PPCVSXFMAMutate.cpp revision 360784
1//===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass mutates the form of VSX FMA instructions to avoid unnecessary
10// copies.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MCTargetDesc/PPCPredicates.h"
15#include "PPC.h"
16#include "PPCInstrBuilder.h"
17#include "PPCInstrInfo.h"
18#include "PPCMachineFunctionInfo.h"
19#include "PPCTargetMachine.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/CodeGen/LiveIntervals.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineFunctionPass.h"
26#include "llvm/CodeGen/MachineInstrBuilder.h"
27#include "llvm/CodeGen/MachineMemOperand.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/PseudoSourceValue.h"
30#include "llvm/CodeGen/ScheduleDAG.h"
31#include "llvm/CodeGen/SlotIndexes.h"
32#include "llvm/InitializePasses.h"
33#include "llvm/MC/MCAsmInfo.h"
34#include "llvm/Support/CommandLine.h"
35#include "llvm/Support/Debug.h"
36#include "llvm/Support/ErrorHandling.h"
37#include "llvm/Support/TargetRegistry.h"
38#include "llvm/Support/raw_ostream.h"
39
40using namespace llvm;
41
42// Temporarily disable FMA mutation by default, since it doesn't handle
43// cross-basic-block intervals well.
44// See: http://lists.llvm.org/pipermail/llvm-dev/2016-February/095669.html
45//      http://reviews.llvm.org/D17087
46static cl::opt<bool> DisableVSXFMAMutate(
47    "disable-ppc-vsx-fma-mutation",
48    cl::desc("Disable VSX FMA instruction mutation"), cl::init(true),
49    cl::Hidden);
50
51#define DEBUG_TYPE "ppc-vsx-fma-mutate"
52
53namespace llvm { namespace PPC {
54  int getAltVSXFMAOpcode(uint16_t Opcode);
55} }
56
57namespace {
58  // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers
59  // (Altivec and scalar floating-point registers), we need to transform the
60  // copies into subregister copies with other restrictions.
61  struct PPCVSXFMAMutate : public MachineFunctionPass {
62    static char ID;
63    PPCVSXFMAMutate() : MachineFunctionPass(ID) {
64      initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
65    }
66
67    LiveIntervals *LIS;
68    const PPCInstrInfo *TII;
69
70protected:
71    bool processBlock(MachineBasicBlock &MBB) {
72      bool Changed = false;
73
74      MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
75      const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
76      for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end();
77           I != IE; ++I) {
78        MachineInstr &MI = *I;
79
80        // The default (A-type) VSX FMA form kills the addend (it is taken from
81        // the target register, which is then updated to reflect the result of
82        // the FMA). If the instruction, however, kills one of the registers
83        // used for the product, then we can use the M-form instruction (which
84        // will take that value from the to-be-defined register).
85
86        int AltOpc = PPC::getAltVSXFMAOpcode(MI.getOpcode());
87        if (AltOpc == -1)
88          continue;
89
90        // This pass is run after register coalescing, and so we're looking for
91        // a situation like this:
92        //   ...
93        //   %5 = COPY %9; VSLRC:%5,%9
94        //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
95        //                         implicit %rm; VSLRC:%5,%17,%16
96        //   ...
97        //   %9<def,tied1> = XSMADDADP %9<tied0>, %17, %19,
98        //                         implicit %rm; VSLRC:%9,%17,%19
99        //   ...
100        // Where we can eliminate the copy by changing from the A-type to the
101        // M-type instruction. Specifically, for this example, this means:
102        //   %5<def,tied1> = XSMADDADP %5<tied0>, %17, %16,
103        //                         implicit %rm; VSLRC:%5,%17,%16
104        // is replaced by:
105        //   %16<def,tied1> = XSMADDMDP %16<tied0>, %18, %9,
106        //                         implicit %rm; VSLRC:%16,%18,%9
107        // and we remove: %5 = COPY %9; VSLRC:%5,%9
108
109        SlotIndex FMAIdx = LIS->getInstructionIndex(MI);
110
111        VNInfo *AddendValNo =
112            LIS->getInterval(MI.getOperand(1).getReg()).Query(FMAIdx).valueIn();
113
114        // This can be null if the register is undef.
115        if (!AddendValNo)
116          continue;
117
118        MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def);
119
120        // The addend and this instruction must be in the same block.
121
122        if (!AddendMI || AddendMI->getParent() != MI.getParent())
123          continue;
124
125        // The addend must be a full copy within the same register class.
126
127        if (!AddendMI->isFullCopy())
128          continue;
129
130        Register AddendSrcReg = AddendMI->getOperand(1).getReg();
131        if (Register::isVirtualRegister(AddendSrcReg)) {
132          if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) !=
133              MRI.getRegClass(AddendSrcReg))
134            continue;
135        } else {
136          // If AddendSrcReg is a physical register, make sure the destination
137          // register class contains it.
138          if (!MRI.getRegClass(AddendMI->getOperand(0).getReg())
139                ->contains(AddendSrcReg))
140            continue;
141        }
142
143        // In theory, there could be other uses of the addend copy before this
144        // fma.  We could deal with this, but that would require additional
145        // logic below and I suspect it will not occur in any relevant
146        // situations.  Additionally, check whether the copy source is killed
147        // prior to the fma.  In order to replace the addend here with the
148        // source of the copy, it must still be live here.  We can't use
149        // interval testing for a physical register, so as long as we're
150        // walking the MIs we may as well test liveness here.
151        //
152        // FIXME: There is a case that occurs in practice, like this:
153        //   %9 = COPY %f1; VSSRC:%9
154        //   ...
155        //   %6 = COPY %9; VSSRC:%6,%9
156        //   %7 = COPY %9; VSSRC:%7,%9
157        //   %9<def,tied1> = XSMADDASP %9<tied0>, %1, %4; VSSRC:
158        //   %6<def,tied1> = XSMADDASP %6<tied0>, %1, %2; VSSRC:
159        //   %7<def,tied1> = XSMADDASP %7<tied0>, %1, %3; VSSRC:
160        // which prevents an otherwise-profitable transformation.
161        bool OtherUsers = false, KillsAddendSrc = false;
162        for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI);
163             J != JE; --J) {
164          if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) {
165            OtherUsers = true;
166            break;
167          }
168          if (J->modifiesRegister(AddendSrcReg, TRI) ||
169              J->killsRegister(AddendSrcReg, TRI)) {
170            KillsAddendSrc = true;
171            break;
172          }
173        }
174
175        if (OtherUsers || KillsAddendSrc)
176          continue;
177
178
179        // The transformation doesn't work well with things like:
180        //    %5 = A-form-op %5, %11, %5;
181        // unless %11 is also a kill, so skip when it is not,
182        // and check operand 3 to see it is also a kill to handle the case:
183        //   %5 = A-form-op %5, %5, %11;
184        // where %5 and %11 are both kills. This case would be skipped
185        // otherwise.
186        Register OldFMAReg = MI.getOperand(0).getReg();
187
188        // Find one of the product operands that is killed by this instruction.
189        unsigned KilledProdOp = 0, OtherProdOp = 0;
190        Register Reg2 = MI.getOperand(2).getReg();
191        Register Reg3 = MI.getOperand(3).getReg();
192        if (LIS->getInterval(Reg2).Query(FMAIdx).isKill()
193            && Reg2 != OldFMAReg) {
194          KilledProdOp = 2;
195          OtherProdOp  = 3;
196        } else if (LIS->getInterval(Reg3).Query(FMAIdx).isKill()
197            && Reg3 != OldFMAReg) {
198          KilledProdOp = 3;
199          OtherProdOp  = 2;
200        }
201
202        // If there are no usable killed product operands, then this
203        // transformation is likely not profitable.
204        if (!KilledProdOp)
205          continue;
206
207        // If the addend copy is used only by this MI, then the addend source
208        // register is likely not live here. This could be fixed (based on the
209        // legality checks above, the live range for the addend source register
210        // could be extended), but it seems likely that such a trivial copy can
211        // be coalesced away later, and thus is not worth the effort.
212        if (Register::isVirtualRegister(AddendSrcReg) &&
213            !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx))
214          continue;
215
216        // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3.
217
218        Register KilledProdReg = MI.getOperand(KilledProdOp).getReg();
219        Register OtherProdReg = MI.getOperand(OtherProdOp).getReg();
220
221        unsigned AddSubReg = AddendMI->getOperand(1).getSubReg();
222        unsigned KilledProdSubReg = MI.getOperand(KilledProdOp).getSubReg();
223        unsigned OtherProdSubReg = MI.getOperand(OtherProdOp).getSubReg();
224
225        bool AddRegKill = AddendMI->getOperand(1).isKill();
226        bool KilledProdRegKill = MI.getOperand(KilledProdOp).isKill();
227        bool OtherProdRegKill = MI.getOperand(OtherProdOp).isKill();
228
229        bool AddRegUndef = AddendMI->getOperand(1).isUndef();
230        bool KilledProdRegUndef = MI.getOperand(KilledProdOp).isUndef();
231        bool OtherProdRegUndef = MI.getOperand(OtherProdOp).isUndef();
232
233        // If there isn't a class that fits, we can't perform the transform.
234        // This is needed for correctness with a mixture of VSX and Altivec
235        // instructions to make sure that a low VSX register is not assigned to
236        // the Altivec instruction.
237        if (!MRI.constrainRegClass(KilledProdReg,
238                                   MRI.getRegClass(OldFMAReg)))
239          continue;
240
241        assert(OldFMAReg == AddendMI->getOperand(0).getReg() &&
242               "Addend copy not tied to old FMA output!");
243
244        LLVM_DEBUG(dbgs() << "VSX FMA Mutation:\n    " << MI);
245
246        MI.getOperand(0).setReg(KilledProdReg);
247        MI.getOperand(1).setReg(KilledProdReg);
248        MI.getOperand(3).setReg(AddendSrcReg);
249
250        MI.getOperand(0).setSubReg(KilledProdSubReg);
251        MI.getOperand(1).setSubReg(KilledProdSubReg);
252        MI.getOperand(3).setSubReg(AddSubReg);
253
254        MI.getOperand(1).setIsKill(KilledProdRegKill);
255        MI.getOperand(3).setIsKill(AddRegKill);
256
257        MI.getOperand(1).setIsUndef(KilledProdRegUndef);
258        MI.getOperand(3).setIsUndef(AddRegUndef);
259
260        MI.setDesc(TII->get(AltOpc));
261
262        // If the addend is also a multiplicand, replace it with the addend
263        // source in both places.
264        if (OtherProdReg == AddendMI->getOperand(0).getReg()) {
265          MI.getOperand(2).setReg(AddendSrcReg);
266          MI.getOperand(2).setSubReg(AddSubReg);
267          MI.getOperand(2).setIsKill(AddRegKill);
268          MI.getOperand(2).setIsUndef(AddRegUndef);
269        } else {
270          MI.getOperand(2).setReg(OtherProdReg);
271          MI.getOperand(2).setSubReg(OtherProdSubReg);
272          MI.getOperand(2).setIsKill(OtherProdRegKill);
273          MI.getOperand(2).setIsUndef(OtherProdRegUndef);
274        }
275
276        LLVM_DEBUG(dbgs() << " -> " << MI);
277
278        // The killed product operand was killed here, so we can reuse it now
279        // for the result of the fma.
280
281        LiveInterval &FMAInt = LIS->getInterval(OldFMAReg);
282        VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot());
283        for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end();
284             UI != UE;) {
285          MachineOperand &UseMO = *UI;
286          MachineInstr *UseMI = UseMO.getParent();
287          ++UI;
288
289          // Don't replace the result register of the copy we're about to erase.
290          if (UseMI == AddendMI)
291            continue;
292
293          UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI);
294        }
295
296        // Extend the live intervals of the killed product operand to hold the
297        // fma result.
298
299        LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg);
300        for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end();
301             AI != AE; ++AI) {
302          // Don't add the segment that corresponds to the original copy.
303          if (AI->valno == AddendValNo)
304            continue;
305
306          VNInfo *NewFMAValNo =
307            NewFMAInt.getNextValue(AI->start,
308                                   LIS->getVNInfoAllocator());
309
310          NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end,
311                                                     NewFMAValNo));
312        }
313        LLVM_DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n');
314
315        // Extend the live interval of the addend source (it might end at the
316        // copy to be removed, or somewhere in between there and here). This
317        // is necessary only if it is a physical register.
318        if (!Register::isVirtualRegister(AddendSrcReg))
319          for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid();
320               ++Units) {
321            unsigned Unit = *Units;
322
323            LiveRange &AddendSrcRange = LIS->getRegUnit(Unit);
324            AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB),
325                                         FMAIdx.getRegSlot());
326            LLVM_DEBUG(dbgs() << "  extended: " << AddendSrcRange << '\n');
327          }
328
329        FMAInt.removeValNo(FMAValNo);
330        LLVM_DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n');
331
332        // Remove the (now unused) copy.
333
334        LLVM_DEBUG(dbgs() << "  removing: " << *AddendMI << '\n');
335        LIS->RemoveMachineInstrFromMaps(*AddendMI);
336        AddendMI->eraseFromParent();
337
338        Changed = true;
339      }
340
341      return Changed;
342    }
343
344public:
345    bool runOnMachineFunction(MachineFunction &MF) override {
346      if (skipFunction(MF.getFunction()))
347        return false;
348
349      // If we don't have VSX then go ahead and return without doing
350      // anything.
351      const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
352      if (!STI.hasVSX())
353        return false;
354
355      LIS = &getAnalysis<LiveIntervals>();
356
357      TII = STI.getInstrInfo();
358
359      bool Changed = false;
360
361      if (DisableVSXFMAMutate)
362        return Changed;
363
364      for (MachineFunction::iterator I = MF.begin(); I != MF.end();) {
365        MachineBasicBlock &B = *I++;
366        if (processBlock(B))
367          Changed = true;
368      }
369
370      return Changed;
371    }
372
373    void getAnalysisUsage(AnalysisUsage &AU) const override {
374      AU.addRequired<LiveIntervals>();
375      AU.addPreserved<LiveIntervals>();
376      AU.addRequired<SlotIndexes>();
377      AU.addPreserved<SlotIndexes>();
378      AU.addRequired<MachineDominatorTree>();
379      AU.addPreserved<MachineDominatorTree>();
380      MachineFunctionPass::getAnalysisUsage(AU);
381    }
382  };
383}
384
385INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE,
386                      "PowerPC VSX FMA Mutation", false, false)
387INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
388INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
389INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
390INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE,
391                    "PowerPC VSX FMA Mutation", false, false)
392
393char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID;
394
395char PPCVSXFMAMutate::ID = 0;
396FunctionPass *llvm::createPPCVSXFMAMutatePass() {
397  return new PPCVSXFMAMutate();
398}
399