X86MCCodeEmitter.cpp revision 360784
1//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the X86MCCodeEmitter class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "MCTargetDesc/X86BaseInfo.h"
14#include "MCTargetDesc/X86FixupKinds.h"
15#include "MCTargetDesc/X86MCTargetDesc.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/MC/MCCodeEmitter.h"
18#include "llvm/MC/MCContext.h"
19#include "llvm/MC/MCExpr.h"
20#include "llvm/MC/MCFixup.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCInstrDesc.h"
23#include "llvm/MC/MCInstrInfo.h"
24#include "llvm/MC/MCRegisterInfo.h"
25#include "llvm/MC/MCSubtargetInfo.h"
26#include "llvm/MC/MCSymbol.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30#include <cstdint>
31#include <cstdlib>
32
33using namespace llvm;
34
35#define DEBUG_TYPE "mccodeemitter"
36
37namespace {
38
39class X86MCCodeEmitter : public MCCodeEmitter {
40  const MCInstrInfo &MCII;
41  MCContext &Ctx;
42
43public:
44  X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
45      : MCII(mcii), Ctx(ctx) {}
46  X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
47  X86MCCodeEmitter &operator=(const X86MCCodeEmitter &) = delete;
48  ~X86MCCodeEmitter() override = default;
49
50  void emitPrefix(const MCInst &MI, raw_ostream &OS,
51                  const MCSubtargetInfo &STI) const override;
52
53  void encodeInstruction(const MCInst &MI, raw_ostream &OS,
54                         SmallVectorImpl<MCFixup> &Fixups,
55                         const MCSubtargetInfo &STI) const override;
56
57private:
58  unsigned getX86RegNum(const MCOperand &MO) const {
59    return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
60  }
61
62  unsigned getX86RegEncoding(const MCInst &MI, unsigned OpNum) const {
63    return Ctx.getRegisterInfo()->getEncodingValue(
64        MI.getOperand(OpNum).getReg());
65  }
66
67  /// \param MI a single low-level machine instruction.
68  /// \param OpNum the operand #.
69  /// \returns true if the OpNumth operand of MI  require a bit to be set in
70  /// REX prefix.
71  bool isREXExtendedReg(const MCInst &MI, unsigned OpNum) const {
72    return (getX86RegEncoding(MI, OpNum) >> 3) & 1;
73  }
74
75  void emitByte(uint8_t C, unsigned &CurByte, raw_ostream &OS) const {
76    OS << (char)C;
77    ++CurByte;
78  }
79
80  void emitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
81                    raw_ostream &OS) const {
82    // Output the constant in little endian byte order.
83    for (unsigned i = 0; i != Size; ++i) {
84      emitByte(Val & 255, CurByte, OS);
85      Val >>= 8;
86    }
87  }
88
89  void emitImmediate(const MCOperand &Disp, SMLoc Loc, unsigned ImmSize,
90                     MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
91                     SmallVectorImpl<MCFixup> &Fixups, int ImmOffset = 0) const;
92
93  static uint8_t modRMByte(unsigned Mod, unsigned RegOpcode, unsigned RM) {
94    assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
95    return RM | (RegOpcode << 3) | (Mod << 6);
96  }
97
98  void emitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
99                        unsigned &CurByte, raw_ostream &OS) const {
100    emitByte(modRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg)), CurByte, OS);
101  }
102
103  void emitSIBByte(unsigned SS, unsigned Index, unsigned Base,
104                   unsigned &CurByte, raw_ostream &OS) const {
105    // SIB byte is in the same format as the modRMByte.
106    emitByte(modRMByte(SS, Index, Base), CurByte, OS);
107  }
108
109  void emitMemModRMByte(const MCInst &MI, unsigned Op, unsigned RegOpcodeField,
110                        uint64_t TSFlags, bool Rex, unsigned &CurByte,
111                        raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups,
112                        const MCSubtargetInfo &STI) const;
113
114  void emitPrefixImpl(uint64_t TSFlags, unsigned &CurOp, unsigned &CurByte,
115                  bool &Rex, const MCInst &MI, const MCInstrDesc &Desc,
116                  const MCSubtargetInfo &STI, raw_ostream &OS) const;
117
118  void emitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
119                           const MCInst &MI, const MCInstrDesc &Desc,
120                           raw_ostream &OS) const;
121
122  void emitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
123                                 const MCInst &MI, raw_ostream &OS) const;
124
125  bool emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
126                        const MCInst &MI, const MCInstrDesc &Desc,
127                        const MCSubtargetInfo &STI, raw_ostream &OS) const;
128
129  uint8_t determineREXPrefix(const MCInst &MI, uint64_t TSFlags, int MemOperand,
130                             const MCInstrDesc &Desc) const;
131};
132
133} // end anonymous namespace
134
135/// \returns true if this signed displacement fits in a 8-bit sign-extended
136/// field.
137static bool isDisp8(int Value) { return Value == (int8_t)Value; }
138
139/// \returns true if this signed displacement fits in a 8-bit compressed
140/// dispacement field.
141static bool isCDisp8(uint64_t TSFlags, int Value, int &CValue) {
142  assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
143         "Compressed 8-bit displacement is only valid for EVEX inst.");
144
145  unsigned CD8_Scale =
146      (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
147  if (CD8_Scale == 0) {
148    CValue = Value;
149    return isDisp8(Value);
150  }
151
152  unsigned Mask = CD8_Scale - 1;
153  assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
154  if (Value & Mask) // Unaligned offset
155    return false;
156  Value /= (int)CD8_Scale;
157  bool Ret = (Value == (int8_t)Value);
158
159  if (Ret)
160    CValue = Value;
161  return Ret;
162}
163
164/// \returns the appropriate fixup kind to use for an immediate in an
165/// instruction with the specified TSFlags.
166static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
167  unsigned Size = X86II::getSizeOfImm(TSFlags);
168  bool isPCRel = X86II::isImmPCRel(TSFlags);
169
170  if (X86II::isImmSigned(TSFlags)) {
171    switch (Size) {
172    default:
173      llvm_unreachable("Unsupported signed fixup size!");
174    case 4:
175      return MCFixupKind(X86::reloc_signed_4byte);
176    }
177  }
178  return MCFixup::getKindForSize(Size, isPCRel);
179}
180
181/// \param Op operand # of the memory operand.
182///
183/// \returns true if the specified instruction has a 16-bit memory operand.
184static bool is16BitMemOperand(const MCInst &MI, unsigned Op,
185                              const MCSubtargetInfo &STI) {
186  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
187  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
188  const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
189
190  if (STI.hasFeature(X86::Mode16Bit) && BaseReg.getReg() == 0 && Disp.isImm() &&
191      Disp.getImm() < 0x10000)
192    return true;
193  if ((BaseReg.getReg() != 0 &&
194       X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
195      (IndexReg.getReg() != 0 &&
196       X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
197    return true;
198  return false;
199}
200
201/// \param Op operand # of the memory operand.
202///
203/// \returns true if the specified instruction has a 32-bit memory operand.
204static bool is32BitMemOperand(const MCInst &MI, unsigned Op) {
205  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
206  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
207
208  if ((BaseReg.getReg() != 0 &&
209       X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
210      (IndexReg.getReg() != 0 &&
211       X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
212    return true;
213  if (BaseReg.getReg() == X86::EIP) {
214    assert(IndexReg.getReg() == 0 && "Invalid eip-based address.");
215    return true;
216  }
217  if (IndexReg.getReg() == X86::EIZ)
218    return true;
219  return false;
220}
221
222/// \param Op operand # of the memory operand.
223///
224/// \returns true if the specified instruction has a 64-bit memory operand.
225#ifndef NDEBUG
226static bool is64BitMemOperand(const MCInst &MI, unsigned Op) {
227  const MCOperand &BaseReg = MI.getOperand(Op + X86::AddrBaseReg);
228  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
229
230  if ((BaseReg.getReg() != 0 &&
231       X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
232      (IndexReg.getReg() != 0 &&
233       X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
234    return true;
235  return false;
236}
237#endif
238
239enum GlobalOffsetTableExprKind { GOT_None, GOT_Normal, GOT_SymDiff };
240
241/// Check if this expression starts with  _GLOBAL_OFFSET_TABLE_ and if it is
242/// of the form _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on
243/// ELF i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
244/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start of a
245/// binary expression.
246static GlobalOffsetTableExprKind
247startsWithGlobalOffsetTable(const MCExpr *Expr) {
248  const MCExpr *RHS = nullptr;
249  if (Expr->getKind() == MCExpr::Binary) {
250    const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
251    Expr = BE->getLHS();
252    RHS = BE->getRHS();
253  }
254
255  if (Expr->getKind() != MCExpr::SymbolRef)
256    return GOT_None;
257
258  const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
259  const MCSymbol &S = Ref->getSymbol();
260  if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
261    return GOT_None;
262  if (RHS && RHS->getKind() == MCExpr::SymbolRef)
263    return GOT_SymDiff;
264  return GOT_Normal;
265}
266
267static bool hasSecRelSymbolRef(const MCExpr *Expr) {
268  if (Expr->getKind() == MCExpr::SymbolRef) {
269    const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
270    return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
271  }
272  return false;
273}
274
275static bool isPCRel32Branch(const MCInst &MI, const MCInstrInfo &MCII) {
276  unsigned Opcode = MI.getOpcode();
277  const MCInstrDesc &Desc = MCII.get(Opcode);
278  if ((Opcode != X86::CALL64pcrel32 && Opcode != X86::JMP_4) ||
279      getImmFixupKind(Desc.TSFlags) != FK_PCRel_4)
280    return false;
281
282  unsigned CurOp = X86II::getOperandBias(Desc);
283  const MCOperand &Op = MI.getOperand(CurOp);
284  if (!Op.isExpr())
285    return false;
286
287  const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Op.getExpr());
288  return Ref && Ref->getKind() == MCSymbolRefExpr::VK_None;
289}
290
291void X86MCCodeEmitter::emitImmediate(const MCOperand &DispOp, SMLoc Loc,
292                                     unsigned Size, MCFixupKind FixupKind,
293                                     unsigned &CurByte, raw_ostream &OS,
294                                     SmallVectorImpl<MCFixup> &Fixups,
295                                     int ImmOffset) const {
296  const MCExpr *Expr = nullptr;
297  if (DispOp.isImm()) {
298    // If this is a simple integer displacement that doesn't require a
299    // relocation, emit it now.
300    if (FixupKind != FK_PCRel_1 && FixupKind != FK_PCRel_2 &&
301        FixupKind != FK_PCRel_4) {
302      emitConstant(DispOp.getImm() + ImmOffset, Size, CurByte, OS);
303      return;
304    }
305    Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
306  } else {
307    Expr = DispOp.getExpr();
308  }
309
310  // If we have an immoffset, add it to the expression.
311  if ((FixupKind == FK_Data_4 || FixupKind == FK_Data_8 ||
312       FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
313    GlobalOffsetTableExprKind Kind = startsWithGlobalOffsetTable(Expr);
314    if (Kind != GOT_None) {
315      assert(ImmOffset == 0);
316
317      if (Size == 8) {
318        FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
319      } else {
320        assert(Size == 4);
321        FixupKind = MCFixupKind(X86::reloc_global_offset_table);
322      }
323
324      if (Kind == GOT_Normal)
325        ImmOffset = CurByte;
326    } else if (Expr->getKind() == MCExpr::SymbolRef) {
327      if (hasSecRelSymbolRef(Expr)) {
328        FixupKind = MCFixupKind(FK_SecRel_4);
329      }
330    } else if (Expr->getKind() == MCExpr::Binary) {
331      const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr *>(Expr);
332      if (hasSecRelSymbolRef(Bin->getLHS()) ||
333          hasSecRelSymbolRef(Bin->getRHS())) {
334        FixupKind = MCFixupKind(FK_SecRel_4);
335      }
336    }
337  }
338
339  // If the fixup is pc-relative, we need to bias the value to be relative to
340  // the start of the field, not the end of the field.
341  if (FixupKind == FK_PCRel_4 ||
342      FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
343      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load) ||
344      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax) ||
345      FixupKind == MCFixupKind(X86::reloc_riprel_4byte_relax_rex) ||
346      FixupKind == MCFixupKind(X86::reloc_branch_4byte_pcrel)) {
347    ImmOffset -= 4;
348    // If this is a pc-relative load off _GLOBAL_OFFSET_TABLE_:
349    // leaq _GLOBAL_OFFSET_TABLE_(%rip), %r15
350    // this needs to be a GOTPC32 relocation.
351    if (startsWithGlobalOffsetTable(Expr) != GOT_None)
352      FixupKind = MCFixupKind(X86::reloc_global_offset_table);
353  }
354  if (FixupKind == FK_PCRel_2)
355    ImmOffset -= 2;
356  if (FixupKind == FK_PCRel_1)
357    ImmOffset -= 1;
358
359  if (ImmOffset)
360    Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
361                                   Ctx);
362
363  // Emit a symbolic constant as a fixup and 4 zeros.
364  Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
365  emitConstant(0, Size, CurByte, OS);
366}
367
368void X86MCCodeEmitter::emitMemModRMByte(const MCInst &MI, unsigned Op,
369                                        unsigned RegOpcodeField,
370                                        uint64_t TSFlags, bool Rex,
371                                        unsigned &CurByte, raw_ostream &OS,
372                                        SmallVectorImpl<MCFixup> &Fixups,
373                                        const MCSubtargetInfo &STI) const {
374  const MCOperand &Disp = MI.getOperand(Op + X86::AddrDisp);
375  const MCOperand &Base = MI.getOperand(Op + X86::AddrBaseReg);
376  const MCOperand &Scale = MI.getOperand(Op + X86::AddrScaleAmt);
377  const MCOperand &IndexReg = MI.getOperand(Op + X86::AddrIndexReg);
378  unsigned BaseReg = Base.getReg();
379  bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
380
381  // Handle %rip relative addressing.
382  if (BaseReg == X86::RIP ||
383      BaseReg == X86::EIP) { // [disp32+rIP] in X86-64 mode
384    assert(STI.hasFeature(X86::Mode64Bit) &&
385           "Rip-relative addressing requires 64-bit mode");
386    assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
387    emitByte(modRMByte(0, RegOpcodeField, 5), CurByte, OS);
388
389    unsigned Opcode = MI.getOpcode();
390    // movq loads are handled with a special relocation form which allows the
391    // linker to eliminate some loads for GOT references which end up in the
392    // same linkage unit.
393    unsigned FixupKind = [=]() {
394      switch (Opcode) {
395      default:
396        return X86::reloc_riprel_4byte;
397      case X86::MOV64rm:
398        assert(Rex);
399        return X86::reloc_riprel_4byte_movq_load;
400      case X86::CALL64m:
401      case X86::JMP64m:
402      case X86::TAILJMPm64:
403      case X86::TEST64mr:
404      case X86::ADC64rm:
405      case X86::ADD64rm:
406      case X86::AND64rm:
407      case X86::CMP64rm:
408      case X86::OR64rm:
409      case X86::SBB64rm:
410      case X86::SUB64rm:
411      case X86::XOR64rm:
412        return Rex ? X86::reloc_riprel_4byte_relax_rex
413                   : X86::reloc_riprel_4byte_relax;
414      }
415    }();
416
417    // rip-relative addressing is actually relative to the *next* instruction.
418    // Since an immediate can follow the mod/rm byte for an instruction, this
419    // means that we need to bias the displacement field of the instruction with
420    // the size of the immediate field. If we have this case, add it into the
421    // expression to emit.
422    // Note: rip-relative addressing using immediate displacement values should
423    // not be adjusted, assuming it was the user's intent.
424    int ImmSize = !Disp.isImm() && X86II::hasImm(TSFlags)
425                      ? X86II::getSizeOfImm(TSFlags)
426                      : 0;
427
428    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
429                  Fixups, -ImmSize);
430    return;
431  }
432
433  unsigned BaseRegNo = BaseReg ? getX86RegNum(Base) : -1U;
434
435  // 16-bit addressing forms of the ModR/M byte have a different encoding for
436  // the R/M field and are far more limited in which registers can be used.
437  if (is16BitMemOperand(MI, Op, STI)) {
438    if (BaseReg) {
439      // For 32-bit addressing, the row and column values in Table 2-2 are
440      // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
441      // some special cases. And getX86RegNum reflects that numbering.
442      // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
443      // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
444      // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
445      // while values 0-3 indicate the allowed combinations (base+index) of
446      // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
447      //
448      // R16Table[] is a lookup from the normal RegNo, to the row values from
449      // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
450      static const unsigned R16Table[] = {0, 0, 0, 7, 0, 6, 4, 5};
451      unsigned RMfield = R16Table[BaseRegNo];
452
453      assert(RMfield && "invalid 16-bit base register");
454
455      if (IndexReg.getReg()) {
456        unsigned IndexReg16 = R16Table[getX86RegNum(IndexReg)];
457
458        assert(IndexReg16 && "invalid 16-bit index register");
459        // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
460        assert(((IndexReg16 ^ RMfield) & 2) &&
461               "invalid 16-bit base/index register combination");
462        assert(Scale.getImm() == 1 &&
463               "invalid scale for 16-bit memory reference");
464
465        // Allow base/index to appear in either order (although GAS doesn't).
466        if (IndexReg16 & 2)
467          RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
468        else
469          RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
470      }
471
472      if (Disp.isImm() && isDisp8(Disp.getImm())) {
473        if (Disp.getImm() == 0 && RMfield != 6) {
474          // There is no displacement; just the register.
475          emitByte(modRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
476          return;
477        }
478        // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
479        emitByte(modRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
480        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
481        return;
482      }
483      // This is the [REG]+disp16 case.
484      emitByte(modRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
485    } else {
486      // There is no BaseReg; this is the plain [disp16] case.
487      emitByte(modRMByte(0, RegOpcodeField, 6), CurByte, OS);
488    }
489
490    // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
491    emitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
492    return;
493  }
494
495  // Determine whether a SIB byte is needed.
496  // If no BaseReg, issue a RIP relative instruction only if the MCE can
497  // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
498  // 2-7) and absolute references.
499
500  if ( // The SIB byte must be used if there is an index register.
501      IndexReg.getReg() == 0 &&
502      // The SIB byte must be used if the base is ESP/RSP/R12, all of which
503      // encode to an R/M value of 4, which indicates that a SIB byte is
504      // present.
505      BaseRegNo != N86::ESP &&
506      // If there is no base register and we're in 64-bit mode, we need a SIB
507      // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
508      (!STI.hasFeature(X86::Mode64Bit) || BaseReg != 0)) {
509
510    if (BaseReg == 0) { // [disp32]     in X86-32 mode
511      emitByte(modRMByte(0, RegOpcodeField, 5), CurByte, OS);
512      emitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
513      return;
514    }
515
516    // If the base is not EBP/ESP and there is no displacement, use simple
517    // indirect register encoding, this handles addresses like [EAX].  The
518    // encoding for [EBP] with no displacement means [disp32] so we handle it
519    // by emitting a displacement of 0 below.
520    if (BaseRegNo != N86::EBP) {
521      if (Disp.isImm() && Disp.getImm() == 0) {
522        emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
523        return;
524      }
525
526      // If the displacement is @tlscall, treat it as a zero.
527      if (Disp.isExpr()) {
528        auto *Sym = dyn_cast<MCSymbolRefExpr>(Disp.getExpr());
529        if (Sym && Sym->getKind() == MCSymbolRefExpr::VK_TLSCALL) {
530          // This is exclusively used by call *a@tlscall(base). The relocation
531          // (R_386_TLSCALL or R_X86_64_TLSCALL) applies to the beginning.
532          Fixups.push_back(MCFixup::create(0, Sym, FK_NONE, MI.getLoc()));
533          emitByte(modRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
534          return;
535        }
536      }
537    }
538
539    // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
540    if (Disp.isImm()) {
541      if (!HasEVEX && isDisp8(Disp.getImm())) {
542        emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
543        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
544        return;
545      }
546      // Try EVEX compressed 8-bit displacement first; if failed, fall back to
547      // 32-bit displacement.
548      int CDisp8 = 0;
549      if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
550        emitByte(modRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
551        emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
552                      CDisp8 - Disp.getImm());
553        return;
554      }
555    }
556
557    // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
558    emitByte(modRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
559    unsigned Opcode = MI.getOpcode();
560    unsigned FixupKind = Opcode == X86::MOV32rm ? X86::reloc_signed_4byte_relax
561                                                : X86::reloc_signed_4byte;
562    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind), CurByte, OS,
563                  Fixups);
564    return;
565  }
566
567  // We need a SIB byte, so start by outputting the ModR/M byte first
568  assert(IndexReg.getReg() != X86::ESP && IndexReg.getReg() != X86::RSP &&
569         "Cannot use ESP as index reg!");
570
571  bool ForceDisp32 = false;
572  bool ForceDisp8 = false;
573  int CDisp8 = 0;
574  int ImmOffset = 0;
575  if (BaseReg == 0) {
576    // If there is no base register, we emit the special case SIB byte with
577    // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
578    emitByte(modRMByte(0, RegOpcodeField, 4), CurByte, OS);
579    ForceDisp32 = true;
580  } else if (!Disp.isImm()) {
581    // Emit the normal disp32 encoding.
582    emitByte(modRMByte(2, RegOpcodeField, 4), CurByte, OS);
583    ForceDisp32 = true;
584  } else if (Disp.getImm() == 0 &&
585             // Base reg can't be anything that ends up with '5' as the base
586             // reg, it is the magic [*] nomenclature that indicates no base.
587             BaseRegNo != N86::EBP) {
588    // Emit no displacement ModR/M byte
589    emitByte(modRMByte(0, RegOpcodeField, 4), CurByte, OS);
590  } else if (!HasEVEX && isDisp8(Disp.getImm())) {
591    // Emit the disp8 encoding.
592    emitByte(modRMByte(1, RegOpcodeField, 4), CurByte, OS);
593    ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
594  } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
595    // Emit the disp8 encoding.
596    emitByte(modRMByte(1, RegOpcodeField, 4), CurByte, OS);
597    ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
598    ImmOffset = CDisp8 - Disp.getImm();
599  } else {
600    // Emit the normal disp32 encoding.
601    emitByte(modRMByte(2, RegOpcodeField, 4), CurByte, OS);
602  }
603
604  // Calculate what the SS field value should be...
605  static const unsigned SSTable[] = {~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3};
606  unsigned SS = SSTable[Scale.getImm()];
607
608  if (BaseReg == 0) {
609    // Handle the SIB byte for the case where there is no base, see Intel
610    // Manual 2A, table 2-7. The displacement has already been output.
611    unsigned IndexRegNo;
612    if (IndexReg.getReg())
613      IndexRegNo = getX86RegNum(IndexReg);
614    else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
615      IndexRegNo = 4;
616    emitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
617  } else {
618    unsigned IndexRegNo;
619    if (IndexReg.getReg())
620      IndexRegNo = getX86RegNum(IndexReg);
621    else
622      IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
623    emitSIBByte(SS, IndexRegNo, getX86RegNum(Base), CurByte, OS);
624  }
625
626  // Do we need to output a displacement?
627  if (ForceDisp8)
628    emitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
629                  ImmOffset);
630  else if (ForceDisp32 || Disp.getImm() != 0)
631    emitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
632                  CurByte, OS, Fixups);
633}
634
635void X86MCCodeEmitter::emitPrefixImpl(uint64_t TSFlags, unsigned &CurOp,
636                                  unsigned &CurByte, bool &Rex,
637                                  const MCInst &MI, const MCInstrDesc &Desc,
638                                  const MCSubtargetInfo &STI,
639                                  raw_ostream &OS) const {
640  // Determine where the memory operand starts, if present.
641  int MemoryOperand = X86II::getMemoryOperandNo(TSFlags);
642  if (MemoryOperand != -1)
643    MemoryOperand += CurOp;
644
645  // Emit segment override opcode prefix as needed.
646  if (MemoryOperand >= 0)
647    emitSegmentOverridePrefix(CurByte, MemoryOperand + X86::AddrSegmentReg, MI,
648                              OS);
649
650  // Emit the repeat opcode prefix as needed.
651  unsigned Flags = MI.getFlags();
652  if (TSFlags & X86II::REP || Flags & X86::IP_HAS_REPEAT)
653    emitByte(0xF3, CurByte, OS);
654  if (Flags & X86::IP_HAS_REPEAT_NE)
655    emitByte(0xF2, CurByte, OS);
656
657  // Emit the address size opcode prefix as needed.
658  bool need_address_override;
659  uint64_t AdSize = TSFlags & X86II::AdSizeMask;
660  if ((STI.hasFeature(X86::Mode16Bit) && AdSize == X86II::AdSize32) ||
661      (STI.hasFeature(X86::Mode32Bit) && AdSize == X86II::AdSize16) ||
662      (STI.hasFeature(X86::Mode64Bit) && AdSize == X86II::AdSize32)) {
663    need_address_override = true;
664  } else if (MemoryOperand < 0) {
665    need_address_override = false;
666  } else if (STI.hasFeature(X86::Mode64Bit)) {
667    assert(!is16BitMemOperand(MI, MemoryOperand, STI));
668    need_address_override = is32BitMemOperand(MI, MemoryOperand);
669  } else if (STI.hasFeature(X86::Mode32Bit)) {
670    assert(!is64BitMemOperand(MI, MemoryOperand));
671    need_address_override = is16BitMemOperand(MI, MemoryOperand, STI);
672  } else {
673    assert(STI.hasFeature(X86::Mode16Bit));
674    assert(!is64BitMemOperand(MI, MemoryOperand));
675    need_address_override = !is16BitMemOperand(MI, MemoryOperand, STI);
676  }
677
678  if (need_address_override)
679    emitByte(0x67, CurByte, OS);
680
681  // Encoding type for this instruction.
682  uint64_t Encoding = TSFlags & X86II::EncodingMask;
683  if (Encoding == 0)
684    Rex = emitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
685  else
686    emitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
687
688  uint64_t Form = TSFlags & X86II::FormMask;
689  switch (Form) {
690  default:
691    break;
692  case X86II::RawFrmDstSrc: {
693    unsigned siReg = MI.getOperand(1).getReg();
694    assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
695            (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
696            (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
697           "SI and DI register sizes do not match");
698    // Emit segment override opcode prefix as needed (not for %ds).
699    if (MI.getOperand(2).getReg() != X86::DS)
700      emitSegmentOverridePrefix(CurByte, 2, MI, OS);
701    // Emit AdSize prefix as needed.
702    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
703        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
704      emitByte(0x67, CurByte, OS);
705    CurOp += 3; // Consume operands.
706    break;
707  }
708  case X86II::RawFrmSrc: {
709    unsigned siReg = MI.getOperand(0).getReg();
710    // Emit segment override opcode prefix as needed (not for %ds).
711    if (MI.getOperand(1).getReg() != X86::DS)
712      emitSegmentOverridePrefix(CurByte, 1, MI, OS);
713    // Emit AdSize prefix as needed.
714    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::ESI) ||
715        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::SI))
716      emitByte(0x67, CurByte, OS);
717    CurOp += 2; // Consume operands.
718    break;
719  }
720  case X86II::RawFrmDst: {
721    unsigned siReg = MI.getOperand(0).getReg();
722    // Emit AdSize prefix as needed.
723    if ((!STI.hasFeature(X86::Mode32Bit) && siReg == X86::EDI) ||
724        (STI.hasFeature(X86::Mode32Bit) && siReg == X86::DI))
725      emitByte(0x67, CurByte, OS);
726    ++CurOp; // Consume operand.
727    break;
728  }
729  case X86II::RawFrmMemOffs: {
730    // Emit segment override opcode prefix as needed.
731    emitSegmentOverridePrefix(CurByte, 1, MI, OS);
732    break;
733  }
734  }
735}
736
737/// emitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
738/// called VEX.
739void X86MCCodeEmitter::emitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
740                                           int MemOperand, const MCInst &MI,
741                                           const MCInstrDesc &Desc,
742                                           raw_ostream &OS) const {
743  assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
744
745  uint64_t Encoding = TSFlags & X86II::EncodingMask;
746  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
747  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
748  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
749
750  // VEX_R: opcode externsion equivalent to REX.R in
751  // 1's complement (inverted) form
752  //
753  //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
754  //  0: Same as REX_R=1 (64 bit mode only)
755  //
756  uint8_t VEX_R = 0x1;
757  uint8_t EVEX_R2 = 0x1;
758
759  // VEX_X: equivalent to REX.X, only used when a
760  // register is used for index in SIB Byte.
761  //
762  //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
763  //  0: Same as REX.X=1 (64-bit mode only)
764  uint8_t VEX_X = 0x1;
765
766  // VEX_B:
767  //
768  //  1: Same as REX_B=0 (ignored in 32-bit mode)
769  //  0: Same as REX_B=1 (64 bit mode only)
770  //
771  uint8_t VEX_B = 0x1;
772
773  // VEX_W: opcode specific (use like REX.W, or used for
774  // opcode extension, or ignored, depending on the opcode byte)
775  uint8_t VEX_W = (TSFlags & X86II::VEX_W) ? 1 : 0;
776
777  // VEX_5M (VEX m-mmmmm field):
778  //
779  //  0b00000: Reserved for future use
780  //  0b00001: implied 0F leading opcode
781  //  0b00010: implied 0F 38 leading opcode bytes
782  //  0b00011: implied 0F 3A leading opcode bytes
783  //  0b00100-0b11111: Reserved for future use
784  //  0b01000: XOP map select - 08h instructions with imm byte
785  //  0b01001: XOP map select - 09h instructions with no imm byte
786  //  0b01010: XOP map select - 0Ah instructions with imm dword
787  uint8_t VEX_5M;
788  switch (TSFlags & X86II::OpMapMask) {
789  default:
790    llvm_unreachable("Invalid prefix!");
791  case X86II::TB:
792    VEX_5M = 0x1;
793    break; // 0F
794  case X86II::T8:
795    VEX_5M = 0x2;
796    break; // 0F 38
797  case X86II::TA:
798    VEX_5M = 0x3;
799    break; // 0F 3A
800  case X86II::XOP8:
801    VEX_5M = 0x8;
802    break;
803  case X86II::XOP9:
804    VEX_5M = 0x9;
805    break;
806  case X86II::XOPA:
807    VEX_5M = 0xA;
808    break;
809  }
810
811  // VEX_4V (VEX vvvv field): a register specifier
812  // (in 1's complement form) or 1111 if unused.
813  uint8_t VEX_4V = 0xf;
814  uint8_t EVEX_V2 = 0x1;
815
816  // EVEX_L2/VEX_L (Vector Length):
817  //
818  // L2 L
819  //  0 0: scalar or 128-bit vector
820  //  0 1: 256-bit vector
821  //  1 0: 512-bit vector
822  //
823  uint8_t VEX_L = (TSFlags & X86II::VEX_L) ? 1 : 0;
824  uint8_t EVEX_L2 = (TSFlags & X86II::EVEX_L2) ? 1 : 0;
825
826  // VEX_PP: opcode extension providing equivalent
827  // functionality of a SIMD prefix
828  //
829  //  0b00: None
830  //  0b01: 66
831  //  0b10: F3
832  //  0b11: F2
833  //
834  uint8_t VEX_PP = 0;
835  switch (TSFlags & X86II::OpPrefixMask) {
836  case X86II::PD:
837    VEX_PP = 0x1;
838    break; // 66
839  case X86II::XS:
840    VEX_PP = 0x2;
841    break; // F3
842  case X86II::XD:
843    VEX_PP = 0x3;
844    break; // F2
845  }
846
847  // EVEX_U
848  uint8_t EVEX_U = 1; // Always '1' so far
849
850  // EVEX_z
851  uint8_t EVEX_z = (HasEVEX_K && (TSFlags & X86II::EVEX_Z)) ? 1 : 0;
852
853  // EVEX_b
854  uint8_t EVEX_b = (TSFlags & X86II::EVEX_B) ? 1 : 0;
855
856  // EVEX_rc
857  uint8_t EVEX_rc = 0;
858
859  // EVEX_aaa
860  uint8_t EVEX_aaa = 0;
861
862  bool EncodeRC = false;
863
864  // Classify VEX_B, VEX_4V, VEX_R, VEX_X
865  unsigned NumOps = Desc.getNumOperands();
866  unsigned CurOp = X86II::getOperandBias(Desc);
867
868  switch (TSFlags & X86II::FormMask) {
869  default:
870    llvm_unreachable("Unexpected form in emitVEXOpcodePrefix!");
871  case X86II::RawFrm:
872    break;
873  case X86II::MRMDestMem: {
874    // MRMDestMem instructions forms:
875    //  MemAddr, src1(ModR/M)
876    //  MemAddr, src1(VEX_4V), src2(ModR/M)
877    //  MemAddr, src1(ModR/M), imm8
878    //
879    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
880    VEX_B = ~(BaseRegEnc >> 3) & 1;
881    unsigned IndexRegEnc =
882        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
883    VEX_X = ~(IndexRegEnc >> 3) & 1;
884    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
885      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
886
887    CurOp += X86::AddrNumOperands;
888
889    if (HasEVEX_K)
890      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
891
892    if (HasVEX_4V) {
893      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
894      VEX_4V = ~VRegEnc & 0xf;
895      EVEX_V2 = ~(VRegEnc >> 4) & 1;
896    }
897
898    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
899    VEX_R = ~(RegEnc >> 3) & 1;
900    EVEX_R2 = ~(RegEnc >> 4) & 1;
901    break;
902  }
903  case X86II::MRMSrcMem: {
904    // MRMSrcMem instructions forms:
905    //  src1(ModR/M), MemAddr
906    //  src1(ModR/M), src2(VEX_4V), MemAddr
907    //  src1(ModR/M), MemAddr, imm8
908    //  src1(ModR/M), MemAddr, src2(Imm[7:4])
909    //
910    //  FMA4:
911    //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
912    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
913    VEX_R = ~(RegEnc >> 3) & 1;
914    EVEX_R2 = ~(RegEnc >> 4) & 1;
915
916    if (HasEVEX_K)
917      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
918
919    if (HasVEX_4V) {
920      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
921      VEX_4V = ~VRegEnc & 0xf;
922      EVEX_V2 = ~(VRegEnc >> 4) & 1;
923    }
924
925    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
926    VEX_B = ~(BaseRegEnc >> 3) & 1;
927    unsigned IndexRegEnc =
928        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
929    VEX_X = ~(IndexRegEnc >> 3) & 1;
930    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
931      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
932
933    break;
934  }
935  case X86II::MRMSrcMem4VOp3: {
936    // Instruction format for 4VOp3:
937    //   src1(ModR/M), MemAddr, src3(VEX_4V)
938    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
939    VEX_R = ~(RegEnc >> 3) & 1;
940
941    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
942    VEX_B = ~(BaseRegEnc >> 3) & 1;
943    unsigned IndexRegEnc =
944        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
945    VEX_X = ~(IndexRegEnc >> 3) & 1;
946
947    VEX_4V = ~getX86RegEncoding(MI, CurOp + X86::AddrNumOperands) & 0xf;
948    break;
949  }
950  case X86II::MRMSrcMemOp4: {
951    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
952    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
953    VEX_R = ~(RegEnc >> 3) & 1;
954
955    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
956    VEX_4V = ~VRegEnc & 0xf;
957
958    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
959    VEX_B = ~(BaseRegEnc >> 3) & 1;
960    unsigned IndexRegEnc =
961        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
962    VEX_X = ~(IndexRegEnc >> 3) & 1;
963    break;
964  }
965  case X86II::MRM0m:
966  case X86II::MRM1m:
967  case X86II::MRM2m:
968  case X86II::MRM3m:
969  case X86II::MRM4m:
970  case X86II::MRM5m:
971  case X86II::MRM6m:
972  case X86II::MRM7m: {
973    // MRM[0-9]m instructions forms:
974    //  MemAddr
975    //  src1(VEX_4V), MemAddr
976    if (HasVEX_4V) {
977      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
978      VEX_4V = ~VRegEnc & 0xf;
979      EVEX_V2 = ~(VRegEnc >> 4) & 1;
980    }
981
982    if (HasEVEX_K)
983      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
984
985    unsigned BaseRegEnc = getX86RegEncoding(MI, MemOperand + X86::AddrBaseReg);
986    VEX_B = ~(BaseRegEnc >> 3) & 1;
987    unsigned IndexRegEnc =
988        getX86RegEncoding(MI, MemOperand + X86::AddrIndexReg);
989    VEX_X = ~(IndexRegEnc >> 3) & 1;
990    if (!HasVEX_4V) // Only needed with VSIB which don't use VVVV.
991      EVEX_V2 = ~(IndexRegEnc >> 4) & 1;
992
993    break;
994  }
995  case X86II::MRMSrcReg: {
996    // MRMSrcReg instructions forms:
997    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(Imm[7:4])
998    //  dst(ModR/M), src1(ModR/M)
999    //  dst(ModR/M), src1(ModR/M), imm8
1000    //
1001    //  FMA4:
1002    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1003    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1004    VEX_R = ~(RegEnc >> 3) & 1;
1005    EVEX_R2 = ~(RegEnc >> 4) & 1;
1006
1007    if (HasEVEX_K)
1008      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1009
1010    if (HasVEX_4V) {
1011      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1012      VEX_4V = ~VRegEnc & 0xf;
1013      EVEX_V2 = ~(VRegEnc >> 4) & 1;
1014    }
1015
1016    RegEnc = getX86RegEncoding(MI, CurOp++);
1017    VEX_B = ~(RegEnc >> 3) & 1;
1018    VEX_X = ~(RegEnc >> 4) & 1;
1019
1020    if (EVEX_b) {
1021      if (HasEVEX_RC) {
1022        unsigned RcOperand = NumOps - 1;
1023        assert(RcOperand >= CurOp);
1024        EVEX_rc = MI.getOperand(RcOperand).getImm();
1025        assert(EVEX_rc <= 3 && "Invalid rounding control!");
1026      }
1027      EncodeRC = true;
1028    }
1029    break;
1030  }
1031  case X86II::MRMSrcReg4VOp3: {
1032    // Instruction format for 4VOp3:
1033    //   src1(ModR/M), src2(ModR/M), src3(VEX_4V)
1034    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1035    VEX_R = ~(RegEnc >> 3) & 1;
1036
1037    RegEnc = getX86RegEncoding(MI, CurOp++);
1038    VEX_B = ~(RegEnc >> 3) & 1;
1039
1040    VEX_4V = ~getX86RegEncoding(MI, CurOp++) & 0xf;
1041    break;
1042  }
1043  case X86II::MRMSrcRegOp4: {
1044    //  dst(ModR/M.reg), src1(VEX_4V), src2(Imm[7:4]), src3(ModR/M),
1045    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1046    VEX_R = ~(RegEnc >> 3) & 1;
1047
1048    unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1049    VEX_4V = ~VRegEnc & 0xf;
1050
1051    // Skip second register source (encoded in Imm[7:4])
1052    ++CurOp;
1053
1054    RegEnc = getX86RegEncoding(MI, CurOp++);
1055    VEX_B = ~(RegEnc >> 3) & 1;
1056    VEX_X = ~(RegEnc >> 4) & 1;
1057    break;
1058  }
1059  case X86II::MRMDestReg: {
1060    // MRMDestReg instructions forms:
1061    //  dst(ModR/M), src(ModR/M)
1062    //  dst(ModR/M), src(ModR/M), imm8
1063    //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
1064    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1065    VEX_B = ~(RegEnc >> 3) & 1;
1066    VEX_X = ~(RegEnc >> 4) & 1;
1067
1068    if (HasEVEX_K)
1069      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1070
1071    if (HasVEX_4V) {
1072      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1073      VEX_4V = ~VRegEnc & 0xf;
1074      EVEX_V2 = ~(VRegEnc >> 4) & 1;
1075    }
1076
1077    RegEnc = getX86RegEncoding(MI, CurOp++);
1078    VEX_R = ~(RegEnc >> 3) & 1;
1079    EVEX_R2 = ~(RegEnc >> 4) & 1;
1080    if (EVEX_b)
1081      EncodeRC = true;
1082    break;
1083  }
1084  case X86II::MRM0r:
1085  case X86II::MRM1r:
1086  case X86II::MRM2r:
1087  case X86II::MRM3r:
1088  case X86II::MRM4r:
1089  case X86II::MRM5r:
1090  case X86II::MRM6r:
1091  case X86II::MRM7r: {
1092    // MRM0r-MRM7r instructions forms:
1093    //  dst(VEX_4V), src(ModR/M), imm8
1094    if (HasVEX_4V) {
1095      unsigned VRegEnc = getX86RegEncoding(MI, CurOp++);
1096      VEX_4V = ~VRegEnc & 0xf;
1097      EVEX_V2 = ~(VRegEnc >> 4) & 1;
1098    }
1099    if (HasEVEX_K)
1100      EVEX_aaa = getX86RegEncoding(MI, CurOp++);
1101
1102    unsigned RegEnc = getX86RegEncoding(MI, CurOp++);
1103    VEX_B = ~(RegEnc >> 3) & 1;
1104    VEX_X = ~(RegEnc >> 4) & 1;
1105    break;
1106  }
1107  }
1108
1109  if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
1110    // VEX opcode prefix can have 2 or 3 bytes
1111    //
1112    //  3 bytes:
1113    //    +-----+ +--------------+ +-------------------+
1114    //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
1115    //    +-----+ +--------------+ +-------------------+
1116    //  2 bytes:
1117    //    +-----+ +-------------------+
1118    //    | C5h | | R | vvvv | L | pp |
1119    //    +-----+ +-------------------+
1120    //
1121    //  XOP uses a similar prefix:
1122    //    +-----+ +--------------+ +-------------------+
1123    //    | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
1124    //    +-----+ +--------------+ +-------------------+
1125    uint8_t LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
1126
1127    // Can we use the 2 byte VEX prefix?
1128    if (!(MI.getFlags() & X86::IP_USE_VEX3) && Encoding == X86II::VEX &&
1129        VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
1130      emitByte(0xC5, CurByte, OS);
1131      emitByte(LastByte | (VEX_R << 7), CurByte, OS);
1132      return;
1133    }
1134
1135    // 3 byte VEX prefix
1136    emitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
1137    emitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
1138    emitByte(LastByte | (VEX_W << 7), CurByte, OS);
1139  } else {
1140    assert(Encoding == X86II::EVEX && "unknown encoding!");
1141    // EVEX opcode prefix can have 4 bytes
1142    //
1143    // +-----+ +--------------+ +-------------------+ +------------------------+
1144    // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
1145    // +-----+ +--------------+ +-------------------+ +------------------------+
1146    assert((VEX_5M & 0x3) == VEX_5M &&
1147           "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
1148
1149    emitByte(0x62, CurByte, OS);
1150    emitByte((VEX_R << 7) | (VEX_X << 6) | (VEX_B << 5) | (EVEX_R2 << 4) |
1151                 VEX_5M,
1152             CurByte, OS);
1153    emitByte((VEX_W << 7) | (VEX_4V << 3) | (EVEX_U << 2) | VEX_PP, CurByte,
1154             OS);
1155    if (EncodeRC)
1156      emitByte((EVEX_z << 7) | (EVEX_rc << 5) | (EVEX_b << 4) | (EVEX_V2 << 3) |
1157                   EVEX_aaa,
1158               CurByte, OS);
1159    else
1160      emitByte((EVEX_z << 7) | (EVEX_L2 << 6) | (VEX_L << 5) | (EVEX_b << 4) |
1161                   (EVEX_V2 << 3) | EVEX_aaa,
1162               CurByte, OS);
1163  }
1164}
1165
1166/// Determine if the MCInst has to be encoded with a X86-64 REX prefix which
1167/// specifies 1) 64-bit instructions, 2) non-default operand size, and 3) use
1168/// of X86-64 extended registers.
1169uint8_t X86MCCodeEmitter::determineREXPrefix(const MCInst &MI, uint64_t TSFlags,
1170                                             int MemOperand,
1171                                             const MCInstrDesc &Desc) const {
1172  uint8_t REX = 0;
1173  bool UsesHighByteReg = false;
1174
1175  if (TSFlags & X86II::REX_W)
1176    REX |= 1 << 3; // set REX.W
1177
1178  if (MI.getNumOperands() == 0)
1179    return REX;
1180
1181  unsigned NumOps = MI.getNumOperands();
1182  unsigned CurOp = X86II::getOperandBias(Desc);
1183
1184  // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
1185  for (unsigned i = CurOp; i != NumOps; ++i) {
1186    const MCOperand &MO = MI.getOperand(i);
1187    if (!MO.isReg())
1188      continue;
1189    unsigned Reg = MO.getReg();
1190    if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
1191      UsesHighByteReg = true;
1192    if (X86II::isX86_64NonExtLowByteReg(Reg))
1193      // FIXME: The caller of determineREXPrefix slaps this prefix onto anything
1194      // that returns non-zero.
1195      REX |= 0x40; // REX fixed encoding prefix
1196  }
1197
1198  switch (TSFlags & X86II::FormMask) {
1199  case X86II::AddRegFrm:
1200    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1201    break;
1202  case X86II::MRMSrcReg:
1203  case X86II::MRMSrcRegCC:
1204    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1205    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1206    break;
1207  case X86II::MRMSrcMem:
1208  case X86II::MRMSrcMemCC:
1209    REX |= isREXExtendedReg(MI, CurOp++) << 2;                        // REX.R
1210    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1211    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1212    CurOp += X86::AddrNumOperands;
1213    break;
1214  case X86II::MRMDestReg:
1215    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1216    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1217    break;
1218  case X86II::MRMDestMem:
1219    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1220    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1221    CurOp += X86::AddrNumOperands;
1222    REX |= isREXExtendedReg(MI, CurOp++) << 2; // REX.R
1223    break;
1224  case X86II::MRMXmCC:
1225  case X86II::MRMXm:
1226  case X86II::MRM0m:
1227  case X86II::MRM1m:
1228  case X86II::MRM2m:
1229  case X86II::MRM3m:
1230  case X86II::MRM4m:
1231  case X86II::MRM5m:
1232  case X86II::MRM6m:
1233  case X86II::MRM7m:
1234    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrBaseReg) << 0;  // REX.B
1235    REX |= isREXExtendedReg(MI, MemOperand + X86::AddrIndexReg) << 1; // REX.X
1236    break;
1237  case X86II::MRMXrCC:
1238  case X86II::MRMXr:
1239  case X86II::MRM0r:
1240  case X86II::MRM1r:
1241  case X86II::MRM2r:
1242  case X86II::MRM3r:
1243  case X86II::MRM4r:
1244  case X86II::MRM5r:
1245  case X86II::MRM6r:
1246  case X86II::MRM7r:
1247    REX |= isREXExtendedReg(MI, CurOp++) << 0; // REX.B
1248    break;
1249  }
1250  if (REX && UsesHighByteReg)
1251    report_fatal_error(
1252        "Cannot encode high byte register in REX-prefixed instruction");
1253
1254  return REX;
1255}
1256
1257/// Emit segment override opcode prefix as needed.
1258void X86MCCodeEmitter::emitSegmentOverridePrefix(unsigned &CurByte,
1259                                                 unsigned SegOperand,
1260                                                 const MCInst &MI,
1261                                                 raw_ostream &OS) const {
1262  // Check for explicit segment override on memory operand.
1263  switch (MI.getOperand(SegOperand).getReg()) {
1264  default:
1265    llvm_unreachable("Unknown segment register!");
1266  case 0:
1267    break;
1268  case X86::CS:
1269    emitByte(0x2E, CurByte, OS);
1270    break;
1271  case X86::SS:
1272    emitByte(0x36, CurByte, OS);
1273    break;
1274  case X86::DS:
1275    emitByte(0x3E, CurByte, OS);
1276    break;
1277  case X86::ES:
1278    emitByte(0x26, CurByte, OS);
1279    break;
1280  case X86::FS:
1281    emitByte(0x64, CurByte, OS);
1282    break;
1283  case X86::GS:
1284    emitByte(0x65, CurByte, OS);
1285    break;
1286  }
1287}
1288
1289/// Emit all instruction prefixes prior to the opcode.
1290///
1291/// \param MemOperand the operand # of the start of a memory operand if present.
1292/// If not present, it is -1.
1293///
1294/// \returns true if a REX prefix was used.
1295bool X86MCCodeEmitter::emitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
1296                                        int MemOperand, const MCInst &MI,
1297                                        const MCInstrDesc &Desc,
1298                                        const MCSubtargetInfo &STI,
1299                                        raw_ostream &OS) const {
1300  bool Ret = false;
1301  // Emit the operand size opcode prefix as needed.
1302  if ((TSFlags & X86II::OpSizeMask) ==
1303      (STI.hasFeature(X86::Mode16Bit) ? X86II::OpSize32 : X86II::OpSize16))
1304    emitByte(0x66, CurByte, OS);
1305
1306  // Emit the LOCK opcode prefix.
1307  if (TSFlags & X86II::LOCK || MI.getFlags() & X86::IP_HAS_LOCK)
1308    emitByte(0xF0, CurByte, OS);
1309
1310  // Emit the NOTRACK opcode prefix.
1311  if (TSFlags & X86II::NOTRACK || MI.getFlags() & X86::IP_HAS_NOTRACK)
1312    emitByte(0x3E, CurByte, OS);
1313
1314  switch (TSFlags & X86II::OpPrefixMask) {
1315  case X86II::PD: // 66
1316    emitByte(0x66, CurByte, OS);
1317    break;
1318  case X86II::XS: // F3
1319    emitByte(0xF3, CurByte, OS);
1320    break;
1321  case X86II::XD: // F2
1322    emitByte(0xF2, CurByte, OS);
1323    break;
1324  }
1325
1326  // Handle REX prefix.
1327  // FIXME: Can this come before F2 etc to simplify emission?
1328  if (STI.hasFeature(X86::Mode64Bit)) {
1329    if (uint8_t REX = determineREXPrefix(MI, TSFlags, MemOperand, Desc)) {
1330      emitByte(0x40 | REX, CurByte, OS);
1331      Ret = true;
1332    }
1333  } else {
1334    assert(!(TSFlags & X86II::REX_W) && "REX.W requires 64bit mode.");
1335  }
1336
1337  // 0x0F escape code must be emitted just before the opcode.
1338  switch (TSFlags & X86II::OpMapMask) {
1339  case X86II::TB:        // Two-byte opcode map
1340  case X86II::T8:        // 0F 38
1341  case X86II::TA:        // 0F 3A
1342  case X86II::ThreeDNow: // 0F 0F, second 0F emitted by caller.
1343    emitByte(0x0F, CurByte, OS);
1344    break;
1345  }
1346
1347  switch (TSFlags & X86II::OpMapMask) {
1348  case X86II::T8: // 0F 38
1349    emitByte(0x38, CurByte, OS);
1350    break;
1351  case X86II::TA: // 0F 3A
1352    emitByte(0x3A, CurByte, OS);
1353    break;
1354  }
1355  return Ret;
1356}
1357
1358void X86MCCodeEmitter::emitPrefix(const MCInst &MI, raw_ostream &OS,
1359                                  const MCSubtargetInfo &STI) const {
1360  unsigned Opcode = MI.getOpcode();
1361  const MCInstrDesc &Desc = MCII.get(Opcode);
1362  uint64_t TSFlags = Desc.TSFlags;
1363
1364  // Pseudo instructions don't get encoded.
1365  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1366    return;
1367
1368  unsigned CurOp = X86II::getOperandBias(Desc);
1369
1370  // Keep track of the current byte being emitted.
1371  unsigned CurByte = 0;
1372
1373  bool Rex = false;
1374  emitPrefixImpl(TSFlags, CurOp, CurByte, Rex, MI, Desc, STI, OS);
1375}
1376
1377void X86MCCodeEmitter::encodeInstruction(const MCInst &MI, raw_ostream &OS,
1378                                         SmallVectorImpl<MCFixup> &Fixups,
1379                                         const MCSubtargetInfo &STI) const {
1380  unsigned Opcode = MI.getOpcode();
1381  const MCInstrDesc &Desc = MCII.get(Opcode);
1382  uint64_t TSFlags = Desc.TSFlags;
1383
1384  // Pseudo instructions don't get encoded.
1385  if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
1386    return;
1387
1388  unsigned NumOps = Desc.getNumOperands();
1389  unsigned CurOp = X86II::getOperandBias(Desc);
1390
1391  // Keep track of the current byte being emitted.
1392  unsigned CurByte = 0;
1393
1394  bool Rex = false;
1395  emitPrefixImpl(TSFlags, CurOp, CurByte, Rex, MI, Desc, STI, OS);
1396
1397  // It uses the VEX.VVVV field?
1398  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1399  bool HasVEX_I8Reg = (TSFlags & X86II::ImmMask) == X86II::Imm8Reg;
1400
1401  // It uses the EVEX.aaa field?
1402  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1403  bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
1404
1405  // Used if a register is encoded in 7:4 of immediate.
1406  unsigned I8RegNum = 0;
1407
1408  uint8_t BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
1409
1410  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1411    BaseOpcode = 0x0F; // Weird 3DNow! encoding.
1412
1413  unsigned OpcodeOffset = 0;
1414
1415  uint64_t Form = TSFlags & X86II::FormMask;
1416  switch (Form) {
1417  default:
1418    errs() << "FORM: " << Form << "\n";
1419    llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
1420  case X86II::Pseudo:
1421    llvm_unreachable("Pseudo instruction shouldn't be emitted");
1422  case X86II::RawFrmDstSrc:
1423  case X86II::RawFrmSrc:
1424  case X86II::RawFrmDst:
1425    emitByte(BaseOpcode, CurByte, OS);
1426    break;
1427  case X86II::AddCCFrm: {
1428    // This will be added to the opcode in the fallthrough.
1429    OpcodeOffset = MI.getOperand(NumOps - 1).getImm();
1430    assert(OpcodeOffset < 16 && "Unexpected opcode offset!");
1431    --NumOps; // Drop the operand from the end.
1432    LLVM_FALLTHROUGH;
1433  case X86II::RawFrm:
1434    emitByte(BaseOpcode + OpcodeOffset, CurByte, OS);
1435
1436    if (!STI.hasFeature(X86::Mode64Bit) || !isPCRel32Branch(MI, MCII))
1437      break;
1438
1439    const MCOperand &Op = MI.getOperand(CurOp++);
1440    emitImmediate(Op, MI.getLoc(), X86II::getSizeOfImm(TSFlags),
1441                  MCFixupKind(X86::reloc_branch_4byte_pcrel), CurByte, OS,
1442                  Fixups);
1443    break;
1444  }
1445  case X86II::RawFrmMemOffs:
1446    emitByte(BaseOpcode, CurByte, OS);
1447    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1448                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1449                  CurByte, OS, Fixups);
1450    ++CurOp; // skip segment operand
1451    break;
1452  case X86II::RawFrmImm8:
1453    emitByte(BaseOpcode, CurByte, OS);
1454    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1455                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1456                  CurByte, OS, Fixups);
1457    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
1458                  OS, Fixups);
1459    break;
1460  case X86II::RawFrmImm16:
1461    emitByte(BaseOpcode, CurByte, OS);
1462    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1463                  X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1464                  CurByte, OS, Fixups);
1465    emitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
1466                  OS, Fixups);
1467    break;
1468
1469  case X86II::AddRegFrm:
1470    emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
1471    break;
1472
1473  case X86II::MRMDestReg: {
1474    emitByte(BaseOpcode, CurByte, OS);
1475    unsigned SrcRegNum = CurOp + 1;
1476
1477    if (HasEVEX_K) // Skip writemask
1478      ++SrcRegNum;
1479
1480    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1481      ++SrcRegNum;
1482
1483    emitRegModRMByte(MI.getOperand(CurOp),
1484                     getX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
1485    CurOp = SrcRegNum + 1;
1486    break;
1487  }
1488  case X86II::MRMDestMem: {
1489    emitByte(BaseOpcode, CurByte, OS);
1490    unsigned SrcRegNum = CurOp + X86::AddrNumOperands;
1491
1492    if (HasEVEX_K) // Skip writemask
1493      ++SrcRegNum;
1494
1495    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1496      ++SrcRegNum;
1497
1498    emitMemModRMByte(MI, CurOp, getX86RegNum(MI.getOperand(SrcRegNum)), TSFlags,
1499                     Rex, CurByte, OS, Fixups, STI);
1500    CurOp = SrcRegNum + 1;
1501    break;
1502  }
1503  case X86II::MRMSrcReg: {
1504    emitByte(BaseOpcode, CurByte, OS);
1505    unsigned SrcRegNum = CurOp + 1;
1506
1507    if (HasEVEX_K) // Skip writemask
1508      ++SrcRegNum;
1509
1510    if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
1511      ++SrcRegNum;
1512
1513    emitRegModRMByte(MI.getOperand(SrcRegNum),
1514                     getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1515    CurOp = SrcRegNum + 1;
1516    if (HasVEX_I8Reg)
1517      I8RegNum = getX86RegEncoding(MI, CurOp++);
1518    // do not count the rounding control operand
1519    if (HasEVEX_RC)
1520      --NumOps;
1521    break;
1522  }
1523  case X86II::MRMSrcReg4VOp3: {
1524    emitByte(BaseOpcode, CurByte, OS);
1525    unsigned SrcRegNum = CurOp + 1;
1526
1527    emitRegModRMByte(MI.getOperand(SrcRegNum),
1528                     getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1529    CurOp = SrcRegNum + 1;
1530    ++CurOp; // Encoded in VEX.VVVV
1531    break;
1532  }
1533  case X86II::MRMSrcRegOp4: {
1534    emitByte(BaseOpcode, CurByte, OS);
1535    unsigned SrcRegNum = CurOp + 1;
1536
1537    // Skip 1st src (which is encoded in VEX_VVVV)
1538    ++SrcRegNum;
1539
1540    // Capture 2nd src (which is encoded in Imm[7:4])
1541    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1542    I8RegNum = getX86RegEncoding(MI, SrcRegNum++);
1543
1544    emitRegModRMByte(MI.getOperand(SrcRegNum),
1545                     getX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
1546    CurOp = SrcRegNum + 1;
1547    break;
1548  }
1549  case X86II::MRMSrcRegCC: {
1550    unsigned FirstOp = CurOp++;
1551    unsigned SecondOp = CurOp++;
1552
1553    unsigned CC = MI.getOperand(CurOp++).getImm();
1554    emitByte(BaseOpcode + CC, CurByte, OS);
1555
1556    emitRegModRMByte(MI.getOperand(SecondOp),
1557                     getX86RegNum(MI.getOperand(FirstOp)), CurByte, OS);
1558    break;
1559  }
1560  case X86II::MRMSrcMem: {
1561    unsigned FirstMemOp = CurOp + 1;
1562
1563    if (HasEVEX_K) // Skip writemask
1564      ++FirstMemOp;
1565
1566    if (HasVEX_4V)
1567      ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1568
1569    emitByte(BaseOpcode, CurByte, OS);
1570
1571    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1572                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1573    CurOp = FirstMemOp + X86::AddrNumOperands;
1574    if (HasVEX_I8Reg)
1575      I8RegNum = getX86RegEncoding(MI, CurOp++);
1576    break;
1577  }
1578  case X86II::MRMSrcMem4VOp3: {
1579    unsigned FirstMemOp = CurOp + 1;
1580
1581    emitByte(BaseOpcode, CurByte, OS);
1582
1583    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1584                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1585    CurOp = FirstMemOp + X86::AddrNumOperands;
1586    ++CurOp; // Encoded in VEX.VVVV.
1587    break;
1588  }
1589  case X86II::MRMSrcMemOp4: {
1590    unsigned FirstMemOp = CurOp + 1;
1591
1592    ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
1593
1594    // Capture second register source (encoded in Imm[7:4])
1595    assert(HasVEX_I8Reg && "MRMSrcRegOp4 should imply VEX_I8Reg");
1596    I8RegNum = getX86RegEncoding(MI, FirstMemOp++);
1597
1598    emitByte(BaseOpcode, CurByte, OS);
1599
1600    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(CurOp)),
1601                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1602    CurOp = FirstMemOp + X86::AddrNumOperands;
1603    break;
1604  }
1605  case X86II::MRMSrcMemCC: {
1606    unsigned RegOp = CurOp++;
1607    unsigned FirstMemOp = CurOp;
1608    CurOp = FirstMemOp + X86::AddrNumOperands;
1609
1610    unsigned CC = MI.getOperand(CurOp++).getImm();
1611    emitByte(BaseOpcode + CC, CurByte, OS);
1612
1613    emitMemModRMByte(MI, FirstMemOp, getX86RegNum(MI.getOperand(RegOp)),
1614                     TSFlags, Rex, CurByte, OS, Fixups, STI);
1615    break;
1616  }
1617
1618  case X86II::MRMXrCC: {
1619    unsigned RegOp = CurOp++;
1620
1621    unsigned CC = MI.getOperand(CurOp++).getImm();
1622    emitByte(BaseOpcode + CC, CurByte, OS);
1623    emitRegModRMByte(MI.getOperand(RegOp), 0, CurByte, OS);
1624    break;
1625  }
1626
1627  case X86II::MRMXr:
1628  case X86II::MRM0r:
1629  case X86II::MRM1r:
1630  case X86II::MRM2r:
1631  case X86II::MRM3r:
1632  case X86II::MRM4r:
1633  case X86II::MRM5r:
1634  case X86II::MRM6r:
1635  case X86II::MRM7r:
1636    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1637      ++CurOp;
1638    if (HasEVEX_K) // Skip writemask
1639      ++CurOp;
1640    emitByte(BaseOpcode, CurByte, OS);
1641    emitRegModRMByte(MI.getOperand(CurOp++),
1642                     (Form == X86II::MRMXr) ? 0 : Form - X86II::MRM0r, CurByte,
1643                     OS);
1644    break;
1645
1646  case X86II::MRMXmCC: {
1647    unsigned FirstMemOp = CurOp;
1648    CurOp = FirstMemOp + X86::AddrNumOperands;
1649
1650    unsigned CC = MI.getOperand(CurOp++).getImm();
1651    emitByte(BaseOpcode + CC, CurByte, OS);
1652
1653    emitMemModRMByte(MI, FirstMemOp, 0, TSFlags, Rex, CurByte, OS, Fixups, STI);
1654    break;
1655  }
1656
1657  case X86II::MRMXm:
1658  case X86II::MRM0m:
1659  case X86II::MRM1m:
1660  case X86II::MRM2m:
1661  case X86II::MRM3m:
1662  case X86II::MRM4m:
1663  case X86II::MRM5m:
1664  case X86II::MRM6m:
1665  case X86II::MRM7m:
1666    if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
1667      ++CurOp;
1668    if (HasEVEX_K) // Skip writemask
1669      ++CurOp;
1670    emitByte(BaseOpcode, CurByte, OS);
1671    emitMemModRMByte(MI, CurOp,
1672                     (Form == X86II::MRMXm) ? 0 : Form - X86II::MRM0m, TSFlags,
1673                     Rex, CurByte, OS, Fixups, STI);
1674    CurOp += X86::AddrNumOperands;
1675    break;
1676
1677  case X86II::MRM_C0:
1678  case X86II::MRM_C1:
1679  case X86II::MRM_C2:
1680  case X86II::MRM_C3:
1681  case X86II::MRM_C4:
1682  case X86II::MRM_C5:
1683  case X86II::MRM_C6:
1684  case X86II::MRM_C7:
1685  case X86II::MRM_C8:
1686  case X86II::MRM_C9:
1687  case X86II::MRM_CA:
1688  case X86II::MRM_CB:
1689  case X86II::MRM_CC:
1690  case X86II::MRM_CD:
1691  case X86II::MRM_CE:
1692  case X86II::MRM_CF:
1693  case X86II::MRM_D0:
1694  case X86II::MRM_D1:
1695  case X86II::MRM_D2:
1696  case X86II::MRM_D3:
1697  case X86II::MRM_D4:
1698  case X86II::MRM_D5:
1699  case X86II::MRM_D6:
1700  case X86II::MRM_D7:
1701  case X86II::MRM_D8:
1702  case X86II::MRM_D9:
1703  case X86II::MRM_DA:
1704  case X86II::MRM_DB:
1705  case X86II::MRM_DC:
1706  case X86II::MRM_DD:
1707  case X86II::MRM_DE:
1708  case X86II::MRM_DF:
1709  case X86II::MRM_E0:
1710  case X86II::MRM_E1:
1711  case X86II::MRM_E2:
1712  case X86II::MRM_E3:
1713  case X86II::MRM_E4:
1714  case X86II::MRM_E5:
1715  case X86II::MRM_E6:
1716  case X86II::MRM_E7:
1717  case X86II::MRM_E8:
1718  case X86II::MRM_E9:
1719  case X86II::MRM_EA:
1720  case X86II::MRM_EB:
1721  case X86II::MRM_EC:
1722  case X86II::MRM_ED:
1723  case X86II::MRM_EE:
1724  case X86II::MRM_EF:
1725  case X86II::MRM_F0:
1726  case X86II::MRM_F1:
1727  case X86II::MRM_F2:
1728  case X86II::MRM_F3:
1729  case X86II::MRM_F4:
1730  case X86II::MRM_F5:
1731  case X86II::MRM_F6:
1732  case X86II::MRM_F7:
1733  case X86II::MRM_F8:
1734  case X86II::MRM_F9:
1735  case X86II::MRM_FA:
1736  case X86II::MRM_FB:
1737  case X86II::MRM_FC:
1738  case X86II::MRM_FD:
1739  case X86II::MRM_FE:
1740  case X86II::MRM_FF:
1741    emitByte(BaseOpcode, CurByte, OS);
1742    emitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
1743    break;
1744  }
1745
1746  if (HasVEX_I8Reg) {
1747    // The last source register of a 4 operand instruction in AVX is encoded
1748    // in bits[7:4] of a immediate byte.
1749    assert(I8RegNum < 16 && "Register encoding out of range");
1750    I8RegNum <<= 4;
1751    if (CurOp != NumOps) {
1752      unsigned Val = MI.getOperand(CurOp++).getImm();
1753      assert(Val < 16 && "Immediate operand value out of range");
1754      I8RegNum |= Val;
1755    }
1756    emitImmediate(MCOperand::createImm(I8RegNum), MI.getLoc(), 1, FK_Data_1,
1757                  CurByte, OS, Fixups);
1758  } else {
1759    // If there is a remaining operand, it must be a trailing immediate. Emit it
1760    // according to the right size for the instruction. Some instructions
1761    // (SSE4a extrq and insertq) have two trailing immediates.
1762    while (CurOp != NumOps && NumOps - CurOp <= 2) {
1763      emitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
1764                    X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
1765                    CurByte, OS, Fixups);
1766    }
1767  }
1768
1769  if ((TSFlags & X86II::OpMapMask) == X86II::ThreeDNow)
1770    emitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
1771
1772#ifndef NDEBUG
1773  // FIXME: Verify.
1774  if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
1775    errs() << "Cannot encode all operands of: ";
1776    MI.dump();
1777    errs() << '\n';
1778    abort();
1779  }
1780#endif
1781}
1782
1783MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
1784                                            const MCRegisterInfo &MRI,
1785                                            MCContext &Ctx) {
1786  return new X86MCCodeEmitter(MCII, Ctx);
1787}
1788