RISCVInstrInfoD.td revision 360784
1//===-- RISCVInstrInfoD.td - RISC-V 'D' instructions -------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file describes the RISC-V instructions from the standard 'D',
10// Double-Precision Floating-Point instruction set extension.
11//
12//===----------------------------------------------------------------------===//
13
14//===----------------------------------------------------------------------===//
15// RISC-V specific DAG Nodes.
16//===----------------------------------------------------------------------===//
17
18def SDT_RISCVBuildPairF64 : SDTypeProfile<1, 2, [SDTCisVT<0, f64>,
19                                                 SDTCisVT<1, i32>,
20                                                 SDTCisSameAs<1, 2>]>;
21def SDT_RISCVSplitF64     : SDTypeProfile<2, 1, [SDTCisVT<0, i32>,
22                                                 SDTCisVT<1, i32>,
23                                                 SDTCisVT<2, f64>]>;
24
25def RISCVBuildPairF64 : SDNode<"RISCVISD::BuildPairF64", SDT_RISCVBuildPairF64>;
26def RISCVSplitF64     : SDNode<"RISCVISD::SplitF64", SDT_RISCVSplitF64>;
27
28//===----------------------------------------------------------------------===//
29// Instruction Class Templates
30//===----------------------------------------------------------------------===//
31
32let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
33class FPFMAD_rrr_frm<RISCVOpcode opcode, string opcodestr>
34    : RVInstR4<0b01, opcode, (outs FPR64:$rd),
35               (ins FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, frmarg:$funct3),
36                opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
37
38class FPFMADDynFrmAlias<FPFMAD_rrr_frm Inst, string OpcodeStr>
39    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
40                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
41
42let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
43class FPALUD_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
44    : RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR64:$rd),
45              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">,
46      Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
47
48let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
49class FPALUD_rr_frm<bits<7> funct7, string opcodestr>
50    : RVInstRFrm<funct7, OPC_OP_FP, (outs FPR64:$rd),
51                (ins FPR64:$rs1, FPR64:$rs2, frmarg:$funct3), opcodestr,
52                 "$rd, $rs1, $rs2, $funct3">,
53      Sched<[WriteFALU64, ReadFALU64, ReadFALU64]>;
54
55class FPALUDDynFrmAlias<FPALUD_rr_frm Inst, string OpcodeStr>
56    : InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
57                (Inst FPR64:$rd, FPR64:$rs1, FPR64:$rs2, 0b111)>;
58
59let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
60class FPCmpD_rr<bits<3> funct3, string opcodestr>
61    : RVInstR<0b1010001, funct3, OPC_OP_FP, (outs GPR:$rd),
62              (ins FPR64:$rs1, FPR64:$rs2), opcodestr, "$rd, $rs1, $rs2">,
63      Sched<[WriteFCmp64, ReadFCmp64, ReadFCmp64]>;
64
65//===----------------------------------------------------------------------===//
66// Instructions
67//===----------------------------------------------------------------------===//
68
69let Predicates = [HasStdExtD] in {
70
71let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
72def FLD : RVInstI<0b011, OPC_LOAD_FP, (outs FPR64:$rd),
73                  (ins GPR:$rs1, simm12:$imm12),
74                  "fld", "$rd, ${imm12}(${rs1})">,
75          Sched<[WriteFLD64, ReadMemBase]>;
76
77// Operands for stores are in the order srcreg, base, offset rather than
78// reflecting the order these fields are specified in the instruction
79// encoding.
80let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
81def FSD : RVInstS<0b011, OPC_STORE_FP, (outs),
82                  (ins FPR64:$rs2, GPR:$rs1, simm12:$imm12),
83                   "fsd", "$rs2, ${imm12}(${rs1})">,
84          Sched<[WriteFST64, ReadStoreData, ReadMemBase]>;
85
86def FMADD_D  : FPFMAD_rrr_frm<OPC_MADD, "fmadd.d">,
87               Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>;
88def          : FPFMADDynFrmAlias<FMADD_D, "fmadd.d">;
89def FMSUB_D  : FPFMAD_rrr_frm<OPC_MSUB, "fmsub.d">,
90               Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>;
91def          : FPFMADDynFrmAlias<FMSUB_D, "fmsub.d">;
92def FNMSUB_D : FPFMAD_rrr_frm<OPC_NMSUB, "fnmsub.d">,
93               Sched<[WriteFMulSub64, ReadFMulSub64, ReadFMulSub64, ReadFMulSub64]>;
94def          : FPFMADDynFrmAlias<FNMSUB_D, "fnmsub.d">;
95def FNMADD_D : FPFMAD_rrr_frm<OPC_NMADD, "fnmadd.d">,
96               Sched<[WriteFMulAdd64, ReadFMulAdd64, ReadFMulAdd64, ReadFMulAdd64]>;
97def          : FPFMADDynFrmAlias<FNMADD_D, "fnmadd.d">;
98
99def FADD_D : FPALUD_rr_frm<0b0000001, "fadd.d">;
100def        : FPALUDDynFrmAlias<FADD_D, "fadd.d">;
101def FSUB_D : FPALUD_rr_frm<0b0000101, "fsub.d">;
102def        : FPALUDDynFrmAlias<FSUB_D, "fsub.d">;
103def FMUL_D : FPALUD_rr_frm<0b0001001, "fmul.d">;
104def        : FPALUDDynFrmAlias<FMUL_D, "fmul.d">;
105def FDIV_D : FPALUD_rr_frm<0b0001101, "fdiv.d">;
106def        : FPALUDDynFrmAlias<FDIV_D, "fdiv.d">;
107
108def FSQRT_D : FPUnaryOp_r_frm<0b0101101, FPR64, FPR64, "fsqrt.d">,
109              Sched<[WriteFSqrt32, ReadFSqrt32]> {
110  let rs2 = 0b00000;
111}
112def         : FPUnaryOpDynFrmAlias<FSQRT_D, "fsqrt.d", FPR64, FPR64>;
113
114def FSGNJ_D  : FPALUD_rr<0b0010001, 0b000, "fsgnj.d">;
115def FSGNJN_D : FPALUD_rr<0b0010001, 0b001, "fsgnjn.d">;
116def FSGNJX_D : FPALUD_rr<0b0010001, 0b010, "fsgnjx.d">;
117def FMIN_D   : FPALUD_rr<0b0010101, 0b000, "fmin.d">;
118def FMAX_D   : FPALUD_rr<0b0010101, 0b001, "fmax.d">;
119
120def FCVT_S_D : FPUnaryOp_r_frm<0b0100000, FPR32, FPR64, "fcvt.s.d">,
121               Sched<[WriteFCvtF64ToF32, ReadFCvtF64ToF32]> {
122  let rs2 = 0b00001;
123}
124def          : FPUnaryOpDynFrmAlias<FCVT_S_D, "fcvt.s.d", FPR32, FPR64>;
125
126def FCVT_D_S : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR32, "fcvt.d.s">,
127               Sched<[WriteFCvtF32ToF64, ReadFCvtF32ToF64]> {
128  let rs2 = 0b00000;
129}
130
131def FEQ_D : FPCmpD_rr<0b010, "feq.d">;
132def FLT_D : FPCmpD_rr<0b001, "flt.d">;
133def FLE_D : FPCmpD_rr<0b000, "fle.d">;
134
135def FCLASS_D : FPUnaryOp_r<0b1110001, 0b001, GPR, FPR64, "fclass.d">,
136               Sched<[WriteFClass64, ReadFClass64]> {
137  let rs2 = 0b00000;
138}
139
140def FCVT_W_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.w.d">,
141               Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
142  let rs2 = 0b00000;
143}
144def          : FPUnaryOpDynFrmAlias<FCVT_W_D, "fcvt.w.d", GPR, FPR64>;
145
146def FCVT_WU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.wu.d">,
147                Sched<[WriteFCvtF64ToI32, ReadFCvtF64ToI32]> {
148  let rs2 = 0b00001;
149}
150def           : FPUnaryOpDynFrmAlias<FCVT_WU_D, "fcvt.wu.d", GPR, FPR64>;
151
152def FCVT_D_W : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.w">,
153               Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
154  let rs2 = 0b00000;
155}
156
157def FCVT_D_WU : FPUnaryOp_r<0b1101001, 0b000, FPR64, GPR, "fcvt.d.wu">,
158                Sched<[WriteFCvtI32ToF64, ReadFCvtI32ToF64]> {
159  let rs2 = 0b00001;
160}
161} // Predicates = [HasStdExtD]
162
163let Predicates = [HasStdExtD, IsRV64] in {
164def FCVT_L_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.l.d">,
165               Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
166  let rs2 = 0b00010;
167}
168def          : FPUnaryOpDynFrmAlias<FCVT_L_D, "fcvt.l.d", GPR, FPR64>;
169
170def FCVT_LU_D : FPUnaryOp_r_frm<0b1100001, GPR, FPR64, "fcvt.lu.d">,
171                Sched<[WriteFCvtF64ToI64, ReadFCvtF64ToI64]> {
172  let rs2 = 0b00011;
173}
174def           : FPUnaryOpDynFrmAlias<FCVT_LU_D, "fcvt.lu.d", GPR, FPR64>;
175
176def FMV_X_D : FPUnaryOp_r<0b1110001, 0b000, GPR, FPR64, "fmv.x.d">,
177              Sched<[WriteFMovF64ToI64, ReadFMovF64ToI64]> {
178  let rs2 = 0b00000;
179}
180
181def FCVT_D_L : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.l">,
182               Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
183  let rs2 = 0b00010;
184}
185def          : FPUnaryOpDynFrmAlias<FCVT_D_L, "fcvt.d.l", FPR64, GPR>;
186
187def FCVT_D_LU : FPUnaryOp_r_frm<0b1101001, FPR64, GPR, "fcvt.d.lu">,
188                Sched<[WriteFCvtI64ToF64, ReadFCvtI64ToF64]> {
189  let rs2 = 0b00011;
190}
191def           : FPUnaryOpDynFrmAlias<FCVT_D_LU, "fcvt.d.lu", FPR64, GPR>;
192
193def FMV_D_X : FPUnaryOp_r<0b1111001, 0b000, FPR64, GPR, "fmv.d.x">,
194              Sched<[WriteFMovI64ToF64, ReadFMovI64ToF64]> {
195  let rs2 = 0b00000;
196}
197} // Predicates = [HasStdExtD, IsRV64]
198
199//===----------------------------------------------------------------------===//
200// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
201//===----------------------------------------------------------------------===//
202
203let Predicates = [HasStdExtD] in {
204def : InstAlias<"fld $rd, (${rs1})",  (FLD FPR64:$rd,  GPR:$rs1, 0), 0>;
205def : InstAlias<"fsd $rs2, (${rs1})", (FSD FPR64:$rs2, GPR:$rs1, 0), 0>;
206
207def : InstAlias<"fmv.d $rd, $rs",  (FSGNJ_D  FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
208def : InstAlias<"fabs.d $rd, $rs", (FSGNJX_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
209def : InstAlias<"fneg.d $rd, $rs", (FSGNJN_D FPR64:$rd, FPR64:$rs, FPR64:$rs)>;
210
211// fgt.d/fge.d are recognised by the GNU assembler but the canonical
212// flt.d/fle.d forms will always be printed. Therefore, set a zero weight.
213def : InstAlias<"fgt.d $rd, $rs, $rt",
214                (FLT_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
215def : InstAlias<"fge.d $rd, $rs, $rt",
216                (FLE_D GPR:$rd, FPR64:$rt, FPR64:$rs), 0>;
217
218def PseudoFLD  : PseudoFloatLoad<"fld", FPR64>;
219def PseudoFSD  : PseudoStore<"fsd", FPR64>;
220} // Predicates = [HasStdExtD]
221
222//===----------------------------------------------------------------------===//
223// Pseudo-instructions and codegen patterns
224//===----------------------------------------------------------------------===//
225
226class PatFpr64Fpr64<SDPatternOperator OpNode, RVInstR Inst>
227    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2)>;
228
229class PatFpr64Fpr64DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
230    : Pat<(OpNode FPR64:$rs1, FPR64:$rs2), (Inst $rs1, $rs2, 0b111)>;
231
232let Predicates = [HasStdExtD] in {
233
234/// Float conversion operations
235
236// f64 -> f32, f32 -> f64
237def : Pat<(fpround FPR64:$rs1), (FCVT_S_D FPR64:$rs1, 0b111)>;
238def : Pat<(fpextend FPR32:$rs1), (FCVT_D_S FPR32:$rs1)>;
239
240// [u]int<->double conversion patterns must be gated on IsRV32 or IsRV64, so
241// are defined later.
242
243/// Float arithmetic operations
244
245def : PatFpr64Fpr64DynFrm<fadd, FADD_D>;
246def : PatFpr64Fpr64DynFrm<fsub, FSUB_D>;
247def : PatFpr64Fpr64DynFrm<fmul, FMUL_D>;
248def : PatFpr64Fpr64DynFrm<fdiv, FDIV_D>;
249
250def : Pat<(fsqrt FPR64:$rs1), (FSQRT_D FPR64:$rs1, 0b111)>;
251
252def : Pat<(fneg FPR64:$rs1), (FSGNJN_D $rs1, $rs1)>;
253def : Pat<(fabs FPR64:$rs1), (FSGNJX_D $rs1, $rs1)>;
254
255def : PatFpr64Fpr64<fcopysign, FSGNJ_D>;
256def : Pat<(fcopysign FPR64:$rs1, (fneg FPR64:$rs2)), (FSGNJN_D $rs1, $rs2)>;
257def : Pat<(fcopysign FPR64:$rs1, FPR32:$rs2), (FSGNJ_D $rs1, (FCVT_D_S $rs2))>;
258def : Pat<(fcopysign FPR32:$rs1, FPR64:$rs2), (FSGNJ_S $rs1, (FCVT_S_D $rs2,
259                                                              0b111))>;
260
261// fmadd: rs1 * rs2 + rs3
262def : Pat<(fma FPR64:$rs1, FPR64:$rs2, FPR64:$rs3),
263          (FMADD_D $rs1, $rs2, $rs3, 0b111)>;
264
265// fmsub: rs1 * rs2 - rs3
266def : Pat<(fma FPR64:$rs1, FPR64:$rs2, (fneg FPR64:$rs3)),
267          (FMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
268
269// fnmsub: -rs1 * rs2 + rs3
270def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, FPR64:$rs3),
271          (FNMSUB_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
272
273// fnmadd: -rs1 * rs2 - rs3
274def : Pat<(fma (fneg FPR64:$rs1), FPR64:$rs2, (fneg FPR64:$rs3)),
275          (FNMADD_D FPR64:$rs1, FPR64:$rs2, FPR64:$rs3, 0b111)>;
276
277// The RISC-V 2.2 user-level ISA spec defines fmin and fmax as returning the
278// canonical NaN when giving a signaling NaN. This doesn't match the LLVM
279// behaviour (see https://bugs.llvm.org/show_bug.cgi?id=27363). However, the
280// draft 2.3 ISA spec changes the definition of fmin and fmax in a way that
281// matches LLVM's fminnum and fmaxnum
282// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
283def : PatFpr64Fpr64<fminnum, FMIN_D>;
284def : PatFpr64Fpr64<fmaxnum, FMAX_D>;
285
286/// Setcc
287
288def : PatFpr64Fpr64<seteq, FEQ_D>;
289def : PatFpr64Fpr64<setoeq, FEQ_D>;
290def : PatFpr64Fpr64<setlt, FLT_D>;
291def : PatFpr64Fpr64<setolt, FLT_D>;
292def : PatFpr64Fpr64<setle, FLE_D>;
293def : PatFpr64Fpr64<setole, FLE_D>;
294
295// Define pattern expansions for setcc operations which aren't directly
296// handled by a RISC-V instruction and aren't expanded in the SelectionDAG
297// Legalizer.
298
299def : Pat<(seto FPR64:$rs1, FPR64:$rs2),
300          (AND (FEQ_D FPR64:$rs1, FPR64:$rs1),
301               (FEQ_D FPR64:$rs2, FPR64:$rs2))>;
302
303def : Pat<(setuo FPR64:$rs1, FPR64:$rs2),
304          (SLTIU (AND (FEQ_D FPR64:$rs1, FPR64:$rs1),
305                      (FEQ_D FPR64:$rs2, FPR64:$rs2)),
306                 1)>;
307
308def Select_FPR64_Using_CC_GPR : SelectCC_rrirr<FPR64, GPR>;
309
310/// Loads
311
312defm : LdPat<load, FLD>;
313
314/// Stores
315
316defm : StPat<store, FSD, FPR64>;
317
318/// Pseudo-instructions needed for the soft-float ABI with RV32D
319
320// Moves two GPRs to an FPR.
321let usesCustomInserter = 1 in
322def BuildPairF64Pseudo
323    : Pseudo<(outs FPR64:$dst), (ins GPR:$src1, GPR:$src2),
324             [(set FPR64:$dst, (RISCVBuildPairF64 GPR:$src1, GPR:$src2))]>;
325
326// Moves an FPR to two GPRs.
327let usesCustomInserter = 1 in
328def SplitF64Pseudo
329    : Pseudo<(outs GPR:$dst1, GPR:$dst2), (ins FPR64:$src),
330             [(set GPR:$dst1, GPR:$dst2, (RISCVSplitF64 FPR64:$src))]>;
331
332} // Predicates = [HasStdExtD]
333
334let Predicates = [HasStdExtD, IsRV32] in {
335// double->[u]int. Round-to-zero must be used.
336def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_W_D FPR64:$rs1, 0b001)>;
337def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_WU_D FPR64:$rs1, 0b001)>;
338
339// [u]int->double.
340def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_W GPR:$rs1)>;
341def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_WU GPR:$rs1)>;
342} // Predicates = [HasStdExtD, IsRV32]
343
344let Predicates = [HasStdExtD, IsRV64] in {
345def : Pat<(bitconvert GPR:$rs1), (FMV_D_X GPR:$rs1)>;
346def : Pat<(bitconvert FPR64:$rs1), (FMV_X_D FPR64:$rs1)>;
347
348// FP->[u]int32 is mostly handled by the FP->[u]int64 patterns. This is safe
349// because fpto[u|s]i produce poison if the value can't fit into the target.
350// We match the single case below because fcvt.wu.d sign-extends its result so
351// is cheaper than fcvt.lu.d+sext.w.
352def : Pat<(sext_inreg (zexti32 (fp_to_uint FPR64:$rs1)), i32),
353          (FCVT_WU_D $rs1, 0b001)>;
354
355// [u]int32->fp
356def : Pat<(sint_to_fp (sext_inreg GPR:$rs1, i32)), (FCVT_D_W $rs1)>;
357def : Pat<(uint_to_fp (zexti32 GPR:$rs1)), (FCVT_D_WU $rs1)>;
358
359def : Pat<(fp_to_sint FPR64:$rs1), (FCVT_L_D FPR64:$rs1, 0b001)>;
360def : Pat<(fp_to_uint FPR64:$rs1), (FCVT_LU_D FPR64:$rs1, 0b001)>;
361
362// [u]int64->fp. Match GCC and default to using dynamic rounding mode.
363def : Pat<(sint_to_fp GPR:$rs1), (FCVT_D_L GPR:$rs1, 0b111)>;
364def : Pat<(uint_to_fp GPR:$rs1), (FCVT_D_LU GPR:$rs1, 0b111)>;
365} // Predicates = [HasStdExtD, IsRV64]
366