 - C1)
972        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShrAmt);
973        auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
974        NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
975        NewShl->setHasNoSignedWrap(I.hasNoSignedWrap());
976        return NewShl;
977      }
978      if (ShrAmt > ShAmt) {
979        // If C1 > C2: (X >>?exact C1) << C2 --> X >>?exact (C1 - C2)
980        Constant *ShiftDiff = ConstantInt::get(Ty, ShrAmt - ShAmt);
981        auto *NewShr = BinaryOperator::Create(
982            cast<BinaryOperator>(Op0)->getOpcode(), X, ShiftDiff);
983        NewShr->setIsExact(true);
984        return NewShr;
985      }
986    }
987
988    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1)))) {
989      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
990      // Oversized shifts are simplified to zero in InstSimplify.
991      if (AmtSum < BitWidth)
992        // (X << C1) << C2 --> X << (C1 + C2)
993        return BinaryOperator::CreateShl(X, ConstantInt::get(Ty, AmtSum));
994    }
995
996    // If the shifted-out value is known-zero, then this is a NUW shift.
997    if (!I.hasNoUnsignedWrap() &&
998        MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, ShAmt), 0, &I)) {
999      I.setHasNoUnsignedWrap();
1000      return &I;
1001    }
1002
1003    // If the shifted-out value is all signbits, then this is a NSW shift.
1004    if (!I.hasNoSignedWrap() && ComputeNumSignBits(Op0, 0, &I) > ShAmt) {
1005      I.setHasNoSignedWrap();
1006      return &I;
1007    }
1008  }
1009
1010  // Transform  (x >> y) << y  to  x & (-1 << y)
1011  // Valid for any type of right-shift.
1012  Value *X;
1013  if (match(Op0, m_OneUse(m_Shr(m_Value(X), m_Specific(Op1))))) {
1014    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1015    Value *Mask = Builder.CreateShl(AllOnes, Op1);
1016    return BinaryOperator::CreateAnd(Mask, X);
1017  }
1018
1019  Constant *C1;
1020  if (match(Op1, m_Constant(C1))) {
1021    Constant *C2;
1022    Value *X;
1023    // (C2 << X) << C1 --> (C2 << C1) << X
1024    if (match(Op0, m_OneUse(m_Shl(m_Constant(C2), m_Value(X)))))
1025      return BinaryOperator::CreateShl(ConstantExpr::getShl(C2, C1), X);
1026
1027    // (X * C2) << C1 --> X * (C2 << C1)
1028    if (match(Op0, m_Mul(m_Value(X), m_Constant(C2))))
1029      return BinaryOperator::CreateMul(X, ConstantExpr::getShl(C2, C1));
1030
1031    // shl (zext i1 X), C1 --> select (X, 1 << C1, 0)
1032    if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1033      auto *NewC = ConstantExpr::getShl(ConstantInt::get(Ty, 1), C1);
1034      return SelectInst::Create(X, NewC, ConstantInt::getNullValue(Ty));
1035    }
1036  }
1037
1038  // (1 << (C - x)) -> ((1 << C) >> x) if C is bitwidth - 1
1039  if (match(Op0, m_One()) &&
1040      match(Op1, m_Sub(m_SpecificInt(BitWidth - 1), m_Value(X))))
1041    return BinaryOperator::CreateLShr(
1042        ConstantInt::get(Ty, APInt::getSignMask(BitWidth)), X);
1043
1044  return nullptr;
1045}
1046
1047Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
1048  if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1049                                  SQ.getWithInstruction(&I)))
1050    return replaceInstUsesWith(I, V);
1051
1052  if (Instruction *X = foldVectorBinop(I))
1053    return X;
1054
1055  if (Instruction *R = commonShiftTransforms(I))
1056    return R;
1057
1058  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1059  Type *Ty = I.getType();
1060  const APInt *ShAmtAPInt;
1061  if (match(Op1, m_APInt(ShAmtAPInt))) {
1062    unsigned ShAmt = ShAmtAPInt->getZExtValue();
1063    unsigned BitWidth = Ty->getScalarSizeInBits();
1064    auto *II = dyn_cast<IntrinsicInst>(Op0);
1065    if (II && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt &&
1066        (II->getIntrinsicID() == Intrinsic::ctlz ||
1067         II->getIntrinsicID() == Intrinsic::cttz ||
1068         II->getIntrinsicID() == Intrinsic::ctpop)) {
1069      // ctlz.i32(x)>>5  --> zext(x == 0)
1070      // cttz.i32(x)>>5  --> zext(x == 0)
1071      // ctpop.i32(x)>>5 --> zext(x == -1)
1072      bool IsPop = II->getIntrinsicID() == Intrinsic::ctpop;
1073      Constant *RHS = ConstantInt::getSigned(Ty, IsPop ? -1 : 0);
1074      Value *Cmp = Builder.CreateICmpEQ(II->getArgOperand(0), RHS);
1075      return new ZExtInst(Cmp, Ty);
1076    }
1077
1078    Value *X;
1079    const APInt *ShOp1;
1080    if (match(Op0, m_Shl(m_Value(X), m_APInt(ShOp1))) && ShOp1->ult(BitWidth)) {
1081      if (ShOp1->ult(ShAmt)) {
1082        unsigned ShlAmt = ShOp1->getZExtValue();
1083        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1084        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1085          // (X <<nuw C1) >>u C2 --> X >>u (C2 - C1)
1086          auto *NewLShr = BinaryOperator::CreateLShr(X, ShiftDiff);
1087          NewLShr->setIsExact(I.isExact());
1088          return NewLShr;
1089        }
1090        // (X << C1) >>u C2  --> (X >>u (C2 - C1)) & (-1 >> C2)
1091        Value *NewLShr = Builder.CreateLShr(X, ShiftDiff, "", I.isExact());
1092        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1093        return BinaryOperator::CreateAnd(NewLShr, ConstantInt::get(Ty, Mask));
1094      }
1095      if (ShOp1->ugt(ShAmt)) {
1096        unsigned ShlAmt = ShOp1->getZExtValue();
1097        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1098        if (cast<BinaryOperator>(Op0)->hasNoUnsignedWrap()) {
1099          // (X <<nuw C1) >>u C2 --> X <<nuw (C1 - C2)
1100          auto *NewShl = BinaryOperator::CreateShl(X, ShiftDiff);
1101          NewShl->setHasNoUnsignedWrap(true);
1102          return NewShl;
1103        }
1104        // (X << C1) >>u C2  --> X << (C1 - C2) & (-1 >> C2)
1105        Value *NewShl = Builder.CreateShl(X, ShiftDiff);
1106        APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1107        return BinaryOperator::CreateAnd(NewShl, ConstantInt::get(Ty, Mask));
1108      }
1109      assert(*ShOp1 == ShAmt);
1110      // (X << C) >>u C --> X & (-1 >>u C)
1111      APInt Mask(APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt));
1112      return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, Mask));
1113    }
1114
1115    if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) &&
1116        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1117      assert(ShAmt < X->getType()->getScalarSizeInBits() &&
1118             "Big shift not simplified to zero?");
1119      // lshr (zext iM X to iN), C --> zext (lshr X, C) to iN
1120      Value *NewLShr = Builder.CreateLShr(X, ShAmt);
1121      return new ZExtInst(NewLShr, Ty);
1122    }
1123
1124    if (match(Op0, m_SExt(m_Value(X))) &&
1125        (!Ty->isIntegerTy() || shouldChangeType(Ty, X->getType()))) {
1126      // Are we moving the sign bit to the low bit and widening with high zeros?
1127      unsigned SrcTyBitWidth = X->getType()->getScalarSizeInBits();
1128      if (ShAmt == BitWidth - 1) {
1129        // lshr (sext i1 X to iN), N-1 --> zext X to iN
1130        if (SrcTyBitWidth == 1)
1131          return new ZExtInst(X, Ty);
1132
1133        // lshr (sext iM X to iN), N-1 --> zext (lshr X, M-1) to iN
1134        if (Op0->hasOneUse()) {
1135          Value *NewLShr = Builder.CreateLShr(X, SrcTyBitWidth - 1);
1136          return new ZExtInst(NewLShr, Ty);
1137        }
1138      }
1139
1140      // lshr (sext iM X to iN), N-M --> zext (ashr X, min(N-M, M-1)) to iN
1141      if (ShAmt == BitWidth - SrcTyBitWidth && Op0->hasOneUse()) {
1142        // The new shift amount can't be more than the narrow source type.
1143        unsigned NewShAmt = std::min(ShAmt, SrcTyBitWidth - 1);
1144        Value *AShr = Builder.CreateAShr(X, NewShAmt);
1145        return new ZExtInst(AShr, Ty);
1146      }
1147    }
1148
1149    if (match(Op0, m_LShr(m_Value(X), m_APInt(ShOp1)))) {
1150      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1151      // Oversized shifts are simplified to zero in InstSimplify.
1152      if (AmtSum < BitWidth)
1153        // (X >>u C1) >>u C2 --> X >>u (C1 + C2)
1154        return BinaryOperator::CreateLShr(X, ConstantInt::get(Ty, AmtSum));
1155    }
1156
1157    // If the shifted-out value is known-zero, then this is an exact shift.
1158    if (!I.isExact() &&
1159        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1160      I.setIsExact();
1161      return &I;
1162    }
1163  }
1164
1165  // Transform  (x << y) >> y  to  x & (-1 >> y)
1166  Value *X;
1167  if (match(Op0, m_OneUse(m_Shl(m_Value(X), m_Specific(Op1))))) {
1168    Constant *AllOnes = ConstantInt::getAllOnesValue(Ty);
1169    Value *Mask = Builder.CreateLShr(AllOnes, Op1);
1170    return BinaryOperator::CreateAnd(Mask, X);
1171  }
1172
1173  return nullptr;
1174}
1175
1176Instruction *
1177InstCombiner::foldVariableSignZeroExtensionOfVariableHighBitExtract(
1178    BinaryOperator &OldAShr) {
1179  assert(OldAShr.getOpcode() == Instruction::AShr &&
1180         "Must be called with arithmetic right-shift instruction only.");
1181
1182  // Check that constant C is a splat of the element-wise bitwidth of V.
1183  auto BitWidthSplat = [](Constant *C, Value *V) {
1184    return match(
1185        C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1186                              APInt(C->getType()->getScalarSizeInBits(),
1187                                    V->getType()->getScalarSizeInBits())));
1188  };
1189
1190  // It should look like variable-length sign-extension on the outside:
1191  //   (Val << (bitwidth(Val)-Nbits)) a>> (bitwidth(Val)-Nbits)
1192  Value *NBits;
1193  Instruction *MaybeTrunc;
1194  Constant *C1, *C2;
1195  if (!match(&OldAShr,
1196             m_AShr(m_Shl(m_Instruction(MaybeTrunc),
1197                          m_ZExtOrSelf(m_Sub(m_Constant(C1),
1198                                             m_ZExtOrSelf(m_Value(NBits))))),
1199                    m_ZExtOrSelf(m_Sub(m_Constant(C2),
1200                                       m_ZExtOrSelf(m_Deferred(NBits)))))) ||
1201      !BitWidthSplat(C1, &OldAShr) || !BitWidthSplat(C2, &OldAShr))
1202    return nullptr;
1203
1204  // There may or may not be a truncation after outer two shifts.
1205  Instruction *HighBitExtract;
1206  match(MaybeTrunc, m_TruncOrSelf(m_Instruction(HighBitExtract)));
1207  bool HadTrunc = MaybeTrunc != HighBitExtract;
1208
1209  // And finally, the innermost part of the pattern must be a right-shift.
1210  Value *X, *NumLowBitsToSkip;
1211  if (!match(HighBitExtract, m_Shr(m_Value(X), m_Value(NumLowBitsToSkip))))
1212    return nullptr;
1213
1214  // Said right-shift must extract high NBits bits - C0 must be it's bitwidth.
1215  Constant *C0;
1216  if (!match(NumLowBitsToSkip,
1217             m_ZExtOrSelf(
1218                 m_Sub(m_Constant(C0), m_ZExtOrSelf(m_Specific(NBits))))) ||
1219      !BitWidthSplat(C0, HighBitExtract))
1220    return nullptr;
1221
1222  // Since the NBits is identical for all shifts, if the outermost and
1223  // innermost shifts are identical, then outermost shifts are redundant.
1224  // If we had truncation, do keep it though.
1225  if (HighBitExtract->getOpcode() == OldAShr.getOpcode())
1226    return replaceInstUsesWith(OldAShr, MaybeTrunc);
1227
1228  // Else, if there was a truncation, then we need to ensure that one
1229  // instruction will go away.
1230  if (HadTrunc && !match(&OldAShr, m_c_BinOp(m_OneUse(m_Value()), m_Value())))
1231    return nullptr;
1232
1233  // Finally, bypass two innermost shifts, and perform the outermost shift on
1234  // the operands of the innermost shift.
1235  Instruction *NewAShr =
1236      BinaryOperator::Create(OldAShr.getOpcode(), X, NumLowBitsToSkip);
1237  NewAShr->copyIRFlags(HighBitExtract); // We can preserve 'exact'-ness.
1238  if (!HadTrunc)
1239    return NewAShr;
1240
1241  Builder.Insert(NewAShr);
1242  return TruncInst::CreateTruncOrBitCast(NewAShr, OldAShr.getType());
1243}
1244
1245Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
1246  if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(),
1247                                  SQ.getWithInstruction(&I)))
1248    return replaceInstUsesWith(I, V);
1249
1250  if (Instruction *X = foldVectorBinop(I))
1251    return X;
1252
1253  if (Instruction *R = commonShiftTransforms(I))
1254    return R;
1255
1256  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1257  Type *Ty = I.getType();
1258  unsigned BitWidth = Ty->getScalarSizeInBits();
1259  const APInt *ShAmtAPInt;
1260  if (match(Op1, m_APInt(ShAmtAPInt)) && ShAmtAPInt->ult(BitWidth)) {
1261    unsigned ShAmt = ShAmtAPInt->getZExtValue();
1262
1263    // If the shift amount equals the difference in width of the destination
1264    // and source scalar types:
1265    // ashr (shl (zext X), C), C --> sext X
1266    Value *X;
1267    if (match(Op0, m_Shl(m_ZExt(m_Value(X)), m_Specific(Op1))) &&
1268        ShAmt == BitWidth - X->getType()->getScalarSizeInBits())
1269      return new SExtInst(X, Ty);
1270
1271    // We can't handle (X << C1) >>s C2. It shifts arbitrary bits in. However,
1272    // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits.
1273    const APInt *ShOp1;
1274    if (match(Op0, m_NSWShl(m_Value(X), m_APInt(ShOp1))) &&
1275        ShOp1->ult(BitWidth)) {
1276      unsigned ShlAmt = ShOp1->getZExtValue();
1277      if (ShlAmt < ShAmt) {
1278        // (X <<nsw C1) >>s C2 --> X >>s (C2 - C1)
1279        Constant *ShiftDiff = ConstantInt::get(Ty, ShAmt - ShlAmt);
1280        auto *NewAShr = BinaryOperator::CreateAShr(X, ShiftDiff);
1281        NewAShr->setIsExact(I.isExact());
1282        return NewAShr;
1283      }
1284      if (ShlAmt > ShAmt) {
1285        // (X <<nsw C1) >>s C2 --> X <<nsw (C1 - C2)
1286        Constant *ShiftDiff = ConstantInt::get(Ty, ShlAmt - ShAmt);
1287        auto *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiff);
1288        NewShl->setHasNoSignedWrap(true);
1289        return NewShl;
1290      }
1291    }
1292
1293    if (match(Op0, m_AShr(m_Value(X), m_APInt(ShOp1))) &&
1294        ShOp1->ult(BitWidth)) {
1295      unsigned AmtSum = ShAmt + ShOp1->getZExtValue();
1296      // Oversized arithmetic shifts replicate the sign bit.
1297      AmtSum = std::min(AmtSum, BitWidth - 1);
1298      // (X >>s C1) >>s C2 --> X >>s (C1 + C2)
1299      return BinaryOperator::CreateAShr(X, ConstantInt::get(Ty, AmtSum));
1300    }
1301
1302    if (match(Op0, m_OneUse(m_SExt(m_Value(X)))) &&
1303        (Ty->isVectorTy() || shouldChangeType(Ty, X->getType()))) {
1304      // ashr (sext X), C --> sext (ashr X, C')
1305      Type *SrcTy = X->getType();
1306      ShAmt = std::min(ShAmt, SrcTy->getScalarSizeInBits() - 1);
1307      Value *NewSh = Builder.CreateAShr(X, ConstantInt::get(SrcTy, ShAmt));
1308      return new SExtInst(NewSh, Ty);
1309    }
1310
1311    // If the shifted-out value is known-zero, then this is an exact shift.
1312    if (!I.isExact() &&
1313        MaskedValueIsZero(Op0, APInt::getLowBitsSet(BitWidth, ShAmt), 0, &I)) {
1314      I.setIsExact();
1315      return &I;
1316    }
1317  }
1318
1319  if (Instruction *R = foldVariableSignZeroExtensionOfVariableHighBitExtract(I))
1320    return R;
1321
1322  // See if we can turn a signed shr into an unsigned shr.
1323  if (MaskedValueIsZero(Op0, APInt::getSignMask(BitWidth), 0, &I))
1324    return BinaryOperator::CreateLShr(Op0, Op1);
1325
1326  return nullptr;
1327}
1328