SystemZInstrInfo.cpp revision 360784
1251881Speter//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
2251881Speter//
3251881Speter// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4251881Speter// See https://llvm.org/LICENSE.txt for license information.
5251881Speter// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6251881Speter//
7251881Speter//===----------------------------------------------------------------------===//
8251881Speter//
9251881Speter// This file contains the SystemZ implementation of the TargetInstrInfo class.
10251881Speter//
11251881Speter//===----------------------------------------------------------------------===//
12251881Speter
13251881Speter#include "SystemZInstrInfo.h"
14251881Speter#include "MCTargetDesc/SystemZMCTargetDesc.h"
15251881Speter#include "SystemZ.h"
16251881Speter#include "SystemZInstrBuilder.h"
17251881Speter#include "SystemZSubtarget.h"
18251881Speter#include "llvm/ADT/Statistic.h"
19251881Speter#include "llvm/CodeGen/LiveInterval.h"
20251881Speter#include "llvm/CodeGen/LiveIntervals.h"
21251881Speter#include "llvm/CodeGen/LiveVariables.h"
22251881Speter#include "llvm/CodeGen/MachineBasicBlock.h"
23251881Speter#include "llvm/CodeGen/MachineFrameInfo.h"
24251881Speter#include "llvm/CodeGen/MachineFunction.h"
25251881Speter#include "llvm/CodeGen/MachineInstr.h"
26251881Speter#include "llvm/CodeGen/MachineMemOperand.h"
27251881Speter#include "llvm/CodeGen/MachineOperand.h"
28251881Speter#include "llvm/CodeGen/MachineRegisterInfo.h"
29251881Speter#include "llvm/CodeGen/SlotIndexes.h"
30251881Speter#include "llvm/CodeGen/TargetInstrInfo.h"
31251881Speter#include "llvm/CodeGen/TargetSubtargetInfo.h"
32251881Speter#include "llvm/MC/MCInstrDesc.h"
33251881Speter#include "llvm/MC/MCRegisterInfo.h"
34251881Speter#include "llvm/Support/BranchProbability.h"
35251881Speter#include "llvm/Support/ErrorHandling.h"
36251881Speter#include "llvm/Support/MathExtras.h"
37251881Speter#include "llvm/Target/TargetMachine.h"
38251881Speter#include <cassert>
39251881Speter#include <cstdint>
40251881Speter#include <iterator>
41251881Speter
42251881Speterusing namespace llvm;
43251881Speter
44251881Speter#define GET_INSTRINFO_CTOR_DTOR
45251881Speter#define GET_INSTRMAP_INFO
46251881Speter#include "SystemZGenInstrInfo.inc"
47251881Speter
48251881Speter#define DEBUG_TYPE "systemz-II"
49251881Speter
50251881Speter// Return a mask with Count low bits set.
51251881Speterstatic uint64_t allOnes(unsigned int Count) {
52251881Speter  return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
53251881Speter}
54251881Speter
55251881Speter// Pin the vtable to this file.
56251881Spetervoid SystemZInstrInfo::anchor() {}
57251881Speter
58251881SpeterSystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
59251881Speter  : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
60251881Speter    RI(), STI(sti) {
61251881Speter}
62251881Speter
63251881Speter// MI is a 128-bit load or store.  Split it into two 64-bit loads or stores,
64251881Speter// each having the opcode given by NewOpcode.
65251881Spetervoid SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
66251881Speter                                 unsigned NewOpcode) const {
67251881Speter  MachineBasicBlock *MBB = MI->getParent();
68251881Speter  MachineFunction &MF = *MBB->getParent();
69251881Speter
70251881Speter  // Get two load or store instructions.  Use the original instruction for one
71251881Speter  // of them (arbitrarily the second here) and create a clone for the other.
72251881Speter  MachineInstr *EarlierMI = MF.CloneMachineInstr(&*MI);
73251881Speter  MBB->insert(MI, EarlierMI);
74251881Speter
75251881Speter  // Set up the two 64-bit registers and remember super reg and its flags.
76251881Speter  MachineOperand &HighRegOp = EarlierMI->getOperand(0);
77251881Speter  MachineOperand &LowRegOp = MI->getOperand(0);
78299742Sdim  Register Reg128 = LowRegOp.getReg();
79299742Sdim  unsigned Reg128Killed = getKillRegState(LowRegOp.isKill());
80299742Sdim  unsigned Reg128Undef  = getUndefRegState(LowRegOp.isUndef());
81299742Sdim  HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
82299742Sdim  LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
83299742Sdim
84299742Sdim  if (MI->mayStore()) {
85299742Sdim    // Add implicit uses of the super register in case one of the subregs is
86299742Sdim    // undefined. We could track liveness and skip storing an undefined
87299742Sdim    // subreg, but this is hopefully rare (discovered with llvm-stress).
88299742Sdim    // If Reg128 was killed, set kill flag on MI.
89299742Sdim    unsigned Reg128UndefImpl = (Reg128Undef | RegState::Implicit);
90299742Sdim    MachineInstrBuilder(MF, EarlierMI).addReg(Reg128, Reg128UndefImpl);
91299742Sdim    MachineInstrBuilder(MF, MI).addReg(Reg128, (Reg128UndefImpl | Reg128Killed));
92299742Sdim  }
93299742Sdim
94299742Sdim  // The address in the first (high) instruction is already correct.
95299742Sdim  // Adjust the offset in the second (low) instruction.
96299742Sdim  MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
97299742Sdim  MachineOperand &LowOffsetOp = MI->getOperand(2);
98299742Sdim  LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
99299742Sdim
100299742Sdim  // Clear the kill flags on the registers in the first instruction.
101299742Sdim  if (EarlierMI->getOperand(0).isReg() && EarlierMI->getOperand(0).isUse())
102299742Sdim    EarlierMI->getOperand(0).setIsKill(false);
103299742Sdim  EarlierMI->getOperand(1).setIsKill(false);
104299742Sdim  EarlierMI->getOperand(3).setIsKill(false);
105299742Sdim
106299742Sdim  // Set the opcodes.
107299742Sdim  unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
108299742Sdim  unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
109299742Sdim  assert(HighOpcode && LowOpcode && "Both offsets should be in range");
110299742Sdim
111299742Sdim  EarlierMI->setDesc(get(HighOpcode));
112299742Sdim  MI->setDesc(get(LowOpcode));
113299742Sdim}
114299742Sdim
115299742Sdim// Split ADJDYNALLOC instruction MI.
116299742Sdimvoid SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
117299742Sdim  MachineBasicBlock *MBB = MI->getParent();
118299742Sdim  MachineFunction &MF = *MBB->getParent();
119299742Sdim  MachineFrameInfo &MFFrame = MF.getFrameInfo();
120299742Sdim  MachineOperand &OffsetMO = MI->getOperand(2);
121299742Sdim
122299742Sdim  uint64_t Offset = (MFFrame.getMaxCallFrameSize() +
123299742Sdim                     SystemZMC::CallFrameSize +
124299742Sdim                     OffsetMO.getImm());
125299742Sdim  unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
126299742Sdim  assert(NewOpcode && "No support for huge argument lists yet");
127299742Sdim  MI->setDesc(get(NewOpcode));
128299742Sdim  OffsetMO.setImm(Offset);
129299742Sdim}
130299742Sdim
131299742Sdim// MI is an RI-style pseudo instruction.  Replace it with LowOpcode
132299742Sdim// if the first operand is a low GR32 and HighOpcode if the first operand
133299742Sdim// is a high GR32.  ConvertHigh is true if LowOpcode takes a signed operand
134299742Sdim// and HighOpcode takes an unsigned 32-bit operand.  In those cases,
135299742Sdim// MI has the same kind of operand as LowOpcode, so needs to be converted
136299742Sdim// if HighOpcode is used.
137299742Sdimvoid SystemZInstrInfo::expandRIPseudo(MachineInstr &MI, unsigned LowOpcode,
138299742Sdim                                      unsigned HighOpcode,
139299742Sdim                                      bool ConvertHigh) const {
140299742Sdim  Register Reg = MI.getOperand(0).getReg();
141299742Sdim  bool IsHigh = SystemZ::isHighReg(Reg);
142299742Sdim  MI.setDesc(get(IsHigh ? HighOpcode : LowOpcode));
143299742Sdim  if (IsHigh && ConvertHigh)
144299742Sdim    MI.getOperand(1).setImm(uint32_t(MI.getOperand(1).getImm()));
145299742Sdim}
146299742Sdim
147299742Sdim// MI is a three-operand RIE-style pseudo instruction.  Replace it with
148299742Sdim// LowOpcodeK if the registers are both low GR32s, otherwise use a move
149299742Sdim// followed by HighOpcode or LowOpcode, depending on whether the target
150299742Sdim// is a high or low GR32.
151299742Sdimvoid SystemZInstrInfo::expandRIEPseudo(MachineInstr &MI, unsigned LowOpcode,
152299742Sdim                                       unsigned LowOpcodeK,
153299742Sdim                                       unsigned HighOpcode) const {
154299742Sdim  Register DestReg = MI.getOperand(0).getReg();
155299742Sdim  Register SrcReg = MI.getOperand(1).getReg();
156299742Sdim  bool DestIsHigh = SystemZ::isHighReg(DestReg);
157299742Sdim  bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
158299742Sdim  if (!DestIsHigh && !SrcIsHigh)
159299742Sdim    MI.setDesc(get(LowOpcodeK));
160299742Sdim  else {
161299742Sdim    if (DestReg != SrcReg) {
162299742Sdim      emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(), DestReg, SrcReg,
163299742Sdim                    SystemZ::LR, 32, MI.getOperand(1).isKill(),
164299742Sdim                    MI.getOperand(1).isUndef());
165299742Sdim      MI.getOperand(1).setReg(DestReg);
166299742Sdim    }
167299742Sdim    MI.setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
168299742Sdim    MI.tieOperands(0, 1);
169299742Sdim  }
170299742Sdim}
171299742Sdim
172299742Sdim// MI is an RXY-style pseudo instruction.  Replace it with LowOpcode
173299742Sdim// if the first operand is a low GR32 and HighOpcode if the first operand
174299742Sdim// is a high GR32.
175299742Sdimvoid SystemZInstrInfo::expandRXYPseudo(MachineInstr &MI, unsigned LowOpcode,
176299742Sdim                                       unsigned HighOpcode) const {
177299742Sdim  Register Reg = MI.getOperand(0).getReg();
178299742Sdim  unsigned Opcode = getOpcodeForOffset(
179299742Sdim      SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode,
180299742Sdim      MI.getOperand(2).getImm());
181299742Sdim  MI.setDesc(get(Opcode));
182299742Sdim}
183299742Sdim
184299742Sdim// MI is a load-on-condition pseudo instruction with a single register
185299742Sdim// (source or destination) operand.  Replace it with LowOpcode if the
186299742Sdim// register is a low GR32 and HighOpcode if the register is a high GR32.
187299742Sdimvoid SystemZInstrInfo::expandLOCPseudo(MachineInstr &MI, unsigned LowOpcode,
188299742Sdim                                       unsigned HighOpcode) const {
189299742Sdim  Register Reg = MI.getOperand(0).getReg();
190299742Sdim  unsigned Opcode = SystemZ::isHighReg(Reg) ? HighOpcode : LowOpcode;
191299742Sdim  MI.setDesc(get(Opcode));
192299742Sdim}
193299742Sdim
194299742Sdim// MI is an RR-style pseudo instruction that zero-extends the low Size bits
195299742Sdim// of one GRX32 into another.  Replace it with LowOpcode if both operands
196299742Sdim// are low registers, otherwise use RISB[LH]G.
197299742Sdimvoid SystemZInstrInfo::expandZExtPseudo(MachineInstr &MI, unsigned LowOpcode,
198299742Sdim                                        unsigned Size) const {
199299742Sdim  MachineInstrBuilder MIB =
200299742Sdim    emitGRX32Move(*MI.getParent(), MI, MI.getDebugLoc(),
201299742Sdim               MI.getOperand(0).getReg(), MI.getOperand(1).getReg(), LowOpcode,
202299742Sdim               Size, MI.getOperand(1).isKill(), MI.getOperand(1).isUndef());
203299742Sdim
204299742Sdim  // Keep the remaining operands as-is.
205299742Sdim  for (unsigned I = 2; I < MI.getNumOperands(); ++I)
206299742Sdim    MIB.add(MI.getOperand(I));
207299742Sdim
208299742Sdim  MI.eraseFromParent();
209299742Sdim}
210299742Sdim
211299742Sdimvoid SystemZInstrInfo::expandLoadStackGuard(MachineInstr *MI) const {
212299742Sdim  MachineBasicBlock *MBB = MI->getParent();
213299742Sdim  MachineFunction &MF = *MBB->getParent();
214299742Sdim  const Register Reg64 = MI->getOperand(0).getReg();
215299742Sdim  const Register Reg32 = RI.getSubReg(Reg64, SystemZ::subreg_l32);
216299742Sdim
217299742Sdim  // EAR can only load the low subregister so us a shift for %a0 to produce
218299742Sdim  // the GR containing %a0 and %a1.
219299742Sdim
220299742Sdim  // ear <reg>, %a0
221299742Sdim  BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
222299742Sdim    .addReg(SystemZ::A0)
223299742Sdim    .addReg(Reg64, RegState::ImplicitDefine);
224299742Sdim
225299742Sdim  // sllg <reg>, <reg>, 32
226299742Sdim  BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::SLLG), Reg64)
227299742Sdim    .addReg(Reg64)
228299742Sdim    .addReg(0)
229299742Sdim    .addImm(32);
230299742Sdim
231299742Sdim  // ear <reg>, %a1
232299742Sdim  BuildMI(*MBB, MI, MI->getDebugLoc(), get(SystemZ::EAR), Reg32)
233299742Sdim    .addReg(SystemZ::A1);
234299742Sdim
235299742Sdim  // lg <reg>, 40(<reg>)
236299742Sdim  MI->setDesc(get(SystemZ::LG));
237299742Sdim  MachineInstrBuilder(MF, MI).addReg(Reg64).addImm(40).addReg(0);
238299742Sdim}
239299742Sdim
240299742Sdim// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
241299742Sdim// DestReg before MBBI in MBB.  Use LowLowOpcode when both DestReg and SrcReg
242299742Sdim// are low registers, otherwise use RISB[LH]G.  Size is the number of bits
243299742Sdim// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
244299742Sdim// KillSrc is true if this move is the last use of SrcReg.
245299742SdimMachineInstrBuilder
246299742SdimSystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
247299742Sdim                                MachineBasicBlock::iterator MBBI,
248299742Sdim                                const DebugLoc &DL, unsigned DestReg,
249299742Sdim                                unsigned SrcReg, unsigned LowLowOpcode,
250299742Sdim                                unsigned Size, bool KillSrc,
251299742Sdim                                bool UndefSrc) const {
252299742Sdim  unsigned Opcode;
253299742Sdim  bool DestIsHigh = SystemZ::isHighReg(DestReg);
254299742Sdim  bool SrcIsHigh = SystemZ::isHighReg(SrcReg);
255299742Sdim  if (DestIsHigh && SrcIsHigh)
256299742Sdim    Opcode = SystemZ::RISBHH;
257299742Sdim  else if (DestIsHigh && !SrcIsHigh)
258299742Sdim    Opcode = SystemZ::RISBHL;
259299742Sdim  else if (!DestIsHigh && SrcIsHigh)
260299742Sdim    Opcode = SystemZ::RISBLH;
261299742Sdim  else {
262299742Sdim    return BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
263299742Sdim      .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc));
264299742Sdim  }
265299742Sdim  unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
266299742Sdim  return BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
267299742Sdim    .addReg(DestReg, RegState::Undef)
268299742Sdim    .addReg(SrcReg, getKillRegState(KillSrc) | getUndefRegState(UndefSrc))
269299742Sdim    .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
270299742Sdim}
271299742Sdim
272299742SdimMachineInstr *SystemZInstrInfo::commuteInstructionImpl(MachineInstr &MI,
273299742Sdim                                                       bool NewMI,
274299742Sdim                                                       unsigned OpIdx1,
275299742Sdim                                                       unsigned OpIdx2) const {
276299742Sdim  auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
277299742Sdim    if (NewMI)
278299742Sdim      return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
279299742Sdim    return MI;
280299742Sdim  };
281299742Sdim
282299742Sdim  switch (MI.getOpcode()) {
283299742Sdim  case SystemZ::SELRMux:
284299742Sdim  case SystemZ::SELFHR:
285299742Sdim  case SystemZ::SELR:
286299742Sdim  case SystemZ::SELGR:
287299742Sdim  case SystemZ::LOCRMux:
288299742Sdim  case SystemZ::LOCFHR:
289299742Sdim  case SystemZ::LOCR:
290299742Sdim  case SystemZ::LOCGR: {
291299742Sdim    auto &WorkingMI = cloneIfNew(MI);
292    // Invert condition.
293    unsigned CCValid = WorkingMI.getOperand(3).getImm();
294    unsigned CCMask = WorkingMI.getOperand(4).getImm();
295    WorkingMI.getOperand(4).setImm(CCMask ^ CCValid);
296    return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
297                                                   OpIdx1, OpIdx2);
298  }
299  default:
300    return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
301  }
302}
303
304// If MI is a simple load or store for a frame object, return the register
305// it loads or stores and set FrameIndex to the index of the frame object.
306// Return 0 otherwise.
307//
308// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
309static int isSimpleMove(const MachineInstr &MI, int &FrameIndex,
310                        unsigned Flag) {
311  const MCInstrDesc &MCID = MI.getDesc();
312  if ((MCID.TSFlags & Flag) && MI.getOperand(1).isFI() &&
313      MI.getOperand(2).getImm() == 0 && MI.getOperand(3).getReg() == 0) {
314    FrameIndex = MI.getOperand(1).getIndex();
315    return MI.getOperand(0).getReg();
316  }
317  return 0;
318}
319
320unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
321                                               int &FrameIndex) const {
322  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
323}
324
325unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
326                                              int &FrameIndex) const {
327  return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
328}
329
330bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr &MI,
331                                       int &DestFrameIndex,
332                                       int &SrcFrameIndex) const {
333  // Check for MVC 0(Length,FI1),0(FI2)
334  const MachineFrameInfo &MFI = MI.getParent()->getParent()->getFrameInfo();
335  if (MI.getOpcode() != SystemZ::MVC || !MI.getOperand(0).isFI() ||
336      MI.getOperand(1).getImm() != 0 || !MI.getOperand(3).isFI() ||
337      MI.getOperand(4).getImm() != 0)
338    return false;
339
340  // Check that Length covers the full slots.
341  int64_t Length = MI.getOperand(2).getImm();
342  unsigned FI1 = MI.getOperand(0).getIndex();
343  unsigned FI2 = MI.getOperand(3).getIndex();
344  if (MFI.getObjectSize(FI1) != Length ||
345      MFI.getObjectSize(FI2) != Length)
346    return false;
347
348  DestFrameIndex = FI1;
349  SrcFrameIndex = FI2;
350  return true;
351}
352
353bool SystemZInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
354                                     MachineBasicBlock *&TBB,
355                                     MachineBasicBlock *&FBB,
356                                     SmallVectorImpl<MachineOperand> &Cond,
357                                     bool AllowModify) const {
358  // Most of the code and comments here are boilerplate.
359
360  // Start from the bottom of the block and work up, examining the
361  // terminator instructions.
362  MachineBasicBlock::iterator I = MBB.end();
363  while (I != MBB.begin()) {
364    --I;
365    if (I->isDebugInstr())
366      continue;
367
368    // Working from the bottom, when we see a non-terminator instruction, we're
369    // done.
370    if (!isUnpredicatedTerminator(*I))
371      break;
372
373    // A terminator that isn't a branch can't easily be handled by this
374    // analysis.
375    if (!I->isBranch())
376      return true;
377
378    // Can't handle indirect branches.
379    SystemZII::Branch Branch(getBranchInfo(*I));
380    if (!Branch.hasMBBTarget())
381      return true;
382
383    // Punt on compound branches.
384    if (Branch.Type != SystemZII::BranchNormal)
385      return true;
386
387    if (Branch.CCMask == SystemZ::CCMASK_ANY) {
388      // Handle unconditional branches.
389      if (!AllowModify) {
390        TBB = Branch.getMBBTarget();
391        continue;
392      }
393
394      // If the block has any instructions after a JMP, delete them.
395      while (std::next(I) != MBB.end())
396        std::next(I)->eraseFromParent();
397
398      Cond.clear();
399      FBB = nullptr;
400
401      // Delete the JMP if it's equivalent to a fall-through.
402      if (MBB.isLayoutSuccessor(Branch.getMBBTarget())) {
403        TBB = nullptr;
404        I->eraseFromParent();
405        I = MBB.end();
406        continue;
407      }
408
409      // TBB is used to indicate the unconditinal destination.
410      TBB = Branch.getMBBTarget();
411      continue;
412    }
413
414    // Working from the bottom, handle the first conditional branch.
415    if (Cond.empty()) {
416      // FIXME: add X86-style branch swap
417      FBB = TBB;
418      TBB = Branch.getMBBTarget();
419      Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
420      Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
421      continue;
422    }
423
424    // Handle subsequent conditional branches.
425    assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
426
427    // Only handle the case where all conditional branches branch to the same
428    // destination.
429    if (TBB != Branch.getMBBTarget())
430      return true;
431
432    // If the conditions are the same, we can leave them alone.
433    unsigned OldCCValid = Cond[0].getImm();
434    unsigned OldCCMask = Cond[1].getImm();
435    if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
436      continue;
437
438    // FIXME: Try combining conditions like X86 does.  Should be easy on Z!
439    return false;
440  }
441
442  return false;
443}
444
445unsigned SystemZInstrInfo::removeBranch(MachineBasicBlock &MBB,
446                                        int *BytesRemoved) const {
447  assert(!BytesRemoved && "code size not handled");
448
449  // Most of the code and comments here are boilerplate.
450  MachineBasicBlock::iterator I = MBB.end();
451  unsigned Count = 0;
452
453  while (I != MBB.begin()) {
454    --I;
455    if (I->isDebugInstr())
456      continue;
457    if (!I->isBranch())
458      break;
459    if (!getBranchInfo(*I).hasMBBTarget())
460      break;
461    // Remove the branch.
462    I->eraseFromParent();
463    I = MBB.end();
464    ++Count;
465  }
466
467  return Count;
468}
469
470bool SystemZInstrInfo::
471reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
472  assert(Cond.size() == 2 && "Invalid condition");
473  Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
474  return false;
475}
476
477unsigned SystemZInstrInfo::insertBranch(MachineBasicBlock &MBB,
478                                        MachineBasicBlock *TBB,
479                                        MachineBasicBlock *FBB,
480                                        ArrayRef<MachineOperand> Cond,
481                                        const DebugLoc &DL,
482                                        int *BytesAdded) const {
483  // In this function we output 32-bit branches, which should always
484  // have enough range.  They can be shortened and relaxed by later code
485  // in the pipeline, if desired.
486
487  // Shouldn't be a fall through.
488  assert(TBB && "insertBranch must not be told to insert a fallthrough");
489  assert((Cond.size() == 2 || Cond.size() == 0) &&
490         "SystemZ branch conditions have one component!");
491  assert(!BytesAdded && "code size not handled");
492
493  if (Cond.empty()) {
494    // Unconditional branch?
495    assert(!FBB && "Unconditional branch with multiple successors!");
496    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
497    return 1;
498  }
499
500  // Conditional branch.
501  unsigned Count = 0;
502  unsigned CCValid = Cond[0].getImm();
503  unsigned CCMask = Cond[1].getImm();
504  BuildMI(&MBB, DL, get(SystemZ::BRC))
505    .addImm(CCValid).addImm(CCMask).addMBB(TBB);
506  ++Count;
507
508  if (FBB) {
509    // Two-way Conditional branch. Insert the second branch.
510    BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
511    ++Count;
512  }
513  return Count;
514}
515
516bool SystemZInstrInfo::analyzeCompare(const MachineInstr &MI, unsigned &SrcReg,
517                                      unsigned &SrcReg2, int &Mask,
518                                      int &Value) const {
519  assert(MI.isCompare() && "Caller should have checked for a comparison");
520
521  if (MI.getNumExplicitOperands() == 2 && MI.getOperand(0).isReg() &&
522      MI.getOperand(1).isImm()) {
523    SrcReg = MI.getOperand(0).getReg();
524    SrcReg2 = 0;
525    Value = MI.getOperand(1).getImm();
526    Mask = ~0;
527    return true;
528  }
529
530  return false;
531}
532
533bool SystemZInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
534                                       ArrayRef<MachineOperand> Pred,
535                                       unsigned TrueReg, unsigned FalseReg,
536                                       int &CondCycles, int &TrueCycles,
537                                       int &FalseCycles) const {
538  // Not all subtargets have LOCR instructions.
539  if (!STI.hasLoadStoreOnCond())
540    return false;
541  if (Pred.size() != 2)
542    return false;
543
544  // Check register classes.
545  const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
546  const TargetRegisterClass *RC =
547    RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg));
548  if (!RC)
549    return false;
550
551  // We have LOCR instructions for 32 and 64 bit general purpose registers.
552  if ((STI.hasLoadStoreOnCond2() &&
553       SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) ||
554      SystemZ::GR32BitRegClass.hasSubClassEq(RC) ||
555      SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
556    CondCycles = 2;
557    TrueCycles = 2;
558    FalseCycles = 2;
559    return true;
560  }
561
562  // Can't do anything else.
563  return false;
564}
565
566void SystemZInstrInfo::insertSelect(MachineBasicBlock &MBB,
567                                    MachineBasicBlock::iterator I,
568                                    const DebugLoc &DL, unsigned DstReg,
569                                    ArrayRef<MachineOperand> Pred,
570                                    unsigned TrueReg,
571                                    unsigned FalseReg) const {
572  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
573  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
574
575  assert(Pred.size() == 2 && "Invalid condition");
576  unsigned CCValid = Pred[0].getImm();
577  unsigned CCMask = Pred[1].getImm();
578
579  unsigned Opc;
580  if (SystemZ::GRX32BitRegClass.hasSubClassEq(RC)) {
581    if (STI.hasMiscellaneousExtensions3())
582      Opc = SystemZ::SELRMux;
583    else if (STI.hasLoadStoreOnCond2())
584      Opc = SystemZ::LOCRMux;
585    else {
586      Opc = SystemZ::LOCR;
587      MRI.constrainRegClass(DstReg, &SystemZ::GR32BitRegClass);
588      Register TReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
589      Register FReg = MRI.createVirtualRegister(&SystemZ::GR32BitRegClass);
590      BuildMI(MBB, I, DL, get(TargetOpcode::COPY), TReg).addReg(TrueReg);
591      BuildMI(MBB, I, DL, get(TargetOpcode::COPY), FReg).addReg(FalseReg);
592      TrueReg = TReg;
593      FalseReg = FReg;
594    }
595  } else if (SystemZ::GR64BitRegClass.hasSubClassEq(RC)) {
596    if (STI.hasMiscellaneousExtensions3())
597      Opc = SystemZ::SELGR;
598    else
599      Opc = SystemZ::LOCGR;
600  } else
601    llvm_unreachable("Invalid register class");
602
603  BuildMI(MBB, I, DL, get(Opc), DstReg)
604    .addReg(FalseReg).addReg(TrueReg)
605    .addImm(CCValid).addImm(CCMask);
606}
607
608bool SystemZInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
609                                     unsigned Reg,
610                                     MachineRegisterInfo *MRI) const {
611  unsigned DefOpc = DefMI.getOpcode();
612  if (DefOpc != SystemZ::LHIMux && DefOpc != SystemZ::LHI &&
613      DefOpc != SystemZ::LGHI)
614    return false;
615  if (DefMI.getOperand(0).getReg() != Reg)
616    return false;
617  int32_t ImmVal = (int32_t)DefMI.getOperand(1).getImm();
618
619  unsigned UseOpc = UseMI.getOpcode();
620  unsigned NewUseOpc;
621  unsigned UseIdx;
622  int CommuteIdx = -1;
623  bool TieOps = false;
624  switch (UseOpc) {
625  case SystemZ::SELRMux:
626    TieOps = true;
627    LLVM_FALLTHROUGH;
628  case SystemZ::LOCRMux:
629    if (!STI.hasLoadStoreOnCond2())
630      return false;
631    NewUseOpc = SystemZ::LOCHIMux;
632    if (UseMI.getOperand(2).getReg() == Reg)
633      UseIdx = 2;
634    else if (UseMI.getOperand(1).getReg() == Reg)
635      UseIdx = 2, CommuteIdx = 1;
636    else
637      return false;
638    break;
639  case SystemZ::SELGR:
640    TieOps = true;
641    LLVM_FALLTHROUGH;
642  case SystemZ::LOCGR:
643    if (!STI.hasLoadStoreOnCond2())
644      return false;
645    NewUseOpc = SystemZ::LOCGHI;
646    if (UseMI.getOperand(2).getReg() == Reg)
647      UseIdx = 2;
648    else if (UseMI.getOperand(1).getReg() == Reg)
649      UseIdx = 2, CommuteIdx = 1;
650    else
651      return false;
652    break;
653  default:
654    return false;
655  }
656
657  if (CommuteIdx != -1)
658    if (!commuteInstruction(UseMI, false, CommuteIdx, UseIdx))
659      return false;
660
661  bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
662  UseMI.setDesc(get(NewUseOpc));
663  if (TieOps)
664    UseMI.tieOperands(0, 1);
665  UseMI.getOperand(UseIdx).ChangeToImmediate(ImmVal);
666  if (DeleteDef)
667    DefMI.eraseFromParent();
668
669  return true;
670}
671
672bool SystemZInstrInfo::isPredicable(const MachineInstr &MI) const {
673  unsigned Opcode = MI.getOpcode();
674  if (Opcode == SystemZ::Return ||
675      Opcode == SystemZ::Trap ||
676      Opcode == SystemZ::CallJG ||
677      Opcode == SystemZ::CallBR)
678    return true;
679  return false;
680}
681
682bool SystemZInstrInfo::
683isProfitableToIfCvt(MachineBasicBlock &MBB,
684                    unsigned NumCycles, unsigned ExtraPredCycles,
685                    BranchProbability Probability) const {
686  // Avoid using conditional returns at the end of a loop (since then
687  // we'd need to emit an unconditional branch to the beginning anyway,
688  // making the loop body longer).  This doesn't apply for low-probability
689  // loops (eg. compare-and-swap retry), so just decide based on branch
690  // probability instead of looping structure.
691  // However, since Compare and Trap instructions cost the same as a regular
692  // Compare instruction, we should allow the if conversion to convert this
693  // into a Conditional Compare regardless of the branch probability.
694  if (MBB.getLastNonDebugInstr()->getOpcode() != SystemZ::Trap &&
695      MBB.succ_empty() && Probability < BranchProbability(1, 8))
696    return false;
697  // For now only convert single instructions.
698  return NumCycles == 1;
699}
700
701bool SystemZInstrInfo::
702isProfitableToIfCvt(MachineBasicBlock &TMBB,
703                    unsigned NumCyclesT, unsigned ExtraPredCyclesT,
704                    MachineBasicBlock &FMBB,
705                    unsigned NumCyclesF, unsigned ExtraPredCyclesF,
706                    BranchProbability Probability) const {
707  // For now avoid converting mutually-exclusive cases.
708  return false;
709}
710
711bool SystemZInstrInfo::
712isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
713                          BranchProbability Probability) const {
714  // For now only duplicate single instructions.
715  return NumCycles == 1;
716}
717
718bool SystemZInstrInfo::PredicateInstruction(
719    MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
720  assert(Pred.size() == 2 && "Invalid condition");
721  unsigned CCValid = Pred[0].getImm();
722  unsigned CCMask = Pred[1].getImm();
723  assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
724  unsigned Opcode = MI.getOpcode();
725  if (Opcode == SystemZ::Trap) {
726    MI.setDesc(get(SystemZ::CondTrap));
727    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
728      .addImm(CCValid).addImm(CCMask)
729      .addReg(SystemZ::CC, RegState::Implicit);
730    return true;
731  }
732  if (Opcode == SystemZ::Return) {
733    MI.setDesc(get(SystemZ::CondReturn));
734    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
735      .addImm(CCValid).addImm(CCMask)
736      .addReg(SystemZ::CC, RegState::Implicit);
737    return true;
738  }
739  if (Opcode == SystemZ::CallJG) {
740    MachineOperand FirstOp = MI.getOperand(0);
741    const uint32_t *RegMask = MI.getOperand(1).getRegMask();
742    MI.RemoveOperand(1);
743    MI.RemoveOperand(0);
744    MI.setDesc(get(SystemZ::CallBRCL));
745    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
746        .addImm(CCValid)
747        .addImm(CCMask)
748        .add(FirstOp)
749        .addRegMask(RegMask)
750        .addReg(SystemZ::CC, RegState::Implicit);
751    return true;
752  }
753  if (Opcode == SystemZ::CallBR) {
754    const uint32_t *RegMask = MI.getOperand(0).getRegMask();
755    MI.RemoveOperand(0);
756    MI.setDesc(get(SystemZ::CallBCR));
757    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
758      .addImm(CCValid).addImm(CCMask)
759      .addRegMask(RegMask)
760      .addReg(SystemZ::CC, RegState::Implicit);
761    return true;
762  }
763  return false;
764}
765
766void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
767                                   MachineBasicBlock::iterator MBBI,
768                                   const DebugLoc &DL, MCRegister DestReg,
769                                   MCRegister SrcReg, bool KillSrc) const {
770  // Split 128-bit GPR moves into two 64-bit moves. Add implicit uses of the
771  // super register in case one of the subregs is undefined.
772  // This handles ADDR128 too.
773  if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
774    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
775                RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
776    MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
777      .addReg(SrcReg, RegState::Implicit);
778    copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
779                RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
780    MachineInstrBuilder(*MBB.getParent(), std::prev(MBBI))
781      .addReg(SrcReg, (getKillRegState(KillSrc) | RegState::Implicit));
782    return;
783  }
784
785  if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
786    emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc,
787                  false);
788    return;
789  }
790
791  // Move 128-bit floating-point values between VR128 and FP128.
792  if (SystemZ::VR128BitRegClass.contains(DestReg) &&
793      SystemZ::FP128BitRegClass.contains(SrcReg)) {
794    MCRegister SrcRegHi =
795        RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_h64),
796                               SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
797    MCRegister SrcRegLo =
798        RI.getMatchingSuperReg(RI.getSubReg(SrcReg, SystemZ::subreg_l64),
799                               SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
800
801    BuildMI(MBB, MBBI, DL, get(SystemZ::VMRHG), DestReg)
802      .addReg(SrcRegHi, getKillRegState(KillSrc))
803      .addReg(SrcRegLo, getKillRegState(KillSrc));
804    return;
805  }
806  if (SystemZ::FP128BitRegClass.contains(DestReg) &&
807      SystemZ::VR128BitRegClass.contains(SrcReg)) {
808    MCRegister DestRegHi =
809        RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_h64),
810                               SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
811    MCRegister DestRegLo =
812        RI.getMatchingSuperReg(RI.getSubReg(DestReg, SystemZ::subreg_l64),
813                               SystemZ::subreg_h64, &SystemZ::VR128BitRegClass);
814
815    if (DestRegHi != SrcReg)
816      copyPhysReg(MBB, MBBI, DL, DestRegHi, SrcReg, false);
817    BuildMI(MBB, MBBI, DL, get(SystemZ::VREPG), DestRegLo)
818      .addReg(SrcReg, getKillRegState(KillSrc)).addImm(1);
819    return;
820  }
821
822  // Move CC value from/to a GR32.
823  if (SrcReg == SystemZ::CC) {
824    auto MIB = BuildMI(MBB, MBBI, DL, get(SystemZ::IPM), DestReg);
825    if (KillSrc) {
826      const MachineFunction *MF = MBB.getParent();
827      const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
828      MIB->addRegisterKilled(SrcReg, TRI);
829    }
830    return;
831  }
832  if (DestReg == SystemZ::CC) {
833    BuildMI(MBB, MBBI, DL, get(SystemZ::TMLH))
834      .addReg(SrcReg, getKillRegState(KillSrc))
835      .addImm(3 << (SystemZ::IPM_CC - 16));
836    return;
837  }
838
839  // Everything else needs only one instruction.
840  unsigned Opcode;
841  if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
842    Opcode = SystemZ::LGR;
843  else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
844    // For z13 we prefer LDR over LER to avoid partial register dependencies.
845    Opcode = STI.hasVector() ? SystemZ::LDR32 : SystemZ::LER;
846  else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
847    Opcode = SystemZ::LDR;
848  else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
849    Opcode = SystemZ::LXR;
850  else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
851    Opcode = SystemZ::VLR32;
852  else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
853    Opcode = SystemZ::VLR64;
854  else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
855    Opcode = SystemZ::VLR;
856  else if (SystemZ::AR32BitRegClass.contains(DestReg, SrcReg))
857    Opcode = SystemZ::CPYA;
858  else if (SystemZ::AR32BitRegClass.contains(DestReg) &&
859           SystemZ::GR32BitRegClass.contains(SrcReg))
860    Opcode = SystemZ::SAR;
861  else if (SystemZ::GR32BitRegClass.contains(DestReg) &&
862           SystemZ::AR32BitRegClass.contains(SrcReg))
863    Opcode = SystemZ::EAR;
864  else
865    llvm_unreachable("Impossible reg-to-reg copy");
866
867  BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
868    .addReg(SrcReg, getKillRegState(KillSrc));
869}
870
871void SystemZInstrInfo::storeRegToStackSlot(
872    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
873    bool isKill, int FrameIdx, const TargetRegisterClass *RC,
874    const TargetRegisterInfo *TRI) const {
875  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
876
877  // Callers may expect a single instruction, so keep 128-bit moves
878  // together for now and lower them after register allocation.
879  unsigned LoadOpcode, StoreOpcode;
880  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
881  addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
882                        .addReg(SrcReg, getKillRegState(isKill)),
883                    FrameIdx);
884}
885
886void SystemZInstrInfo::loadRegFromStackSlot(
887    MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
888    int FrameIdx, const TargetRegisterClass *RC,
889    const TargetRegisterInfo *TRI) const {
890  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
891
892  // Callers may expect a single instruction, so keep 128-bit moves
893  // together for now and lower them after register allocation.
894  unsigned LoadOpcode, StoreOpcode;
895  getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
896  addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
897                    FrameIdx);
898}
899
900// Return true if MI is a simple load or store with a 12-bit displacement
901// and no index.  Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
902static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
903  const MCInstrDesc &MCID = MI->getDesc();
904  return ((MCID.TSFlags & Flag) &&
905          isUInt<12>(MI->getOperand(2).getImm()) &&
906          MI->getOperand(3).getReg() == 0);
907}
908
909namespace {
910
911struct LogicOp {
912  LogicOp() = default;
913  LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
914    : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
915
916  explicit operator bool() const { return RegSize; }
917
918  unsigned RegSize = 0;
919  unsigned ImmLSB = 0;
920  unsigned ImmSize = 0;
921};
922
923} // end anonymous namespace
924
925static LogicOp interpretAndImmediate(unsigned Opcode) {
926  switch (Opcode) {
927  case SystemZ::NILMux: return LogicOp(32,  0, 16);
928  case SystemZ::NIHMux: return LogicOp(32, 16, 16);
929  case SystemZ::NILL64: return LogicOp(64,  0, 16);
930  case SystemZ::NILH64: return LogicOp(64, 16, 16);
931  case SystemZ::NIHL64: return LogicOp(64, 32, 16);
932  case SystemZ::NIHH64: return LogicOp(64, 48, 16);
933  case SystemZ::NIFMux: return LogicOp(32,  0, 32);
934  case SystemZ::NILF64: return LogicOp(64,  0, 32);
935  case SystemZ::NIHF64: return LogicOp(64, 32, 32);
936  default:              return LogicOp();
937  }
938}
939
940static void transferDeadCC(MachineInstr *OldMI, MachineInstr *NewMI) {
941  if (OldMI->registerDefIsDead(SystemZ::CC)) {
942    MachineOperand *CCDef = NewMI->findRegisterDefOperand(SystemZ::CC);
943    if (CCDef != nullptr)
944      CCDef->setIsDead(true);
945  }
946}
947
948static void transferMIFlag(MachineInstr *OldMI, MachineInstr *NewMI,
949                           MachineInstr::MIFlag Flag) {
950  if (OldMI->getFlag(Flag))
951    NewMI->setFlag(Flag);
952}
953
954MachineInstr *SystemZInstrInfo::convertToThreeAddress(
955    MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
956  MachineBasicBlock *MBB = MI.getParent();
957
958  // Try to convert an AND into an RISBG-type instruction.
959  // TODO: It might be beneficial to select RISBG and shorten to AND instead.
960  if (LogicOp And = interpretAndImmediate(MI.getOpcode())) {
961    uint64_t Imm = MI.getOperand(2).getImm() << And.ImmLSB;
962    // AND IMMEDIATE leaves the other bits of the register unchanged.
963    Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
964    unsigned Start, End;
965    if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
966      unsigned NewOpcode;
967      if (And.RegSize == 64) {
968        NewOpcode = SystemZ::RISBG;
969        // Prefer RISBGN if available, since it does not clobber CC.
970        if (STI.hasMiscellaneousExtensions())
971          NewOpcode = SystemZ::RISBGN;
972      } else {
973        NewOpcode = SystemZ::RISBMux;
974        Start &= 31;
975        End &= 31;
976      }
977      MachineOperand &Dest = MI.getOperand(0);
978      MachineOperand &Src = MI.getOperand(1);
979      MachineInstrBuilder MIB =
980          BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpcode))
981              .add(Dest)
982              .addReg(0)
983              .addReg(Src.getReg(), getKillRegState(Src.isKill()),
984                      Src.getSubReg())
985              .addImm(Start)
986              .addImm(End + 128)
987              .addImm(0);
988      if (LV) {
989        unsigned NumOps = MI.getNumOperands();
990        for (unsigned I = 1; I < NumOps; ++I) {
991          MachineOperand &Op = MI.getOperand(I);
992          if (Op.isReg() && Op.isKill())
993            LV->replaceKillInstruction(Op.getReg(), MI, *MIB);
994        }
995      }
996      transferDeadCC(&MI, MIB);
997      return MIB;
998    }
999  }
1000  return nullptr;
1001}
1002
1003MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1004    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1005    MachineBasicBlock::iterator InsertPt, int FrameIndex,
1006    LiveIntervals *LIS, VirtRegMap *VRM) const {
1007  const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1008  const MachineFrameInfo &MFI = MF.getFrameInfo();
1009  unsigned Size = MFI.getObjectSize(FrameIndex);
1010  unsigned Opcode = MI.getOpcode();
1011
1012  if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
1013    if (LIS != nullptr && (Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
1014        isInt<8>(MI.getOperand(2).getImm()) && !MI.getOperand(3).getReg()) {
1015
1016      // Check CC liveness, since new instruction introduces a dead
1017      // def of CC.
1018      MCRegUnitIterator CCUnit(SystemZ::CC, TRI);
1019      LiveRange &CCLiveRange = LIS->getRegUnit(*CCUnit);
1020      ++CCUnit;
1021      assert(!CCUnit.isValid() && "CC only has one reg unit.");
1022      SlotIndex MISlot =
1023          LIS->getSlotIndexes()->getInstructionIndex(MI).getRegSlot();
1024      if (!CCLiveRange.liveAt(MISlot)) {
1025        // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
1026        MachineInstr *BuiltMI = BuildMI(*InsertPt->getParent(), InsertPt,
1027                                        MI.getDebugLoc(), get(SystemZ::AGSI))
1028                                    .addFrameIndex(FrameIndex)
1029                                    .addImm(0)
1030                                    .addImm(MI.getOperand(2).getImm());
1031        BuiltMI->findRegisterDefOperand(SystemZ::CC)->setIsDead(true);
1032        CCLiveRange.createDeadDef(MISlot, LIS->getVNInfoAllocator());
1033        return BuiltMI;
1034      }
1035    }
1036    return nullptr;
1037  }
1038
1039  // All other cases require a single operand.
1040  if (Ops.size() != 1)
1041    return nullptr;
1042
1043  unsigned OpNum = Ops[0];
1044  assert(Size * 8 ==
1045           TRI->getRegSizeInBits(*MF.getRegInfo()
1046                               .getRegClass(MI.getOperand(OpNum).getReg())) &&
1047         "Invalid size combination");
1048
1049  if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) && OpNum == 0 &&
1050      isInt<8>(MI.getOperand(2).getImm())) {
1051    // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
1052    Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
1053    MachineInstr *BuiltMI =
1054        BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1055            .addFrameIndex(FrameIndex)
1056            .addImm(0)
1057            .addImm(MI.getOperand(2).getImm());
1058    transferDeadCC(&MI, BuiltMI);
1059    transferMIFlag(&MI, BuiltMI, MachineInstr::NoSWrap);
1060    return BuiltMI;
1061  }
1062
1063  if ((Opcode == SystemZ::ALFI && OpNum == 0 &&
1064       isInt<8>((int32_t)MI.getOperand(2).getImm())) ||
1065      (Opcode == SystemZ::ALGFI && OpNum == 0 &&
1066       isInt<8>((int64_t)MI.getOperand(2).getImm()))) {
1067    // AL(G)FI %reg, CONST -> AL(G)SI %mem, CONST
1068    Opcode = (Opcode == SystemZ::ALFI ? SystemZ::ALSI : SystemZ::ALGSI);
1069    MachineInstr *BuiltMI =
1070        BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1071            .addFrameIndex(FrameIndex)
1072            .addImm(0)
1073            .addImm((int8_t)MI.getOperand(2).getImm());
1074    transferDeadCC(&MI, BuiltMI);
1075    return BuiltMI;
1076  }
1077
1078  if ((Opcode == SystemZ::SLFI && OpNum == 0 &&
1079       isInt<8>((int32_t)-MI.getOperand(2).getImm())) ||
1080      (Opcode == SystemZ::SLGFI && OpNum == 0 &&
1081       isInt<8>((int64_t)-MI.getOperand(2).getImm()))) {
1082    // SL(G)FI %reg, CONST -> AL(G)SI %mem, -CONST
1083    Opcode = (Opcode == SystemZ::SLFI ? SystemZ::ALSI : SystemZ::ALGSI);
1084    MachineInstr *BuiltMI =
1085        BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), get(Opcode))
1086            .addFrameIndex(FrameIndex)
1087            .addImm(0)
1088            .addImm((int8_t)-MI.getOperand(2).getImm());
1089    transferDeadCC(&MI, BuiltMI);
1090    return BuiltMI;
1091  }
1092
1093  if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
1094    bool Op0IsGPR = (Opcode == SystemZ::LGDR);
1095    bool Op1IsGPR = (Opcode == SystemZ::LDGR);
1096    // If we're spilling the destination of an LDGR or LGDR, store the
1097    // source register instead.
1098    if (OpNum == 0) {
1099      unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
1100      return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1101                     get(StoreOpcode))
1102          .add(MI.getOperand(1))
1103          .addFrameIndex(FrameIndex)
1104          .addImm(0)
1105          .addReg(0);
1106    }
1107    // If we're spilling the source of an LDGR or LGDR, load the
1108    // destination register instead.
1109    if (OpNum == 1) {
1110      unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
1111      return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1112                     get(LoadOpcode))
1113        .add(MI.getOperand(0))
1114        .addFrameIndex(FrameIndex)
1115        .addImm(0)
1116        .addReg(0);
1117    }
1118  }
1119
1120  // Look for cases where the source of a simple store or the destination
1121  // of a simple load is being spilled.  Try to use MVC instead.
1122  //
1123  // Although MVC is in practice a fast choice in these cases, it is still
1124  // logically a bytewise copy.  This means that we cannot use it if the
1125  // load or store is volatile.  We also wouldn't be able to use MVC if
1126  // the two memories partially overlap, but that case cannot occur here,
1127  // because we know that one of the memories is a full frame index.
1128  //
1129  // For performance reasons, we also want to avoid using MVC if the addresses
1130  // might be equal.  We don't worry about that case here, because spill slot
1131  // coloring happens later, and because we have special code to remove
1132  // MVCs that turn out to be redundant.
1133  if (OpNum == 0 && MI.hasOneMemOperand()) {
1134    MachineMemOperand *MMO = *MI.memoperands_begin();
1135    if (MMO->getSize() == Size && !MMO->isVolatile() && !MMO->isAtomic()) {
1136      // Handle conversion of loads.
1137      if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXLoad)) {
1138        return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1139                       get(SystemZ::MVC))
1140            .addFrameIndex(FrameIndex)
1141            .addImm(0)
1142            .addImm(Size)
1143            .add(MI.getOperand(1))
1144            .addImm(MI.getOperand(2).getImm())
1145            .addMemOperand(MMO);
1146      }
1147      // Handle conversion of stores.
1148      if (isSimpleBD12Move(&MI, SystemZII::SimpleBDXStore)) {
1149        return BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(),
1150                       get(SystemZ::MVC))
1151            .add(MI.getOperand(1))
1152            .addImm(MI.getOperand(2).getImm())
1153            .addImm(Size)
1154            .addFrameIndex(FrameIndex)
1155            .addImm(0)
1156            .addMemOperand(MMO);
1157      }
1158    }
1159  }
1160
1161  // If the spilled operand is the final one or the instruction is
1162  // commutable, try to change <INSN>R into <INSN>.
1163  unsigned NumOps = MI.getNumExplicitOperands();
1164  int MemOpcode = SystemZ::getMemOpcode(Opcode);
1165
1166  // See if this is a 3-address instruction that is convertible to 2-address
1167  // and suitable for folding below.  Only try this with virtual registers
1168  // and a provided VRM (during regalloc).
1169  bool NeedsCommute = false;
1170  if (SystemZ::getTwoOperandOpcode(Opcode) != -1 && MemOpcode != -1) {
1171    if (VRM == nullptr)
1172      MemOpcode = -1;
1173    else {
1174      assert(NumOps == 3 && "Expected two source registers.");
1175      Register DstReg = MI.getOperand(0).getReg();
1176      Register DstPhys =
1177          (Register::isVirtualRegister(DstReg) ? VRM->getPhys(DstReg) : DstReg);
1178      Register SrcReg = (OpNum == 2 ? MI.getOperand(1).getReg()
1179                                    : ((OpNum == 1 && MI.isCommutable())
1180                                           ? MI.getOperand(2).getReg()
1181                                         : Register()));
1182      if (DstPhys && !SystemZ::GRH32BitRegClass.contains(DstPhys) && SrcReg &&
1183          Register::isVirtualRegister(SrcReg) &&
1184          DstPhys == VRM->getPhys(SrcReg))
1185        NeedsCommute = (OpNum == 1);
1186      else
1187        MemOpcode = -1;
1188    }
1189  }
1190
1191  if (MemOpcode >= 0) {
1192    if ((OpNum == NumOps - 1) || NeedsCommute) {
1193      const MCInstrDesc &MemDesc = get(MemOpcode);
1194      uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
1195      assert(AccessBytes != 0 && "Size of access should be known");
1196      assert(AccessBytes <= Size && "Access outside the frame index");
1197      uint64_t Offset = Size - AccessBytes;
1198      MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
1199                                        MI.getDebugLoc(), get(MemOpcode));
1200      MIB.add(MI.getOperand(0));
1201      if (NeedsCommute)
1202        MIB.add(MI.getOperand(2));
1203      else
1204        for (unsigned I = 1; I < OpNum; ++I)
1205          MIB.add(MI.getOperand(I));
1206      MIB.addFrameIndex(FrameIndex).addImm(Offset);
1207      if (MemDesc.TSFlags & SystemZII::HasIndex)
1208        MIB.addReg(0);
1209      transferDeadCC(&MI, MIB);
1210      transferMIFlag(&MI, MIB, MachineInstr::NoSWrap);
1211      return MIB;
1212    }
1213  }
1214
1215  return nullptr;
1216}
1217
1218MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
1219    MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
1220    MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI,
1221    LiveIntervals *LIS) const {
1222  return nullptr;
1223}
1224
1225bool SystemZInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1226  switch (MI.getOpcode()) {
1227  case SystemZ::L128:
1228    splitMove(MI, SystemZ::LG);
1229    return true;
1230
1231  case SystemZ::ST128:
1232    splitMove(MI, SystemZ::STG);
1233    return true;
1234
1235  case SystemZ::LX:
1236    splitMove(MI, SystemZ::LD);
1237    return true;
1238
1239  case SystemZ::STX:
1240    splitMove(MI, SystemZ::STD);
1241    return true;
1242
1243  case SystemZ::LBMux:
1244    expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
1245    return true;
1246
1247  case SystemZ::LHMux:
1248    expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
1249    return true;
1250
1251  case SystemZ::LLCRMux:
1252    expandZExtPseudo(MI, SystemZ::LLCR, 8);
1253    return true;
1254
1255  case SystemZ::LLHRMux:
1256    expandZExtPseudo(MI, SystemZ::LLHR, 16);
1257    return true;
1258
1259  case SystemZ::LLCMux:
1260    expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
1261    return true;
1262
1263  case SystemZ::LLHMux:
1264    expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
1265    return true;
1266
1267  case SystemZ::LMux:
1268    expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
1269    return true;
1270
1271  case SystemZ::LOCMux:
1272    expandLOCPseudo(MI, SystemZ::LOC, SystemZ::LOCFH);
1273    return true;
1274
1275  case SystemZ::LOCHIMux:
1276    expandLOCPseudo(MI, SystemZ::LOCHI, SystemZ::LOCHHI);
1277    return true;
1278
1279  case SystemZ::STCMux:
1280    expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
1281    return true;
1282
1283  case SystemZ::STHMux:
1284    expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
1285    return true;
1286
1287  case SystemZ::STMux:
1288    expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
1289    return true;
1290
1291  case SystemZ::STOCMux:
1292    expandLOCPseudo(MI, SystemZ::STOC, SystemZ::STOCFH);
1293    return true;
1294
1295  case SystemZ::LHIMux:
1296    expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
1297    return true;
1298
1299  case SystemZ::IIFMux:
1300    expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
1301    return true;
1302
1303  case SystemZ::IILMux:
1304    expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
1305    return true;
1306
1307  case SystemZ::IIHMux:
1308    expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
1309    return true;
1310
1311  case SystemZ::NIFMux:
1312    expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
1313    return true;
1314
1315  case SystemZ::NILMux:
1316    expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
1317    return true;
1318
1319  case SystemZ::NIHMux:
1320    expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
1321    return true;
1322
1323  case SystemZ::OIFMux:
1324    expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
1325    return true;
1326
1327  case SystemZ::OILMux:
1328    expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
1329    return true;
1330
1331  case SystemZ::OIHMux:
1332    expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
1333    return true;
1334
1335  case SystemZ::XIFMux:
1336    expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
1337    return true;
1338
1339  case SystemZ::TMLMux:
1340    expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
1341    return true;
1342
1343  case SystemZ::TMHMux:
1344    expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
1345    return true;
1346
1347  case SystemZ::AHIMux:
1348    expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
1349    return true;
1350
1351  case SystemZ::AHIMuxK:
1352    expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
1353    return true;
1354
1355  case SystemZ::AFIMux:
1356    expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
1357    return true;
1358
1359  case SystemZ::CHIMux:
1360    expandRIPseudo(MI, SystemZ::CHI, SystemZ::CIH, false);
1361    return true;
1362
1363  case SystemZ::CFIMux:
1364    expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
1365    return true;
1366
1367  case SystemZ::CLFIMux:
1368    expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
1369    return true;
1370
1371  case SystemZ::CMux:
1372    expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
1373    return true;
1374
1375  case SystemZ::CLMux:
1376    expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
1377    return true;
1378
1379  case SystemZ::RISBMux: {
1380    bool DestIsHigh = SystemZ::isHighReg(MI.getOperand(0).getReg());
1381    bool SrcIsHigh = SystemZ::isHighReg(MI.getOperand(2).getReg());
1382    if (SrcIsHigh == DestIsHigh)
1383      MI.setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
1384    else {
1385      MI.setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
1386      MI.getOperand(5).setImm(MI.getOperand(5).getImm() ^ 32);
1387    }
1388    return true;
1389  }
1390
1391  case SystemZ::ADJDYNALLOC:
1392    splitAdjDynAlloc(MI);
1393    return true;
1394
1395  case TargetOpcode::LOAD_STACK_GUARD:
1396    expandLoadStackGuard(&MI);
1397    return true;
1398
1399  default:
1400    return false;
1401  }
1402}
1403
1404unsigned SystemZInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
1405  if (MI.isInlineAsm()) {
1406    const MachineFunction *MF = MI.getParent()->getParent();
1407    const char *AsmStr = MI.getOperand(0).getSymbolName();
1408    return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
1409  }
1410  return MI.getDesc().getSize();
1411}
1412
1413SystemZII::Branch
1414SystemZInstrInfo::getBranchInfo(const MachineInstr &MI) const {
1415  switch (MI.getOpcode()) {
1416  case SystemZ::BR:
1417  case SystemZ::BI:
1418  case SystemZ::J:
1419  case SystemZ::JG:
1420    return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
1421                             SystemZ::CCMASK_ANY, &MI.getOperand(0));
1422
1423  case SystemZ::BRC:
1424  case SystemZ::BRCL:
1425    return SystemZII::Branch(SystemZII::BranchNormal, MI.getOperand(0).getImm(),
1426                             MI.getOperand(1).getImm(), &MI.getOperand(2));
1427
1428  case SystemZ::BRCT:
1429  case SystemZ::BRCTH:
1430    return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
1431                             SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1432
1433  case SystemZ::BRCTG:
1434    return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
1435                             SystemZ::CCMASK_CMP_NE, &MI.getOperand(2));
1436
1437  case SystemZ::CIJ:
1438  case SystemZ::CRJ:
1439    return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
1440                             MI.getOperand(2).getImm(), &MI.getOperand(3));
1441
1442  case SystemZ::CLIJ:
1443  case SystemZ::CLRJ:
1444    return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
1445                             MI.getOperand(2).getImm(), &MI.getOperand(3));
1446
1447  case SystemZ::CGIJ:
1448  case SystemZ::CGRJ:
1449    return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
1450                             MI.getOperand(2).getImm(), &MI.getOperand(3));
1451
1452  case SystemZ::CLGIJ:
1453  case SystemZ::CLGRJ:
1454    return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
1455                             MI.getOperand(2).getImm(), &MI.getOperand(3));
1456
1457  case SystemZ::INLINEASM_BR:
1458    // Don't try to analyze asm goto, so pass nullptr as branch target argument.
1459    return SystemZII::Branch(SystemZII::AsmGoto, 0, 0, nullptr);
1460
1461  default:
1462    llvm_unreachable("Unrecognized branch opcode");
1463  }
1464}
1465
1466void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
1467                                           unsigned &LoadOpcode,
1468                                           unsigned &StoreOpcode) const {
1469  if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
1470    LoadOpcode = SystemZ::L;
1471    StoreOpcode = SystemZ::ST;
1472  } else if (RC == &SystemZ::GRH32BitRegClass) {
1473    LoadOpcode = SystemZ::LFH;
1474    StoreOpcode = SystemZ::STFH;
1475  } else if (RC == &SystemZ::GRX32BitRegClass) {
1476    LoadOpcode = SystemZ::LMux;
1477    StoreOpcode = SystemZ::STMux;
1478  } else if (RC == &SystemZ::GR64BitRegClass ||
1479             RC == &SystemZ::ADDR64BitRegClass) {
1480    LoadOpcode = SystemZ::LG;
1481    StoreOpcode = SystemZ::STG;
1482  } else if (RC == &SystemZ::GR128BitRegClass ||
1483             RC == &SystemZ::ADDR128BitRegClass) {
1484    LoadOpcode = SystemZ::L128;
1485    StoreOpcode = SystemZ::ST128;
1486  } else if (RC == &SystemZ::FP32BitRegClass) {
1487    LoadOpcode = SystemZ::LE;
1488    StoreOpcode = SystemZ::STE;
1489  } else if (RC == &SystemZ::FP64BitRegClass) {
1490    LoadOpcode = SystemZ::LD;
1491    StoreOpcode = SystemZ::STD;
1492  } else if (RC == &SystemZ::FP128BitRegClass) {
1493    LoadOpcode = SystemZ::LX;
1494    StoreOpcode = SystemZ::STX;
1495  } else if (RC == &SystemZ::VR32BitRegClass) {
1496    LoadOpcode = SystemZ::VL32;
1497    StoreOpcode = SystemZ::VST32;
1498  } else if (RC == &SystemZ::VR64BitRegClass) {
1499    LoadOpcode = SystemZ::VL64;
1500    StoreOpcode = SystemZ::VST64;
1501  } else if (RC == &SystemZ::VF128BitRegClass ||
1502             RC == &SystemZ::VR128BitRegClass) {
1503    LoadOpcode = SystemZ::VL;
1504    StoreOpcode = SystemZ::VST;
1505  } else
1506    llvm_unreachable("Unsupported regclass to load or store");
1507}
1508
1509unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
1510                                              int64_t Offset) const {
1511  const MCInstrDesc &MCID = get(Opcode);
1512  int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
1513  if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
1514    // Get the instruction to use for unsigned 12-bit displacements.
1515    int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
1516    if (Disp12Opcode >= 0)
1517      return Disp12Opcode;
1518
1519    // All address-related instructions can use unsigned 12-bit
1520    // displacements.
1521    return Opcode;
1522  }
1523  if (isInt<20>(Offset) && isInt<20>(Offset2)) {
1524    // Get the instruction to use for signed 20-bit displacements.
1525    int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
1526    if (Disp20Opcode >= 0)
1527      return Disp20Opcode;
1528
1529    // Check whether Opcode allows signed 20-bit displacements.
1530    if (MCID.TSFlags & SystemZII::Has20BitOffset)
1531      return Opcode;
1532  }
1533  return 0;
1534}
1535
1536unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
1537  switch (Opcode) {
1538  case SystemZ::L:      return SystemZ::LT;
1539  case SystemZ::LY:     return SystemZ::LT;
1540  case SystemZ::LG:     return SystemZ::LTG;
1541  case SystemZ::LGF:    return SystemZ::LTGF;
1542  case SystemZ::LR:     return SystemZ::LTR;
1543  case SystemZ::LGFR:   return SystemZ::LTGFR;
1544  case SystemZ::LGR:    return SystemZ::LTGR;
1545  case SystemZ::LER:    return SystemZ::LTEBR;
1546  case SystemZ::LDR:    return SystemZ::LTDBR;
1547  case SystemZ::LXR:    return SystemZ::LTXBR;
1548  case SystemZ::LCDFR:  return SystemZ::LCDBR;
1549  case SystemZ::LPDFR:  return SystemZ::LPDBR;
1550  case SystemZ::LNDFR:  return SystemZ::LNDBR;
1551  case SystemZ::LCDFR_32:  return SystemZ::LCEBR;
1552  case SystemZ::LPDFR_32:  return SystemZ::LPEBR;
1553  case SystemZ::LNDFR_32:  return SystemZ::LNEBR;
1554  // On zEC12 we prefer to use RISBGN.  But if there is a chance to
1555  // actually use the condition code, we may turn it back into RISGB.
1556  // Note that RISBG is not really a "load-and-test" instruction,
1557  // but sets the same condition code values, so is OK to use here.
1558  case SystemZ::RISBGN: return SystemZ::RISBG;
1559  default:              return 0;
1560  }
1561}
1562
1563// Return true if Mask matches the regexp 0*1+0*, given that zero masks
1564// have already been filtered out.  Store the first set bit in LSB and
1565// the number of set bits in Length if so.
1566static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
1567  unsigned First = findFirstSet(Mask);
1568  uint64_t Top = (Mask >> First) + 1;
1569  if ((Top & -Top) == Top) {
1570    LSB = First;
1571    Length = findFirstSet(Top);
1572    return true;
1573  }
1574  return false;
1575}
1576
1577bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
1578                                   unsigned &Start, unsigned &End) const {
1579  // Reject trivial all-zero masks.
1580  Mask &= allOnes(BitSize);
1581  if (Mask == 0)
1582    return false;
1583
1584  // Handle the 1+0+ or 0+1+0* cases.  Start then specifies the index of
1585  // the msb and End specifies the index of the lsb.
1586  unsigned LSB, Length;
1587  if (isStringOfOnes(Mask, LSB, Length)) {
1588    Start = 63 - (LSB + Length - 1);
1589    End = 63 - LSB;
1590    return true;
1591  }
1592
1593  // Handle the wrap-around 1+0+1+ cases.  Start then specifies the msb
1594  // of the low 1s and End specifies the lsb of the high 1s.
1595  if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
1596    assert(LSB > 0 && "Bottom bit must be set");
1597    assert(LSB + Length < BitSize && "Top bit must be set");
1598    Start = 63 - (LSB - 1);
1599    End = 63 - (LSB + Length);
1600    return true;
1601  }
1602
1603  return false;
1604}
1605
1606unsigned SystemZInstrInfo::getFusedCompare(unsigned Opcode,
1607                                           SystemZII::FusedCompareType Type,
1608                                           const MachineInstr *MI) const {
1609  switch (Opcode) {
1610  case SystemZ::CHI:
1611  case SystemZ::CGHI:
1612    if (!(MI && isInt<8>(MI->getOperand(1).getImm())))
1613      return 0;
1614    break;
1615  case SystemZ::CLFI:
1616  case SystemZ::CLGFI:
1617    if (!(MI && isUInt<8>(MI->getOperand(1).getImm())))
1618      return 0;
1619    break;
1620  case SystemZ::CL:
1621  case SystemZ::CLG:
1622    if (!STI.hasMiscellaneousExtensions())
1623      return 0;
1624    if (!(MI && MI->getOperand(3).getReg() == 0))
1625      return 0;
1626    break;
1627  }
1628  switch (Type) {
1629  case SystemZII::CompareAndBranch:
1630    switch (Opcode) {
1631    case SystemZ::CR:
1632      return SystemZ::CRJ;
1633    case SystemZ::CGR:
1634      return SystemZ::CGRJ;
1635    case SystemZ::CHI:
1636      return SystemZ::CIJ;
1637    case SystemZ::CGHI:
1638      return SystemZ::CGIJ;
1639    case SystemZ::CLR:
1640      return SystemZ::CLRJ;
1641    case SystemZ::CLGR:
1642      return SystemZ::CLGRJ;
1643    case SystemZ::CLFI:
1644      return SystemZ::CLIJ;
1645    case SystemZ::CLGFI:
1646      return SystemZ::CLGIJ;
1647    default:
1648      return 0;
1649    }
1650  case SystemZII::CompareAndReturn:
1651    switch (Opcode) {
1652    case SystemZ::CR:
1653      return SystemZ::CRBReturn;
1654    case SystemZ::CGR:
1655      return SystemZ::CGRBReturn;
1656    case SystemZ::CHI:
1657      return SystemZ::CIBReturn;
1658    case SystemZ::CGHI:
1659      return SystemZ::CGIBReturn;
1660    case SystemZ::CLR:
1661      return SystemZ::CLRBReturn;
1662    case SystemZ::CLGR:
1663      return SystemZ::CLGRBReturn;
1664    case SystemZ::CLFI:
1665      return SystemZ::CLIBReturn;
1666    case SystemZ::CLGFI:
1667      return SystemZ::CLGIBReturn;
1668    default:
1669      return 0;
1670    }
1671  case SystemZII::CompareAndSibcall:
1672    switch (Opcode) {
1673    case SystemZ::CR:
1674      return SystemZ::CRBCall;
1675    case SystemZ::CGR:
1676      return SystemZ::CGRBCall;
1677    case SystemZ::CHI:
1678      return SystemZ::CIBCall;
1679    case SystemZ::CGHI:
1680      return SystemZ::CGIBCall;
1681    case SystemZ::CLR:
1682      return SystemZ::CLRBCall;
1683    case SystemZ::CLGR:
1684      return SystemZ::CLGRBCall;
1685    case SystemZ::CLFI:
1686      return SystemZ::CLIBCall;
1687    case SystemZ::CLGFI:
1688      return SystemZ::CLGIBCall;
1689    default:
1690      return 0;
1691    }
1692  case SystemZII::CompareAndTrap:
1693    switch (Opcode) {
1694    case SystemZ::CR:
1695      return SystemZ::CRT;
1696    case SystemZ::CGR:
1697      return SystemZ::CGRT;
1698    case SystemZ::CHI:
1699      return SystemZ::CIT;
1700    case SystemZ::CGHI:
1701      return SystemZ::CGIT;
1702    case SystemZ::CLR:
1703      return SystemZ::CLRT;
1704    case SystemZ::CLGR:
1705      return SystemZ::CLGRT;
1706    case SystemZ::CLFI:
1707      return SystemZ::CLFIT;
1708    case SystemZ::CLGFI:
1709      return SystemZ::CLGIT;
1710    case SystemZ::CL:
1711      return SystemZ::CLT;
1712    case SystemZ::CLG:
1713      return SystemZ::CLGT;
1714    default:
1715      return 0;
1716    }
1717  }
1718  return 0;
1719}
1720
1721unsigned SystemZInstrInfo::getLoadAndTrap(unsigned Opcode) const {
1722  if (!STI.hasLoadAndTrap())
1723    return 0;
1724  switch (Opcode) {
1725  case SystemZ::L:
1726  case SystemZ::LY:
1727    return SystemZ::LAT;
1728  case SystemZ::LG:
1729    return SystemZ::LGAT;
1730  case SystemZ::LFH:
1731    return SystemZ::LFHAT;
1732  case SystemZ::LLGF:
1733    return SystemZ::LLGFAT;
1734  case SystemZ::LLGT:
1735    return SystemZ::LLGTAT;
1736  }
1737  return 0;
1738}
1739
1740void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
1741                                     MachineBasicBlock::iterator MBBI,
1742                                     unsigned Reg, uint64_t Value) const {
1743  DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
1744  unsigned Opcode;
1745  if (isInt<16>(Value))
1746    Opcode = SystemZ::LGHI;
1747  else if (SystemZ::isImmLL(Value))
1748    Opcode = SystemZ::LLILL;
1749  else if (SystemZ::isImmLH(Value)) {
1750    Opcode = SystemZ::LLILH;
1751    Value >>= 16;
1752  } else {
1753    assert(isInt<32>(Value) && "Huge values not handled yet");
1754    Opcode = SystemZ::LGFI;
1755  }
1756  BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
1757}
1758
1759bool SystemZInstrInfo::verifyInstruction(const MachineInstr &MI,
1760                                         StringRef &ErrInfo) const {
1761  const MCInstrDesc &MCID = MI.getDesc();
1762  for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1763    if (I >= MCID.getNumOperands())
1764      break;
1765    const MachineOperand &Op = MI.getOperand(I);
1766    const MCOperandInfo &MCOI = MCID.OpInfo[I];
1767    // Addressing modes have register and immediate operands. Op should be a
1768    // register (or frame index) operand if MCOI.RegClass contains a valid
1769    // register class, or an immediate otherwise.
1770    if (MCOI.OperandType == MCOI::OPERAND_MEMORY &&
1771        ((MCOI.RegClass != -1 && !Op.isReg() && !Op.isFI()) ||
1772         (MCOI.RegClass == -1 && !Op.isImm()))) {
1773      ErrInfo = "Addressing mode operands corrupt!";
1774      return false;
1775    }
1776  }
1777
1778  return true;
1779}
1780
1781bool SystemZInstrInfo::
1782areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
1783                                const MachineInstr &MIb) const {
1784
1785  if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand())
1786    return false;
1787
1788  // If mem-operands show that the same address Value is used by both
1789  // instructions, check for non-overlapping offsets and widths. Not
1790  // sure if a register based analysis would be an improvement...
1791
1792  MachineMemOperand *MMOa = *MIa.memoperands_begin();
1793  MachineMemOperand *MMOb = *MIb.memoperands_begin();
1794  const Value *VALa = MMOa->getValue();
1795  const Value *VALb = MMOb->getValue();
1796  bool SameVal = (VALa && VALb && (VALa == VALb));
1797  if (!SameVal) {
1798    const PseudoSourceValue *PSVa = MMOa->getPseudoValue();
1799    const PseudoSourceValue *PSVb = MMOb->getPseudoValue();
1800    if (PSVa && PSVb && (PSVa == PSVb))
1801      SameVal = true;
1802  }
1803  if (SameVal) {
1804    int OffsetA = MMOa->getOffset(), OffsetB = MMOb->getOffset();
1805    int WidthA = MMOa->getSize(), WidthB = MMOb->getSize();
1806    int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
1807    int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
1808    int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
1809    if (LowOffset + LowWidth <= HighOffset)
1810      return true;
1811  }
1812
1813  return false;
1814}
1815