GlobalOpt.cpp revision 360784
1//===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass transforms simple global variables that never have their address
10// taken.  If obviously true, it marks read/write globals as constant, deletes
11// variables only stored to, etc.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/IPO/GlobalOpt.h"
16#include "llvm/ADT/DenseMap.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/ADT/Twine.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Analysis/BlockFrequencyInfo.h"
24#include "llvm/Analysis/ConstantFolding.h"
25#include "llvm/Analysis/MemoryBuiltins.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/Analysis/TargetTransformInfo.h"
28#include "llvm/BinaryFormat/Dwarf.h"
29#include "llvm/IR/Attributes.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CallSite.h"
32#include "llvm/IR/CallingConv.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfoMetadata.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Dominators.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GetElementPtrTypeIterator.h"
41#include "llvm/IR/GlobalAlias.h"
42#include "llvm/IR/GlobalValue.h"
43#include "llvm/IR/GlobalVariable.h"
44#include "llvm/IR/InstrTypes.h"
45#include "llvm/IR/Instruction.h"
46#include "llvm/IR/Instructions.h"
47#include "llvm/IR/IntrinsicInst.h"
48#include "llvm/IR/Module.h"
49#include "llvm/IR/Operator.h"
50#include "llvm/IR/Type.h"
51#include "llvm/IR/Use.h"
52#include "llvm/IR/User.h"
53#include "llvm/IR/Value.h"
54#include "llvm/IR/ValueHandle.h"
55#include "llvm/InitializePasses.h"
56#include "llvm/Pass.h"
57#include "llvm/Support/AtomicOrdering.h"
58#include "llvm/Support/Casting.h"
59#include "llvm/Support/CommandLine.h"
60#include "llvm/Support/Debug.h"
61#include "llvm/Support/ErrorHandling.h"
62#include "llvm/Support/MathExtras.h"
63#include "llvm/Support/raw_ostream.h"
64#include "llvm/Transforms/IPO.h"
65#include "llvm/Transforms/Utils/CtorUtils.h"
66#include "llvm/Transforms/Utils/Evaluator.h"
67#include "llvm/Transforms/Utils/GlobalStatus.h"
68#include "llvm/Transforms/Utils/Local.h"
69#include <cassert>
70#include <cstdint>
71#include <utility>
72#include <vector>
73
74using namespace llvm;
75
76#define DEBUG_TYPE "globalopt"
77
78STATISTIC(NumMarked    , "Number of globals marked constant");
79STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
80STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
81STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
82STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
83STATISTIC(NumDeleted   , "Number of globals deleted");
84STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
85STATISTIC(NumLocalized , "Number of globals localized");
86STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
87STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
88STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
89STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
90STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
91STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
92STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
93STATISTIC(NumInternalFunc, "Number of internal functions");
94STATISTIC(NumColdCC, "Number of functions marked coldcc");
95
96static cl::opt<bool>
97    EnableColdCCStressTest("enable-coldcc-stress-test",
98                           cl::desc("Enable stress test of coldcc by adding "
99                                    "calling conv to all internal functions."),
100                           cl::init(false), cl::Hidden);
101
102static cl::opt<int> ColdCCRelFreq(
103    "coldcc-rel-freq", cl::Hidden, cl::init(2), cl::ZeroOrMore,
104    cl::desc(
105        "Maximum block frequency, expressed as a percentage of caller's "
106        "entry frequency, for a call site to be considered cold for enabling"
107        "coldcc"));
108
109/// Is this global variable possibly used by a leak checker as a root?  If so,
110/// we might not really want to eliminate the stores to it.
111static bool isLeakCheckerRoot(GlobalVariable *GV) {
112  // A global variable is a root if it is a pointer, or could plausibly contain
113  // a pointer.  There are two challenges; one is that we could have a struct
114  // the has an inner member which is a pointer.  We recurse through the type to
115  // detect these (up to a point).  The other is that we may actually be a union
116  // of a pointer and another type, and so our LLVM type is an integer which
117  // gets converted into a pointer, or our type is an [i8 x #] with a pointer
118  // potentially contained here.
119
120  if (GV->hasPrivateLinkage())
121    return false;
122
123  SmallVector<Type *, 4> Types;
124  Types.push_back(GV->getValueType());
125
126  unsigned Limit = 20;
127  do {
128    Type *Ty = Types.pop_back_val();
129    switch (Ty->getTypeID()) {
130      default: break;
131      case Type::PointerTyID: return true;
132      case Type::ArrayTyID:
133      case Type::VectorTyID: {
134        SequentialType *STy = cast<SequentialType>(Ty);
135        Types.push_back(STy->getElementType());
136        break;
137      }
138      case Type::StructTyID: {
139        StructType *STy = cast<StructType>(Ty);
140        if (STy->isOpaque()) return true;
141        for (StructType::element_iterator I = STy->element_begin(),
142                 E = STy->element_end(); I != E; ++I) {
143          Type *InnerTy = *I;
144          if (isa<PointerType>(InnerTy)) return true;
145          if (isa<CompositeType>(InnerTy))
146            Types.push_back(InnerTy);
147        }
148        break;
149      }
150    }
151    if (--Limit == 0) return true;
152  } while (!Types.empty());
153  return false;
154}
155
156/// Given a value that is stored to a global but never read, determine whether
157/// it's safe to remove the store and the chain of computation that feeds the
158/// store.
159static bool IsSafeComputationToRemove(
160    Value *V, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
161  do {
162    if (isa<Constant>(V))
163      return true;
164    if (!V->hasOneUse())
165      return false;
166    if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
167        isa<GlobalValue>(V))
168      return false;
169    if (isAllocationFn(V, GetTLI))
170      return true;
171
172    Instruction *I = cast<Instruction>(V);
173    if (I->mayHaveSideEffects())
174      return false;
175    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
176      if (!GEP->hasAllConstantIndices())
177        return false;
178    } else if (I->getNumOperands() != 1) {
179      return false;
180    }
181
182    V = I->getOperand(0);
183  } while (true);
184}
185
186/// This GV is a pointer root.  Loop over all users of the global and clean up
187/// any that obviously don't assign the global a value that isn't dynamically
188/// allocated.
189static bool
190CleanupPointerRootUsers(GlobalVariable *GV,
191                        function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
192  // A brief explanation of leak checkers.  The goal is to find bugs where
193  // pointers are forgotten, causing an accumulating growth in memory
194  // usage over time.  The common strategy for leak checkers is to whitelist the
195  // memory pointed to by globals at exit.  This is popular because it also
196  // solves another problem where the main thread of a C++ program may shut down
197  // before other threads that are still expecting to use those globals.  To
198  // handle that case, we expect the program may create a singleton and never
199  // destroy it.
200
201  bool Changed = false;
202
203  // If Dead[n].first is the only use of a malloc result, we can delete its
204  // chain of computation and the store to the global in Dead[n].second.
205  SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
206
207  // Constants can't be pointers to dynamically allocated memory.
208  for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
209       UI != E;) {
210    User *U = *UI++;
211    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
212      Value *V = SI->getValueOperand();
213      if (isa<Constant>(V)) {
214        Changed = true;
215        SI->eraseFromParent();
216      } else if (Instruction *I = dyn_cast<Instruction>(V)) {
217        if (I->hasOneUse())
218          Dead.push_back(std::make_pair(I, SI));
219      }
220    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
221      if (isa<Constant>(MSI->getValue())) {
222        Changed = true;
223        MSI->eraseFromParent();
224      } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
225        if (I->hasOneUse())
226          Dead.push_back(std::make_pair(I, MSI));
227      }
228    } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
229      GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
230      if (MemSrc && MemSrc->isConstant()) {
231        Changed = true;
232        MTI->eraseFromParent();
233      } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
234        if (I->hasOneUse())
235          Dead.push_back(std::make_pair(I, MTI));
236      }
237    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
238      if (CE->use_empty()) {
239        CE->destroyConstant();
240        Changed = true;
241      }
242    } else if (Constant *C = dyn_cast<Constant>(U)) {
243      if (isSafeToDestroyConstant(C)) {
244        C->destroyConstant();
245        // This could have invalidated UI, start over from scratch.
246        Dead.clear();
247        CleanupPointerRootUsers(GV, GetTLI);
248        return true;
249      }
250    }
251  }
252
253  for (int i = 0, e = Dead.size(); i != e; ++i) {
254    if (IsSafeComputationToRemove(Dead[i].first, GetTLI)) {
255      Dead[i].second->eraseFromParent();
256      Instruction *I = Dead[i].first;
257      do {
258        if (isAllocationFn(I, GetTLI))
259          break;
260        Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
261        if (!J)
262          break;
263        I->eraseFromParent();
264        I = J;
265      } while (true);
266      I->eraseFromParent();
267    }
268  }
269
270  return Changed;
271}
272
273/// We just marked GV constant.  Loop over all users of the global, cleaning up
274/// the obvious ones.  This is largely just a quick scan over the use list to
275/// clean up the easy and obvious cruft.  This returns true if it made a change.
276static bool CleanupConstantGlobalUsers(
277    Value *V, Constant *Init, const DataLayout &DL,
278    function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
279  bool Changed = false;
280  // Note that we need to use a weak value handle for the worklist items. When
281  // we delete a constant array, we may also be holding pointer to one of its
282  // elements (or an element of one of its elements if we're dealing with an
283  // array of arrays) in the worklist.
284  SmallVector<WeakTrackingVH, 8> WorkList(V->user_begin(), V->user_end());
285  while (!WorkList.empty()) {
286    Value *UV = WorkList.pop_back_val();
287    if (!UV)
288      continue;
289
290    User *U = cast<User>(UV);
291
292    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
293      if (Init) {
294        // Replace the load with the initializer.
295        LI->replaceAllUsesWith(Init);
296        LI->eraseFromParent();
297        Changed = true;
298      }
299    } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
300      // Store must be unreachable or storing Init into the global.
301      SI->eraseFromParent();
302      Changed = true;
303    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
304      if (CE->getOpcode() == Instruction::GetElementPtr) {
305        Constant *SubInit = nullptr;
306        if (Init)
307          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
308        Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, GetTLI);
309      } else if ((CE->getOpcode() == Instruction::BitCast &&
310                  CE->getType()->isPointerTy()) ||
311                 CE->getOpcode() == Instruction::AddrSpaceCast) {
312        // Pointer cast, delete any stores and memsets to the global.
313        Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, GetTLI);
314      }
315
316      if (CE->use_empty()) {
317        CE->destroyConstant();
318        Changed = true;
319      }
320    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
321      // Do not transform "gepinst (gep constexpr (GV))" here, because forming
322      // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
323      // and will invalidate our notion of what Init is.
324      Constant *SubInit = nullptr;
325      if (!isa<ConstantExpr>(GEP->getOperand(0))) {
326        ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
327            ConstantFoldInstruction(GEP, DL, &GetTLI(*GEP->getFunction())));
328        if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
329          SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
330
331        // If the initializer is an all-null value and we have an inbounds GEP,
332        // we already know what the result of any load from that GEP is.
333        // TODO: Handle splats.
334        if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
335          SubInit = Constant::getNullValue(GEP->getResultElementType());
336      }
337      Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, GetTLI);
338
339      if (GEP->use_empty()) {
340        GEP->eraseFromParent();
341        Changed = true;
342      }
343    } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
344      if (MI->getRawDest() == V) {
345        MI->eraseFromParent();
346        Changed = true;
347      }
348
349    } else if (Constant *C = dyn_cast<Constant>(U)) {
350      // If we have a chain of dead constantexprs or other things dangling from
351      // us, and if they are all dead, nuke them without remorse.
352      if (isSafeToDestroyConstant(C)) {
353        C->destroyConstant();
354        CleanupConstantGlobalUsers(V, Init, DL, GetTLI);
355        return true;
356      }
357    }
358  }
359  return Changed;
360}
361
362static bool isSafeSROAElementUse(Value *V);
363
364/// Return true if the specified GEP is a safe user of a derived
365/// expression from a global that we want to SROA.
366static bool isSafeSROAGEP(User *U) {
367  // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
368  // don't like < 3 operand CE's, and we don't like non-constant integer
369  // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
370  // value of C.
371  if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
372      !cast<Constant>(U->getOperand(1))->isNullValue())
373    return false;
374
375  gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
376  ++GEPI; // Skip over the pointer index.
377
378  // For all other level we require that the indices are constant and inrange.
379  // In particular, consider: A[0][i].  We cannot know that the user isn't doing
380  // invalid things like allowing i to index an out-of-range subscript that
381  // accesses A[1]. This can also happen between different members of a struct
382  // in llvm IR.
383  for (; GEPI != E; ++GEPI) {
384    if (GEPI.isStruct())
385      continue;
386
387    ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
388    if (!IdxVal || (GEPI.isBoundedSequential() &&
389                    IdxVal->getZExtValue() >= GEPI.getSequentialNumElements()))
390      return false;
391  }
392
393  return llvm::all_of(U->users(),
394                      [](User *UU) { return isSafeSROAElementUse(UU); });
395}
396
397/// Return true if the specified instruction is a safe user of a derived
398/// expression from a global that we want to SROA.
399static bool isSafeSROAElementUse(Value *V) {
400  // We might have a dead and dangling constant hanging off of here.
401  if (Constant *C = dyn_cast<Constant>(V))
402    return isSafeToDestroyConstant(C);
403
404  Instruction *I = dyn_cast<Instruction>(V);
405  if (!I) return false;
406
407  // Loads are ok.
408  if (isa<LoadInst>(I)) return true;
409
410  // Stores *to* the pointer are ok.
411  if (StoreInst *SI = dyn_cast<StoreInst>(I))
412    return SI->getOperand(0) != V;
413
414  // Otherwise, it must be a GEP. Check it and its users are safe to SRA.
415  return isa<GetElementPtrInst>(I) && isSafeSROAGEP(I);
416}
417
418/// Look at all uses of the global and decide whether it is safe for us to
419/// perform this transformation.
420static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
421  for (User *U : GV->users()) {
422    // The user of the global must be a GEP Inst or a ConstantExpr GEP.
423    if (!isa<GetElementPtrInst>(U) &&
424        (!isa<ConstantExpr>(U) ||
425        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
426      return false;
427
428    // Check the gep and it's users are safe to SRA
429    if (!isSafeSROAGEP(U))
430      return false;
431  }
432
433  return true;
434}
435
436static bool CanDoGlobalSRA(GlobalVariable *GV) {
437  Constant *Init = GV->getInitializer();
438
439  if (isa<StructType>(Init->getType())) {
440    // nothing to check
441  } else if (SequentialType *STy = dyn_cast<SequentialType>(Init->getType())) {
442    if (STy->getNumElements() > 16 && GV->hasNUsesOrMore(16))
443      return false; // It's not worth it.
444  } else
445    return false;
446
447  return GlobalUsersSafeToSRA(GV);
448}
449
450/// Copy over the debug info for a variable to its SRA replacements.
451static void transferSRADebugInfo(GlobalVariable *GV, GlobalVariable *NGV,
452                                 uint64_t FragmentOffsetInBits,
453                                 uint64_t FragmentSizeInBits,
454                                 unsigned NumElements) {
455  SmallVector<DIGlobalVariableExpression *, 1> GVs;
456  GV->getDebugInfo(GVs);
457  for (auto *GVE : GVs) {
458    DIVariable *Var = GVE->getVariable();
459    DIExpression *Expr = GVE->getExpression();
460    if (NumElements > 1) {
461      if (auto E = DIExpression::createFragmentExpression(
462              Expr, FragmentOffsetInBits, FragmentSizeInBits))
463        Expr = *E;
464      else
465        return;
466    }
467    auto *NGVE = DIGlobalVariableExpression::get(GVE->getContext(), Var, Expr);
468    NGV->addDebugInfo(NGVE);
469  }
470}
471
472/// Perform scalar replacement of aggregates on the specified global variable.
473/// This opens the door for other optimizations by exposing the behavior of the
474/// program in a more fine-grained way.  We have determined that this
475/// transformation is safe already.  We return the first global variable we
476/// insert so that the caller can reprocess it.
477static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
478  // Make sure this global only has simple uses that we can SRA.
479  if (!CanDoGlobalSRA(GV))
480    return nullptr;
481
482  assert(GV->hasLocalLinkage());
483  Constant *Init = GV->getInitializer();
484  Type *Ty = Init->getType();
485
486  std::map<unsigned, GlobalVariable *> NewGlobals;
487
488  // Get the alignment of the global, either explicit or target-specific.
489  unsigned StartAlignment = GV->getAlignment();
490  if (StartAlignment == 0)
491    StartAlignment = DL.getABITypeAlignment(GV->getType());
492
493  // Loop over all users and create replacement variables for used aggregate
494  // elements.
495  for (User *GEP : GV->users()) {
496    assert(((isa<ConstantExpr>(GEP) && cast<ConstantExpr>(GEP)->getOpcode() ==
497                                           Instruction::GetElementPtr) ||
498            isa<GetElementPtrInst>(GEP)) &&
499           "NonGEP CE's are not SRAable!");
500
501    // Ignore the 1th operand, which has to be zero or else the program is quite
502    // broken (undefined).  Get the 2nd operand, which is the structure or array
503    // index.
504    unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
505    if (NewGlobals.count(ElementIdx) == 1)
506      continue; // we`ve already created replacement variable
507    assert(NewGlobals.count(ElementIdx) == 0);
508
509    Type *ElTy = nullptr;
510    if (StructType *STy = dyn_cast<StructType>(Ty))
511      ElTy = STy->getElementType(ElementIdx);
512    else if (SequentialType *STy = dyn_cast<SequentialType>(Ty))
513      ElTy = STy->getElementType();
514    assert(ElTy);
515
516    Constant *In = Init->getAggregateElement(ElementIdx);
517    assert(In && "Couldn't get element of initializer?");
518
519    GlobalVariable *NGV = new GlobalVariable(
520        ElTy, false, GlobalVariable::InternalLinkage, In,
521        GV->getName() + "." + Twine(ElementIdx), GV->getThreadLocalMode(),
522        GV->getType()->getAddressSpace());
523    NGV->setExternallyInitialized(GV->isExternallyInitialized());
524    NGV->copyAttributesFrom(GV);
525    NewGlobals.insert(std::make_pair(ElementIdx, NGV));
526
527    if (StructType *STy = dyn_cast<StructType>(Ty)) {
528      const StructLayout &Layout = *DL.getStructLayout(STy);
529
530      // Calculate the known alignment of the field.  If the original aggregate
531      // had 256 byte alignment for example, something might depend on that:
532      // propagate info to each field.
533      uint64_t FieldOffset = Layout.getElementOffset(ElementIdx);
534      Align NewAlign(MinAlign(StartAlignment, FieldOffset));
535      if (NewAlign >
536          Align(DL.getABITypeAlignment(STy->getElementType(ElementIdx))))
537        NGV->setAlignment(NewAlign);
538
539      // Copy over the debug info for the variable.
540      uint64_t Size = DL.getTypeAllocSizeInBits(NGV->getValueType());
541      uint64_t FragmentOffsetInBits = Layout.getElementOffsetInBits(ElementIdx);
542      transferSRADebugInfo(GV, NGV, FragmentOffsetInBits, Size,
543                           STy->getNumElements());
544    } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
545      uint64_t EltSize = DL.getTypeAllocSize(ElTy);
546      Align EltAlign(DL.getABITypeAlignment(ElTy));
547      uint64_t FragmentSizeInBits = DL.getTypeAllocSizeInBits(ElTy);
548
549      // Calculate the known alignment of the field.  If the original aggregate
550      // had 256 byte alignment for example, something might depend on that:
551      // propagate info to each field.
552      Align NewAlign(MinAlign(StartAlignment, EltSize * ElementIdx));
553      if (NewAlign > EltAlign)
554        NGV->setAlignment(NewAlign);
555      transferSRADebugInfo(GV, NGV, FragmentSizeInBits * ElementIdx,
556                           FragmentSizeInBits, STy->getNumElements());
557    }
558  }
559
560  if (NewGlobals.empty())
561    return nullptr;
562
563  Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
564  for (auto NewGlobalVar : NewGlobals)
565    Globals.push_back(NewGlobalVar.second);
566
567  LLVM_DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV << "\n");
568
569  Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
570
571  // Loop over all of the uses of the global, replacing the constantexpr geps,
572  // with smaller constantexpr geps or direct references.
573  while (!GV->use_empty()) {
574    User *GEP = GV->user_back();
575    assert(((isa<ConstantExpr>(GEP) &&
576             cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
577            isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
578
579    // Ignore the 1th operand, which has to be zero or else the program is quite
580    // broken (undefined).  Get the 2nd operand, which is the structure or array
581    // index.
582    unsigned ElementIdx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
583    assert(NewGlobals.count(ElementIdx) == 1);
584
585    Value *NewPtr = NewGlobals[ElementIdx];
586    Type *NewTy = NewGlobals[ElementIdx]->getValueType();
587
588    // Form a shorter GEP if needed.
589    if (GEP->getNumOperands() > 3) {
590      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
591        SmallVector<Constant*, 8> Idxs;
592        Idxs.push_back(NullInt);
593        for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
594          Idxs.push_back(CE->getOperand(i));
595        NewPtr =
596            ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
597      } else {
598        GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
599        SmallVector<Value*, 8> Idxs;
600        Idxs.push_back(NullInt);
601        for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
602          Idxs.push_back(GEPI->getOperand(i));
603        NewPtr = GetElementPtrInst::Create(
604            NewTy, NewPtr, Idxs, GEPI->getName() + "." + Twine(ElementIdx),
605            GEPI);
606      }
607    }
608    GEP->replaceAllUsesWith(NewPtr);
609
610    if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
611      GEPI->eraseFromParent();
612    else
613      cast<ConstantExpr>(GEP)->destroyConstant();
614  }
615
616  // Delete the old global, now that it is dead.
617  Globals.erase(GV);
618  ++NumSRA;
619
620  assert(NewGlobals.size() > 0);
621  return NewGlobals.begin()->second;
622}
623
624/// Return true if all users of the specified value will trap if the value is
625/// dynamically null.  PHIs keeps track of any phi nodes we've seen to avoid
626/// reprocessing them.
627static bool AllUsesOfValueWillTrapIfNull(const Value *V,
628                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
629  for (const User *U : V->users()) {
630    if (const Instruction *I = dyn_cast<Instruction>(U)) {
631      // If null pointer is considered valid, then all uses are non-trapping.
632      // Non address-space 0 globals have already been pruned by the caller.
633      if (NullPointerIsDefined(I->getFunction()))
634        return false;
635    }
636    if (isa<LoadInst>(U)) {
637      // Will trap.
638    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
639      if (SI->getOperand(0) == V) {
640        //cerr << "NONTRAPPING USE: " << *U;
641        return false;  // Storing the value.
642      }
643    } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
644      if (CI->getCalledValue() != V) {
645        //cerr << "NONTRAPPING USE: " << *U;
646        return false;  // Not calling the ptr
647      }
648    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
649      if (II->getCalledValue() != V) {
650        //cerr << "NONTRAPPING USE: " << *U;
651        return false;  // Not calling the ptr
652      }
653    } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
654      if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
655    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
656      if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
657    } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
658      // If we've already seen this phi node, ignore it, it has already been
659      // checked.
660      if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
661        return false;
662    } else if (isa<ICmpInst>(U) &&
663               isa<ConstantPointerNull>(U->getOperand(1))) {
664      // Ignore icmp X, null
665    } else {
666      //cerr << "NONTRAPPING USE: " << *U;
667      return false;
668    }
669  }
670  return true;
671}
672
673/// Return true if all uses of any loads from GV will trap if the loaded value
674/// is null.  Note that this also permits comparisons of the loaded value
675/// against null, as a special case.
676static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
677  for (const User *U : GV->users())
678    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
679      SmallPtrSet<const PHINode*, 8> PHIs;
680      if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
681        return false;
682    } else if (isa<StoreInst>(U)) {
683      // Ignore stores to the global.
684    } else {
685      // We don't know or understand this user, bail out.
686      //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
687      return false;
688    }
689  return true;
690}
691
692static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
693  bool Changed = false;
694  for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
695    Instruction *I = cast<Instruction>(*UI++);
696    // Uses are non-trapping if null pointer is considered valid.
697    // Non address-space 0 globals are already pruned by the caller.
698    if (NullPointerIsDefined(I->getFunction()))
699      return false;
700    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
701      LI->setOperand(0, NewV);
702      Changed = true;
703    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
704      if (SI->getOperand(1) == V) {
705        SI->setOperand(1, NewV);
706        Changed = true;
707      }
708    } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
709      CallSite CS(I);
710      if (CS.getCalledValue() == V) {
711        // Calling through the pointer!  Turn into a direct call, but be careful
712        // that the pointer is not also being passed as an argument.
713        CS.setCalledFunction(NewV);
714        Changed = true;
715        bool PassedAsArg = false;
716        for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
717          if (CS.getArgument(i) == V) {
718            PassedAsArg = true;
719            CS.setArgument(i, NewV);
720          }
721
722        if (PassedAsArg) {
723          // Being passed as an argument also.  Be careful to not invalidate UI!
724          UI = V->user_begin();
725        }
726      }
727    } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
728      Changed |= OptimizeAwayTrappingUsesOfValue(CI,
729                                ConstantExpr::getCast(CI->getOpcode(),
730                                                      NewV, CI->getType()));
731      if (CI->use_empty()) {
732        Changed = true;
733        CI->eraseFromParent();
734      }
735    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
736      // Should handle GEP here.
737      SmallVector<Constant*, 8> Idxs;
738      Idxs.reserve(GEPI->getNumOperands()-1);
739      for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
740           i != e; ++i)
741        if (Constant *C = dyn_cast<Constant>(*i))
742          Idxs.push_back(C);
743        else
744          break;
745      if (Idxs.size() == GEPI->getNumOperands()-1)
746        Changed |= OptimizeAwayTrappingUsesOfValue(
747            GEPI, ConstantExpr::getGetElementPtr(GEPI->getSourceElementType(),
748                                                 NewV, Idxs));
749      if (GEPI->use_empty()) {
750        Changed = true;
751        GEPI->eraseFromParent();
752      }
753    }
754  }
755
756  return Changed;
757}
758
759/// The specified global has only one non-null value stored into it.  If there
760/// are uses of the loaded value that would trap if the loaded value is
761/// dynamically null, then we know that they cannot be reachable with a null
762/// optimize away the load.
763static bool OptimizeAwayTrappingUsesOfLoads(
764    GlobalVariable *GV, Constant *LV, const DataLayout &DL,
765    function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
766  bool Changed = false;
767
768  // Keep track of whether we are able to remove all the uses of the global
769  // other than the store that defines it.
770  bool AllNonStoreUsesGone = true;
771
772  // Replace all uses of loads with uses of uses of the stored value.
773  for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
774    User *GlobalUser = *GUI++;
775    if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
776      Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
777      // If we were able to delete all uses of the loads
778      if (LI->use_empty()) {
779        LI->eraseFromParent();
780        Changed = true;
781      } else {
782        AllNonStoreUsesGone = false;
783      }
784    } else if (isa<StoreInst>(GlobalUser)) {
785      // Ignore the store that stores "LV" to the global.
786      assert(GlobalUser->getOperand(1) == GV &&
787             "Must be storing *to* the global");
788    } else {
789      AllNonStoreUsesGone = false;
790
791      // If we get here we could have other crazy uses that are transitively
792      // loaded.
793      assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
794              isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
795              isa<BitCastInst>(GlobalUser) ||
796              isa<GetElementPtrInst>(GlobalUser)) &&
797             "Only expect load and stores!");
798    }
799  }
800
801  if (Changed) {
802    LLVM_DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV
803                      << "\n");
804    ++NumGlobUses;
805  }
806
807  // If we nuked all of the loads, then none of the stores are needed either,
808  // nor is the global.
809  if (AllNonStoreUsesGone) {
810    if (isLeakCheckerRoot(GV)) {
811      Changed |= CleanupPointerRootUsers(GV, GetTLI);
812    } else {
813      Changed = true;
814      CleanupConstantGlobalUsers(GV, nullptr, DL, GetTLI);
815    }
816    if (GV->use_empty()) {
817      LLVM_DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
818      Changed = true;
819      GV->eraseFromParent();
820      ++NumDeleted;
821    }
822  }
823  return Changed;
824}
825
826/// Walk the use list of V, constant folding all of the instructions that are
827/// foldable.
828static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
829                                TargetLibraryInfo *TLI) {
830  for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
831    if (Instruction *I = dyn_cast<Instruction>(*UI++))
832      if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
833        I->replaceAllUsesWith(NewC);
834
835        // Advance UI to the next non-I use to avoid invalidating it!
836        // Instructions could multiply use V.
837        while (UI != E && *UI == I)
838          ++UI;
839        if (isInstructionTriviallyDead(I, TLI))
840          I->eraseFromParent();
841      }
842}
843
844/// This function takes the specified global variable, and transforms the
845/// program as if it always contained the result of the specified malloc.
846/// Because it is always the result of the specified malloc, there is no reason
847/// to actually DO the malloc.  Instead, turn the malloc into a global, and any
848/// loads of GV as uses of the new global.
849static GlobalVariable *
850OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
851                              ConstantInt *NElements, const DataLayout &DL,
852                              TargetLibraryInfo *TLI) {
853  LLVM_DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI
854                    << '\n');
855
856  Type *GlobalType;
857  if (NElements->getZExtValue() == 1)
858    GlobalType = AllocTy;
859  else
860    // If we have an array allocation, the global variable is of an array.
861    GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
862
863  // Create the new global variable.  The contents of the malloc'd memory is
864  // undefined, so initialize with an undef value.
865  GlobalVariable *NewGV = new GlobalVariable(
866      *GV->getParent(), GlobalType, false, GlobalValue::InternalLinkage,
867      UndefValue::get(GlobalType), GV->getName() + ".body", nullptr,
868      GV->getThreadLocalMode());
869
870  // If there are bitcast users of the malloc (which is typical, usually we have
871  // a malloc + bitcast) then replace them with uses of the new global.  Update
872  // other users to use the global as well.
873  BitCastInst *TheBC = nullptr;
874  while (!CI->use_empty()) {
875    Instruction *User = cast<Instruction>(CI->user_back());
876    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
877      if (BCI->getType() == NewGV->getType()) {
878        BCI->replaceAllUsesWith(NewGV);
879        BCI->eraseFromParent();
880      } else {
881        BCI->setOperand(0, NewGV);
882      }
883    } else {
884      if (!TheBC)
885        TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
886      User->replaceUsesOfWith(CI, TheBC);
887    }
888  }
889
890  Constant *RepValue = NewGV;
891  if (NewGV->getType() != GV->getValueType())
892    RepValue = ConstantExpr::getBitCast(RepValue, GV->getValueType());
893
894  // If there is a comparison against null, we will insert a global bool to
895  // keep track of whether the global was initialized yet or not.
896  GlobalVariable *InitBool =
897    new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
898                       GlobalValue::InternalLinkage,
899                       ConstantInt::getFalse(GV->getContext()),
900                       GV->getName()+".init", GV->getThreadLocalMode());
901  bool InitBoolUsed = false;
902
903  // Loop over all uses of GV, processing them in turn.
904  while (!GV->use_empty()) {
905    if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
906      // The global is initialized when the store to it occurs.
907      new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false,
908                    None, SI->getOrdering(), SI->getSyncScopeID(), SI);
909      SI->eraseFromParent();
910      continue;
911    }
912
913    LoadInst *LI = cast<LoadInst>(GV->user_back());
914    while (!LI->use_empty()) {
915      Use &LoadUse = *LI->use_begin();
916      ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
917      if (!ICI) {
918        LoadUse = RepValue;
919        continue;
920      }
921
922      // Replace the cmp X, 0 with a use of the bool value.
923      // Sink the load to where the compare was, if atomic rules allow us to.
924      Value *LV = new LoadInst(InitBool->getValueType(), InitBool,
925                               InitBool->getName() + ".val", false, None,
926                               LI->getOrdering(), LI->getSyncScopeID(),
927                               LI->isUnordered() ? (Instruction *)ICI : LI);
928      InitBoolUsed = true;
929      switch (ICI->getPredicate()) {
930      default: llvm_unreachable("Unknown ICmp Predicate!");
931      case ICmpInst::ICMP_ULT:
932      case ICmpInst::ICMP_SLT:   // X < null -> always false
933        LV = ConstantInt::getFalse(GV->getContext());
934        break;
935      case ICmpInst::ICMP_ULE:
936      case ICmpInst::ICMP_SLE:
937      case ICmpInst::ICMP_EQ:
938        LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
939        break;
940      case ICmpInst::ICMP_NE:
941      case ICmpInst::ICMP_UGE:
942      case ICmpInst::ICMP_SGE:
943      case ICmpInst::ICMP_UGT:
944      case ICmpInst::ICMP_SGT:
945        break;  // no change.
946      }
947      ICI->replaceAllUsesWith(LV);
948      ICI->eraseFromParent();
949    }
950    LI->eraseFromParent();
951  }
952
953  // If the initialization boolean was used, insert it, otherwise delete it.
954  if (!InitBoolUsed) {
955    while (!InitBool->use_empty())  // Delete initializations
956      cast<StoreInst>(InitBool->user_back())->eraseFromParent();
957    delete InitBool;
958  } else
959    GV->getParent()->getGlobalList().insert(GV->getIterator(), InitBool);
960
961  // Now the GV is dead, nuke it and the malloc..
962  GV->eraseFromParent();
963  CI->eraseFromParent();
964
965  // To further other optimizations, loop over all users of NewGV and try to
966  // constant prop them.  This will promote GEP instructions with constant
967  // indices into GEP constant-exprs, which will allow global-opt to hack on it.
968  ConstantPropUsersOf(NewGV, DL, TLI);
969  if (RepValue != NewGV)
970    ConstantPropUsersOf(RepValue, DL, TLI);
971
972  return NewGV;
973}
974
975/// Scan the use-list of V checking to make sure that there are no complex uses
976/// of V.  We permit simple things like dereferencing the pointer, but not
977/// storing through the address, unless it is to the specified global.
978static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
979                                                      const GlobalVariable *GV,
980                                        SmallPtrSetImpl<const PHINode*> &PHIs) {
981  for (const User *U : V->users()) {
982    const Instruction *Inst = cast<Instruction>(U);
983
984    if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
985      continue; // Fine, ignore.
986    }
987
988    if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
989      if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
990        return false;  // Storing the pointer itself... bad.
991      continue; // Otherwise, storing through it, or storing into GV... fine.
992    }
993
994    // Must index into the array and into the struct.
995    if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
996      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
997        return false;
998      continue;
999    }
1000
1001    if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
1002      // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
1003      // cycles.
1004      if (PHIs.insert(PN).second)
1005        if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
1006          return false;
1007      continue;
1008    }
1009
1010    if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
1011      if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
1012        return false;
1013      continue;
1014    }
1015
1016    return false;
1017  }
1018  return true;
1019}
1020
1021/// The Alloc pointer is stored into GV somewhere.  Transform all uses of the
1022/// allocation into loads from the global and uses of the resultant pointer.
1023/// Further, delete the store into GV.  This assumes that these value pass the
1024/// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
1025static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
1026                                          GlobalVariable *GV) {
1027  while (!Alloc->use_empty()) {
1028    Instruction *U = cast<Instruction>(*Alloc->user_begin());
1029    Instruction *InsertPt = U;
1030    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1031      // If this is the store of the allocation into the global, remove it.
1032      if (SI->getOperand(1) == GV) {
1033        SI->eraseFromParent();
1034        continue;
1035      }
1036    } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
1037      // Insert the load in the corresponding predecessor, not right before the
1038      // PHI.
1039      InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
1040    } else if (isa<BitCastInst>(U)) {
1041      // Must be bitcast between the malloc and store to initialize the global.
1042      ReplaceUsesOfMallocWithGlobal(U, GV);
1043      U->eraseFromParent();
1044      continue;
1045    } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
1046      // If this is a "GEP bitcast" and the user is a store to the global, then
1047      // just process it as a bitcast.
1048      if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
1049        if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
1050          if (SI->getOperand(1) == GV) {
1051            // Must be bitcast GEP between the malloc and store to initialize
1052            // the global.
1053            ReplaceUsesOfMallocWithGlobal(GEPI, GV);
1054            GEPI->eraseFromParent();
1055            continue;
1056          }
1057    }
1058
1059    // Insert a load from the global, and use it instead of the malloc.
1060    Value *NL =
1061        new LoadInst(GV->getValueType(), GV, GV->getName() + ".val", InsertPt);
1062    U->replaceUsesOfWith(Alloc, NL);
1063  }
1064}
1065
1066/// Verify that all uses of V (a load, or a phi of a load) are simple enough to
1067/// perform heap SRA on.  This permits GEP's that index through the array and
1068/// struct field, icmps of null, and PHIs.
1069static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
1070                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
1071                        SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
1072  // We permit two users of the load: setcc comparing against the null
1073  // pointer, and a getelementptr of a specific form.
1074  for (const User *U : V->users()) {
1075    const Instruction *UI = cast<Instruction>(U);
1076
1077    // Comparison against null is ok.
1078    if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
1079      if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
1080        return false;
1081      continue;
1082    }
1083
1084    // getelementptr is also ok, but only a simple form.
1085    if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
1086      // Must index into the array and into the struct.
1087      if (GEPI->getNumOperands() < 3)
1088        return false;
1089
1090      // Otherwise the GEP is ok.
1091      continue;
1092    }
1093
1094    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
1095      if (!LoadUsingPHIsPerLoad.insert(PN).second)
1096        // This means some phi nodes are dependent on each other.
1097        // Avoid infinite looping!
1098        return false;
1099      if (!LoadUsingPHIs.insert(PN).second)
1100        // If we have already analyzed this PHI, then it is safe.
1101        continue;
1102
1103      // Make sure all uses of the PHI are simple enough to transform.
1104      if (!LoadUsesSimpleEnoughForHeapSRA(PN,
1105                                          LoadUsingPHIs, LoadUsingPHIsPerLoad))
1106        return false;
1107
1108      continue;
1109    }
1110
1111    // Otherwise we don't know what this is, not ok.
1112    return false;
1113  }
1114
1115  return true;
1116}
1117
1118/// If all users of values loaded from GV are simple enough to perform HeapSRA,
1119/// return true.
1120static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
1121                                                    Instruction *StoredVal) {
1122  SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
1123  SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
1124  for (const User *U : GV->users())
1125    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
1126      if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
1127                                          LoadUsingPHIsPerLoad))
1128        return false;
1129      LoadUsingPHIsPerLoad.clear();
1130    }
1131
1132  // If we reach here, we know that all uses of the loads and transitive uses
1133  // (through PHI nodes) are simple enough to transform.  However, we don't know
1134  // that all inputs the to the PHI nodes are in the same equivalence sets.
1135  // Check to verify that all operands of the PHIs are either PHIS that can be
1136  // transformed, loads from GV, or MI itself.
1137  for (const PHINode *PN : LoadUsingPHIs) {
1138    for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
1139      Value *InVal = PN->getIncomingValue(op);
1140
1141      // PHI of the stored value itself is ok.
1142      if (InVal == StoredVal) continue;
1143
1144      if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
1145        // One of the PHIs in our set is (optimistically) ok.
1146        if (LoadUsingPHIs.count(InPN))
1147          continue;
1148        return false;
1149      }
1150
1151      // Load from GV is ok.
1152      if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
1153        if (LI->getOperand(0) == GV)
1154          continue;
1155
1156      // UNDEF? NULL?
1157
1158      // Anything else is rejected.
1159      return false;
1160    }
1161  }
1162
1163  return true;
1164}
1165
1166static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
1167              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1168                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1169  std::vector<Value *> &FieldVals = InsertedScalarizedValues[V];
1170
1171  if (FieldNo >= FieldVals.size())
1172    FieldVals.resize(FieldNo+1);
1173
1174  // If we already have this value, just reuse the previously scalarized
1175  // version.
1176  if (Value *FieldVal = FieldVals[FieldNo])
1177    return FieldVal;
1178
1179  // Depending on what instruction this is, we have several cases.
1180  Value *Result;
1181  if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
1182    // This is a scalarized version of the load from the global.  Just create
1183    // a new Load of the scalarized global.
1184    Value *V = GetHeapSROAValue(LI->getOperand(0), FieldNo,
1185                                InsertedScalarizedValues, PHIsToRewrite);
1186    Result = new LoadInst(V->getType()->getPointerElementType(), V,
1187                          LI->getName() + ".f" + Twine(FieldNo), LI);
1188  } else {
1189    PHINode *PN = cast<PHINode>(V);
1190    // PN's type is pointer to struct.  Make a new PHI of pointer to struct
1191    // field.
1192
1193    PointerType *PTy = cast<PointerType>(PN->getType());
1194    StructType *ST = cast<StructType>(PTy->getElementType());
1195
1196    unsigned AS = PTy->getAddressSpace();
1197    PHINode *NewPN =
1198      PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
1199                     PN->getNumIncomingValues(),
1200                     PN->getName()+".f"+Twine(FieldNo), PN);
1201    Result = NewPN;
1202    PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
1203  }
1204
1205  return FieldVals[FieldNo] = Result;
1206}
1207
1208/// Given a load instruction and a value derived from the load, rewrite the
1209/// derived value to use the HeapSRoA'd load.
1210static void RewriteHeapSROALoadUser(Instruction *LoadUser,
1211              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1212                   std::vector<std::pair<PHINode *, unsigned>> &PHIsToRewrite) {
1213  // If this is a comparison against null, handle it.
1214  if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
1215    assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
1216    // If we have a setcc of the loaded pointer, we can use a setcc of any
1217    // field.
1218    Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
1219                                   InsertedScalarizedValues, PHIsToRewrite);
1220
1221    Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
1222                              Constant::getNullValue(NPtr->getType()),
1223                              SCI->getName());
1224    SCI->replaceAllUsesWith(New);
1225    SCI->eraseFromParent();
1226    return;
1227  }
1228
1229  // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
1230  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
1231    assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
1232           && "Unexpected GEPI!");
1233
1234    // Load the pointer for this field.
1235    unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
1236    Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
1237                                     InsertedScalarizedValues, PHIsToRewrite);
1238
1239    // Create the new GEP idx vector.
1240    SmallVector<Value*, 8> GEPIdx;
1241    GEPIdx.push_back(GEPI->getOperand(1));
1242    GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
1243
1244    Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
1245                                             GEPI->getName(), GEPI);
1246    GEPI->replaceAllUsesWith(NGEPI);
1247    GEPI->eraseFromParent();
1248    return;
1249  }
1250
1251  // Recursively transform the users of PHI nodes.  This will lazily create the
1252  // PHIs that are needed for individual elements.  Keep track of what PHIs we
1253  // see in InsertedScalarizedValues so that we don't get infinite loops (very
1254  // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
1255  // already been seen first by another load, so its uses have already been
1256  // processed.
1257  PHINode *PN = cast<PHINode>(LoadUser);
1258  if (!InsertedScalarizedValues.insert(std::make_pair(PN,
1259                                              std::vector<Value *>())).second)
1260    return;
1261
1262  // If this is the first time we've seen this PHI, recursively process all
1263  // users.
1264  for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
1265    Instruction *User = cast<Instruction>(*UI++);
1266    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1267  }
1268}
1269
1270/// We are performing Heap SRoA on a global.  Ptr is a value loaded from the
1271/// global.  Eliminate all uses of Ptr, making them use FieldGlobals instead.
1272/// All uses of loaded values satisfy AllGlobalLoadUsesSimpleEnoughForHeapSRA.
1273static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
1274              DenseMap<Value *, std::vector<Value *>> &InsertedScalarizedValues,
1275                  std::vector<std::pair<PHINode *, unsigned> > &PHIsToRewrite) {
1276  for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
1277    Instruction *User = cast<Instruction>(*UI++);
1278    RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
1279  }
1280
1281  if (Load->use_empty()) {
1282    Load->eraseFromParent();
1283    InsertedScalarizedValues.erase(Load);
1284  }
1285}
1286
1287/// CI is an allocation of an array of structures.  Break it up into multiple
1288/// allocations of arrays of the fields.
1289static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
1290                                            Value *NElems, const DataLayout &DL,
1291                                            const TargetLibraryInfo *TLI) {
1292  LLVM_DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI
1293                    << '\n');
1294  Type *MAT = getMallocAllocatedType(CI, TLI);
1295  StructType *STy = cast<StructType>(MAT);
1296
1297  // There is guaranteed to be at least one use of the malloc (storing
1298  // it into GV).  If there are other uses, change them to be uses of
1299  // the global to simplify later code.  This also deletes the store
1300  // into GV.
1301  ReplaceUsesOfMallocWithGlobal(CI, GV);
1302
1303  // Okay, at this point, there are no users of the malloc.  Insert N
1304  // new mallocs at the same place as CI, and N globals.
1305  std::vector<Value *> FieldGlobals;
1306  std::vector<Value *> FieldMallocs;
1307
1308  SmallVector<OperandBundleDef, 1> OpBundles;
1309  CI->getOperandBundlesAsDefs(OpBundles);
1310
1311  unsigned AS = GV->getType()->getPointerAddressSpace();
1312  for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
1313    Type *FieldTy = STy->getElementType(FieldNo);
1314    PointerType *PFieldTy = PointerType::get(FieldTy, AS);
1315
1316    GlobalVariable *NGV = new GlobalVariable(
1317        *GV->getParent(), PFieldTy, false, GlobalValue::InternalLinkage,
1318        Constant::getNullValue(PFieldTy), GV->getName() + ".f" + Twine(FieldNo),
1319        nullptr, GV->getThreadLocalMode());
1320    NGV->copyAttributesFrom(GV);
1321    FieldGlobals.push_back(NGV);
1322
1323    unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
1324    if (StructType *ST = dyn_cast<StructType>(FieldTy))
1325      TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
1326    Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1327    Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
1328                                        ConstantInt::get(IntPtrTy, TypeSize),
1329                                        NElems, OpBundles, nullptr,
1330                                        CI->getName() + ".f" + Twine(FieldNo));
1331    FieldMallocs.push_back(NMI);
1332    new StoreInst(NMI, NGV, CI);
1333  }
1334
1335  // The tricky aspect of this transformation is handling the case when malloc
1336  // fails.  In the original code, malloc failing would set the result pointer
1337  // of malloc to null.  In this case, some mallocs could succeed and others
1338  // could fail.  As such, we emit code that looks like this:
1339  //    F0 = malloc(field0)
1340  //    F1 = malloc(field1)
1341  //    F2 = malloc(field2)
1342  //    if (F0 == 0 || F1 == 0 || F2 == 0) {
1343  //      if (F0) { free(F0); F0 = 0; }
1344  //      if (F1) { free(F1); F1 = 0; }
1345  //      if (F2) { free(F2); F2 = 0; }
1346  //    }
1347  // The malloc can also fail if its argument is too large.
1348  Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
1349  Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
1350                                  ConstantZero, "isneg");
1351  for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
1352    Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
1353                             Constant::getNullValue(FieldMallocs[i]->getType()),
1354                               "isnull");
1355    RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
1356  }
1357
1358  // Split the basic block at the old malloc.
1359  BasicBlock *OrigBB = CI->getParent();
1360  BasicBlock *ContBB =
1361      OrigBB->splitBasicBlock(CI->getIterator(), "malloc_cont");
1362
1363  // Create the block to check the first condition.  Put all these blocks at the
1364  // end of the function as they are unlikely to be executed.
1365  BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
1366                                                "malloc_ret_null",
1367                                                OrigBB->getParent());
1368
1369  // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
1370  // branch on RunningOr.
1371  OrigBB->getTerminator()->eraseFromParent();
1372  BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
1373
1374  // Within the NullPtrBlock, we need to emit a comparison and branch for each
1375  // pointer, because some may be null while others are not.
1376  for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1377    Value *GVVal =
1378        new LoadInst(cast<GlobalVariable>(FieldGlobals[i])->getValueType(),
1379                     FieldGlobals[i], "tmp", NullPtrBlock);
1380    Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
1381                              Constant::getNullValue(GVVal->getType()));
1382    BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
1383                                               OrigBB->getParent());
1384    BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
1385                                               OrigBB->getParent());
1386    Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
1387                                         Cmp, NullPtrBlock);
1388
1389    // Fill in FreeBlock.
1390    CallInst::CreateFree(GVVal, OpBundles, BI);
1391    new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
1392                  FreeBlock);
1393    BranchInst::Create(NextBlock, FreeBlock);
1394
1395    NullPtrBlock = NextBlock;
1396  }
1397
1398  BranchInst::Create(ContBB, NullPtrBlock);
1399
1400  // CI is no longer needed, remove it.
1401  CI->eraseFromParent();
1402
1403  /// As we process loads, if we can't immediately update all uses of the load,
1404  /// keep track of what scalarized loads are inserted for a given load.
1405  DenseMap<Value *, std::vector<Value *>> InsertedScalarizedValues;
1406  InsertedScalarizedValues[GV] = FieldGlobals;
1407
1408  std::vector<std::pair<PHINode *, unsigned>> PHIsToRewrite;
1409
1410  // Okay, the malloc site is completely handled.  All of the uses of GV are now
1411  // loads, and all uses of those loads are simple.  Rewrite them to use loads
1412  // of the per-field globals instead.
1413  for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
1414    Instruction *User = cast<Instruction>(*UI++);
1415
1416    if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1417      RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
1418      continue;
1419    }
1420
1421    // Must be a store of null.
1422    StoreInst *SI = cast<StoreInst>(User);
1423    assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
1424           "Unexpected heap-sra user!");
1425
1426    // Insert a store of null into each global.
1427    for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
1428      Type *ValTy = cast<GlobalValue>(FieldGlobals[i])->getValueType();
1429      Constant *Null = Constant::getNullValue(ValTy);
1430      new StoreInst(Null, FieldGlobals[i], SI);
1431    }
1432    // Erase the original store.
1433    SI->eraseFromParent();
1434  }
1435
1436  // While we have PHIs that are interesting to rewrite, do it.
1437  while (!PHIsToRewrite.empty()) {
1438    PHINode *PN = PHIsToRewrite.back().first;
1439    unsigned FieldNo = PHIsToRewrite.back().second;
1440    PHIsToRewrite.pop_back();
1441    PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
1442    assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
1443
1444    // Add all the incoming values.  This can materialize more phis.
1445    for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1446      Value *InVal = PN->getIncomingValue(i);
1447      InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
1448                               PHIsToRewrite);
1449      FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
1450    }
1451  }
1452
1453  // Drop all inter-phi links and any loads that made it this far.
1454  for (DenseMap<Value *, std::vector<Value *>>::iterator
1455       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1456       I != E; ++I) {
1457    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1458      PN->dropAllReferences();
1459    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1460      LI->dropAllReferences();
1461  }
1462
1463  // Delete all the phis and loads now that inter-references are dead.
1464  for (DenseMap<Value *, std::vector<Value *>>::iterator
1465       I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
1466       I != E; ++I) {
1467    if (PHINode *PN = dyn_cast<PHINode>(I->first))
1468      PN->eraseFromParent();
1469    else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
1470      LI->eraseFromParent();
1471  }
1472
1473  // The old global is now dead, remove it.
1474  GV->eraseFromParent();
1475
1476  ++NumHeapSRA;
1477  return cast<GlobalVariable>(FieldGlobals[0]);
1478}
1479
1480/// This function is called when we see a pointer global variable with a single
1481/// value stored it that is a malloc or cast of malloc.
1482static bool tryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
1483                                               Type *AllocTy,
1484                                               AtomicOrdering Ordering,
1485                                               const DataLayout &DL,
1486                                               TargetLibraryInfo *TLI) {
1487  // If this is a malloc of an abstract type, don't touch it.
1488  if (!AllocTy->isSized())
1489    return false;
1490
1491  // We can't optimize this global unless all uses of it are *known* to be
1492  // of the malloc value, not of the null initializer value (consider a use
1493  // that compares the global's value against zero to see if the malloc has
1494  // been reached).  To do this, we check to see if all uses of the global
1495  // would trap if the global were null: this proves that they must all
1496  // happen after the malloc.
1497  if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
1498    return false;
1499
1500  // We can't optimize this if the malloc itself is used in a complex way,
1501  // for example, being stored into multiple globals.  This allows the
1502  // malloc to be stored into the specified global, loaded icmp'd, and
1503  // GEP'd.  These are all things we could transform to using the global
1504  // for.
1505  SmallPtrSet<const PHINode*, 8> PHIs;
1506  if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
1507    return false;
1508
1509  // If we have a global that is only initialized with a fixed size malloc,
1510  // transform the program to use global memory instead of malloc'd memory.
1511  // This eliminates dynamic allocation, avoids an indirection accessing the
1512  // data, and exposes the resultant global to further GlobalOpt.
1513  // We cannot optimize the malloc if we cannot determine malloc array size.
1514  Value *NElems = getMallocArraySize(CI, DL, TLI, true);
1515  if (!NElems)
1516    return false;
1517
1518  if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
1519    // Restrict this transformation to only working on small allocations
1520    // (2048 bytes currently), as we don't want to introduce a 16M global or
1521    // something.
1522    if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
1523      OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
1524      return true;
1525    }
1526
1527  // If the allocation is an array of structures, consider transforming this
1528  // into multiple malloc'd arrays, one for each field.  This is basically
1529  // SRoA for malloc'd memory.
1530
1531  if (Ordering != AtomicOrdering::NotAtomic)
1532    return false;
1533
1534  // If this is an allocation of a fixed size array of structs, analyze as a
1535  // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
1536  if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
1537    if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
1538      AllocTy = AT->getElementType();
1539
1540  StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
1541  if (!AllocSTy)
1542    return false;
1543
1544  // This the structure has an unreasonable number of fields, leave it
1545  // alone.
1546  if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
1547      AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
1548
1549    // If this is a fixed size array, transform the Malloc to be an alloc of
1550    // structs.  malloc [100 x struct],1 -> malloc struct, 100
1551    if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
1552      Type *IntPtrTy = DL.getIntPtrType(CI->getType());
1553      unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
1554      Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
1555      Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
1556      SmallVector<OperandBundleDef, 1> OpBundles;
1557      CI->getOperandBundlesAsDefs(OpBundles);
1558      Instruction *Malloc =
1559          CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy, AllocSize, NumElements,
1560                                 OpBundles, nullptr, CI->getName());
1561      Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
1562      CI->replaceAllUsesWith(Cast);
1563      CI->eraseFromParent();
1564      if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
1565        CI = cast<CallInst>(BCI->getOperand(0));
1566      else
1567        CI = cast<CallInst>(Malloc);
1568    }
1569
1570    PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true), DL,
1571                         TLI);
1572    return true;
1573  }
1574
1575  return false;
1576}
1577
1578// Try to optimize globals based on the knowledge that only one value (besides
1579// its initializer) is ever stored to the global.
1580static bool
1581optimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
1582                         AtomicOrdering Ordering, const DataLayout &DL,
1583                         function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
1584  // Ignore no-op GEPs and bitcasts.
1585  StoredOnceVal = StoredOnceVal->stripPointerCasts();
1586
1587  // If we are dealing with a pointer global that is initialized to null and
1588  // only has one (non-null) value stored into it, then we can optimize any
1589  // users of the loaded value (often calls and loads) that would trap if the
1590  // value was null.
1591  if (GV->getInitializer()->getType()->isPointerTy() &&
1592      GV->getInitializer()->isNullValue() &&
1593      !NullPointerIsDefined(
1594          nullptr /* F */,
1595          GV->getInitializer()->getType()->getPointerAddressSpace())) {
1596    if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
1597      if (GV->getInitializer()->getType() != SOVC->getType())
1598        SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
1599
1600      // Optimize away any trapping uses of the loaded value.
1601      if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, GetTLI))
1602        return true;
1603    } else if (CallInst *CI = extractMallocCall(StoredOnceVal, GetTLI)) {
1604      auto *TLI = &GetTLI(*CI->getFunction());
1605      Type *MallocType = getMallocAllocatedType(CI, TLI);
1606      if (MallocType && tryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType,
1607                                                           Ordering, DL, TLI))
1608        return true;
1609    }
1610  }
1611
1612  return false;
1613}
1614
1615/// At this point, we have learned that the only two values ever stored into GV
1616/// are its initializer and OtherVal.  See if we can shrink the global into a
1617/// boolean and select between the two values whenever it is used.  This exposes
1618/// the values to other scalar optimizations.
1619static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
1620  Type *GVElType = GV->getValueType();
1621
1622  // If GVElType is already i1, it is already shrunk.  If the type of the GV is
1623  // an FP value, pointer or vector, don't do this optimization because a select
1624  // between them is very expensive and unlikely to lead to later
1625  // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
1626  // where v1 and v2 both require constant pool loads, a big loss.
1627  if (GVElType == Type::getInt1Ty(GV->getContext()) ||
1628      GVElType->isFloatingPointTy() ||
1629      GVElType->isPointerTy() || GVElType->isVectorTy())
1630    return false;
1631
1632  // Walk the use list of the global seeing if all the uses are load or store.
1633  // If there is anything else, bail out.
1634  for (User *U : GV->users())
1635    if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
1636      return false;
1637
1638  LLVM_DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV << "\n");
1639
1640  // Create the new global, initializing it to false.
1641  GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
1642                                             false,
1643                                             GlobalValue::InternalLinkage,
1644                                        ConstantInt::getFalse(GV->getContext()),
1645                                             GV->getName()+".b",
1646                                             GV->getThreadLocalMode(),
1647                                             GV->getType()->getAddressSpace());
1648  NewGV->copyAttributesFrom(GV);
1649  GV->getParent()->getGlobalList().insert(GV->getIterator(), NewGV);
1650
1651  Constant *InitVal = GV->getInitializer();
1652  assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
1653         "No reason to shrink to bool!");
1654
1655  SmallVector<DIGlobalVariableExpression *, 1> GVs;
1656  GV->getDebugInfo(GVs);
1657
1658  // If initialized to zero and storing one into the global, we can use a cast
1659  // instead of a select to synthesize the desired value.
1660  bool IsOneZero = false;
1661  bool EmitOneOrZero = true;
1662  auto *CI = dyn_cast<ConstantInt>(OtherVal);
1663  if (CI && CI->getValue().getActiveBits() <= 64) {
1664    IsOneZero = InitVal->isNullValue() && CI->isOne();
1665
1666    auto *CIInit = dyn_cast<ConstantInt>(GV->getInitializer());
1667    if (CIInit && CIInit->getValue().getActiveBits() <= 64) {
1668      uint64_t ValInit = CIInit->getZExtValue();
1669      uint64_t ValOther = CI->getZExtValue();
1670      uint64_t ValMinus = ValOther - ValInit;
1671
1672      for(auto *GVe : GVs){
1673        DIGlobalVariable *DGV = GVe->getVariable();
1674        DIExpression *E = GVe->getExpression();
1675        const DataLayout &DL = GV->getParent()->getDataLayout();
1676        unsigned SizeInOctets =
1677          DL.getTypeAllocSizeInBits(NewGV->getType()->getElementType()) / 8;
1678
1679        // It is expected that the address of global optimized variable is on
1680        // top of the stack. After optimization, value of that variable will
1681        // be ether 0 for initial value or 1 for other value. The following
1682        // expression should return constant integer value depending on the
1683        // value at global object address:
1684        // val * (ValOther - ValInit) + ValInit:
1685        // DW_OP_deref DW_OP_constu <ValMinus>
1686        // DW_OP_mul DW_OP_constu <ValInit> DW_OP_plus DW_OP_stack_value
1687        SmallVector<uint64_t, 12> Ops = {
1688            dwarf::DW_OP_deref_size, SizeInOctets,
1689            dwarf::DW_OP_constu, ValMinus,
1690            dwarf::DW_OP_mul, dwarf::DW_OP_constu, ValInit,
1691            dwarf::DW_OP_plus};
1692        bool WithStackValue = true;
1693        E = DIExpression::prependOpcodes(E, Ops, WithStackValue);
1694        DIGlobalVariableExpression *DGVE =
1695          DIGlobalVariableExpression::get(NewGV->getContext(), DGV, E);
1696        NewGV->addDebugInfo(DGVE);
1697     }
1698     EmitOneOrZero = false;
1699    }
1700  }
1701
1702  if (EmitOneOrZero) {
1703     // FIXME: This will only emit address for debugger on which will
1704     // be written only 0 or 1.
1705     for(auto *GV : GVs)
1706       NewGV->addDebugInfo(GV);
1707   }
1708
1709  while (!GV->use_empty()) {
1710    Instruction *UI = cast<Instruction>(GV->user_back());
1711    if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
1712      // Change the store into a boolean store.
1713      bool StoringOther = SI->getOperand(0) == OtherVal;
1714      // Only do this if we weren't storing a loaded value.
1715      Value *StoreVal;
1716      if (StoringOther || SI->getOperand(0) == InitVal) {
1717        StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
1718                                    StoringOther);
1719      } else {
1720        // Otherwise, we are storing a previously loaded copy.  To do this,
1721        // change the copy from copying the original value to just copying the
1722        // bool.
1723        Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
1724
1725        // If we've already replaced the input, StoredVal will be a cast or
1726        // select instruction.  If not, it will be a load of the original
1727        // global.
1728        if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
1729          assert(LI->getOperand(0) == GV && "Not a copy!");
1730          // Insert a new load, to preserve the saved value.
1731          StoreVal = new LoadInst(NewGV->getValueType(), NewGV,
1732                                  LI->getName() + ".b", false, None,
1733                                  LI->getOrdering(), LI->getSyncScopeID(), LI);
1734        } else {
1735          assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
1736                 "This is not a form that we understand!");
1737          StoreVal = StoredVal->getOperand(0);
1738          assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
1739        }
1740      }
1741      StoreInst *NSI =
1742          new StoreInst(StoreVal, NewGV, false, None, SI->getOrdering(),
1743                        SI->getSyncScopeID(), SI);
1744      NSI->setDebugLoc(SI->getDebugLoc());
1745    } else {
1746      // Change the load into a load of bool then a select.
1747      LoadInst *LI = cast<LoadInst>(UI);
1748      LoadInst *NLI = new LoadInst(NewGV->getValueType(), NewGV,
1749                                   LI->getName() + ".b", false, None,
1750                                   LI->getOrdering(), LI->getSyncScopeID(), LI);
1751      Instruction *NSI;
1752      if (IsOneZero)
1753        NSI = new ZExtInst(NLI, LI->getType(), "", LI);
1754      else
1755        NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
1756      NSI->takeName(LI);
1757      // Since LI is split into two instructions, NLI and NSI both inherit the
1758      // same DebugLoc
1759      NLI->setDebugLoc(LI->getDebugLoc());
1760      NSI->setDebugLoc(LI->getDebugLoc());
1761      LI->replaceAllUsesWith(NSI);
1762    }
1763    UI->eraseFromParent();
1764  }
1765
1766  // Retain the name of the old global variable. People who are debugging their
1767  // programs may expect these variables to be named the same.
1768  NewGV->takeName(GV);
1769  GV->eraseFromParent();
1770  return true;
1771}
1772
1773static bool deleteIfDead(
1774    GlobalValue &GV, SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
1775  GV.removeDeadConstantUsers();
1776
1777  if (!GV.isDiscardableIfUnused() && !GV.isDeclaration())
1778    return false;
1779
1780  if (const Comdat *C = GV.getComdat())
1781    if (!GV.hasLocalLinkage() && NotDiscardableComdats.count(C))
1782      return false;
1783
1784  bool Dead;
1785  if (auto *F = dyn_cast<Function>(&GV))
1786    Dead = (F->isDeclaration() && F->use_empty()) || F->isDefTriviallyDead();
1787  else
1788    Dead = GV.use_empty();
1789  if (!Dead)
1790    return false;
1791
1792  LLVM_DEBUG(dbgs() << "GLOBAL DEAD: " << GV << "\n");
1793  GV.eraseFromParent();
1794  ++NumDeleted;
1795  return true;
1796}
1797
1798static bool isPointerValueDeadOnEntryToFunction(
1799    const Function *F, GlobalValue *GV,
1800    function_ref<DominatorTree &(Function &)> LookupDomTree) {
1801  // Find all uses of GV. We expect them all to be in F, and if we can't
1802  // identify any of the uses we bail out.
1803  //
1804  // On each of these uses, identify if the memory that GV points to is
1805  // used/required/live at the start of the function. If it is not, for example
1806  // if the first thing the function does is store to the GV, the GV can
1807  // possibly be demoted.
1808  //
1809  // We don't do an exhaustive search for memory operations - simply look
1810  // through bitcasts as they're quite common and benign.
1811  const DataLayout &DL = GV->getParent()->getDataLayout();
1812  SmallVector<LoadInst *, 4> Loads;
1813  SmallVector<StoreInst *, 4> Stores;
1814  for (auto *U : GV->users()) {
1815    if (Operator::getOpcode(U) == Instruction::BitCast) {
1816      for (auto *UU : U->users()) {
1817        if (auto *LI = dyn_cast<LoadInst>(UU))
1818          Loads.push_back(LI);
1819        else if (auto *SI = dyn_cast<StoreInst>(UU))
1820          Stores.push_back(SI);
1821        else
1822          return false;
1823      }
1824      continue;
1825    }
1826
1827    Instruction *I = dyn_cast<Instruction>(U);
1828    if (!I)
1829      return false;
1830    assert(I->getParent()->getParent() == F);
1831
1832    if (auto *LI = dyn_cast<LoadInst>(I))
1833      Loads.push_back(LI);
1834    else if (auto *SI = dyn_cast<StoreInst>(I))
1835      Stores.push_back(SI);
1836    else
1837      return false;
1838  }
1839
1840  // We have identified all uses of GV into loads and stores. Now check if all
1841  // of them are known not to depend on the value of the global at the function
1842  // entry point. We do this by ensuring that every load is dominated by at
1843  // least one store.
1844  auto &DT = LookupDomTree(*const_cast<Function *>(F));
1845
1846  // The below check is quadratic. Check we're not going to do too many tests.
1847  // FIXME: Even though this will always have worst-case quadratic time, we
1848  // could put effort into minimizing the average time by putting stores that
1849  // have been shown to dominate at least one load at the beginning of the
1850  // Stores array, making subsequent dominance checks more likely to succeed
1851  // early.
1852  //
1853  // The threshold here is fairly large because global->local demotion is a
1854  // very powerful optimization should it fire.
1855  const unsigned Threshold = 100;
1856  if (Loads.size() * Stores.size() > Threshold)
1857    return false;
1858
1859  for (auto *L : Loads) {
1860    auto *LTy = L->getType();
1861    if (none_of(Stores, [&](const StoreInst *S) {
1862          auto *STy = S->getValueOperand()->getType();
1863          // The load is only dominated by the store if DomTree says so
1864          // and the number of bits loaded in L is less than or equal to
1865          // the number of bits stored in S.
1866          return DT.dominates(S, L) &&
1867                 DL.getTypeStoreSize(LTy) <= DL.getTypeStoreSize(STy);
1868        }))
1869      return false;
1870  }
1871  // All loads have known dependences inside F, so the global can be localized.
1872  return true;
1873}
1874
1875/// C may have non-instruction users. Can all of those users be turned into
1876/// instructions?
1877static bool allNonInstructionUsersCanBeMadeInstructions(Constant *C) {
1878  // We don't do this exhaustively. The most common pattern that we really need
1879  // to care about is a constant GEP or constant bitcast - so just looking
1880  // through one single ConstantExpr.
1881  //
1882  // The set of constants that this function returns true for must be able to be
1883  // handled by makeAllConstantUsesInstructions.
1884  for (auto *U : C->users()) {
1885    if (isa<Instruction>(U))
1886      continue;
1887    if (!isa<ConstantExpr>(U))
1888      // Non instruction, non-constantexpr user; cannot convert this.
1889      return false;
1890    for (auto *UU : U->users())
1891      if (!isa<Instruction>(UU))
1892        // A constantexpr used by another constant. We don't try and recurse any
1893        // further but just bail out at this point.
1894        return false;
1895  }
1896
1897  return true;
1898}
1899
1900/// C may have non-instruction users, and
1901/// allNonInstructionUsersCanBeMadeInstructions has returned true. Convert the
1902/// non-instruction users to instructions.
1903static void makeAllConstantUsesInstructions(Constant *C) {
1904  SmallVector<ConstantExpr*,4> Users;
1905  for (auto *U : C->users()) {
1906    if (isa<ConstantExpr>(U))
1907      Users.push_back(cast<ConstantExpr>(U));
1908    else
1909      // We should never get here; allNonInstructionUsersCanBeMadeInstructions
1910      // should not have returned true for C.
1911      assert(
1912          isa<Instruction>(U) &&
1913          "Can't transform non-constantexpr non-instruction to instruction!");
1914  }
1915
1916  SmallVector<Value*,4> UUsers;
1917  for (auto *U : Users) {
1918    UUsers.clear();
1919    for (auto *UU : U->users())
1920      UUsers.push_back(UU);
1921    for (auto *UU : UUsers) {
1922      Instruction *UI = cast<Instruction>(UU);
1923      Instruction *NewU = U->getAsInstruction();
1924      NewU->insertBefore(UI);
1925      UI->replaceUsesOfWith(U, NewU);
1926    }
1927    // We've replaced all the uses, so destroy the constant. (destroyConstant
1928    // will update value handles and metadata.)
1929    U->destroyConstant();
1930  }
1931}
1932
1933/// Analyze the specified global variable and optimize
1934/// it if possible.  If we make a change, return true.
1935static bool
1936processInternalGlobal(GlobalVariable *GV, const GlobalStatus &GS,
1937                      function_ref<TargetLibraryInfo &(Function &)> GetTLI,
1938                      function_ref<DominatorTree &(Function &)> LookupDomTree) {
1939  auto &DL = GV->getParent()->getDataLayout();
1940  // If this is a first class global and has only one accessing function and
1941  // this function is non-recursive, we replace the global with a local alloca
1942  // in this function.
1943  //
1944  // NOTE: It doesn't make sense to promote non-single-value types since we
1945  // are just replacing static memory to stack memory.
1946  //
1947  // If the global is in different address space, don't bring it to stack.
1948  if (!GS.HasMultipleAccessingFunctions &&
1949      GS.AccessingFunction &&
1950      GV->getValueType()->isSingleValueType() &&
1951      GV->getType()->getAddressSpace() == 0 &&
1952      !GV->isExternallyInitialized() &&
1953      allNonInstructionUsersCanBeMadeInstructions(GV) &&
1954      GS.AccessingFunction->doesNotRecurse() &&
1955      isPointerValueDeadOnEntryToFunction(GS.AccessingFunction, GV,
1956                                          LookupDomTree)) {
1957    const DataLayout &DL = GV->getParent()->getDataLayout();
1958
1959    LLVM_DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV << "\n");
1960    Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
1961                                                   ->getEntryBlock().begin());
1962    Type *ElemTy = GV->getValueType();
1963    // FIXME: Pass Global's alignment when globals have alignment
1964    AllocaInst *Alloca = new AllocaInst(ElemTy, DL.getAllocaAddrSpace(), nullptr,
1965                                        GV->getName(), &FirstI);
1966    if (!isa<UndefValue>(GV->getInitializer()))
1967      new StoreInst(GV->getInitializer(), Alloca, &FirstI);
1968
1969    makeAllConstantUsesInstructions(GV);
1970
1971    GV->replaceAllUsesWith(Alloca);
1972    GV->eraseFromParent();
1973    ++NumLocalized;
1974    return true;
1975  }
1976
1977  // If the global is never loaded (but may be stored to), it is dead.
1978  // Delete it now.
1979  if (!GS.IsLoaded) {
1980    LLVM_DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV << "\n");
1981
1982    bool Changed;
1983    if (isLeakCheckerRoot(GV)) {
1984      // Delete any constant stores to the global.
1985      Changed = CleanupPointerRootUsers(GV, GetTLI);
1986    } else {
1987      // Delete any stores we can find to the global.  We may not be able to
1988      // make it completely dead though.
1989      Changed =
1990          CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
1991    }
1992
1993    // If the global is dead now, delete it.
1994    if (GV->use_empty()) {
1995      GV->eraseFromParent();
1996      ++NumDeleted;
1997      Changed = true;
1998    }
1999    return Changed;
2000
2001  }
2002  if (GS.StoredType <= GlobalStatus::InitializerStored) {
2003    LLVM_DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
2004
2005    // Don't actually mark a global constant if it's atomic because atomic loads
2006    // are implemented by a trivial cmpxchg in some edge-cases and that usually
2007    // requires write access to the variable even if it's not actually changed.
2008    if (GS.Ordering == AtomicOrdering::NotAtomic)
2009      GV->setConstant(true);
2010
2011    // Clean up any obviously simplifiable users now.
2012    CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2013
2014    // If the global is dead now, just nuke it.
2015    if (GV->use_empty()) {
2016      LLVM_DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
2017                        << "all users and delete global!\n");
2018      GV->eraseFromParent();
2019      ++NumDeleted;
2020      return true;
2021    }
2022
2023    // Fall through to the next check; see if we can optimize further.
2024    ++NumMarked;
2025  }
2026  if (!GV->getInitializer()->getType()->isSingleValueType()) {
2027    const DataLayout &DL = GV->getParent()->getDataLayout();
2028    if (SRAGlobal(GV, DL))
2029      return true;
2030  }
2031  if (GS.StoredType == GlobalStatus::StoredOnce && GS.StoredOnceValue) {
2032    // If the initial value for the global was an undef value, and if only
2033    // one other value was stored into it, we can just change the
2034    // initializer to be the stored value, then delete all stores to the
2035    // global.  This allows us to mark it constant.
2036    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
2037      if (isa<UndefValue>(GV->getInitializer())) {
2038        // Change the initial value here.
2039        GV->setInitializer(SOVConstant);
2040
2041        // Clean up any obviously simplifiable users now.
2042        CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, GetTLI);
2043
2044        if (GV->use_empty()) {
2045          LLVM_DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
2046                            << "simplify all users and delete global!\n");
2047          GV->eraseFromParent();
2048          ++NumDeleted;
2049        }
2050        ++NumSubstitute;
2051        return true;
2052      }
2053
2054    // Try to optimize globals based on the knowledge that only one value
2055    // (besides its initializer) is ever stored to the global.
2056    if (optimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, DL,
2057                                 GetTLI))
2058      return true;
2059
2060    // Otherwise, if the global was not a boolean, we can shrink it to be a
2061    // boolean.
2062    if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
2063      if (GS.Ordering == AtomicOrdering::NotAtomic) {
2064        if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
2065          ++NumShrunkToBool;
2066          return true;
2067        }
2068      }
2069    }
2070  }
2071
2072  return false;
2073}
2074
2075/// Analyze the specified global variable and optimize it if possible.  If we
2076/// make a change, return true.
2077static bool
2078processGlobal(GlobalValue &GV,
2079              function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2080              function_ref<DominatorTree &(Function &)> LookupDomTree) {
2081  if (GV.getName().startswith("llvm."))
2082    return false;
2083
2084  GlobalStatus GS;
2085
2086  if (GlobalStatus::analyzeGlobal(&GV, GS))
2087    return false;
2088
2089  bool Changed = false;
2090  if (!GS.IsCompared && !GV.hasGlobalUnnamedAddr()) {
2091    auto NewUnnamedAddr = GV.hasLocalLinkage() ? GlobalValue::UnnamedAddr::Global
2092                                               : GlobalValue::UnnamedAddr::Local;
2093    if (NewUnnamedAddr != GV.getUnnamedAddr()) {
2094      GV.setUnnamedAddr(NewUnnamedAddr);
2095      NumUnnamed++;
2096      Changed = true;
2097    }
2098  }
2099
2100  // Do more involved optimizations if the global is internal.
2101  if (!GV.hasLocalLinkage())
2102    return Changed;
2103
2104  auto *GVar = dyn_cast<GlobalVariable>(&GV);
2105  if (!GVar)
2106    return Changed;
2107
2108  if (GVar->isConstant() || !GVar->hasInitializer())
2109    return Changed;
2110
2111  return processInternalGlobal(GVar, GS, GetTLI, LookupDomTree) || Changed;
2112}
2113
2114/// Walk all of the direct calls of the specified function, changing them to
2115/// FastCC.
2116static void ChangeCalleesToFastCall(Function *F) {
2117  for (User *U : F->users()) {
2118    if (isa<BlockAddress>(U))
2119      continue;
2120    CallSite CS(cast<Instruction>(U));
2121    CS.setCallingConv(CallingConv::Fast);
2122  }
2123}
2124
2125static AttributeList StripAttr(LLVMContext &C, AttributeList Attrs,
2126                               Attribute::AttrKind A) {
2127  unsigned AttrIndex;
2128  if (Attrs.hasAttrSomewhere(A, &AttrIndex))
2129    return Attrs.removeAttribute(C, AttrIndex, A);
2130  return Attrs;
2131}
2132
2133static void RemoveAttribute(Function *F, Attribute::AttrKind A) {
2134  F->setAttributes(StripAttr(F->getContext(), F->getAttributes(), A));
2135  for (User *U : F->users()) {
2136    if (isa<BlockAddress>(U))
2137      continue;
2138    CallSite CS(cast<Instruction>(U));
2139    CS.setAttributes(StripAttr(F->getContext(), CS.getAttributes(), A));
2140  }
2141}
2142
2143/// Return true if this is a calling convention that we'd like to change.  The
2144/// idea here is that we don't want to mess with the convention if the user
2145/// explicitly requested something with performance implications like coldcc,
2146/// GHC, or anyregcc.
2147static bool hasChangeableCC(Function *F) {
2148  CallingConv::ID CC = F->getCallingConv();
2149
2150  // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
2151  if (CC != CallingConv::C && CC != CallingConv::X86_ThisCall)
2152    return false;
2153
2154  // FIXME: Change CC for the whole chain of musttail calls when possible.
2155  //
2156  // Can't change CC of the function that either has musttail calls, or is a
2157  // musttail callee itself
2158  for (User *U : F->users()) {
2159    if (isa<BlockAddress>(U))
2160      continue;
2161    CallInst* CI = dyn_cast<CallInst>(U);
2162    if (!CI)
2163      continue;
2164
2165    if (CI->isMustTailCall())
2166      return false;
2167  }
2168
2169  for (BasicBlock &BB : *F)
2170    if (BB.getTerminatingMustTailCall())
2171      return false;
2172
2173  return true;
2174}
2175
2176/// Return true if the block containing the call site has a BlockFrequency of
2177/// less than ColdCCRelFreq% of the entry block.
2178static bool isColdCallSite(CallSite CS, BlockFrequencyInfo &CallerBFI) {
2179  const BranchProbability ColdProb(ColdCCRelFreq, 100);
2180  auto CallSiteBB = CS.getInstruction()->getParent();
2181  auto CallSiteFreq = CallerBFI.getBlockFreq(CallSiteBB);
2182  auto CallerEntryFreq =
2183      CallerBFI.getBlockFreq(&(CS.getCaller()->getEntryBlock()));
2184  return CallSiteFreq < CallerEntryFreq * ColdProb;
2185}
2186
2187// This function checks if the input function F is cold at all call sites. It
2188// also looks each call site's containing function, returning false if the
2189// caller function contains other non cold calls. The input vector AllCallsCold
2190// contains a list of functions that only have call sites in cold blocks.
2191static bool
2192isValidCandidateForColdCC(Function &F,
2193                          function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2194                          const std::vector<Function *> &AllCallsCold) {
2195
2196  if (F.user_empty())
2197    return false;
2198
2199  for (User *U : F.users()) {
2200    if (isa<BlockAddress>(U))
2201      continue;
2202
2203    CallSite CS(cast<Instruction>(U));
2204    Function *CallerFunc = CS.getInstruction()->getParent()->getParent();
2205    BlockFrequencyInfo &CallerBFI = GetBFI(*CallerFunc);
2206    if (!isColdCallSite(CS, CallerBFI))
2207      return false;
2208    auto It = std::find(AllCallsCold.begin(), AllCallsCold.end(), CallerFunc);
2209    if (It == AllCallsCold.end())
2210      return false;
2211  }
2212  return true;
2213}
2214
2215static void changeCallSitesToColdCC(Function *F) {
2216  for (User *U : F->users()) {
2217    if (isa<BlockAddress>(U))
2218      continue;
2219    CallSite CS(cast<Instruction>(U));
2220    CS.setCallingConv(CallingConv::Cold);
2221  }
2222}
2223
2224// This function iterates over all the call instructions in the input Function
2225// and checks that all call sites are in cold blocks and are allowed to use the
2226// coldcc calling convention.
2227static bool
2228hasOnlyColdCalls(Function &F,
2229                 function_ref<BlockFrequencyInfo &(Function &)> GetBFI) {
2230  for (BasicBlock &BB : F) {
2231    for (Instruction &I : BB) {
2232      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2233        CallSite CS(cast<Instruction>(CI));
2234        // Skip over isline asm instructions since they aren't function calls.
2235        if (CI->isInlineAsm())
2236          continue;
2237        Function *CalledFn = CI->getCalledFunction();
2238        if (!CalledFn)
2239          return false;
2240        if (!CalledFn->hasLocalLinkage())
2241          return false;
2242        // Skip over instrinsics since they won't remain as function calls.
2243        if (CalledFn->getIntrinsicID() != Intrinsic::not_intrinsic)
2244          continue;
2245        // Check if it's valid to use coldcc calling convention.
2246        if (!hasChangeableCC(CalledFn) || CalledFn->isVarArg() ||
2247            CalledFn->hasAddressTaken())
2248          return false;
2249        BlockFrequencyInfo &CallerBFI = GetBFI(F);
2250        if (!isColdCallSite(CS, CallerBFI))
2251          return false;
2252      }
2253    }
2254  }
2255  return true;
2256}
2257
2258static bool
2259OptimizeFunctions(Module &M,
2260                  function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2261                  function_ref<TargetTransformInfo &(Function &)> GetTTI,
2262                  function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2263                  function_ref<DominatorTree &(Function &)> LookupDomTree,
2264                  SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2265
2266  bool Changed = false;
2267
2268  std::vector<Function *> AllCallsCold;
2269  for (Module::iterator FI = M.begin(), E = M.end(); FI != E;) {
2270    Function *F = &*FI++;
2271    if (hasOnlyColdCalls(*F, GetBFI))
2272      AllCallsCold.push_back(F);
2273  }
2274
2275  // Optimize functions.
2276  for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
2277    Function *F = &*FI++;
2278
2279    // Don't perform global opt pass on naked functions; we don't want fast
2280    // calling conventions for naked functions.
2281    if (F->hasFnAttribute(Attribute::Naked))
2282      continue;
2283
2284    // Functions without names cannot be referenced outside this module.
2285    if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
2286      F->setLinkage(GlobalValue::InternalLinkage);
2287
2288    if (deleteIfDead(*F, NotDiscardableComdats)) {
2289      Changed = true;
2290      continue;
2291    }
2292
2293    // LLVM's definition of dominance allows instructions that are cyclic
2294    // in unreachable blocks, e.g.:
2295    // %pat = select i1 %condition, @global, i16* %pat
2296    // because any instruction dominates an instruction in a block that's
2297    // not reachable from entry.
2298    // So, remove unreachable blocks from the function, because a) there's
2299    // no point in analyzing them and b) GlobalOpt should otherwise grow
2300    // some more complicated logic to break these cycles.
2301    // Removing unreachable blocks might invalidate the dominator so we
2302    // recalculate it.
2303    if (!F->isDeclaration()) {
2304      if (removeUnreachableBlocks(*F)) {
2305        auto &DT = LookupDomTree(*F);
2306        DT.recalculate(*F);
2307        Changed = true;
2308      }
2309    }
2310
2311    Changed |= processGlobal(*F, GetTLI, LookupDomTree);
2312
2313    if (!F->hasLocalLinkage())
2314      continue;
2315
2316    // If we have an inalloca parameter that we can safely remove the
2317    // inalloca attribute from, do so. This unlocks optimizations that
2318    // wouldn't be safe in the presence of inalloca.
2319    // FIXME: We should also hoist alloca affected by this to the entry
2320    // block if possible.
2321    if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca) &&
2322        !F->hasAddressTaken()) {
2323      RemoveAttribute(F, Attribute::InAlloca);
2324      Changed = true;
2325    }
2326
2327    if (hasChangeableCC(F) && !F->isVarArg() && !F->hasAddressTaken()) {
2328      NumInternalFunc++;
2329      TargetTransformInfo &TTI = GetTTI(*F);
2330      // Change the calling convention to coldcc if either stress testing is
2331      // enabled or the target would like to use coldcc on functions which are
2332      // cold at all call sites and the callers contain no other non coldcc
2333      // calls.
2334      if (EnableColdCCStressTest ||
2335          (TTI.useColdCCForColdCall(*F) &&
2336           isValidCandidateForColdCC(*F, GetBFI, AllCallsCold))) {
2337        F->setCallingConv(CallingConv::Cold);
2338        changeCallSitesToColdCC(F);
2339        Changed = true;
2340        NumColdCC++;
2341      }
2342    }
2343
2344    if (hasChangeableCC(F) && !F->isVarArg() &&
2345        !F->hasAddressTaken()) {
2346      // If this function has a calling convention worth changing, is not a
2347      // varargs function, and is only called directly, promote it to use the
2348      // Fast calling convention.
2349      F->setCallingConv(CallingConv::Fast);
2350      ChangeCalleesToFastCall(F);
2351      ++NumFastCallFns;
2352      Changed = true;
2353    }
2354
2355    if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
2356        !F->hasAddressTaken()) {
2357      // The function is not used by a trampoline intrinsic, so it is safe
2358      // to remove the 'nest' attribute.
2359      RemoveAttribute(F, Attribute::Nest);
2360      ++NumNestRemoved;
2361      Changed = true;
2362    }
2363  }
2364  return Changed;
2365}
2366
2367static bool
2368OptimizeGlobalVars(Module &M,
2369                   function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2370                   function_ref<DominatorTree &(Function &)> LookupDomTree,
2371                   SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2372  bool Changed = false;
2373
2374  for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
2375       GVI != E; ) {
2376    GlobalVariable *GV = &*GVI++;
2377    // Global variables without names cannot be referenced outside this module.
2378    if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
2379      GV->setLinkage(GlobalValue::InternalLinkage);
2380    // Simplify the initializer.
2381    if (GV->hasInitializer())
2382      if (auto *C = dyn_cast<Constant>(GV->getInitializer())) {
2383        auto &DL = M.getDataLayout();
2384        // TLI is not used in the case of a Constant, so use default nullptr
2385        // for that optional parameter, since we don't have a Function to
2386        // provide GetTLI anyway.
2387        Constant *New = ConstantFoldConstant(C, DL, /*TLI*/ nullptr);
2388        if (New && New != C)
2389          GV->setInitializer(New);
2390      }
2391
2392    if (deleteIfDead(*GV, NotDiscardableComdats)) {
2393      Changed = true;
2394      continue;
2395    }
2396
2397    Changed |= processGlobal(*GV, GetTLI, LookupDomTree);
2398  }
2399  return Changed;
2400}
2401
2402/// Evaluate a piece of a constantexpr store into a global initializer.  This
2403/// returns 'Init' modified to reflect 'Val' stored into it.  At this point, the
2404/// GEP operands of Addr [0, OpNo) have been stepped into.
2405static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
2406                                   ConstantExpr *Addr, unsigned OpNo) {
2407  // Base case of the recursion.
2408  if (OpNo == Addr->getNumOperands()) {
2409    assert(Val->getType() == Init->getType() && "Type mismatch!");
2410    return Val;
2411  }
2412
2413  SmallVector<Constant*, 32> Elts;
2414  if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
2415    // Break up the constant into its elements.
2416    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
2417      Elts.push_back(Init->getAggregateElement(i));
2418
2419    // Replace the element that we are supposed to.
2420    ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
2421    unsigned Idx = CU->getZExtValue();
2422    assert(Idx < STy->getNumElements() && "Struct index out of range!");
2423    Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
2424
2425    // Return the modified struct.
2426    return ConstantStruct::get(STy, Elts);
2427  }
2428
2429  ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
2430  SequentialType *InitTy = cast<SequentialType>(Init->getType());
2431  uint64_t NumElts = InitTy->getNumElements();
2432
2433  // Break up the array into elements.
2434  for (uint64_t i = 0, e = NumElts; i != e; ++i)
2435    Elts.push_back(Init->getAggregateElement(i));
2436
2437  assert(CI->getZExtValue() < NumElts);
2438  Elts[CI->getZExtValue()] =
2439    EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
2440
2441  if (Init->getType()->isArrayTy())
2442    return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
2443  return ConstantVector::get(Elts);
2444}
2445
2446/// We have decided that Addr (which satisfies the predicate
2447/// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
2448static void CommitValueTo(Constant *Val, Constant *Addr) {
2449  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
2450    assert(GV->hasInitializer());
2451    GV->setInitializer(Val);
2452    return;
2453  }
2454
2455  ConstantExpr *CE = cast<ConstantExpr>(Addr);
2456  GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
2457  GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
2458}
2459
2460/// Given a map of address -> value, where addresses are expected to be some form
2461/// of either a global or a constant GEP, set the initializer for the address to
2462/// be the value. This performs mostly the same function as CommitValueTo()
2463/// and EvaluateStoreInto() but is optimized to be more efficient for the common
2464/// case where the set of addresses are GEPs sharing the same underlying global,
2465/// processing the GEPs in batches rather than individually.
2466///
2467/// To give an example, consider the following C++ code adapted from the clang
2468/// regression tests:
2469/// struct S {
2470///  int n = 10;
2471///  int m = 2 * n;
2472///  S(int a) : n(a) {}
2473/// };
2474///
2475/// template<typename T>
2476/// struct U {
2477///  T *r = &q;
2478///  T q = 42;
2479///  U *p = this;
2480/// };
2481///
2482/// U<S> e;
2483///
2484/// The global static constructor for 'e' will need to initialize 'r' and 'p' of
2485/// the outer struct, while also initializing the inner 'q' structs 'n' and 'm'
2486/// members. This batch algorithm will simply use general CommitValueTo() method
2487/// to handle the complex nested S struct initialization of 'q', before
2488/// processing the outermost members in a single batch. Using CommitValueTo() to
2489/// handle member in the outer struct is inefficient when the struct/array is
2490/// very large as we end up creating and destroy constant arrays for each
2491/// initialization.
2492/// For the above case, we expect the following IR to be generated:
2493///
2494/// %struct.U = type { %struct.S*, %struct.S, %struct.U* }
2495/// %struct.S = type { i32, i32 }
2496/// @e = global %struct.U { %struct.S* gep inbounds (%struct.U, %struct.U* @e,
2497///                                                  i64 0, i32 1),
2498///                         %struct.S { i32 42, i32 84 }, %struct.U* @e }
2499/// The %struct.S { i32 42, i32 84 } inner initializer is treated as a complex
2500/// constant expression, while the other two elements of @e are "simple".
2501static void BatchCommitValueTo(const DenseMap<Constant*, Constant*> &Mem) {
2502  SmallVector<std::pair<GlobalVariable*, Constant*>, 32> GVs;
2503  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> ComplexCEs;
2504  SmallVector<std::pair<ConstantExpr*, Constant*>, 32> SimpleCEs;
2505  SimpleCEs.reserve(Mem.size());
2506
2507  for (const auto &I : Mem) {
2508    if (auto *GV = dyn_cast<GlobalVariable>(I.first)) {
2509      GVs.push_back(std::make_pair(GV, I.second));
2510    } else {
2511      ConstantExpr *GEP = cast<ConstantExpr>(I.first);
2512      // We don't handle the deeply recursive case using the batch method.
2513      if (GEP->getNumOperands() > 3)
2514        ComplexCEs.push_back(std::make_pair(GEP, I.second));
2515      else
2516        SimpleCEs.push_back(std::make_pair(GEP, I.second));
2517    }
2518  }
2519
2520  // The algorithm below doesn't handle cases like nested structs, so use the
2521  // slower fully general method if we have to.
2522  for (auto ComplexCE : ComplexCEs)
2523    CommitValueTo(ComplexCE.second, ComplexCE.first);
2524
2525  for (auto GVPair : GVs) {
2526    assert(GVPair.first->hasInitializer());
2527    GVPair.first->setInitializer(GVPair.second);
2528  }
2529
2530  if (SimpleCEs.empty())
2531    return;
2532
2533  // We cache a single global's initializer elements in the case where the
2534  // subsequent address/val pair uses the same one. This avoids throwing away and
2535  // rebuilding the constant struct/vector/array just because one element is
2536  // modified at a time.
2537  SmallVector<Constant *, 32> Elts;
2538  Elts.reserve(SimpleCEs.size());
2539  GlobalVariable *CurrentGV = nullptr;
2540
2541  auto commitAndSetupCache = [&](GlobalVariable *GV, bool Update) {
2542    Constant *Init = GV->getInitializer();
2543    Type *Ty = Init->getType();
2544    if (Update) {
2545      if (CurrentGV) {
2546        assert(CurrentGV && "Expected a GV to commit to!");
2547        Type *CurrentInitTy = CurrentGV->getInitializer()->getType();
2548        // We have a valid cache that needs to be committed.
2549        if (StructType *STy = dyn_cast<StructType>(CurrentInitTy))
2550          CurrentGV->setInitializer(ConstantStruct::get(STy, Elts));
2551        else if (ArrayType *ArrTy = dyn_cast<ArrayType>(CurrentInitTy))
2552          CurrentGV->setInitializer(ConstantArray::get(ArrTy, Elts));
2553        else
2554          CurrentGV->setInitializer(ConstantVector::get(Elts));
2555      }
2556      if (CurrentGV == GV)
2557        return;
2558      // Need to clear and set up cache for new initializer.
2559      CurrentGV = GV;
2560      Elts.clear();
2561      unsigned NumElts;
2562      if (auto *STy = dyn_cast<StructType>(Ty))
2563        NumElts = STy->getNumElements();
2564      else
2565        NumElts = cast<SequentialType>(Ty)->getNumElements();
2566      for (unsigned i = 0, e = NumElts; i != e; ++i)
2567        Elts.push_back(Init->getAggregateElement(i));
2568    }
2569  };
2570
2571  for (auto CEPair : SimpleCEs) {
2572    ConstantExpr *GEP = CEPair.first;
2573    Constant *Val = CEPair.second;
2574
2575    GlobalVariable *GV = cast<GlobalVariable>(GEP->getOperand(0));
2576    commitAndSetupCache(GV, GV != CurrentGV);
2577    ConstantInt *CI = cast<ConstantInt>(GEP->getOperand(2));
2578    Elts[CI->getZExtValue()] = Val;
2579  }
2580  // The last initializer in the list needs to be committed, others
2581  // will be committed on a new initializer being processed.
2582  commitAndSetupCache(CurrentGV, true);
2583}
2584
2585/// Evaluate static constructors in the function, if we can.  Return true if we
2586/// can, false otherwise.
2587static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
2588                                      TargetLibraryInfo *TLI) {
2589  // Call the function.
2590  Evaluator Eval(DL, TLI);
2591  Constant *RetValDummy;
2592  bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
2593                                           SmallVector<Constant*, 0>());
2594
2595  if (EvalSuccess) {
2596    ++NumCtorsEvaluated;
2597
2598    // We succeeded at evaluation: commit the result.
2599    LLVM_DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
2600                      << F->getName() << "' to "
2601                      << Eval.getMutatedMemory().size() << " stores.\n");
2602    BatchCommitValueTo(Eval.getMutatedMemory());
2603    for (GlobalVariable *GV : Eval.getInvariants())
2604      GV->setConstant(true);
2605  }
2606
2607  return EvalSuccess;
2608}
2609
2610static int compareNames(Constant *const *A, Constant *const *B) {
2611  Value *AStripped = (*A)->stripPointerCasts();
2612  Value *BStripped = (*B)->stripPointerCasts();
2613  return AStripped->getName().compare(BStripped->getName());
2614}
2615
2616static void setUsedInitializer(GlobalVariable &V,
2617                               const SmallPtrSetImpl<GlobalValue *> &Init) {
2618  if (Init.empty()) {
2619    V.eraseFromParent();
2620    return;
2621  }
2622
2623  // Type of pointer to the array of pointers.
2624  PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
2625
2626  SmallVector<Constant *, 8> UsedArray;
2627  for (GlobalValue *GV : Init) {
2628    Constant *Cast
2629      = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
2630    UsedArray.push_back(Cast);
2631  }
2632  // Sort to get deterministic order.
2633  array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
2634  ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
2635
2636  Module *M = V.getParent();
2637  V.removeFromParent();
2638  GlobalVariable *NV =
2639      new GlobalVariable(*M, ATy, false, GlobalValue::AppendingLinkage,
2640                         ConstantArray::get(ATy, UsedArray), "");
2641  NV->takeName(&V);
2642  NV->setSection("llvm.metadata");
2643  delete &V;
2644}
2645
2646namespace {
2647
2648/// An easy to access representation of llvm.used and llvm.compiler.used.
2649class LLVMUsed {
2650  SmallPtrSet<GlobalValue *, 8> Used;
2651  SmallPtrSet<GlobalValue *, 8> CompilerUsed;
2652  GlobalVariable *UsedV;
2653  GlobalVariable *CompilerUsedV;
2654
2655public:
2656  LLVMUsed(Module &M) {
2657    UsedV = collectUsedGlobalVariables(M, Used, false);
2658    CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
2659  }
2660
2661  using iterator = SmallPtrSet<GlobalValue *, 8>::iterator;
2662  using used_iterator_range = iterator_range<iterator>;
2663
2664  iterator usedBegin() { return Used.begin(); }
2665  iterator usedEnd() { return Used.end(); }
2666
2667  used_iterator_range used() {
2668    return used_iterator_range(usedBegin(), usedEnd());
2669  }
2670
2671  iterator compilerUsedBegin() { return CompilerUsed.begin(); }
2672  iterator compilerUsedEnd() { return CompilerUsed.end(); }
2673
2674  used_iterator_range compilerUsed() {
2675    return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
2676  }
2677
2678  bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
2679
2680  bool compilerUsedCount(GlobalValue *GV) const {
2681    return CompilerUsed.count(GV);
2682  }
2683
2684  bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
2685  bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
2686  bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
2687
2688  bool compilerUsedInsert(GlobalValue *GV) {
2689    return CompilerUsed.insert(GV).second;
2690  }
2691
2692  void syncVariablesAndSets() {
2693    if (UsedV)
2694      setUsedInitializer(*UsedV, Used);
2695    if (CompilerUsedV)
2696      setUsedInitializer(*CompilerUsedV, CompilerUsed);
2697  }
2698};
2699
2700} // end anonymous namespace
2701
2702static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
2703  if (GA.use_empty()) // No use at all.
2704    return false;
2705
2706  assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
2707         "We should have removed the duplicated "
2708         "element from llvm.compiler.used");
2709  if (!GA.hasOneUse())
2710    // Strictly more than one use. So at least one is not in llvm.used and
2711    // llvm.compiler.used.
2712    return true;
2713
2714  // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
2715  return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
2716}
2717
2718static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
2719                                               const LLVMUsed &U) {
2720  unsigned N = 2;
2721  assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
2722         "We should have removed the duplicated "
2723         "element from llvm.compiler.used");
2724  if (U.usedCount(&V) || U.compilerUsedCount(&V))
2725    ++N;
2726  return V.hasNUsesOrMore(N);
2727}
2728
2729static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
2730  if (!GA.hasLocalLinkage())
2731    return true;
2732
2733  return U.usedCount(&GA) || U.compilerUsedCount(&GA);
2734}
2735
2736static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
2737                             bool &RenameTarget) {
2738  RenameTarget = false;
2739  bool Ret = false;
2740  if (hasUseOtherThanLLVMUsed(GA, U))
2741    Ret = true;
2742
2743  // If the alias is externally visible, we may still be able to simplify it.
2744  if (!mayHaveOtherReferences(GA, U))
2745    return Ret;
2746
2747  // If the aliasee has internal linkage, give it the name and linkage
2748  // of the alias, and delete the alias.  This turns:
2749  //   define internal ... @f(...)
2750  //   @a = alias ... @f
2751  // into:
2752  //   define ... @a(...)
2753  Constant *Aliasee = GA.getAliasee();
2754  GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
2755  if (!Target->hasLocalLinkage())
2756    return Ret;
2757
2758  // Do not perform the transform if multiple aliases potentially target the
2759  // aliasee. This check also ensures that it is safe to replace the section
2760  // and other attributes of the aliasee with those of the alias.
2761  if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
2762    return Ret;
2763
2764  RenameTarget = true;
2765  return true;
2766}
2767
2768static bool
2769OptimizeGlobalAliases(Module &M,
2770                      SmallPtrSetImpl<const Comdat *> &NotDiscardableComdats) {
2771  bool Changed = false;
2772  LLVMUsed Used(M);
2773
2774  for (GlobalValue *GV : Used.used())
2775    Used.compilerUsedErase(GV);
2776
2777  for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
2778       I != E;) {
2779    GlobalAlias *J = &*I++;
2780
2781    // Aliases without names cannot be referenced outside this module.
2782    if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
2783      J->setLinkage(GlobalValue::InternalLinkage);
2784
2785    if (deleteIfDead(*J, NotDiscardableComdats)) {
2786      Changed = true;
2787      continue;
2788    }
2789
2790    // If the alias can change at link time, nothing can be done - bail out.
2791    if (J->isInterposable())
2792      continue;
2793
2794    Constant *Aliasee = J->getAliasee();
2795    GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
2796    // We can't trivially replace the alias with the aliasee if the aliasee is
2797    // non-trivial in some way.
2798    // TODO: Try to handle non-zero GEPs of local aliasees.
2799    if (!Target)
2800      continue;
2801    Target->removeDeadConstantUsers();
2802
2803    // Make all users of the alias use the aliasee instead.
2804    bool RenameTarget;
2805    if (!hasUsesToReplace(*J, Used, RenameTarget))
2806      continue;
2807
2808    J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
2809    ++NumAliasesResolved;
2810    Changed = true;
2811
2812    if (RenameTarget) {
2813      // Give the aliasee the name, linkage and other attributes of the alias.
2814      Target->takeName(&*J);
2815      Target->setLinkage(J->getLinkage());
2816      Target->setDSOLocal(J->isDSOLocal());
2817      Target->setVisibility(J->getVisibility());
2818      Target->setDLLStorageClass(J->getDLLStorageClass());
2819
2820      if (Used.usedErase(&*J))
2821        Used.usedInsert(Target);
2822
2823      if (Used.compilerUsedErase(&*J))
2824        Used.compilerUsedInsert(Target);
2825    } else if (mayHaveOtherReferences(*J, Used))
2826      continue;
2827
2828    // Delete the alias.
2829    M.getAliasList().erase(J);
2830    ++NumAliasesRemoved;
2831    Changed = true;
2832  }
2833
2834  Used.syncVariablesAndSets();
2835
2836  return Changed;
2837}
2838
2839static Function *
2840FindCXAAtExit(Module &M, function_ref<TargetLibraryInfo &(Function &)> GetTLI) {
2841  // Hack to get a default TLI before we have actual Function.
2842  auto FuncIter = M.begin();
2843  if (FuncIter == M.end())
2844    return nullptr;
2845  auto *TLI = &GetTLI(*FuncIter);
2846
2847  LibFunc F = LibFunc_cxa_atexit;
2848  if (!TLI->has(F))
2849    return nullptr;
2850
2851  Function *Fn = M.getFunction(TLI->getName(F));
2852  if (!Fn)
2853    return nullptr;
2854
2855  // Now get the actual TLI for Fn.
2856  TLI = &GetTLI(*Fn);
2857
2858  // Make sure that the function has the correct prototype.
2859  if (!TLI->getLibFunc(*Fn, F) || F != LibFunc_cxa_atexit)
2860    return nullptr;
2861
2862  return Fn;
2863}
2864
2865/// Returns whether the given function is an empty C++ destructor and can
2866/// therefore be eliminated.
2867/// Note that we assume that other optimization passes have already simplified
2868/// the code so we simply check for 'ret'.
2869static bool cxxDtorIsEmpty(const Function &Fn) {
2870  // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
2871  // nounwind, but that doesn't seem worth doing.
2872  if (Fn.isDeclaration())
2873    return false;
2874
2875  for (auto &I : Fn.getEntryBlock()) {
2876    if (isa<DbgInfoIntrinsic>(I))
2877      continue;
2878    if (isa<ReturnInst>(I))
2879      return true;
2880    break;
2881  }
2882  return false;
2883}
2884
2885static bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
2886  /// Itanium C++ ABI p3.3.5:
2887  ///
2888  ///   After constructing a global (or local static) object, that will require
2889  ///   destruction on exit, a termination function is registered as follows:
2890  ///
2891  ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
2892  ///
2893  ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
2894  ///   call f(p) when DSO d is unloaded, before all such termination calls
2895  ///   registered before this one. It returns zero if registration is
2896  ///   successful, nonzero on failure.
2897
2898  // This pass will look for calls to __cxa_atexit where the function is trivial
2899  // and remove them.
2900  bool Changed = false;
2901
2902  for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
2903       I != E;) {
2904    // We're only interested in calls. Theoretically, we could handle invoke
2905    // instructions as well, but neither llvm-gcc nor clang generate invokes
2906    // to __cxa_atexit.
2907    CallInst *CI = dyn_cast<CallInst>(*I++);
2908    if (!CI)
2909      continue;
2910
2911    Function *DtorFn =
2912      dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
2913    if (!DtorFn || !cxxDtorIsEmpty(*DtorFn))
2914      continue;
2915
2916    // Just remove the call.
2917    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
2918    CI->eraseFromParent();
2919
2920    ++NumCXXDtorsRemoved;
2921
2922    Changed |= true;
2923  }
2924
2925  return Changed;
2926}
2927
2928static bool optimizeGlobalsInModule(
2929    Module &M, const DataLayout &DL,
2930    function_ref<TargetLibraryInfo &(Function &)> GetTLI,
2931    function_ref<TargetTransformInfo &(Function &)> GetTTI,
2932    function_ref<BlockFrequencyInfo &(Function &)> GetBFI,
2933    function_ref<DominatorTree &(Function &)> LookupDomTree) {
2934  SmallPtrSet<const Comdat *, 8> NotDiscardableComdats;
2935  bool Changed = false;
2936  bool LocalChange = true;
2937  while (LocalChange) {
2938    LocalChange = false;
2939
2940    NotDiscardableComdats.clear();
2941    for (const GlobalVariable &GV : M.globals())
2942      if (const Comdat *C = GV.getComdat())
2943        if (!GV.isDiscardableIfUnused() || !GV.use_empty())
2944          NotDiscardableComdats.insert(C);
2945    for (Function &F : M)
2946      if (const Comdat *C = F.getComdat())
2947        if (!F.isDefTriviallyDead())
2948          NotDiscardableComdats.insert(C);
2949    for (GlobalAlias &GA : M.aliases())
2950      if (const Comdat *C = GA.getComdat())
2951        if (!GA.isDiscardableIfUnused() || !GA.use_empty())
2952          NotDiscardableComdats.insert(C);
2953
2954    // Delete functions that are trivially dead, ccc -> fastcc
2955    LocalChange |= OptimizeFunctions(M, GetTLI, GetTTI, GetBFI, LookupDomTree,
2956                                     NotDiscardableComdats);
2957
2958    // Optimize global_ctors list.
2959    LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
2960      return EvaluateStaticConstructor(F, DL, &GetTLI(*F));
2961    });
2962
2963    // Optimize non-address-taken globals.
2964    LocalChange |=
2965        OptimizeGlobalVars(M, GetTLI, LookupDomTree, NotDiscardableComdats);
2966
2967    // Resolve aliases, when possible.
2968    LocalChange |= OptimizeGlobalAliases(M, NotDiscardableComdats);
2969
2970    // Try to remove trivial global destructors if they are not removed
2971    // already.
2972    Function *CXAAtExitFn = FindCXAAtExit(M, GetTLI);
2973    if (CXAAtExitFn)
2974      LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
2975
2976    Changed |= LocalChange;
2977  }
2978
2979  // TODO: Move all global ctors functions to the end of the module for code
2980  // layout.
2981
2982  return Changed;
2983}
2984
2985PreservedAnalyses GlobalOptPass::run(Module &M, ModuleAnalysisManager &AM) {
2986    auto &DL = M.getDataLayout();
2987    auto &FAM =
2988        AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2989    auto LookupDomTree = [&FAM](Function &F) -> DominatorTree &{
2990      return FAM.getResult<DominatorTreeAnalysis>(F);
2991    };
2992    auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
2993      return FAM.getResult<TargetLibraryAnalysis>(F);
2994    };
2995    auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & {
2996      return FAM.getResult<TargetIRAnalysis>(F);
2997    };
2998
2999    auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & {
3000      return FAM.getResult<BlockFrequencyAnalysis>(F);
3001    };
3002
3003    if (!optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI, LookupDomTree))
3004      return PreservedAnalyses::all();
3005    return PreservedAnalyses::none();
3006}
3007
3008namespace {
3009
3010struct GlobalOptLegacyPass : public ModulePass {
3011  static char ID; // Pass identification, replacement for typeid
3012
3013  GlobalOptLegacyPass() : ModulePass(ID) {
3014    initializeGlobalOptLegacyPassPass(*PassRegistry::getPassRegistry());
3015  }
3016
3017  bool runOnModule(Module &M) override {
3018    if (skipModule(M))
3019      return false;
3020
3021    auto &DL = M.getDataLayout();
3022    auto LookupDomTree = [this](Function &F) -> DominatorTree & {
3023      return this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
3024    };
3025    auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
3026      return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
3027    };
3028    auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
3029      return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3030    };
3031
3032    auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & {
3033      return this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI();
3034    };
3035
3036    return optimizeGlobalsInModule(M, DL, GetTLI, GetTTI, GetBFI,
3037                                   LookupDomTree);
3038  }
3039
3040  void getAnalysisUsage(AnalysisUsage &AU) const override {
3041    AU.addRequired<TargetLibraryInfoWrapperPass>();
3042    AU.addRequired<TargetTransformInfoWrapperPass>();
3043    AU.addRequired<DominatorTreeWrapperPass>();
3044    AU.addRequired<BlockFrequencyInfoWrapperPass>();
3045  }
3046};
3047
3048} // end anonymous namespace
3049
3050char GlobalOptLegacyPass::ID = 0;
3051
3052INITIALIZE_PASS_BEGIN(GlobalOptLegacyPass, "globalopt",
3053                      "Global Variable Optimizer", false, false)
3054INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
3055INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3056INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
3057INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
3058INITIALIZE_PASS_END(GlobalOptLegacyPass, "globalopt",
3059                    "Global Variable Optimizer", false, false)
3060
3061ModulePass *llvm::createGlobalOptimizerPass() {
3062  return new GlobalOptLegacyPass();
3063}
3064