X86BaseInfo.h revision 360784
1//===-- X86BaseInfo.h - Top level definitions for X86 -------- --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains small standalone helper functions and enum definitions for
10// the X86 target useful for the compiler back-end and the MC libraries.
11// As such, it deliberately does not include references to LLVM core
12// code gen types, passes, etc..
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
17#define LLVM_LIB_TARGET_X86_MCTARGETDESC_X86BASEINFO_H
18
19#include "X86MCTargetDesc.h"
20#include "llvm/MC/MCInstrDesc.h"
21#include "llvm/Support/DataTypes.h"
22#include "llvm/Support/ErrorHandling.h"
23
24namespace llvm {
25
26namespace X86 {
27  // Enums for memory operand decoding.  Each memory operand is represented with
28  // a 5 operand sequence in the form:
29  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
30  // These enums help decode this.
31  enum {
32    AddrBaseReg = 0,
33    AddrScaleAmt = 1,
34    AddrIndexReg = 2,
35    AddrDisp = 3,
36
37    /// AddrSegmentReg - The operand # of the segment in the memory operand.
38    AddrSegmentReg = 4,
39
40    /// AddrNumOperands - Total number of operands in a memory reference.
41    AddrNumOperands = 5
42  };
43
44  /// AVX512 static rounding constants.  These need to match the values in
45  /// avx512fintrin.h.
46  enum STATIC_ROUNDING {
47    TO_NEAREST_INT = 0,
48    TO_NEG_INF = 1,
49    TO_POS_INF = 2,
50    TO_ZERO = 3,
51    CUR_DIRECTION = 4,
52    NO_EXC = 8
53  };
54
55  /// The constants to describe instr prefixes if there are
56  enum IPREFIXES {
57    IP_NO_PREFIX = 0,
58    IP_HAS_OP_SIZE = 1,
59    IP_HAS_AD_SIZE = 2,
60    IP_HAS_REPEAT_NE = 4,
61    IP_HAS_REPEAT = 8,
62    IP_HAS_LOCK = 16,
63    IP_HAS_NOTRACK = 32,
64    IP_USE_VEX3 = 64,
65  };
66
67  enum OperandType : unsigned {
68    /// AVX512 embedded rounding control. This should only have values 0-3.
69    OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
70    OPERAND_COND_CODE,
71  };
72
73  // X86 specific condition code. These correspond to X86_*_COND in
74  // X86InstrInfo.td. They must be kept in synch.
75  enum CondCode {
76    COND_O = 0,
77    COND_NO = 1,
78    COND_B = 2,
79    COND_AE = 3,
80    COND_E = 4,
81    COND_NE = 5,
82    COND_BE = 6,
83    COND_A = 7,
84    COND_S = 8,
85    COND_NS = 9,
86    COND_P = 10,
87    COND_NP = 11,
88    COND_L = 12,
89    COND_GE = 13,
90    COND_LE = 14,
91    COND_G = 15,
92    LAST_VALID_COND = COND_G,
93
94    // Artificial condition codes. These are used by AnalyzeBranch
95    // to indicate a block terminated with two conditional branches that together
96    // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
97    // which can't be represented on x86 with a single condition. These
98    // are never used in MachineInstrs and are inverses of one another.
99    COND_NE_OR_P,
100    COND_E_AND_NP,
101
102    COND_INVALID
103  };
104
105  // The classification for the first instruction in macro fusion.
106  enum class FirstMacroFusionInstKind {
107    // TEST
108    Test,
109    // CMP
110    Cmp,
111    // AND
112    And,
113    // ADD, SUB
114    AddSub,
115    // INC, DEC
116    IncDec,
117    // Not valid as a first macro fusion instruction
118    Invalid
119  };
120
121  enum class SecondMacroFusionInstKind {
122    // JA, JB and variants.
123    AB,
124    // JE, JL, JG and variants.
125    ELG,
126    // JS, JP, JO and variants
127    SPO,
128    // Not a fusible jump.
129    Invalid,
130  };
131
132  /// \returns the type of the first instruction in macro-fusion.
133  inline FirstMacroFusionInstKind
134  classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
135    switch (Opcode) {
136    default:
137      return FirstMacroFusionInstKind::Invalid;
138    // TEST
139    case X86::TEST16i16:
140    case X86::TEST16mr:
141    case X86::TEST16ri:
142    case X86::TEST16rr:
143    case X86::TEST32i32:
144    case X86::TEST32mr:
145    case X86::TEST32ri:
146    case X86::TEST32rr:
147    case X86::TEST64i32:
148    case X86::TEST64mr:
149    case X86::TEST64ri32:
150    case X86::TEST64rr:
151    case X86::TEST8i8:
152    case X86::TEST8mr:
153    case X86::TEST8ri:
154    case X86::TEST8rr:
155      return FirstMacroFusionInstKind::Test;
156    case X86::AND16i16:
157    case X86::AND16ri:
158    case X86::AND16ri8:
159    case X86::AND16rm:
160    case X86::AND16rr:
161    case X86::AND16rr_REV:
162    case X86::AND32i32:
163    case X86::AND32ri:
164    case X86::AND32ri8:
165    case X86::AND32rm:
166    case X86::AND32rr:
167    case X86::AND32rr_REV:
168    case X86::AND64i32:
169    case X86::AND64ri32:
170    case X86::AND64ri8:
171    case X86::AND64rm:
172    case X86::AND64rr:
173    case X86::AND64rr_REV:
174    case X86::AND8i8:
175    case X86::AND8ri:
176    case X86::AND8ri8:
177    case X86::AND8rm:
178    case X86::AND8rr:
179    case X86::AND8rr_REV:
180      return FirstMacroFusionInstKind::And;
181    // CMP
182    case X86::CMP16i16:
183    case X86::CMP16mr:
184    case X86::CMP16ri:
185    case X86::CMP16ri8:
186    case X86::CMP16rm:
187    case X86::CMP16rr:
188    case X86::CMP16rr_REV:
189    case X86::CMP32i32:
190    case X86::CMP32mr:
191    case X86::CMP32ri:
192    case X86::CMP32ri8:
193    case X86::CMP32rm:
194    case X86::CMP32rr:
195    case X86::CMP32rr_REV:
196    case X86::CMP64i32:
197    case X86::CMP64mr:
198    case X86::CMP64ri32:
199    case X86::CMP64ri8:
200    case X86::CMP64rm:
201    case X86::CMP64rr:
202    case X86::CMP64rr_REV:
203    case X86::CMP8i8:
204    case X86::CMP8mr:
205    case X86::CMP8ri:
206    case X86::CMP8ri8:
207    case X86::CMP8rm:
208    case X86::CMP8rr:
209    case X86::CMP8rr_REV:
210      return FirstMacroFusionInstKind::Cmp;
211    // ADD
212    case X86::ADD16i16:
213    case X86::ADD16ri:
214    case X86::ADD16ri8:
215    case X86::ADD16rm:
216    case X86::ADD16rr:
217    case X86::ADD16rr_REV:
218    case X86::ADD32i32:
219    case X86::ADD32ri:
220    case X86::ADD32ri8:
221    case X86::ADD32rm:
222    case X86::ADD32rr:
223    case X86::ADD32rr_REV:
224    case X86::ADD64i32:
225    case X86::ADD64ri32:
226    case X86::ADD64ri8:
227    case X86::ADD64rm:
228    case X86::ADD64rr:
229    case X86::ADD64rr_REV:
230    case X86::ADD8i8:
231    case X86::ADD8ri:
232    case X86::ADD8ri8:
233    case X86::ADD8rm:
234    case X86::ADD8rr:
235    case X86::ADD8rr_REV:
236    // SUB
237    case X86::SUB16i16:
238    case X86::SUB16ri:
239    case X86::SUB16ri8:
240    case X86::SUB16rm:
241    case X86::SUB16rr:
242    case X86::SUB16rr_REV:
243    case X86::SUB32i32:
244    case X86::SUB32ri:
245    case X86::SUB32ri8:
246    case X86::SUB32rm:
247    case X86::SUB32rr:
248    case X86::SUB32rr_REV:
249    case X86::SUB64i32:
250    case X86::SUB64ri32:
251    case X86::SUB64ri8:
252    case X86::SUB64rm:
253    case X86::SUB64rr:
254    case X86::SUB64rr_REV:
255    case X86::SUB8i8:
256    case X86::SUB8ri:
257    case X86::SUB8ri8:
258    case X86::SUB8rm:
259    case X86::SUB8rr:
260    case X86::SUB8rr_REV:
261      return FirstMacroFusionInstKind::AddSub;
262    // INC
263    case X86::INC16r:
264    case X86::INC16r_alt:
265    case X86::INC32r:
266    case X86::INC32r_alt:
267    case X86::INC64r:
268    case X86::INC8r:
269    // DEC
270    case X86::DEC16r:
271    case X86::DEC16r_alt:
272    case X86::DEC32r:
273    case X86::DEC32r_alt:
274    case X86::DEC64r:
275    case X86::DEC8r:
276      return FirstMacroFusionInstKind::IncDec;
277    }
278  }
279
280  /// \returns the type of the second instruction in macro-fusion.
281  inline SecondMacroFusionInstKind
282  classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
283    if (CC == X86::COND_INVALID)
284      return SecondMacroFusionInstKind::Invalid;
285
286    switch (CC) {
287    default:
288      return SecondMacroFusionInstKind::Invalid;
289    // JE,JZ
290    case X86::COND_E:
291    // JNE,JNZ
292    case X86::COND_NE:
293    // JL,JNGE
294    case X86::COND_L:
295    // JLE,JNG
296    case X86::COND_LE:
297    // JG,JNLE
298    case X86::COND_G:
299    // JGE,JNL
300    case X86::COND_GE:
301      return SecondMacroFusionInstKind::ELG;
302    // JB,JC
303    case X86::COND_B:
304    // JNA,JBE
305    case X86::COND_BE:
306    // JA,JNBE
307    case X86::COND_A:
308    // JAE,JNC,JNB
309    case X86::COND_AE:
310      return SecondMacroFusionInstKind::AB;
311    // JS
312    case X86::COND_S:
313    // JNS
314    case X86::COND_NS:
315    // JP,JPE
316    case X86::COND_P:
317    // JNP,JPO
318    case X86::COND_NP:
319    // JO
320    case X86::COND_O:
321    // JNO
322    case X86::COND_NO:
323      return SecondMacroFusionInstKind::SPO;
324    }
325  }
326
327  /// \param FirstKind kind of the first instruction in macro fusion.
328  /// \param SecondKind kind of the second instruction in macro fusion.
329  ///
330  /// \returns true if the two instruction can be macro fused.
331  inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
332                           SecondMacroFusionInstKind SecondKind) {
333    switch (FirstKind) {
334    case X86::FirstMacroFusionInstKind::Test:
335    case X86::FirstMacroFusionInstKind::And:
336      return true;
337    case X86::FirstMacroFusionInstKind::Cmp:
338    case X86::FirstMacroFusionInstKind::AddSub:
339      return SecondKind == X86::SecondMacroFusionInstKind::AB ||
340             SecondKind == X86::SecondMacroFusionInstKind::ELG;
341    case X86::FirstMacroFusionInstKind::IncDec:
342      return SecondKind == X86::SecondMacroFusionInstKind::ELG;
343    case X86::FirstMacroFusionInstKind::Invalid:
344      return false;
345    }
346    llvm_unreachable("unknown fusion type");
347  }
348
349  /// Defines the possible values of the branch boundary alignment mask.
350  enum AlignBranchBoundaryKind : uint8_t {
351    AlignBranchNone = 0,
352    AlignBranchFused = 1U << 0,
353    AlignBranchJcc = 1U << 1,
354    AlignBranchJmp = 1U << 2,
355    AlignBranchCall = 1U << 3,
356    AlignBranchRet = 1U << 4,
357    AlignBranchIndirect = 1U << 5
358  };
359} // end namespace X86;
360
361/// X86II - This namespace holds all of the target specific flags that
362/// instruction info tracks.
363///
364namespace X86II {
365  /// Target Operand Flag enum.
366  enum TOF {
367    //===------------------------------------------------------------------===//
368    // X86 Specific MachineOperand flags.
369
370    MO_NO_FLAG,
371
372    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
373    /// relocation of:
374    ///    SYMBOL_LABEL + [. - PICBASELABEL]
375    MO_GOT_ABSOLUTE_ADDRESS,
376
377    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
378    /// immediate should get the value of the symbol minus the PIC base label:
379    ///    SYMBOL_LABEL - PICBASELABEL
380    MO_PIC_BASE_OFFSET,
381
382    /// MO_GOT - On a symbol operand this indicates that the immediate is the
383    /// offset to the GOT entry for the symbol name from the base of the GOT.
384    ///
385    /// See the X86-64 ELF ABI supplement for more details.
386    ///    SYMBOL_LABEL @GOT
387    MO_GOT,
388
389    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
390    /// the offset to the location of the symbol name from the base of the GOT.
391    ///
392    /// See the X86-64 ELF ABI supplement for more details.
393    ///    SYMBOL_LABEL @GOTOFF
394    MO_GOTOFF,
395
396    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
397    /// offset to the GOT entry for the symbol name from the current code
398    /// location.
399    ///
400    /// See the X86-64 ELF ABI supplement for more details.
401    ///    SYMBOL_LABEL @GOTPCREL
402    MO_GOTPCREL,
403
404    /// MO_PLT - On a symbol operand this indicates that the immediate is
405    /// offset to the PLT entry of symbol name from the current code location.
406    ///
407    /// See the X86-64 ELF ABI supplement for more details.
408    ///    SYMBOL_LABEL @PLT
409    MO_PLT,
410
411    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
412    /// the offset of the GOT entry with the TLS index structure that contains
413    /// the module number and variable offset for the symbol. Used in the
414    /// general dynamic TLS access model.
415    ///
416    /// See 'ELF Handling for Thread-Local Storage' for more details.
417    ///    SYMBOL_LABEL @TLSGD
418    MO_TLSGD,
419
420    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
421    /// the offset of the GOT entry with the TLS index for the module that
422    /// contains the symbol. When this index is passed to a call to
423    /// __tls_get_addr, the function will return the base address of the TLS
424    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
425    ///
426    /// See 'ELF Handling for Thread-Local Storage' for more details.
427    ///    SYMBOL_LABEL @TLSLD
428    MO_TLSLD,
429
430    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
431    /// the offset of the GOT entry with the TLS index for the module that
432    /// contains the symbol. When this index is passed to a call to
433    /// ___tls_get_addr, the function will return the base address of the TLS
434    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
435    ///
436    /// See 'ELF Handling for Thread-Local Storage' for more details.
437    ///    SYMBOL_LABEL @TLSLDM
438    MO_TLSLDM,
439
440    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
441    /// the offset of the GOT entry with the thread-pointer offset for the
442    /// symbol. Used in the x86-64 initial exec TLS access model.
443    ///
444    /// See 'ELF Handling for Thread-Local Storage' for more details.
445    ///    SYMBOL_LABEL @GOTTPOFF
446    MO_GOTTPOFF,
447
448    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
449    /// the absolute address of the GOT entry with the negative thread-pointer
450    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
451    /// model.
452    ///
453    /// See 'ELF Handling for Thread-Local Storage' for more details.
454    ///    SYMBOL_LABEL @INDNTPOFF
455    MO_INDNTPOFF,
456
457    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
458    /// the thread-pointer offset for the symbol. Used in the x86-64 local
459    /// exec TLS access model.
460    ///
461    /// See 'ELF Handling for Thread-Local Storage' for more details.
462    ///    SYMBOL_LABEL @TPOFF
463    MO_TPOFF,
464
465    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
466    /// the offset of the GOT entry with the TLS offset of the symbol. Used
467    /// in the local dynamic TLS access model.
468    ///
469    /// See 'ELF Handling for Thread-Local Storage' for more details.
470    ///    SYMBOL_LABEL @DTPOFF
471    MO_DTPOFF,
472
473    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
474    /// the negative thread-pointer offset for the symbol. Used in the IA32
475    /// local exec TLS access model.
476    ///
477    /// See 'ELF Handling for Thread-Local Storage' for more details.
478    ///    SYMBOL_LABEL @NTPOFF
479    MO_NTPOFF,
480
481    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
482    /// the offset of the GOT entry with the negative thread-pointer offset for
483    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
484    ///
485    /// See 'ELF Handling for Thread-Local Storage' for more details.
486    ///    SYMBOL_LABEL @GOTNTPOFF
487    MO_GOTNTPOFF,
488
489    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
490    /// reference is actually to the "__imp_FOO" symbol.  This is used for
491    /// dllimport linkage on windows.
492    MO_DLLIMPORT,
493
494    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
495    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
496    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
497    MO_DARWIN_NONLAZY,
498
499    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
500    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
501    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
502    MO_DARWIN_NONLAZY_PIC_BASE,
503
504    /// MO_TLVP - On a symbol operand this indicates that the immediate is
505    /// some TLS offset.
506    ///
507    /// This is the TLS offset for the Darwin TLS mechanism.
508    MO_TLVP,
509
510    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
511    /// is some TLS offset from the picbase.
512    ///
513    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
514    MO_TLVP_PIC_BASE,
515
516    /// MO_SECREL - On a symbol operand this indicates that the immediate is
517    /// the offset from beginning of section.
518    ///
519    /// This is the TLS offset for the COFF/Windows TLS mechanism.
520    MO_SECREL,
521
522    /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
523    /// to be an absolute symbol in range [0,128), so we can use the @ABS8
524    /// symbol modifier.
525    MO_ABS8,
526
527    /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
528    /// reference is actually to the ".refptr.FOO" symbol.  This is used for
529    /// stub symbols on windows.
530    MO_COFFSTUB,
531  };
532
533  enum : uint64_t {
534    //===------------------------------------------------------------------===//
535    // Instruction encodings.  These are the standard/most common forms for X86
536    // instructions.
537    //
538
539    // PseudoFrm - This represents an instruction that is a pseudo instruction
540    // or one that has not been implemented yet.  It is illegal to code generate
541    // it, but tolerated for intermediate implementation stages.
542    Pseudo         = 0,
543
544    /// Raw - This form is for instructions that don't have any operands, so
545    /// they are just a fixed opcode value, like 'leave'.
546    RawFrm         = 1,
547
548    /// AddRegFrm - This form is used for instructions like 'push r32' that have
549    /// their one register operand added to their opcode.
550    AddRegFrm      = 2,
551
552    /// RawFrmMemOffs - This form is for instructions that store an absolute
553    /// memory offset as an immediate with a possible segment override.
554    RawFrmMemOffs  = 3,
555
556    /// RawFrmSrc - This form is for instructions that use the source index
557    /// register SI/ESI/RSI with a possible segment override.
558    RawFrmSrc      = 4,
559
560    /// RawFrmDst - This form is for instructions that use the destination index
561    /// register DI/EDI/RDI.
562    RawFrmDst      = 5,
563
564    /// RawFrmDstSrc - This form is for instructions that use the source index
565    /// register SI/ESI/RSI with a possible segment override, and also the
566    /// destination index register DI/EDI/RDI.
567    RawFrmDstSrc   = 6,
568
569    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
570    /// immediates, the first of which is a 16-bit immediate (specified by
571    /// the imm encoding) and the second is a 8-bit fixed value.
572    RawFrmImm8 = 7,
573
574    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
575    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
576    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
577    /// manual, this operand is described as pntr16:32 and pntr16:16
578    RawFrmImm16 = 8,
579
580    /// AddCCFrm - This form is used for Jcc that encode the condition code
581    /// in the lower 4 bits of the opcode.
582    AddCCFrm = 9,
583
584    /// MRM[0-7][rm] - These forms are used to represent instructions that use
585    /// a Mod/RM byte, and use the middle field to hold extended opcode
586    /// information.  In the intel manual these are represented as /0, /1, ...
587    ///
588
589    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
590    /// to specify a destination, which in this case is memory.
591    ///
592    MRMDestMem     = 32,
593
594    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
595    /// to specify a source, which in this case is memory.
596    ///
597    MRMSrcMem      = 33,
598
599    /// MRMSrcMem4VOp3 - This form is used for instructions that encode
600    /// operand 3 with VEX.VVVV and load from memory.
601    ///
602    MRMSrcMem4VOp3 = 34,
603
604    /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
605    /// byte to specify the fourth source, which in this case is memory.
606    ///
607    MRMSrcMemOp4   = 35,
608
609    /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
610    /// byte to specify the operands and also encodes a condition code.
611    ///
612    MRMSrcMemCC    = 36,
613
614    /// MRMXm - This form is used for instructions that use the Mod/RM byte
615    /// to specify a memory source, but doesn't use the middle field. And has
616    /// a condition code.
617    ///
618    MRMXmCC = 38,
619
620    /// MRMXm - This form is used for instructions that use the Mod/RM byte
621    /// to specify a memory source, but doesn't use the middle field.
622    ///
623    MRMXm = 39,
624
625    // Next, instructions that operate on a memory r/m operand...
626    MRM0m = 40,  MRM1m = 41,  MRM2m = 42,  MRM3m = 43, // Format /0 /1 /2 /3
627    MRM4m = 44,  MRM5m = 45,  MRM6m = 46,  MRM7m = 47, // Format /4 /5 /6 /7
628
629    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
630    /// to specify a destination, which in this case is a register.
631    ///
632    MRMDestReg     = 48,
633
634    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
635    /// to specify a source, which in this case is a register.
636    ///
637    MRMSrcReg      = 49,
638
639    /// MRMSrcReg4VOp3 - This form is used for instructions that encode
640    /// operand 3 with VEX.VVVV and do not load from memory.
641    ///
642    MRMSrcReg4VOp3 = 50,
643
644    /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
645    /// byte to specify the fourth source, which in this case is a register.
646    ///
647    MRMSrcRegOp4   = 51,
648
649    /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
650    /// byte to specify the operands and also encodes a condition code
651    ///
652    MRMSrcRegCC    = 52,
653
654    /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
655    /// to specify a register source, but doesn't use the middle field. And has
656    /// a condition code.
657    ///
658    MRMXrCC = 54,
659
660    /// MRMXr - This form is used for instructions that use the Mod/RM byte
661    /// to specify a register source, but doesn't use the middle field.
662    ///
663    MRMXr = 55,
664
665    // Instructions that operate on a register r/m operand...
666    MRM0r = 56,  MRM1r = 57,  MRM2r = 58,  MRM3r = 59, // Format /0 /1 /2 /3
667    MRM4r = 60,  MRM5r = 61,  MRM6r = 62,  MRM7r = 63, // Format /4 /5 /6 /7
668
669    /// MRM_XX - A mod/rm byte of exactly 0xXX.
670    MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
671    MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
672    MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
673    MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
674    MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
675    MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
676    MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
677    MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
678    MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
679    MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
680    MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
681    MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
682    MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
683    MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
684    MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
685    MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
686
687    FormMask       = 127,
688
689    //===------------------------------------------------------------------===//
690    // Actual flags...
691
692    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
693    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
694    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
695    // prefix in 16-bit mode.
696    OpSizeShift = 7,
697    OpSizeMask = 0x3 << OpSizeShift,
698
699    OpSizeFixed  = 0 << OpSizeShift,
700    OpSize16     = 1 << OpSizeShift,
701    OpSize32     = 2 << OpSizeShift,
702
703    // AsSize - AdSizeX implies this instruction determines its need of 0x67
704    // prefix from a normal ModRM memory operand. The other types indicate that
705    // an operand is encoded with a specific width and a prefix is needed if
706    // it differs from the current mode.
707    AdSizeShift = OpSizeShift + 2,
708    AdSizeMask  = 0x3 << AdSizeShift,
709
710    AdSizeX  = 0 << AdSizeShift,
711    AdSize16 = 1 << AdSizeShift,
712    AdSize32 = 2 << AdSizeShift,
713    AdSize64 = 3 << AdSizeShift,
714
715    //===------------------------------------------------------------------===//
716    // OpPrefix - There are several prefix bytes that are used as opcode
717    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
718    // no prefix.
719    //
720    OpPrefixShift = AdSizeShift + 2,
721    OpPrefixMask  = 0x3 << OpPrefixShift,
722
723    // PD - Prefix code for packed double precision vector floating point
724    // operations performed in the SSE registers.
725    PD = 1 << OpPrefixShift,
726
727    // XS, XD - These prefix codes are for single and double precision scalar
728    // floating point operations performed in the SSE registers.
729    XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
730
731    //===------------------------------------------------------------------===//
732    // OpMap - This field determines which opcode map this instruction
733    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
734    //
735    OpMapShift = OpPrefixShift + 2,
736    OpMapMask  = 0x7 << OpMapShift,
737
738    // OB - OneByte - Set if this instruction has a one byte opcode.
739    OB = 0 << OpMapShift,
740
741    // TB - TwoByte - Set if this instruction has a two byte opcode, which
742    // starts with a 0x0F byte before the real opcode.
743    TB = 1 << OpMapShift,
744
745    // T8, TA - Prefix after the 0x0F prefix.
746    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
747
748    // XOP8 - Prefix to include use of imm byte.
749    XOP8 = 4 << OpMapShift,
750
751    // XOP9 - Prefix to exclude use of imm byte.
752    XOP9 = 5 << OpMapShift,
753
754    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
755    XOPA = 6 << OpMapShift,
756
757    /// ThreeDNow - This indicates that the instruction uses the
758    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
759    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
760    /// storing a classifier in the imm8 field.  To simplify our implementation,
761    /// we handle this by storeing the classifier in the opcode field and using
762    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
763    ThreeDNow = 7 << OpMapShift,
764
765    //===------------------------------------------------------------------===//
766    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
767    // They are used to specify GPRs and SSE registers, 64-bit operand size,
768    // etc. We only cares about REX.W and REX.R bits and only the former is
769    // statically determined.
770    //
771    REXShift    = OpMapShift + 3,
772    REX_W       = 1 << REXShift,
773
774    //===------------------------------------------------------------------===//
775    // This three-bit field describes the size of an immediate operand.  Zero is
776    // unused so that we can tell if we forgot to set a value.
777    ImmShift = REXShift + 1,
778    ImmMask    = 15 << ImmShift,
779    Imm8       = 1 << ImmShift,
780    Imm8PCRel  = 2 << ImmShift,
781    Imm8Reg    = 3 << ImmShift,
782    Imm16      = 4 << ImmShift,
783    Imm16PCRel = 5 << ImmShift,
784    Imm32      = 6 << ImmShift,
785    Imm32PCRel = 7 << ImmShift,
786    Imm32S     = 8 << ImmShift,
787    Imm64      = 9 << ImmShift,
788
789    //===------------------------------------------------------------------===//
790    // FP Instruction Classification...  Zero is non-fp instruction.
791
792    // FPTypeMask - Mask for all of the FP types...
793    FPTypeShift = ImmShift + 4,
794    FPTypeMask  = 7 << FPTypeShift,
795
796    // NotFP - The default, set for instructions that do not use FP registers.
797    NotFP      = 0 << FPTypeShift,
798
799    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
800    ZeroArgFP  = 1 << FPTypeShift,
801
802    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
803    OneArgFP   = 2 << FPTypeShift,
804
805    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
806    // result back to ST(0).  For example, fcos, fsqrt, etc.
807    //
808    OneArgFPRW = 3 << FPTypeShift,
809
810    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
811    // explicit argument, storing the result to either ST(0) or the implicit
812    // argument.  For example: fadd, fsub, fmul, etc...
813    TwoArgFP   = 4 << FPTypeShift,
814
815    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
816    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
817    CompareFP  = 5 << FPTypeShift,
818
819    // CondMovFP - "2 operand" floating point conditional move instructions.
820    CondMovFP  = 6 << FPTypeShift,
821
822    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
823    SpecialFP  = 7 << FPTypeShift,
824
825    // Lock prefix
826    LOCKShift = FPTypeShift + 3,
827    LOCK = 1 << LOCKShift,
828
829    // REP prefix
830    REPShift = LOCKShift + 1,
831    REP = 1 << REPShift,
832
833    // Execution domain for SSE instructions.
834    // 0 means normal, non-SSE instruction.
835    SSEDomainShift = REPShift + 1,
836
837    // Encoding
838    EncodingShift = SSEDomainShift + 2,
839    EncodingMask = 0x3 << EncodingShift,
840
841    // VEX - encoding using 0xC4/0xC5
842    VEX = 1 << EncodingShift,
843
844    /// XOP - Opcode prefix used by XOP instructions.
845    XOP = 2 << EncodingShift,
846
847    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
848    // syntax support up to 32 512-bit register operands and up to 7 16-bit
849    // mask operands as well as source operand data swizzling/memory operand
850    // conversion, eviction hint, and rounding mode.
851    EVEX = 3 << EncodingShift,
852
853    // Opcode
854    OpcodeShift   = EncodingShift + 2,
855
856    /// VEX_W - Has a opcode specific functionality, but is used in the same
857    /// way as REX_W is for regular SSE instructions.
858    VEX_WShift  = OpcodeShift + 8,
859    VEX_W       = 1ULL << VEX_WShift,
860
861    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
862    /// address instructions in SSE are represented as 3 address ones in AVX
863    /// and the additional register is encoded in VEX_VVVV prefix.
864    VEX_4VShift = VEX_WShift + 1,
865    VEX_4V      = 1ULL << VEX_4VShift,
866
867    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
868    /// instruction uses 256-bit wide registers. This is usually auto detected
869    /// if a VR256 register is used, but some AVX instructions also have this
870    /// field marked when using a f256 memory references.
871    VEX_LShift = VEX_4VShift + 1,
872    VEX_L       = 1ULL << VEX_LShift,
873
874    // EVEX_K - Set if this instruction requires masking
875    EVEX_KShift = VEX_LShift + 1,
876    EVEX_K      = 1ULL << EVEX_KShift,
877
878    // EVEX_Z - Set if this instruction has EVEX.Z field set.
879    EVEX_ZShift = EVEX_KShift + 1,
880    EVEX_Z      = 1ULL << EVEX_ZShift,
881
882    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
883    EVEX_L2Shift = EVEX_ZShift + 1,
884    EVEX_L2     = 1ULL << EVEX_L2Shift,
885
886    // EVEX_B - Set if this instruction has EVEX.B field set.
887    EVEX_BShift = EVEX_L2Shift + 1,
888    EVEX_B      = 1ULL << EVEX_BShift,
889
890    // The scaling factor for the AVX512's 8-bit compressed displacement.
891    CD8_Scale_Shift = EVEX_BShift + 1,
892    CD8_Scale_Mask = 127ULL << CD8_Scale_Shift,
893
894    /// Explicitly specified rounding control
895    EVEX_RCShift = CD8_Scale_Shift + 7,
896    EVEX_RC = 1ULL << EVEX_RCShift,
897
898    // NOTRACK prefix
899    NoTrackShift = EVEX_RCShift + 1,
900    NOTRACK = 1ULL << NoTrackShift
901  };
902
903  /// \returns the "base" X86 opcode for the specified machine
904  /// instruction.
905  inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
906    return TSFlags >> X86II::OpcodeShift;
907  }
908
909  inline bool hasImm(uint64_t TSFlags) {
910    return (TSFlags & X86II::ImmMask) != 0;
911  }
912
913  /// Decode the "size of immediate" field from the TSFlags field of the
914  /// specified instruction.
915  inline unsigned getSizeOfImm(uint64_t TSFlags) {
916    switch (TSFlags & X86II::ImmMask) {
917    default: llvm_unreachable("Unknown immediate size");
918    case X86II::Imm8:
919    case X86II::Imm8PCRel:
920    case X86II::Imm8Reg:    return 1;
921    case X86II::Imm16:
922    case X86II::Imm16PCRel: return 2;
923    case X86II::Imm32:
924    case X86II::Imm32S:
925    case X86II::Imm32PCRel: return 4;
926    case X86II::Imm64:      return 8;
927    }
928  }
929
930  /// \returns true if the immediate of the specified instruction's TSFlags
931  /// indicates that it is pc relative.
932  inline bool isImmPCRel(uint64_t TSFlags) {
933    switch (TSFlags & X86II::ImmMask) {
934    default: llvm_unreachable("Unknown immediate size");
935    case X86II::Imm8PCRel:
936    case X86II::Imm16PCRel:
937    case X86II::Imm32PCRel:
938      return true;
939    case X86II::Imm8:
940    case X86II::Imm8Reg:
941    case X86II::Imm16:
942    case X86II::Imm32:
943    case X86II::Imm32S:
944    case X86II::Imm64:
945      return false;
946    }
947  }
948
949  /// \returns true if the immediate of the specified instruction's
950  /// TSFlags indicates that it is signed.
951  inline bool isImmSigned(uint64_t TSFlags) {
952    switch (TSFlags & X86II::ImmMask) {
953    default: llvm_unreachable("Unknown immediate signedness");
954    case X86II::Imm32S:
955      return true;
956    case X86II::Imm8:
957    case X86II::Imm8PCRel:
958    case X86II::Imm8Reg:
959    case X86II::Imm16:
960    case X86II::Imm16PCRel:
961    case X86II::Imm32:
962    case X86II::Imm32PCRel:
963    case X86II::Imm64:
964      return false;
965    }
966  }
967
968  /// Compute whether all of the def operands are repeated in the uses and
969  /// therefore should be skipped.
970  /// This determines the start of the unique operand list. We need to determine
971  /// if all of the defs have a corresponding tied operand in the uses.
972  /// Unfortunately, the tied operand information is encoded in the uses not
973  /// the defs so we have to use some heuristics to find which operands to
974  /// query.
975  inline unsigned getOperandBias(const MCInstrDesc& Desc) {
976    unsigned NumDefs = Desc.getNumDefs();
977    unsigned NumOps = Desc.getNumOperands();
978    switch (NumDefs) {
979    default: llvm_unreachable("Unexpected number of defs");
980    case 0:
981      return 0;
982    case 1:
983      // Common two addr case.
984      if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
985        return 1;
986      // Check for AVX-512 scatter which has a TIED_TO in the second to last
987      // operand.
988      if (NumOps == 8 &&
989          Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
990        return 1;
991      return 0;
992    case 2:
993      // XCHG/XADD have two destinations and two sources.
994      if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
995          Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
996        return 2;
997      // Check for gather. AVX-512 has the second tied operand early. AVX2
998      // has it as the last op.
999      if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
1000          (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
1001           Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
1002        return 2;
1003      return 0;
1004    }
1005  }
1006
1007  /// The function returns the MCInst operand # for the first field of the
1008  /// memory operand.  If the instruction doesn't have a
1009  /// memory operand, this returns -1.
1010  ///
1011  /// Note that this ignores tied operands.  If there is a tied register which
1012  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
1013  /// counted as one operand.
1014  ///
1015  inline int getMemoryOperandNo(uint64_t TSFlags) {
1016    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
1017    bool HasEVEX_K = TSFlags & X86II::EVEX_K;
1018
1019    switch (TSFlags & X86II::FormMask) {
1020    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
1021    case X86II::Pseudo:
1022    case X86II::RawFrm:
1023    case X86II::AddRegFrm:
1024    case X86II::RawFrmImm8:
1025    case X86II::RawFrmImm16:
1026    case X86II::RawFrmMemOffs:
1027    case X86II::RawFrmSrc:
1028    case X86II::RawFrmDst:
1029    case X86II::RawFrmDstSrc:
1030    case X86II::AddCCFrm:
1031      return -1;
1032    case X86II::MRMDestMem:
1033      return 0;
1034    case X86II::MRMSrcMem:
1035      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1036      // mask register.
1037      return 1 + HasVEX_4V + HasEVEX_K;
1038    case X86II::MRMSrcMem4VOp3:
1039      // Skip registers encoded in reg.
1040      return 1 + HasEVEX_K;
1041    case X86II::MRMSrcMemOp4:
1042      // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
1043      return 3;
1044    case X86II::MRMSrcMemCC:
1045      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
1046      // mask register.
1047      return 1;
1048    case X86II::MRMDestReg:
1049    case X86II::MRMSrcReg:
1050    case X86II::MRMSrcReg4VOp3:
1051    case X86II::MRMSrcRegOp4:
1052    case X86II::MRMSrcRegCC:
1053    case X86II::MRMXrCC:
1054    case X86II::MRMXr:
1055    case X86II::MRM0r: case X86II::MRM1r:
1056    case X86II::MRM2r: case X86II::MRM3r:
1057    case X86II::MRM4r: case X86II::MRM5r:
1058    case X86II::MRM6r: case X86II::MRM7r:
1059      return -1;
1060    case X86II::MRMXmCC:
1061    case X86II::MRMXm:
1062    case X86II::MRM0m: case X86II::MRM1m:
1063    case X86II::MRM2m: case X86II::MRM3m:
1064    case X86II::MRM4m: case X86II::MRM5m:
1065    case X86II::MRM6m: case X86II::MRM7m:
1066      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
1067      return 0 + HasVEX_4V + HasEVEX_K;
1068    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
1069    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
1070    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
1071    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
1072    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
1073    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
1074    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
1075    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
1076    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
1077    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
1078    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
1079    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
1080    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
1081    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
1082    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
1083    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
1084    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
1085    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
1086    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
1087    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
1088    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
1089    case X86II::MRM_FF:
1090      return -1;
1091    }
1092  }
1093
1094  /// \returns true if the MachineOperand is a x86-64 extended (r8 or
1095  /// higher) register,  e.g. r8, xmm8, xmm13, etc.
1096  inline bool isX86_64ExtendedReg(unsigned RegNo) {
1097    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM31) ||
1098        (RegNo >= X86::YMM8 && RegNo <= X86::YMM31) ||
1099        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
1100      return true;
1101
1102    switch (RegNo) {
1103    default: break;
1104    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
1105    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
1106    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
1107    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
1108    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
1109    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
1110    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
1111    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
1112    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
1113    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
1114    case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
1115    case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
1116      return true;
1117    }
1118    return false;
1119  }
1120
1121  /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
1122  /// registers, e.g. zmm21, etc.
1123  static inline bool is32ExtendedReg(unsigned RegNo) {
1124    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
1125            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
1126            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
1127  }
1128
1129
1130  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
1131    return (reg == X86::SPL || reg == X86::BPL ||
1132            reg == X86::SIL || reg == X86::DIL);
1133  }
1134
1135  /// \returns true if this is a masked instruction.
1136  inline bool isKMasked(uint64_t TSFlags) {
1137    return (TSFlags & X86II::EVEX_K) != 0;
1138  }
1139
1140  /// \returns true if this is a merge masked instruction.
1141  inline bool isKMergeMasked(uint64_t TSFlags) {
1142    return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
1143  }
1144}
1145
1146} // end namespace llvm;
1147
1148#endif
1149