WholeProgramDevirt.cpp revision 360784
1//===- WholeProgramDevirt.cpp - Whole program virtual call optimization ---===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass implements whole program optimization of virtual calls in cases
10// where we know (via !type metadata) that the list of callees is fixed. This
11// includes the following:
12// - Single implementation devirtualization: if a virtual call has a single
13//   possible callee, replace all calls with a direct call to that callee.
14// - Virtual constant propagation: if the virtual function's return type is an
15//   integer <=64 bits and all possible callees are readnone, for each class and
16//   each list of constant arguments: evaluate the function, store the return
17//   value alongside the virtual table, and rewrite each virtual call as a load
18//   from the virtual table.
19// - Uniform return value optimization: if the conditions for virtual constant
20//   propagation hold and each function returns the same constant value, replace
21//   each virtual call with that constant.
22// - Unique return value optimization for i1 return values: if the conditions
23//   for virtual constant propagation hold and a single vtable's function
24//   returns 0, or a single vtable's function returns 1, replace each virtual
25//   call with a comparison of the vptr against that vtable's address.
26//
27// This pass is intended to be used during the regular and thin LTO pipelines:
28//
29// During regular LTO, the pass determines the best optimization for each
30// virtual call and applies the resolutions directly to virtual calls that are
31// eligible for virtual call optimization (i.e. calls that use either of the
32// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics).
33//
34// During hybrid Regular/ThinLTO, the pass operates in two phases:
35// - Export phase: this is run during the thin link over a single merged module
36//   that contains all vtables with !type metadata that participate in the link.
37//   The pass computes a resolution for each virtual call and stores it in the
38//   type identifier summary.
39// - Import phase: this is run during the thin backends over the individual
40//   modules. The pass applies the resolutions previously computed during the
41//   import phase to each eligible virtual call.
42//
43// During ThinLTO, the pass operates in two phases:
44// - Export phase: this is run during the thin link over the index which
45//   contains a summary of all vtables with !type metadata that participate in
46//   the link. It computes a resolution for each virtual call and stores it in
47//   the type identifier summary. Only single implementation devirtualization
48//   is supported.
49// - Import phase: (same as with hybrid case above).
50//
51//===----------------------------------------------------------------------===//
52
53#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
54#include "llvm/ADT/ArrayRef.h"
55#include "llvm/ADT/DenseMap.h"
56#include "llvm/ADT/DenseMapInfo.h"
57#include "llvm/ADT/DenseSet.h"
58#include "llvm/ADT/MapVector.h"
59#include "llvm/ADT/SmallVector.h"
60#include "llvm/ADT/iterator_range.h"
61#include "llvm/Analysis/AliasAnalysis.h"
62#include "llvm/Analysis/BasicAliasAnalysis.h"
63#include "llvm/Analysis/OptimizationRemarkEmitter.h"
64#include "llvm/Analysis/TypeMetadataUtils.h"
65#include "llvm/IR/CallSite.h"
66#include "llvm/IR/Constants.h"
67#include "llvm/IR/DataLayout.h"
68#include "llvm/IR/DebugLoc.h"
69#include "llvm/IR/DerivedTypes.h"
70#include "llvm/IR/Dominators.h"
71#include "llvm/IR/Function.h"
72#include "llvm/IR/GlobalAlias.h"
73#include "llvm/IR/GlobalVariable.h"
74#include "llvm/IR/IRBuilder.h"
75#include "llvm/IR/InstrTypes.h"
76#include "llvm/IR/Instruction.h"
77#include "llvm/IR/Instructions.h"
78#include "llvm/IR/Intrinsics.h"
79#include "llvm/IR/LLVMContext.h"
80#include "llvm/IR/Metadata.h"
81#include "llvm/IR/Module.h"
82#include "llvm/IR/ModuleSummaryIndexYAML.h"
83#include "llvm/InitializePasses.h"
84#include "llvm/Pass.h"
85#include "llvm/PassRegistry.h"
86#include "llvm/PassSupport.h"
87#include "llvm/Support/Casting.h"
88#include "llvm/Support/CommandLine.h"
89#include "llvm/Support/Error.h"
90#include "llvm/Support/FileSystem.h"
91#include "llvm/Support/MathExtras.h"
92#include "llvm/Transforms/IPO.h"
93#include "llvm/Transforms/IPO/FunctionAttrs.h"
94#include "llvm/Transforms/Utils/Evaluator.h"
95#include <algorithm>
96#include <cstddef>
97#include <map>
98#include <set>
99#include <string>
100
101using namespace llvm;
102using namespace wholeprogramdevirt;
103
104#define DEBUG_TYPE "wholeprogramdevirt"
105
106static cl::opt<PassSummaryAction> ClSummaryAction(
107    "wholeprogramdevirt-summary-action",
108    cl::desc("What to do with the summary when running this pass"),
109    cl::values(clEnumValN(PassSummaryAction::None, "none", "Do nothing"),
110               clEnumValN(PassSummaryAction::Import, "import",
111                          "Import typeid resolutions from summary and globals"),
112               clEnumValN(PassSummaryAction::Export, "export",
113                          "Export typeid resolutions to summary and globals")),
114    cl::Hidden);
115
116static cl::opt<std::string> ClReadSummary(
117    "wholeprogramdevirt-read-summary",
118    cl::desc("Read summary from given YAML file before running pass"),
119    cl::Hidden);
120
121static cl::opt<std::string> ClWriteSummary(
122    "wholeprogramdevirt-write-summary",
123    cl::desc("Write summary to given YAML file after running pass"),
124    cl::Hidden);
125
126static cl::opt<unsigned>
127    ClThreshold("wholeprogramdevirt-branch-funnel-threshold", cl::Hidden,
128                cl::init(10), cl::ZeroOrMore,
129                cl::desc("Maximum number of call targets per "
130                         "call site to enable branch funnels"));
131
132static cl::opt<bool>
133    PrintSummaryDevirt("wholeprogramdevirt-print-index-based", cl::Hidden,
134                       cl::init(false), cl::ZeroOrMore,
135                       cl::desc("Print index-based devirtualization messages"));
136
137// Find the minimum offset that we may store a value of size Size bits at. If
138// IsAfter is set, look for an offset before the object, otherwise look for an
139// offset after the object.
140uint64_t
141wholeprogramdevirt::findLowestOffset(ArrayRef<VirtualCallTarget> Targets,
142                                     bool IsAfter, uint64_t Size) {
143  // Find a minimum offset taking into account only vtable sizes.
144  uint64_t MinByte = 0;
145  for (const VirtualCallTarget &Target : Targets) {
146    if (IsAfter)
147      MinByte = std::max(MinByte, Target.minAfterBytes());
148    else
149      MinByte = std::max(MinByte, Target.minBeforeBytes());
150  }
151
152  // Build a vector of arrays of bytes covering, for each target, a slice of the
153  // used region (see AccumBitVector::BytesUsed in
154  // llvm/Transforms/IPO/WholeProgramDevirt.h) starting at MinByte. Effectively,
155  // this aligns the used regions to start at MinByte.
156  //
157  // In this example, A, B and C are vtables, # is a byte already allocated for
158  // a virtual function pointer, AAAA... (etc.) are the used regions for the
159  // vtables and Offset(X) is the value computed for the Offset variable below
160  // for X.
161  //
162  //                    Offset(A)
163  //                    |       |
164  //                            |MinByte
165  // A: ################AAAAAAAA|AAAAAAAA
166  // B: ########BBBBBBBBBBBBBBBB|BBBB
167  // C: ########################|CCCCCCCCCCCCCCCC
168  //            |   Offset(B)   |
169  //
170  // This code produces the slices of A, B and C that appear after the divider
171  // at MinByte.
172  std::vector<ArrayRef<uint8_t>> Used;
173  for (const VirtualCallTarget &Target : Targets) {
174    ArrayRef<uint8_t> VTUsed = IsAfter ? Target.TM->Bits->After.BytesUsed
175                                       : Target.TM->Bits->Before.BytesUsed;
176    uint64_t Offset = IsAfter ? MinByte - Target.minAfterBytes()
177                              : MinByte - Target.minBeforeBytes();
178
179    // Disregard used regions that are smaller than Offset. These are
180    // effectively all-free regions that do not need to be checked.
181    if (VTUsed.size() > Offset)
182      Used.push_back(VTUsed.slice(Offset));
183  }
184
185  if (Size == 1) {
186    // Find a free bit in each member of Used.
187    for (unsigned I = 0;; ++I) {
188      uint8_t BitsUsed = 0;
189      for (auto &&B : Used)
190        if (I < B.size())
191          BitsUsed |= B[I];
192      if (BitsUsed != 0xff)
193        return (MinByte + I) * 8 +
194               countTrailingZeros(uint8_t(~BitsUsed), ZB_Undefined);
195    }
196  } else {
197    // Find a free (Size/8) byte region in each member of Used.
198    // FIXME: see if alignment helps.
199    for (unsigned I = 0;; ++I) {
200      for (auto &&B : Used) {
201        unsigned Byte = 0;
202        while ((I + Byte) < B.size() && Byte < (Size / 8)) {
203          if (B[I + Byte])
204            goto NextI;
205          ++Byte;
206        }
207      }
208      return (MinByte + I) * 8;
209    NextI:;
210    }
211  }
212}
213
214void wholeprogramdevirt::setBeforeReturnValues(
215    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocBefore,
216    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
217  if (BitWidth == 1)
218    OffsetByte = -(AllocBefore / 8 + 1);
219  else
220    OffsetByte = -((AllocBefore + 7) / 8 + (BitWidth + 7) / 8);
221  OffsetBit = AllocBefore % 8;
222
223  for (VirtualCallTarget &Target : Targets) {
224    if (BitWidth == 1)
225      Target.setBeforeBit(AllocBefore);
226    else
227      Target.setBeforeBytes(AllocBefore, (BitWidth + 7) / 8);
228  }
229}
230
231void wholeprogramdevirt::setAfterReturnValues(
232    MutableArrayRef<VirtualCallTarget> Targets, uint64_t AllocAfter,
233    unsigned BitWidth, int64_t &OffsetByte, uint64_t &OffsetBit) {
234  if (BitWidth == 1)
235    OffsetByte = AllocAfter / 8;
236  else
237    OffsetByte = (AllocAfter + 7) / 8;
238  OffsetBit = AllocAfter % 8;
239
240  for (VirtualCallTarget &Target : Targets) {
241    if (BitWidth == 1)
242      Target.setAfterBit(AllocAfter);
243    else
244      Target.setAfterBytes(AllocAfter, (BitWidth + 7) / 8);
245  }
246}
247
248VirtualCallTarget::VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM)
249    : Fn(Fn), TM(TM),
250      IsBigEndian(Fn->getParent()->getDataLayout().isBigEndian()), WasDevirt(false) {}
251
252namespace {
253
254// A slot in a set of virtual tables. The TypeID identifies the set of virtual
255// tables, and the ByteOffset is the offset in bytes from the address point to
256// the virtual function pointer.
257struct VTableSlot {
258  Metadata *TypeID;
259  uint64_t ByteOffset;
260};
261
262} // end anonymous namespace
263
264namespace llvm {
265
266template <> struct DenseMapInfo<VTableSlot> {
267  static VTableSlot getEmptyKey() {
268    return {DenseMapInfo<Metadata *>::getEmptyKey(),
269            DenseMapInfo<uint64_t>::getEmptyKey()};
270  }
271  static VTableSlot getTombstoneKey() {
272    return {DenseMapInfo<Metadata *>::getTombstoneKey(),
273            DenseMapInfo<uint64_t>::getTombstoneKey()};
274  }
275  static unsigned getHashValue(const VTableSlot &I) {
276    return DenseMapInfo<Metadata *>::getHashValue(I.TypeID) ^
277           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
278  }
279  static bool isEqual(const VTableSlot &LHS,
280                      const VTableSlot &RHS) {
281    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
282  }
283};
284
285template <> struct DenseMapInfo<VTableSlotSummary> {
286  static VTableSlotSummary getEmptyKey() {
287    return {DenseMapInfo<StringRef>::getEmptyKey(),
288            DenseMapInfo<uint64_t>::getEmptyKey()};
289  }
290  static VTableSlotSummary getTombstoneKey() {
291    return {DenseMapInfo<StringRef>::getTombstoneKey(),
292            DenseMapInfo<uint64_t>::getTombstoneKey()};
293  }
294  static unsigned getHashValue(const VTableSlotSummary &I) {
295    return DenseMapInfo<StringRef>::getHashValue(I.TypeID) ^
296           DenseMapInfo<uint64_t>::getHashValue(I.ByteOffset);
297  }
298  static bool isEqual(const VTableSlotSummary &LHS,
299                      const VTableSlotSummary &RHS) {
300    return LHS.TypeID == RHS.TypeID && LHS.ByteOffset == RHS.ByteOffset;
301  }
302};
303
304} // end namespace llvm
305
306namespace {
307
308// A virtual call site. VTable is the loaded virtual table pointer, and CS is
309// the indirect virtual call.
310struct VirtualCallSite {
311  Value *VTable;
312  CallSite CS;
313
314  // If non-null, this field points to the associated unsafe use count stored in
315  // the DevirtModule::NumUnsafeUsesForTypeTest map below. See the description
316  // of that field for details.
317  unsigned *NumUnsafeUses;
318
319  void
320  emitRemark(const StringRef OptName, const StringRef TargetName,
321             function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter) {
322    Function *F = CS.getCaller();
323    DebugLoc DLoc = CS->getDebugLoc();
324    BasicBlock *Block = CS.getParent();
325
326    using namespace ore;
327    OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, OptName, DLoc, Block)
328                      << NV("Optimization", OptName)
329                      << ": devirtualized a call to "
330                      << NV("FunctionName", TargetName));
331  }
332
333  void replaceAndErase(
334      const StringRef OptName, const StringRef TargetName, bool RemarksEnabled,
335      function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
336      Value *New) {
337    if (RemarksEnabled)
338      emitRemark(OptName, TargetName, OREGetter);
339    CS->replaceAllUsesWith(New);
340    if (auto II = dyn_cast<InvokeInst>(CS.getInstruction())) {
341      BranchInst::Create(II->getNormalDest(), CS.getInstruction());
342      II->getUnwindDest()->removePredecessor(II->getParent());
343    }
344    CS->eraseFromParent();
345    // This use is no longer unsafe.
346    if (NumUnsafeUses)
347      --*NumUnsafeUses;
348  }
349};
350
351// Call site information collected for a specific VTableSlot and possibly a list
352// of constant integer arguments. The grouping by arguments is handled by the
353// VTableSlotInfo class.
354struct CallSiteInfo {
355  /// The set of call sites for this slot. Used during regular LTO and the
356  /// import phase of ThinLTO (as well as the export phase of ThinLTO for any
357  /// call sites that appear in the merged module itself); in each of these
358  /// cases we are directly operating on the call sites at the IR level.
359  std::vector<VirtualCallSite> CallSites;
360
361  /// Whether all call sites represented by this CallSiteInfo, including those
362  /// in summaries, have been devirtualized. This starts off as true because a
363  /// default constructed CallSiteInfo represents no call sites.
364  bool AllCallSitesDevirted = true;
365
366  // These fields are used during the export phase of ThinLTO and reflect
367  // information collected from function summaries.
368
369  /// Whether any function summary contains an llvm.assume(llvm.type.test) for
370  /// this slot.
371  bool SummaryHasTypeTestAssumeUsers = false;
372
373  /// CFI-specific: a vector containing the list of function summaries that use
374  /// the llvm.type.checked.load intrinsic and therefore will require
375  /// resolutions for llvm.type.test in order to implement CFI checks if
376  /// devirtualization was unsuccessful. If devirtualization was successful, the
377  /// pass will clear this vector by calling markDevirt(). If at the end of the
378  /// pass the vector is non-empty, we will need to add a use of llvm.type.test
379  /// to each of the function summaries in the vector.
380  std::vector<FunctionSummary *> SummaryTypeCheckedLoadUsers;
381  std::vector<FunctionSummary *> SummaryTypeTestAssumeUsers;
382
383  bool isExported() const {
384    return SummaryHasTypeTestAssumeUsers ||
385           !SummaryTypeCheckedLoadUsers.empty();
386  }
387
388  void addSummaryTypeCheckedLoadUser(FunctionSummary *FS) {
389    SummaryTypeCheckedLoadUsers.push_back(FS);
390    AllCallSitesDevirted = false;
391  }
392
393  void addSummaryTypeTestAssumeUser(FunctionSummary *FS) {
394    SummaryTypeTestAssumeUsers.push_back(FS);
395    SummaryHasTypeTestAssumeUsers = true;
396    AllCallSitesDevirted = false;
397  }
398
399  void markDevirt() {
400    AllCallSitesDevirted = true;
401
402    // As explained in the comment for SummaryTypeCheckedLoadUsers.
403    SummaryTypeCheckedLoadUsers.clear();
404  }
405};
406
407// Call site information collected for a specific VTableSlot.
408struct VTableSlotInfo {
409  // The set of call sites which do not have all constant integer arguments
410  // (excluding "this").
411  CallSiteInfo CSInfo;
412
413  // The set of call sites with all constant integer arguments (excluding
414  // "this"), grouped by argument list.
415  std::map<std::vector<uint64_t>, CallSiteInfo> ConstCSInfo;
416
417  void addCallSite(Value *VTable, CallSite CS, unsigned *NumUnsafeUses);
418
419private:
420  CallSiteInfo &findCallSiteInfo(CallSite CS);
421};
422
423CallSiteInfo &VTableSlotInfo::findCallSiteInfo(CallSite CS) {
424  std::vector<uint64_t> Args;
425  auto *CI = dyn_cast<IntegerType>(CS.getType());
426  if (!CI || CI->getBitWidth() > 64 || CS.arg_empty())
427    return CSInfo;
428  for (auto &&Arg : make_range(CS.arg_begin() + 1, CS.arg_end())) {
429    auto *CI = dyn_cast<ConstantInt>(Arg);
430    if (!CI || CI->getBitWidth() > 64)
431      return CSInfo;
432    Args.push_back(CI->getZExtValue());
433  }
434  return ConstCSInfo[Args];
435}
436
437void VTableSlotInfo::addCallSite(Value *VTable, CallSite CS,
438                                 unsigned *NumUnsafeUses) {
439  auto &CSI = findCallSiteInfo(CS);
440  CSI.AllCallSitesDevirted = false;
441  CSI.CallSites.push_back({VTable, CS, NumUnsafeUses});
442}
443
444struct DevirtModule {
445  Module &M;
446  function_ref<AAResults &(Function &)> AARGetter;
447  function_ref<DominatorTree &(Function &)> LookupDomTree;
448
449  ModuleSummaryIndex *ExportSummary;
450  const ModuleSummaryIndex *ImportSummary;
451
452  IntegerType *Int8Ty;
453  PointerType *Int8PtrTy;
454  IntegerType *Int32Ty;
455  IntegerType *Int64Ty;
456  IntegerType *IntPtrTy;
457
458  bool RemarksEnabled;
459  function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter;
460
461  MapVector<VTableSlot, VTableSlotInfo> CallSlots;
462
463  // This map keeps track of the number of "unsafe" uses of a loaded function
464  // pointer. The key is the associated llvm.type.test intrinsic call generated
465  // by this pass. An unsafe use is one that calls the loaded function pointer
466  // directly. Every time we eliminate an unsafe use (for example, by
467  // devirtualizing it or by applying virtual constant propagation), we
468  // decrement the value stored in this map. If a value reaches zero, we can
469  // eliminate the type check by RAUWing the associated llvm.type.test call with
470  // true.
471  std::map<CallInst *, unsigned> NumUnsafeUsesForTypeTest;
472
473  DevirtModule(Module &M, function_ref<AAResults &(Function &)> AARGetter,
474               function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
475               function_ref<DominatorTree &(Function &)> LookupDomTree,
476               ModuleSummaryIndex *ExportSummary,
477               const ModuleSummaryIndex *ImportSummary)
478      : M(M), AARGetter(AARGetter), LookupDomTree(LookupDomTree),
479        ExportSummary(ExportSummary), ImportSummary(ImportSummary),
480        Int8Ty(Type::getInt8Ty(M.getContext())),
481        Int8PtrTy(Type::getInt8PtrTy(M.getContext())),
482        Int32Ty(Type::getInt32Ty(M.getContext())),
483        Int64Ty(Type::getInt64Ty(M.getContext())),
484        IntPtrTy(M.getDataLayout().getIntPtrType(M.getContext(), 0)),
485        RemarksEnabled(areRemarksEnabled()), OREGetter(OREGetter) {
486    assert(!(ExportSummary && ImportSummary));
487  }
488
489  bool areRemarksEnabled();
490
491  void scanTypeTestUsers(Function *TypeTestFunc);
492  void scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc);
493
494  void buildTypeIdentifierMap(
495      std::vector<VTableBits> &Bits,
496      DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap);
497  bool
498  tryFindVirtualCallTargets(std::vector<VirtualCallTarget> &TargetsForSlot,
499                            const std::set<TypeMemberInfo> &TypeMemberInfos,
500                            uint64_t ByteOffset);
501
502  void applySingleImplDevirt(VTableSlotInfo &SlotInfo, Constant *TheFn,
503                             bool &IsExported);
504  bool trySingleImplDevirt(ModuleSummaryIndex *ExportSummary,
505                           MutableArrayRef<VirtualCallTarget> TargetsForSlot,
506                           VTableSlotInfo &SlotInfo,
507                           WholeProgramDevirtResolution *Res);
508
509  void applyICallBranchFunnel(VTableSlotInfo &SlotInfo, Constant *JT,
510                              bool &IsExported);
511  void tryICallBranchFunnel(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
512                            VTableSlotInfo &SlotInfo,
513                            WholeProgramDevirtResolution *Res, VTableSlot Slot);
514
515  bool tryEvaluateFunctionsWithArgs(
516      MutableArrayRef<VirtualCallTarget> TargetsForSlot,
517      ArrayRef<uint64_t> Args);
518
519  void applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
520                             uint64_t TheRetVal);
521  bool tryUniformRetValOpt(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
522                           CallSiteInfo &CSInfo,
523                           WholeProgramDevirtResolution::ByArg *Res);
524
525  // Returns the global symbol name that is used to export information about the
526  // given vtable slot and list of arguments.
527  std::string getGlobalName(VTableSlot Slot, ArrayRef<uint64_t> Args,
528                            StringRef Name);
529
530  bool shouldExportConstantsAsAbsoluteSymbols();
531
532  // This function is called during the export phase to create a symbol
533  // definition containing information about the given vtable slot and list of
534  // arguments.
535  void exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
536                    Constant *C);
537  void exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args, StringRef Name,
538                      uint32_t Const, uint32_t &Storage);
539
540  // This function is called during the import phase to create a reference to
541  // the symbol definition created during the export phase.
542  Constant *importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
543                         StringRef Name);
544  Constant *importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
545                           StringRef Name, IntegerType *IntTy,
546                           uint32_t Storage);
547
548  Constant *getMemberAddr(const TypeMemberInfo *M);
549
550  void applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName, bool IsOne,
551                            Constant *UniqueMemberAddr);
552  bool tryUniqueRetValOpt(unsigned BitWidth,
553                          MutableArrayRef<VirtualCallTarget> TargetsForSlot,
554                          CallSiteInfo &CSInfo,
555                          WholeProgramDevirtResolution::ByArg *Res,
556                          VTableSlot Slot, ArrayRef<uint64_t> Args);
557
558  void applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
559                             Constant *Byte, Constant *Bit);
560  bool tryVirtualConstProp(MutableArrayRef<VirtualCallTarget> TargetsForSlot,
561                           VTableSlotInfo &SlotInfo,
562                           WholeProgramDevirtResolution *Res, VTableSlot Slot);
563
564  void rebuildGlobal(VTableBits &B);
565
566  // Apply the summary resolution for Slot to all virtual calls in SlotInfo.
567  void importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo);
568
569  // If we were able to eliminate all unsafe uses for a type checked load,
570  // eliminate the associated type tests by replacing them with true.
571  void removeRedundantTypeTests();
572
573  bool run();
574
575  // Lower the module using the action and summary passed as command line
576  // arguments. For testing purposes only.
577  static bool
578  runForTesting(Module &M, function_ref<AAResults &(Function &)> AARGetter,
579                function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
580                function_ref<DominatorTree &(Function &)> LookupDomTree);
581};
582
583struct DevirtIndex {
584  ModuleSummaryIndex &ExportSummary;
585  // The set in which to record GUIDs exported from their module by
586  // devirtualization, used by client to ensure they are not internalized.
587  std::set<GlobalValue::GUID> &ExportedGUIDs;
588  // A map in which to record the information necessary to locate the WPD
589  // resolution for local targets in case they are exported by cross module
590  // importing.
591  std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap;
592
593  MapVector<VTableSlotSummary, VTableSlotInfo> CallSlots;
594
595  DevirtIndex(
596      ModuleSummaryIndex &ExportSummary,
597      std::set<GlobalValue::GUID> &ExportedGUIDs,
598      std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap)
599      : ExportSummary(ExportSummary), ExportedGUIDs(ExportedGUIDs),
600        LocalWPDTargetsMap(LocalWPDTargetsMap) {}
601
602  bool tryFindVirtualCallTargets(std::vector<ValueInfo> &TargetsForSlot,
603                                 const TypeIdCompatibleVtableInfo TIdInfo,
604                                 uint64_t ByteOffset);
605
606  bool trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
607                           VTableSlotSummary &SlotSummary,
608                           VTableSlotInfo &SlotInfo,
609                           WholeProgramDevirtResolution *Res,
610                           std::set<ValueInfo> &DevirtTargets);
611
612  void run();
613};
614
615struct WholeProgramDevirt : public ModulePass {
616  static char ID;
617
618  bool UseCommandLine = false;
619
620  ModuleSummaryIndex *ExportSummary = nullptr;
621  const ModuleSummaryIndex *ImportSummary = nullptr;
622
623  WholeProgramDevirt() : ModulePass(ID), UseCommandLine(true) {
624    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
625  }
626
627  WholeProgramDevirt(ModuleSummaryIndex *ExportSummary,
628                     const ModuleSummaryIndex *ImportSummary)
629      : ModulePass(ID), ExportSummary(ExportSummary),
630        ImportSummary(ImportSummary) {
631    initializeWholeProgramDevirtPass(*PassRegistry::getPassRegistry());
632  }
633
634  bool runOnModule(Module &M) override {
635    if (skipModule(M))
636      return false;
637
638    // In the new pass manager, we can request the optimization
639    // remark emitter pass on a per-function-basis, which the
640    // OREGetter will do for us.
641    // In the old pass manager, this is harder, so we just build
642    // an optimization remark emitter on the fly, when we need it.
643    std::unique_ptr<OptimizationRemarkEmitter> ORE;
644    auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
645      ORE = std::make_unique<OptimizationRemarkEmitter>(F);
646      return *ORE;
647    };
648
649    auto LookupDomTree = [this](Function &F) -> DominatorTree & {
650      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
651    };
652
653    if (UseCommandLine)
654      return DevirtModule::runForTesting(M, LegacyAARGetter(*this), OREGetter,
655                                         LookupDomTree);
656
657    return DevirtModule(M, LegacyAARGetter(*this), OREGetter, LookupDomTree,
658                        ExportSummary, ImportSummary)
659        .run();
660  }
661
662  void getAnalysisUsage(AnalysisUsage &AU) const override {
663    AU.addRequired<AssumptionCacheTracker>();
664    AU.addRequired<TargetLibraryInfoWrapperPass>();
665    AU.addRequired<DominatorTreeWrapperPass>();
666  }
667};
668
669} // end anonymous namespace
670
671INITIALIZE_PASS_BEGIN(WholeProgramDevirt, "wholeprogramdevirt",
672                      "Whole program devirtualization", false, false)
673INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
674INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
675INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
676INITIALIZE_PASS_END(WholeProgramDevirt, "wholeprogramdevirt",
677                    "Whole program devirtualization", false, false)
678char WholeProgramDevirt::ID = 0;
679
680ModulePass *
681llvm::createWholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary,
682                                   const ModuleSummaryIndex *ImportSummary) {
683  return new WholeProgramDevirt(ExportSummary, ImportSummary);
684}
685
686PreservedAnalyses WholeProgramDevirtPass::run(Module &M,
687                                              ModuleAnalysisManager &AM) {
688  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
689  auto AARGetter = [&](Function &F) -> AAResults & {
690    return FAM.getResult<AAManager>(F);
691  };
692  auto OREGetter = [&](Function *F) -> OptimizationRemarkEmitter & {
693    return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
694  };
695  auto LookupDomTree = [&FAM](Function &F) -> DominatorTree & {
696    return FAM.getResult<DominatorTreeAnalysis>(F);
697  };
698  if (!DevirtModule(M, AARGetter, OREGetter, LookupDomTree, ExportSummary,
699                    ImportSummary)
700           .run())
701    return PreservedAnalyses::all();
702  return PreservedAnalyses::none();
703}
704
705namespace llvm {
706void runWholeProgramDevirtOnIndex(
707    ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs,
708    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
709  DevirtIndex(Summary, ExportedGUIDs, LocalWPDTargetsMap).run();
710}
711
712void updateIndexWPDForExports(
713    ModuleSummaryIndex &Summary,
714    function_ref<bool(StringRef, ValueInfo)> isExported,
715    std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap) {
716  for (auto &T : LocalWPDTargetsMap) {
717    auto &VI = T.first;
718    // This was enforced earlier during trySingleImplDevirt.
719    assert(VI.getSummaryList().size() == 1 &&
720           "Devirt of local target has more than one copy");
721    auto &S = VI.getSummaryList()[0];
722    if (!isExported(S->modulePath(), VI))
723      continue;
724
725    // It's been exported by a cross module import.
726    for (auto &SlotSummary : T.second) {
727      auto *TIdSum = Summary.getTypeIdSummary(SlotSummary.TypeID);
728      assert(TIdSum);
729      auto WPDRes = TIdSum->WPDRes.find(SlotSummary.ByteOffset);
730      assert(WPDRes != TIdSum->WPDRes.end());
731      WPDRes->second.SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
732          WPDRes->second.SingleImplName,
733          Summary.getModuleHash(S->modulePath()));
734    }
735  }
736}
737
738} // end namespace llvm
739
740bool DevirtModule::runForTesting(
741    Module &M, function_ref<AAResults &(Function &)> AARGetter,
742    function_ref<OptimizationRemarkEmitter &(Function *)> OREGetter,
743    function_ref<DominatorTree &(Function &)> LookupDomTree) {
744  ModuleSummaryIndex Summary(/*HaveGVs=*/false);
745
746  // Handle the command-line summary arguments. This code is for testing
747  // purposes only, so we handle errors directly.
748  if (!ClReadSummary.empty()) {
749    ExitOnError ExitOnErr("-wholeprogramdevirt-read-summary: " + ClReadSummary +
750                          ": ");
751    auto ReadSummaryFile =
752        ExitOnErr(errorOrToExpected(MemoryBuffer::getFile(ClReadSummary)));
753
754    yaml::Input In(ReadSummaryFile->getBuffer());
755    In >> Summary;
756    ExitOnErr(errorCodeToError(In.error()));
757  }
758
759  bool Changed =
760      DevirtModule(
761          M, AARGetter, OREGetter, LookupDomTree,
762          ClSummaryAction == PassSummaryAction::Export ? &Summary : nullptr,
763          ClSummaryAction == PassSummaryAction::Import ? &Summary : nullptr)
764          .run();
765
766  if (!ClWriteSummary.empty()) {
767    ExitOnError ExitOnErr(
768        "-wholeprogramdevirt-write-summary: " + ClWriteSummary + ": ");
769    std::error_code EC;
770    raw_fd_ostream OS(ClWriteSummary, EC, sys::fs::OF_Text);
771    ExitOnErr(errorCodeToError(EC));
772
773    yaml::Output Out(OS);
774    Out << Summary;
775  }
776
777  return Changed;
778}
779
780void DevirtModule::buildTypeIdentifierMap(
781    std::vector<VTableBits> &Bits,
782    DenseMap<Metadata *, std::set<TypeMemberInfo>> &TypeIdMap) {
783  DenseMap<GlobalVariable *, VTableBits *> GVToBits;
784  Bits.reserve(M.getGlobalList().size());
785  SmallVector<MDNode *, 2> Types;
786  for (GlobalVariable &GV : M.globals()) {
787    Types.clear();
788    GV.getMetadata(LLVMContext::MD_type, Types);
789    if (GV.isDeclaration() || Types.empty())
790      continue;
791
792    VTableBits *&BitsPtr = GVToBits[&GV];
793    if (!BitsPtr) {
794      Bits.emplace_back();
795      Bits.back().GV = &GV;
796      Bits.back().ObjectSize =
797          M.getDataLayout().getTypeAllocSize(GV.getInitializer()->getType());
798      BitsPtr = &Bits.back();
799    }
800
801    for (MDNode *Type : Types) {
802      auto TypeID = Type->getOperand(1).get();
803
804      uint64_t Offset =
805          cast<ConstantInt>(
806              cast<ConstantAsMetadata>(Type->getOperand(0))->getValue())
807              ->getZExtValue();
808
809      TypeIdMap[TypeID].insert({BitsPtr, Offset});
810    }
811  }
812}
813
814bool DevirtModule::tryFindVirtualCallTargets(
815    std::vector<VirtualCallTarget> &TargetsForSlot,
816    const std::set<TypeMemberInfo> &TypeMemberInfos, uint64_t ByteOffset) {
817  for (const TypeMemberInfo &TM : TypeMemberInfos) {
818    if (!TM.Bits->GV->isConstant())
819      return false;
820
821    Constant *Ptr = getPointerAtOffset(TM.Bits->GV->getInitializer(),
822                                       TM.Offset + ByteOffset, M);
823    if (!Ptr)
824      return false;
825
826    auto Fn = dyn_cast<Function>(Ptr->stripPointerCasts());
827    if (!Fn)
828      return false;
829
830    // We can disregard __cxa_pure_virtual as a possible call target, as
831    // calls to pure virtuals are UB.
832    if (Fn->getName() == "__cxa_pure_virtual")
833      continue;
834
835    TargetsForSlot.push_back({Fn, &TM});
836  }
837
838  // Give up if we couldn't find any targets.
839  return !TargetsForSlot.empty();
840}
841
842bool DevirtIndex::tryFindVirtualCallTargets(
843    std::vector<ValueInfo> &TargetsForSlot, const TypeIdCompatibleVtableInfo TIdInfo,
844    uint64_t ByteOffset) {
845  for (const TypeIdOffsetVtableInfo &P : TIdInfo) {
846    // Find the first non-available_externally linkage vtable initializer.
847    // We can have multiple available_externally, linkonce_odr and weak_odr
848    // vtable initializers, however we want to skip available_externally as they
849    // do not have type metadata attached, and therefore the summary will not
850    // contain any vtable functions. We can also have multiple external
851    // vtable initializers in the case of comdats, which we cannot check here.
852    // The linker should give an error in this case.
853    //
854    // Also, handle the case of same-named local Vtables with the same path
855    // and therefore the same GUID. This can happen if there isn't enough
856    // distinguishing path when compiling the source file. In that case we
857    // conservatively return false early.
858    const GlobalVarSummary *VS = nullptr;
859    bool LocalFound = false;
860    for (auto &S : P.VTableVI.getSummaryList()) {
861      if (GlobalValue::isLocalLinkage(S->linkage())) {
862        if (LocalFound)
863          return false;
864        LocalFound = true;
865      }
866      if (!GlobalValue::isAvailableExternallyLinkage(S->linkage()))
867        VS = cast<GlobalVarSummary>(S->getBaseObject());
868    }
869    if (!VS->isLive())
870      continue;
871    for (auto VTP : VS->vTableFuncs()) {
872      if (VTP.VTableOffset != P.AddressPointOffset + ByteOffset)
873        continue;
874
875      TargetsForSlot.push_back(VTP.FuncVI);
876    }
877  }
878
879  // Give up if we couldn't find any targets.
880  return !TargetsForSlot.empty();
881}
882
883void DevirtModule::applySingleImplDevirt(VTableSlotInfo &SlotInfo,
884                                         Constant *TheFn, bool &IsExported) {
885  auto Apply = [&](CallSiteInfo &CSInfo) {
886    for (auto &&VCallSite : CSInfo.CallSites) {
887      if (RemarksEnabled)
888        VCallSite.emitRemark("single-impl",
889                             TheFn->stripPointerCasts()->getName(), OREGetter);
890      VCallSite.CS.setCalledFunction(ConstantExpr::getBitCast(
891          TheFn, VCallSite.CS.getCalledValue()->getType()));
892      // This use is no longer unsafe.
893      if (VCallSite.NumUnsafeUses)
894        --*VCallSite.NumUnsafeUses;
895    }
896    if (CSInfo.isExported())
897      IsExported = true;
898    CSInfo.markDevirt();
899  };
900  Apply(SlotInfo.CSInfo);
901  for (auto &P : SlotInfo.ConstCSInfo)
902    Apply(P.second);
903}
904
905static bool AddCalls(VTableSlotInfo &SlotInfo, const ValueInfo &Callee) {
906  // We can't add calls if we haven't seen a definition
907  if (Callee.getSummaryList().empty())
908    return false;
909
910  // Insert calls into the summary index so that the devirtualized targets
911  // are eligible for import.
912  // FIXME: Annotate type tests with hotness. For now, mark these as hot
913  // to better ensure we have the opportunity to inline them.
914  bool IsExported = false;
915  auto &S = Callee.getSummaryList()[0];
916  CalleeInfo CI(CalleeInfo::HotnessType::Hot, /* RelBF = */ 0);
917  auto AddCalls = [&](CallSiteInfo &CSInfo) {
918    for (auto *FS : CSInfo.SummaryTypeCheckedLoadUsers) {
919      FS->addCall({Callee, CI});
920      IsExported |= S->modulePath() != FS->modulePath();
921    }
922    for (auto *FS : CSInfo.SummaryTypeTestAssumeUsers) {
923      FS->addCall({Callee, CI});
924      IsExported |= S->modulePath() != FS->modulePath();
925    }
926  };
927  AddCalls(SlotInfo.CSInfo);
928  for (auto &P : SlotInfo.ConstCSInfo)
929    AddCalls(P.second);
930  return IsExported;
931}
932
933bool DevirtModule::trySingleImplDevirt(
934    ModuleSummaryIndex *ExportSummary,
935    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
936    WholeProgramDevirtResolution *Res) {
937  // See if the program contains a single implementation of this virtual
938  // function.
939  Function *TheFn = TargetsForSlot[0].Fn;
940  for (auto &&Target : TargetsForSlot)
941    if (TheFn != Target.Fn)
942      return false;
943
944  // If so, update each call site to call that implementation directly.
945  if (RemarksEnabled)
946    TargetsForSlot[0].WasDevirt = true;
947
948  bool IsExported = false;
949  applySingleImplDevirt(SlotInfo, TheFn, IsExported);
950  if (!IsExported)
951    return false;
952
953  // If the only implementation has local linkage, we must promote to external
954  // to make it visible to thin LTO objects. We can only get here during the
955  // ThinLTO export phase.
956  if (TheFn->hasLocalLinkage()) {
957    std::string NewName = (TheFn->getName() + "$merged").str();
958
959    // Since we are renaming the function, any comdats with the same name must
960    // also be renamed. This is required when targeting COFF, as the comdat name
961    // must match one of the names of the symbols in the comdat.
962    if (Comdat *C = TheFn->getComdat()) {
963      if (C->getName() == TheFn->getName()) {
964        Comdat *NewC = M.getOrInsertComdat(NewName);
965        NewC->setSelectionKind(C->getSelectionKind());
966        for (GlobalObject &GO : M.global_objects())
967          if (GO.getComdat() == C)
968            GO.setComdat(NewC);
969      }
970    }
971
972    TheFn->setLinkage(GlobalValue::ExternalLinkage);
973    TheFn->setVisibility(GlobalValue::HiddenVisibility);
974    TheFn->setName(NewName);
975  }
976  if (ValueInfo TheFnVI = ExportSummary->getValueInfo(TheFn->getGUID()))
977    // Any needed promotion of 'TheFn' has already been done during
978    // LTO unit split, so we can ignore return value of AddCalls.
979    AddCalls(SlotInfo, TheFnVI);
980
981  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
982  Res->SingleImplName = TheFn->getName();
983
984  return true;
985}
986
987bool DevirtIndex::trySingleImplDevirt(MutableArrayRef<ValueInfo> TargetsForSlot,
988                                      VTableSlotSummary &SlotSummary,
989                                      VTableSlotInfo &SlotInfo,
990                                      WholeProgramDevirtResolution *Res,
991                                      std::set<ValueInfo> &DevirtTargets) {
992  // See if the program contains a single implementation of this virtual
993  // function.
994  auto TheFn = TargetsForSlot[0];
995  for (auto &&Target : TargetsForSlot)
996    if (TheFn != Target)
997      return false;
998
999  // Don't devirtualize if we don't have target definition.
1000  auto Size = TheFn.getSummaryList().size();
1001  if (!Size)
1002    return false;
1003
1004  // If the summary list contains multiple summaries where at least one is
1005  // a local, give up, as we won't know which (possibly promoted) name to use.
1006  for (auto &S : TheFn.getSummaryList())
1007    if (GlobalValue::isLocalLinkage(S->linkage()) && Size > 1)
1008      return false;
1009
1010  // Collect functions devirtualized at least for one call site for stats.
1011  if (PrintSummaryDevirt)
1012    DevirtTargets.insert(TheFn);
1013
1014  auto &S = TheFn.getSummaryList()[0];
1015  bool IsExported = AddCalls(SlotInfo, TheFn);
1016  if (IsExported)
1017    ExportedGUIDs.insert(TheFn.getGUID());
1018
1019  // Record in summary for use in devirtualization during the ThinLTO import
1020  // step.
1021  Res->TheKind = WholeProgramDevirtResolution::SingleImpl;
1022  if (GlobalValue::isLocalLinkage(S->linkage())) {
1023    if (IsExported)
1024      // If target is a local function and we are exporting it by
1025      // devirtualizing a call in another module, we need to record the
1026      // promoted name.
1027      Res->SingleImplName = ModuleSummaryIndex::getGlobalNameForLocal(
1028          TheFn.name(), ExportSummary.getModuleHash(S->modulePath()));
1029    else {
1030      LocalWPDTargetsMap[TheFn].push_back(SlotSummary);
1031      Res->SingleImplName = TheFn.name();
1032    }
1033  } else
1034    Res->SingleImplName = TheFn.name();
1035
1036  // Name will be empty if this thin link driven off of serialized combined
1037  // index (e.g. llvm-lto). However, WPD is not supported/invoked for the
1038  // legacy LTO API anyway.
1039  assert(!Res->SingleImplName.empty());
1040
1041  return true;
1042}
1043
1044void DevirtModule::tryICallBranchFunnel(
1045    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1046    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1047  Triple T(M.getTargetTriple());
1048  if (T.getArch() != Triple::x86_64)
1049    return;
1050
1051  if (TargetsForSlot.size() > ClThreshold)
1052    return;
1053
1054  bool HasNonDevirt = !SlotInfo.CSInfo.AllCallSitesDevirted;
1055  if (!HasNonDevirt)
1056    for (auto &P : SlotInfo.ConstCSInfo)
1057      if (!P.second.AllCallSitesDevirted) {
1058        HasNonDevirt = true;
1059        break;
1060      }
1061
1062  if (!HasNonDevirt)
1063    return;
1064
1065  FunctionType *FT =
1066      FunctionType::get(Type::getVoidTy(M.getContext()), {Int8PtrTy}, true);
1067  Function *JT;
1068  if (isa<MDString>(Slot.TypeID)) {
1069    JT = Function::Create(FT, Function::ExternalLinkage,
1070                          M.getDataLayout().getProgramAddressSpace(),
1071                          getGlobalName(Slot, {}, "branch_funnel"), &M);
1072    JT->setVisibility(GlobalValue::HiddenVisibility);
1073  } else {
1074    JT = Function::Create(FT, Function::InternalLinkage,
1075                          M.getDataLayout().getProgramAddressSpace(),
1076                          "branch_funnel", &M);
1077  }
1078  JT->addAttribute(1, Attribute::Nest);
1079
1080  std::vector<Value *> JTArgs;
1081  JTArgs.push_back(JT->arg_begin());
1082  for (auto &T : TargetsForSlot) {
1083    JTArgs.push_back(getMemberAddr(T.TM));
1084    JTArgs.push_back(T.Fn);
1085  }
1086
1087  BasicBlock *BB = BasicBlock::Create(M.getContext(), "", JT, nullptr);
1088  Function *Intr =
1089      Intrinsic::getDeclaration(&M, llvm::Intrinsic::icall_branch_funnel, {});
1090
1091  auto *CI = CallInst::Create(Intr, JTArgs, "", BB);
1092  CI->setTailCallKind(CallInst::TCK_MustTail);
1093  ReturnInst::Create(M.getContext(), nullptr, BB);
1094
1095  bool IsExported = false;
1096  applyICallBranchFunnel(SlotInfo, JT, IsExported);
1097  if (IsExported)
1098    Res->TheKind = WholeProgramDevirtResolution::BranchFunnel;
1099}
1100
1101void DevirtModule::applyICallBranchFunnel(VTableSlotInfo &SlotInfo,
1102                                          Constant *JT, bool &IsExported) {
1103  auto Apply = [&](CallSiteInfo &CSInfo) {
1104    if (CSInfo.isExported())
1105      IsExported = true;
1106    if (CSInfo.AllCallSitesDevirted)
1107      return;
1108    for (auto &&VCallSite : CSInfo.CallSites) {
1109      CallSite CS = VCallSite.CS;
1110
1111      // Jump tables are only profitable if the retpoline mitigation is enabled.
1112      Attribute FSAttr = CS.getCaller()->getFnAttribute("target-features");
1113      if (FSAttr.hasAttribute(Attribute::None) ||
1114          !FSAttr.getValueAsString().contains("+retpoline"))
1115        continue;
1116
1117      if (RemarksEnabled)
1118        VCallSite.emitRemark("branch-funnel",
1119                             JT->stripPointerCasts()->getName(), OREGetter);
1120
1121      // Pass the address of the vtable in the nest register, which is r10 on
1122      // x86_64.
1123      std::vector<Type *> NewArgs;
1124      NewArgs.push_back(Int8PtrTy);
1125      for (Type *T : CS.getFunctionType()->params())
1126        NewArgs.push_back(T);
1127      FunctionType *NewFT =
1128          FunctionType::get(CS.getFunctionType()->getReturnType(), NewArgs,
1129                            CS.getFunctionType()->isVarArg());
1130      PointerType *NewFTPtr = PointerType::getUnqual(NewFT);
1131
1132      IRBuilder<> IRB(CS.getInstruction());
1133      std::vector<Value *> Args;
1134      Args.push_back(IRB.CreateBitCast(VCallSite.VTable, Int8PtrTy));
1135      for (unsigned I = 0; I != CS.getNumArgOperands(); ++I)
1136        Args.push_back(CS.getArgOperand(I));
1137
1138      CallSite NewCS;
1139      if (CS.isCall())
1140        NewCS = IRB.CreateCall(NewFT, IRB.CreateBitCast(JT, NewFTPtr), Args);
1141      else
1142        NewCS = IRB.CreateInvoke(
1143            NewFT, IRB.CreateBitCast(JT, NewFTPtr),
1144            cast<InvokeInst>(CS.getInstruction())->getNormalDest(),
1145            cast<InvokeInst>(CS.getInstruction())->getUnwindDest(), Args);
1146      NewCS.setCallingConv(CS.getCallingConv());
1147
1148      AttributeList Attrs = CS.getAttributes();
1149      std::vector<AttributeSet> NewArgAttrs;
1150      NewArgAttrs.push_back(AttributeSet::get(
1151          M.getContext(), ArrayRef<Attribute>{Attribute::get(
1152                              M.getContext(), Attribute::Nest)}));
1153      for (unsigned I = 0; I + 2 <  Attrs.getNumAttrSets(); ++I)
1154        NewArgAttrs.push_back(Attrs.getParamAttributes(I));
1155      NewCS.setAttributes(
1156          AttributeList::get(M.getContext(), Attrs.getFnAttributes(),
1157                             Attrs.getRetAttributes(), NewArgAttrs));
1158
1159      CS->replaceAllUsesWith(NewCS.getInstruction());
1160      CS->eraseFromParent();
1161
1162      // This use is no longer unsafe.
1163      if (VCallSite.NumUnsafeUses)
1164        --*VCallSite.NumUnsafeUses;
1165    }
1166    // Don't mark as devirtualized because there may be callers compiled without
1167    // retpoline mitigation, which would mean that they are lowered to
1168    // llvm.type.test and therefore require an llvm.type.test resolution for the
1169    // type identifier.
1170  };
1171  Apply(SlotInfo.CSInfo);
1172  for (auto &P : SlotInfo.ConstCSInfo)
1173    Apply(P.second);
1174}
1175
1176bool DevirtModule::tryEvaluateFunctionsWithArgs(
1177    MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1178    ArrayRef<uint64_t> Args) {
1179  // Evaluate each function and store the result in each target's RetVal
1180  // field.
1181  for (VirtualCallTarget &Target : TargetsForSlot) {
1182    if (Target.Fn->arg_size() != Args.size() + 1)
1183      return false;
1184
1185    Evaluator Eval(M.getDataLayout(), nullptr);
1186    SmallVector<Constant *, 2> EvalArgs;
1187    EvalArgs.push_back(
1188        Constant::getNullValue(Target.Fn->getFunctionType()->getParamType(0)));
1189    for (unsigned I = 0; I != Args.size(); ++I) {
1190      auto *ArgTy = dyn_cast<IntegerType>(
1191          Target.Fn->getFunctionType()->getParamType(I + 1));
1192      if (!ArgTy)
1193        return false;
1194      EvalArgs.push_back(ConstantInt::get(ArgTy, Args[I]));
1195    }
1196
1197    Constant *RetVal;
1198    if (!Eval.EvaluateFunction(Target.Fn, RetVal, EvalArgs) ||
1199        !isa<ConstantInt>(RetVal))
1200      return false;
1201    Target.RetVal = cast<ConstantInt>(RetVal)->getZExtValue();
1202  }
1203  return true;
1204}
1205
1206void DevirtModule::applyUniformRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1207                                         uint64_t TheRetVal) {
1208  for (auto Call : CSInfo.CallSites)
1209    Call.replaceAndErase(
1210        "uniform-ret-val", FnName, RemarksEnabled, OREGetter,
1211        ConstantInt::get(cast<IntegerType>(Call.CS.getType()), TheRetVal));
1212  CSInfo.markDevirt();
1213}
1214
1215bool DevirtModule::tryUniformRetValOpt(
1216    MutableArrayRef<VirtualCallTarget> TargetsForSlot, CallSiteInfo &CSInfo,
1217    WholeProgramDevirtResolution::ByArg *Res) {
1218  // Uniform return value optimization. If all functions return the same
1219  // constant, replace all calls with that constant.
1220  uint64_t TheRetVal = TargetsForSlot[0].RetVal;
1221  for (const VirtualCallTarget &Target : TargetsForSlot)
1222    if (Target.RetVal != TheRetVal)
1223      return false;
1224
1225  if (CSInfo.isExported()) {
1226    Res->TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
1227    Res->Info = TheRetVal;
1228  }
1229
1230  applyUniformRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), TheRetVal);
1231  if (RemarksEnabled)
1232    for (auto &&Target : TargetsForSlot)
1233      Target.WasDevirt = true;
1234  return true;
1235}
1236
1237std::string DevirtModule::getGlobalName(VTableSlot Slot,
1238                                        ArrayRef<uint64_t> Args,
1239                                        StringRef Name) {
1240  std::string FullName = "__typeid_";
1241  raw_string_ostream OS(FullName);
1242  OS << cast<MDString>(Slot.TypeID)->getString() << '_' << Slot.ByteOffset;
1243  for (uint64_t Arg : Args)
1244    OS << '_' << Arg;
1245  OS << '_' << Name;
1246  return OS.str();
1247}
1248
1249bool DevirtModule::shouldExportConstantsAsAbsoluteSymbols() {
1250  Triple T(M.getTargetTriple());
1251  return T.isX86() && T.getObjectFormat() == Triple::ELF;
1252}
1253
1254void DevirtModule::exportGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1255                                StringRef Name, Constant *C) {
1256  GlobalAlias *GA = GlobalAlias::create(Int8Ty, 0, GlobalValue::ExternalLinkage,
1257                                        getGlobalName(Slot, Args, Name), C, &M);
1258  GA->setVisibility(GlobalValue::HiddenVisibility);
1259}
1260
1261void DevirtModule::exportConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1262                                  StringRef Name, uint32_t Const,
1263                                  uint32_t &Storage) {
1264  if (shouldExportConstantsAsAbsoluteSymbols()) {
1265    exportGlobal(
1266        Slot, Args, Name,
1267        ConstantExpr::getIntToPtr(ConstantInt::get(Int32Ty, Const), Int8PtrTy));
1268    return;
1269  }
1270
1271  Storage = Const;
1272}
1273
1274Constant *DevirtModule::importGlobal(VTableSlot Slot, ArrayRef<uint64_t> Args,
1275                                     StringRef Name) {
1276  Constant *C = M.getOrInsertGlobal(getGlobalName(Slot, Args, Name), Int8Ty);
1277  auto *GV = dyn_cast<GlobalVariable>(C);
1278  if (GV)
1279    GV->setVisibility(GlobalValue::HiddenVisibility);
1280  return C;
1281}
1282
1283Constant *DevirtModule::importConstant(VTableSlot Slot, ArrayRef<uint64_t> Args,
1284                                       StringRef Name, IntegerType *IntTy,
1285                                       uint32_t Storage) {
1286  if (!shouldExportConstantsAsAbsoluteSymbols())
1287    return ConstantInt::get(IntTy, Storage);
1288
1289  Constant *C = importGlobal(Slot, Args, Name);
1290  auto *GV = cast<GlobalVariable>(C->stripPointerCasts());
1291  C = ConstantExpr::getPtrToInt(C, IntTy);
1292
1293  // We only need to set metadata if the global is newly created, in which
1294  // case it would not have hidden visibility.
1295  if (GV->hasMetadata(LLVMContext::MD_absolute_symbol))
1296    return C;
1297
1298  auto SetAbsRange = [&](uint64_t Min, uint64_t Max) {
1299    auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Min));
1300    auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntPtrTy, Max));
1301    GV->setMetadata(LLVMContext::MD_absolute_symbol,
1302                    MDNode::get(M.getContext(), {MinC, MaxC}));
1303  };
1304  unsigned AbsWidth = IntTy->getBitWidth();
1305  if (AbsWidth == IntPtrTy->getBitWidth())
1306    SetAbsRange(~0ull, ~0ull); // Full set.
1307  else
1308    SetAbsRange(0, 1ull << AbsWidth);
1309  return C;
1310}
1311
1312void DevirtModule::applyUniqueRetValOpt(CallSiteInfo &CSInfo, StringRef FnName,
1313                                        bool IsOne,
1314                                        Constant *UniqueMemberAddr) {
1315  for (auto &&Call : CSInfo.CallSites) {
1316    IRBuilder<> B(Call.CS.getInstruction());
1317    Value *Cmp =
1318        B.CreateICmp(IsOne ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
1319                     B.CreateBitCast(Call.VTable, Int8PtrTy), UniqueMemberAddr);
1320    Cmp = B.CreateZExt(Cmp, Call.CS->getType());
1321    Call.replaceAndErase("unique-ret-val", FnName, RemarksEnabled, OREGetter,
1322                         Cmp);
1323  }
1324  CSInfo.markDevirt();
1325}
1326
1327Constant *DevirtModule::getMemberAddr(const TypeMemberInfo *M) {
1328  Constant *C = ConstantExpr::getBitCast(M->Bits->GV, Int8PtrTy);
1329  return ConstantExpr::getGetElementPtr(Int8Ty, C,
1330                                        ConstantInt::get(Int64Ty, M->Offset));
1331}
1332
1333bool DevirtModule::tryUniqueRetValOpt(
1334    unsigned BitWidth, MutableArrayRef<VirtualCallTarget> TargetsForSlot,
1335    CallSiteInfo &CSInfo, WholeProgramDevirtResolution::ByArg *Res,
1336    VTableSlot Slot, ArrayRef<uint64_t> Args) {
1337  // IsOne controls whether we look for a 0 or a 1.
1338  auto tryUniqueRetValOptFor = [&](bool IsOne) {
1339    const TypeMemberInfo *UniqueMember = nullptr;
1340    for (const VirtualCallTarget &Target : TargetsForSlot) {
1341      if (Target.RetVal == (IsOne ? 1 : 0)) {
1342        if (UniqueMember)
1343          return false;
1344        UniqueMember = Target.TM;
1345      }
1346    }
1347
1348    // We should have found a unique member or bailed out by now. We already
1349    // checked for a uniform return value in tryUniformRetValOpt.
1350    assert(UniqueMember);
1351
1352    Constant *UniqueMemberAddr = getMemberAddr(UniqueMember);
1353    if (CSInfo.isExported()) {
1354      Res->TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
1355      Res->Info = IsOne;
1356
1357      exportGlobal(Slot, Args, "unique_member", UniqueMemberAddr);
1358    }
1359
1360    // Replace each call with the comparison.
1361    applyUniqueRetValOpt(CSInfo, TargetsForSlot[0].Fn->getName(), IsOne,
1362                         UniqueMemberAddr);
1363
1364    // Update devirtualization statistics for targets.
1365    if (RemarksEnabled)
1366      for (auto &&Target : TargetsForSlot)
1367        Target.WasDevirt = true;
1368
1369    return true;
1370  };
1371
1372  if (BitWidth == 1) {
1373    if (tryUniqueRetValOptFor(true))
1374      return true;
1375    if (tryUniqueRetValOptFor(false))
1376      return true;
1377  }
1378  return false;
1379}
1380
1381void DevirtModule::applyVirtualConstProp(CallSiteInfo &CSInfo, StringRef FnName,
1382                                         Constant *Byte, Constant *Bit) {
1383  for (auto Call : CSInfo.CallSites) {
1384    auto *RetType = cast<IntegerType>(Call.CS.getType());
1385    IRBuilder<> B(Call.CS.getInstruction());
1386    Value *Addr =
1387        B.CreateGEP(Int8Ty, B.CreateBitCast(Call.VTable, Int8PtrTy), Byte);
1388    if (RetType->getBitWidth() == 1) {
1389      Value *Bits = B.CreateLoad(Int8Ty, Addr);
1390      Value *BitsAndBit = B.CreateAnd(Bits, Bit);
1391      auto IsBitSet = B.CreateICmpNE(BitsAndBit, ConstantInt::get(Int8Ty, 0));
1392      Call.replaceAndErase("virtual-const-prop-1-bit", FnName, RemarksEnabled,
1393                           OREGetter, IsBitSet);
1394    } else {
1395      Value *ValAddr = B.CreateBitCast(Addr, RetType->getPointerTo());
1396      Value *Val = B.CreateLoad(RetType, ValAddr);
1397      Call.replaceAndErase("virtual-const-prop", FnName, RemarksEnabled,
1398                           OREGetter, Val);
1399    }
1400  }
1401  CSInfo.markDevirt();
1402}
1403
1404bool DevirtModule::tryVirtualConstProp(
1405    MutableArrayRef<VirtualCallTarget> TargetsForSlot, VTableSlotInfo &SlotInfo,
1406    WholeProgramDevirtResolution *Res, VTableSlot Slot) {
1407  // This only works if the function returns an integer.
1408  auto RetType = dyn_cast<IntegerType>(TargetsForSlot[0].Fn->getReturnType());
1409  if (!RetType)
1410    return false;
1411  unsigned BitWidth = RetType->getBitWidth();
1412  if (BitWidth > 64)
1413    return false;
1414
1415  // Make sure that each function is defined, does not access memory, takes at
1416  // least one argument, does not use its first argument (which we assume is
1417  // 'this'), and has the same return type.
1418  //
1419  // Note that we test whether this copy of the function is readnone, rather
1420  // than testing function attributes, which must hold for any copy of the
1421  // function, even a less optimized version substituted at link time. This is
1422  // sound because the virtual constant propagation optimizations effectively
1423  // inline all implementations of the virtual function into each call site,
1424  // rather than using function attributes to perform local optimization.
1425  for (VirtualCallTarget &Target : TargetsForSlot) {
1426    if (Target.Fn->isDeclaration() ||
1427        computeFunctionBodyMemoryAccess(*Target.Fn, AARGetter(*Target.Fn)) !=
1428            MAK_ReadNone ||
1429        Target.Fn->arg_empty() || !Target.Fn->arg_begin()->use_empty() ||
1430        Target.Fn->getReturnType() != RetType)
1431      return false;
1432  }
1433
1434  for (auto &&CSByConstantArg : SlotInfo.ConstCSInfo) {
1435    if (!tryEvaluateFunctionsWithArgs(TargetsForSlot, CSByConstantArg.first))
1436      continue;
1437
1438    WholeProgramDevirtResolution::ByArg *ResByArg = nullptr;
1439    if (Res)
1440      ResByArg = &Res->ResByArg[CSByConstantArg.first];
1441
1442    if (tryUniformRetValOpt(TargetsForSlot, CSByConstantArg.second, ResByArg))
1443      continue;
1444
1445    if (tryUniqueRetValOpt(BitWidth, TargetsForSlot, CSByConstantArg.second,
1446                           ResByArg, Slot, CSByConstantArg.first))
1447      continue;
1448
1449    // Find an allocation offset in bits in all vtables associated with the
1450    // type.
1451    uint64_t AllocBefore =
1452        findLowestOffset(TargetsForSlot, /*IsAfter=*/false, BitWidth);
1453    uint64_t AllocAfter =
1454        findLowestOffset(TargetsForSlot, /*IsAfter=*/true, BitWidth);
1455
1456    // Calculate the total amount of padding needed to store a value at both
1457    // ends of the object.
1458    uint64_t TotalPaddingBefore = 0, TotalPaddingAfter = 0;
1459    for (auto &&Target : TargetsForSlot) {
1460      TotalPaddingBefore += std::max<int64_t>(
1461          (AllocBefore + 7) / 8 - Target.allocatedBeforeBytes() - 1, 0);
1462      TotalPaddingAfter += std::max<int64_t>(
1463          (AllocAfter + 7) / 8 - Target.allocatedAfterBytes() - 1, 0);
1464    }
1465
1466    // If the amount of padding is too large, give up.
1467    // FIXME: do something smarter here.
1468    if (std::min(TotalPaddingBefore, TotalPaddingAfter) > 128)
1469      continue;
1470
1471    // Calculate the offset to the value as a (possibly negative) byte offset
1472    // and (if applicable) a bit offset, and store the values in the targets.
1473    int64_t OffsetByte;
1474    uint64_t OffsetBit;
1475    if (TotalPaddingBefore <= TotalPaddingAfter)
1476      setBeforeReturnValues(TargetsForSlot, AllocBefore, BitWidth, OffsetByte,
1477                            OffsetBit);
1478    else
1479      setAfterReturnValues(TargetsForSlot, AllocAfter, BitWidth, OffsetByte,
1480                           OffsetBit);
1481
1482    if (RemarksEnabled)
1483      for (auto &&Target : TargetsForSlot)
1484        Target.WasDevirt = true;
1485
1486
1487    if (CSByConstantArg.second.isExported()) {
1488      ResByArg->TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
1489      exportConstant(Slot, CSByConstantArg.first, "byte", OffsetByte,
1490                     ResByArg->Byte);
1491      exportConstant(Slot, CSByConstantArg.first, "bit", 1ULL << OffsetBit,
1492                     ResByArg->Bit);
1493    }
1494
1495    // Rewrite each call to a load from OffsetByte/OffsetBit.
1496    Constant *ByteConst = ConstantInt::get(Int32Ty, OffsetByte);
1497    Constant *BitConst = ConstantInt::get(Int8Ty, 1ULL << OffsetBit);
1498    applyVirtualConstProp(CSByConstantArg.second,
1499                          TargetsForSlot[0].Fn->getName(), ByteConst, BitConst);
1500  }
1501  return true;
1502}
1503
1504void DevirtModule::rebuildGlobal(VTableBits &B) {
1505  if (B.Before.Bytes.empty() && B.After.Bytes.empty())
1506    return;
1507
1508  // Align the before byte array to the global's minimum alignment so that we
1509  // don't break any alignment requirements on the global.
1510  MaybeAlign Alignment(B.GV->getAlignment());
1511  if (!Alignment)
1512    Alignment =
1513        Align(M.getDataLayout().getABITypeAlignment(B.GV->getValueType()));
1514  B.Before.Bytes.resize(alignTo(B.Before.Bytes.size(), Alignment));
1515
1516  // Before was stored in reverse order; flip it now.
1517  for (size_t I = 0, Size = B.Before.Bytes.size(); I != Size / 2; ++I)
1518    std::swap(B.Before.Bytes[I], B.Before.Bytes[Size - 1 - I]);
1519
1520  // Build an anonymous global containing the before bytes, followed by the
1521  // original initializer, followed by the after bytes.
1522  auto NewInit = ConstantStruct::getAnon(
1523      {ConstantDataArray::get(M.getContext(), B.Before.Bytes),
1524       B.GV->getInitializer(),
1525       ConstantDataArray::get(M.getContext(), B.After.Bytes)});
1526  auto NewGV =
1527      new GlobalVariable(M, NewInit->getType(), B.GV->isConstant(),
1528                         GlobalVariable::PrivateLinkage, NewInit, "", B.GV);
1529  NewGV->setSection(B.GV->getSection());
1530  NewGV->setComdat(B.GV->getComdat());
1531  NewGV->setAlignment(MaybeAlign(B.GV->getAlignment()));
1532
1533  // Copy the original vtable's metadata to the anonymous global, adjusting
1534  // offsets as required.
1535  NewGV->copyMetadata(B.GV, B.Before.Bytes.size());
1536
1537  // Build an alias named after the original global, pointing at the second
1538  // element (the original initializer).
1539  auto Alias = GlobalAlias::create(
1540      B.GV->getInitializer()->getType(), 0, B.GV->getLinkage(), "",
1541      ConstantExpr::getGetElementPtr(
1542          NewInit->getType(), NewGV,
1543          ArrayRef<Constant *>{ConstantInt::get(Int32Ty, 0),
1544                               ConstantInt::get(Int32Ty, 1)}),
1545      &M);
1546  Alias->setVisibility(B.GV->getVisibility());
1547  Alias->takeName(B.GV);
1548
1549  B.GV->replaceAllUsesWith(Alias);
1550  B.GV->eraseFromParent();
1551}
1552
1553bool DevirtModule::areRemarksEnabled() {
1554  const auto &FL = M.getFunctionList();
1555  for (const Function &Fn : FL) {
1556    const auto &BBL = Fn.getBasicBlockList();
1557    if (BBL.empty())
1558      continue;
1559    auto DI = OptimizationRemark(DEBUG_TYPE, "", DebugLoc(), &BBL.front());
1560    return DI.isEnabled();
1561  }
1562  return false;
1563}
1564
1565void DevirtModule::scanTypeTestUsers(Function *TypeTestFunc) {
1566  // Find all virtual calls via a virtual table pointer %p under an assumption
1567  // of the form llvm.assume(llvm.type.test(%p, %md)). This indicates that %p
1568  // points to a member of the type identifier %md. Group calls by (type ID,
1569  // offset) pair (effectively the identity of the virtual function) and store
1570  // to CallSlots.
1571  DenseSet<CallSite> SeenCallSites;
1572  for (auto I = TypeTestFunc->use_begin(), E = TypeTestFunc->use_end();
1573       I != E;) {
1574    auto CI = dyn_cast<CallInst>(I->getUser());
1575    ++I;
1576    if (!CI)
1577      continue;
1578
1579    // Search for virtual calls based on %p and add them to DevirtCalls.
1580    SmallVector<DevirtCallSite, 1> DevirtCalls;
1581    SmallVector<CallInst *, 1> Assumes;
1582    auto &DT = LookupDomTree(*CI->getFunction());
1583    findDevirtualizableCallsForTypeTest(DevirtCalls, Assumes, CI, DT);
1584
1585    // If we found any, add them to CallSlots.
1586    if (!Assumes.empty()) {
1587      Metadata *TypeId =
1588          cast<MetadataAsValue>(CI->getArgOperand(1))->getMetadata();
1589      Value *Ptr = CI->getArgOperand(0)->stripPointerCasts();
1590      for (DevirtCallSite Call : DevirtCalls) {
1591        // Only add this CallSite if we haven't seen it before. The vtable
1592        // pointer may have been CSE'd with pointers from other call sites,
1593        // and we don't want to process call sites multiple times. We can't
1594        // just skip the vtable Ptr if it has been seen before, however, since
1595        // it may be shared by type tests that dominate different calls.
1596        if (SeenCallSites.insert(Call.CS).second)
1597          CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS, nullptr);
1598      }
1599    }
1600
1601    // We no longer need the assumes or the type test.
1602    for (auto Assume : Assumes)
1603      Assume->eraseFromParent();
1604    // We can't use RecursivelyDeleteTriviallyDeadInstructions here because we
1605    // may use the vtable argument later.
1606    if (CI->use_empty())
1607      CI->eraseFromParent();
1608  }
1609}
1610
1611void DevirtModule::scanTypeCheckedLoadUsers(Function *TypeCheckedLoadFunc) {
1612  Function *TypeTestFunc = Intrinsic::getDeclaration(&M, Intrinsic::type_test);
1613
1614  for (auto I = TypeCheckedLoadFunc->use_begin(),
1615            E = TypeCheckedLoadFunc->use_end();
1616       I != E;) {
1617    auto CI = dyn_cast<CallInst>(I->getUser());
1618    ++I;
1619    if (!CI)
1620      continue;
1621
1622    Value *Ptr = CI->getArgOperand(0);
1623    Value *Offset = CI->getArgOperand(1);
1624    Value *TypeIdValue = CI->getArgOperand(2);
1625    Metadata *TypeId = cast<MetadataAsValue>(TypeIdValue)->getMetadata();
1626
1627    SmallVector<DevirtCallSite, 1> DevirtCalls;
1628    SmallVector<Instruction *, 1> LoadedPtrs;
1629    SmallVector<Instruction *, 1> Preds;
1630    bool HasNonCallUses = false;
1631    auto &DT = LookupDomTree(*CI->getFunction());
1632    findDevirtualizableCallsForTypeCheckedLoad(DevirtCalls, LoadedPtrs, Preds,
1633                                               HasNonCallUses, CI, DT);
1634
1635    // Start by generating "pessimistic" code that explicitly loads the function
1636    // pointer from the vtable and performs the type check. If possible, we will
1637    // eliminate the load and the type check later.
1638
1639    // If possible, only generate the load at the point where it is used.
1640    // This helps avoid unnecessary spills.
1641    IRBuilder<> LoadB(
1642        (LoadedPtrs.size() == 1 && !HasNonCallUses) ? LoadedPtrs[0] : CI);
1643    Value *GEP = LoadB.CreateGEP(Int8Ty, Ptr, Offset);
1644    Value *GEPPtr = LoadB.CreateBitCast(GEP, PointerType::getUnqual(Int8PtrTy));
1645    Value *LoadedValue = LoadB.CreateLoad(Int8PtrTy, GEPPtr);
1646
1647    for (Instruction *LoadedPtr : LoadedPtrs) {
1648      LoadedPtr->replaceAllUsesWith(LoadedValue);
1649      LoadedPtr->eraseFromParent();
1650    }
1651
1652    // Likewise for the type test.
1653    IRBuilder<> CallB((Preds.size() == 1 && !HasNonCallUses) ? Preds[0] : CI);
1654    CallInst *TypeTestCall = CallB.CreateCall(TypeTestFunc, {Ptr, TypeIdValue});
1655
1656    for (Instruction *Pred : Preds) {
1657      Pred->replaceAllUsesWith(TypeTestCall);
1658      Pred->eraseFromParent();
1659    }
1660
1661    // We have already erased any extractvalue instructions that refer to the
1662    // intrinsic call, but the intrinsic may have other non-extractvalue uses
1663    // (although this is unlikely). In that case, explicitly build a pair and
1664    // RAUW it.
1665    if (!CI->use_empty()) {
1666      Value *Pair = UndefValue::get(CI->getType());
1667      IRBuilder<> B(CI);
1668      Pair = B.CreateInsertValue(Pair, LoadedValue, {0});
1669      Pair = B.CreateInsertValue(Pair, TypeTestCall, {1});
1670      CI->replaceAllUsesWith(Pair);
1671    }
1672
1673    // The number of unsafe uses is initially the number of uses.
1674    auto &NumUnsafeUses = NumUnsafeUsesForTypeTest[TypeTestCall];
1675    NumUnsafeUses = DevirtCalls.size();
1676
1677    // If the function pointer has a non-call user, we cannot eliminate the type
1678    // check, as one of those users may eventually call the pointer. Increment
1679    // the unsafe use count to make sure it cannot reach zero.
1680    if (HasNonCallUses)
1681      ++NumUnsafeUses;
1682    for (DevirtCallSite Call : DevirtCalls) {
1683      CallSlots[{TypeId, Call.Offset}].addCallSite(Ptr, Call.CS,
1684                                                   &NumUnsafeUses);
1685    }
1686
1687    CI->eraseFromParent();
1688  }
1689}
1690
1691void DevirtModule::importResolution(VTableSlot Slot, VTableSlotInfo &SlotInfo) {
1692  auto *TypeId = dyn_cast<MDString>(Slot.TypeID);
1693  if (!TypeId)
1694    return;
1695  const TypeIdSummary *TidSummary =
1696      ImportSummary->getTypeIdSummary(TypeId->getString());
1697  if (!TidSummary)
1698    return;
1699  auto ResI = TidSummary->WPDRes.find(Slot.ByteOffset);
1700  if (ResI == TidSummary->WPDRes.end())
1701    return;
1702  const WholeProgramDevirtResolution &Res = ResI->second;
1703
1704  if (Res.TheKind == WholeProgramDevirtResolution::SingleImpl) {
1705    assert(!Res.SingleImplName.empty());
1706    // The type of the function in the declaration is irrelevant because every
1707    // call site will cast it to the correct type.
1708    Constant *SingleImpl =
1709        cast<Constant>(M.getOrInsertFunction(Res.SingleImplName,
1710                                             Type::getVoidTy(M.getContext()))
1711                           .getCallee());
1712
1713    // This is the import phase so we should not be exporting anything.
1714    bool IsExported = false;
1715    applySingleImplDevirt(SlotInfo, SingleImpl, IsExported);
1716    assert(!IsExported);
1717  }
1718
1719  for (auto &CSByConstantArg : SlotInfo.ConstCSInfo) {
1720    auto I = Res.ResByArg.find(CSByConstantArg.first);
1721    if (I == Res.ResByArg.end())
1722      continue;
1723    auto &ResByArg = I->second;
1724    // FIXME: We should figure out what to do about the "function name" argument
1725    // to the apply* functions, as the function names are unavailable during the
1726    // importing phase. For now we just pass the empty string. This does not
1727    // impact correctness because the function names are just used for remarks.
1728    switch (ResByArg.TheKind) {
1729    case WholeProgramDevirtResolution::ByArg::UniformRetVal:
1730      applyUniformRetValOpt(CSByConstantArg.second, "", ResByArg.Info);
1731      break;
1732    case WholeProgramDevirtResolution::ByArg::UniqueRetVal: {
1733      Constant *UniqueMemberAddr =
1734          importGlobal(Slot, CSByConstantArg.first, "unique_member");
1735      applyUniqueRetValOpt(CSByConstantArg.second, "", ResByArg.Info,
1736                           UniqueMemberAddr);
1737      break;
1738    }
1739    case WholeProgramDevirtResolution::ByArg::VirtualConstProp: {
1740      Constant *Byte = importConstant(Slot, CSByConstantArg.first, "byte",
1741                                      Int32Ty, ResByArg.Byte);
1742      Constant *Bit = importConstant(Slot, CSByConstantArg.first, "bit", Int8Ty,
1743                                     ResByArg.Bit);
1744      applyVirtualConstProp(CSByConstantArg.second, "", Byte, Bit);
1745      break;
1746    }
1747    default:
1748      break;
1749    }
1750  }
1751
1752  if (Res.TheKind == WholeProgramDevirtResolution::BranchFunnel) {
1753    // The type of the function is irrelevant, because it's bitcast at calls
1754    // anyhow.
1755    Constant *JT = cast<Constant>(
1756        M.getOrInsertFunction(getGlobalName(Slot, {}, "branch_funnel"),
1757                              Type::getVoidTy(M.getContext()))
1758            .getCallee());
1759    bool IsExported = false;
1760    applyICallBranchFunnel(SlotInfo, JT, IsExported);
1761    assert(!IsExported);
1762  }
1763}
1764
1765void DevirtModule::removeRedundantTypeTests() {
1766  auto True = ConstantInt::getTrue(M.getContext());
1767  for (auto &&U : NumUnsafeUsesForTypeTest) {
1768    if (U.second == 0) {
1769      U.first->replaceAllUsesWith(True);
1770      U.first->eraseFromParent();
1771    }
1772  }
1773}
1774
1775bool DevirtModule::run() {
1776  // If only some of the modules were split, we cannot correctly perform
1777  // this transformation. We already checked for the presense of type tests
1778  // with partially split modules during the thin link, and would have emitted
1779  // an error if any were found, so here we can simply return.
1780  if ((ExportSummary && ExportSummary->partiallySplitLTOUnits()) ||
1781      (ImportSummary && ImportSummary->partiallySplitLTOUnits()))
1782    return false;
1783
1784  Function *TypeTestFunc =
1785      M.getFunction(Intrinsic::getName(Intrinsic::type_test));
1786  Function *TypeCheckedLoadFunc =
1787      M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load));
1788  Function *AssumeFunc = M.getFunction(Intrinsic::getName(Intrinsic::assume));
1789
1790  // Normally if there are no users of the devirtualization intrinsics in the
1791  // module, this pass has nothing to do. But if we are exporting, we also need
1792  // to handle any users that appear only in the function summaries.
1793  if (!ExportSummary &&
1794      (!TypeTestFunc || TypeTestFunc->use_empty() || !AssumeFunc ||
1795       AssumeFunc->use_empty()) &&
1796      (!TypeCheckedLoadFunc || TypeCheckedLoadFunc->use_empty()))
1797    return false;
1798
1799  if (TypeTestFunc && AssumeFunc)
1800    scanTypeTestUsers(TypeTestFunc);
1801
1802  if (TypeCheckedLoadFunc)
1803    scanTypeCheckedLoadUsers(TypeCheckedLoadFunc);
1804
1805  if (ImportSummary) {
1806    for (auto &S : CallSlots)
1807      importResolution(S.first, S.second);
1808
1809    removeRedundantTypeTests();
1810
1811    // The rest of the code is only necessary when exporting or during regular
1812    // LTO, so we are done.
1813    return true;
1814  }
1815
1816  // Rebuild type metadata into a map for easy lookup.
1817  std::vector<VTableBits> Bits;
1818  DenseMap<Metadata *, std::set<TypeMemberInfo>> TypeIdMap;
1819  buildTypeIdentifierMap(Bits, TypeIdMap);
1820  if (TypeIdMap.empty())
1821    return true;
1822
1823  // Collect information from summary about which calls to try to devirtualize.
1824  if (ExportSummary) {
1825    DenseMap<GlobalValue::GUID, TinyPtrVector<Metadata *>> MetadataByGUID;
1826    for (auto &P : TypeIdMap) {
1827      if (auto *TypeId = dyn_cast<MDString>(P.first))
1828        MetadataByGUID[GlobalValue::getGUID(TypeId->getString())].push_back(
1829            TypeId);
1830    }
1831
1832    for (auto &P : *ExportSummary) {
1833      for (auto &S : P.second.SummaryList) {
1834        auto *FS = dyn_cast<FunctionSummary>(S.get());
1835        if (!FS)
1836          continue;
1837        // FIXME: Only add live functions.
1838        for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1839          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1840            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1841          }
1842        }
1843        for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1844          for (Metadata *MD : MetadataByGUID[VF.GUID]) {
1845            CallSlots[{MD, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1846          }
1847        }
1848        for (const FunctionSummary::ConstVCall &VC :
1849             FS->type_test_assume_const_vcalls()) {
1850          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1851            CallSlots[{MD, VC.VFunc.Offset}]
1852                .ConstCSInfo[VC.Args]
1853                .addSummaryTypeTestAssumeUser(FS);
1854          }
1855        }
1856        for (const FunctionSummary::ConstVCall &VC :
1857             FS->type_checked_load_const_vcalls()) {
1858          for (Metadata *MD : MetadataByGUID[VC.VFunc.GUID]) {
1859            CallSlots[{MD, VC.VFunc.Offset}]
1860                .ConstCSInfo[VC.Args]
1861                .addSummaryTypeCheckedLoadUser(FS);
1862          }
1863        }
1864      }
1865    }
1866  }
1867
1868  // For each (type, offset) pair:
1869  bool DidVirtualConstProp = false;
1870  std::map<std::string, Function*> DevirtTargets;
1871  for (auto &S : CallSlots) {
1872    // Search each of the members of the type identifier for the virtual
1873    // function implementation at offset S.first.ByteOffset, and add to
1874    // TargetsForSlot.
1875    std::vector<VirtualCallTarget> TargetsForSlot;
1876    if (tryFindVirtualCallTargets(TargetsForSlot, TypeIdMap[S.first.TypeID],
1877                                  S.first.ByteOffset)) {
1878      WholeProgramDevirtResolution *Res = nullptr;
1879      if (ExportSummary && isa<MDString>(S.first.TypeID))
1880        Res = &ExportSummary
1881                   ->getOrInsertTypeIdSummary(
1882                       cast<MDString>(S.first.TypeID)->getString())
1883                   .WPDRes[S.first.ByteOffset];
1884
1885      if (!trySingleImplDevirt(ExportSummary, TargetsForSlot, S.second, Res)) {
1886        DidVirtualConstProp |=
1887            tryVirtualConstProp(TargetsForSlot, S.second, Res, S.first);
1888
1889        tryICallBranchFunnel(TargetsForSlot, S.second, Res, S.first);
1890      }
1891
1892      // Collect functions devirtualized at least for one call site for stats.
1893      if (RemarksEnabled)
1894        for (const auto &T : TargetsForSlot)
1895          if (T.WasDevirt)
1896            DevirtTargets[T.Fn->getName()] = T.Fn;
1897    }
1898
1899    // CFI-specific: if we are exporting and any llvm.type.checked.load
1900    // intrinsics were *not* devirtualized, we need to add the resulting
1901    // llvm.type.test intrinsics to the function summaries so that the
1902    // LowerTypeTests pass will export them.
1903    if (ExportSummary && isa<MDString>(S.first.TypeID)) {
1904      auto GUID =
1905          GlobalValue::getGUID(cast<MDString>(S.first.TypeID)->getString());
1906      for (auto FS : S.second.CSInfo.SummaryTypeCheckedLoadUsers)
1907        FS->addTypeTest(GUID);
1908      for (auto &CCS : S.second.ConstCSInfo)
1909        for (auto FS : CCS.second.SummaryTypeCheckedLoadUsers)
1910          FS->addTypeTest(GUID);
1911    }
1912  }
1913
1914  if (RemarksEnabled) {
1915    // Generate remarks for each devirtualized function.
1916    for (const auto &DT : DevirtTargets) {
1917      Function *F = DT.second;
1918
1919      using namespace ore;
1920      OREGetter(F).emit(OptimizationRemark(DEBUG_TYPE, "Devirtualized", F)
1921                        << "devirtualized "
1922                        << NV("FunctionName", DT.first));
1923    }
1924  }
1925
1926  removeRedundantTypeTests();
1927
1928  // Rebuild each global we touched as part of virtual constant propagation to
1929  // include the before and after bytes.
1930  if (DidVirtualConstProp)
1931    for (VTableBits &B : Bits)
1932      rebuildGlobal(B);
1933
1934  // We have lowered or deleted the type checked load intrinsics, so we no
1935  // longer have enough information to reason about the liveness of virtual
1936  // function pointers in GlobalDCE.
1937  for (GlobalVariable &GV : M.globals())
1938    GV.eraseMetadata(LLVMContext::MD_vcall_visibility);
1939
1940  return true;
1941}
1942
1943void DevirtIndex::run() {
1944  if (ExportSummary.typeIdCompatibleVtableMap().empty())
1945    return;
1946
1947  DenseMap<GlobalValue::GUID, std::vector<StringRef>> NameByGUID;
1948  for (auto &P : ExportSummary.typeIdCompatibleVtableMap()) {
1949    NameByGUID[GlobalValue::getGUID(P.first)].push_back(P.first);
1950  }
1951
1952  // Collect information from summary about which calls to try to devirtualize.
1953  for (auto &P : ExportSummary) {
1954    for (auto &S : P.second.SummaryList) {
1955      auto *FS = dyn_cast<FunctionSummary>(S.get());
1956      if (!FS)
1957        continue;
1958      // FIXME: Only add live functions.
1959      for (FunctionSummary::VFuncId VF : FS->type_test_assume_vcalls()) {
1960        for (StringRef Name : NameByGUID[VF.GUID]) {
1961          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeTestAssumeUser(FS);
1962        }
1963      }
1964      for (FunctionSummary::VFuncId VF : FS->type_checked_load_vcalls()) {
1965        for (StringRef Name : NameByGUID[VF.GUID]) {
1966          CallSlots[{Name, VF.Offset}].CSInfo.addSummaryTypeCheckedLoadUser(FS);
1967        }
1968      }
1969      for (const FunctionSummary::ConstVCall &VC :
1970           FS->type_test_assume_const_vcalls()) {
1971        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1972          CallSlots[{Name, VC.VFunc.Offset}]
1973              .ConstCSInfo[VC.Args]
1974              .addSummaryTypeTestAssumeUser(FS);
1975        }
1976      }
1977      for (const FunctionSummary::ConstVCall &VC :
1978           FS->type_checked_load_const_vcalls()) {
1979        for (StringRef Name : NameByGUID[VC.VFunc.GUID]) {
1980          CallSlots[{Name, VC.VFunc.Offset}]
1981              .ConstCSInfo[VC.Args]
1982              .addSummaryTypeCheckedLoadUser(FS);
1983        }
1984      }
1985    }
1986  }
1987
1988  std::set<ValueInfo> DevirtTargets;
1989  // For each (type, offset) pair:
1990  for (auto &S : CallSlots) {
1991    // Search each of the members of the type identifier for the virtual
1992    // function implementation at offset S.first.ByteOffset, and add to
1993    // TargetsForSlot.
1994    std::vector<ValueInfo> TargetsForSlot;
1995    auto TidSummary = ExportSummary.getTypeIdCompatibleVtableSummary(S.first.TypeID);
1996    assert(TidSummary);
1997    if (tryFindVirtualCallTargets(TargetsForSlot, *TidSummary,
1998                                  S.first.ByteOffset)) {
1999      WholeProgramDevirtResolution *Res =
2000          &ExportSummary.getOrInsertTypeIdSummary(S.first.TypeID)
2001               .WPDRes[S.first.ByteOffset];
2002
2003      if (!trySingleImplDevirt(TargetsForSlot, S.first, S.second, Res,
2004                               DevirtTargets))
2005        continue;
2006    }
2007  }
2008
2009  // Optionally have the thin link print message for each devirtualized
2010  // function.
2011  if (PrintSummaryDevirt)
2012    for (const auto &DT : DevirtTargets)
2013      errs() << "Devirtualized call to " << DT << "\n";
2014
2015  return;
2016}
2017