X86TargetMachine.cpp revision 360784
1//===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the X86 specific subclass of TargetMachine.
10//
11//===----------------------------------------------------------------------===//
12
13#include "X86TargetMachine.h"
14#include "MCTargetDesc/X86MCTargetDesc.h"
15#include "TargetInfo/X86TargetInfo.h"
16#include "X86.h"
17#include "X86CallLowering.h"
18#include "X86LegalizerInfo.h"
19#include "X86MacroFusion.h"
20#include "X86Subtarget.h"
21#include "X86TargetObjectFile.h"
22#include "X86TargetTransformInfo.h"
23#include "llvm/ADT/Optional.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/ADT/StringRef.h"
27#include "llvm/ADT/Triple.h"
28#include "llvm/Analysis/TargetTransformInfo.h"
29#include "llvm/CodeGen/ExecutionDomainFix.h"
30#include "llvm/CodeGen/GlobalISel/CallLowering.h"
31#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
32#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
33#include "llvm/CodeGen/GlobalISel/Legalizer.h"
34#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
35#include "llvm/CodeGen/MachineScheduler.h"
36#include "llvm/CodeGen/Passes.h"
37#include "llvm/CodeGen/TargetPassConfig.h"
38#include "llvm/IR/Attributes.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/Function.h"
41#include "llvm/MC/MCAsmInfo.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/CodeGen.h"
44#include "llvm/Support/CommandLine.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/TargetRegistry.h"
47#include "llvm/Target/TargetLoweringObjectFile.h"
48#include "llvm/Target/TargetOptions.h"
49#include "llvm/Transforms/CFGuard.h"
50#include <memory>
51#include <string>
52
53using namespace llvm;
54
55static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
56                               cl::desc("Enable the machine combiner pass"),
57                               cl::init(true), cl::Hidden);
58
59static cl::opt<bool> EnableCondBrFoldingPass("x86-condbr-folding",
60                               cl::desc("Enable the conditional branch "
61                                        "folding pass"),
62                               cl::init(false), cl::Hidden);
63
64extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
65  // Register the target.
66  RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
67  RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
68
69  PassRegistry &PR = *PassRegistry::getPassRegistry();
70  initializeGlobalISel(PR);
71  initializeWinEHStatePassPass(PR);
72  initializeFixupBWInstPassPass(PR);
73  initializeEvexToVexInstPassPass(PR);
74  initializeFixupLEAPassPass(PR);
75  initializeFPSPass(PR);
76  initializeX86CallFrameOptimizationPass(PR);
77  initializeX86CmovConverterPassPass(PR);
78  initializeX86ExpandPseudoPass(PR);
79  initializeX86ExecutionDomainFixPass(PR);
80  initializeX86DomainReassignmentPass(PR);
81  initializeX86AvoidSFBPassPass(PR);
82  initializeX86SpeculativeLoadHardeningPassPass(PR);
83  initializeX86FlagsCopyLoweringPassPass(PR);
84  initializeX86CondBrFoldingPassPass(PR);
85  initializeX86OptimizeLEAPassPass(PR);
86}
87
88static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
89  if (TT.isOSBinFormatMachO()) {
90    if (TT.getArch() == Triple::x86_64)
91      return std::make_unique<X86_64MachoTargetObjectFile>();
92    return std::make_unique<TargetLoweringObjectFileMachO>();
93  }
94
95  if (TT.isOSFreeBSD())
96    return std::make_unique<X86FreeBSDTargetObjectFile>();
97  if (TT.isOSLinux() || TT.isOSNaCl() || TT.isOSIAMCU())
98    return std::make_unique<X86LinuxNaClTargetObjectFile>();
99  if (TT.isOSSolaris())
100    return std::make_unique<X86SolarisTargetObjectFile>();
101  if (TT.isOSFuchsia())
102    return std::make_unique<X86FuchsiaTargetObjectFile>();
103  if (TT.isOSBinFormatELF())
104    return std::make_unique<X86ELFTargetObjectFile>();
105  if (TT.isOSBinFormatCOFF())
106    return std::make_unique<TargetLoweringObjectFileCOFF>();
107  llvm_unreachable("unknown subtarget type");
108}
109
110static std::string computeDataLayout(const Triple &TT) {
111  // X86 is little endian
112  std::string Ret = "e";
113
114  Ret += DataLayout::getManglingComponent(TT);
115  // X86 and x32 have 32 bit pointers.
116  if ((TT.isArch64Bit() &&
117       (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
118      !TT.isArch64Bit())
119    Ret += "-p:32:32";
120
121  // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
122  Ret += "-p270:32:32-p271:32:32-p272:64:64";
123
124  // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
125  if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
126    Ret += "-i64:64";
127  else if (TT.isOSIAMCU())
128    Ret += "-i64:32-f64:32";
129  else
130    Ret += "-f64:32:64";
131
132  // Some ABIs align long double to 128 bits, others to 32.
133  if (TT.isOSNaCl() || TT.isOSIAMCU())
134    ; // No f80
135  else if (TT.isArch64Bit() || TT.isOSDarwin())
136    Ret += "-f80:128";
137  else
138    Ret += "-f80:32";
139
140  if (TT.isOSIAMCU())
141    Ret += "-f128:32";
142
143  // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
144  if (TT.isArch64Bit())
145    Ret += "-n8:16:32:64";
146  else
147    Ret += "-n8:16:32";
148
149  // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
150  if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
151    Ret += "-a:0:32-S32";
152  else
153    Ret += "-S128";
154
155  return Ret;
156}
157
158static Reloc::Model getEffectiveRelocModel(const Triple &TT,
159                                           bool JIT,
160                                           Optional<Reloc::Model> RM) {
161  bool is64Bit = TT.getArch() == Triple::x86_64;
162  if (!RM.hasValue()) {
163    // JIT codegen should use static relocations by default, since it's
164    // typically executed in process and not relocatable.
165    if (JIT)
166      return Reloc::Static;
167
168    // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
169    // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
170    // use static relocation model by default.
171    if (TT.isOSDarwin()) {
172      if (is64Bit)
173        return Reloc::PIC_;
174      return Reloc::DynamicNoPIC;
175    }
176    if (TT.isOSWindows() && is64Bit)
177      return Reloc::PIC_;
178    return Reloc::Static;
179  }
180
181  // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
182  // is defined as a model for code which may be used in static or dynamic
183  // executables but not necessarily a shared library. On X86-32 we just
184  // compile in -static mode, in x86-64 we use PIC.
185  if (*RM == Reloc::DynamicNoPIC) {
186    if (is64Bit)
187      return Reloc::PIC_;
188    if (!TT.isOSDarwin())
189      return Reloc::Static;
190  }
191
192  // If we are on Darwin, disallow static relocation model in X86-64 mode, since
193  // the Mach-O file format doesn't support it.
194  if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
195    return Reloc::PIC_;
196
197  return *RM;
198}
199
200static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
201                                                 bool JIT, bool Is64Bit) {
202  if (CM) {
203    if (*CM == CodeModel::Tiny)
204      report_fatal_error("Target does not support the tiny CodeModel", false);
205    return *CM;
206  }
207  if (JIT)
208    return Is64Bit ? CodeModel::Large : CodeModel::Small;
209  return CodeModel::Small;
210}
211
212/// Create an X86 target.
213///
214X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
215                                   StringRef CPU, StringRef FS,
216                                   const TargetOptions &Options,
217                                   Optional<Reloc::Model> RM,
218                                   Optional<CodeModel::Model> CM,
219                                   CodeGenOpt::Level OL, bool JIT)
220    : LLVMTargetMachine(
221          T, computeDataLayout(TT), TT, CPU, FS, Options,
222          getEffectiveRelocModel(TT, JIT, RM),
223          getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
224          OL),
225      TLOF(createTLOF(getTargetTriple())) {
226  // On PS4, the "return address" of a 'noreturn' call must still be within
227  // the calling function, and TrapUnreachable is an easy way to get that.
228  if (TT.isPS4() || TT.isOSBinFormatMachO()) {
229    this->Options.TrapUnreachable = true;
230    this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
231  }
232
233  setMachineOutliner(true);
234
235  initAsmInfo();
236}
237
238X86TargetMachine::~X86TargetMachine() = default;
239
240const X86Subtarget *
241X86TargetMachine::getSubtargetImpl(const Function &F) const {
242  Attribute CPUAttr = F.getFnAttribute("target-cpu");
243  Attribute FSAttr = F.getFnAttribute("target-features");
244
245  StringRef CPU = !CPUAttr.hasAttribute(Attribute::None)
246                      ? CPUAttr.getValueAsString()
247                      : (StringRef)TargetCPU;
248  StringRef FS = !FSAttr.hasAttribute(Attribute::None)
249                     ? FSAttr.getValueAsString()
250                     : (StringRef)TargetFS;
251
252  SmallString<512> Key;
253  Key.reserve(CPU.size() + FS.size());
254  Key += CPU;
255  Key += FS;
256
257  // FIXME: This is related to the code below to reset the target options,
258  // we need to know whether or not the soft float flag is set on the
259  // function before we can generate a subtarget. We also need to use
260  // it as a key for the subtarget since that can be the only difference
261  // between two functions.
262  bool SoftFloat =
263      F.getFnAttribute("use-soft-float").getValueAsString() == "true";
264  // If the soft float attribute is set on the function turn on the soft float
265  // subtarget feature.
266  if (SoftFloat)
267    Key += FS.empty() ? "+soft-float" : ",+soft-float";
268
269  // Keep track of the key width after all features are added so we can extract
270  // the feature string out later.
271  unsigned CPUFSWidth = Key.size();
272
273  // Extract prefer-vector-width attribute.
274  unsigned PreferVectorWidthOverride = 0;
275  if (F.hasFnAttribute("prefer-vector-width")) {
276    StringRef Val = F.getFnAttribute("prefer-vector-width").getValueAsString();
277    unsigned Width;
278    if (!Val.getAsInteger(0, Width)) {
279      Key += ",prefer-vector-width=";
280      Key += Val;
281      PreferVectorWidthOverride = Width;
282    }
283  }
284
285  // Extract min-legal-vector-width attribute.
286  unsigned RequiredVectorWidth = UINT32_MAX;
287  if (F.hasFnAttribute("min-legal-vector-width")) {
288    StringRef Val =
289        F.getFnAttribute("min-legal-vector-width").getValueAsString();
290    unsigned Width;
291    if (!Val.getAsInteger(0, Width)) {
292      Key += ",min-legal-vector-width=";
293      Key += Val;
294      RequiredVectorWidth = Width;
295    }
296  }
297
298  // Extracted here so that we make sure there is backing for the StringRef. If
299  // we assigned earlier, its possible the SmallString reallocated leaving a
300  // dangling StringRef.
301  FS = Key.slice(CPU.size(), CPUFSWidth);
302
303  auto &I = SubtargetMap[Key];
304  if (!I) {
305    // This needs to be done before we create a new subtarget since any
306    // creation will depend on the TM and the code generation flags on the
307    // function that reside in TargetOptions.
308    resetTargetOptions(F);
309    I = std::make_unique<X86Subtarget>(
310        TargetTriple, CPU, FS, *this,
311        MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
312        RequiredVectorWidth);
313  }
314  return I.get();
315}
316
317//===----------------------------------------------------------------------===//
318// Command line options for x86
319//===----------------------------------------------------------------------===//
320static cl::opt<bool>
321UseVZeroUpper("x86-use-vzeroupper", cl::Hidden,
322  cl::desc("Minimize AVX to SSE transition penalty"),
323  cl::init(true));
324
325//===----------------------------------------------------------------------===//
326// X86 TTI query.
327//===----------------------------------------------------------------------===//
328
329TargetTransformInfo
330X86TargetMachine::getTargetTransformInfo(const Function &F) {
331  return TargetTransformInfo(X86TTIImpl(this, F));
332}
333
334//===----------------------------------------------------------------------===//
335// Pass Pipeline Configuration
336//===----------------------------------------------------------------------===//
337
338namespace {
339
340/// X86 Code Generator Pass Configuration Options.
341class X86PassConfig : public TargetPassConfig {
342public:
343  X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
344    : TargetPassConfig(TM, PM) {}
345
346  X86TargetMachine &getX86TargetMachine() const {
347    return getTM<X86TargetMachine>();
348  }
349
350  ScheduleDAGInstrs *
351  createMachineScheduler(MachineSchedContext *C) const override {
352    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
353    DAG->addMutation(createX86MacroFusionDAGMutation());
354    return DAG;
355  }
356
357  ScheduleDAGInstrs *
358  createPostMachineScheduler(MachineSchedContext *C) const override {
359    ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
360    DAG->addMutation(createX86MacroFusionDAGMutation());
361    return DAG;
362  }
363
364  void addIRPasses() override;
365  bool addInstSelector() override;
366  bool addIRTranslator() override;
367  bool addLegalizeMachineIR() override;
368  bool addRegBankSelect() override;
369  bool addGlobalInstructionSelect() override;
370  bool addILPOpts() override;
371  bool addPreISel() override;
372  void addMachineSSAOptimization() override;
373  void addPreRegAlloc() override;
374  void addPostRegAlloc() override;
375  void addPreEmitPass() override;
376  void addPreEmitPass2() override;
377  void addPreSched2() override;
378
379  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
380};
381
382class X86ExecutionDomainFix : public ExecutionDomainFix {
383public:
384  static char ID;
385  X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
386  StringRef getPassName() const override {
387    return "X86 Execution Dependency Fix";
388  }
389};
390char X86ExecutionDomainFix::ID;
391
392} // end anonymous namespace
393
394INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
395  "X86 Execution Domain Fix", false, false)
396INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
397INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
398  "X86 Execution Domain Fix", false, false)
399
400TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
401  return new X86PassConfig(*this, PM);
402}
403
404void X86PassConfig::addIRPasses() {
405  addPass(createAtomicExpandPass());
406
407  TargetPassConfig::addIRPasses();
408
409  if (TM->getOptLevel() != CodeGenOpt::None)
410    addPass(createInterleavedAccessPass());
411
412  // Add passes that handle indirect branch removal and insertion of a retpoline
413  // thunk. These will be a no-op unless a function subtarget has the retpoline
414  // feature enabled.
415  addPass(createIndirectBrExpandPass());
416
417  // Add Control Flow Guard checks.
418  const Triple &TT = TM->getTargetTriple();
419  if (TT.isOSWindows()) {
420    if (TT.getArch() == Triple::x86_64) {
421      addPass(createCFGuardDispatchPass());
422    } else {
423      addPass(createCFGuardCheckPass());
424    }
425  }
426}
427
428bool X86PassConfig::addInstSelector() {
429  // Install an instruction selector.
430  addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
431
432  // For ELF, cleanup any local-dynamic TLS accesses.
433  if (TM->getTargetTriple().isOSBinFormatELF() &&
434      getOptLevel() != CodeGenOpt::None)
435    addPass(createCleanupLocalDynamicTLSPass());
436
437  addPass(createX86GlobalBaseRegPass());
438  return false;
439}
440
441bool X86PassConfig::addIRTranslator() {
442  addPass(new IRTranslator());
443  return false;
444}
445
446bool X86PassConfig::addLegalizeMachineIR() {
447  addPass(new Legalizer());
448  return false;
449}
450
451bool X86PassConfig::addRegBankSelect() {
452  addPass(new RegBankSelect());
453  return false;
454}
455
456bool X86PassConfig::addGlobalInstructionSelect() {
457  addPass(new InstructionSelect());
458  return false;
459}
460
461bool X86PassConfig::addILPOpts() {
462  if (EnableCondBrFoldingPass)
463    addPass(createX86CondBrFolding());
464  addPass(&EarlyIfConverterID);
465  if (EnableMachineCombinerPass)
466    addPass(&MachineCombinerID);
467  addPass(createX86CmovConverterPass());
468  return true;
469}
470
471bool X86PassConfig::addPreISel() {
472  // Only add this pass for 32-bit x86 Windows.
473  const Triple &TT = TM->getTargetTriple();
474  if (TT.isOSWindows() && TT.getArch() == Triple::x86)
475    addPass(createX86WinEHStatePass());
476  return true;
477}
478
479void X86PassConfig::addPreRegAlloc() {
480  if (getOptLevel() != CodeGenOpt::None) {
481    addPass(&LiveRangeShrinkID);
482    addPass(createX86FixupSetCC());
483    addPass(createX86OptimizeLEAs());
484    addPass(createX86CallFrameOptimization());
485    addPass(createX86AvoidStoreForwardingBlocks());
486  }
487
488  addPass(createX86SpeculativeLoadHardeningPass());
489  addPass(createX86FlagsCopyLoweringPass());
490  addPass(createX86WinAllocaExpander());
491}
492void X86PassConfig::addMachineSSAOptimization() {
493  addPass(createX86DomainReassignmentPass());
494  TargetPassConfig::addMachineSSAOptimization();
495}
496
497void X86PassConfig::addPostRegAlloc() {
498  addPass(createX86FloatingPointStackifierPass());
499}
500
501void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
502
503void X86PassConfig::addPreEmitPass() {
504  if (getOptLevel() != CodeGenOpt::None) {
505    addPass(new X86ExecutionDomainFix());
506    addPass(createBreakFalseDeps());
507  }
508
509  addPass(createX86IndirectBranchTrackingPass());
510
511  if (UseVZeroUpper)
512    addPass(createX86IssueVZeroUpperPass());
513
514  if (getOptLevel() != CodeGenOpt::None) {
515    addPass(createX86FixupBWInsts());
516    addPass(createX86PadShortFunctions());
517    addPass(createX86FixupLEAs());
518    addPass(createX86EvexToVexInsts());
519  }
520  addPass(createX86DiscriminateMemOpsPass());
521  addPass(createX86InsertPrefetchPass());
522}
523
524void X86PassConfig::addPreEmitPass2() {
525  const Triple &TT = TM->getTargetTriple();
526  const MCAsmInfo *MAI = TM->getMCAsmInfo();
527
528  addPass(createX86RetpolineThunksPass());
529
530  // Insert extra int3 instructions after trailing call instructions to avoid
531  // issues in the unwinder.
532  if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
533    addPass(createX86AvoidTrailingCallPass());
534
535  // Verify basic block incoming and outgoing cfa offset and register values and
536  // correct CFA calculation rule where needed by inserting appropriate CFI
537  // instructions.
538  if (!TT.isOSDarwin() &&
539      (!TT.isOSWindows() ||
540       MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
541    addPass(createCFIInstrInserter());
542  // Identify valid longjmp targets for Windows Control Flow Guard.
543  if (TT.isOSWindows())
544    addPass(createCFGuardLongjmpPass());
545}
546
547std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
548  return getStandardCSEConfigForOpt(TM->getOptLevel());
549}
550