SampleProfile.cpp revision 360784
1177633Sdfr//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2177633Sdfr//
3261046Smav// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4261046Smav// See https://llvm.org/LICENSE.txt for license information.
5261046Smav// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6261046Smav//
7261046Smav//===----------------------------------------------------------------------===//
8261046Smav//
9261046Smav// This file implements the SampleProfileLoader transformation. This pass
10261046Smav// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11261046Smav// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12261046Smav// profile information in the given profile.
13261046Smav//
14261046Smav// This pass generates branch weight annotations on the IR:
15261046Smav//
16261046Smav// - prof: Represents branch weights. This annotation is added to branches
17177633Sdfr//      to indicate the weights of each edge coming out of the branch.
18261046Smav//      The weight of each edge is the weight of the target block for
19261046Smav//      that edge. The weight of a block B is computed as the maximum
20261046Smav//      number of samples found in B.
21261046Smav//
22261046Smav//===----------------------------------------------------------------------===//
23261046Smav
24261046Smav#include "llvm/Transforms/IPO/SampleProfile.h"
25261046Smav#include "llvm/ADT/ArrayRef.h"
26261046Smav#include "llvm/ADT/DenseMap.h"
27261046Smav#include "llvm/ADT/DenseSet.h"
28261046Smav#include "llvm/ADT/None.h"
29177633Sdfr#include "llvm/ADT/SCCIterator.h"
30177633Sdfr#include "llvm/ADT/SmallPtrSet.h"
31177633Sdfr#include "llvm/ADT/SmallSet.h"
32177633Sdfr#include "llvm/ADT/SmallVector.h"
33177633Sdfr#include "llvm/ADT/Statistic.h"
34177633Sdfr#include "llvm/ADT/StringMap.h"
35177633Sdfr#include "llvm/ADT/StringRef.h"
36177633Sdfr#include "llvm/ADT/Twine.h"
37177633Sdfr#include "llvm/Analysis/AssumptionCache.h"
38177633Sdfr#include "llvm/Analysis/CallGraph.h"
39177633Sdfr#include "llvm/Analysis/CallGraphSCCPass.h"
40177633Sdfr#include "llvm/Analysis/InlineCost.h"
41177633Sdfr#include "llvm/Analysis/LoopInfo.h"
42177633Sdfr#include "llvm/Analysis/OptimizationRemarkEmitter.h"
43177633Sdfr#include "llvm/Analysis/PostDominators.h"
44177633Sdfr#include "llvm/Analysis/ProfileSummaryInfo.h"
45177633Sdfr#include "llvm/Analysis/TargetTransformInfo.h"
46177633Sdfr#include "llvm/IR/BasicBlock.h"
47177633Sdfr#include "llvm/IR/CFG.h"
48177633Sdfr#include "llvm/IR/CallSite.h"
49177633Sdfr#include "llvm/IR/DebugInfoMetadata.h"
50177633Sdfr#include "llvm/IR/DebugLoc.h"
51177633Sdfr#include "llvm/IR/DiagnosticInfo.h"
52177633Sdfr#include "llvm/IR/Dominators.h"
53177633Sdfr#include "llvm/IR/Function.h"
54177633Sdfr#include "llvm/IR/GlobalValue.h"
55184588Sdfr#include "llvm/IR/InstrTypes.h"
56177633Sdfr#include "llvm/IR/Instruction.h"
57177633Sdfr#include "llvm/IR/Instructions.h"
58177633Sdfr#include "llvm/IR/IntrinsicInst.h"
59196503Szec#include "llvm/IR/LLVMContext.h"
60196503Szec#include "llvm/IR/MDBuilder.h"
61177633Sdfr#include "llvm/IR/Module.h"
62177633Sdfr#include "llvm/IR/PassManager.h"
63177685Sdfr#include "llvm/IR/ValueSymbolTable.h"
64177633Sdfr#include "llvm/InitializePasses.h"
65177633Sdfr#include "llvm/Pass.h"
66184588Sdfr#include "llvm/ProfileData/InstrProf.h"
67184588Sdfr#include "llvm/ProfileData/SampleProf.h"
68184588Sdfr#include "llvm/ProfileData/SampleProfReader.h"
69261055Smav#include "llvm/Support/Casting.h"
70177633Sdfr#include "llvm/Support/CommandLine.h"
71177633Sdfr#include "llvm/Support/Debug.h"
72193272Sjhb#include "llvm/Support/ErrorHandling.h"
73177633Sdfr#include "llvm/Support/ErrorOr.h"
74177633Sdfr#include "llvm/Support/GenericDomTree.h"
75177633Sdfr#include "llvm/Support/raw_ostream.h"
76177633Sdfr#include "llvm/Transforms/IPO.h"
77177633Sdfr#include "llvm/Transforms/Instrumentation.h"
78177633Sdfr#include "llvm/Transforms/Utils/CallPromotionUtils.h"
79177633Sdfr#include "llvm/Transforms/Utils/Cloning.h"
80177633Sdfr#include "llvm/Transforms/Utils/MisExpect.h"
81177633Sdfr#include <algorithm>
82177633Sdfr#include <cassert>
83177633Sdfr#include <cstdint>
84177633Sdfr#include <functional>
85177633Sdfr#include <limits>
86177633Sdfr#include <map>
87177633Sdfr#include <memory>
88177633Sdfr#include <queue>
89177633Sdfr#include <string>
90177633Sdfr#include <system_error>
91177633Sdfr#include <utility>
92177633Sdfr#include <vector>
93177633Sdfr
94177633Sdfrusing namespace llvm;
95177633Sdfrusing namespace sampleprof;
96177633Sdfrusing ProfileCount = Function::ProfileCount;
97177633Sdfr#define DEBUG_TYPE "sample-profile"
98177633Sdfr#define CSINLINE_DEBUG DEBUG_TYPE "-inline"
99177633Sdfr
100177633SdfrSTATISTIC(NumCSInlined,
101177633Sdfr          "Number of functions inlined with context sensitive profile");
102177633SdfrSTATISTIC(NumCSNotInlined,
103177633Sdfr          "Number of functions not inlined with context sensitive profile");
104177633Sdfr
105177633Sdfr// Command line option to specify the file to read samples from. This is
106177633Sdfr// mainly used for debugging.
107177633Sdfrstatic cl::opt<std::string> SampleProfileFile(
108177633Sdfr    "sample-profile-file", cl::init(""), cl::value_desc("filename"),
109177633Sdfr    cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
110177633Sdfr
111177633Sdfr// The named file contains a set of transformations that may have been applied
112177633Sdfr// to the symbol names between the program from which the sample data was
113177633Sdfr// collected and the current program's symbols.
114177633Sdfrstatic cl::opt<std::string> SampleProfileRemappingFile(
115177633Sdfr    "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
116177633Sdfr    cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
117177633Sdfr
118177633Sdfrstatic cl::opt<unsigned> SampleProfileMaxPropagateIterations(
119184588Sdfr    "sample-profile-max-propagate-iterations", cl::init(100),
120184588Sdfr    cl::desc("Maximum number of iterations to go through when propagating "
121177633Sdfr             "sample block/edge weights through the CFG."));
122177633Sdfr
123177633Sdfrstatic cl::opt<unsigned> SampleProfileRecordCoverage(
124177633Sdfr    "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
125177633Sdfr    cl::desc("Emit a warning if less than N% of records in the input profile "
126177633Sdfr             "are matched to the IR."));
127218757Sbz
128177633Sdfrstatic cl::opt<unsigned> SampleProfileSampleCoverage(
129196503Szec    "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
130177633Sdfr    cl::desc("Emit a warning if less than N% of samples in the input profile "
131177633Sdfr             "are matched to the IR."));
132177633Sdfr
133184588Sdfrstatic cl::opt<bool> NoWarnSampleUnused(
134177633Sdfr    "no-warn-sample-unused", cl::init(false), cl::Hidden,
135177633Sdfr    cl::desc("Use this option to turn off/on warnings about function with "
136177633Sdfr             "samples but without debug information to use those samples. "));
137177633Sdfr
138177633Sdfrstatic cl::opt<bool> ProfileSampleAccurate(
139193272Sjhb    "profile-sample-accurate", cl::Hidden, cl::init(false),
140177633Sdfr    cl::desc("If the sample profile is accurate, we will mark all un-sampled "
141177633Sdfr             "callsite and function as having 0 samples. Otherwise, treat "
142177633Sdfr             "un-sampled callsites and functions conservatively as unknown. "));
143177633Sdfr
144177633Sdfrstatic cl::opt<bool> ProfileAccurateForSymsInList(
145303692Sngie    "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
146303692Sngie    cl::init(true),
147177633Sdfr    cl::desc("For symbols in profile symbol list, regard their profiles to "
148177633Sdfr             "be accurate. It may be overriden by profile-sample-accurate. "));
149177633Sdfr
150177633Sdfrstatic cl::opt<bool> ProfileMergeInlinee(
151177633Sdfr    "sample-profile-merge-inlinee", cl::Hidden, cl::init(false),
152177633Sdfr    cl::desc("Merge past inlinee's profile to outline version if sample "
153177633Sdfr             "profile loader decided not to inline a call site."));
154177633Sdfr
155184588Sdfrstatic cl::opt<bool> ProfileTopDownLoad(
156184588Sdfr    "sample-profile-top-down-load", cl::Hidden, cl::init(false),
157184588Sdfr    cl::desc("Do profile annotation and inlining for functions in top-down "
158177633Sdfr             "order of call graph during sample profile loading."));
159177633Sdfr
160177633Sdfrstatic cl::opt<bool> ProfileSizeInline(
161177633Sdfr    "sample-profile-inline-size", cl::Hidden, cl::init(false),
162184588Sdfr    cl::desc("Inline cold call sites in profile loader if it's beneficial "
163184588Sdfr             "for code size."));
164177633Sdfr
165177633Sdfrstatic cl::opt<int> SampleColdCallSiteThreshold(
166177633Sdfr    "sample-profile-cold-inline-threshold", cl::Hidden, cl::init(45),
167177633Sdfr    cl::desc("Threshold for inlining cold callsites"));
168184588Sdfr
169177633Sdfrnamespace {
170177633Sdfr
171177633Sdfrusing BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
172184588Sdfrusing EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
173184588Sdfrusing Edge = std::pair<const BasicBlock *, const BasicBlock *>;
174184588Sdfrusing EdgeWeightMap = DenseMap<Edge, uint64_t>;
175184588Sdfrusing BlockEdgeMap =
176184588Sdfr    DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
177177633Sdfr
178177633Sdfrclass SampleProfileLoader;
179177633Sdfr
180177633Sdfrclass SampleCoverageTracker {
181177633Sdfrpublic:
182177633Sdfr  SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
183177633Sdfr
184177633Sdfr  bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
185177633Sdfr                       uint32_t Discriminator, uint64_t Samples);
186177633Sdfr  unsigned computeCoverage(unsigned Used, unsigned Total) const;
187177633Sdfr  unsigned countUsedRecords(const FunctionSamples *FS,
188177633Sdfr                            ProfileSummaryInfo *PSI) const;
189177633Sdfr  unsigned countBodyRecords(const FunctionSamples *FS,
190184588Sdfr                            ProfileSummaryInfo *PSI) const;
191184588Sdfr  uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
192184588Sdfr  uint64_t countBodySamples(const FunctionSamples *FS,
193184588Sdfr                            ProfileSummaryInfo *PSI) const;
194184588Sdfr
195184588Sdfr  void clear() {
196184588Sdfr    SampleCoverage.clear();
197184588Sdfr    TotalUsedSamples = 0;
198261053Smav  }
199184588Sdfr
200261053Smavprivate:
201261053Smav  using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
202184588Sdfr  using FunctionSamplesCoverageMap =
203177633Sdfr      DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
204177633Sdfr
205177633Sdfr  /// Coverage map for sampling records.
206177633Sdfr  ///
207177633Sdfr  /// This map keeps a record of sampling records that have been matched to
208193272Sjhb  /// an IR instruction. This is used to detect some form of staleness in
209177633Sdfr  /// profiles (see flag -sample-profile-check-coverage).
210261053Smav  ///
211184588Sdfr  /// Each entry in the map corresponds to a FunctionSamples instance.  This is
212177633Sdfr  /// another map that counts how many times the sample record at the
213177633Sdfr  /// given location has been used.
214177633Sdfr  FunctionSamplesCoverageMap SampleCoverage;
215184588Sdfr
216177633Sdfr  /// Number of samples used from the profile.
217184588Sdfr  ///
218184588Sdfr  /// When a sampling record is used for the first time, the samples from
219184588Sdfr  /// that record are added to this accumulator.  Coverage is later computed
220177633Sdfr  /// based on the total number of samples available in this function and
221177633Sdfr  /// its callsites.
222177633Sdfr  ///
223184588Sdfr  /// Note that this accumulator tracks samples used from a single function
224184588Sdfr  /// and all the inlined callsites. Strictly, we should have a map of counters
225184588Sdfr  /// keyed by FunctionSamples pointers, but these stats are cleared after
226184588Sdfr  /// every function, so we just need to keep a single counter.
227177633Sdfr  uint64_t TotalUsedSamples = 0;
228177633Sdfr
229177633Sdfr  SampleProfileLoader &SPLoader;
230177633Sdfr};
231184588Sdfr
232261055Smavclass GUIDToFuncNameMapper {
233177633Sdfrpublic:
234184588Sdfr  GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
235177633Sdfr                        DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
236184588Sdfr      : CurrentReader(Reader), CurrentModule(M),
237177633Sdfr      CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
238177633Sdfr    if (CurrentReader.getFormat() != SPF_Compact_Binary)
239248195Sglebius      return;
240177633Sdfr
241184588Sdfr    for (const auto &F : CurrentModule) {
242184588Sdfr      StringRef OrigName = F.getName();
243184588Sdfr      CurrentGUIDToFuncNameMap.insert(
244184588Sdfr          {Function::getGUID(OrigName), OrigName});
245184588Sdfr
246184588Sdfr      // Local to global var promotion used by optimization like thinlto
247184588Sdfr      // will rename the var and add suffix like ".llvm.xxx" to the
248184588Sdfr      // original local name. In sample profile, the suffixes of function
249184588Sdfr      // names are all stripped. Since it is possible that the mapper is
250184588Sdfr      // built in post-thin-link phase and var promotion has been done,
251184588Sdfr      // we need to add the substring of function name without the suffix
252184588Sdfr      // into the GUIDToFuncNameMap.
253184588Sdfr      StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
254177633Sdfr      if (CanonName != OrigName)
255184588Sdfr        CurrentGUIDToFuncNameMap.insert(
256177633Sdfr            {Function::getGUID(CanonName), CanonName});
257177633Sdfr    }
258177633Sdfr
259177633Sdfr    // Update GUIDToFuncNameMap for each function including inlinees.
260177633Sdfr    SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
261177633Sdfr  }
262177633Sdfr
263177633Sdfr  ~GUIDToFuncNameMapper() {
264184588Sdfr    if (CurrentReader.getFormat() != SPF_Compact_Binary)
265177633Sdfr      return;
266177633Sdfr
267177633Sdfr    CurrentGUIDToFuncNameMap.clear();
268177633Sdfr
269177633Sdfr    // Reset GUIDToFuncNameMap for of each function as they're no
270177633Sdfr    // longer valid at this point.
271177633Sdfr    SetGUIDToFuncNameMapForAll(nullptr);
272177633Sdfr  }
273184588Sdfr
274177633Sdfrprivate:
275193272Sjhb  void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
276177633Sdfr    std::queue<FunctionSamples *> FSToUpdate;
277177633Sdfr    for (auto &IFS : CurrentReader.getProfiles()) {
278184588Sdfr      FSToUpdate.push(&IFS.second);
279177633Sdfr    }
280177633Sdfr
281177633Sdfr    while (!FSToUpdate.empty()) {
282184588Sdfr      FunctionSamples *FS = FSToUpdate.front();
283184588Sdfr      FSToUpdate.pop();
284184588Sdfr      FS->GUIDToFuncNameMap = Map;
285177633Sdfr      for (const auto &ICS : FS->getCallsiteSamples()) {
286177633Sdfr        const FunctionSamplesMap &FSMap = ICS.second;
287177633Sdfr        for (auto &IFS : FSMap) {
288177633Sdfr          FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
289177633Sdfr          FSToUpdate.push(&FS);
290177633Sdfr        }
291177633Sdfr      }
292177633Sdfr    }
293177633Sdfr  }
294177633Sdfr
295177633Sdfr  SampleProfileReader &CurrentReader;
296177633Sdfr  Module &CurrentModule;
297177633Sdfr  DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
298193272Sjhb};
299177633Sdfr
300177633Sdfr/// Sample profile pass.
301177633Sdfr///
302177633Sdfr/// This pass reads profile data from the file specified by
303177633Sdfr/// -sample-profile-file and annotates every affected function with the
304193272Sjhb/// profile information found in that file.
305177633Sdfrclass SampleProfileLoader {
306public:
307  SampleProfileLoader(
308      StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
309      std::function<AssumptionCache &(Function &)> GetAssumptionCache,
310      std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
311      : GetAC(std::move(GetAssumptionCache)),
312        GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this),
313        Filename(Name), RemappingFilename(RemapName),
314        IsThinLTOPreLink(IsThinLTOPreLink) {}
315
316  bool doInitialization(Module &M);
317  bool runOnModule(Module &M, ModuleAnalysisManager *AM,
318                   ProfileSummaryInfo *_PSI, CallGraph *CG);
319
320  void dump() { Reader->dump(); }
321
322protected:
323  friend class SampleCoverageTracker;
324
325  bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
326  unsigned getFunctionLoc(Function &F);
327  bool emitAnnotations(Function &F);
328  ErrorOr<uint64_t> getInstWeight(const Instruction &I);
329  ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
330  const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
331  std::vector<const FunctionSamples *>
332  findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
333  mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
334  const FunctionSamples *findFunctionSamples(const Instruction &I) const;
335  bool inlineCallInstruction(Instruction *I);
336  bool inlineHotFunctions(Function &F,
337                          DenseSet<GlobalValue::GUID> &InlinedGUIDs);
338  // Inline cold/small functions in addition to hot ones
339  bool shouldInlineColdCallee(Instruction &CallInst);
340  void emitOptimizationRemarksForInlineCandidates(
341    const SmallVector<Instruction *, 10> &Candidates, const Function &F, bool Hot);
342  void printEdgeWeight(raw_ostream &OS, Edge E);
343  void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
344  void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
345  bool computeBlockWeights(Function &F);
346  void findEquivalenceClasses(Function &F);
347  template <bool IsPostDom>
348  void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
349                           DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
350
351  void propagateWeights(Function &F);
352  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
353  void buildEdges(Function &F);
354  std::vector<Function *> buildFunctionOrder(Module &M, CallGraph *CG);
355  bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
356  void computeDominanceAndLoopInfo(Function &F);
357  void clearFunctionData();
358  bool callsiteIsHot(const FunctionSamples *CallsiteFS,
359                     ProfileSummaryInfo *PSI);
360
361  /// Map basic blocks to their computed weights.
362  ///
363  /// The weight of a basic block is defined to be the maximum
364  /// of all the instruction weights in that block.
365  BlockWeightMap BlockWeights;
366
367  /// Map edges to their computed weights.
368  ///
369  /// Edge weights are computed by propagating basic block weights in
370  /// SampleProfile::propagateWeights.
371  EdgeWeightMap EdgeWeights;
372
373  /// Set of visited blocks during propagation.
374  SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
375
376  /// Set of visited edges during propagation.
377  SmallSet<Edge, 32> VisitedEdges;
378
379  /// Equivalence classes for block weights.
380  ///
381  /// Two blocks BB1 and BB2 are in the same equivalence class if they
382  /// dominate and post-dominate each other, and they are in the same loop
383  /// nest. When this happens, the two blocks are guaranteed to execute
384  /// the same number of times.
385  EquivalenceClassMap EquivalenceClass;
386
387  /// Map from function name to Function *. Used to find the function from
388  /// the function name. If the function name contains suffix, additional
389  /// entry is added to map from the stripped name to the function if there
390  /// is one-to-one mapping.
391  StringMap<Function *> SymbolMap;
392
393  /// Dominance, post-dominance and loop information.
394  std::unique_ptr<DominatorTree> DT;
395  std::unique_ptr<PostDominatorTree> PDT;
396  std::unique_ptr<LoopInfo> LI;
397
398  std::function<AssumptionCache &(Function &)> GetAC;
399  std::function<TargetTransformInfo &(Function &)> GetTTI;
400
401  /// Predecessors for each basic block in the CFG.
402  BlockEdgeMap Predecessors;
403
404  /// Successors for each basic block in the CFG.
405  BlockEdgeMap Successors;
406
407  SampleCoverageTracker CoverageTracker;
408
409  /// Profile reader object.
410  std::unique_ptr<SampleProfileReader> Reader;
411
412  /// Samples collected for the body of this function.
413  FunctionSamples *Samples = nullptr;
414
415  /// Name of the profile file to load.
416  std::string Filename;
417
418  /// Name of the profile remapping file to load.
419  std::string RemappingFilename;
420
421  /// Flag indicating whether the profile input loaded successfully.
422  bool ProfileIsValid = false;
423
424  /// Flag indicating if the pass is invoked in ThinLTO compile phase.
425  ///
426  /// In this phase, in annotation, we should not promote indirect calls.
427  /// Instead, we will mark GUIDs that needs to be annotated to the function.
428  bool IsThinLTOPreLink;
429
430  /// Profile Summary Info computed from sample profile.
431  ProfileSummaryInfo *PSI = nullptr;
432
433  /// Profle Symbol list tells whether a function name appears in the binary
434  /// used to generate the current profile.
435  std::unique_ptr<ProfileSymbolList> PSL;
436
437  /// Total number of samples collected in this profile.
438  ///
439  /// This is the sum of all the samples collected in all the functions executed
440  /// at runtime.
441  uint64_t TotalCollectedSamples = 0;
442
443  /// Optimization Remark Emitter used to emit diagnostic remarks.
444  OptimizationRemarkEmitter *ORE = nullptr;
445
446  // Information recorded when we declined to inline a call site
447  // because we have determined it is too cold is accumulated for
448  // each callee function. Initially this is just the entry count.
449  struct NotInlinedProfileInfo {
450    uint64_t entryCount;
451  };
452  DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
453
454  // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
455  // all the function symbols defined or declared in current module.
456  DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
457
458  // All the Names used in FunctionSamples including outline function
459  // names, inline instance names and call target names.
460  StringSet<> NamesInProfile;
461
462  // For symbol in profile symbol list, whether to regard their profiles
463  // to be accurate. It is mainly decided by existance of profile symbol
464  // list and -profile-accurate-for-symsinlist flag, but it can be
465  // overriden by -profile-sample-accurate or profile-sample-accurate
466  // attribute.
467  bool ProfAccForSymsInList;
468};
469
470class SampleProfileLoaderLegacyPass : public ModulePass {
471public:
472  // Class identification, replacement for typeinfo
473  static char ID;
474
475  SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
476                                bool IsThinLTOPreLink = false)
477      : ModulePass(ID),
478        SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
479                     [&](Function &F) -> AssumptionCache & {
480                       return ACT->getAssumptionCache(F);
481                     },
482                     [&](Function &F) -> TargetTransformInfo & {
483                       return TTIWP->getTTI(F);
484                     }) {
485    initializeSampleProfileLoaderLegacyPassPass(
486        *PassRegistry::getPassRegistry());
487  }
488
489  void dump() { SampleLoader.dump(); }
490
491  bool doInitialization(Module &M) override {
492    return SampleLoader.doInitialization(M);
493  }
494
495  StringRef getPassName() const override { return "Sample profile pass"; }
496  bool runOnModule(Module &M) override;
497
498  void getAnalysisUsage(AnalysisUsage &AU) const override {
499    AU.addRequired<AssumptionCacheTracker>();
500    AU.addRequired<TargetTransformInfoWrapperPass>();
501    AU.addRequired<ProfileSummaryInfoWrapperPass>();
502  }
503
504private:
505  SampleProfileLoader SampleLoader;
506  AssumptionCacheTracker *ACT = nullptr;
507  TargetTransformInfoWrapperPass *TTIWP = nullptr;
508};
509
510} // end anonymous namespace
511
512/// Return true if the given callsite is hot wrt to hot cutoff threshold.
513///
514/// Functions that were inlined in the original binary will be represented
515/// in the inline stack in the sample profile. If the profile shows that
516/// the original inline decision was "good" (i.e., the callsite is executed
517/// frequently), then we will recreate the inline decision and apply the
518/// profile from the inlined callsite.
519///
520/// To decide whether an inlined callsite is hot, we compare the callsite
521/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
522/// regarded as hot if the count is above the cutoff value.
523///
524/// When ProfileAccurateForSymsInList is enabled and profile symbol list
525/// is present, functions in the profile symbol list but without profile will
526/// be regarded as cold and much less inlining will happen in CGSCC inlining
527/// pass, so we tend to lower the hot criteria here to allow more early
528/// inlining to happen for warm callsites and it is helpful for performance.
529bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
530                                        ProfileSummaryInfo *PSI) {
531  if (!CallsiteFS)
532    return false; // The callsite was not inlined in the original binary.
533
534  assert(PSI && "PSI is expected to be non null");
535  uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
536  if (ProfAccForSymsInList)
537    return !PSI->isColdCount(CallsiteTotalSamples);
538  else
539    return PSI->isHotCount(CallsiteTotalSamples);
540}
541
542/// Mark as used the sample record for the given function samples at
543/// (LineOffset, Discriminator).
544///
545/// \returns true if this is the first time we mark the given record.
546bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
547                                            uint32_t LineOffset,
548                                            uint32_t Discriminator,
549                                            uint64_t Samples) {
550  LineLocation Loc(LineOffset, Discriminator);
551  unsigned &Count = SampleCoverage[FS][Loc];
552  bool FirstTime = (++Count == 1);
553  if (FirstTime)
554    TotalUsedSamples += Samples;
555  return FirstTime;
556}
557
558/// Return the number of sample records that were applied from this profile.
559///
560/// This count does not include records from cold inlined callsites.
561unsigned
562SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
563                                        ProfileSummaryInfo *PSI) const {
564  auto I = SampleCoverage.find(FS);
565
566  // The size of the coverage map for FS represents the number of records
567  // that were marked used at least once.
568  unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
569
570  // If there are inlined callsites in this function, count the samples found
571  // in the respective bodies. However, do not bother counting callees with 0
572  // total samples, these are callees that were never invoked at runtime.
573  for (const auto &I : FS->getCallsiteSamples())
574    for (const auto &J : I.second) {
575      const FunctionSamples *CalleeSamples = &J.second;
576      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
577        Count += countUsedRecords(CalleeSamples, PSI);
578    }
579
580  return Count;
581}
582
583/// Return the number of sample records in the body of this profile.
584///
585/// This count does not include records from cold inlined callsites.
586unsigned
587SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
588                                        ProfileSummaryInfo *PSI) const {
589  unsigned Count = FS->getBodySamples().size();
590
591  // Only count records in hot callsites.
592  for (const auto &I : FS->getCallsiteSamples())
593    for (const auto &J : I.second) {
594      const FunctionSamples *CalleeSamples = &J.second;
595      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
596        Count += countBodyRecords(CalleeSamples, PSI);
597    }
598
599  return Count;
600}
601
602/// Return the number of samples collected in the body of this profile.
603///
604/// This count does not include samples from cold inlined callsites.
605uint64_t
606SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
607                                        ProfileSummaryInfo *PSI) const {
608  uint64_t Total = 0;
609  for (const auto &I : FS->getBodySamples())
610    Total += I.second.getSamples();
611
612  // Only count samples in hot callsites.
613  for (const auto &I : FS->getCallsiteSamples())
614    for (const auto &J : I.second) {
615      const FunctionSamples *CalleeSamples = &J.second;
616      if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
617        Total += countBodySamples(CalleeSamples, PSI);
618    }
619
620  return Total;
621}
622
623/// Return the fraction of sample records used in this profile.
624///
625/// The returned value is an unsigned integer in the range 0-100 indicating
626/// the percentage of sample records that were used while applying this
627/// profile to the associated function.
628unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
629                                                unsigned Total) const {
630  assert(Used <= Total &&
631         "number of used records cannot exceed the total number of records");
632  return Total > 0 ? Used * 100 / Total : 100;
633}
634
635/// Clear all the per-function data used to load samples and propagate weights.
636void SampleProfileLoader::clearFunctionData() {
637  BlockWeights.clear();
638  EdgeWeights.clear();
639  VisitedBlocks.clear();
640  VisitedEdges.clear();
641  EquivalenceClass.clear();
642  DT = nullptr;
643  PDT = nullptr;
644  LI = nullptr;
645  Predecessors.clear();
646  Successors.clear();
647  CoverageTracker.clear();
648}
649
650#ifndef NDEBUG
651/// Print the weight of edge \p E on stream \p OS.
652///
653/// \param OS  Stream to emit the output to.
654/// \param E  Edge to print.
655void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
656  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
657     << "]: " << EdgeWeights[E] << "\n";
658}
659
660/// Print the equivalence class of block \p BB on stream \p OS.
661///
662/// \param OS  Stream to emit the output to.
663/// \param BB  Block to print.
664void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
665                                                const BasicBlock *BB) {
666  const BasicBlock *Equiv = EquivalenceClass[BB];
667  OS << "equivalence[" << BB->getName()
668     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
669}
670
671/// Print the weight of block \p BB on stream \p OS.
672///
673/// \param OS  Stream to emit the output to.
674/// \param BB  Block to print.
675void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
676                                           const BasicBlock *BB) const {
677  const auto &I = BlockWeights.find(BB);
678  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
679  OS << "weight[" << BB->getName() << "]: " << W << "\n";
680}
681#endif
682
683/// Get the weight for an instruction.
684///
685/// The "weight" of an instruction \p Inst is the number of samples
686/// collected on that instruction at runtime. To retrieve it, we
687/// need to compute the line number of \p Inst relative to the start of its
688/// function. We use HeaderLineno to compute the offset. We then
689/// look up the samples collected for \p Inst using BodySamples.
690///
691/// \param Inst Instruction to query.
692///
693/// \returns the weight of \p Inst.
694ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
695  const DebugLoc &DLoc = Inst.getDebugLoc();
696  if (!DLoc)
697    return std::error_code();
698
699  const FunctionSamples *FS = findFunctionSamples(Inst);
700  if (!FS)
701    return std::error_code();
702
703  // Ignore all intrinsics, phinodes and branch instructions.
704  // Branch and phinodes instruction usually contains debug info from sources outside of
705  // the residing basic block, thus we ignore them during annotation.
706  if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
707    return std::error_code();
708
709  // If a direct call/invoke instruction is inlined in profile
710  // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
711  // it means that the inlined callsite has no sample, thus the call
712  // instruction should have 0 count.
713  if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
714      !ImmutableCallSite(&Inst).isIndirectCall() &&
715      findCalleeFunctionSamples(Inst))
716    return 0;
717
718  const DILocation *DIL = DLoc;
719  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
720  uint32_t Discriminator = DIL->getBaseDiscriminator();
721  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
722  if (R) {
723    bool FirstMark =
724        CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
725    if (FirstMark) {
726      ORE->emit([&]() {
727        OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
728        Remark << "Applied " << ore::NV("NumSamples", *R);
729        Remark << " samples from profile (offset: ";
730        Remark << ore::NV("LineOffset", LineOffset);
731        if (Discriminator) {
732          Remark << ".";
733          Remark << ore::NV("Discriminator", Discriminator);
734        }
735        Remark << ")";
736        return Remark;
737      });
738    }
739    LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "."
740                      << DIL->getBaseDiscriminator() << ":" << Inst
741                      << " (line offset: " << LineOffset << "."
742                      << DIL->getBaseDiscriminator() << " - weight: " << R.get()
743                      << ")\n");
744  }
745  return R;
746}
747
748/// Compute the weight of a basic block.
749///
750/// The weight of basic block \p BB is the maximum weight of all the
751/// instructions in BB.
752///
753/// \param BB The basic block to query.
754///
755/// \returns the weight for \p BB.
756ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
757  uint64_t Max = 0;
758  bool HasWeight = false;
759  for (auto &I : BB->getInstList()) {
760    const ErrorOr<uint64_t> &R = getInstWeight(I);
761    if (R) {
762      Max = std::max(Max, R.get());
763      HasWeight = true;
764    }
765  }
766  return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
767}
768
769/// Compute and store the weights of every basic block.
770///
771/// This populates the BlockWeights map by computing
772/// the weights of every basic block in the CFG.
773///
774/// \param F The function to query.
775bool SampleProfileLoader::computeBlockWeights(Function &F) {
776  bool Changed = false;
777  LLVM_DEBUG(dbgs() << "Block weights\n");
778  for (const auto &BB : F) {
779    ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
780    if (Weight) {
781      BlockWeights[&BB] = Weight.get();
782      VisitedBlocks.insert(&BB);
783      Changed = true;
784    }
785    LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
786  }
787
788  return Changed;
789}
790
791/// Get the FunctionSamples for a call instruction.
792///
793/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
794/// instance in which that call instruction is calling to. It contains
795/// all samples that resides in the inlined instance. We first find the
796/// inlined instance in which the call instruction is from, then we
797/// traverse its children to find the callsite with the matching
798/// location.
799///
800/// \param Inst Call/Invoke instruction to query.
801///
802/// \returns The FunctionSamples pointer to the inlined instance.
803const FunctionSamples *
804SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
805  const DILocation *DIL = Inst.getDebugLoc();
806  if (!DIL) {
807    return nullptr;
808  }
809
810  StringRef CalleeName;
811  if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
812    if (Function *Callee = CI->getCalledFunction())
813      CalleeName = Callee->getName();
814
815  const FunctionSamples *FS = findFunctionSamples(Inst);
816  if (FS == nullptr)
817    return nullptr;
818
819  return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
820                                                DIL->getBaseDiscriminator()),
821                                   CalleeName);
822}
823
824/// Returns a vector of FunctionSamples that are the indirect call targets
825/// of \p Inst. The vector is sorted by the total number of samples. Stores
826/// the total call count of the indirect call in \p Sum.
827std::vector<const FunctionSamples *>
828SampleProfileLoader::findIndirectCallFunctionSamples(
829    const Instruction &Inst, uint64_t &Sum) const {
830  const DILocation *DIL = Inst.getDebugLoc();
831  std::vector<const FunctionSamples *> R;
832
833  if (!DIL) {
834    return R;
835  }
836
837  const FunctionSamples *FS = findFunctionSamples(Inst);
838  if (FS == nullptr)
839    return R;
840
841  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
842  uint32_t Discriminator = DIL->getBaseDiscriminator();
843
844  auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
845  Sum = 0;
846  if (T)
847    for (const auto &T_C : T.get())
848      Sum += T_C.second;
849  if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
850          FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
851    if (M->empty())
852      return R;
853    for (const auto &NameFS : *M) {
854      Sum += NameFS.second.getEntrySamples();
855      R.push_back(&NameFS.second);
856    }
857    llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
858      if (L->getEntrySamples() != R->getEntrySamples())
859        return L->getEntrySamples() > R->getEntrySamples();
860      return FunctionSamples::getGUID(L->getName()) <
861             FunctionSamples::getGUID(R->getName());
862    });
863  }
864  return R;
865}
866
867/// Get the FunctionSamples for an instruction.
868///
869/// The FunctionSamples of an instruction \p Inst is the inlined instance
870/// in which that instruction is coming from. We traverse the inline stack
871/// of that instruction, and match it with the tree nodes in the profile.
872///
873/// \param Inst Instruction to query.
874///
875/// \returns the FunctionSamples pointer to the inlined instance.
876const FunctionSamples *
877SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
878  const DILocation *DIL = Inst.getDebugLoc();
879  if (!DIL)
880    return Samples;
881
882  auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
883  if (it.second)
884    it.first->second = Samples->findFunctionSamples(DIL);
885  return it.first->second;
886}
887
888bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
889  assert(isa<CallInst>(I) || isa<InvokeInst>(I));
890  CallSite CS(I);
891  Function *CalledFunction = CS.getCalledFunction();
892  assert(CalledFunction);
893  DebugLoc DLoc = I->getDebugLoc();
894  BasicBlock *BB = I->getParent();
895  InlineParams Params = getInlineParams();
896  Params.ComputeFullInlineCost = true;
897  // Checks if there is anything in the reachable portion of the callee at
898  // this callsite that makes this inlining potentially illegal. Need to
899  // set ComputeFullInlineCost, otherwise getInlineCost may return early
900  // when cost exceeds threshold without checking all IRs in the callee.
901  // The acutal cost does not matter because we only checks isNever() to
902  // see if it is legal to inline the callsite.
903  InlineCost Cost =
904      getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
905                    None, nullptr, nullptr);
906  if (Cost.isNever()) {
907    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineFail", DLoc, BB)
908              << "incompatible inlining");
909    return false;
910  }
911  InlineFunctionInfo IFI(nullptr, &GetAC);
912  if (InlineFunction(CS, IFI)) {
913    // The call to InlineFunction erases I, so we can't pass it here.
914    ORE->emit(OptimizationRemark(CSINLINE_DEBUG, "InlineSuccess", DLoc, BB)
915              << "inlined callee '" << ore::NV("Callee", CalledFunction)
916              << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
917    return true;
918  }
919  return false;
920}
921
922bool SampleProfileLoader::shouldInlineColdCallee(Instruction &CallInst) {
923  if (!ProfileSizeInline)
924    return false;
925
926  Function *Callee = CallSite(&CallInst).getCalledFunction();
927  if (Callee == nullptr)
928    return false;
929
930  InlineCost Cost =
931      getInlineCost(cast<CallBase>(CallInst), getInlineParams(),
932                    GetTTI(*Callee), GetAC, None, nullptr, nullptr);
933
934  return Cost.getCost() <= SampleColdCallSiteThreshold;
935}
936
937void SampleProfileLoader::emitOptimizationRemarksForInlineCandidates(
938    const SmallVector<Instruction *, 10> &Candidates, const Function &F,
939    bool Hot) {
940  for (auto I : Candidates) {
941    Function *CalledFunction = CallSite(I).getCalledFunction();
942    if (CalledFunction) {
943      ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "InlineAttempt",
944                                           I->getDebugLoc(), I->getParent())
945                << "previous inlining reattempted for "
946                << (Hot ? "hotness: '" : "size: '")
947                << ore::NV("Callee", CalledFunction) << "' into '"
948                << ore::NV("Caller", &F) << "'");
949    }
950  }
951}
952
953/// Iteratively inline hot callsites of a function.
954///
955/// Iteratively traverse all callsites of the function \p F, and find if
956/// the corresponding inlined instance exists and is hot in profile. If
957/// it is hot enough, inline the callsites and adds new callsites of the
958/// callee into the caller. If the call is an indirect call, first promote
959/// it to direct call. Each indirect call is limited with a single target.
960///
961/// \param F function to perform iterative inlining.
962/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
963///     inlined in the profiled binary.
964///
965/// \returns True if there is any inline happened.
966bool SampleProfileLoader::inlineHotFunctions(
967    Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
968  DenseSet<Instruction *> PromotedInsns;
969
970  // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
971  // Profile symbol list is ignored when profile-sample-accurate is on.
972  assert((!ProfAccForSymsInList ||
973          (!ProfileSampleAccurate &&
974           !F.hasFnAttribute("profile-sample-accurate"))) &&
975         "ProfAccForSymsInList should be false when profile-sample-accurate "
976         "is enabled");
977
978  DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
979  bool Changed = false;
980  while (true) {
981    bool LocalChanged = false;
982    SmallVector<Instruction *, 10> CIS;
983    for (auto &BB : F) {
984      bool Hot = false;
985      SmallVector<Instruction *, 10> AllCandidates;
986      SmallVector<Instruction *, 10> ColdCandidates;
987      for (auto &I : BB.getInstList()) {
988        const FunctionSamples *FS = nullptr;
989        if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
990            !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
991          AllCandidates.push_back(&I);
992          if (FS->getEntrySamples() > 0)
993            localNotInlinedCallSites.try_emplace(&I, FS);
994          if (callsiteIsHot(FS, PSI))
995            Hot = true;
996          else if (shouldInlineColdCallee(I))
997            ColdCandidates.push_back(&I);
998        }
999      }
1000      if (Hot) {
1001        CIS.insert(CIS.begin(), AllCandidates.begin(), AllCandidates.end());
1002        emitOptimizationRemarksForInlineCandidates(AllCandidates, F, true);
1003      }
1004      else {
1005        CIS.insert(CIS.begin(), ColdCandidates.begin(), ColdCandidates.end());
1006        emitOptimizationRemarksForInlineCandidates(ColdCandidates, F, false);
1007      }
1008    }
1009    for (auto I : CIS) {
1010      Function *CalledFunction = CallSite(I).getCalledFunction();
1011      // Do not inline recursive calls.
1012      if (CalledFunction == &F)
1013        continue;
1014      if (CallSite(I).isIndirectCall()) {
1015        if (PromotedInsns.count(I))
1016          continue;
1017        uint64_t Sum;
1018        for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
1019          if (IsThinLTOPreLink) {
1020            FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
1021                                     PSI->getOrCompHotCountThreshold());
1022            continue;
1023          }
1024          auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
1025          // If it is a recursive call, we do not inline it as it could bloat
1026          // the code exponentially. There is way to better handle this, e.g.
1027          // clone the caller first, and inline the cloned caller if it is
1028          // recursive. As llvm does not inline recursive calls, we will
1029          // simply ignore it instead of handling it explicitly.
1030          if (CalleeFunctionName == F.getName())
1031            continue;
1032
1033          if (!callsiteIsHot(FS, PSI))
1034            continue;
1035
1036          const char *Reason = "Callee function not available";
1037          auto R = SymbolMap.find(CalleeFunctionName);
1038          if (R != SymbolMap.end() && R->getValue() &&
1039              !R->getValue()->isDeclaration() &&
1040              R->getValue()->getSubprogram() &&
1041              isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
1042            uint64_t C = FS->getEntrySamples();
1043            Instruction *DI =
1044                pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
1045            Sum -= C;
1046            PromotedInsns.insert(I);
1047            // If profile mismatches, we should not attempt to inline DI.
1048            if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
1049                inlineCallInstruction(DI)) {
1050              localNotInlinedCallSites.erase(I);
1051              LocalChanged = true;
1052              ++NumCSInlined;
1053            }
1054          } else {
1055            LLVM_DEBUG(dbgs()
1056                       << "\nFailed to promote indirect call to "
1057                       << CalleeFunctionName << " because " << Reason << "\n");
1058          }
1059        }
1060      } else if (CalledFunction && CalledFunction->getSubprogram() &&
1061                 !CalledFunction->isDeclaration()) {
1062        if (inlineCallInstruction(I)) {
1063          localNotInlinedCallSites.erase(I);
1064          LocalChanged = true;
1065          ++NumCSInlined;
1066        }
1067      } else if (IsThinLTOPreLink) {
1068        findCalleeFunctionSamples(*I)->findInlinedFunctions(
1069            InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
1070      }
1071    }
1072    if (LocalChanged) {
1073      Changed = true;
1074    } else {
1075      break;
1076    }
1077  }
1078
1079  // Accumulate not inlined callsite information into notInlinedSamples
1080  for (const auto &Pair : localNotInlinedCallSites) {
1081    Instruction *I = Pair.getFirst();
1082    Function *Callee = CallSite(I).getCalledFunction();
1083    if (!Callee || Callee->isDeclaration())
1084      continue;
1085
1086    ORE->emit(OptimizationRemarkAnalysis(CSINLINE_DEBUG, "NotInline",
1087                                         I->getDebugLoc(), I->getParent())
1088              << "previous inlining not repeated: '"
1089              << ore::NV("Callee", Callee) << "' into '"
1090              << ore::NV("Caller", &F) << "'");
1091
1092    ++NumCSNotInlined;
1093    const FunctionSamples *FS = Pair.getSecond();
1094    if (FS->getTotalSamples() == 0 && FS->getEntrySamples() == 0) {
1095      continue;
1096    }
1097
1098    if (ProfileMergeInlinee) {
1099      // Use entry samples as head samples during the merge, as inlinees
1100      // don't have head samples.
1101      assert(FS->getHeadSamples() == 0 && "Expect 0 head sample for inlinee");
1102      const_cast<FunctionSamples *>(FS)->addHeadSamples(FS->getEntrySamples());
1103
1104      // Note that we have to do the merge right after processing function.
1105      // This allows OutlineFS's profile to be used for annotation during
1106      // top-down processing of functions' annotation.
1107      FunctionSamples *OutlineFS = Reader->getOrCreateSamplesFor(*Callee);
1108      OutlineFS->merge(*FS);
1109    } else {
1110      auto pair =
1111          notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1112      pair.first->second.entryCount += FS->getEntrySamples();
1113    }
1114  }
1115  return Changed;
1116}
1117
1118/// Find equivalence classes for the given block.
1119///
1120/// This finds all the blocks that are guaranteed to execute the same
1121/// number of times as \p BB1. To do this, it traverses all the
1122/// descendants of \p BB1 in the dominator or post-dominator tree.
1123///
1124/// A block BB2 will be in the same equivalence class as \p BB1 if
1125/// the following holds:
1126///
1127/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1128///    is a descendant of \p BB1 in the dominator tree, then BB2 should
1129///    dominate BB1 in the post-dominator tree.
1130///
1131/// 2- Both BB2 and \p BB1 must be in the same loop.
1132///
1133/// For every block BB2 that meets those two requirements, we set BB2's
1134/// equivalence class to \p BB1.
1135///
1136/// \param BB1  Block to check.
1137/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
1138/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
1139///                 with blocks from \p BB1's dominator tree, then
1140///                 this is the post-dominator tree, and vice versa.
1141template <bool IsPostDom>
1142void SampleProfileLoader::findEquivalencesFor(
1143    BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1144    DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1145  const BasicBlock *EC = EquivalenceClass[BB1];
1146  uint64_t Weight = BlockWeights[EC];
1147  for (const auto *BB2 : Descendants) {
1148    bool IsDomParent = DomTree->dominates(BB2, BB1);
1149    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1150    if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1151      EquivalenceClass[BB2] = EC;
1152      // If BB2 is visited, then the entire EC should be marked as visited.
1153      if (VisitedBlocks.count(BB2)) {
1154        VisitedBlocks.insert(EC);
1155      }
1156
1157      // If BB2 is heavier than BB1, make BB2 have the same weight
1158      // as BB1.
1159      //
1160      // Note that we don't worry about the opposite situation here
1161      // (when BB2 is lighter than BB1). We will deal with this
1162      // during the propagation phase. Right now, we just want to
1163      // make sure that BB1 has the largest weight of all the
1164      // members of its equivalence set.
1165      Weight = std::max(Weight, BlockWeights[BB2]);
1166    }
1167  }
1168  if (EC == &EC->getParent()->getEntryBlock()) {
1169    BlockWeights[EC] = Samples->getHeadSamples() + 1;
1170  } else {
1171    BlockWeights[EC] = Weight;
1172  }
1173}
1174
1175/// Find equivalence classes.
1176///
1177/// Since samples may be missing from blocks, we can fill in the gaps by setting
1178/// the weights of all the blocks in the same equivalence class to the same
1179/// weight. To compute the concept of equivalence, we use dominance and loop
1180/// information. Two blocks B1 and B2 are in the same equivalence class if B1
1181/// dominates B2, B2 post-dominates B1 and both are in the same loop.
1182///
1183/// \param F The function to query.
1184void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1185  SmallVector<BasicBlock *, 8> DominatedBBs;
1186  LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
1187  // Find equivalence sets based on dominance and post-dominance information.
1188  for (auto &BB : F) {
1189    BasicBlock *BB1 = &BB;
1190
1191    // Compute BB1's equivalence class once.
1192    if (EquivalenceClass.count(BB1)) {
1193      LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1194      continue;
1195    }
1196
1197    // By default, blocks are in their own equivalence class.
1198    EquivalenceClass[BB1] = BB1;
1199
1200    // Traverse all the blocks dominated by BB1. We are looking for
1201    // every basic block BB2 such that:
1202    //
1203    // 1- BB1 dominates BB2.
1204    // 2- BB2 post-dominates BB1.
1205    // 3- BB1 and BB2 are in the same loop nest.
1206    //
1207    // If all those conditions hold, it means that BB2 is executed
1208    // as many times as BB1, so they are placed in the same equivalence
1209    // class by making BB2's equivalence class be BB1.
1210    DominatedBBs.clear();
1211    DT->getDescendants(BB1, DominatedBBs);
1212    findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1213
1214    LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
1215  }
1216
1217  // Assign weights to equivalence classes.
1218  //
1219  // All the basic blocks in the same equivalence class will execute
1220  // the same number of times. Since we know that the head block in
1221  // each equivalence class has the largest weight, assign that weight
1222  // to all the blocks in that equivalence class.
1223  LLVM_DEBUG(
1224      dbgs() << "\nAssign the same weight to all blocks in the same class\n");
1225  for (auto &BI : F) {
1226    const BasicBlock *BB = &BI;
1227    const BasicBlock *EquivBB = EquivalenceClass[BB];
1228    if (BB != EquivBB)
1229      BlockWeights[BB] = BlockWeights[EquivBB];
1230    LLVM_DEBUG(printBlockWeight(dbgs(), BB));
1231  }
1232}
1233
1234/// Visit the given edge to decide if it has a valid weight.
1235///
1236/// If \p E has not been visited before, we copy to \p UnknownEdge
1237/// and increment the count of unknown edges.
1238///
1239/// \param E  Edge to visit.
1240/// \param NumUnknownEdges  Current number of unknown edges.
1241/// \param UnknownEdge  Set if E has not been visited before.
1242///
1243/// \returns E's weight, if known. Otherwise, return 0.
1244uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1245                                        Edge *UnknownEdge) {
1246  if (!VisitedEdges.count(E)) {
1247    (*NumUnknownEdges)++;
1248    *UnknownEdge = E;
1249    return 0;
1250  }
1251
1252  return EdgeWeights[E];
1253}
1254
1255/// Propagate weights through incoming/outgoing edges.
1256///
1257/// If the weight of a basic block is known, and there is only one edge
1258/// with an unknown weight, we can calculate the weight of that edge.
1259///
1260/// Similarly, if all the edges have a known count, we can calculate the
1261/// count of the basic block, if needed.
1262///
1263/// \param F  Function to process.
1264/// \param UpdateBlockCount  Whether we should update basic block counts that
1265///                          has already been annotated.
1266///
1267/// \returns  True if new weights were assigned to edges or blocks.
1268bool SampleProfileLoader::propagateThroughEdges(Function &F,
1269                                                bool UpdateBlockCount) {
1270  bool Changed = false;
1271  LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
1272  for (const auto &BI : F) {
1273    const BasicBlock *BB = &BI;
1274    const BasicBlock *EC = EquivalenceClass[BB];
1275
1276    // Visit all the predecessor and successor edges to determine
1277    // which ones have a weight assigned already. Note that it doesn't
1278    // matter that we only keep track of a single unknown edge. The
1279    // only case we are interested in handling is when only a single
1280    // edge is unknown (see setEdgeOrBlockWeight).
1281    for (unsigned i = 0; i < 2; i++) {
1282      uint64_t TotalWeight = 0;
1283      unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1284      Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1285
1286      if (i == 0) {
1287        // First, visit all predecessor edges.
1288        NumTotalEdges = Predecessors[BB].size();
1289        for (auto *Pred : Predecessors[BB]) {
1290          Edge E = std::make_pair(Pred, BB);
1291          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1292          if (E.first == E.second)
1293            SelfReferentialEdge = E;
1294        }
1295        if (NumTotalEdges == 1) {
1296          SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1297        }
1298      } else {
1299        // On the second round, visit all successor edges.
1300        NumTotalEdges = Successors[BB].size();
1301        for (auto *Succ : Successors[BB]) {
1302          Edge E = std::make_pair(BB, Succ);
1303          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1304        }
1305        if (NumTotalEdges == 1) {
1306          SingleEdge = std::make_pair(BB, Successors[BB][0]);
1307        }
1308      }
1309
1310      // After visiting all the edges, there are three cases that we
1311      // can handle immediately:
1312      //
1313      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1314      //   In this case, we simply check that the sum of all the edges
1315      //   is the same as BB's weight. If not, we change BB's weight
1316      //   to match. Additionally, if BB had not been visited before,
1317      //   we mark it visited.
1318      //
1319      // - Only one edge is unknown and BB has already been visited.
1320      //   In this case, we can compute the weight of the edge by
1321      //   subtracting the total block weight from all the known
1322      //   edge weights. If the edges weight more than BB, then the
1323      //   edge of the last remaining edge is set to zero.
1324      //
1325      // - There exists a self-referential edge and the weight of BB is
1326      //   known. In this case, this edge can be based on BB's weight.
1327      //   We add up all the other known edges and set the weight on
1328      //   the self-referential edge as we did in the previous case.
1329      //
1330      // In any other case, we must continue iterating. Eventually,
1331      // all edges will get a weight, or iteration will stop when
1332      // it reaches SampleProfileMaxPropagateIterations.
1333      if (NumUnknownEdges <= 1) {
1334        uint64_t &BBWeight = BlockWeights[EC];
1335        if (NumUnknownEdges == 0) {
1336          if (!VisitedBlocks.count(EC)) {
1337            // If we already know the weight of all edges, the weight of the
1338            // basic block can be computed. It should be no larger than the sum
1339            // of all edge weights.
1340            if (TotalWeight > BBWeight) {
1341              BBWeight = TotalWeight;
1342              Changed = true;
1343              LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
1344                                << " known. Set weight for block: ";
1345                         printBlockWeight(dbgs(), BB););
1346            }
1347          } else if (NumTotalEdges == 1 &&
1348                     EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1349            // If there is only one edge for the visited basic block, use the
1350            // block weight to adjust edge weight if edge weight is smaller.
1351            EdgeWeights[SingleEdge] = BlockWeights[EC];
1352            Changed = true;
1353          }
1354        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1355          // If there is a single unknown edge and the block has been
1356          // visited, then we can compute E's weight.
1357          if (BBWeight >= TotalWeight)
1358            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1359          else
1360            EdgeWeights[UnknownEdge] = 0;
1361          const BasicBlock *OtherEC;
1362          if (i == 0)
1363            OtherEC = EquivalenceClass[UnknownEdge.first];
1364          else
1365            OtherEC = EquivalenceClass[UnknownEdge.second];
1366          // Edge weights should never exceed the BB weights it connects.
1367          if (VisitedBlocks.count(OtherEC) &&
1368              EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1369            EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1370          VisitedEdges.insert(UnknownEdge);
1371          Changed = true;
1372          LLVM_DEBUG(dbgs() << "Set weight for edge: ";
1373                     printEdgeWeight(dbgs(), UnknownEdge));
1374        }
1375      } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1376        // If a block Weights 0, all its in/out edges should weight 0.
1377        if (i == 0) {
1378          for (auto *Pred : Predecessors[BB]) {
1379            Edge E = std::make_pair(Pred, BB);
1380            EdgeWeights[E] = 0;
1381            VisitedEdges.insert(E);
1382          }
1383        } else {
1384          for (auto *Succ : Successors[BB]) {
1385            Edge E = std::make_pair(BB, Succ);
1386            EdgeWeights[E] = 0;
1387            VisitedEdges.insert(E);
1388          }
1389        }
1390      } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1391        uint64_t &BBWeight = BlockWeights[BB];
1392        // We have a self-referential edge and the weight of BB is known.
1393        if (BBWeight >= TotalWeight)
1394          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1395        else
1396          EdgeWeights[SelfReferentialEdge] = 0;
1397        VisitedEdges.insert(SelfReferentialEdge);
1398        Changed = true;
1399        LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
1400                   printEdgeWeight(dbgs(), SelfReferentialEdge));
1401      }
1402      if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1403        BlockWeights[EC] = TotalWeight;
1404        VisitedBlocks.insert(EC);
1405        Changed = true;
1406      }
1407    }
1408  }
1409
1410  return Changed;
1411}
1412
1413/// Build in/out edge lists for each basic block in the CFG.
1414///
1415/// We are interested in unique edges. If a block B1 has multiple
1416/// edges to another block B2, we only add a single B1->B2 edge.
1417void SampleProfileLoader::buildEdges(Function &F) {
1418  for (auto &BI : F) {
1419    BasicBlock *B1 = &BI;
1420
1421    // Add predecessors for B1.
1422    SmallPtrSet<BasicBlock *, 16> Visited;
1423    if (!Predecessors[B1].empty())
1424      llvm_unreachable("Found a stale predecessors list in a basic block.");
1425    for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1426      BasicBlock *B2 = *PI;
1427      if (Visited.insert(B2).second)
1428        Predecessors[B1].push_back(B2);
1429    }
1430
1431    // Add successors for B1.
1432    Visited.clear();
1433    if (!Successors[B1].empty())
1434      llvm_unreachable("Found a stale successors list in a basic block.");
1435    for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1436      BasicBlock *B2 = *SI;
1437      if (Visited.insert(B2).second)
1438        Successors[B1].push_back(B2);
1439    }
1440  }
1441}
1442
1443/// Returns the sorted CallTargetMap \p M by count in descending order.
1444static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1445    const SampleRecord::CallTargetMap & M) {
1446  SmallVector<InstrProfValueData, 2> R;
1447  for (const auto &I : SampleRecord::SortCallTargets(M)) {
1448    R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1449  }
1450  return R;
1451}
1452
1453/// Propagate weights into edges
1454///
1455/// The following rules are applied to every block BB in the CFG:
1456///
1457/// - If BB has a single predecessor/successor, then the weight
1458///   of that edge is the weight of the block.
1459///
1460/// - If all incoming or outgoing edges are known except one, and the
1461///   weight of the block is already known, the weight of the unknown
1462///   edge will be the weight of the block minus the sum of all the known
1463///   edges. If the sum of all the known edges is larger than BB's weight,
1464///   we set the unknown edge weight to zero.
1465///
1466/// - If there is a self-referential edge, and the weight of the block is
1467///   known, the weight for that edge is set to the weight of the block
1468///   minus the weight of the other incoming edges to that block (if
1469///   known).
1470void SampleProfileLoader::propagateWeights(Function &F) {
1471  bool Changed = true;
1472  unsigned I = 0;
1473
1474  // If BB weight is larger than its corresponding loop's header BB weight,
1475  // use the BB weight to replace the loop header BB weight.
1476  for (auto &BI : F) {
1477    BasicBlock *BB = &BI;
1478    Loop *L = LI->getLoopFor(BB);
1479    if (!L) {
1480      continue;
1481    }
1482    BasicBlock *Header = L->getHeader();
1483    if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1484      BlockWeights[Header] = BlockWeights[BB];
1485    }
1486  }
1487
1488  // Before propagation starts, build, for each block, a list of
1489  // unique predecessors and successors. This is necessary to handle
1490  // identical edges in multiway branches. Since we visit all blocks and all
1491  // edges of the CFG, it is cleaner to build these lists once at the start
1492  // of the pass.
1493  buildEdges(F);
1494
1495  // Propagate until we converge or we go past the iteration limit.
1496  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1497    Changed = propagateThroughEdges(F, false);
1498  }
1499
1500  // The first propagation propagates BB counts from annotated BBs to unknown
1501  // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1502  // to propagate edge weights.
1503  VisitedEdges.clear();
1504  Changed = true;
1505  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1506    Changed = propagateThroughEdges(F, false);
1507  }
1508
1509  // The 3rd propagation pass allows adjust annotated BB weights that are
1510  // obviously wrong.
1511  Changed = true;
1512  while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1513    Changed = propagateThroughEdges(F, true);
1514  }
1515
1516  // Generate MD_prof metadata for every branch instruction using the
1517  // edge weights computed during propagation.
1518  LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n");
1519  LLVMContext &Ctx = F.getContext();
1520  MDBuilder MDB(Ctx);
1521  for (auto &BI : F) {
1522    BasicBlock *BB = &BI;
1523
1524    if (BlockWeights[BB]) {
1525      for (auto &I : BB->getInstList()) {
1526        if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1527          continue;
1528        CallSite CS(&I);
1529        if (!CS.getCalledFunction()) {
1530          const DebugLoc &DLoc = I.getDebugLoc();
1531          if (!DLoc)
1532            continue;
1533          const DILocation *DIL = DLoc;
1534          uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1535          uint32_t Discriminator = DIL->getBaseDiscriminator();
1536
1537          const FunctionSamples *FS = findFunctionSamples(I);
1538          if (!FS)
1539            continue;
1540          auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1541          if (!T || T.get().empty())
1542            continue;
1543          SmallVector<InstrProfValueData, 2> SortedCallTargets =
1544              GetSortedValueDataFromCallTargets(T.get());
1545          uint64_t Sum;
1546          findIndirectCallFunctionSamples(I, Sum);
1547          annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1548                            SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1549                            SortedCallTargets.size());
1550        } else if (!isa<IntrinsicInst>(&I)) {
1551          I.setMetadata(LLVMContext::MD_prof,
1552                        MDB.createBranchWeights(
1553                            {static_cast<uint32_t>(BlockWeights[BB])}));
1554        }
1555      }
1556    }
1557    Instruction *TI = BB->getTerminator();
1558    if (TI->getNumSuccessors() == 1)
1559      continue;
1560    if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1561      continue;
1562
1563    DebugLoc BranchLoc = TI->getDebugLoc();
1564    LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "
1565                      << ((BranchLoc) ? Twine(BranchLoc.getLine())
1566                                      : Twine("<UNKNOWN LOCATION>"))
1567                      << ".\n");
1568    SmallVector<uint32_t, 4> Weights;
1569    uint32_t MaxWeight = 0;
1570    Instruction *MaxDestInst;
1571    for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1572      BasicBlock *Succ = TI->getSuccessor(I);
1573      Edge E = std::make_pair(BB, Succ);
1574      uint64_t Weight = EdgeWeights[E];
1575      LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E));
1576      // Use uint32_t saturated arithmetic to adjust the incoming weights,
1577      // if needed. Sample counts in profiles are 64-bit unsigned values,
1578      // but internally branch weights are expressed as 32-bit values.
1579      if (Weight > std::numeric_limits<uint32_t>::max()) {
1580        LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)");
1581        Weight = std::numeric_limits<uint32_t>::max();
1582      }
1583      // Weight is added by one to avoid propagation errors introduced by
1584      // 0 weights.
1585      Weights.push_back(static_cast<uint32_t>(Weight + 1));
1586      if (Weight != 0) {
1587        if (Weight > MaxWeight) {
1588          MaxWeight = Weight;
1589          MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1590        }
1591      }
1592    }
1593
1594    misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1595
1596    uint64_t TempWeight;
1597    // Only set weights if there is at least one non-zero weight.
1598    // In any other case, let the analyzer set weights.
1599    // Do not set weights if the weights are present. In ThinLTO, the profile
1600    // annotation is done twice. If the first annotation already set the
1601    // weights, the second pass does not need to set it.
1602    if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1603      LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n");
1604      TI->setMetadata(LLVMContext::MD_prof,
1605                      MDB.createBranchWeights(Weights));
1606      ORE->emit([&]() {
1607        return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst)
1608               << "most popular destination for conditional branches at "
1609               << ore::NV("CondBranchesLoc", BranchLoc);
1610      });
1611    } else {
1612      LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n");
1613    }
1614  }
1615}
1616
1617/// Get the line number for the function header.
1618///
1619/// This looks up function \p F in the current compilation unit and
1620/// retrieves the line number where the function is defined. This is
1621/// line 0 for all the samples read from the profile file. Every line
1622/// number is relative to this line.
1623///
1624/// \param F  Function object to query.
1625///
1626/// \returns the line number where \p F is defined. If it returns 0,
1627///          it means that there is no debug information available for \p F.
1628unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1629  if (DISubprogram *S = F.getSubprogram())
1630    return S->getLine();
1631
1632  if (NoWarnSampleUnused)
1633    return 0;
1634
1635  // If the start of \p F is missing, emit a diagnostic to inform the user
1636  // about the missed opportunity.
1637  F.getContext().diagnose(DiagnosticInfoSampleProfile(
1638      "No debug information found in function " + F.getName() +
1639          ": Function profile not used",
1640      DS_Warning));
1641  return 0;
1642}
1643
1644void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1645  DT.reset(new DominatorTree);
1646  DT->recalculate(F);
1647
1648  PDT.reset(new PostDominatorTree(F));
1649
1650  LI.reset(new LoopInfo);
1651  LI->analyze(*DT);
1652}
1653
1654/// Generate branch weight metadata for all branches in \p F.
1655///
1656/// Branch weights are computed out of instruction samples using a
1657/// propagation heuristic. Propagation proceeds in 3 phases:
1658///
1659/// 1- Assignment of block weights. All the basic blocks in the function
1660///    are initial assigned the same weight as their most frequently
1661///    executed instruction.
1662///
1663/// 2- Creation of equivalence classes. Since samples may be missing from
1664///    blocks, we can fill in the gaps by setting the weights of all the
1665///    blocks in the same equivalence class to the same weight. To compute
1666///    the concept of equivalence, we use dominance and loop information.
1667///    Two blocks B1 and B2 are in the same equivalence class if B1
1668///    dominates B2, B2 post-dominates B1 and both are in the same loop.
1669///
1670/// 3- Propagation of block weights into edges. This uses a simple
1671///    propagation heuristic. The following rules are applied to every
1672///    block BB in the CFG:
1673///
1674///    - If BB has a single predecessor/successor, then the weight
1675///      of that edge is the weight of the block.
1676///
1677///    - If all the edges are known except one, and the weight of the
1678///      block is already known, the weight of the unknown edge will
1679///      be the weight of the block minus the sum of all the known
1680///      edges. If the sum of all the known edges is larger than BB's weight,
1681///      we set the unknown edge weight to zero.
1682///
1683///    - If there is a self-referential edge, and the weight of the block is
1684///      known, the weight for that edge is set to the weight of the block
1685///      minus the weight of the other incoming edges to that block (if
1686///      known).
1687///
1688/// Since this propagation is not guaranteed to finalize for every CFG, we
1689/// only allow it to proceed for a limited number of iterations (controlled
1690/// by -sample-profile-max-propagate-iterations).
1691///
1692/// FIXME: Try to replace this propagation heuristic with a scheme
1693/// that is guaranteed to finalize. A work-list approach similar to
1694/// the standard value propagation algorithm used by SSA-CCP might
1695/// work here.
1696///
1697/// Once all the branch weights are computed, we emit the MD_prof
1698/// metadata on BB using the computed values for each of its branches.
1699///
1700/// \param F The function to query.
1701///
1702/// \returns true if \p F was modified. Returns false, otherwise.
1703bool SampleProfileLoader::emitAnnotations(Function &F) {
1704  bool Changed = false;
1705
1706  if (getFunctionLoc(F) == 0)
1707    return false;
1708
1709  LLVM_DEBUG(dbgs() << "Line number for the first instruction in "
1710                    << F.getName() << ": " << getFunctionLoc(F) << "\n");
1711
1712  DenseSet<GlobalValue::GUID> InlinedGUIDs;
1713  Changed |= inlineHotFunctions(F, InlinedGUIDs);
1714
1715  // Compute basic block weights.
1716  Changed |= computeBlockWeights(F);
1717
1718  if (Changed) {
1719    // Add an entry count to the function using the samples gathered at the
1720    // function entry.
1721    // Sets the GUIDs that are inlined in the profiled binary. This is used
1722    // for ThinLink to make correct liveness analysis, and also make the IR
1723    // match the profiled binary before annotation.
1724    F.setEntryCount(
1725        ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1726        &InlinedGUIDs);
1727
1728    // Compute dominance and loop info needed for propagation.
1729    computeDominanceAndLoopInfo(F);
1730
1731    // Find equivalence classes.
1732    findEquivalenceClasses(F);
1733
1734    // Propagate weights to all edges.
1735    propagateWeights(F);
1736  }
1737
1738  // If coverage checking was requested, compute it now.
1739  if (SampleProfileRecordCoverage) {
1740    unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1741    unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1742    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1743    if (Coverage < SampleProfileRecordCoverage) {
1744      F.getContext().diagnose(DiagnosticInfoSampleProfile(
1745          F.getSubprogram()->getFilename(), getFunctionLoc(F),
1746          Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1747              Twine(Coverage) + "%) were applied",
1748          DS_Warning));
1749    }
1750  }
1751
1752  if (SampleProfileSampleCoverage) {
1753    uint64_t Used = CoverageTracker.getTotalUsedSamples();
1754    uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1755    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1756    if (Coverage < SampleProfileSampleCoverage) {
1757      F.getContext().diagnose(DiagnosticInfoSampleProfile(
1758          F.getSubprogram()->getFilename(), getFunctionLoc(F),
1759          Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1760              Twine(Coverage) + "%) were applied",
1761          DS_Warning));
1762    }
1763  }
1764  return Changed;
1765}
1766
1767char SampleProfileLoaderLegacyPass::ID = 0;
1768
1769INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",
1770                      "Sample Profile loader", false, false)
1771INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1772INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1773INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1774INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",
1775                    "Sample Profile loader", false, false)
1776
1777std::vector<Function *>
1778SampleProfileLoader::buildFunctionOrder(Module &M, CallGraph *CG) {
1779  std::vector<Function *> FunctionOrderList;
1780  FunctionOrderList.reserve(M.size());
1781
1782  if (!ProfileTopDownLoad || CG == nullptr) {
1783    for (Function &F : M)
1784      if (!F.isDeclaration())
1785        FunctionOrderList.push_back(&F);
1786    return FunctionOrderList;
1787  }
1788
1789  assert(&CG->getModule() == &M);
1790  scc_iterator<CallGraph *> CGI = scc_begin(CG);
1791  while (!CGI.isAtEnd()) {
1792    for (CallGraphNode *node : *CGI) {
1793      auto F = node->getFunction();
1794      if (F && !F->isDeclaration())
1795        FunctionOrderList.push_back(F);
1796    }
1797    ++CGI;
1798  }
1799
1800  std::reverse(FunctionOrderList.begin(), FunctionOrderList.end());
1801  return FunctionOrderList;
1802}
1803
1804bool SampleProfileLoader::doInitialization(Module &M) {
1805  auto &Ctx = M.getContext();
1806
1807  std::unique_ptr<SampleProfileReaderItaniumRemapper> RemapReader;
1808  auto ReaderOrErr =
1809      SampleProfileReader::create(Filename, Ctx, RemappingFilename);
1810  if (std::error_code EC = ReaderOrErr.getError()) {
1811    std::string Msg = "Could not open profile: " + EC.message();
1812    Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1813    return false;
1814  }
1815  Reader = std::move(ReaderOrErr.get());
1816  Reader->collectFuncsFrom(M);
1817  ProfileIsValid = (Reader->read() == sampleprof_error::success);
1818  PSL = Reader->getProfileSymbolList();
1819
1820  // While profile-sample-accurate is on, ignore symbol list.
1821  ProfAccForSymsInList =
1822      ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
1823  if (ProfAccForSymsInList) {
1824    NamesInProfile.clear();
1825    if (auto NameTable = Reader->getNameTable())
1826      NamesInProfile.insert(NameTable->begin(), NameTable->end());
1827  }
1828
1829  return true;
1830}
1831
1832ModulePass *llvm::createSampleProfileLoaderPass() {
1833  return new SampleProfileLoaderLegacyPass();
1834}
1835
1836ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1837  return new SampleProfileLoaderLegacyPass(Name);
1838}
1839
1840bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1841                                      ProfileSummaryInfo *_PSI, CallGraph *CG) {
1842  GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
1843  if (!ProfileIsValid)
1844    return false;
1845
1846  PSI = _PSI;
1847  if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1848    M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1849                        ProfileSummary::PSK_Sample);
1850
1851  // Compute the total number of samples collected in this profile.
1852  for (const auto &I : Reader->getProfiles())
1853    TotalCollectedSamples += I.second.getTotalSamples();
1854
1855  // Populate the symbol map.
1856  for (const auto &N_F : M.getValueSymbolTable()) {
1857    StringRef OrigName = N_F.getKey();
1858    Function *F = dyn_cast<Function>(N_F.getValue());
1859    if (F == nullptr)
1860      continue;
1861    SymbolMap[OrigName] = F;
1862    auto pos = OrigName.find('.');
1863    if (pos != StringRef::npos) {
1864      StringRef NewName = OrigName.substr(0, pos);
1865      auto r = SymbolMap.insert(std::make_pair(NewName, F));
1866      // Failiing to insert means there is already an entry in SymbolMap,
1867      // thus there are multiple functions that are mapped to the same
1868      // stripped name. In this case of name conflicting, set the value
1869      // to nullptr to avoid confusion.
1870      if (!r.second)
1871        r.first->second = nullptr;
1872    }
1873  }
1874
1875  bool retval = false;
1876  for (auto F : buildFunctionOrder(M, CG)) {
1877    assert(!F->isDeclaration());
1878    clearFunctionData();
1879    retval |= runOnFunction(*F, AM);
1880  }
1881
1882  // Account for cold calls not inlined....
1883  for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1884       notInlinedCallInfo)
1885    updateProfileCallee(pair.first, pair.second.entryCount);
1886
1887  return retval;
1888}
1889
1890bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1891  ACT = &getAnalysis<AssumptionCacheTracker>();
1892  TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1893  ProfileSummaryInfo *PSI =
1894      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1895  return SampleLoader.runOnModule(M, nullptr, PSI, nullptr);
1896}
1897
1898bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1899
1900  DILocation2SampleMap.clear();
1901  // By default the entry count is initialized to -1, which will be treated
1902  // conservatively by getEntryCount as the same as unknown (None). This is
1903  // to avoid newly added code to be treated as cold. If we have samples
1904  // this will be overwritten in emitAnnotations.
1905  uint64_t initialEntryCount = -1;
1906
1907  ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1908  if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1909    // initialize all the function entry counts to 0. It means all the
1910    // functions without profile will be regarded as cold.
1911    initialEntryCount = 0;
1912    // profile-sample-accurate is a user assertion which has a higher precedence
1913    // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1914    ProfAccForSymsInList = false;
1915  }
1916
1917  // PSL -- profile symbol list include all the symbols in sampled binary.
1918  // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1919  // old functions without samples being cold, without having to worry
1920  // about new and hot functions being mistakenly treated as cold.
1921  if (ProfAccForSymsInList) {
1922    // Initialize the entry count to 0 for functions in the list.
1923    if (PSL->contains(F.getName()))
1924      initialEntryCount = 0;
1925
1926    // Function in the symbol list but without sample will be regarded as
1927    // cold. To minimize the potential negative performance impact it could
1928    // have, we want to be a little conservative here saying if a function
1929    // shows up in the profile, no matter as outline function, inline instance
1930    // or call targets, treat the function as not being cold. This will handle
1931    // the cases such as most callsites of a function are inlined in sampled
1932    // binary but not inlined in current build (because of source code drift,
1933    // imprecise debug information, or the callsites are all cold individually
1934    // but not cold accumulatively...), so the outline function showing up as
1935    // cold in sampled binary will actually not be cold after current build.
1936    StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1937    if (NamesInProfile.count(CanonName))
1938      initialEntryCount = -1;
1939  }
1940
1941  F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1942  std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1943  if (AM) {
1944    auto &FAM =
1945        AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1946            .getManager();
1947    ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1948  } else {
1949    OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1950    ORE = OwnedORE.get();
1951  }
1952  Samples = Reader->getSamplesFor(F);
1953  if (Samples && !Samples->empty())
1954    return emitAnnotations(F);
1955  return false;
1956}
1957
1958PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1959                                               ModuleAnalysisManager &AM) {
1960  FunctionAnalysisManager &FAM =
1961      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1962
1963  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1964    return FAM.getResult<AssumptionAnalysis>(F);
1965  };
1966  auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1967    return FAM.getResult<TargetIRAnalysis>(F);
1968  };
1969
1970  SampleProfileLoader SampleLoader(
1971      ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1972      ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
1973                                       : ProfileRemappingFileName,
1974      IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1975
1976  if (!SampleLoader.doInitialization(M))
1977    return PreservedAnalyses::all();
1978
1979  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1980  CallGraph &CG = AM.getResult<CallGraphAnalysis>(M);
1981  if (!SampleLoader.runOnModule(M, &AM, PSI, &CG))
1982    return PreservedAnalyses::all();
1983
1984  return PreservedAnalyses::none();
1985}
1986