CalledValuePropagation.cpp revision 360784
1//===- CalledValuePropagation.cpp - Propagate called values -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements a transformation that attaches !callees metadata to
10// indirect call sites. For a given call site, the metadata, if present,
11// indicates the set of functions the call site could possibly target at
12// run-time. This metadata is added to indirect call sites when the set of
13// possible targets can be determined by analysis and is known to be small. The
14// analysis driving the transformation is similar to constant propagation and
15// makes uses of the generic sparse propagation solver.
16//
17//===----------------------------------------------------------------------===//
18
19#include "llvm/Transforms/IPO/CalledValuePropagation.h"
20#include "llvm/Analysis/SparsePropagation.h"
21#include "llvm/Analysis/ValueLatticeUtils.h"
22#include "llvm/IR/InstVisitor.h"
23#include "llvm/IR/MDBuilder.h"
24#include "llvm/InitializePasses.h"
25#include "llvm/Support/CommandLine.h"
26#include "llvm/Transforms/IPO.h"
27using namespace llvm;
28
29#define DEBUG_TYPE "called-value-propagation"
30
31/// The maximum number of functions to track per lattice value. Once the number
32/// of functions a call site can possibly target exceeds this threshold, it's
33/// lattice value becomes overdefined. The number of possible lattice values is
34/// bounded by Ch(F, M), where F is the number of functions in the module and M
35/// is MaxFunctionsPerValue. As such, this value should be kept very small. We
36/// likely can't do anything useful for call sites with a large number of
37/// possible targets, anyway.
38static cl::opt<unsigned> MaxFunctionsPerValue(
39    "cvp-max-functions-per-value", cl::Hidden, cl::init(4),
40    cl::desc("The maximum number of functions to track per lattice value"));
41
42namespace {
43/// To enable interprocedural analysis, we assign LLVM values to the following
44/// groups. The register group represents SSA registers, the return group
45/// represents the return values of functions, and the memory group represents
46/// in-memory values. An LLVM Value can technically be in more than one group.
47/// It's necessary to distinguish these groups so we can, for example, track a
48/// global variable separately from the value stored at its location.
49enum class IPOGrouping { Register, Return, Memory };
50
51/// Our LatticeKeys are PointerIntPairs composed of LLVM values and groupings.
52using CVPLatticeKey = PointerIntPair<Value *, 2, IPOGrouping>;
53
54/// The lattice value type used by our custom lattice function. It holds the
55/// lattice state, and a set of functions.
56class CVPLatticeVal {
57public:
58  /// The states of the lattice values. Only the FunctionSet state is
59  /// interesting. It indicates the set of functions to which an LLVM value may
60  /// refer.
61  enum CVPLatticeStateTy { Undefined, FunctionSet, Overdefined, Untracked };
62
63  /// Comparator for sorting the functions set. We want to keep the order
64  /// deterministic for testing, etc.
65  struct Compare {
66    bool operator()(const Function *LHS, const Function *RHS) const {
67      return LHS->getName() < RHS->getName();
68    }
69  };
70
71  CVPLatticeVal() : LatticeState(Undefined) {}
72  CVPLatticeVal(CVPLatticeStateTy LatticeState) : LatticeState(LatticeState) {}
73  CVPLatticeVal(std::vector<Function *> &&Functions)
74      : LatticeState(FunctionSet), Functions(std::move(Functions)) {
75    assert(std::is_sorted(this->Functions.begin(), this->Functions.end(),
76                          Compare()));
77  }
78
79  /// Get a reference to the functions held by this lattice value. The number
80  /// of functions will be zero for states other than FunctionSet.
81  const std::vector<Function *> &getFunctions() const {
82    return Functions;
83  }
84
85  /// Returns true if the lattice value is in the FunctionSet state.
86  bool isFunctionSet() const { return LatticeState == FunctionSet; }
87
88  bool operator==(const CVPLatticeVal &RHS) const {
89    return LatticeState == RHS.LatticeState && Functions == RHS.Functions;
90  }
91
92  bool operator!=(const CVPLatticeVal &RHS) const {
93    return LatticeState != RHS.LatticeState || Functions != RHS.Functions;
94  }
95
96private:
97  /// Holds the state this lattice value is in.
98  CVPLatticeStateTy LatticeState;
99
100  /// Holds functions indicating the possible targets of call sites. This set
101  /// is empty for lattice values in the undefined, overdefined, and untracked
102  /// states. The maximum size of the set is controlled by
103  /// MaxFunctionsPerValue. Since most LLVM values are expected to be in
104  /// uninteresting states (i.e., overdefined), CVPLatticeVal objects should be
105  /// small and efficiently copyable.
106  // FIXME: This could be a TinyPtrVector and/or merge with LatticeState.
107  std::vector<Function *> Functions;
108};
109
110/// The custom lattice function used by the generic sparse propagation solver.
111/// It handles merging lattice values and computing new lattice values for
112/// constants, arguments, values returned from trackable functions, and values
113/// located in trackable global variables. It also computes the lattice values
114/// that change as a result of executing instructions.
115class CVPLatticeFunc
116    : public AbstractLatticeFunction<CVPLatticeKey, CVPLatticeVal> {
117public:
118  CVPLatticeFunc()
119      : AbstractLatticeFunction(CVPLatticeVal(CVPLatticeVal::Undefined),
120                                CVPLatticeVal(CVPLatticeVal::Overdefined),
121                                CVPLatticeVal(CVPLatticeVal::Untracked)) {}
122
123  /// Compute and return a CVPLatticeVal for the given CVPLatticeKey.
124  CVPLatticeVal ComputeLatticeVal(CVPLatticeKey Key) override {
125    switch (Key.getInt()) {
126    case IPOGrouping::Register:
127      if (isa<Instruction>(Key.getPointer())) {
128        return getUndefVal();
129      } else if (auto *A = dyn_cast<Argument>(Key.getPointer())) {
130        if (canTrackArgumentsInterprocedurally(A->getParent()))
131          return getUndefVal();
132      } else if (auto *C = dyn_cast<Constant>(Key.getPointer())) {
133        return computeConstant(C);
134      }
135      return getOverdefinedVal();
136    case IPOGrouping::Memory:
137    case IPOGrouping::Return:
138      if (auto *GV = dyn_cast<GlobalVariable>(Key.getPointer())) {
139        if (canTrackGlobalVariableInterprocedurally(GV))
140          return computeConstant(GV->getInitializer());
141      } else if (auto *F = cast<Function>(Key.getPointer()))
142        if (canTrackReturnsInterprocedurally(F))
143          return getUndefVal();
144    }
145    return getOverdefinedVal();
146  }
147
148  /// Merge the two given lattice values. The interesting cases are merging two
149  /// FunctionSet values and a FunctionSet value with an Undefined value. For
150  /// these cases, we simply union the function sets. If the size of the union
151  /// is greater than the maximum functions we track, the merged value is
152  /// overdefined.
153  CVPLatticeVal MergeValues(CVPLatticeVal X, CVPLatticeVal Y) override {
154    if (X == getOverdefinedVal() || Y == getOverdefinedVal())
155      return getOverdefinedVal();
156    if (X == getUndefVal() && Y == getUndefVal())
157      return getUndefVal();
158    std::vector<Function *> Union;
159    std::set_union(X.getFunctions().begin(), X.getFunctions().end(),
160                   Y.getFunctions().begin(), Y.getFunctions().end(),
161                   std::back_inserter(Union), CVPLatticeVal::Compare{});
162    if (Union.size() > MaxFunctionsPerValue)
163      return getOverdefinedVal();
164    return CVPLatticeVal(std::move(Union));
165  }
166
167  /// Compute the lattice values that change as a result of executing the given
168  /// instruction. The changed values are stored in \p ChangedValues. We handle
169  /// just a few kinds of instructions since we're only propagating values that
170  /// can be called.
171  void ComputeInstructionState(
172      Instruction &I, DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
173      SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) override {
174    switch (I.getOpcode()) {
175    case Instruction::Call:
176      return visitCallSite(cast<CallInst>(&I), ChangedValues, SS);
177    case Instruction::Invoke:
178      return visitCallSite(cast<InvokeInst>(&I), ChangedValues, SS);
179    case Instruction::Load:
180      return visitLoad(*cast<LoadInst>(&I), ChangedValues, SS);
181    case Instruction::Ret:
182      return visitReturn(*cast<ReturnInst>(&I), ChangedValues, SS);
183    case Instruction::Select:
184      return visitSelect(*cast<SelectInst>(&I), ChangedValues, SS);
185    case Instruction::Store:
186      return visitStore(*cast<StoreInst>(&I), ChangedValues, SS);
187    default:
188      return visitInst(I, ChangedValues, SS);
189    }
190  }
191
192  /// Print the given CVPLatticeVal to the specified stream.
193  void PrintLatticeVal(CVPLatticeVal LV, raw_ostream &OS) override {
194    if (LV == getUndefVal())
195      OS << "Undefined  ";
196    else if (LV == getOverdefinedVal())
197      OS << "Overdefined";
198    else if (LV == getUntrackedVal())
199      OS << "Untracked  ";
200    else
201      OS << "FunctionSet";
202  }
203
204  /// Print the given CVPLatticeKey to the specified stream.
205  void PrintLatticeKey(CVPLatticeKey Key, raw_ostream &OS) override {
206    if (Key.getInt() == IPOGrouping::Register)
207      OS << "<reg> ";
208    else if (Key.getInt() == IPOGrouping::Memory)
209      OS << "<mem> ";
210    else if (Key.getInt() == IPOGrouping::Return)
211      OS << "<ret> ";
212    if (isa<Function>(Key.getPointer()))
213      OS << Key.getPointer()->getName();
214    else
215      OS << *Key.getPointer();
216  }
217
218  /// We collect a set of indirect calls when visiting call sites. This method
219  /// returns a reference to that set.
220  SmallPtrSetImpl<Instruction *> &getIndirectCalls() { return IndirectCalls; }
221
222private:
223  /// Holds the indirect calls we encounter during the analysis. We will attach
224  /// metadata to these calls after the analysis indicating the functions the
225  /// calls can possibly target.
226  SmallPtrSet<Instruction *, 32> IndirectCalls;
227
228  /// Compute a new lattice value for the given constant. The constant, after
229  /// stripping any pointer casts, should be a Function. We ignore null
230  /// pointers as an optimization, since calling these values is undefined
231  /// behavior.
232  CVPLatticeVal computeConstant(Constant *C) {
233    if (isa<ConstantPointerNull>(C))
234      return CVPLatticeVal(CVPLatticeVal::FunctionSet);
235    if (auto *F = dyn_cast<Function>(C->stripPointerCasts()))
236      return CVPLatticeVal({F});
237    return getOverdefinedVal();
238  }
239
240  /// Handle return instructions. The function's return state is the merge of
241  /// the returned value state and the function's return state.
242  void visitReturn(ReturnInst &I,
243                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
244                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
245    Function *F = I.getParent()->getParent();
246    if (F->getReturnType()->isVoidTy())
247      return;
248    auto RegI = CVPLatticeKey(I.getReturnValue(), IPOGrouping::Register);
249    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
250    ChangedValues[RetF] =
251        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
252  }
253
254  /// Handle call sites. The state of a called function's formal arguments is
255  /// the merge of the argument state with the call sites corresponding actual
256  /// argument state. The call site state is the merge of the call site state
257  /// with the returned value state of the called function.
258  void visitCallSite(CallSite CS,
259                     DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
260                     SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
261    Function *F = CS.getCalledFunction();
262    Instruction *I = CS.getInstruction();
263    auto RegI = CVPLatticeKey(I, IPOGrouping::Register);
264
265    // If this is an indirect call, save it so we can quickly revisit it when
266    // attaching metadata.
267    if (!F)
268      IndirectCalls.insert(I);
269
270    // If we can't track the function's return values, there's nothing to do.
271    if (!F || !canTrackReturnsInterprocedurally(F)) {
272      // Void return, No need to create and update CVPLattice state as no one
273      // can use it.
274      if (I->getType()->isVoidTy())
275        return;
276      ChangedValues[RegI] = getOverdefinedVal();
277      return;
278    }
279
280    // Inform the solver that the called function is executable, and perform
281    // the merges for the arguments and return value.
282    SS.MarkBlockExecutable(&F->front());
283    auto RetF = CVPLatticeKey(F, IPOGrouping::Return);
284    for (Argument &A : F->args()) {
285      auto RegFormal = CVPLatticeKey(&A, IPOGrouping::Register);
286      auto RegActual =
287          CVPLatticeKey(CS.getArgument(A.getArgNo()), IPOGrouping::Register);
288      ChangedValues[RegFormal] =
289          MergeValues(SS.getValueState(RegFormal), SS.getValueState(RegActual));
290    }
291
292    // Void return, No need to create and update CVPLattice state as no one can
293    // use it.
294    if (I->getType()->isVoidTy())
295      return;
296
297    ChangedValues[RegI] =
298        MergeValues(SS.getValueState(RegI), SS.getValueState(RetF));
299  }
300
301  /// Handle select instructions. The select instruction state is the merge the
302  /// true and false value states.
303  void visitSelect(SelectInst &I,
304                   DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
305                   SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
306    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
307    auto RegT = CVPLatticeKey(I.getTrueValue(), IPOGrouping::Register);
308    auto RegF = CVPLatticeKey(I.getFalseValue(), IPOGrouping::Register);
309    ChangedValues[RegI] =
310        MergeValues(SS.getValueState(RegT), SS.getValueState(RegF));
311  }
312
313  /// Handle load instructions. If the pointer operand of the load is a global
314  /// variable, we attempt to track the value. The loaded value state is the
315  /// merge of the loaded value state with the global variable state.
316  void visitLoad(LoadInst &I,
317                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
318                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
319    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
320    if (auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand())) {
321      auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
322      ChangedValues[RegI] =
323          MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
324    } else {
325      ChangedValues[RegI] = getOverdefinedVal();
326    }
327  }
328
329  /// Handle store instructions. If the pointer operand of the store is a
330  /// global variable, we attempt to track the value. The global variable state
331  /// is the merge of the stored value state with the global variable state.
332  void visitStore(StoreInst &I,
333                  DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
334                  SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
335    auto *GV = dyn_cast<GlobalVariable>(I.getPointerOperand());
336    if (!GV)
337      return;
338    auto RegI = CVPLatticeKey(I.getValueOperand(), IPOGrouping::Register);
339    auto MemGV = CVPLatticeKey(GV, IPOGrouping::Memory);
340    ChangedValues[MemGV] =
341        MergeValues(SS.getValueState(RegI), SS.getValueState(MemGV));
342  }
343
344  /// Handle all other instructions. All other instructions are marked
345  /// overdefined.
346  void visitInst(Instruction &I,
347                 DenseMap<CVPLatticeKey, CVPLatticeVal> &ChangedValues,
348                 SparseSolver<CVPLatticeKey, CVPLatticeVal> &SS) {
349    // Simply bail if this instruction has no user.
350    if (I.use_empty())
351      return;
352    auto RegI = CVPLatticeKey(&I, IPOGrouping::Register);
353    ChangedValues[RegI] = getOverdefinedVal();
354  }
355};
356} // namespace
357
358namespace llvm {
359/// A specialization of LatticeKeyInfo for CVPLatticeKeys. The generic solver
360/// must translate between LatticeKeys and LLVM Values when adding Values to
361/// its work list and inspecting the state of control-flow related values.
362template <> struct LatticeKeyInfo<CVPLatticeKey> {
363  static inline Value *getValueFromLatticeKey(CVPLatticeKey Key) {
364    return Key.getPointer();
365  }
366  static inline CVPLatticeKey getLatticeKeyFromValue(Value *V) {
367    return CVPLatticeKey(V, IPOGrouping::Register);
368  }
369};
370} // namespace llvm
371
372static bool runCVP(Module &M) {
373  // Our custom lattice function and generic sparse propagation solver.
374  CVPLatticeFunc Lattice;
375  SparseSolver<CVPLatticeKey, CVPLatticeVal> Solver(&Lattice);
376
377  // For each function in the module, if we can't track its arguments, let the
378  // generic solver assume it is executable.
379  for (Function &F : M)
380    if (!F.isDeclaration() && !canTrackArgumentsInterprocedurally(&F))
381      Solver.MarkBlockExecutable(&F.front());
382
383  // Solver our custom lattice. In doing so, we will also build a set of
384  // indirect call sites.
385  Solver.Solve();
386
387  // Attach metadata to the indirect call sites that were collected indicating
388  // the set of functions they can possibly target.
389  bool Changed = false;
390  MDBuilder MDB(M.getContext());
391  for (Instruction *C : Lattice.getIndirectCalls()) {
392    CallSite CS(C);
393    auto RegI = CVPLatticeKey(CS.getCalledValue(), IPOGrouping::Register);
394    CVPLatticeVal LV = Solver.getExistingValueState(RegI);
395    if (!LV.isFunctionSet() || LV.getFunctions().empty())
396      continue;
397    MDNode *Callees = MDB.createCallees(LV.getFunctions());
398    C->setMetadata(LLVMContext::MD_callees, Callees);
399    Changed = true;
400  }
401
402  return Changed;
403}
404
405PreservedAnalyses CalledValuePropagationPass::run(Module &M,
406                                                  ModuleAnalysisManager &) {
407  runCVP(M);
408  return PreservedAnalyses::all();
409}
410
411namespace {
412class CalledValuePropagationLegacyPass : public ModulePass {
413public:
414  static char ID;
415
416  void getAnalysisUsage(AnalysisUsage &AU) const override {
417    AU.setPreservesAll();
418  }
419
420  CalledValuePropagationLegacyPass() : ModulePass(ID) {
421    initializeCalledValuePropagationLegacyPassPass(
422        *PassRegistry::getPassRegistry());
423  }
424
425  bool runOnModule(Module &M) override {
426    if (skipModule(M))
427      return false;
428    return runCVP(M);
429  }
430};
431} // namespace
432
433char CalledValuePropagationLegacyPass::ID = 0;
434INITIALIZE_PASS(CalledValuePropagationLegacyPass, "called-value-propagation",
435                "Called Value Propagation", false, false)
436
437ModulePass *llvm::createCalledValuePropagationPass() {
438  return new CalledValuePropagationLegacyPass();
439}
440