HotColdSplitting.cpp revision 360784
1//===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// The goal of hot/cold splitting is to improve the memory locality of code.
11/// The splitting pass does this by identifying cold blocks and moving them into
12/// separate functions.
13///
14/// When the splitting pass finds a cold block (referred to as "the sink"), it
15/// grows a maximal cold region around that block. The maximal region contains
16/// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as
17/// cold as the sink. Once a region is found, it's split out of the original
18/// function provided it's profitable to do so.
19///
20/// [*] In practice, there is some added complexity because some blocks are not
21/// safe to extract.
22///
23/// TODO: Use the PM to get domtrees, and preserve BFI/BPI.
24/// TODO: Reorder outlined functions.
25///
26//===----------------------------------------------------------------------===//
27
28#include "llvm/Transforms/IPO/HotColdSplitting.h"
29#include "llvm/ADT/PostOrderIterator.h"
30#include "llvm/ADT/SmallVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/Analysis/AliasAnalysis.h"
33#include "llvm/Analysis/BlockFrequencyInfo.h"
34#include "llvm/Analysis/BranchProbabilityInfo.h"
35#include "llvm/Analysis/CFG.h"
36#include "llvm/Analysis/OptimizationRemarkEmitter.h"
37#include "llvm/Analysis/PostDominators.h"
38#include "llvm/Analysis/ProfileSummaryInfo.h"
39#include "llvm/Analysis/TargetTransformInfo.h"
40#include "llvm/IR/BasicBlock.h"
41#include "llvm/IR/CFG.h"
42#include "llvm/IR/CallSite.h"
43#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/DiagnosticInfo.h"
45#include "llvm/IR/Dominators.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/IntrinsicInst.h"
50#include "llvm/IR/Metadata.h"
51#include "llvm/IR/Module.h"
52#include "llvm/IR/PassManager.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Use.h"
55#include "llvm/IR/User.h"
56#include "llvm/IR/Value.h"
57#include "llvm/InitializePasses.h"
58#include "llvm/Pass.h"
59#include "llvm/Support/BlockFrequency.h"
60#include "llvm/Support/BranchProbability.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/Transforms/IPO.h"
65#include "llvm/Transforms/Scalar.h"
66#include "llvm/Transforms/Utils/BasicBlockUtils.h"
67#include "llvm/Transforms/Utils/Cloning.h"
68#include "llvm/Transforms/Utils/CodeExtractor.h"
69#include "llvm/Transforms/Utils/Local.h"
70#include "llvm/Transforms/Utils/ValueMapper.h"
71#include <algorithm>
72#include <cassert>
73
74#define DEBUG_TYPE "hotcoldsplit"
75
76STATISTIC(NumColdRegionsFound, "Number of cold regions found.");
77STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined.");
78
79using namespace llvm;
80
81static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis",
82                              cl::init(true), cl::Hidden);
83
84static cl::opt<int>
85    SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden,
86                       cl::desc("Base penalty for splitting cold code (as a "
87                                "multiple of TCC_Basic)"));
88
89namespace {
90// Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify
91// this function unless you modify the MBB version as well.
92//
93/// A no successor, non-return block probably ends in unreachable and is cold.
94/// Also consider a block that ends in an indirect branch to be a return block,
95/// since many targets use plain indirect branches to return.
96bool blockEndsInUnreachable(const BasicBlock &BB) {
97  if (!succ_empty(&BB))
98    return false;
99  if (BB.empty())
100    return true;
101  const Instruction *I = BB.getTerminator();
102  return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I));
103}
104
105bool unlikelyExecuted(BasicBlock &BB) {
106  // Exception handling blocks are unlikely executed.
107  if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator()))
108    return true;
109
110  // The block is cold if it calls/invokes a cold function. However, do not
111  // mark sanitizer traps as cold.
112  for (Instruction &I : BB)
113    if (auto CS = CallSite(&I))
114      if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize"))
115        return true;
116
117  // The block is cold if it has an unreachable terminator, unless it's
118  // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp).
119  if (blockEndsInUnreachable(BB)) {
120    if (auto *CI =
121            dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode()))
122      if (CI->hasFnAttr(Attribute::NoReturn))
123        return false;
124    return true;
125  }
126
127  return false;
128}
129
130/// Check whether it's safe to outline \p BB.
131static bool mayExtractBlock(const BasicBlock &BB) {
132  // EH pads are unsafe to outline because doing so breaks EH type tables. It
133  // follows that invoke instructions cannot be extracted, because CodeExtractor
134  // requires unwind destinations to be within the extraction region.
135  //
136  // Resumes that are not reachable from a cleanup landing pad are considered to
137  // be unreachable. It���s not safe to split them out either.
138  auto Term = BB.getTerminator();
139  return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) &&
140         !isa<ResumeInst>(Term);
141}
142
143/// Mark \p F cold. Based on this assumption, also optimize it for minimum size.
144/// If \p UpdateEntryCount is true (set when this is a new split function and
145/// module has profile data), set entry count to 0 to ensure treated as cold.
146/// Return true if the function is changed.
147static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) {
148  assert(!F.hasOptNone() && "Can't mark this cold");
149  bool Changed = false;
150  if (!F.hasFnAttribute(Attribute::Cold)) {
151    F.addFnAttr(Attribute::Cold);
152    Changed = true;
153  }
154  if (!F.hasFnAttribute(Attribute::MinSize)) {
155    F.addFnAttr(Attribute::MinSize);
156    Changed = true;
157  }
158  if (UpdateEntryCount) {
159    // Set the entry count to 0 to ensure it is placed in the unlikely text
160    // section when function sections are enabled.
161    F.setEntryCount(0);
162    Changed = true;
163  }
164
165  return Changed;
166}
167
168class HotColdSplittingLegacyPass : public ModulePass {
169public:
170  static char ID;
171  HotColdSplittingLegacyPass() : ModulePass(ID) {
172    initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
173  }
174
175  void getAnalysisUsage(AnalysisUsage &AU) const override {
176    AU.addRequired<BlockFrequencyInfoWrapperPass>();
177    AU.addRequired<ProfileSummaryInfoWrapperPass>();
178    AU.addRequired<TargetTransformInfoWrapperPass>();
179    AU.addUsedIfAvailable<AssumptionCacheTracker>();
180  }
181
182  bool runOnModule(Module &M) override;
183};
184
185} // end anonymous namespace
186
187/// Check whether \p F is inherently cold.
188bool HotColdSplitting::isFunctionCold(const Function &F) const {
189  if (F.hasFnAttribute(Attribute::Cold))
190    return true;
191
192  if (F.getCallingConv() == CallingConv::Cold)
193    return true;
194
195  if (PSI->isFunctionEntryCold(&F))
196    return true;
197
198  return false;
199}
200
201// Returns false if the function should not be considered for hot-cold split
202// optimization.
203bool HotColdSplitting::shouldOutlineFrom(const Function &F) const {
204  if (F.hasFnAttribute(Attribute::AlwaysInline))
205    return false;
206
207  if (F.hasFnAttribute(Attribute::NoInline))
208    return false;
209
210  // A function marked `noreturn` may contain unreachable terminators: these
211  // should not be considered cold, as the function may be a trampoline.
212  if (F.hasFnAttribute(Attribute::NoReturn))
213    return false;
214
215  if (F.hasFnAttribute(Attribute::SanitizeAddress) ||
216      F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
217      F.hasFnAttribute(Attribute::SanitizeThread) ||
218      F.hasFnAttribute(Attribute::SanitizeMemory))
219    return false;
220
221  return true;
222}
223
224/// Get the benefit score of outlining \p Region.
225static int getOutliningBenefit(ArrayRef<BasicBlock *> Region,
226                               TargetTransformInfo &TTI) {
227  // Sum up the code size costs of non-terminator instructions. Tight coupling
228  // with \ref getOutliningPenalty is needed to model the costs of terminators.
229  int Benefit = 0;
230  for (BasicBlock *BB : Region)
231    for (Instruction &I : BB->instructionsWithoutDebug())
232      if (&I != BB->getTerminator())
233        Benefit +=
234            TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize);
235
236  return Benefit;
237}
238
239/// Get the penalty score for outlining \p Region.
240static int getOutliningPenalty(ArrayRef<BasicBlock *> Region,
241                               unsigned NumInputs, unsigned NumOutputs) {
242  int Penalty = SplittingThreshold;
243  LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n");
244
245  // If the splitting threshold is set at or below zero, skip the usual
246  // profitability check.
247  if (SplittingThreshold <= 0)
248    return Penalty;
249
250  // The typical code size cost for materializing an argument for the outlined
251  // call.
252  LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n");
253  const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic;
254  Penalty += CostForArgMaterialization * NumInputs;
255
256  // The typical code size cost for an output alloca, its associated store, and
257  // its associated reload.
258  LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n");
259  const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic;
260  Penalty += CostForRegionOutput * NumOutputs;
261
262  // Find the number of distinct exit blocks for the region. Use a conservative
263  // check to determine whether control returns from the region.
264  bool NoBlocksReturn = true;
265  SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion;
266  for (BasicBlock *BB : Region) {
267    // If a block has no successors, only assume it does not return if it's
268    // unreachable.
269    if (succ_empty(BB)) {
270      NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator());
271      continue;
272    }
273
274    for (BasicBlock *SuccBB : successors(BB)) {
275      if (find(Region, SuccBB) == Region.end()) {
276        NoBlocksReturn = false;
277        SuccsOutsideRegion.insert(SuccBB);
278      }
279    }
280  }
281
282  // Apply a `noreturn` bonus.
283  if (NoBlocksReturn) {
284    LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size()
285                      << " non-returning terminators\n");
286    Penalty -= Region.size();
287  }
288
289  // Apply a penalty for having more than one successor outside of the region.
290  // This penalty accounts for the switch needed in the caller.
291  if (!SuccsOutsideRegion.empty()) {
292    LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size()
293                      << " non-region successors\n");
294    Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic;
295  }
296
297  return Penalty;
298}
299
300Function *HotColdSplitting::extractColdRegion(
301    const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC,
302    DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI,
303    OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) {
304  assert(!Region.empty());
305
306  // TODO: Pass BFI and BPI to update profile information.
307  CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr,
308                   /* BPI */ nullptr, AC, /* AllowVarArgs */ false,
309                   /* AllowAlloca */ false,
310                   /* Suffix */ "cold." + std::to_string(Count));
311
312  // Perform a simple cost/benefit analysis to decide whether or not to permit
313  // splitting.
314  SetVector<Value *> Inputs, Outputs, Sinks;
315  CE.findInputsOutputs(Inputs, Outputs, Sinks);
316  int OutliningBenefit = getOutliningBenefit(Region, TTI);
317  int OutliningPenalty =
318      getOutliningPenalty(Region, Inputs.size(), Outputs.size());
319  LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit
320                    << ", penalty = " << OutliningPenalty << "\n");
321  if (OutliningBenefit <= OutliningPenalty)
322    return nullptr;
323
324  Function *OrigF = Region[0]->getParent();
325  if (Function *OutF = CE.extractCodeRegion(CEAC)) {
326    User *U = *OutF->user_begin();
327    CallInst *CI = cast<CallInst>(U);
328    CallSite CS(CI);
329    NumColdRegionsOutlined++;
330    if (TTI.useColdCCForColdCall(*OutF)) {
331      OutF->setCallingConv(CallingConv::Cold);
332      CS.setCallingConv(CallingConv::Cold);
333    }
334    CI->setIsNoInline();
335
336    if (OrigF->hasSection())
337      OutF->setSection(OrigF->getSection());
338
339    markFunctionCold(*OutF, BFI != nullptr);
340
341    LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF);
342    ORE.emit([&]() {
343      return OptimizationRemark(DEBUG_TYPE, "HotColdSplit",
344                                &*Region[0]->begin())
345             << ore::NV("Original", OrigF) << " split cold code into "
346             << ore::NV("Split", OutF);
347    });
348    return OutF;
349  }
350
351  ORE.emit([&]() {
352    return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed",
353                                    &*Region[0]->begin())
354           << "Failed to extract region at block "
355           << ore::NV("Block", Region.front());
356  });
357  return nullptr;
358}
359
360/// A pair of (basic block, score).
361using BlockTy = std::pair<BasicBlock *, unsigned>;
362
363namespace {
364/// A maximal outlining region. This contains all blocks post-dominated by a
365/// sink block, the sink block itself, and all blocks dominated by the sink.
366/// If sink-predecessors and sink-successors cannot be extracted in one region,
367/// the static constructor returns a list of suitable extraction regions.
368class OutliningRegion {
369  /// A list of (block, score) pairs. A block's score is non-zero iff it's a
370  /// viable sub-region entry point. Blocks with higher scores are better entry
371  /// points (i.e. they are more distant ancestors of the sink block).
372  SmallVector<BlockTy, 0> Blocks = {};
373
374  /// The suggested entry point into the region. If the region has multiple
375  /// entry points, all blocks within the region may not be reachable from this
376  /// entry point.
377  BasicBlock *SuggestedEntryPoint = nullptr;
378
379  /// Whether the entire function is cold.
380  bool EntireFunctionCold = false;
381
382  /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise.
383  static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) {
384    return mayExtractBlock(BB) ? Score : 0;
385  }
386
387  /// These scores should be lower than the score for predecessor blocks,
388  /// because regions starting at predecessor blocks are typically larger.
389  static constexpr unsigned ScoreForSuccBlock = 1;
390  static constexpr unsigned ScoreForSinkBlock = 1;
391
392  OutliningRegion(const OutliningRegion &) = delete;
393  OutliningRegion &operator=(const OutliningRegion &) = delete;
394
395public:
396  OutliningRegion() = default;
397  OutliningRegion(OutliningRegion &&) = default;
398  OutliningRegion &operator=(OutliningRegion &&) = default;
399
400  static std::vector<OutliningRegion> create(BasicBlock &SinkBB,
401                                             const DominatorTree &DT,
402                                             const PostDominatorTree &PDT) {
403    std::vector<OutliningRegion> Regions;
404    SmallPtrSet<BasicBlock *, 4> RegionBlocks;
405
406    Regions.emplace_back();
407    OutliningRegion *ColdRegion = &Regions.back();
408
409    auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) {
410      RegionBlocks.insert(BB);
411      ColdRegion->Blocks.emplace_back(BB, Score);
412    };
413
414    // The ancestor farthest-away from SinkBB, and also post-dominated by it.
415    unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock);
416    ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr;
417    unsigned BestScore = SinkScore;
418
419    // Visit SinkBB's ancestors using inverse DFS.
420    auto PredIt = ++idf_begin(&SinkBB);
421    auto PredEnd = idf_end(&SinkBB);
422    while (PredIt != PredEnd) {
423      BasicBlock &PredBB = **PredIt;
424      bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB);
425
426      // If the predecessor is cold and has no predecessors, the entire
427      // function must be cold.
428      if (SinkPostDom && pred_empty(&PredBB)) {
429        ColdRegion->EntireFunctionCold = true;
430        return Regions;
431      }
432
433      // If SinkBB does not post-dominate a predecessor, do not mark the
434      // predecessor (or any of its predecessors) cold.
435      if (!SinkPostDom || !mayExtractBlock(PredBB)) {
436        PredIt.skipChildren();
437        continue;
438      }
439
440      // Keep track of the post-dominated ancestor farthest away from the sink.
441      // The path length is always >= 2, ensuring that predecessor blocks are
442      // considered as entry points before the sink block.
443      unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength());
444      if (PredScore > BestScore) {
445        ColdRegion->SuggestedEntryPoint = &PredBB;
446        BestScore = PredScore;
447      }
448
449      addBlockToRegion(&PredBB, PredScore);
450      ++PredIt;
451    }
452
453    // If the sink can be added to the cold region, do so. It's considered as
454    // an entry point before any sink-successor blocks.
455    //
456    // Otherwise, split cold sink-successor blocks using a separate region.
457    // This satisfies the requirement that all extraction blocks other than the
458    // first have predecessors within the extraction region.
459    if (mayExtractBlock(SinkBB)) {
460      addBlockToRegion(&SinkBB, SinkScore);
461    } else {
462      Regions.emplace_back();
463      ColdRegion = &Regions.back();
464      BestScore = 0;
465    }
466
467    // Find all successors of SinkBB dominated by SinkBB using DFS.
468    auto SuccIt = ++df_begin(&SinkBB);
469    auto SuccEnd = df_end(&SinkBB);
470    while (SuccIt != SuccEnd) {
471      BasicBlock &SuccBB = **SuccIt;
472      bool SinkDom = DT.dominates(&SinkBB, &SuccBB);
473
474      // Don't allow the backwards & forwards DFSes to mark the same block.
475      bool DuplicateBlock = RegionBlocks.count(&SuccBB);
476
477      // If SinkBB does not dominate a successor, do not mark the successor (or
478      // any of its successors) cold.
479      if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) {
480        SuccIt.skipChildren();
481        continue;
482      }
483
484      unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock);
485      if (SuccScore > BestScore) {
486        ColdRegion->SuggestedEntryPoint = &SuccBB;
487        BestScore = SuccScore;
488      }
489
490      addBlockToRegion(&SuccBB, SuccScore);
491      ++SuccIt;
492    }
493
494    return Regions;
495  }
496
497  /// Whether this region has nothing to extract.
498  bool empty() const { return !SuggestedEntryPoint; }
499
500  /// The blocks in this region.
501  ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; }
502
503  /// Whether the entire function containing this region is cold.
504  bool isEntireFunctionCold() const { return EntireFunctionCold; }
505
506  /// Remove a sub-region from this region and return it as a block sequence.
507  BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) {
508    assert(!empty() && !isEntireFunctionCold() && "Nothing to extract");
509
510    // Remove blocks dominated by the suggested entry point from this region.
511    // During the removal, identify the next best entry point into the region.
512    // Ensure that the first extracted block is the suggested entry point.
513    BlockSequence SubRegion = {SuggestedEntryPoint};
514    BasicBlock *NextEntryPoint = nullptr;
515    unsigned NextScore = 0;
516    auto RegionEndIt = Blocks.end();
517    auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) {
518      BasicBlock *BB = Block.first;
519      unsigned Score = Block.second;
520      bool InSubRegion =
521          BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB);
522      if (!InSubRegion && Score > NextScore) {
523        NextEntryPoint = BB;
524        NextScore = Score;
525      }
526      if (InSubRegion && BB != SuggestedEntryPoint)
527        SubRegion.push_back(BB);
528      return InSubRegion;
529    });
530    Blocks.erase(RegionStartIt, RegionEndIt);
531
532    // Update the suggested entry point.
533    SuggestedEntryPoint = NextEntryPoint;
534
535    return SubRegion;
536  }
537};
538} // namespace
539
540bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) {
541  bool Changed = false;
542
543  // The set of cold blocks.
544  SmallPtrSet<BasicBlock *, 4> ColdBlocks;
545
546  // The worklist of non-intersecting regions left to outline.
547  SmallVector<OutliningRegion, 2> OutliningWorklist;
548
549  // Set up an RPO traversal. Experimentally, this performs better (outlines
550  // more) than a PO traversal, because we prevent region overlap by keeping
551  // the first region to contain a block.
552  ReversePostOrderTraversal<Function *> RPOT(&F);
553
554  // Calculate domtrees lazily. This reduces compile-time significantly.
555  std::unique_ptr<DominatorTree> DT;
556  std::unique_ptr<PostDominatorTree> PDT;
557
558  // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This
559  // reduces compile-time significantly. TODO: When we *do* use BFI, we should
560  // be able to salvage its domtrees instead of recomputing them.
561  BlockFrequencyInfo *BFI = nullptr;
562  if (HasProfileSummary)
563    BFI = GetBFI(F);
564
565  TargetTransformInfo &TTI = GetTTI(F);
566  OptimizationRemarkEmitter &ORE = (*GetORE)(F);
567  AssumptionCache *AC = LookupAC(F);
568
569  // Find all cold regions.
570  for (BasicBlock *BB : RPOT) {
571    // This block is already part of some outlining region.
572    if (ColdBlocks.count(BB))
573      continue;
574
575    bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) ||
576                (EnableStaticAnalyis && unlikelyExecuted(*BB));
577    if (!Cold)
578      continue;
579
580    LLVM_DEBUG({
581      dbgs() << "Found a cold block:\n";
582      BB->dump();
583    });
584
585    if (!DT)
586      DT = std::make_unique<DominatorTree>(F);
587    if (!PDT)
588      PDT = std::make_unique<PostDominatorTree>(F);
589
590    auto Regions = OutliningRegion::create(*BB, *DT, *PDT);
591    for (OutliningRegion &Region : Regions) {
592      if (Region.empty())
593        continue;
594
595      if (Region.isEntireFunctionCold()) {
596        LLVM_DEBUG(dbgs() << "Entire function is cold\n");
597        return markFunctionCold(F);
598      }
599
600      // If this outlining region intersects with another, drop the new region.
601      //
602      // TODO: It's theoretically possible to outline more by only keeping the
603      // largest region which contains a block, but the extra bookkeeping to do
604      // this is tricky/expensive.
605      bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) {
606        return !ColdBlocks.insert(Block.first).second;
607      });
608      if (RegionsOverlap)
609        continue;
610
611      OutliningWorklist.emplace_back(std::move(Region));
612      ++NumColdRegionsFound;
613    }
614  }
615
616  if (OutliningWorklist.empty())
617    return Changed;
618
619  // Outline single-entry cold regions, splitting up larger regions as needed.
620  unsigned OutlinedFunctionID = 1;
621  // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time.
622  CodeExtractorAnalysisCache CEAC(F);
623  do {
624    OutliningRegion Region = OutliningWorklist.pop_back_val();
625    assert(!Region.empty() && "Empty outlining region in worklist");
626    do {
627      BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT);
628      LLVM_DEBUG({
629        dbgs() << "Hot/cold splitting attempting to outline these blocks:\n";
630        for (BasicBlock *BB : SubRegion)
631          BB->dump();
632      });
633
634      Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI,
635                                             ORE, AC, OutlinedFunctionID);
636      if (Outlined) {
637        ++OutlinedFunctionID;
638        Changed = true;
639      }
640    } while (!Region.empty());
641  } while (!OutliningWorklist.empty());
642
643  return Changed;
644}
645
646bool HotColdSplitting::run(Module &M) {
647  bool Changed = false;
648  bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr);
649  for (auto It = M.begin(), End = M.end(); It != End; ++It) {
650    Function &F = *It;
651
652    // Do not touch declarations.
653    if (F.isDeclaration())
654      continue;
655
656    // Do not modify `optnone` functions.
657    if (F.hasOptNone())
658      continue;
659
660    // Detect inherently cold functions and mark them as such.
661    if (isFunctionCold(F)) {
662      Changed |= markFunctionCold(F);
663      continue;
664    }
665
666    if (!shouldOutlineFrom(F)) {
667      LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n");
668      continue;
669    }
670
671    LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n");
672    Changed |= outlineColdRegions(F, HasProfileSummary);
673  }
674  return Changed;
675}
676
677bool HotColdSplittingLegacyPass::runOnModule(Module &M) {
678  if (skipModule(M))
679    return false;
680  ProfileSummaryInfo *PSI =
681      &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
682  auto GTTI = [this](Function &F) -> TargetTransformInfo & {
683    return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
684  };
685  auto GBFI = [this](Function &F) {
686    return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
687  };
688  std::unique_ptr<OptimizationRemarkEmitter> ORE;
689  std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
690      [&ORE](Function &F) -> OptimizationRemarkEmitter & {
691    ORE.reset(new OptimizationRemarkEmitter(&F));
692    return *ORE.get();
693  };
694  auto LookupAC = [this](Function &F) -> AssumptionCache * {
695    if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>())
696      return ACT->lookupAssumptionCache(F);
697    return nullptr;
698  };
699
700  return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M);
701}
702
703PreservedAnalyses
704HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) {
705  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
706
707  auto LookupAC = [&FAM](Function &F) -> AssumptionCache * {
708    return FAM.getCachedResult<AssumptionAnalysis>(F);
709  };
710
711  auto GBFI = [&FAM](Function &F) {
712    return &FAM.getResult<BlockFrequencyAnalysis>(F);
713  };
714
715  std::function<TargetTransformInfo &(Function &)> GTTI =
716      [&FAM](Function &F) -> TargetTransformInfo & {
717    return FAM.getResult<TargetIRAnalysis>(F);
718  };
719
720  std::unique_ptr<OptimizationRemarkEmitter> ORE;
721  std::function<OptimizationRemarkEmitter &(Function &)> GetORE =
722      [&ORE](Function &F) -> OptimizationRemarkEmitter & {
723    ORE.reset(new OptimizationRemarkEmitter(&F));
724    return *ORE.get();
725  };
726
727  ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
728
729  if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M))
730    return PreservedAnalyses::none();
731  return PreservedAnalyses::all();
732}
733
734char HotColdSplittingLegacyPass::ID = 0;
735INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit",
736                      "Hot Cold Splitting", false, false)
737INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
738INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
739INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit",
740                    "Hot Cold Splitting", false, false)
741
742ModulePass *llvm::createHotColdSplittingPass() {
743  return new HotColdSplittingLegacyPass();
744}
745