SystemZISelLowering.h revision 360784
1//===-- SystemZISelLowering.h - SystemZ DAG lowering interface --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that SystemZ uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
15#define LLVM_LIB_TARGET_SYSTEMZ_SYSTEMZISELLOWERING_H
16
17#include "SystemZ.h"
18#include "SystemZInstrInfo.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/SelectionDAG.h"
21#include "llvm/CodeGen/TargetLowering.h"
22
23namespace llvm {
24namespace SystemZISD {
25enum NodeType : unsigned {
26  FIRST_NUMBER = ISD::BUILTIN_OP_END,
27
28  // Return with a flag operand.  Operand 0 is the chain operand.
29  RET_FLAG,
30
31  // Calls a function.  Operand 0 is the chain operand and operand 1
32  // is the target address.  The arguments start at operand 2.
33  // There is an optional glue operand at the end.
34  CALL,
35  SIBCALL,
36
37  // TLS calls.  Like regular calls, except operand 1 is the TLS symbol.
38  // (The call target is implicitly __tls_get_offset.)
39  TLS_GDCALL,
40  TLS_LDCALL,
41
42  // Wraps a TargetGlobalAddress that should be loaded using PC-relative
43  // accesses (LARL).  Operand 0 is the address.
44  PCREL_WRAPPER,
45
46  // Used in cases where an offset is applied to a TargetGlobalAddress.
47  // Operand 0 is the full TargetGlobalAddress and operand 1 is a
48  // PCREL_WRAPPER for an anchor point.  This is used so that we can
49  // cheaply refer to either the full address or the anchor point
50  // as a register base.
51  PCREL_OFFSET,
52
53  // Integer absolute.
54  IABS,
55
56  // Integer comparisons.  There are three operands: the two values
57  // to compare, and an integer of type SystemZICMP.
58  ICMP,
59
60  // Floating-point comparisons.  The two operands are the values to compare.
61  FCMP,
62
63  // Test under mask.  The first operand is ANDed with the second operand
64  // and the condition codes are set on the result.  The third operand is
65  // a boolean that is true if the condition codes need to distinguish
66  // between CCMASK_TM_MIXED_MSB_0 and CCMASK_TM_MIXED_MSB_1 (which the
67  // register forms do but the memory forms don't).
68  TM,
69
70  // Branches if a condition is true.  Operand 0 is the chain operand;
71  // operand 1 is the 4-bit condition-code mask, with bit N in
72  // big-endian order meaning "branch if CC=N"; operand 2 is the
73  // target block and operand 3 is the flag operand.
74  BR_CCMASK,
75
76  // Selects between operand 0 and operand 1.  Operand 2 is the
77  // mask of condition-code values for which operand 0 should be
78  // chosen over operand 1; it has the same form as BR_CCMASK.
79  // Operand 3 is the flag operand.
80  SELECT_CCMASK,
81
82  // Evaluates to the gap between the stack pointer and the
83  // base of the dynamically-allocatable area.
84  ADJDYNALLOC,
85
86  // Count number of bits set in operand 0 per byte.
87  POPCNT,
88
89  // Wrappers around the ISD opcodes of the same name.  The output is GR128.
90  // Input operands may be GR64 or GR32, depending on the instruction.
91  SMUL_LOHI,
92  UMUL_LOHI,
93  SDIVREM,
94  UDIVREM,
95
96  // Add/subtract with overflow/carry.  These have the same operands as
97  // the corresponding standard operations, except with the carry flag
98  // replaced by a condition code value.
99  SADDO, SSUBO, UADDO, USUBO, ADDCARRY, SUBCARRY,
100
101  // Set the condition code from a boolean value in operand 0.
102  // Operand 1 is a mask of all condition-code values that may result of this
103  // operation, operand 2 is a mask of condition-code values that may result
104  // if the boolean is true.
105  // Note that this operation is always optimized away, we will never
106  // generate any code for it.
107  GET_CCMASK,
108
109  // Use a series of MVCs to copy bytes from one memory location to another.
110  // The operands are:
111  // - the target address
112  // - the source address
113  // - the constant length
114  //
115  // This isn't a memory opcode because we'd need to attach two
116  // MachineMemOperands rather than one.
117  MVC,
118
119  // Like MVC, but implemented as a loop that handles X*256 bytes
120  // followed by straight-line code to handle the rest (if any).
121  // The value of X is passed as an additional operand.
122  MVC_LOOP,
123
124  // Similar to MVC and MVC_LOOP, but for logic operations (AND, OR, XOR).
125  NC,
126  NC_LOOP,
127  OC,
128  OC_LOOP,
129  XC,
130  XC_LOOP,
131
132  // Use CLC to compare two blocks of memory, with the same comments
133  // as for MVC and MVC_LOOP.
134  CLC,
135  CLC_LOOP,
136
137  // Use an MVST-based sequence to implement stpcpy().
138  STPCPY,
139
140  // Use a CLST-based sequence to implement strcmp().  The two input operands
141  // are the addresses of the strings to compare.
142  STRCMP,
143
144  // Use an SRST-based sequence to search a block of memory.  The first
145  // operand is the end address, the second is the start, and the third
146  // is the character to search for.  CC is set to 1 on success and 2
147  // on failure.
148  SEARCH_STRING,
149
150  // Store the CC value in bits 29 and 28 of an integer.
151  IPM,
152
153  // Compiler barrier only; generate a no-op.
154  MEMBARRIER,
155
156  // Transaction begin.  The first operand is the chain, the second
157  // the TDB pointer, and the third the immediate control field.
158  // Returns CC value and chain.
159  TBEGIN,
160  TBEGIN_NOFLOAT,
161
162  // Transaction end.  Just the chain operand.  Returns CC value and chain.
163  TEND,
164
165  // Create a vector constant by filling byte N of the result with bit
166  // 15-N of the single operand.
167  BYTE_MASK,
168
169  // Create a vector constant by replicating an element-sized RISBG-style mask.
170  // The first operand specifies the starting set bit and the second operand
171  // specifies the ending set bit.  Both operands count from the MSB of the
172  // element.
173  ROTATE_MASK,
174
175  // Replicate a GPR scalar value into all elements of a vector.
176  REPLICATE,
177
178  // Create a vector from two i64 GPRs.
179  JOIN_DWORDS,
180
181  // Replicate one element of a vector into all elements.  The first operand
182  // is the vector and the second is the index of the element to replicate.
183  SPLAT,
184
185  // Interleave elements from the high half of operand 0 and the high half
186  // of operand 1.
187  MERGE_HIGH,
188
189  // Likewise for the low halves.
190  MERGE_LOW,
191
192  // Concatenate the vectors in the first two operands, shift them left
193  // by the third operand, and take the first half of the result.
194  SHL_DOUBLE,
195
196  // Take one element of the first v2i64 operand and the one element of
197  // the second v2i64 operand and concatenate them to form a v2i64 result.
198  // The third operand is a 4-bit value of the form 0A0B, where A and B
199  // are the element selectors for the first operand and second operands
200  // respectively.
201  PERMUTE_DWORDS,
202
203  // Perform a general vector permute on vector operands 0 and 1.
204  // Each byte of operand 2 controls the corresponding byte of the result,
205  // in the same way as a byte-level VECTOR_SHUFFLE mask.
206  PERMUTE,
207
208  // Pack vector operands 0 and 1 into a single vector with half-sized elements.
209  PACK,
210
211  // Likewise, but saturate the result and set CC.  PACKS_CC does signed
212  // saturation and PACKLS_CC does unsigned saturation.
213  PACKS_CC,
214  PACKLS_CC,
215
216  // Unpack the first half of vector operand 0 into double-sized elements.
217  // UNPACK_HIGH sign-extends and UNPACKL_HIGH zero-extends.
218  UNPACK_HIGH,
219  UNPACKL_HIGH,
220
221  // Likewise for the second half.
222  UNPACK_LOW,
223  UNPACKL_LOW,
224
225  // Shift each element of vector operand 0 by the number of bits specified
226  // by scalar operand 1.
227  VSHL_BY_SCALAR,
228  VSRL_BY_SCALAR,
229  VSRA_BY_SCALAR,
230
231  // For each element of the output type, sum across all sub-elements of
232  // operand 0 belonging to the corresponding element, and add in the
233  // rightmost sub-element of the corresponding element of operand 1.
234  VSUM,
235
236  // Compare integer vector operands 0 and 1 to produce the usual 0/-1
237  // vector result.  VICMPE is for equality, VICMPH for "signed greater than"
238  // and VICMPHL for "unsigned greater than".
239  VICMPE,
240  VICMPH,
241  VICMPHL,
242
243  // Likewise, but also set the condition codes on the result.
244  VICMPES,
245  VICMPHS,
246  VICMPHLS,
247
248  // Compare floating-point vector operands 0 and 1 to produce the usual 0/-1
249  // vector result.  VFCMPE is for "ordered and equal", VFCMPH for "ordered and
250  // greater than" and VFCMPHE for "ordered and greater than or equal to".
251  VFCMPE,
252  VFCMPH,
253  VFCMPHE,
254
255  // Likewise, but also set the condition codes on the result.
256  VFCMPES,
257  VFCMPHS,
258  VFCMPHES,
259
260  // Test floating-point data class for vectors.
261  VFTCI,
262
263  // Extend the even f32 elements of vector operand 0 to produce a vector
264  // of f64 elements.
265  VEXTEND,
266
267  // Round the f64 elements of vector operand 0 to f32s and store them in the
268  // even elements of the result.
269  VROUND,
270
271  // AND the two vector operands together and set CC based on the result.
272  VTM,
273
274  // String operations that set CC as a side-effect.
275  VFAE_CC,
276  VFAEZ_CC,
277  VFEE_CC,
278  VFEEZ_CC,
279  VFENE_CC,
280  VFENEZ_CC,
281  VISTR_CC,
282  VSTRC_CC,
283  VSTRCZ_CC,
284  VSTRS_CC,
285  VSTRSZ_CC,
286
287  // Test Data Class.
288  //
289  // Operand 0: the value to test
290  // Operand 1: the bit mask
291  TDC,
292
293  // Strict variants of scalar floating-point comparisons.
294  // Quiet and signaling versions.
295  STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
296  STRICT_FCMPS,
297
298  // Strict variants of vector floating-point comparisons.
299  // Quiet and signaling versions.
300  STRICT_VFCMPE,
301  STRICT_VFCMPH,
302  STRICT_VFCMPHE,
303  STRICT_VFCMPES,
304  STRICT_VFCMPHS,
305  STRICT_VFCMPHES,
306
307  // Strict variants of VEXTEND and VROUND.
308  STRICT_VEXTEND,
309  STRICT_VROUND,
310
311  // Wrappers around the inner loop of an 8- or 16-bit ATOMIC_SWAP or
312  // ATOMIC_LOAD_<op>.
313  //
314  // Operand 0: the address of the containing 32-bit-aligned field
315  // Operand 1: the second operand of <op>, in the high bits of an i32
316  //            for everything except ATOMIC_SWAPW
317  // Operand 2: how many bits to rotate the i32 left to bring the first
318  //            operand into the high bits
319  // Operand 3: the negative of operand 2, for rotating the other way
320  // Operand 4: the width of the field in bits (8 or 16)
321  ATOMIC_SWAPW = ISD::FIRST_TARGET_MEMORY_OPCODE,
322  ATOMIC_LOADW_ADD,
323  ATOMIC_LOADW_SUB,
324  ATOMIC_LOADW_AND,
325  ATOMIC_LOADW_OR,
326  ATOMIC_LOADW_XOR,
327  ATOMIC_LOADW_NAND,
328  ATOMIC_LOADW_MIN,
329  ATOMIC_LOADW_MAX,
330  ATOMIC_LOADW_UMIN,
331  ATOMIC_LOADW_UMAX,
332
333  // A wrapper around the inner loop of an ATOMIC_CMP_SWAP.
334  //
335  // Operand 0: the address of the containing 32-bit-aligned field
336  // Operand 1: the compare value, in the low bits of an i32
337  // Operand 2: the swap value, in the low bits of an i32
338  // Operand 3: how many bits to rotate the i32 left to bring the first
339  //            operand into the high bits
340  // Operand 4: the negative of operand 2, for rotating the other way
341  // Operand 5: the width of the field in bits (8 or 16)
342  ATOMIC_CMP_SWAPW,
343
344  // Atomic compare-and-swap returning CC value.
345  // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
346  ATOMIC_CMP_SWAP,
347
348  // 128-bit atomic load.
349  // Val, OUTCHAIN = ATOMIC_LOAD_128(INCHAIN, ptr)
350  ATOMIC_LOAD_128,
351
352  // 128-bit atomic store.
353  // OUTCHAIN = ATOMIC_STORE_128(INCHAIN, val, ptr)
354  ATOMIC_STORE_128,
355
356  // 128-bit atomic compare-and-swap.
357  // Val, CC, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
358  ATOMIC_CMP_SWAP_128,
359
360  // Byte swapping load/store.  Same operands as regular load/store.
361  LRV, STRV,
362
363  // Element swapping load/store.  Same operands as regular load/store.
364  VLER, VSTER,
365
366  // Prefetch from the second operand using the 4-bit control code in
367  // the first operand.  The code is 1 for a load prefetch and 2 for
368  // a store prefetch.
369  PREFETCH
370};
371
372// Return true if OPCODE is some kind of PC-relative address.
373inline bool isPCREL(unsigned Opcode) {
374  return Opcode == PCREL_WRAPPER || Opcode == PCREL_OFFSET;
375}
376} // end namespace SystemZISD
377
378namespace SystemZICMP {
379// Describes whether an integer comparison needs to be signed or unsigned,
380// or whether either type is OK.
381enum {
382  Any,
383  UnsignedOnly,
384  SignedOnly
385};
386} // end namespace SystemZICMP
387
388class SystemZSubtarget;
389class SystemZTargetMachine;
390
391class SystemZTargetLowering : public TargetLowering {
392public:
393  explicit SystemZTargetLowering(const TargetMachine &TM,
394                                 const SystemZSubtarget &STI);
395
396  // Override TargetLowering.
397  MVT getScalarShiftAmountTy(const DataLayout &, EVT) const override {
398    return MVT::i32;
399  }
400  MVT getVectorIdxTy(const DataLayout &DL) const override {
401    // Only the lower 12 bits of an element index are used, so we don't
402    // want to clobber the upper 32 bits of a GPR unnecessarily.
403    return MVT::i32;
404  }
405  TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
406    const override {
407    // Widen subvectors to the full width rather than promoting integer
408    // elements.  This is better because:
409    //
410    // (a) it means that we can handle the ABI for passing and returning
411    //     sub-128 vectors without having to handle them as legal types.
412    //
413    // (b) we don't have instructions to extend on load and truncate on store,
414    //     so promoting the integers is less efficient.
415    //
416    // (c) there are no multiplication instructions for the widest integer
417    //     type (v2i64).
418    if (VT.getScalarSizeInBits() % 8 == 0)
419      return TypeWidenVector;
420    return TargetLoweringBase::getPreferredVectorAction(VT);
421  }
422  bool isCheapToSpeculateCtlz() const override { return true; }
423  EVT getSetCCResultType(const DataLayout &DL, LLVMContext &,
424                         EVT) const override;
425  bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
426                                  EVT VT) const override;
427  bool isFPImmLegal(const APFloat &Imm, EVT VT,
428                    bool ForCodeSize) const override;
429  bool isLegalICmpImmediate(int64_t Imm) const override;
430  bool isLegalAddImmediate(int64_t Imm) const override;
431  bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
432                             unsigned AS,
433                             Instruction *I = nullptr) const override;
434  bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS,
435                                      unsigned Align,
436                                      MachineMemOperand::Flags Flags,
437                                      bool *Fast) const override;
438  bool isTruncateFree(Type *, Type *) const override;
439  bool isTruncateFree(EVT, EVT) const override;
440  const char *getTargetNodeName(unsigned Opcode) const override;
441  std::pair<unsigned, const TargetRegisterClass *>
442  getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
443                               StringRef Constraint, MVT VT) const override;
444  TargetLowering::ConstraintType
445  getConstraintType(StringRef Constraint) const override;
446  TargetLowering::ConstraintWeight
447    getSingleConstraintMatchWeight(AsmOperandInfo &info,
448                                   const char *constraint) const override;
449  void LowerAsmOperandForConstraint(SDValue Op,
450                                    std::string &Constraint,
451                                    std::vector<SDValue> &Ops,
452                                    SelectionDAG &DAG) const override;
453
454  unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
455    if (ConstraintCode.size() == 1) {
456      switch(ConstraintCode[0]) {
457      default:
458        break;
459      case 'o':
460        return InlineAsm::Constraint_o;
461      case 'Q':
462        return InlineAsm::Constraint_Q;
463      case 'R':
464        return InlineAsm::Constraint_R;
465      case 'S':
466        return InlineAsm::Constraint_S;
467      case 'T':
468        return InlineAsm::Constraint_T;
469      }
470    }
471    return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
472  }
473
474  /// If a physical register, this returns the register that receives the
475  /// exception address on entry to an EH pad.
476  unsigned
477  getExceptionPointerRegister(const Constant *PersonalityFn) const override {
478    return SystemZ::R6D;
479  }
480
481  /// If a physical register, this returns the register that receives the
482  /// exception typeid on entry to a landing pad.
483  unsigned
484  getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
485    return SystemZ::R7D;
486  }
487
488  /// Override to support customized stack guard loading.
489  bool useLoadStackGuardNode() const override {
490    return true;
491  }
492  void insertSSPDeclarations(Module &M) const override {
493  }
494
495  MachineBasicBlock *
496  EmitInstrWithCustomInserter(MachineInstr &MI,
497                              MachineBasicBlock *BB) const override;
498  SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
499  void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
500                             SelectionDAG &DAG) const override;
501  void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
502                          SelectionDAG &DAG) const override;
503  const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
504  bool allowTruncateForTailCall(Type *, Type *) const override;
505  bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
506  SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
507                               bool isVarArg,
508                               const SmallVectorImpl<ISD::InputArg> &Ins,
509                               const SDLoc &DL, SelectionDAG &DAG,
510                               SmallVectorImpl<SDValue> &InVals) const override;
511  SDValue LowerCall(CallLoweringInfo &CLI,
512                    SmallVectorImpl<SDValue> &InVals) const override;
513
514  bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
515                      bool isVarArg,
516                      const SmallVectorImpl<ISD::OutputArg> &Outs,
517                      LLVMContext &Context) const override;
518  SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
519                      const SmallVectorImpl<ISD::OutputArg> &Outs,
520                      const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
521                      SelectionDAG &DAG) const override;
522  SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
523
524  /// Determine which of the bits specified in Mask are known to be either
525  /// zero or one and return them in the KnownZero/KnownOne bitsets.
526  void computeKnownBitsForTargetNode(const SDValue Op,
527                                     KnownBits &Known,
528                                     const APInt &DemandedElts,
529                                     const SelectionDAG &DAG,
530                                     unsigned Depth = 0) const override;
531
532  /// Determine the number of bits in the operation that are sign bits.
533  unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
534                                           const APInt &DemandedElts,
535                                           const SelectionDAG &DAG,
536                                           unsigned Depth) const override;
537
538  ISD::NodeType getExtendForAtomicOps() const override {
539    return ISD::ANY_EXTEND;
540  }
541
542  bool supportSwiftError() const override {
543    return true;
544  }
545
546private:
547  const SystemZSubtarget &Subtarget;
548
549  // Implement LowerOperation for individual opcodes.
550  SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode,
551                       const SDLoc &DL, EVT VT,
552                       SDValue CmpOp0, SDValue CmpOp1, SDValue Chain) const;
553  SDValue lowerVectorSETCC(SelectionDAG &DAG, const SDLoc &DL,
554                           EVT VT, ISD::CondCode CC,
555                           SDValue CmpOp0, SDValue CmpOp1,
556                           SDValue Chain = SDValue(),
557                           bool IsSignaling = false) const;
558  SDValue lowerSETCC(SDValue Op, SelectionDAG &DAG) const;
559  SDValue lowerSTRICT_FSETCC(SDValue Op, SelectionDAG &DAG,
560                             bool IsSignaling) const;
561  SDValue lowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
562  SDValue lowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
563  SDValue lowerGlobalAddress(GlobalAddressSDNode *Node,
564                             SelectionDAG &DAG) const;
565  SDValue lowerTLSGetOffset(GlobalAddressSDNode *Node,
566                            SelectionDAG &DAG, unsigned Opcode,
567                            SDValue GOTOffset) const;
568  SDValue lowerThreadPointer(const SDLoc &DL, SelectionDAG &DAG) const;
569  SDValue lowerGlobalTLSAddress(GlobalAddressSDNode *Node,
570                                SelectionDAG &DAG) const;
571  SDValue lowerBlockAddress(BlockAddressSDNode *Node,
572                            SelectionDAG &DAG) const;
573  SDValue lowerJumpTable(JumpTableSDNode *JT, SelectionDAG &DAG) const;
574  SDValue lowerConstantPool(ConstantPoolSDNode *CP, SelectionDAG &DAG) const;
575  SDValue lowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
576  SDValue lowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
577  SDValue lowerVASTART(SDValue Op, SelectionDAG &DAG) const;
578  SDValue lowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
579  SDValue lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
580  SDValue lowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const;
581  SDValue lowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
582  SDValue lowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const;
583  SDValue lowerSDIVREM(SDValue Op, SelectionDAG &DAG) const;
584  SDValue lowerUDIVREM(SDValue Op, SelectionDAG &DAG) const;
585  SDValue lowerXALUO(SDValue Op, SelectionDAG &DAG) const;
586  SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG) const;
587  SDValue lowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
588  SDValue lowerOR(SDValue Op, SelectionDAG &DAG) const;
589  SDValue lowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
590  SDValue lowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const;
591  SDValue lowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const;
592  SDValue lowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const;
593  SDValue lowerATOMIC_LOAD_OP(SDValue Op, SelectionDAG &DAG,
594                              unsigned Opcode) const;
595  SDValue lowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
596  SDValue lowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
597  SDValue lowerSTACKSAVE(SDValue Op, SelectionDAG &DAG) const;
598  SDValue lowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const;
599  SDValue lowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
600  SDValue lowerINTRINSIC_W_CHAIN(SDValue Op, SelectionDAG &DAG) const;
601  SDValue lowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
602  bool isVectorElementLoad(SDValue Op) const;
603  SDValue buildVector(SelectionDAG &DAG, const SDLoc &DL, EVT VT,
604                      SmallVectorImpl<SDValue> &Elems) const;
605  SDValue lowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
606  SDValue lowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
607  SDValue lowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
608  SDValue lowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
609  SDValue lowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
610  SDValue lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG,
611                                 unsigned UnpackHigh) const;
612  SDValue lowerShift(SDValue Op, SelectionDAG &DAG, unsigned ByScalar) const;
613
614  bool canTreatAsByteVector(EVT VT) const;
615  SDValue combineExtract(const SDLoc &DL, EVT ElemVT, EVT VecVT, SDValue OrigOp,
616                         unsigned Index, DAGCombinerInfo &DCI,
617                         bool Force) const;
618  SDValue combineTruncateExtract(const SDLoc &DL, EVT TruncVT, SDValue Op,
619                                 DAGCombinerInfo &DCI) const;
620  SDValue combineZERO_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
621  SDValue combineSIGN_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
622  SDValue combineSIGN_EXTEND_INREG(SDNode *N, DAGCombinerInfo &DCI) const;
623  SDValue combineMERGE(SDNode *N, DAGCombinerInfo &DCI) const;
624  bool canLoadStoreByteSwapped(EVT VT) const;
625  SDValue combineLOAD(SDNode *N, DAGCombinerInfo &DCI) const;
626  SDValue combineSTORE(SDNode *N, DAGCombinerInfo &DCI) const;
627  SDValue combineVECTOR_SHUFFLE(SDNode *N, DAGCombinerInfo &DCI) const;
628  SDValue combineEXTRACT_VECTOR_ELT(SDNode *N, DAGCombinerInfo &DCI) const;
629  SDValue combineJOIN_DWORDS(SDNode *N, DAGCombinerInfo &DCI) const;
630  SDValue combineFP_ROUND(SDNode *N, DAGCombinerInfo &DCI) const;
631  SDValue combineFP_EXTEND(SDNode *N, DAGCombinerInfo &DCI) const;
632  SDValue combineBSWAP(SDNode *N, DAGCombinerInfo &DCI) const;
633  SDValue combineBR_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
634  SDValue combineSELECT_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
635  SDValue combineGET_CCMASK(SDNode *N, DAGCombinerInfo &DCI) const;
636  SDValue combineIntDIVREM(SDNode *N, DAGCombinerInfo &DCI) const;
637
638  SDValue unwrapAddress(SDValue N) const override;
639
640  // If the last instruction before MBBI in MBB was some form of COMPARE,
641  // try to replace it with a COMPARE AND BRANCH just before MBBI.
642  // CCMask and Target are the BRC-like operands for the branch.
643  // Return true if the change was made.
644  bool convertPrevCompareToBranch(MachineBasicBlock *MBB,
645                                  MachineBasicBlock::iterator MBBI,
646                                  unsigned CCMask,
647                                  MachineBasicBlock *Target) const;
648
649  // Implement EmitInstrWithCustomInserter for individual operation types.
650  MachineBasicBlock *emitSelect(MachineInstr &MI, MachineBasicBlock *BB) const;
651  MachineBasicBlock *emitCondStore(MachineInstr &MI, MachineBasicBlock *BB,
652                                   unsigned StoreOpcode, unsigned STOCOpcode,
653                                   bool Invert) const;
654  MachineBasicBlock *emitPair128(MachineInstr &MI,
655                                 MachineBasicBlock *MBB) const;
656  MachineBasicBlock *emitExt128(MachineInstr &MI, MachineBasicBlock *MBB,
657                                bool ClearEven) const;
658  MachineBasicBlock *emitAtomicLoadBinary(MachineInstr &MI,
659                                          MachineBasicBlock *BB,
660                                          unsigned BinOpcode, unsigned BitSize,
661                                          bool Invert = false) const;
662  MachineBasicBlock *emitAtomicLoadMinMax(MachineInstr &MI,
663                                          MachineBasicBlock *MBB,
664                                          unsigned CompareOpcode,
665                                          unsigned KeepOldMask,
666                                          unsigned BitSize) const;
667  MachineBasicBlock *emitAtomicCmpSwapW(MachineInstr &MI,
668                                        MachineBasicBlock *BB) const;
669  MachineBasicBlock *emitMemMemWrapper(MachineInstr &MI, MachineBasicBlock *BB,
670                                       unsigned Opcode) const;
671  MachineBasicBlock *emitStringWrapper(MachineInstr &MI, MachineBasicBlock *BB,
672                                       unsigned Opcode) const;
673  MachineBasicBlock *emitTransactionBegin(MachineInstr &MI,
674                                          MachineBasicBlock *MBB,
675                                          unsigned Opcode, bool NoFloat) const;
676  MachineBasicBlock *emitLoadAndTestCmp0(MachineInstr &MI,
677                                         MachineBasicBlock *MBB,
678                                         unsigned Opcode) const;
679
680  MachineMemOperand::Flags getMMOFlags(const Instruction &I) const override;
681  const TargetRegisterClass *getRepRegClassFor(MVT VT) const override;
682};
683
684struct SystemZVectorConstantInfo {
685private:
686  APInt IntBits;             // The 128 bits as an integer.
687  APInt SplatBits;           // Smallest splat value.
688  APInt SplatUndef;          // Bits correspoding to undef operands of the BVN.
689  unsigned SplatBitSize = 0;
690  bool isFP128 = false;
691
692public:
693  unsigned Opcode = 0;
694  SmallVector<unsigned, 2> OpVals;
695  MVT VecVT;
696  SystemZVectorConstantInfo(APFloat FPImm);
697  SystemZVectorConstantInfo(BuildVectorSDNode *BVN);
698  bool isVectorConstantLegal(const SystemZSubtarget &Subtarget);
699};
700
701} // end namespace llvm
702
703#endif
704