PPCISelLowering.cpp revision 360784
1//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the PPCISelLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "PPCISelLowering.h"
14#include "MCTargetDesc/PPCPredicates.h"
15#include "PPC.h"
16#include "PPCCCState.h"
17#include "PPCCallingConv.h"
18#include "PPCFrameLowering.h"
19#include "PPCInstrInfo.h"
20#include "PPCMachineFunctionInfo.h"
21#include "PPCPerfectShuffle.h"
22#include "PPCRegisterInfo.h"
23#include "PPCSubtarget.h"
24#include "PPCTargetMachine.h"
25#include "llvm/ADT/APFloat.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/ArrayRef.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/None.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/ADT/SmallPtrSet.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/ADT/StringSwitch.h"
37#include "llvm/CodeGen/CallingConvLower.h"
38#include "llvm/CodeGen/ISDOpcodes.h"
39#include "llvm/CodeGen/MachineBasicBlock.h"
40#include "llvm/CodeGen/MachineFrameInfo.h"
41#include "llvm/CodeGen/MachineFunction.h"
42#include "llvm/CodeGen/MachineInstr.h"
43#include "llvm/CodeGen/MachineInstrBuilder.h"
44#include "llvm/CodeGen/MachineJumpTableInfo.h"
45#include "llvm/CodeGen/MachineLoopInfo.h"
46#include "llvm/CodeGen/MachineMemOperand.h"
47#include "llvm/CodeGen/MachineModuleInfo.h"
48#include "llvm/CodeGen/MachineOperand.h"
49#include "llvm/CodeGen/MachineRegisterInfo.h"
50#include "llvm/CodeGen/RuntimeLibcalls.h"
51#include "llvm/CodeGen/SelectionDAG.h"
52#include "llvm/CodeGen/SelectionDAGNodes.h"
53#include "llvm/CodeGen/TargetInstrInfo.h"
54#include "llvm/CodeGen/TargetLowering.h"
55#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
56#include "llvm/CodeGen/TargetRegisterInfo.h"
57#include "llvm/CodeGen/ValueTypes.h"
58#include "llvm/IR/CallSite.h"
59#include "llvm/IR/CallingConv.h"
60#include "llvm/IR/Constant.h"
61#include "llvm/IR/Constants.h"
62#include "llvm/IR/DataLayout.h"
63#include "llvm/IR/DebugLoc.h"
64#include "llvm/IR/DerivedTypes.h"
65#include "llvm/IR/Function.h"
66#include "llvm/IR/GlobalValue.h"
67#include "llvm/IR/IRBuilder.h"
68#include "llvm/IR/Instructions.h"
69#include "llvm/IR/Intrinsics.h"
70#include "llvm/IR/IntrinsicsPowerPC.h"
71#include "llvm/IR/Module.h"
72#include "llvm/IR/Type.h"
73#include "llvm/IR/Use.h"
74#include "llvm/IR/Value.h"
75#include "llvm/MC/MCContext.h"
76#include "llvm/MC/MCExpr.h"
77#include "llvm/MC/MCRegisterInfo.h"
78#include "llvm/MC/MCSymbolXCOFF.h"
79#include "llvm/Support/AtomicOrdering.h"
80#include "llvm/Support/BranchProbability.h"
81#include "llvm/Support/Casting.h"
82#include "llvm/Support/CodeGen.h"
83#include "llvm/Support/CommandLine.h"
84#include "llvm/Support/Compiler.h"
85#include "llvm/Support/Debug.h"
86#include "llvm/Support/ErrorHandling.h"
87#include "llvm/Support/Format.h"
88#include "llvm/Support/KnownBits.h"
89#include "llvm/Support/MachineValueType.h"
90#include "llvm/Support/MathExtras.h"
91#include "llvm/Support/raw_ostream.h"
92#include "llvm/Target/TargetMachine.h"
93#include "llvm/Target/TargetOptions.h"
94#include <algorithm>
95#include <cassert>
96#include <cstdint>
97#include <iterator>
98#include <list>
99#include <utility>
100#include <vector>
101
102using namespace llvm;
103
104#define DEBUG_TYPE "ppc-lowering"
105
106static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
107cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
108
109static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
110cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
111
112static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
113cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
114
115static cl::opt<bool> DisableSCO("disable-ppc-sco",
116cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
117
118static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
119cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
120
121static cl::opt<bool> EnableQuadPrecision("enable-ppc-quad-precision",
122cl::desc("enable quad precision float support on ppc"), cl::Hidden);
123
124static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
125cl::desc("use absolute jump tables on ppc"), cl::Hidden);
126
127STATISTIC(NumTailCalls, "Number of tail calls");
128STATISTIC(NumSiblingCalls, "Number of sibling calls");
129
130static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
131
132static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
133
134// FIXME: Remove this once the bug has been fixed!
135extern cl::opt<bool> ANDIGlueBug;
136
137PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
138                                     const PPCSubtarget &STI)
139    : TargetLowering(TM), Subtarget(STI) {
140  // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
141  // arguments are at least 4/8 bytes aligned.
142  bool isPPC64 = Subtarget.isPPC64();
143  setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
144
145  // Set up the register classes.
146  addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
147  if (!useSoftFloat()) {
148    if (hasSPE()) {
149      addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
150      addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
151    } else {
152      addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
153      addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
154    }
155  }
156
157  // Match BITREVERSE to customized fast code sequence in the td file.
158  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
159  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
160
161  // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
162  setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
163
164  // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
165  for (MVT VT : MVT::integer_valuetypes()) {
166    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
167    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
168  }
169
170  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
171
172  // PowerPC has pre-inc load and store's.
173  setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
174  setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
175  setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
176  setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
177  setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
178  setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
179  setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
180  setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
181  setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
182  setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
183  if (!Subtarget.hasSPE()) {
184    setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
185    setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
186    setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
187    setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
188  }
189
190  // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
191  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
192  for (MVT VT : ScalarIntVTs) {
193    setOperationAction(ISD::ADDC, VT, Legal);
194    setOperationAction(ISD::ADDE, VT, Legal);
195    setOperationAction(ISD::SUBC, VT, Legal);
196    setOperationAction(ISD::SUBE, VT, Legal);
197  }
198
199  if (Subtarget.useCRBits()) {
200    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
201
202    if (isPPC64 || Subtarget.hasFPCVT()) {
203      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
204      AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
205                         isPPC64 ? MVT::i64 : MVT::i32);
206      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
207      AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
208                        isPPC64 ? MVT::i64 : MVT::i32);
209    } else {
210      setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
211      setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
212    }
213
214    // PowerPC does not support direct load/store of condition registers.
215    setOperationAction(ISD::LOAD, MVT::i1, Custom);
216    setOperationAction(ISD::STORE, MVT::i1, Custom);
217
218    // FIXME: Remove this once the ANDI glue bug is fixed:
219    if (ANDIGlueBug)
220      setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
221
222    for (MVT VT : MVT::integer_valuetypes()) {
223      setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
224      setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
225      setTruncStoreAction(VT, MVT::i1, Expand);
226    }
227
228    addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
229  }
230
231  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
232  // PPC (the libcall is not available).
233  setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
234  setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
235
236  // We do not currently implement these libm ops for PowerPC.
237  setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
238  setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
239  setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
240  setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
241  setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
242  setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
243
244  // PowerPC has no SREM/UREM instructions unless we are on P9
245  // On P9 we may use a hardware instruction to compute the remainder.
246  // The instructions are not legalized directly because in the cases where the
247  // result of both the remainder and the division is required it is more
248  // efficient to compute the remainder from the result of the division rather
249  // than use the remainder instruction.
250  if (Subtarget.isISA3_0()) {
251    setOperationAction(ISD::SREM, MVT::i32, Custom);
252    setOperationAction(ISD::UREM, MVT::i32, Custom);
253    setOperationAction(ISD::SREM, MVT::i64, Custom);
254    setOperationAction(ISD::UREM, MVT::i64, Custom);
255  } else {
256    setOperationAction(ISD::SREM, MVT::i32, Expand);
257    setOperationAction(ISD::UREM, MVT::i32, Expand);
258    setOperationAction(ISD::SREM, MVT::i64, Expand);
259    setOperationAction(ISD::UREM, MVT::i64, Expand);
260  }
261
262  // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
263  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
264  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
265  setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
266  setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
267  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
268  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
269  setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
270  setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
271
272  // We don't support sin/cos/sqrt/fmod/pow
273  setOperationAction(ISD::FSIN , MVT::f64, Expand);
274  setOperationAction(ISD::FCOS , MVT::f64, Expand);
275  setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
276  setOperationAction(ISD::FREM , MVT::f64, Expand);
277  setOperationAction(ISD::FPOW , MVT::f64, Expand);
278  setOperationAction(ISD::FSIN , MVT::f32, Expand);
279  setOperationAction(ISD::FCOS , MVT::f32, Expand);
280  setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
281  setOperationAction(ISD::FREM , MVT::f32, Expand);
282  setOperationAction(ISD::FPOW , MVT::f32, Expand);
283  if (Subtarget.hasSPE()) {
284    setOperationAction(ISD::FMA  , MVT::f64, Expand);
285    setOperationAction(ISD::FMA  , MVT::f32, Expand);
286  } else {
287    setOperationAction(ISD::FMA  , MVT::f64, Legal);
288    setOperationAction(ISD::FMA  , MVT::f32, Legal);
289  }
290
291  setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
292
293  // If we're enabling GP optimizations, use hardware square root
294  if (!Subtarget.hasFSQRT() &&
295      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
296        Subtarget.hasFRE()))
297    setOperationAction(ISD::FSQRT, MVT::f64, Expand);
298
299  if (!Subtarget.hasFSQRT() &&
300      !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
301        Subtarget.hasFRES()))
302    setOperationAction(ISD::FSQRT, MVT::f32, Expand);
303
304  if (Subtarget.hasFCPSGN()) {
305    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
306    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
307  } else {
308    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
309    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
310  }
311
312  if (Subtarget.hasFPRND()) {
313    setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
314    setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
315    setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
316    setOperationAction(ISD::FROUND, MVT::f64, Legal);
317
318    setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
319    setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
320    setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
321    setOperationAction(ISD::FROUND, MVT::f32, Legal);
322  }
323
324  // PowerPC does not have BSWAP, but we can use vector BSWAP instruction xxbrd
325  // to speed up scalar BSWAP64.
326  // CTPOP or CTTZ were introduced in P8/P9 respectively
327  setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
328  if (Subtarget.hasP9Vector())
329    setOperationAction(ISD::BSWAP, MVT::i64  , Custom);
330  else
331    setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
332  if (Subtarget.isISA3_0()) {
333    setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
334    setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
335  } else {
336    setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
337    setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
338  }
339
340  if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
341    setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
342    setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
343  } else {
344    setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
345    setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
346  }
347
348  // PowerPC does not have ROTR
349  setOperationAction(ISD::ROTR, MVT::i32   , Expand);
350  setOperationAction(ISD::ROTR, MVT::i64   , Expand);
351
352  if (!Subtarget.useCRBits()) {
353    // PowerPC does not have Select
354    setOperationAction(ISD::SELECT, MVT::i32, Expand);
355    setOperationAction(ISD::SELECT, MVT::i64, Expand);
356    setOperationAction(ISD::SELECT, MVT::f32, Expand);
357    setOperationAction(ISD::SELECT, MVT::f64, Expand);
358  }
359
360  // PowerPC wants to turn select_cc of FP into fsel when possible.
361  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
362  setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
363
364  // PowerPC wants to optimize integer setcc a bit
365  if (!Subtarget.useCRBits())
366    setOperationAction(ISD::SETCC, MVT::i32, Custom);
367
368  // PowerPC does not have BRCOND which requires SetCC
369  if (!Subtarget.useCRBits())
370    setOperationAction(ISD::BRCOND, MVT::Other, Expand);
371
372  setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
373
374  if (Subtarget.hasSPE()) {
375    // SPE has built-in conversions
376    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
377    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
378    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
379  } else {
380    // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
381    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
382
383    // PowerPC does not have [U|S]INT_TO_FP
384    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
385    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
386  }
387
388  if (Subtarget.hasDirectMove() && isPPC64) {
389    setOperationAction(ISD::BITCAST, MVT::f32, Legal);
390    setOperationAction(ISD::BITCAST, MVT::i32, Legal);
391    setOperationAction(ISD::BITCAST, MVT::i64, Legal);
392    setOperationAction(ISD::BITCAST, MVT::f64, Legal);
393    if (TM.Options.UnsafeFPMath) {
394      setOperationAction(ISD::LRINT, MVT::f64, Legal);
395      setOperationAction(ISD::LRINT, MVT::f32, Legal);
396      setOperationAction(ISD::LLRINT, MVT::f64, Legal);
397      setOperationAction(ISD::LLRINT, MVT::f32, Legal);
398      setOperationAction(ISD::LROUND, MVT::f64, Legal);
399      setOperationAction(ISD::LROUND, MVT::f32, Legal);
400      setOperationAction(ISD::LLROUND, MVT::f64, Legal);
401      setOperationAction(ISD::LLROUND, MVT::f32, Legal);
402    }
403  } else {
404    setOperationAction(ISD::BITCAST, MVT::f32, Expand);
405    setOperationAction(ISD::BITCAST, MVT::i32, Expand);
406    setOperationAction(ISD::BITCAST, MVT::i64, Expand);
407    setOperationAction(ISD::BITCAST, MVT::f64, Expand);
408  }
409
410  // We cannot sextinreg(i1).  Expand to shifts.
411  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
412
413  // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
414  // SjLj exception handling but a light-weight setjmp/longjmp replacement to
415  // support continuation, user-level threading, and etc.. As a result, no
416  // other SjLj exception interfaces are implemented and please don't build
417  // your own exception handling based on them.
418  // LLVM/Clang supports zero-cost DWARF exception handling.
419  setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
420  setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
421
422  // We want to legalize GlobalAddress and ConstantPool nodes into the
423  // appropriate instructions to materialize the address.
424  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
425  setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
426  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
427  setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
428  setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
429  setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
430  setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
431  setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
432  setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
433  setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
434
435  // TRAP is legal.
436  setOperationAction(ISD::TRAP, MVT::Other, Legal);
437
438  // TRAMPOLINE is custom lowered.
439  setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
440  setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
441
442  // VASTART needs to be custom lowered to use the VarArgsFrameIndex
443  setOperationAction(ISD::VASTART           , MVT::Other, Custom);
444
445  if (Subtarget.is64BitELFABI()) {
446    // VAARG always uses double-word chunks, so promote anything smaller.
447    setOperationAction(ISD::VAARG, MVT::i1, Promote);
448    AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
449    setOperationAction(ISD::VAARG, MVT::i8, Promote);
450    AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
451    setOperationAction(ISD::VAARG, MVT::i16, Promote);
452    AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
453    setOperationAction(ISD::VAARG, MVT::i32, Promote);
454    AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
455    setOperationAction(ISD::VAARG, MVT::Other, Expand);
456  } else if (Subtarget.is32BitELFABI()) {
457    // VAARG is custom lowered with the 32-bit SVR4 ABI.
458    setOperationAction(ISD::VAARG, MVT::Other, Custom);
459    setOperationAction(ISD::VAARG, MVT::i64, Custom);
460  } else
461    setOperationAction(ISD::VAARG, MVT::Other, Expand);
462
463  // VACOPY is custom lowered with the 32-bit SVR4 ABI.
464  if (Subtarget.is32BitELFABI())
465    setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
466  else
467    setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
468
469  // Use the default implementation.
470  setOperationAction(ISD::VAEND             , MVT::Other, Expand);
471  setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
472  setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
473  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
474  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
475  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
476  setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
477  setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
478  setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
479
480  // We want to custom lower some of our intrinsics.
481  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
482
483  // To handle counter-based loop conditions.
484  setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
485
486  setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
487  setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
488  setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
489  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
490
491  // Comparisons that require checking two conditions.
492  if (Subtarget.hasSPE()) {
493    setCondCodeAction(ISD::SETO, MVT::f32, Expand);
494    setCondCodeAction(ISD::SETO, MVT::f64, Expand);
495    setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
496    setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
497  }
498  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
499  setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
500  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
501  setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
502  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
503  setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
504  setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
505  setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
506  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
507  setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
508  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
509  setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
510
511  if (Subtarget.has64BitSupport()) {
512    // They also have instructions for converting between i64 and fp.
513    setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
514    setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
515    setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
516    setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
517    // This is just the low 32 bits of a (signed) fp->i64 conversion.
518    // We cannot do this with Promote because i64 is not a legal type.
519    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
520
521    if (Subtarget.hasLFIWAX() || Subtarget.isPPC64())
522      setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
523  } else {
524    // PowerPC does not have FP_TO_UINT on 32-bit implementations.
525    if (Subtarget.hasSPE())
526      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
527    else
528      setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
529  }
530
531  // With the instructions enabled under FPCVT, we can do everything.
532  if (Subtarget.hasFPCVT()) {
533    if (Subtarget.has64BitSupport()) {
534      setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
535      setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
536      setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
537      setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
538    }
539
540    setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
541    setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
542    setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
543    setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
544  }
545
546  if (Subtarget.use64BitRegs()) {
547    // 64-bit PowerPC implementations can support i64 types directly
548    addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
549    // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
550    setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
551    // 64-bit PowerPC wants to expand i128 shifts itself.
552    setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
553    setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
554    setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
555  } else {
556    // 32-bit PowerPC wants to expand i64 shifts itself.
557    setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
558    setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
559    setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
560  }
561
562  if (Subtarget.hasVSX()) {
563    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
564    setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
565    setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
566    setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
567  }
568
569  if (Subtarget.hasAltivec()) {
570    // First set operation action for all vector types to expand. Then we
571    // will selectively turn on ones that can be effectively codegen'd.
572    for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
573      // add/sub are legal for all supported vector VT's.
574      setOperationAction(ISD::ADD, VT, Legal);
575      setOperationAction(ISD::SUB, VT, Legal);
576
577      // For v2i64, these are only valid with P8Vector. This is corrected after
578      // the loop.
579      if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
580        setOperationAction(ISD::SMAX, VT, Legal);
581        setOperationAction(ISD::SMIN, VT, Legal);
582        setOperationAction(ISD::UMAX, VT, Legal);
583        setOperationAction(ISD::UMIN, VT, Legal);
584      }
585      else {
586        setOperationAction(ISD::SMAX, VT, Expand);
587        setOperationAction(ISD::SMIN, VT, Expand);
588        setOperationAction(ISD::UMAX, VT, Expand);
589        setOperationAction(ISD::UMIN, VT, Expand);
590      }
591
592      if (Subtarget.hasVSX()) {
593        setOperationAction(ISD::FMAXNUM, VT, Legal);
594        setOperationAction(ISD::FMINNUM, VT, Legal);
595      }
596
597      // Vector instructions introduced in P8
598      if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
599        setOperationAction(ISD::CTPOP, VT, Legal);
600        setOperationAction(ISD::CTLZ, VT, Legal);
601      }
602      else {
603        setOperationAction(ISD::CTPOP, VT, Expand);
604        setOperationAction(ISD::CTLZ, VT, Expand);
605      }
606
607      // Vector instructions introduced in P9
608      if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
609        setOperationAction(ISD::CTTZ, VT, Legal);
610      else
611        setOperationAction(ISD::CTTZ, VT, Expand);
612
613      // We promote all shuffles to v16i8.
614      setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
615      AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
616
617      // We promote all non-typed operations to v4i32.
618      setOperationAction(ISD::AND   , VT, Promote);
619      AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
620      setOperationAction(ISD::OR    , VT, Promote);
621      AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
622      setOperationAction(ISD::XOR   , VT, Promote);
623      AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
624      setOperationAction(ISD::LOAD  , VT, Promote);
625      AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
626      setOperationAction(ISD::SELECT, VT, Promote);
627      AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
628      setOperationAction(ISD::VSELECT, VT, Legal);
629      setOperationAction(ISD::SELECT_CC, VT, Promote);
630      AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
631      setOperationAction(ISD::STORE, VT, Promote);
632      AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
633
634      // No other operations are legal.
635      setOperationAction(ISD::MUL , VT, Expand);
636      setOperationAction(ISD::SDIV, VT, Expand);
637      setOperationAction(ISD::SREM, VT, Expand);
638      setOperationAction(ISD::UDIV, VT, Expand);
639      setOperationAction(ISD::UREM, VT, Expand);
640      setOperationAction(ISD::FDIV, VT, Expand);
641      setOperationAction(ISD::FREM, VT, Expand);
642      setOperationAction(ISD::FNEG, VT, Expand);
643      setOperationAction(ISD::FSQRT, VT, Expand);
644      setOperationAction(ISD::FLOG, VT, Expand);
645      setOperationAction(ISD::FLOG10, VT, Expand);
646      setOperationAction(ISD::FLOG2, VT, Expand);
647      setOperationAction(ISD::FEXP, VT, Expand);
648      setOperationAction(ISD::FEXP2, VT, Expand);
649      setOperationAction(ISD::FSIN, VT, Expand);
650      setOperationAction(ISD::FCOS, VT, Expand);
651      setOperationAction(ISD::FABS, VT, Expand);
652      setOperationAction(ISD::FFLOOR, VT, Expand);
653      setOperationAction(ISD::FCEIL,  VT, Expand);
654      setOperationAction(ISD::FTRUNC, VT, Expand);
655      setOperationAction(ISD::FRINT,  VT, Expand);
656      setOperationAction(ISD::FNEARBYINT, VT, Expand);
657      setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
658      setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
659      setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
660      setOperationAction(ISD::MULHU, VT, Expand);
661      setOperationAction(ISD::MULHS, VT, Expand);
662      setOperationAction(ISD::UMUL_LOHI, VT, Expand);
663      setOperationAction(ISD::SMUL_LOHI, VT, Expand);
664      setOperationAction(ISD::UDIVREM, VT, Expand);
665      setOperationAction(ISD::SDIVREM, VT, Expand);
666      setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
667      setOperationAction(ISD::FPOW, VT, Expand);
668      setOperationAction(ISD::BSWAP, VT, Expand);
669      setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
670      setOperationAction(ISD::ROTL, VT, Expand);
671      setOperationAction(ISD::ROTR, VT, Expand);
672
673      for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
674        setTruncStoreAction(VT, InnerVT, Expand);
675        setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
676        setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
677        setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
678      }
679    }
680    if (!Subtarget.hasP8Vector()) {
681      setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
682      setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
683      setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
684      setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
685    }
686
687    for (auto VT : {MVT::v2i64, MVT::v4i32, MVT::v8i16, MVT::v16i8})
688      setOperationAction(ISD::ABS, VT, Custom);
689
690    // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
691    // with merges, splats, etc.
692    setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
693
694    // Vector truncates to sub-word integer that fit in an Altivec/VSX register
695    // are cheap, so handle them before they get expanded to scalar.
696    setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
697    setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
698    setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
699    setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
700    setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
701
702    setOperationAction(ISD::AND   , MVT::v4i32, Legal);
703    setOperationAction(ISD::OR    , MVT::v4i32, Legal);
704    setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
705    setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
706    setOperationAction(ISD::SELECT, MVT::v4i32,
707                       Subtarget.useCRBits() ? Legal : Expand);
708    setOperationAction(ISD::STORE , MVT::v4i32, Legal);
709    setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
710    setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
711    setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
712    setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
713    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
714    setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
715    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
716    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
717
718    // Without hasP8Altivec set, v2i64 SMAX isn't available.
719    // But ABS custom lowering requires SMAX support.
720    if (!Subtarget.hasP8Altivec())
721      setOperationAction(ISD::ABS, MVT::v2i64, Expand);
722
723    // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
724    if (Subtarget.hasAltivec())
725      for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
726        setOperationAction(ISD::ROTL, VT, Legal);
727    // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
728    if (Subtarget.hasP8Altivec())
729      setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
730
731    addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
732    addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
733    addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
734    addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
735
736    setOperationAction(ISD::MUL, MVT::v4f32, Legal);
737    setOperationAction(ISD::FMA, MVT::v4f32, Legal);
738
739    if (TM.Options.UnsafeFPMath || Subtarget.hasVSX()) {
740      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
741      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
742    }
743
744    if (Subtarget.hasP8Altivec())
745      setOperationAction(ISD::MUL, MVT::v4i32, Legal);
746    else
747      setOperationAction(ISD::MUL, MVT::v4i32, Custom);
748
749    setOperationAction(ISD::MUL, MVT::v8i16, Custom);
750    setOperationAction(ISD::MUL, MVT::v16i8, Custom);
751
752    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
753    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
754
755    setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
756    setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
757    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
758    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
759
760    // Altivec does not contain unordered floating-point compare instructions
761    setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
762    setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
763    setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
764    setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
765
766    if (Subtarget.hasVSX()) {
767      setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
768      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
769      if (Subtarget.hasP8Vector()) {
770        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
771        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
772      }
773      if (Subtarget.hasDirectMove() && isPPC64) {
774        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
775        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
776        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
777        setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
778        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
779        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
780        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
781        setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
782      }
783      setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
784
785      // The nearbyint variants are not allowed to raise the inexact exception
786      // so we can only code-gen them with unsafe math.
787      if (TM.Options.UnsafeFPMath) {
788        setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
789        setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
790      }
791
792      setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
793      setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
794      setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
795      setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
796      setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
797      setOperationAction(ISD::FROUND, MVT::f64, Legal);
798
799      setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
800      setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
801      setOperationAction(ISD::FROUND, MVT::f32, Legal);
802
803      setOperationAction(ISD::MUL, MVT::v2f64, Legal);
804      setOperationAction(ISD::FMA, MVT::v2f64, Legal);
805
806      setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
807      setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
808
809      // Share the Altivec comparison restrictions.
810      setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
811      setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
812      setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
813      setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
814
815      setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
816      setOperationAction(ISD::STORE, MVT::v2f64, Legal);
817
818      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Legal);
819
820      if (Subtarget.hasP8Vector())
821        addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
822
823      addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
824
825      addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
826      addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
827      addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
828
829      if (Subtarget.hasP8Altivec()) {
830        setOperationAction(ISD::SHL, MVT::v2i64, Legal);
831        setOperationAction(ISD::SRA, MVT::v2i64, Legal);
832        setOperationAction(ISD::SRL, MVT::v2i64, Legal);
833
834        // 128 bit shifts can be accomplished via 3 instructions for SHL and
835        // SRL, but not for SRA because of the instructions available:
836        // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
837        // doing
838        setOperationAction(ISD::SHL, MVT::v1i128, Expand);
839        setOperationAction(ISD::SRL, MVT::v1i128, Expand);
840        setOperationAction(ISD::SRA, MVT::v1i128, Expand);
841
842        setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
843      }
844      else {
845        setOperationAction(ISD::SHL, MVT::v2i64, Expand);
846        setOperationAction(ISD::SRA, MVT::v2i64, Expand);
847        setOperationAction(ISD::SRL, MVT::v2i64, Expand);
848
849        setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
850
851        // VSX v2i64 only supports non-arithmetic operations.
852        setOperationAction(ISD::ADD, MVT::v2i64, Expand);
853        setOperationAction(ISD::SUB, MVT::v2i64, Expand);
854      }
855
856      setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
857      AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
858      setOperationAction(ISD::STORE, MVT::v2i64, Promote);
859      AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
860
861      setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Legal);
862
863      setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
864      setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
865      setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
866      setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
867
868      // Custom handling for partial vectors of integers converted to
869      // floating point. We already have optimal handling for v2i32 through
870      // the DAG combine, so those aren't necessary.
871      setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
872      setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
873      setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
874      setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
875      setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
876      setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
877      setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
878      setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
879
880      setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
881      setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
882      setOperationAction(ISD::FABS, MVT::v4f32, Legal);
883      setOperationAction(ISD::FABS, MVT::v2f64, Legal);
884      setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
885      setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
886
887      if (Subtarget.hasDirectMove())
888        setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
889      setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
890
891      addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
892    }
893
894    if (Subtarget.hasP8Altivec()) {
895      addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
896      addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
897    }
898
899    if (Subtarget.hasP9Vector()) {
900      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
901      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
902
903      // 128 bit shifts can be accomplished via 3 instructions for SHL and
904      // SRL, but not for SRA because of the instructions available:
905      // VS{RL} and VS{RL}O.
906      setOperationAction(ISD::SHL, MVT::v1i128, Legal);
907      setOperationAction(ISD::SRL, MVT::v1i128, Legal);
908      setOperationAction(ISD::SRA, MVT::v1i128, Expand);
909
910      if (EnableQuadPrecision) {
911        addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
912        setOperationAction(ISD::FADD, MVT::f128, Legal);
913        setOperationAction(ISD::FSUB, MVT::f128, Legal);
914        setOperationAction(ISD::FDIV, MVT::f128, Legal);
915        setOperationAction(ISD::FMUL, MVT::f128, Legal);
916        setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
917        // No extending loads to f128 on PPC.
918        for (MVT FPT : MVT::fp_valuetypes())
919          setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
920        setOperationAction(ISD::FMA, MVT::f128, Legal);
921        setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
922        setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
923        setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
924        setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
925        setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
926        setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
927
928        setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
929        setOperationAction(ISD::FRINT, MVT::f128, Legal);
930        setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
931        setOperationAction(ISD::FCEIL, MVT::f128, Legal);
932        setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
933        setOperationAction(ISD::FROUND, MVT::f128, Legal);
934
935        setOperationAction(ISD::SELECT, MVT::f128, Expand);
936        setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
937        setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
938        setTruncStoreAction(MVT::f128, MVT::f64, Expand);
939        setTruncStoreAction(MVT::f128, MVT::f32, Expand);
940        setOperationAction(ISD::BITCAST, MVT::i128, Custom);
941        // No implementation for these ops for PowerPC.
942        setOperationAction(ISD::FSIN , MVT::f128, Expand);
943        setOperationAction(ISD::FCOS , MVT::f128, Expand);
944        setOperationAction(ISD::FPOW, MVT::f128, Expand);
945        setOperationAction(ISD::FPOWI, MVT::f128, Expand);
946        setOperationAction(ISD::FREM, MVT::f128, Expand);
947      }
948      setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
949      setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
950      setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
951      setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
952      setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
953    }
954
955    if (Subtarget.hasP9Altivec()) {
956      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
957      setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
958
959      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
960      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
961      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
962      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
963      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
964      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
965      setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
966    }
967  }
968
969  if (Subtarget.hasQPX()) {
970    setOperationAction(ISD::FADD, MVT::v4f64, Legal);
971    setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
972    setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
973    setOperationAction(ISD::FREM, MVT::v4f64, Expand);
974
975    setOperationAction(ISD::FCOPYSIGN, MVT::v4f64, Legal);
976    setOperationAction(ISD::FGETSIGN, MVT::v4f64, Expand);
977
978    setOperationAction(ISD::LOAD  , MVT::v4f64, Custom);
979    setOperationAction(ISD::STORE , MVT::v4f64, Custom);
980
981    setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom);
982    setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Custom);
983
984    if (!Subtarget.useCRBits())
985      setOperationAction(ISD::SELECT, MVT::v4f64, Expand);
986    setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
987
988    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f64, Legal);
989    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f64, Expand);
990    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f64, Expand);
991    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f64, Expand);
992    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f64, Custom);
993    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f64, Legal);
994    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
995
996    setOperationAction(ISD::FP_TO_SINT , MVT::v4f64, Legal);
997    setOperationAction(ISD::FP_TO_UINT , MVT::v4f64, Expand);
998
999    setOperationAction(ISD::FP_ROUND , MVT::v4f32, Legal);
1000    setOperationAction(ISD::FP_EXTEND, MVT::v4f64, Legal);
1001
1002    setOperationAction(ISD::FNEG , MVT::v4f64, Legal);
1003    setOperationAction(ISD::FABS , MVT::v4f64, Legal);
1004    setOperationAction(ISD::FSIN , MVT::v4f64, Expand);
1005    setOperationAction(ISD::FCOS , MVT::v4f64, Expand);
1006    setOperationAction(ISD::FPOW , MVT::v4f64, Expand);
1007    setOperationAction(ISD::FLOG , MVT::v4f64, Expand);
1008    setOperationAction(ISD::FLOG2 , MVT::v4f64, Expand);
1009    setOperationAction(ISD::FLOG10 , MVT::v4f64, Expand);
1010    setOperationAction(ISD::FEXP , MVT::v4f64, Expand);
1011    setOperationAction(ISD::FEXP2 , MVT::v4f64, Expand);
1012
1013    setOperationAction(ISD::FMINNUM, MVT::v4f64, Legal);
1014    setOperationAction(ISD::FMAXNUM, MVT::v4f64, Legal);
1015
1016    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f64, Legal);
1017    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f64, Legal);
1018
1019    addRegisterClass(MVT::v4f64, &PPC::QFRCRegClass);
1020
1021    setOperationAction(ISD::FADD, MVT::v4f32, Legal);
1022    setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
1023    setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
1024    setOperationAction(ISD::FREM, MVT::v4f32, Expand);
1025
1026    setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1027    setOperationAction(ISD::FGETSIGN, MVT::v4f32, Expand);
1028
1029    setOperationAction(ISD::LOAD  , MVT::v4f32, Custom);
1030    setOperationAction(ISD::STORE , MVT::v4f32, Custom);
1031
1032    if (!Subtarget.useCRBits())
1033      setOperationAction(ISD::SELECT, MVT::v4f32, Expand);
1034    setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
1035
1036    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4f32, Legal);
1037    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4f32, Expand);
1038    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4f32, Expand);
1039    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4f32, Expand);
1040    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4f32, Custom);
1041    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
1042    setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
1043
1044    setOperationAction(ISD::FP_TO_SINT , MVT::v4f32, Legal);
1045    setOperationAction(ISD::FP_TO_UINT , MVT::v4f32, Expand);
1046
1047    setOperationAction(ISD::FNEG , MVT::v4f32, Legal);
1048    setOperationAction(ISD::FABS , MVT::v4f32, Legal);
1049    setOperationAction(ISD::FSIN , MVT::v4f32, Expand);
1050    setOperationAction(ISD::FCOS , MVT::v4f32, Expand);
1051    setOperationAction(ISD::FPOW , MVT::v4f32, Expand);
1052    setOperationAction(ISD::FLOG , MVT::v4f32, Expand);
1053    setOperationAction(ISD::FLOG2 , MVT::v4f32, Expand);
1054    setOperationAction(ISD::FLOG10 , MVT::v4f32, Expand);
1055    setOperationAction(ISD::FEXP , MVT::v4f32, Expand);
1056    setOperationAction(ISD::FEXP2 , MVT::v4f32, Expand);
1057
1058    setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1059    setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1060
1061    setIndexedLoadAction(ISD::PRE_INC, MVT::v4f32, Legal);
1062    setIndexedStoreAction(ISD::PRE_INC, MVT::v4f32, Legal);
1063
1064    addRegisterClass(MVT::v4f32, &PPC::QSRCRegClass);
1065
1066    setOperationAction(ISD::AND , MVT::v4i1, Legal);
1067    setOperationAction(ISD::OR , MVT::v4i1, Legal);
1068    setOperationAction(ISD::XOR , MVT::v4i1, Legal);
1069
1070    if (!Subtarget.useCRBits())
1071      setOperationAction(ISD::SELECT, MVT::v4i1, Expand);
1072    setOperationAction(ISD::VSELECT, MVT::v4i1, Legal);
1073
1074    setOperationAction(ISD::LOAD  , MVT::v4i1, Custom);
1075    setOperationAction(ISD::STORE , MVT::v4i1, Custom);
1076
1077    setOperationAction(ISD::EXTRACT_VECTOR_ELT , MVT::v4i1, Custom);
1078    setOperationAction(ISD::INSERT_VECTOR_ELT , MVT::v4i1, Expand);
1079    setOperationAction(ISD::CONCAT_VECTORS , MVT::v4i1, Expand);
1080    setOperationAction(ISD::EXTRACT_SUBVECTOR , MVT::v4i1, Expand);
1081    setOperationAction(ISD::VECTOR_SHUFFLE , MVT::v4i1, Custom);
1082    setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i1, Expand);
1083    setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
1084
1085    setOperationAction(ISD::SINT_TO_FP, MVT::v4i1, Custom);
1086    setOperationAction(ISD::UINT_TO_FP, MVT::v4i1, Custom);
1087
1088    addRegisterClass(MVT::v4i1, &PPC::QBRCRegClass);
1089
1090    setOperationAction(ISD::FFLOOR, MVT::v4f64, Legal);
1091    setOperationAction(ISD::FCEIL,  MVT::v4f64, Legal);
1092    setOperationAction(ISD::FTRUNC, MVT::v4f64, Legal);
1093    setOperationAction(ISD::FROUND, MVT::v4f64, Legal);
1094
1095    setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
1096    setOperationAction(ISD::FCEIL,  MVT::v4f32, Legal);
1097    setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
1098    setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1099
1100    setOperationAction(ISD::FNEARBYINT, MVT::v4f64, Expand);
1101    setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
1102
1103    // These need to set FE_INEXACT, and so cannot be vectorized here.
1104    setOperationAction(ISD::FRINT, MVT::v4f64, Expand);
1105    setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
1106
1107    if (TM.Options.UnsafeFPMath) {
1108      setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
1109      setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
1110
1111      setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
1112      setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
1113    } else {
1114      setOperationAction(ISD::FDIV, MVT::v4f64, Expand);
1115      setOperationAction(ISD::FSQRT, MVT::v4f64, Expand);
1116
1117      setOperationAction(ISD::FDIV, MVT::v4f32, Expand);
1118      setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
1119    }
1120  }
1121
1122  if (Subtarget.has64BitSupport())
1123    setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1124
1125  setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1126
1127  if (!isPPC64) {
1128    setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1129    setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1130  }
1131
1132  setBooleanContents(ZeroOrOneBooleanContent);
1133
1134  if (Subtarget.hasAltivec()) {
1135    // Altivec instructions set fields to all zeros or all ones.
1136    setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1137  }
1138
1139  if (!isPPC64) {
1140    // These libcalls are not available in 32-bit.
1141    setLibcallName(RTLIB::SHL_I128, nullptr);
1142    setLibcallName(RTLIB::SRL_I128, nullptr);
1143    setLibcallName(RTLIB::SRA_I128, nullptr);
1144  }
1145
1146  setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1147
1148  // We have target-specific dag combine patterns for the following nodes:
1149  setTargetDAGCombine(ISD::ADD);
1150  setTargetDAGCombine(ISD::SHL);
1151  setTargetDAGCombine(ISD::SRA);
1152  setTargetDAGCombine(ISD::SRL);
1153  setTargetDAGCombine(ISD::MUL);
1154  setTargetDAGCombine(ISD::SINT_TO_FP);
1155  setTargetDAGCombine(ISD::BUILD_VECTOR);
1156  if (Subtarget.hasFPCVT())
1157    setTargetDAGCombine(ISD::UINT_TO_FP);
1158  setTargetDAGCombine(ISD::LOAD);
1159  setTargetDAGCombine(ISD::STORE);
1160  setTargetDAGCombine(ISD::BR_CC);
1161  if (Subtarget.useCRBits())
1162    setTargetDAGCombine(ISD::BRCOND);
1163  setTargetDAGCombine(ISD::BSWAP);
1164  setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
1165  setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
1166  setTargetDAGCombine(ISD::INTRINSIC_VOID);
1167
1168  setTargetDAGCombine(ISD::SIGN_EXTEND);
1169  setTargetDAGCombine(ISD::ZERO_EXTEND);
1170  setTargetDAGCombine(ISD::ANY_EXTEND);
1171
1172  setTargetDAGCombine(ISD::TRUNCATE);
1173  setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1174
1175
1176  if (Subtarget.useCRBits()) {
1177    setTargetDAGCombine(ISD::TRUNCATE);
1178    setTargetDAGCombine(ISD::SETCC);
1179    setTargetDAGCombine(ISD::SELECT_CC);
1180  }
1181
1182  // Use reciprocal estimates.
1183  if (TM.Options.UnsafeFPMath) {
1184    setTargetDAGCombine(ISD::FDIV);
1185    setTargetDAGCombine(ISD::FSQRT);
1186  }
1187
1188  if (Subtarget.hasP9Altivec()) {
1189    setTargetDAGCombine(ISD::ABS);
1190    setTargetDAGCombine(ISD::VSELECT);
1191  }
1192
1193  // Darwin long double math library functions have $LDBL128 appended.
1194  if (Subtarget.isDarwin()) {
1195    setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
1196    setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
1197    setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
1198    setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
1199    setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
1200    setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
1201    setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
1202    setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
1203    setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
1204    setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
1205  }
1206
1207  if (EnableQuadPrecision) {
1208    setLibcallName(RTLIB::LOG_F128, "logf128");
1209    setLibcallName(RTLIB::LOG2_F128, "log2f128");
1210    setLibcallName(RTLIB::LOG10_F128, "log10f128");
1211    setLibcallName(RTLIB::EXP_F128, "expf128");
1212    setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1213    setLibcallName(RTLIB::SIN_F128, "sinf128");
1214    setLibcallName(RTLIB::COS_F128, "cosf128");
1215    setLibcallName(RTLIB::POW_F128, "powf128");
1216    setLibcallName(RTLIB::FMIN_F128, "fminf128");
1217    setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1218    setLibcallName(RTLIB::POWI_F128, "__powikf2");
1219    setLibcallName(RTLIB::REM_F128, "fmodf128");
1220  }
1221
1222  // With 32 condition bits, we don't need to sink (and duplicate) compares
1223  // aggressively in CodeGenPrep.
1224  if (Subtarget.useCRBits()) {
1225    setHasMultipleConditionRegisters();
1226    setJumpIsExpensive();
1227  }
1228
1229  setMinFunctionAlignment(Align(4));
1230  if (Subtarget.isDarwin())
1231    setPrefFunctionAlignment(Align(16));
1232
1233  switch (Subtarget.getCPUDirective()) {
1234  default: break;
1235  case PPC::DIR_970:
1236  case PPC::DIR_A2:
1237  case PPC::DIR_E500:
1238  case PPC::DIR_E500mc:
1239  case PPC::DIR_E5500:
1240  case PPC::DIR_PWR4:
1241  case PPC::DIR_PWR5:
1242  case PPC::DIR_PWR5X:
1243  case PPC::DIR_PWR6:
1244  case PPC::DIR_PWR6X:
1245  case PPC::DIR_PWR7:
1246  case PPC::DIR_PWR8:
1247  case PPC::DIR_PWR9:
1248  case PPC::DIR_PWR_FUTURE:
1249    setPrefLoopAlignment(Align(16));
1250    setPrefFunctionAlignment(Align(16));
1251    break;
1252  }
1253
1254  if (Subtarget.enableMachineScheduler())
1255    setSchedulingPreference(Sched::Source);
1256  else
1257    setSchedulingPreference(Sched::Hybrid);
1258
1259  computeRegisterProperties(STI.getRegisterInfo());
1260
1261  // The Freescale cores do better with aggressive inlining of memcpy and
1262  // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1263  if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1264      Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1265    MaxStoresPerMemset = 32;
1266    MaxStoresPerMemsetOptSize = 16;
1267    MaxStoresPerMemcpy = 32;
1268    MaxStoresPerMemcpyOptSize = 8;
1269    MaxStoresPerMemmove = 32;
1270    MaxStoresPerMemmoveOptSize = 8;
1271  } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1272    // The A2 also benefits from (very) aggressive inlining of memcpy and
1273    // friends. The overhead of a the function call, even when warm, can be
1274    // over one hundred cycles.
1275    MaxStoresPerMemset = 128;
1276    MaxStoresPerMemcpy = 128;
1277    MaxStoresPerMemmove = 128;
1278    MaxLoadsPerMemcmp = 128;
1279  } else {
1280    MaxLoadsPerMemcmp = 8;
1281    MaxLoadsPerMemcmpOptSize = 4;
1282  }
1283}
1284
1285/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1286/// the desired ByVal argument alignment.
1287static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign,
1288                             unsigned MaxMaxAlign) {
1289  if (MaxAlign == MaxMaxAlign)
1290    return;
1291  if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1292    if (MaxMaxAlign >= 32 && VTy->getBitWidth() >= 256)
1293      MaxAlign = 32;
1294    else if (VTy->getBitWidth() >= 128 && MaxAlign < 16)
1295      MaxAlign = 16;
1296  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1297    unsigned EltAlign = 0;
1298    getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1299    if (EltAlign > MaxAlign)
1300      MaxAlign = EltAlign;
1301  } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1302    for (auto *EltTy : STy->elements()) {
1303      unsigned EltAlign = 0;
1304      getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1305      if (EltAlign > MaxAlign)
1306        MaxAlign = EltAlign;
1307      if (MaxAlign == MaxMaxAlign)
1308        break;
1309    }
1310  }
1311}
1312
1313/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1314/// function arguments in the caller parameter area.
1315unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1316                                                  const DataLayout &DL) const {
1317  // Darwin passes everything on 4 byte boundary.
1318  if (Subtarget.isDarwin())
1319    return 4;
1320
1321  // 16byte and wider vectors are passed on 16byte boundary.
1322  // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1323  unsigned Align = Subtarget.isPPC64() ? 8 : 4;
1324  if (Subtarget.hasAltivec() || Subtarget.hasQPX())
1325    getMaxByValAlign(Ty, Align, Subtarget.hasQPX() ? 32 : 16);
1326  return Align;
1327}
1328
1329bool PPCTargetLowering::useSoftFloat() const {
1330  return Subtarget.useSoftFloat();
1331}
1332
1333bool PPCTargetLowering::hasSPE() const {
1334  return Subtarget.hasSPE();
1335}
1336
1337bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1338  return VT.isScalarInteger();
1339}
1340
1341const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1342  switch ((PPCISD::NodeType)Opcode) {
1343  case PPCISD::FIRST_NUMBER:    break;
1344  case PPCISD::FSEL:            return "PPCISD::FSEL";
1345  case PPCISD::XSMAXCDP:        return "PPCISD::XSMAXCDP";
1346  case PPCISD::XSMINCDP:        return "PPCISD::XSMINCDP";
1347  case PPCISD::FCFID:           return "PPCISD::FCFID";
1348  case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1349  case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1350  case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1351  case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1352  case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1353  case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1354  case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1355  case PPCISD::FP_TO_UINT_IN_VSR:
1356                                return "PPCISD::FP_TO_UINT_IN_VSR,";
1357  case PPCISD::FP_TO_SINT_IN_VSR:
1358                                return "PPCISD::FP_TO_SINT_IN_VSR";
1359  case PPCISD::FRE:             return "PPCISD::FRE";
1360  case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1361  case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1362  case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
1363  case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
1364  case PPCISD::VPERM:           return "PPCISD::VPERM";
1365  case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1366  case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1367  case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1368  case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1369  case PPCISD::CMPB:            return "PPCISD::CMPB";
1370  case PPCISD::Hi:              return "PPCISD::Hi";
1371  case PPCISD::Lo:              return "PPCISD::Lo";
1372  case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1373  case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1374  case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1375  case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1376  case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1377  case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1378  case PPCISD::SRL:             return "PPCISD::SRL";
1379  case PPCISD::SRA:             return "PPCISD::SRA";
1380  case PPCISD::SHL:             return "PPCISD::SHL";
1381  case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1382  case PPCISD::CALL:            return "PPCISD::CALL";
1383  case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1384  case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1385  case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1386  case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1387  case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
1388  case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1389  case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1390  case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1391  case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1392  case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1393  case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1394  case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1395  case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1396  case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1397  case PPCISD::ANDI_rec_1_EQ_BIT:
1398    return "PPCISD::ANDI_rec_1_EQ_BIT";
1399  case PPCISD::ANDI_rec_1_GT_BIT:
1400    return "PPCISD::ANDI_rec_1_GT_BIT";
1401  case PPCISD::VCMP:            return "PPCISD::VCMP";
1402  case PPCISD::VCMPo:           return "PPCISD::VCMPo";
1403  case PPCISD::LBRX:            return "PPCISD::LBRX";
1404  case PPCISD::STBRX:           return "PPCISD::STBRX";
1405  case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1406  case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1407  case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1408  case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1409  case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1410  case PPCISD::SExtVElems:      return "PPCISD::SExtVElems";
1411  case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1412  case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1413  case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1414  case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1415  case PPCISD::ST_VSR_SCAL_INT:
1416                                return "PPCISD::ST_VSR_SCAL_INT";
1417  case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1418  case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1419  case PPCISD::BDZ:             return "PPCISD::BDZ";
1420  case PPCISD::MFFS:            return "PPCISD::MFFS";
1421  case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1422  case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1423  case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1424  case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1425  case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1426  case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1427  case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1428  case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1429  case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1430  case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1431  case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1432  case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1433  case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1434  case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1435  case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1436  case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1437  case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1438  case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1439  case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1440  case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1441  case PPCISD::SC:              return "PPCISD::SC";
1442  case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1443  case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1444  case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1445  case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1446  case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1447  case PPCISD::VABSD:           return "PPCISD::VABSD";
1448  case PPCISD::QVFPERM:         return "PPCISD::QVFPERM";
1449  case PPCISD::QVGPCI:          return "PPCISD::QVGPCI";
1450  case PPCISD::QVALIGNI:        return "PPCISD::QVALIGNI";
1451  case PPCISD::QVESPLATI:       return "PPCISD::QVESPLATI";
1452  case PPCISD::QBFLT:           return "PPCISD::QBFLT";
1453  case PPCISD::QVLFSb:          return "PPCISD::QVLFSb";
1454  case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1455  case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1456  case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1457  case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1458  case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1459  case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1460  case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1461  }
1462  return nullptr;
1463}
1464
1465EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1466                                          EVT VT) const {
1467  if (!VT.isVector())
1468    return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1469
1470  if (Subtarget.hasQPX())
1471    return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
1472
1473  return VT.changeVectorElementTypeToInteger();
1474}
1475
1476bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1477  assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1478  return true;
1479}
1480
1481//===----------------------------------------------------------------------===//
1482// Node matching predicates, for use by the tblgen matching code.
1483//===----------------------------------------------------------------------===//
1484
1485/// isFloatingPointZero - Return true if this is 0.0 or -0.0.
1486static bool isFloatingPointZero(SDValue Op) {
1487  if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1488    return CFP->getValueAPF().isZero();
1489  else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1490    // Maybe this has already been legalized into the constant pool?
1491    if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1492      if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1493        return CFP->getValueAPF().isZero();
1494  }
1495  return false;
1496}
1497
1498/// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1499/// true if Op is undef or if it matches the specified value.
1500static bool isConstantOrUndef(int Op, int Val) {
1501  return Op < 0 || Op == Val;
1502}
1503
1504/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1505/// VPKUHUM instruction.
1506/// The ShuffleKind distinguishes between big-endian operations with
1507/// two different inputs (0), either-endian operations with two identical
1508/// inputs (1), and little-endian operations with two different inputs (2).
1509/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1510bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1511                               SelectionDAG &DAG) {
1512  bool IsLE = DAG.getDataLayout().isLittleEndian();
1513  if (ShuffleKind == 0) {
1514    if (IsLE)
1515      return false;
1516    for (unsigned i = 0; i != 16; ++i)
1517      if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1518        return false;
1519  } else if (ShuffleKind == 2) {
1520    if (!IsLE)
1521      return false;
1522    for (unsigned i = 0; i != 16; ++i)
1523      if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1524        return false;
1525  } else if (ShuffleKind == 1) {
1526    unsigned j = IsLE ? 0 : 1;
1527    for (unsigned i = 0; i != 8; ++i)
1528      if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1529          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1530        return false;
1531  }
1532  return true;
1533}
1534
1535/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1536/// VPKUWUM instruction.
1537/// The ShuffleKind distinguishes between big-endian operations with
1538/// two different inputs (0), either-endian operations with two identical
1539/// inputs (1), and little-endian operations with two different inputs (2).
1540/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1541bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1542                               SelectionDAG &DAG) {
1543  bool IsLE = DAG.getDataLayout().isLittleEndian();
1544  if (ShuffleKind == 0) {
1545    if (IsLE)
1546      return false;
1547    for (unsigned i = 0; i != 16; i += 2)
1548      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1549          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1550        return false;
1551  } else if (ShuffleKind == 2) {
1552    if (!IsLE)
1553      return false;
1554    for (unsigned i = 0; i != 16; i += 2)
1555      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1556          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1557        return false;
1558  } else if (ShuffleKind == 1) {
1559    unsigned j = IsLE ? 0 : 2;
1560    for (unsigned i = 0; i != 8; i += 2)
1561      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1562          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1563          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1564          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1565        return false;
1566  }
1567  return true;
1568}
1569
1570/// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1571/// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1572/// current subtarget.
1573///
1574/// The ShuffleKind distinguishes between big-endian operations with
1575/// two different inputs (0), either-endian operations with two identical
1576/// inputs (1), and little-endian operations with two different inputs (2).
1577/// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
1578bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1579                               SelectionDAG &DAG) {
1580  const PPCSubtarget& Subtarget =
1581      static_cast<const PPCSubtarget&>(DAG.getSubtarget());
1582  if (!Subtarget.hasP8Vector())
1583    return false;
1584
1585  bool IsLE = DAG.getDataLayout().isLittleEndian();
1586  if (ShuffleKind == 0) {
1587    if (IsLE)
1588      return false;
1589    for (unsigned i = 0; i != 16; i += 4)
1590      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1591          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1592          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1593          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1594        return false;
1595  } else if (ShuffleKind == 2) {
1596    if (!IsLE)
1597      return false;
1598    for (unsigned i = 0; i != 16; i += 4)
1599      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1600          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1601          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1602          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1603        return false;
1604  } else if (ShuffleKind == 1) {
1605    unsigned j = IsLE ? 0 : 4;
1606    for (unsigned i = 0; i != 8; i += 4)
1607      if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1608          !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1609          !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1610          !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1611          !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1612          !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1613          !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1614          !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1615        return false;
1616  }
1617  return true;
1618}
1619
1620/// isVMerge - Common function, used to match vmrg* shuffles.
1621///
1622static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1623                     unsigned LHSStart, unsigned RHSStart) {
1624  if (N->getValueType(0) != MVT::v16i8)
1625    return false;
1626  assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1627         "Unsupported merge size!");
1628
1629  for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
1630    for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
1631      if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
1632                             LHSStart+j+i*UnitSize) ||
1633          !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
1634                             RHSStart+j+i*UnitSize))
1635        return false;
1636    }
1637  return true;
1638}
1639
1640/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
1641/// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
1642/// The ShuffleKind distinguishes between big-endian merges with two
1643/// different inputs (0), either-endian merges with two identical inputs (1),
1644/// and little-endian merges with two different inputs (2).  For the latter,
1645/// the input operands are swapped (see PPCInstrAltivec.td).
1646bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1647                             unsigned ShuffleKind, SelectionDAG &DAG) {
1648  if (DAG.getDataLayout().isLittleEndian()) {
1649    if (ShuffleKind == 1) // unary
1650      return isVMerge(N, UnitSize, 0, 0);
1651    else if (ShuffleKind == 2) // swapped
1652      return isVMerge(N, UnitSize, 0, 16);
1653    else
1654      return false;
1655  } else {
1656    if (ShuffleKind == 1) // unary
1657      return isVMerge(N, UnitSize, 8, 8);
1658    else if (ShuffleKind == 0) // normal
1659      return isVMerge(N, UnitSize, 8, 24);
1660    else
1661      return false;
1662  }
1663}
1664
1665/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
1666/// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
1667/// The ShuffleKind distinguishes between big-endian merges with two
1668/// different inputs (0), either-endian merges with two identical inputs (1),
1669/// and little-endian merges with two different inputs (2).  For the latter,
1670/// the input operands are swapped (see PPCInstrAltivec.td).
1671bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
1672                             unsigned ShuffleKind, SelectionDAG &DAG) {
1673  if (DAG.getDataLayout().isLittleEndian()) {
1674    if (ShuffleKind == 1) // unary
1675      return isVMerge(N, UnitSize, 8, 8);
1676    else if (ShuffleKind == 2) // swapped
1677      return isVMerge(N, UnitSize, 8, 24);
1678    else
1679      return false;
1680  } else {
1681    if (ShuffleKind == 1) // unary
1682      return isVMerge(N, UnitSize, 0, 0);
1683    else if (ShuffleKind == 0) // normal
1684      return isVMerge(N, UnitSize, 0, 16);
1685    else
1686      return false;
1687  }
1688}
1689
1690/**
1691 * Common function used to match vmrgew and vmrgow shuffles
1692 *
1693 * The indexOffset determines whether to look for even or odd words in
1694 * the shuffle mask. This is based on the of the endianness of the target
1695 * machine.
1696 *   - Little Endian:
1697 *     - Use offset of 0 to check for odd elements
1698 *     - Use offset of 4 to check for even elements
1699 *   - Big Endian:
1700 *     - Use offset of 0 to check for even elements
1701 *     - Use offset of 4 to check for odd elements
1702 * A detailed description of the vector element ordering for little endian and
1703 * big endian can be found at
1704 * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
1705 * Targeting your applications - what little endian and big endian IBM XL C/C++
1706 * compiler differences mean to you
1707 *
1708 * The mask to the shuffle vector instruction specifies the indices of the
1709 * elements from the two input vectors to place in the result. The elements are
1710 * numbered in array-access order, starting with the first vector. These vectors
1711 * are always of type v16i8, thus each vector will contain 16 elements of size
1712 * 8. More info on the shuffle vector can be found in the
1713 * http://llvm.org/docs/LangRef.html#shufflevector-instruction
1714 * Language Reference.
1715 *
1716 * The RHSStartValue indicates whether the same input vectors are used (unary)
1717 * or two different input vectors are used, based on the following:
1718 *   - If the instruction uses the same vector for both inputs, the range of the
1719 *     indices will be 0 to 15. In this case, the RHSStart value passed should
1720 *     be 0.
1721 *   - If the instruction has two different vectors then the range of the
1722 *     indices will be 0 to 31. In this case, the RHSStart value passed should
1723 *     be 16 (indices 0-15 specify elements in the first vector while indices 16
1724 *     to 31 specify elements in the second vector).
1725 *
1726 * \param[in] N The shuffle vector SD Node to analyze
1727 * \param[in] IndexOffset Specifies whether to look for even or odd elements
1728 * \param[in] RHSStartValue Specifies the starting index for the righthand input
1729 * vector to the shuffle_vector instruction
1730 * \return true iff this shuffle vector represents an even or odd word merge
1731 */
1732static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
1733                     unsigned RHSStartValue) {
1734  if (N->getValueType(0) != MVT::v16i8)
1735    return false;
1736
1737  for (unsigned i = 0; i < 2; ++i)
1738    for (unsigned j = 0; j < 4; ++j)
1739      if (!isConstantOrUndef(N->getMaskElt(i*4+j),
1740                             i*RHSStartValue+j+IndexOffset) ||
1741          !isConstantOrUndef(N->getMaskElt(i*4+j+8),
1742                             i*RHSStartValue+j+IndexOffset+8))
1743        return false;
1744  return true;
1745}
1746
1747/**
1748 * Determine if the specified shuffle mask is suitable for the vmrgew or
1749 * vmrgow instructions.
1750 *
1751 * \param[in] N The shuffle vector SD Node to analyze
1752 * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
1753 * \param[in] ShuffleKind Identify the type of merge:
1754 *   - 0 = big-endian merge with two different inputs;
1755 *   - 1 = either-endian merge with two identical inputs;
1756 *   - 2 = little-endian merge with two different inputs (inputs are swapped for
1757 *     little-endian merges).
1758 * \param[in] DAG The current SelectionDAG
1759 * \return true iff this shuffle mask
1760 */
1761bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
1762                              unsigned ShuffleKind, SelectionDAG &DAG) {
1763  if (DAG.getDataLayout().isLittleEndian()) {
1764    unsigned indexOffset = CheckEven ? 4 : 0;
1765    if (ShuffleKind == 1) // Unary
1766      return isVMerge(N, indexOffset, 0);
1767    else if (ShuffleKind == 2) // swapped
1768      return isVMerge(N, indexOffset, 16);
1769    else
1770      return false;
1771  }
1772  else {
1773    unsigned indexOffset = CheckEven ? 0 : 4;
1774    if (ShuffleKind == 1) // Unary
1775      return isVMerge(N, indexOffset, 0);
1776    else if (ShuffleKind == 0) // Normal
1777      return isVMerge(N, indexOffset, 16);
1778    else
1779      return false;
1780  }
1781  return false;
1782}
1783
1784/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
1785/// amount, otherwise return -1.
1786/// The ShuffleKind distinguishes between big-endian operations with two
1787/// different inputs (0), either-endian operations with two identical inputs
1788/// (1), and little-endian operations with two different inputs (2).  For the
1789/// latter, the input operands are swapped (see PPCInstrAltivec.td).
1790int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
1791                             SelectionDAG &DAG) {
1792  if (N->getValueType(0) != MVT::v16i8)
1793    return -1;
1794
1795  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
1796
1797  // Find the first non-undef value in the shuffle mask.
1798  unsigned i;
1799  for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
1800    /*search*/;
1801
1802  if (i == 16) return -1;  // all undef.
1803
1804  // Otherwise, check to see if the rest of the elements are consecutively
1805  // numbered from this value.
1806  unsigned ShiftAmt = SVOp->getMaskElt(i);
1807  if (ShiftAmt < i) return -1;
1808
1809  ShiftAmt -= i;
1810  bool isLE = DAG.getDataLayout().isLittleEndian();
1811
1812  if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
1813    // Check the rest of the elements to see if they are consecutive.
1814    for (++i; i != 16; ++i)
1815      if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
1816        return -1;
1817  } else if (ShuffleKind == 1) {
1818    // Check the rest of the elements to see if they are consecutive.
1819    for (++i; i != 16; ++i)
1820      if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
1821        return -1;
1822  } else
1823    return -1;
1824
1825  if (isLE)
1826    ShiftAmt = 16 - ShiftAmt;
1827
1828  return ShiftAmt;
1829}
1830
1831/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
1832/// specifies a splat of a single element that is suitable for input to
1833/// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
1834bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
1835  assert(N->getValueType(0) == MVT::v16i8 && isPowerOf2_32(EltSize) &&
1836         EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
1837
1838  // The consecutive indices need to specify an element, not part of two
1839  // different elements.  So abandon ship early if this isn't the case.
1840  if (N->getMaskElt(0) % EltSize != 0)
1841    return false;
1842
1843  // This is a splat operation if each element of the permute is the same, and
1844  // if the value doesn't reference the second vector.
1845  unsigned ElementBase = N->getMaskElt(0);
1846
1847  // FIXME: Handle UNDEF elements too!
1848  if (ElementBase >= 16)
1849    return false;
1850
1851  // Check that the indices are consecutive, in the case of a multi-byte element
1852  // splatted with a v16i8 mask.
1853  for (unsigned i = 1; i != EltSize; ++i)
1854    if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
1855      return false;
1856
1857  for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
1858    if (N->getMaskElt(i) < 0) continue;
1859    for (unsigned j = 0; j != EltSize; ++j)
1860      if (N->getMaskElt(i+j) != N->getMaskElt(j))
1861        return false;
1862  }
1863  return true;
1864}
1865
1866/// Check that the mask is shuffling N byte elements. Within each N byte
1867/// element of the mask, the indices could be either in increasing or
1868/// decreasing order as long as they are consecutive.
1869/// \param[in] N the shuffle vector SD Node to analyze
1870/// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
1871/// Word/DoubleWord/QuadWord).
1872/// \param[in] StepLen the delta indices number among the N byte element, if
1873/// the mask is in increasing/decreasing order then it is 1/-1.
1874/// \return true iff the mask is shuffling N byte elements.
1875static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
1876                                   int StepLen) {
1877  assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
1878         "Unexpected element width.");
1879  assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
1880
1881  unsigned NumOfElem = 16 / Width;
1882  unsigned MaskVal[16]; //  Width is never greater than 16
1883  for (unsigned i = 0; i < NumOfElem; ++i) {
1884    MaskVal[0] = N->getMaskElt(i * Width);
1885    if ((StepLen == 1) && (MaskVal[0] % Width)) {
1886      return false;
1887    } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
1888      return false;
1889    }
1890
1891    for (unsigned int j = 1; j < Width; ++j) {
1892      MaskVal[j] = N->getMaskElt(i * Width + j);
1893      if (MaskVal[j] != MaskVal[j-1] + StepLen) {
1894        return false;
1895      }
1896    }
1897  }
1898
1899  return true;
1900}
1901
1902bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1903                          unsigned &InsertAtByte, bool &Swap, bool IsLE) {
1904  if (!isNByteElemShuffleMask(N, 4, 1))
1905    return false;
1906
1907  // Now we look at mask elements 0,4,8,12
1908  unsigned M0 = N->getMaskElt(0) / 4;
1909  unsigned M1 = N->getMaskElt(4) / 4;
1910  unsigned M2 = N->getMaskElt(8) / 4;
1911  unsigned M3 = N->getMaskElt(12) / 4;
1912  unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
1913  unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
1914
1915  // Below, let H and L be arbitrary elements of the shuffle mask
1916  // where H is in the range [4,7] and L is in the range [0,3].
1917  // H, 1, 2, 3 or L, 5, 6, 7
1918  if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
1919      (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
1920    ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
1921    InsertAtByte = IsLE ? 12 : 0;
1922    Swap = M0 < 4;
1923    return true;
1924  }
1925  // 0, H, 2, 3 or 4, L, 6, 7
1926  if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
1927      (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
1928    ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
1929    InsertAtByte = IsLE ? 8 : 4;
1930    Swap = M1 < 4;
1931    return true;
1932  }
1933  // 0, 1, H, 3 or 4, 5, L, 7
1934  if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
1935      (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
1936    ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
1937    InsertAtByte = IsLE ? 4 : 8;
1938    Swap = M2 < 4;
1939    return true;
1940  }
1941  // 0, 1, 2, H or 4, 5, 6, L
1942  if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
1943      (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
1944    ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
1945    InsertAtByte = IsLE ? 0 : 12;
1946    Swap = M3 < 4;
1947    return true;
1948  }
1949
1950  // If both vector operands for the shuffle are the same vector, the mask will
1951  // contain only elements from the first one and the second one will be undef.
1952  if (N->getOperand(1).isUndef()) {
1953    ShiftElts = 0;
1954    Swap = true;
1955    unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
1956    if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
1957      InsertAtByte = IsLE ? 12 : 0;
1958      return true;
1959    }
1960    if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
1961      InsertAtByte = IsLE ? 8 : 4;
1962      return true;
1963    }
1964    if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
1965      InsertAtByte = IsLE ? 4 : 8;
1966      return true;
1967    }
1968    if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
1969      InsertAtByte = IsLE ? 0 : 12;
1970      return true;
1971    }
1972  }
1973
1974  return false;
1975}
1976
1977bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
1978                               bool &Swap, bool IsLE) {
1979  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
1980  // Ensure each byte index of the word is consecutive.
1981  if (!isNByteElemShuffleMask(N, 4, 1))
1982    return false;
1983
1984  // Now we look at mask elements 0,4,8,12, which are the beginning of words.
1985  unsigned M0 = N->getMaskElt(0) / 4;
1986  unsigned M1 = N->getMaskElt(4) / 4;
1987  unsigned M2 = N->getMaskElt(8) / 4;
1988  unsigned M3 = N->getMaskElt(12) / 4;
1989
1990  // If both vector operands for the shuffle are the same vector, the mask will
1991  // contain only elements from the first one and the second one will be undef.
1992  if (N->getOperand(1).isUndef()) {
1993    assert(M0 < 4 && "Indexing into an undef vector?");
1994    if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
1995      return false;
1996
1997    ShiftElts = IsLE ? (4 - M0) % 4 : M0;
1998    Swap = false;
1999    return true;
2000  }
2001
2002  // Ensure each word index of the ShuffleVector Mask is consecutive.
2003  if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2004    return false;
2005
2006  if (IsLE) {
2007    if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2008      // Input vectors don't need to be swapped if the leading element
2009      // of the result is one of the 3 left elements of the second vector
2010      // (or if there is no shift to be done at all).
2011      Swap = false;
2012      ShiftElts = (8 - M0) % 8;
2013    } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2014      // Input vectors need to be swapped if the leading element
2015      // of the result is one of the 3 left elements of the first vector
2016      // (or if we're shifting by 4 - thereby simply swapping the vectors).
2017      Swap = true;
2018      ShiftElts = (4 - M0) % 4;
2019    }
2020
2021    return true;
2022  } else {                                          // BE
2023    if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2024      // Input vectors don't need to be swapped if the leading element
2025      // of the result is one of the 4 elements of the first vector.
2026      Swap = false;
2027      ShiftElts = M0;
2028    } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2029      // Input vectors need to be swapped if the leading element
2030      // of the result is one of the 4 elements of the right vector.
2031      Swap = true;
2032      ShiftElts = M0 - 4;
2033    }
2034
2035    return true;
2036  }
2037}
2038
2039bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2040  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2041
2042  if (!isNByteElemShuffleMask(N, Width, -1))
2043    return false;
2044
2045  for (int i = 0; i < 16; i += Width)
2046    if (N->getMaskElt(i) != i + Width - 1)
2047      return false;
2048
2049  return true;
2050}
2051
2052bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2053  return isXXBRShuffleMaskHelper(N, 2);
2054}
2055
2056bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2057  return isXXBRShuffleMaskHelper(N, 4);
2058}
2059
2060bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2061  return isXXBRShuffleMaskHelper(N, 8);
2062}
2063
2064bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2065  return isXXBRShuffleMaskHelper(N, 16);
2066}
2067
2068/// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2069/// if the inputs to the instruction should be swapped and set \p DM to the
2070/// value for the immediate.
2071/// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2072/// AND element 0 of the result comes from the first input (LE) or second input
2073/// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2074/// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2075/// mask.
2076bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2077                               bool &Swap, bool IsLE) {
2078  assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2079
2080  // Ensure each byte index of the double word is consecutive.
2081  if (!isNByteElemShuffleMask(N, 8, 1))
2082    return false;
2083
2084  unsigned M0 = N->getMaskElt(0) / 8;
2085  unsigned M1 = N->getMaskElt(8) / 8;
2086  assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2087
2088  // If both vector operands for the shuffle are the same vector, the mask will
2089  // contain only elements from the first one and the second one will be undef.
2090  if (N->getOperand(1).isUndef()) {
2091    if ((M0 | M1) < 2) {
2092      DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2093      Swap = false;
2094      return true;
2095    } else
2096      return false;
2097  }
2098
2099  if (IsLE) {
2100    if (M0 > 1 && M1 < 2) {
2101      Swap = false;
2102    } else if (M0 < 2 && M1 > 1) {
2103      M0 = (M0 + 2) % 4;
2104      M1 = (M1 + 2) % 4;
2105      Swap = true;
2106    } else
2107      return false;
2108
2109    // Note: if control flow comes here that means Swap is already set above
2110    DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2111    return true;
2112  } else { // BE
2113    if (M0 < 2 && M1 > 1) {
2114      Swap = false;
2115    } else if (M0 > 1 && M1 < 2) {
2116      M0 = (M0 + 2) % 4;
2117      M1 = (M1 + 2) % 4;
2118      Swap = true;
2119    } else
2120      return false;
2121
2122    // Note: if control flow comes here that means Swap is already set above
2123    DM = (M0 << 1) + (M1 & 1);
2124    return true;
2125  }
2126}
2127
2128
2129/// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2130/// appropriate for PPC mnemonics (which have a big endian bias - namely
2131/// elements are counted from the left of the vector register).
2132unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2133                                         SelectionDAG &DAG) {
2134  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2135  assert(isSplatShuffleMask(SVOp, EltSize));
2136  if (DAG.getDataLayout().isLittleEndian())
2137    return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2138  else
2139    return SVOp->getMaskElt(0) / EltSize;
2140}
2141
2142/// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2143/// by using a vspltis[bhw] instruction of the specified element size, return
2144/// the constant being splatted.  The ByteSize field indicates the number of
2145/// bytes of each element [124] -> [bhw].
2146SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2147  SDValue OpVal(nullptr, 0);
2148
2149  // If ByteSize of the splat is bigger than the element size of the
2150  // build_vector, then we have a case where we are checking for a splat where
2151  // multiple elements of the buildvector are folded together into a single
2152  // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2153  unsigned EltSize = 16/N->getNumOperands();
2154  if (EltSize < ByteSize) {
2155    unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2156    SDValue UniquedVals[4];
2157    assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2158
2159    // See if all of the elements in the buildvector agree across.
2160    for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2161      if (N->getOperand(i).isUndef()) continue;
2162      // If the element isn't a constant, bail fully out.
2163      if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2164
2165      if (!UniquedVals[i&(Multiple-1)].getNode())
2166        UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2167      else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2168        return SDValue();  // no match.
2169    }
2170
2171    // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2172    // either constant or undef values that are identical for each chunk.  See
2173    // if these chunks can form into a larger vspltis*.
2174
2175    // Check to see if all of the leading entries are either 0 or -1.  If
2176    // neither, then this won't fit into the immediate field.
2177    bool LeadingZero = true;
2178    bool LeadingOnes = true;
2179    for (unsigned i = 0; i != Multiple-1; ++i) {
2180      if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2181
2182      LeadingZero &= isNullConstant(UniquedVals[i]);
2183      LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2184    }
2185    // Finally, check the least significant entry.
2186    if (LeadingZero) {
2187      if (!UniquedVals[Multiple-1].getNode())
2188        return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2189      int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
2190      if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2191        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2192    }
2193    if (LeadingOnes) {
2194      if (!UniquedVals[Multiple-1].getNode())
2195        return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2196      int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2197      if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2198        return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2199    }
2200
2201    return SDValue();
2202  }
2203
2204  // Check to see if this buildvec has a single non-undef value in its elements.
2205  for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2206    if (N->getOperand(i).isUndef()) continue;
2207    if (!OpVal.getNode())
2208      OpVal = N->getOperand(i);
2209    else if (OpVal != N->getOperand(i))
2210      return SDValue();
2211  }
2212
2213  if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2214
2215  unsigned ValSizeInBytes = EltSize;
2216  uint64_t Value = 0;
2217  if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2218    Value = CN->getZExtValue();
2219  } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2220    assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2221    Value = FloatToBits(CN->getValueAPF().convertToFloat());
2222  }
2223
2224  // If the splat value is larger than the element value, then we can never do
2225  // this splat.  The only case that we could fit the replicated bits into our
2226  // immediate field for would be zero, and we prefer to use vxor for it.
2227  if (ValSizeInBytes < ByteSize) return SDValue();
2228
2229  // If the element value is larger than the splat value, check if it consists
2230  // of a repeated bit pattern of size ByteSize.
2231  if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2232    return SDValue();
2233
2234  // Properly sign extend the value.
2235  int MaskVal = SignExtend32(Value, ByteSize * 8);
2236
2237  // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2238  if (MaskVal == 0) return SDValue();
2239
2240  // Finally, if this value fits in a 5 bit sext field, return it
2241  if (SignExtend32<5>(MaskVal) == MaskVal)
2242    return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2243  return SDValue();
2244}
2245
2246/// isQVALIGNIShuffleMask - If this is a qvaligni shuffle mask, return the shift
2247/// amount, otherwise return -1.
2248int PPC::isQVALIGNIShuffleMask(SDNode *N) {
2249  EVT VT = N->getValueType(0);
2250  if (VT != MVT::v4f64 && VT != MVT::v4f32 && VT != MVT::v4i1)
2251    return -1;
2252
2253  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2254
2255  // Find the first non-undef value in the shuffle mask.
2256  unsigned i;
2257  for (i = 0; i != 4 && SVOp->getMaskElt(i) < 0; ++i)
2258    /*search*/;
2259
2260  if (i == 4) return -1;  // all undef.
2261
2262  // Otherwise, check to see if the rest of the elements are consecutively
2263  // numbered from this value.
2264  unsigned ShiftAmt = SVOp->getMaskElt(i);
2265  if (ShiftAmt < i) return -1;
2266  ShiftAmt -= i;
2267
2268  // Check the rest of the elements to see if they are consecutive.
2269  for (++i; i != 4; ++i)
2270    if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2271      return -1;
2272
2273  return ShiftAmt;
2274}
2275
2276//===----------------------------------------------------------------------===//
2277//  Addressing Mode Selection
2278//===----------------------------------------------------------------------===//
2279
2280/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2281/// or 64-bit immediate, and if the value can be accurately represented as a
2282/// sign extension from a 16-bit value.  If so, this returns true and the
2283/// immediate.
2284bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2285  if (!isa<ConstantSDNode>(N))
2286    return false;
2287
2288  Imm = (int16_t)cast<ConstantSDNode>(N)->getZExtValue();
2289  if (N->getValueType(0) == MVT::i32)
2290    return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
2291  else
2292    return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
2293}
2294bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2295  return isIntS16Immediate(Op.getNode(), Imm);
2296}
2297
2298
2299/// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2300/// be represented as an indexed [r+r] operation.
2301bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2302                                               SDValue &Index,
2303                                               SelectionDAG &DAG) const {
2304  for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end();
2305      UI != E; ++UI) {
2306    if (MemSDNode *Memop = dyn_cast<MemSDNode>(*UI)) {
2307      if (Memop->getMemoryVT() == MVT::f64) {
2308          Base = N.getOperand(0);
2309          Index = N.getOperand(1);
2310          return true;
2311      }
2312    }
2313  }
2314  return false;
2315}
2316
2317/// SelectAddressRegReg - Given the specified addressed, check to see if it
2318/// can be represented as an indexed [r+r] operation.  Returns false if it
2319/// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2320/// non-zero and N can be represented by a base register plus a signed 16-bit
2321/// displacement, make a more precise judgement by checking (displacement % \p
2322/// EncodingAlignment).
2323bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
2324                                            SDValue &Index, SelectionDAG &DAG,
2325                                            unsigned EncodingAlignment) const {
2326  int16_t imm = 0;
2327  if (N.getOpcode() == ISD::ADD) {
2328    // Is there any SPE load/store (f64), which can't handle 16bit offset?
2329    // SPE load/store can only handle 8-bit offsets.
2330    if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2331        return true;
2332    if (isIntS16Immediate(N.getOperand(1), imm) &&
2333        (!EncodingAlignment || !(imm % EncodingAlignment)))
2334      return false; // r+i
2335    if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2336      return false;    // r+i
2337
2338    Base = N.getOperand(0);
2339    Index = N.getOperand(1);
2340    return true;
2341  } else if (N.getOpcode() == ISD::OR) {
2342    if (isIntS16Immediate(N.getOperand(1), imm) &&
2343        (!EncodingAlignment || !(imm % EncodingAlignment)))
2344      return false; // r+i can fold it if we can.
2345
2346    // If this is an or of disjoint bitfields, we can codegen this as an add
2347    // (for better address arithmetic) if the LHS and RHS of the OR are provably
2348    // disjoint.
2349    KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2350
2351    if (LHSKnown.Zero.getBoolValue()) {
2352      KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2353      // If all of the bits are known zero on the LHS or RHS, the add won't
2354      // carry.
2355      if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2356        Base = N.getOperand(0);
2357        Index = N.getOperand(1);
2358        return true;
2359      }
2360    }
2361  }
2362
2363  return false;
2364}
2365
2366// If we happen to be doing an i64 load or store into a stack slot that has
2367// less than a 4-byte alignment, then the frame-index elimination may need to
2368// use an indexed load or store instruction (because the offset may not be a
2369// multiple of 4). The extra register needed to hold the offset comes from the
2370// register scavenger, and it is possible that the scavenger will need to use
2371// an emergency spill slot. As a result, we need to make sure that a spill slot
2372// is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2373// stack slot.
2374static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2375  // FIXME: This does not handle the LWA case.
2376  if (VT != MVT::i64)
2377    return;
2378
2379  // NOTE: We'll exclude negative FIs here, which come from argument
2380  // lowering, because there are no known test cases triggering this problem
2381  // using packed structures (or similar). We can remove this exclusion if
2382  // we find such a test case. The reason why this is so test-case driven is
2383  // because this entire 'fixup' is only to prevent crashes (from the
2384  // register scavenger) on not-really-valid inputs. For example, if we have:
2385  //   %a = alloca i1
2386  //   %b = bitcast i1* %a to i64*
2387  //   store i64* a, i64 b
2388  // then the store should really be marked as 'align 1', but is not. If it
2389  // were marked as 'align 1' then the indexed form would have been
2390  // instruction-selected initially, and the problem this 'fixup' is preventing
2391  // won't happen regardless.
2392  if (FrameIdx < 0)
2393    return;
2394
2395  MachineFunction &MF = DAG.getMachineFunction();
2396  MachineFrameInfo &MFI = MF.getFrameInfo();
2397
2398  unsigned Align = MFI.getObjectAlignment(FrameIdx);
2399  if (Align >= 4)
2400    return;
2401
2402  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2403  FuncInfo->setHasNonRISpills();
2404}
2405
2406/// Returns true if the address N can be represented by a base register plus
2407/// a signed 16-bit displacement [r+imm], and if it is not better
2408/// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2409/// displacements that are multiples of that value.
2410bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
2411                                            SDValue &Base,
2412                                            SelectionDAG &DAG,
2413                                            unsigned EncodingAlignment) const {
2414  // FIXME dl should come from parent load or store, not from address
2415  SDLoc dl(N);
2416  // If this can be more profitably realized as r+r, fail.
2417  if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2418    return false;
2419
2420  if (N.getOpcode() == ISD::ADD) {
2421    int16_t imm = 0;
2422    if (isIntS16Immediate(N.getOperand(1), imm) &&
2423        (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2424      Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2425      if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2426        Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2427        fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2428      } else {
2429        Base = N.getOperand(0);
2430      }
2431      return true; // [r+i]
2432    } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2433      // Match LOAD (ADD (X, Lo(G))).
2434      assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
2435             && "Cannot handle constant offsets yet!");
2436      Disp = N.getOperand(1).getOperand(0);  // The global address.
2437      assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2438             Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2439             Disp.getOpcode() == ISD::TargetConstantPool ||
2440             Disp.getOpcode() == ISD::TargetJumpTable);
2441      Base = N.getOperand(0);
2442      return true;  // [&g+r]
2443    }
2444  } else if (N.getOpcode() == ISD::OR) {
2445    int16_t imm = 0;
2446    if (isIntS16Immediate(N.getOperand(1), imm) &&
2447        (!EncodingAlignment || (imm % EncodingAlignment) == 0)) {
2448      // If this is an or of disjoint bitfields, we can codegen this as an add
2449      // (for better address arithmetic) if the LHS and RHS of the OR are
2450      // provably disjoint.
2451      KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2452
2453      if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2454        // If all of the bits are known zero on the LHS or RHS, the add won't
2455        // carry.
2456        if (FrameIndexSDNode *FI =
2457              dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2458          Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2459          fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2460        } else {
2461          Base = N.getOperand(0);
2462        }
2463        Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2464        return true;
2465      }
2466    }
2467  } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2468    // Loading from a constant address.
2469
2470    // If this address fits entirely in a 16-bit sext immediate field, codegen
2471    // this as "d, 0"
2472    int16_t Imm;
2473    if (isIntS16Immediate(CN, Imm) &&
2474        (!EncodingAlignment || (Imm % EncodingAlignment) == 0)) {
2475      Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2476      Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2477                             CN->getValueType(0));
2478      return true;
2479    }
2480
2481    // Handle 32-bit sext immediates with LIS + addr mode.
2482    if ((CN->getValueType(0) == MVT::i32 ||
2483         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2484        (!EncodingAlignment || (CN->getZExtValue() % EncodingAlignment) == 0)) {
2485      int Addr = (int)CN->getZExtValue();
2486
2487      // Otherwise, break this down into an LIS + disp.
2488      Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2489
2490      Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2491                                   MVT::i32);
2492      unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2493      Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2494      return true;
2495    }
2496  }
2497
2498  Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2499  if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2500    Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2501    fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2502  } else
2503    Base = N;
2504  return true;      // [r+0]
2505}
2506
2507/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2508/// represented as an indexed [r+r] operation.
2509bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2510                                                SDValue &Index,
2511                                                SelectionDAG &DAG) const {
2512  // Check to see if we can easily represent this as an [r+r] address.  This
2513  // will fail if it thinks that the address is more profitably represented as
2514  // reg+imm, e.g. where imm = 0.
2515  if (SelectAddressRegReg(N, Base, Index, DAG))
2516    return true;
2517
2518  // If the address is the result of an add, we will utilize the fact that the
2519  // address calculation includes an implicit add.  However, we can reduce
2520  // register pressure if we do not materialize a constant just for use as the
2521  // index register.  We only get rid of the add if it is not an add of a
2522  // value and a 16-bit signed constant and both have a single use.
2523  int16_t imm = 0;
2524  if (N.getOpcode() == ISD::ADD &&
2525      (!isIntS16Immediate(N.getOperand(1), imm) ||
2526       !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2527    Base = N.getOperand(0);
2528    Index = N.getOperand(1);
2529    return true;
2530  }
2531
2532  // Otherwise, do it the hard way, using R0 as the base register.
2533  Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2534                         N.getValueType());
2535  Index = N;
2536  return true;
2537}
2538
2539/// Returns true if we should use a direct load into vector instruction
2540/// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
2541static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2542
2543  // If there are any other uses other than scalar to vector, then we should
2544  // keep it as a scalar load -> direct move pattern to prevent multiple
2545  // loads.
2546  LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
2547  if (!LD)
2548    return false;
2549
2550  EVT MemVT = LD->getMemoryVT();
2551  if (!MemVT.isSimple())
2552    return false;
2553  switch(MemVT.getSimpleVT().SimpleTy) {
2554  case MVT::i64:
2555    break;
2556  case MVT::i32:
2557    if (!ST.hasP8Vector())
2558      return false;
2559    break;
2560  case MVT::i16:
2561  case MVT::i8:
2562    if (!ST.hasP9Vector())
2563      return false;
2564    break;
2565  default:
2566    return false;
2567  }
2568
2569  SDValue LoadedVal(N, 0);
2570  if (!LoadedVal.hasOneUse())
2571    return false;
2572
2573  for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
2574       UI != UE; ++UI)
2575    if (UI.getUse().get().getResNo() == 0 &&
2576        UI->getOpcode() != ISD::SCALAR_TO_VECTOR)
2577      return false;
2578
2579  return true;
2580}
2581
2582/// getPreIndexedAddressParts - returns true by value, base pointer and
2583/// offset pointer and addressing mode by reference if the node's address
2584/// can be legally represented as pre-indexed load / store address.
2585bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
2586                                                  SDValue &Offset,
2587                                                  ISD::MemIndexedMode &AM,
2588                                                  SelectionDAG &DAG) const {
2589  if (DisablePPCPreinc) return false;
2590
2591  bool isLoad = true;
2592  SDValue Ptr;
2593  EVT VT;
2594  unsigned Alignment;
2595  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2596    Ptr = LD->getBasePtr();
2597    VT = LD->getMemoryVT();
2598    Alignment = LD->getAlignment();
2599  } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
2600    Ptr = ST->getBasePtr();
2601    VT  = ST->getMemoryVT();
2602    Alignment = ST->getAlignment();
2603    isLoad = false;
2604  } else
2605    return false;
2606
2607  // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
2608  // instructions because we can fold these into a more efficient instruction
2609  // instead, (such as LXSD).
2610  if (isLoad && usePartialVectorLoads(N, Subtarget)) {
2611    return false;
2612  }
2613
2614  // PowerPC doesn't have preinc load/store instructions for vectors (except
2615  // for QPX, which does have preinc r+r forms).
2616  if (VT.isVector()) {
2617    if (!Subtarget.hasQPX() || (VT != MVT::v4f64 && VT != MVT::v4f32)) {
2618      return false;
2619    } else if (SelectAddressRegRegOnly(Ptr, Offset, Base, DAG)) {
2620      AM = ISD::PRE_INC;
2621      return true;
2622    }
2623  }
2624
2625  if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
2626    // Common code will reject creating a pre-inc form if the base pointer
2627    // is a frame index, or if N is a store and the base pointer is either
2628    // the same as or a predecessor of the value being stored.  Check for
2629    // those situations here, and try with swapped Base/Offset instead.
2630    bool Swap = false;
2631
2632    if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
2633      Swap = true;
2634    else if (!isLoad) {
2635      SDValue Val = cast<StoreSDNode>(N)->getValue();
2636      if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
2637        Swap = true;
2638    }
2639
2640    if (Swap)
2641      std::swap(Base, Offset);
2642
2643    AM = ISD::PRE_INC;
2644    return true;
2645  }
2646
2647  // LDU/STU can only handle immediates that are a multiple of 4.
2648  if (VT != MVT::i64) {
2649    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 0))
2650      return false;
2651  } else {
2652    // LDU/STU need an address with at least 4-byte alignment.
2653    if (Alignment < 4)
2654      return false;
2655
2656    if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, 4))
2657      return false;
2658  }
2659
2660  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
2661    // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
2662    // sext i32 to i64 when addr mode is r+i.
2663    if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
2664        LD->getExtensionType() == ISD::SEXTLOAD &&
2665        isa<ConstantSDNode>(Offset))
2666      return false;
2667  }
2668
2669  AM = ISD::PRE_INC;
2670  return true;
2671}
2672
2673//===----------------------------------------------------------------------===//
2674//  LowerOperation implementation
2675//===----------------------------------------------------------------------===//
2676
2677/// Return true if we should reference labels using a PICBase, set the HiOpFlags
2678/// and LoOpFlags to the target MO flags.
2679static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
2680                               unsigned &HiOpFlags, unsigned &LoOpFlags,
2681                               const GlobalValue *GV = nullptr) {
2682  HiOpFlags = PPCII::MO_HA;
2683  LoOpFlags = PPCII::MO_LO;
2684
2685  // Don't use the pic base if not in PIC relocation model.
2686  if (IsPIC) {
2687    HiOpFlags |= PPCII::MO_PIC_FLAG;
2688    LoOpFlags |= PPCII::MO_PIC_FLAG;
2689  }
2690
2691  // If this is a reference to a global value that requires a non-lazy-ptr, make
2692  // sure that instruction lowering adds it.
2693  if (GV && Subtarget.hasLazyResolverStub(GV)) {
2694    HiOpFlags |= PPCII::MO_NLP_FLAG;
2695    LoOpFlags |= PPCII::MO_NLP_FLAG;
2696
2697    if (GV->hasHiddenVisibility()) {
2698      HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2699      LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
2700    }
2701  }
2702}
2703
2704static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
2705                             SelectionDAG &DAG) {
2706  SDLoc DL(HiPart);
2707  EVT PtrVT = HiPart.getValueType();
2708  SDValue Zero = DAG.getConstant(0, DL, PtrVT);
2709
2710  SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
2711  SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
2712
2713  // With PIC, the first instruction is actually "GR+hi(&G)".
2714  if (isPIC)
2715    Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
2716                     DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
2717
2718  // Generate non-pic code that has direct accesses to the constant pool.
2719  // The address of the global is just (hi(&g)+lo(&g)).
2720  return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
2721}
2722
2723static void setUsesTOCBasePtr(MachineFunction &MF) {
2724  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2725  FuncInfo->setUsesTOCBasePtr();
2726}
2727
2728static void setUsesTOCBasePtr(SelectionDAG &DAG) {
2729  setUsesTOCBasePtr(DAG.getMachineFunction());
2730}
2731
2732SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
2733                                       SDValue GA) const {
2734  const bool Is64Bit = Subtarget.isPPC64();
2735  EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2736  SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
2737                        : Subtarget.isAIXABI()
2738                              ? DAG.getRegister(PPC::R2, VT)
2739                              : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
2740  SDValue Ops[] = { GA, Reg };
2741  return DAG.getMemIntrinsicNode(
2742      PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
2743      MachinePointerInfo::getGOT(DAG.getMachineFunction()), 0,
2744      MachineMemOperand::MOLoad);
2745}
2746
2747SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
2748                                             SelectionDAG &DAG) const {
2749  EVT PtrVT = Op.getValueType();
2750  ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
2751  const Constant *C = CP->getConstVal();
2752
2753  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2754  // The actual address of the GlobalValue is stored in the TOC.
2755  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2756    setUsesTOCBasePtr(DAG);
2757    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
2758    return getTOCEntry(DAG, SDLoc(CP), GA);
2759  }
2760
2761  unsigned MOHiFlag, MOLoFlag;
2762  bool IsPIC = isPositionIndependent();
2763  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2764
2765  if (IsPIC && Subtarget.isSVR4ABI()) {
2766    SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(),
2767                                           PPCII::MO_PIC_FLAG);
2768    return getTOCEntry(DAG, SDLoc(CP), GA);
2769  }
2770
2771  SDValue CPIHi =
2772    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
2773  SDValue CPILo =
2774    DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
2775  return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
2776}
2777
2778// For 64-bit PowerPC, prefer the more compact relative encodings.
2779// This trades 32 bits per jump table entry for one or two instructions
2780// on the jump site.
2781unsigned PPCTargetLowering::getJumpTableEncoding() const {
2782  if (isJumpTableRelative())
2783    return MachineJumpTableInfo::EK_LabelDifference32;
2784
2785  return TargetLowering::getJumpTableEncoding();
2786}
2787
2788bool PPCTargetLowering::isJumpTableRelative() const {
2789  if (UseAbsoluteJumpTables)
2790    return false;
2791  if (Subtarget.isPPC64() || Subtarget.isAIXABI())
2792    return true;
2793  return TargetLowering::isJumpTableRelative();
2794}
2795
2796SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
2797                                                    SelectionDAG &DAG) const {
2798  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2799    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2800
2801  switch (getTargetMachine().getCodeModel()) {
2802  case CodeModel::Small:
2803  case CodeModel::Medium:
2804    return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
2805  default:
2806    return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
2807                       getPointerTy(DAG.getDataLayout()));
2808  }
2809}
2810
2811const MCExpr *
2812PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
2813                                                unsigned JTI,
2814                                                MCContext &Ctx) const {
2815  if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
2816    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2817
2818  switch (getTargetMachine().getCodeModel()) {
2819  case CodeModel::Small:
2820  case CodeModel::Medium:
2821    return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
2822  default:
2823    return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
2824  }
2825}
2826
2827SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
2828  EVT PtrVT = Op.getValueType();
2829  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
2830
2831  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2832  // The actual address of the GlobalValue is stored in the TOC.
2833  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2834    setUsesTOCBasePtr(DAG);
2835    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
2836    return getTOCEntry(DAG, SDLoc(JT), GA);
2837  }
2838
2839  unsigned MOHiFlag, MOLoFlag;
2840  bool IsPIC = isPositionIndependent();
2841  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2842
2843  if (IsPIC && Subtarget.isSVR4ABI()) {
2844    SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
2845                                        PPCII::MO_PIC_FLAG);
2846    return getTOCEntry(DAG, SDLoc(GA), GA);
2847  }
2848
2849  SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
2850  SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
2851  return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
2852}
2853
2854SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
2855                                             SelectionDAG &DAG) const {
2856  EVT PtrVT = Op.getValueType();
2857  BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
2858  const BlockAddress *BA = BASDN->getBlockAddress();
2859
2860  // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
2861  // The actual BlockAddress is stored in the TOC.
2862  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2863    setUsesTOCBasePtr(DAG);
2864    SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
2865    return getTOCEntry(DAG, SDLoc(BASDN), GA);
2866  }
2867
2868  // 32-bit position-independent ELF stores the BlockAddress in the .got.
2869  if (Subtarget.is32BitELFABI() && isPositionIndependent())
2870    return getTOCEntry(
2871        DAG, SDLoc(BASDN),
2872        DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
2873
2874  unsigned MOHiFlag, MOLoFlag;
2875  bool IsPIC = isPositionIndependent();
2876  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
2877  SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
2878  SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
2879  return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
2880}
2881
2882SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
2883                                              SelectionDAG &DAG) const {
2884  // FIXME: TLS addresses currently use medium model code sequences,
2885  // which is the most useful form.  Eventually support for small and
2886  // large models could be added if users need it, at the cost of
2887  // additional complexity.
2888  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
2889  if (DAG.getTarget().useEmulatedTLS())
2890    return LowerToTLSEmulatedModel(GA, DAG);
2891
2892  SDLoc dl(GA);
2893  const GlobalValue *GV = GA->getGlobal();
2894  EVT PtrVT = getPointerTy(DAG.getDataLayout());
2895  bool is64bit = Subtarget.isPPC64();
2896  const Module *M = DAG.getMachineFunction().getFunction().getParent();
2897  PICLevel::Level picLevel = M->getPICLevel();
2898
2899  const TargetMachine &TM = getTargetMachine();
2900  TLSModel::Model Model = TM.getTLSModel(GV);
2901
2902  if (Model == TLSModel::LocalExec) {
2903    SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2904                                               PPCII::MO_TPREL_HA);
2905    SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2906                                               PPCII::MO_TPREL_LO);
2907    SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
2908                             : DAG.getRegister(PPC::R2, MVT::i32);
2909
2910    SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
2911    return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
2912  }
2913
2914  if (Model == TLSModel::InitialExec) {
2915    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2916    SDValue TGATLS = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
2917                                                PPCII::MO_TLS);
2918    SDValue GOTPtr;
2919    if (is64bit) {
2920      setUsesTOCBasePtr(DAG);
2921      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2922      GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
2923                           PtrVT, GOTReg, TGA);
2924    } else {
2925      if (!TM.isPositionIndependent())
2926        GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
2927      else if (picLevel == PICLevel::SmallPIC)
2928        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2929      else
2930        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2931    }
2932    SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
2933                                   PtrVT, TGA, GOTPtr);
2934    return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
2935  }
2936
2937  if (Model == TLSModel::GeneralDynamic) {
2938    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2939    SDValue GOTPtr;
2940    if (is64bit) {
2941      setUsesTOCBasePtr(DAG);
2942      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2943      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
2944                                   GOTReg, TGA);
2945    } else {
2946      if (picLevel == PICLevel::SmallPIC)
2947        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2948      else
2949        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2950    }
2951    return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
2952                       GOTPtr, TGA, TGA);
2953  }
2954
2955  if (Model == TLSModel::LocalDynamic) {
2956    SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
2957    SDValue GOTPtr;
2958    if (is64bit) {
2959      setUsesTOCBasePtr(DAG);
2960      SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
2961      GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
2962                           GOTReg, TGA);
2963    } else {
2964      if (picLevel == PICLevel::SmallPIC)
2965        GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
2966      else
2967        GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
2968    }
2969    SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
2970                                  PtrVT, GOTPtr, TGA, TGA);
2971    SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
2972                                      PtrVT, TLSAddr, TGA);
2973    return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
2974  }
2975
2976  llvm_unreachable("Unknown TLS model!");
2977}
2978
2979SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
2980                                              SelectionDAG &DAG) const {
2981  EVT PtrVT = Op.getValueType();
2982  GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
2983  SDLoc DL(GSDN);
2984  const GlobalValue *GV = GSDN->getGlobal();
2985
2986  // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
2987  // The actual address of the GlobalValue is stored in the TOC.
2988  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
2989    setUsesTOCBasePtr(DAG);
2990    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
2991    return getTOCEntry(DAG, DL, GA);
2992  }
2993
2994  unsigned MOHiFlag, MOLoFlag;
2995  bool IsPIC = isPositionIndependent();
2996  getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
2997
2998  if (IsPIC && Subtarget.isSVR4ABI()) {
2999    SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3000                                            GSDN->getOffset(),
3001                                            PPCII::MO_PIC_FLAG);
3002    return getTOCEntry(DAG, DL, GA);
3003  }
3004
3005  SDValue GAHi =
3006    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3007  SDValue GALo =
3008    DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3009
3010  SDValue Ptr = LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3011
3012  // If the global reference is actually to a non-lazy-pointer, we have to do an
3013  // extra load to get the address of the global.
3014  if (MOHiFlag & PPCII::MO_NLP_FLAG)
3015    Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
3016  return Ptr;
3017}
3018
3019SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3020  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3021  SDLoc dl(Op);
3022
3023  if (Op.getValueType() == MVT::v2i64) {
3024    // When the operands themselves are v2i64 values, we need to do something
3025    // special because VSX has no underlying comparison operations for these.
3026    if (Op.getOperand(0).getValueType() == MVT::v2i64) {
3027      // Equality can be handled by casting to the legal type for Altivec
3028      // comparisons, everything else needs to be expanded.
3029      if (CC == ISD::SETEQ || CC == ISD::SETNE) {
3030        return DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
3031                 DAG.getSetCC(dl, MVT::v4i32,
3032                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(0)),
3033                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, Op.getOperand(1)),
3034                   CC));
3035      }
3036
3037      return SDValue();
3038    }
3039
3040    // We handle most of these in the usual way.
3041    return Op;
3042  }
3043
3044  // If we're comparing for equality to zero, expose the fact that this is
3045  // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3046  // fold the new nodes.
3047  if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3048    return V;
3049
3050  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3051    // Leave comparisons against 0 and -1 alone for now, since they're usually
3052    // optimized.  FIXME: revisit this when we can custom lower all setcc
3053    // optimizations.
3054    if (C->isAllOnesValue() || C->isNullValue())
3055      return SDValue();
3056  }
3057
3058  // If we have an integer seteq/setne, turn it into a compare against zero
3059  // by xor'ing the rhs with the lhs, which is faster than setting a
3060  // condition register, reading it back out, and masking the correct bit.  The
3061  // normal approach here uses sub to do this instead of xor.  Using xor exposes
3062  // the result to other bit-twiddling opportunities.
3063  EVT LHSVT = Op.getOperand(0).getValueType();
3064  if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3065    EVT VT = Op.getValueType();
3066    SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
3067                                Op.getOperand(1));
3068    return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3069  }
3070  return SDValue();
3071}
3072
3073SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3074  SDNode *Node = Op.getNode();
3075  EVT VT = Node->getValueType(0);
3076  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3077  SDValue InChain = Node->getOperand(0);
3078  SDValue VAListPtr = Node->getOperand(1);
3079  const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3080  SDLoc dl(Node);
3081
3082  assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3083
3084  // gpr_index
3085  SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3086                                    VAListPtr, MachinePointerInfo(SV), MVT::i8);
3087  InChain = GprIndex.getValue(1);
3088
3089  if (VT == MVT::i64) {
3090    // Check if GprIndex is even
3091    SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3092                                 DAG.getConstant(1, dl, MVT::i32));
3093    SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3094                                DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3095    SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3096                                          DAG.getConstant(1, dl, MVT::i32));
3097    // Align GprIndex to be even if it isn't
3098    GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3099                           GprIndex);
3100  }
3101
3102  // fpr index is 1 byte after gpr
3103  SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3104                               DAG.getConstant(1, dl, MVT::i32));
3105
3106  // fpr
3107  SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3108                                    FprPtr, MachinePointerInfo(SV), MVT::i8);
3109  InChain = FprIndex.getValue(1);
3110
3111  SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3112                                       DAG.getConstant(8, dl, MVT::i32));
3113
3114  SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3115                                        DAG.getConstant(4, dl, MVT::i32));
3116
3117  // areas
3118  SDValue OverflowArea =
3119      DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3120  InChain = OverflowArea.getValue(1);
3121
3122  SDValue RegSaveArea =
3123      DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3124  InChain = RegSaveArea.getValue(1);
3125
3126  // select overflow_area if index > 8
3127  SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3128                            DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3129
3130  // adjustment constant gpr_index * 4/8
3131  SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3132                                    VT.isInteger() ? GprIndex : FprIndex,
3133                                    DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3134                                                    MVT::i32));
3135
3136  // OurReg = RegSaveArea + RegConstant
3137  SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3138                               RegConstant);
3139
3140  // Floating types are 32 bytes into RegSaveArea
3141  if (VT.isFloatingPoint())
3142    OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3143                         DAG.getConstant(32, dl, MVT::i32));
3144
3145  // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3146  SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3147                                   VT.isInteger() ? GprIndex : FprIndex,
3148                                   DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3149                                                   MVT::i32));
3150
3151  InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3152                              VT.isInteger() ? VAListPtr : FprPtr,
3153                              MachinePointerInfo(SV), MVT::i8);
3154
3155  // determine if we should load from reg_save_area or overflow_area
3156  SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3157
3158  // increase overflow_area by 4/8 if gpr/fpr > 8
3159  SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3160                                          DAG.getConstant(VT.isInteger() ? 4 : 8,
3161                                          dl, MVT::i32));
3162
3163  OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3164                             OverflowAreaPlusN);
3165
3166  InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3167                              MachinePointerInfo(), MVT::i32);
3168
3169  return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3170}
3171
3172SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3173  assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3174
3175  // We have to copy the entire va_list struct:
3176  // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3177  return DAG.getMemcpy(Op.getOperand(0), Op,
3178                       Op.getOperand(1), Op.getOperand(2),
3179                       DAG.getConstant(12, SDLoc(Op), MVT::i32), 8, false, true,
3180                       false, MachinePointerInfo(), MachinePointerInfo());
3181}
3182
3183SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3184                                                  SelectionDAG &DAG) const {
3185  if (Subtarget.isAIXABI())
3186    report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3187
3188  return Op.getOperand(0);
3189}
3190
3191SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3192                                                SelectionDAG &DAG) const {
3193  if (Subtarget.isAIXABI())
3194    report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3195
3196  SDValue Chain = Op.getOperand(0);
3197  SDValue Trmp = Op.getOperand(1); // trampoline
3198  SDValue FPtr = Op.getOperand(2); // nested function
3199  SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3200  SDLoc dl(Op);
3201
3202  EVT PtrVT = getPointerTy(DAG.getDataLayout());
3203  bool isPPC64 = (PtrVT == MVT::i64);
3204  Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3205
3206  TargetLowering::ArgListTy Args;
3207  TargetLowering::ArgListEntry Entry;
3208
3209  Entry.Ty = IntPtrTy;
3210  Entry.Node = Trmp; Args.push_back(Entry);
3211
3212  // TrampSize == (isPPC64 ? 48 : 40);
3213  Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3214                               isPPC64 ? MVT::i64 : MVT::i32);
3215  Args.push_back(Entry);
3216
3217  Entry.Node = FPtr; Args.push_back(Entry);
3218  Entry.Node = Nest; Args.push_back(Entry);
3219
3220  // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3221  TargetLowering::CallLoweringInfo CLI(DAG);
3222  CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3223      CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3224      DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3225
3226  std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3227  return CallResult.second;
3228}
3229
3230SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3231  MachineFunction &MF = DAG.getMachineFunction();
3232  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3233  EVT PtrVT = getPointerTy(MF.getDataLayout());
3234
3235  SDLoc dl(Op);
3236
3237  if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
3238    // vastart just stores the address of the VarArgsFrameIndex slot into the
3239    // memory location argument.
3240    SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3241    const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3242    return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3243                        MachinePointerInfo(SV));
3244  }
3245
3246  // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3247  // We suppose the given va_list is already allocated.
3248  //
3249  // typedef struct {
3250  //  char gpr;     /* index into the array of 8 GPRs
3251  //                 * stored in the register save area
3252  //                 * gpr=0 corresponds to r3,
3253  //                 * gpr=1 to r4, etc.
3254  //                 */
3255  //  char fpr;     /* index into the array of 8 FPRs
3256  //                 * stored in the register save area
3257  //                 * fpr=0 corresponds to f1,
3258  //                 * fpr=1 to f2, etc.
3259  //                 */
3260  //  char *overflow_arg_area;
3261  //                /* location on stack that holds
3262  //                 * the next overflow argument
3263  //                 */
3264  //  char *reg_save_area;
3265  //               /* where r3:r10 and f1:f8 (if saved)
3266  //                * are stored
3267  //                */
3268  // } va_list[1];
3269
3270  SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3271  SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3272  SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3273                                            PtrVT);
3274  SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3275                                 PtrVT);
3276
3277  uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3278  SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3279
3280  uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3281  SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3282
3283  uint64_t FPROffset = 1;
3284  SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3285
3286  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3287
3288  // Store first byte : number of int regs
3289  SDValue firstStore =
3290      DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3291                        MachinePointerInfo(SV), MVT::i8);
3292  uint64_t nextOffset = FPROffset;
3293  SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3294                                  ConstFPROffset);
3295
3296  // Store second byte : number of float regs
3297  SDValue secondStore =
3298      DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3299                        MachinePointerInfo(SV, nextOffset), MVT::i8);
3300  nextOffset += StackOffset;
3301  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3302
3303  // Store second word : arguments given on stack
3304  SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3305                                    MachinePointerInfo(SV, nextOffset));
3306  nextOffset += FrameOffset;
3307  nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3308
3309  // Store third word : arguments given in registers
3310  return DAG.getStore(thirdStore, dl, FR, nextPtr,
3311                      MachinePointerInfo(SV, nextOffset));
3312}
3313
3314/// FPR - The set of FP registers that should be allocated for arguments
3315/// on Darwin and AIX.
3316static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3317                                PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3318                                PPC::F11, PPC::F12, PPC::F13};
3319
3320/// QFPR - The set of QPX registers that should be allocated for arguments.
3321static const MCPhysReg QFPR[] = {
3322    PPC::QF1, PPC::QF2, PPC::QF3,  PPC::QF4,  PPC::QF5,  PPC::QF6, PPC::QF7,
3323    PPC::QF8, PPC::QF9, PPC::QF10, PPC::QF11, PPC::QF12, PPC::QF13};
3324
3325/// CalculateStackSlotSize - Calculates the size reserved for this argument on
3326/// the stack.
3327static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3328                                       unsigned PtrByteSize) {
3329  unsigned ArgSize = ArgVT.getStoreSize();
3330  if (Flags.isByVal())
3331    ArgSize = Flags.getByValSize();
3332
3333  // Round up to multiples of the pointer size, except for array members,
3334  // which are always packed.
3335  if (!Flags.isInConsecutiveRegs())
3336    ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3337
3338  return ArgSize;
3339}
3340
3341/// CalculateStackSlotAlignment - Calculates the alignment of this argument
3342/// on the stack.
3343static unsigned CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
3344                                            ISD::ArgFlagsTy Flags,
3345                                            unsigned PtrByteSize) {
3346  unsigned Align = PtrByteSize;
3347
3348  // Altivec parameters are padded to a 16 byte boundary.
3349  if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3350      ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3351      ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3352      ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3353    Align = 16;
3354  // QPX vector types stored in double-precision are padded to a 32 byte
3355  // boundary.
3356  else if (ArgVT == MVT::v4f64 || ArgVT == MVT::v4i1)
3357    Align = 32;
3358
3359  // ByVal parameters are aligned as requested.
3360  if (Flags.isByVal()) {
3361    unsigned BVAlign = Flags.getByValAlign();
3362    if (BVAlign > PtrByteSize) {
3363      if (BVAlign % PtrByteSize != 0)
3364          llvm_unreachable(
3365            "ByVal alignment is not a multiple of the pointer size");
3366
3367      Align = BVAlign;
3368    }
3369  }
3370
3371  // Array members are always packed to their original alignment.
3372  if (Flags.isInConsecutiveRegs()) {
3373    // If the array member was split into multiple registers, the first
3374    // needs to be aligned to the size of the full type.  (Except for
3375    // ppcf128, which is only aligned as its f64 components.)
3376    if (Flags.isSplit() && OrigVT != MVT::ppcf128)
3377      Align = OrigVT.getStoreSize();
3378    else
3379      Align = ArgVT.getStoreSize();
3380  }
3381
3382  return Align;
3383}
3384
3385/// CalculateStackSlotUsed - Return whether this argument will use its
3386/// stack slot (instead of being passed in registers).  ArgOffset,
3387/// AvailableFPRs, and AvailableVRs must hold the current argument
3388/// position, and will be updated to account for this argument.
3389static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT,
3390                                   ISD::ArgFlagsTy Flags,
3391                                   unsigned PtrByteSize,
3392                                   unsigned LinkageSize,
3393                                   unsigned ParamAreaSize,
3394                                   unsigned &ArgOffset,
3395                                   unsigned &AvailableFPRs,
3396                                   unsigned &AvailableVRs, bool HasQPX) {
3397  bool UseMemory = false;
3398
3399  // Respect alignment of argument on the stack.
3400  unsigned Align =
3401    CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
3402  ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3403  // If there's no space left in the argument save area, we must
3404  // use memory (this check also catches zero-sized arguments).
3405  if (ArgOffset >= LinkageSize + ParamAreaSize)
3406    UseMemory = true;
3407
3408  // Allocate argument on the stack.
3409  ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
3410  if (Flags.isInConsecutiveRegsLast())
3411    ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3412  // If we overran the argument save area, we must use memory
3413  // (this check catches arguments passed partially in memory)
3414  if (ArgOffset > LinkageSize + ParamAreaSize)
3415    UseMemory = true;
3416
3417  // However, if the argument is actually passed in an FPR or a VR,
3418  // we don't use memory after all.
3419  if (!Flags.isByVal()) {
3420    if (ArgVT == MVT::f32 || ArgVT == MVT::f64 ||
3421        // QPX registers overlap with the scalar FP registers.
3422        (HasQPX && (ArgVT == MVT::v4f32 ||
3423                    ArgVT == MVT::v4f64 ||
3424                    ArgVT == MVT::v4i1)))
3425      if (AvailableFPRs > 0) {
3426        --AvailableFPRs;
3427        return false;
3428      }
3429    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
3430        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
3431        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
3432        ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
3433      if (AvailableVRs > 0) {
3434        --AvailableVRs;
3435        return false;
3436      }
3437  }
3438
3439  return UseMemory;
3440}
3441
3442/// EnsureStackAlignment - Round stack frame size up from NumBytes to
3443/// ensure minimum alignment required for target.
3444static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
3445                                     unsigned NumBytes) {
3446  unsigned TargetAlign = Lowering->getStackAlignment();
3447  unsigned AlignMask = TargetAlign - 1;
3448  NumBytes = (NumBytes + AlignMask) & ~AlignMask;
3449  return NumBytes;
3450}
3451
3452SDValue PPCTargetLowering::LowerFormalArguments(
3453    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3454    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3455    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3456  if (Subtarget.isAIXABI())
3457    return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
3458                                    InVals);
3459  if (Subtarget.is64BitELFABI())
3460    return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3461                                       InVals);
3462  if (Subtarget.is32BitELFABI())
3463    return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
3464                                       InVals);
3465
3466  return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins, dl, DAG,
3467                                     InVals);
3468}
3469
3470SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
3471    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3472    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3473    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3474
3475  // 32-bit SVR4 ABI Stack Frame Layout:
3476  //              +-----------------------------------+
3477  //        +-->  |            Back chain             |
3478  //        |     +-----------------------------------+
3479  //        |     | Floating-point register save area |
3480  //        |     +-----------------------------------+
3481  //        |     |    General register save area     |
3482  //        |     +-----------------------------------+
3483  //        |     |          CR save word             |
3484  //        |     +-----------------------------------+
3485  //        |     |         VRSAVE save word          |
3486  //        |     +-----------------------------------+
3487  //        |     |         Alignment padding         |
3488  //        |     +-----------------------------------+
3489  //        |     |     Vector register save area     |
3490  //        |     +-----------------------------------+
3491  //        |     |       Local variable space        |
3492  //        |     +-----------------------------------+
3493  //        |     |        Parameter list area        |
3494  //        |     +-----------------------------------+
3495  //        |     |           LR save word            |
3496  //        |     +-----------------------------------+
3497  // SP-->  +---  |            Back chain             |
3498  //              +-----------------------------------+
3499  //
3500  // Specifications:
3501  //   System V Application Binary Interface PowerPC Processor Supplement
3502  //   AltiVec Technology Programming Interface Manual
3503
3504  MachineFunction &MF = DAG.getMachineFunction();
3505  MachineFrameInfo &MFI = MF.getFrameInfo();
3506  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3507
3508  EVT PtrVT = getPointerTy(MF.getDataLayout());
3509  // Potential tail calls could cause overwriting of argument stack slots.
3510  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3511                       (CallConv == CallingConv::Fast));
3512  unsigned PtrByteSize = 4;
3513
3514  // Assign locations to all of the incoming arguments.
3515  SmallVector<CCValAssign, 16> ArgLocs;
3516  PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
3517                 *DAG.getContext());
3518
3519  // Reserve space for the linkage area on the stack.
3520  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3521  CCInfo.AllocateStack(LinkageSize, PtrByteSize);
3522  if (useSoftFloat())
3523    CCInfo.PreAnalyzeFormalArguments(Ins);
3524
3525  CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
3526  CCInfo.clearWasPPCF128();
3527
3528  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
3529    CCValAssign &VA = ArgLocs[i];
3530
3531    // Arguments stored in registers.
3532    if (VA.isRegLoc()) {
3533      const TargetRegisterClass *RC;
3534      EVT ValVT = VA.getValVT();
3535
3536      switch (ValVT.getSimpleVT().SimpleTy) {
3537        default:
3538          llvm_unreachable("ValVT not supported by formal arguments Lowering");
3539        case MVT::i1:
3540        case MVT::i32:
3541          RC = &PPC::GPRCRegClass;
3542          break;
3543        case MVT::f32:
3544          if (Subtarget.hasP8Vector())
3545            RC = &PPC::VSSRCRegClass;
3546          else if (Subtarget.hasSPE())
3547            RC = &PPC::GPRCRegClass;
3548          else
3549            RC = &PPC::F4RCRegClass;
3550          break;
3551        case MVT::f64:
3552          if (Subtarget.hasVSX())
3553            RC = &PPC::VSFRCRegClass;
3554          else if (Subtarget.hasSPE())
3555            // SPE passes doubles in GPR pairs.
3556            RC = &PPC::GPRCRegClass;
3557          else
3558            RC = &PPC::F8RCRegClass;
3559          break;
3560        case MVT::v16i8:
3561        case MVT::v8i16:
3562        case MVT::v4i32:
3563          RC = &PPC::VRRCRegClass;
3564          break;
3565        case MVT::v4f32:
3566          RC = Subtarget.hasQPX() ? &PPC::QSRCRegClass : &PPC::VRRCRegClass;
3567          break;
3568        case MVT::v2f64:
3569        case MVT::v2i64:
3570          RC = &PPC::VRRCRegClass;
3571          break;
3572        case MVT::v4f64:
3573          RC = &PPC::QFRCRegClass;
3574          break;
3575        case MVT::v4i1:
3576          RC = &PPC::QBRCRegClass;
3577          break;
3578      }
3579
3580      SDValue ArgValue;
3581      // Transform the arguments stored in physical registers into
3582      // virtual ones.
3583      if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
3584        assert(i + 1 < e && "No second half of double precision argument");
3585        unsigned RegLo = MF.addLiveIn(VA.getLocReg(), RC);
3586        unsigned RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
3587        SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
3588        SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
3589        if (!Subtarget.isLittleEndian())
3590          std::swap (ArgValueLo, ArgValueHi);
3591        ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
3592                               ArgValueHi);
3593      } else {
3594        unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
3595        ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
3596                                      ValVT == MVT::i1 ? MVT::i32 : ValVT);
3597        if (ValVT == MVT::i1)
3598          ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
3599      }
3600
3601      InVals.push_back(ArgValue);
3602    } else {
3603      // Argument stored in memory.
3604      assert(VA.isMemLoc());
3605
3606      // Get the extended size of the argument type in stack
3607      unsigned ArgSize = VA.getLocVT().getStoreSize();
3608      // Get the actual size of the argument type
3609      unsigned ObjSize = VA.getValVT().getStoreSize();
3610      unsigned ArgOffset = VA.getLocMemOffset();
3611      // Stack objects in PPC32 are right justified.
3612      ArgOffset += ArgSize - ObjSize;
3613      int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
3614
3615      // Create load nodes to retrieve arguments from the stack.
3616      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3617      InVals.push_back(
3618          DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
3619    }
3620  }
3621
3622  // Assign locations to all of the incoming aggregate by value arguments.
3623  // Aggregates passed by value are stored in the local variable space of the
3624  // caller's stack frame, right above the parameter list area.
3625  SmallVector<CCValAssign, 16> ByValArgLocs;
3626  CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3627                      ByValArgLocs, *DAG.getContext());
3628
3629  // Reserve stack space for the allocations in CCInfo.
3630  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3631
3632  CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
3633
3634  // Area that is at least reserved in the caller of this function.
3635  unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
3636  MinReservedArea = std::max(MinReservedArea, LinkageSize);
3637
3638  // Set the size that is at least reserved in caller of this function.  Tail
3639  // call optimized function's reserved stack space needs to be aligned so that
3640  // taking the difference between two stack areas will result in an aligned
3641  // stack.
3642  MinReservedArea =
3643      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
3644  FuncInfo->setMinReservedArea(MinReservedArea);
3645
3646  SmallVector<SDValue, 8> MemOps;
3647
3648  // If the function takes variable number of arguments, make a frame index for
3649  // the start of the first vararg value... for expansion of llvm.va_start.
3650  if (isVarArg) {
3651    static const MCPhysReg GPArgRegs[] = {
3652      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3653      PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3654    };
3655    const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
3656
3657    static const MCPhysReg FPArgRegs[] = {
3658      PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
3659      PPC::F8
3660    };
3661    unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
3662
3663    if (useSoftFloat() || hasSPE())
3664       NumFPArgRegs = 0;
3665
3666    FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
3667    FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
3668
3669    // Make room for NumGPArgRegs and NumFPArgRegs.
3670    int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
3671                NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
3672
3673    FuncInfo->setVarArgsStackOffset(
3674      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
3675                            CCInfo.getNextStackOffset(), true));
3676
3677    FuncInfo->setVarArgsFrameIndex(MFI.CreateStackObject(Depth, 8, false));
3678    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3679
3680    // The fixed integer arguments of a variadic function are stored to the
3681    // VarArgsFrameIndex on the stack so that they may be loaded by
3682    // dereferencing the result of va_next.
3683    for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
3684      // Get an existing live-in vreg, or add a new one.
3685      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
3686      if (!VReg)
3687        VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
3688
3689      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3690      SDValue Store =
3691          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3692      MemOps.push_back(Store);
3693      // Increment the address by four for the next argument to store
3694      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
3695      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3696    }
3697
3698    // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
3699    // is set.
3700    // The double arguments are stored to the VarArgsFrameIndex
3701    // on the stack.
3702    for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
3703      // Get an existing live-in vreg, or add a new one.
3704      unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
3705      if (!VReg)
3706        VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
3707
3708      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
3709      SDValue Store =
3710          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
3711      MemOps.push_back(Store);
3712      // Increment the address by eight for the next argument to store
3713      SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
3714                                         PtrVT);
3715      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
3716    }
3717  }
3718
3719  if (!MemOps.empty())
3720    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
3721
3722  return Chain;
3723}
3724
3725// PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3726// value to MVT::i64 and then truncate to the correct register size.
3727SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
3728                                             EVT ObjectVT, SelectionDAG &DAG,
3729                                             SDValue ArgVal,
3730                                             const SDLoc &dl) const {
3731  if (Flags.isSExt())
3732    ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
3733                         DAG.getValueType(ObjectVT));
3734  else if (Flags.isZExt())
3735    ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
3736                         DAG.getValueType(ObjectVT));
3737
3738  return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
3739}
3740
3741SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
3742    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
3743    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
3744    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
3745  // TODO: add description of PPC stack frame format, or at least some docs.
3746  //
3747  bool isELFv2ABI = Subtarget.isELFv2ABI();
3748  bool isLittleEndian = Subtarget.isLittleEndian();
3749  MachineFunction &MF = DAG.getMachineFunction();
3750  MachineFrameInfo &MFI = MF.getFrameInfo();
3751  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3752
3753  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
3754         "fastcc not supported on varargs functions");
3755
3756  EVT PtrVT = getPointerTy(MF.getDataLayout());
3757  // Potential tail calls could cause overwriting of argument stack slots.
3758  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
3759                       (CallConv == CallingConv::Fast));
3760  unsigned PtrByteSize = 8;
3761  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
3762
3763  static const MCPhysReg GPR[] = {
3764    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3765    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3766  };
3767  static const MCPhysReg VR[] = {
3768    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3769    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3770  };
3771
3772  const unsigned Num_GPR_Regs = array_lengthof(GPR);
3773  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
3774  const unsigned Num_VR_Regs  = array_lengthof(VR);
3775  const unsigned Num_QFPR_Regs = Num_FPR_Regs;
3776
3777  // Do a first pass over the arguments to determine whether the ABI
3778  // guarantees that our caller has allocated the parameter save area
3779  // on its stack frame.  In the ELFv1 ABI, this is always the case;
3780  // in the ELFv2 ABI, it is true if this is a vararg function or if
3781  // any parameter is located in a stack slot.
3782
3783  bool HasParameterArea = !isELFv2ABI || isVarArg;
3784  unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
3785  unsigned NumBytes = LinkageSize;
3786  unsigned AvailableFPRs = Num_FPR_Regs;
3787  unsigned AvailableVRs = Num_VR_Regs;
3788  for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
3789    if (Ins[i].Flags.isNest())
3790      continue;
3791
3792    if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
3793                               PtrByteSize, LinkageSize, ParamAreaSize,
3794                               NumBytes, AvailableFPRs, AvailableVRs,
3795                               Subtarget.hasQPX()))
3796      HasParameterArea = true;
3797  }
3798
3799  // Add DAG nodes to load the arguments or copy them out of registers.  On
3800  // entry to a function on PPC, the arguments start after the linkage area,
3801  // although the first ones are often in registers.
3802
3803  unsigned ArgOffset = LinkageSize;
3804  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3805  unsigned &QFPR_idx = FPR_idx;
3806  SmallVector<SDValue, 8> MemOps;
3807  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
3808  unsigned CurArgIdx = 0;
3809  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
3810    SDValue ArgVal;
3811    bool needsLoad = false;
3812    EVT ObjectVT = Ins[ArgNo].VT;
3813    EVT OrigVT = Ins[ArgNo].ArgVT;
3814    unsigned ObjSize = ObjectVT.getStoreSize();
3815    unsigned ArgSize = ObjSize;
3816    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
3817    if (Ins[ArgNo].isOrigArg()) {
3818      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
3819      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
3820    }
3821    // We re-align the argument offset for each argument, except when using the
3822    // fast calling convention, when we need to make sure we do that only when
3823    // we'll actually use a stack slot.
3824    unsigned CurArgOffset, Align;
3825    auto ComputeArgOffset = [&]() {
3826      /* Respect alignment of argument on the stack.  */
3827      Align = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
3828      ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
3829      CurArgOffset = ArgOffset;
3830    };
3831
3832    if (CallConv != CallingConv::Fast) {
3833      ComputeArgOffset();
3834
3835      /* Compute GPR index associated with argument offset.  */
3836      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
3837      GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
3838    }
3839
3840    // FIXME the codegen can be much improved in some cases.
3841    // We do not have to keep everything in memory.
3842    if (Flags.isByVal()) {
3843      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
3844
3845      if (CallConv == CallingConv::Fast)
3846        ComputeArgOffset();
3847
3848      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
3849      ObjSize = Flags.getByValSize();
3850      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3851      // Empty aggregate parameters do not take up registers.  Examples:
3852      //   struct { } a;
3853      //   union  { } b;
3854      //   int c[0];
3855      // etc.  However, we have to provide a place-holder in InVals, so
3856      // pretend we have an 8-byte item at the current address for that
3857      // purpose.
3858      if (!ObjSize) {
3859        int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
3860        SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3861        InVals.push_back(FIN);
3862        continue;
3863      }
3864
3865      // Create a stack object covering all stack doublewords occupied
3866      // by the argument.  If the argument is (fully or partially) on
3867      // the stack, or if the argument is fully in registers but the
3868      // caller has allocated the parameter save anyway, we can refer
3869      // directly to the caller's stack frame.  Otherwise, create a
3870      // local copy in our own frame.
3871      int FI;
3872      if (HasParameterArea ||
3873          ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
3874        FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
3875      else
3876        FI = MFI.CreateStackObject(ArgSize, Align, false);
3877      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
3878
3879      // Handle aggregates smaller than 8 bytes.
3880      if (ObjSize < PtrByteSize) {
3881        // The value of the object is its address, which differs from the
3882        // address of the enclosing doubleword on big-endian systems.
3883        SDValue Arg = FIN;
3884        if (!isLittleEndian) {
3885          SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
3886          Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
3887        }
3888        InVals.push_back(Arg);
3889
3890        if (GPR_idx != Num_GPR_Regs) {
3891          unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3892          FuncInfo->addLiveInAttr(VReg, Flags);
3893          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3894          SDValue Store;
3895
3896          if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
3897            EVT ObjType = (ObjSize == 1 ? MVT::i8 :
3898                           (ObjSize == 2 ? MVT::i16 : MVT::i32));
3899            Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
3900                                      MachinePointerInfo(&*FuncArg), ObjType);
3901          } else {
3902            // For sizes that don't fit a truncating store (3, 5, 6, 7),
3903            // store the whole register as-is to the parameter save area
3904            // slot.
3905            Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
3906                                 MachinePointerInfo(&*FuncArg));
3907          }
3908
3909          MemOps.push_back(Store);
3910        }
3911        // Whether we copied from a register or not, advance the offset
3912        // into the parameter save area by a full doubleword.
3913        ArgOffset += PtrByteSize;
3914        continue;
3915      }
3916
3917      // The value of the object is its address, which is the address of
3918      // its first stack doubleword.
3919      InVals.push_back(FIN);
3920
3921      // Store whatever pieces of the object are in registers to memory.
3922      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
3923        if (GPR_idx == Num_GPR_Regs)
3924          break;
3925
3926        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
3927        FuncInfo->addLiveInAttr(VReg, Flags);
3928        SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
3929        SDValue Addr = FIN;
3930        if (j) {
3931          SDValue Off = DAG.getConstant(j, dl, PtrVT);
3932          Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
3933        }
3934        SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, Addr,
3935                                     MachinePointerInfo(&*FuncArg, j));
3936        MemOps.push_back(Store);
3937        ++GPR_idx;
3938      }
3939      ArgOffset += ArgSize;
3940      continue;
3941    }
3942
3943    switch (ObjectVT.getSimpleVT().SimpleTy) {
3944    default: llvm_unreachable("Unhandled argument type!");
3945    case MVT::i1:
3946    case MVT::i32:
3947    case MVT::i64:
3948      if (Flags.isNest()) {
3949        // The 'nest' parameter, if any, is passed in R11.
3950        unsigned VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
3951        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3952
3953        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3954          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3955
3956        break;
3957      }
3958
3959      // These can be scalar arguments or elements of an integer array type
3960      // passed directly.  Clang may use those instead of "byval" aggregate
3961      // types to avoid forcing arguments to memory unnecessarily.
3962      if (GPR_idx != Num_GPR_Regs) {
3963        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
3964        FuncInfo->addLiveInAttr(VReg, Flags);
3965        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
3966
3967        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
3968          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
3969          // value to MVT::i64 and then truncate to the correct register size.
3970          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
3971      } else {
3972        if (CallConv == CallingConv::Fast)
3973          ComputeArgOffset();
3974
3975        needsLoad = true;
3976        ArgSize = PtrByteSize;
3977      }
3978      if (CallConv != CallingConv::Fast || needsLoad)
3979        ArgOffset += 8;
3980      break;
3981
3982    case MVT::f32:
3983    case MVT::f64:
3984      // These can be scalar arguments or elements of a float array type
3985      // passed directly.  The latter are used to implement ELFv2 homogenous
3986      // float aggregates.
3987      if (FPR_idx != Num_FPR_Regs) {
3988        unsigned VReg;
3989
3990        if (ObjectVT == MVT::f32)
3991          VReg = MF.addLiveIn(FPR[FPR_idx],
3992                              Subtarget.hasP8Vector()
3993                                  ? &PPC::VSSRCRegClass
3994                                  : &PPC::F4RCRegClass);
3995        else
3996          VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
3997                                                ? &PPC::VSFRCRegClass
3998                                                : &PPC::F8RCRegClass);
3999
4000        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4001        ++FPR_idx;
4002      } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4003        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4004        // once we support fp <-> gpr moves.
4005
4006        // This can only ever happen in the presence of f32 array types,
4007        // since otherwise we never run out of FPRs before running out
4008        // of GPRs.
4009        unsigned VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4010        FuncInfo->addLiveInAttr(VReg, Flags);
4011        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4012
4013        if (ObjectVT == MVT::f32) {
4014          if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4015            ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4016                                 DAG.getConstant(32, dl, MVT::i32));
4017          ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4018        }
4019
4020        ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4021      } else {
4022        if (CallConv == CallingConv::Fast)
4023          ComputeArgOffset();
4024
4025        needsLoad = true;
4026      }
4027
4028      // When passing an array of floats, the array occupies consecutive
4029      // space in the argument area; only round up to the next doubleword
4030      // at the end of the array.  Otherwise, each float takes 8 bytes.
4031      if (CallConv != CallingConv::Fast || needsLoad) {
4032        ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4033        ArgOffset += ArgSize;
4034        if (Flags.isInConsecutiveRegsLast())
4035          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4036      }
4037      break;
4038    case MVT::v4f32:
4039    case MVT::v4i32:
4040    case MVT::v8i16:
4041    case MVT::v16i8:
4042    case MVT::v2f64:
4043    case MVT::v2i64:
4044    case MVT::v1i128:
4045    case MVT::f128:
4046      if (!Subtarget.hasQPX()) {
4047        // These can be scalar arguments or elements of a vector array type
4048        // passed directly.  The latter are used to implement ELFv2 homogenous
4049        // vector aggregates.
4050        if (VR_idx != Num_VR_Regs) {
4051          unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4052          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4053          ++VR_idx;
4054        } else {
4055          if (CallConv == CallingConv::Fast)
4056            ComputeArgOffset();
4057          needsLoad = true;
4058        }
4059        if (CallConv != CallingConv::Fast || needsLoad)
4060          ArgOffset += 16;
4061        break;
4062      } // not QPX
4063
4064      assert(ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 &&
4065             "Invalid QPX parameter type");
4066      LLVM_FALLTHROUGH;
4067
4068    case MVT::v4f64:
4069    case MVT::v4i1:
4070      // QPX vectors are treated like their scalar floating-point subregisters
4071      // (except that they're larger).
4072      unsigned Sz = ObjectVT.getSimpleVT().SimpleTy == MVT::v4f32 ? 16 : 32;
4073      if (QFPR_idx != Num_QFPR_Regs) {
4074        const TargetRegisterClass *RC;
4075        switch (ObjectVT.getSimpleVT().SimpleTy) {
4076        case MVT::v4f64: RC = &PPC::QFRCRegClass; break;
4077        case MVT::v4f32: RC = &PPC::QSRCRegClass; break;
4078        default:         RC = &PPC::QBRCRegClass; break;
4079        }
4080
4081        unsigned VReg = MF.addLiveIn(QFPR[QFPR_idx], RC);
4082        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4083        ++QFPR_idx;
4084      } else {
4085        if (CallConv == CallingConv::Fast)
4086          ComputeArgOffset();
4087        needsLoad = true;
4088      }
4089      if (CallConv != CallingConv::Fast || needsLoad)
4090        ArgOffset += Sz;
4091      break;
4092    }
4093
4094    // We need to load the argument to a virtual register if we determined
4095    // above that we ran out of physical registers of the appropriate type.
4096    if (needsLoad) {
4097      if (ObjSize < ArgSize && !isLittleEndian)
4098        CurArgOffset += ArgSize - ObjSize;
4099      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4100      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4101      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4102    }
4103
4104    InVals.push_back(ArgVal);
4105  }
4106
4107  // Area that is at least reserved in the caller of this function.
4108  unsigned MinReservedArea;
4109  if (HasParameterArea)
4110    MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4111  else
4112    MinReservedArea = LinkageSize;
4113
4114  // Set the size that is at least reserved in caller of this function.  Tail
4115  // call optimized functions' reserved stack space needs to be aligned so that
4116  // taking the difference between two stack areas will result in an aligned
4117  // stack.
4118  MinReservedArea =
4119      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4120  FuncInfo->setMinReservedArea(MinReservedArea);
4121
4122  // If the function takes variable number of arguments, make a frame index for
4123  // the start of the first vararg value... for expansion of llvm.va_start.
4124  if (isVarArg) {
4125    int Depth = ArgOffset;
4126
4127    FuncInfo->setVarArgsFrameIndex(
4128      MFI.CreateFixedObject(PtrByteSize, Depth, true));
4129    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4130
4131    // If this function is vararg, store any remaining integer argument regs
4132    // to their spots on the stack so that they may be loaded by dereferencing
4133    // the result of va_next.
4134    for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4135         GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4136      unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4137      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4138      SDValue Store =
4139          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4140      MemOps.push_back(Store);
4141      // Increment the address by four for the next argument to store
4142      SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4143      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4144    }
4145  }
4146
4147  if (!MemOps.empty())
4148    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4149
4150  return Chain;
4151}
4152
4153SDValue PPCTargetLowering::LowerFormalArguments_Darwin(
4154    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4155    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4156    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4157  // TODO: add description of PPC stack frame format, or at least some docs.
4158  //
4159  MachineFunction &MF = DAG.getMachineFunction();
4160  MachineFrameInfo &MFI = MF.getFrameInfo();
4161  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4162
4163  EVT PtrVT = getPointerTy(MF.getDataLayout());
4164  bool isPPC64 = PtrVT == MVT::i64;
4165  // Potential tail calls could cause overwriting of argument stack slots.
4166  bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4167                       (CallConv == CallingConv::Fast));
4168  unsigned PtrByteSize = isPPC64 ? 8 : 4;
4169  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4170  unsigned ArgOffset = LinkageSize;
4171  // Area that is at least reserved in caller of this function.
4172  unsigned MinReservedArea = ArgOffset;
4173
4174  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
4175    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4176    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4177  };
4178  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
4179    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4180    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4181  };
4182  static const MCPhysReg VR[] = {
4183    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4184    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4185  };
4186
4187  const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
4188  const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4189  const unsigned Num_VR_Regs  = array_lengthof( VR);
4190
4191  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4192
4193  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
4194
4195  // In 32-bit non-varargs functions, the stack space for vectors is after the
4196  // stack space for non-vectors.  We do not use this space unless we have
4197  // too many vectors to fit in registers, something that only occurs in
4198  // constructed examples:), but we have to walk the arglist to figure
4199  // that out...for the pathological case, compute VecArgOffset as the
4200  // start of the vector parameter area.  Computing VecArgOffset is the
4201  // entire point of the following loop.
4202  unsigned VecArgOffset = ArgOffset;
4203  if (!isVarArg && !isPPC64) {
4204    for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
4205         ++ArgNo) {
4206      EVT ObjectVT = Ins[ArgNo].VT;
4207      ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4208
4209      if (Flags.isByVal()) {
4210        // ObjSize is the true size, ArgSize rounded up to multiple of regs.
4211        unsigned ObjSize = Flags.getByValSize();
4212        unsigned ArgSize =
4213                ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4214        VecArgOffset += ArgSize;
4215        continue;
4216      }
4217
4218      switch(ObjectVT.getSimpleVT().SimpleTy) {
4219      default: llvm_unreachable("Unhandled argument type!");
4220      case MVT::i1:
4221      case MVT::i32:
4222      case MVT::f32:
4223        VecArgOffset += 4;
4224        break;
4225      case MVT::i64:  // PPC64
4226      case MVT::f64:
4227        // FIXME: We are guaranteed to be !isPPC64 at this point.
4228        // Does MVT::i64 apply?
4229        VecArgOffset += 8;
4230        break;
4231      case MVT::v4f32:
4232      case MVT::v4i32:
4233      case MVT::v8i16:
4234      case MVT::v16i8:
4235        // Nothing to do, we're only looking at Nonvector args here.
4236        break;
4237      }
4238    }
4239  }
4240  // We've found where the vector parameter area in memory is.  Skip the
4241  // first 12 parameters; these don't use that memory.
4242  VecArgOffset = ((VecArgOffset+15)/16)*16;
4243  VecArgOffset += 12*16;
4244
4245  // Add DAG nodes to load the arguments or copy them out of registers.  On
4246  // entry to a function on PPC, the arguments start after the linkage area,
4247  // although the first ones are often in registers.
4248
4249  SmallVector<SDValue, 8> MemOps;
4250  unsigned nAltivecParamsAtEnd = 0;
4251  Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4252  unsigned CurArgIdx = 0;
4253  for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4254    SDValue ArgVal;
4255    bool needsLoad = false;
4256    EVT ObjectVT = Ins[ArgNo].VT;
4257    unsigned ObjSize = ObjectVT.getSizeInBits()/8;
4258    unsigned ArgSize = ObjSize;
4259    ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4260    if (Ins[ArgNo].isOrigArg()) {
4261      std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4262      CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4263    }
4264    unsigned CurArgOffset = ArgOffset;
4265
4266    // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
4267    if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
4268        ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
4269      if (isVarArg || isPPC64) {
4270        MinReservedArea = ((MinReservedArea+15)/16)*16;
4271        MinReservedArea += CalculateStackSlotSize(ObjectVT,
4272                                                  Flags,
4273                                                  PtrByteSize);
4274      } else  nAltivecParamsAtEnd++;
4275    } else
4276      // Calculate min reserved area.
4277      MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
4278                                                Flags,
4279                                                PtrByteSize);
4280
4281    // FIXME the codegen can be much improved in some cases.
4282    // We do not have to keep everything in memory.
4283    if (Flags.isByVal()) {
4284      assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4285
4286      // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4287      ObjSize = Flags.getByValSize();
4288      ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4289      // Objects of size 1 and 2 are right justified, everything else is
4290      // left justified.  This means the memory address is adjusted forwards.
4291      if (ObjSize==1 || ObjSize==2) {
4292        CurArgOffset = CurArgOffset + (4 - ObjSize);
4293      }
4294      // The value of the object is its address.
4295      int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, false, true);
4296      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4297      InVals.push_back(FIN);
4298      if (ObjSize==1 || ObjSize==2) {
4299        if (GPR_idx != Num_GPR_Regs) {
4300          unsigned VReg;
4301          if (isPPC64)
4302            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4303          else
4304            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4305          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4306          EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
4307          SDValue Store =
4308              DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
4309                                MachinePointerInfo(&*FuncArg), ObjType);
4310          MemOps.push_back(Store);
4311          ++GPR_idx;
4312        }
4313
4314        ArgOffset += PtrByteSize;
4315
4316        continue;
4317      }
4318      for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4319        // Store whatever pieces of the object are in registers
4320        // to memory.  ArgOffset will be the address of the beginning
4321        // of the object.
4322        if (GPR_idx != Num_GPR_Regs) {
4323          unsigned VReg;
4324          if (isPPC64)
4325            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4326          else
4327            VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4328          int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4329          SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4330          SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4331          SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4332                                       MachinePointerInfo(&*FuncArg, j));
4333          MemOps.push_back(Store);
4334          ++GPR_idx;
4335          ArgOffset += PtrByteSize;
4336        } else {
4337          ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
4338          break;
4339        }
4340      }
4341      continue;
4342    }
4343
4344    switch (ObjectVT.getSimpleVT().SimpleTy) {
4345    default: llvm_unreachable("Unhandled argument type!");
4346    case MVT::i1:
4347    case MVT::i32:
4348      if (!isPPC64) {
4349        if (GPR_idx != Num_GPR_Regs) {
4350          unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4351          ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4352
4353          if (ObjectVT == MVT::i1)
4354            ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgVal);
4355
4356          ++GPR_idx;
4357        } else {
4358          needsLoad = true;
4359          ArgSize = PtrByteSize;
4360        }
4361        // All int arguments reserve stack space in the Darwin ABI.
4362        ArgOffset += PtrByteSize;
4363        break;
4364      }
4365      LLVM_FALLTHROUGH;
4366    case MVT::i64:  // PPC64
4367      if (GPR_idx != Num_GPR_Regs) {
4368        unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4369        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4370
4371        if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4372          // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4373          // value to MVT::i64 and then truncate to the correct register size.
4374          ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4375
4376        ++GPR_idx;
4377      } else {
4378        needsLoad = true;
4379        ArgSize = PtrByteSize;
4380      }
4381      // All int arguments reserve stack space in the Darwin ABI.
4382      ArgOffset += 8;
4383      break;
4384
4385    case MVT::f32:
4386    case MVT::f64:
4387      // Every 4 bytes of argument space consumes one of the GPRs available for
4388      // argument passing.
4389      if (GPR_idx != Num_GPR_Regs) {
4390        ++GPR_idx;
4391        if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
4392          ++GPR_idx;
4393      }
4394      if (FPR_idx != Num_FPR_Regs) {
4395        unsigned VReg;
4396
4397        if (ObjectVT == MVT::f32)
4398          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
4399        else
4400          VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
4401
4402        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4403        ++FPR_idx;
4404      } else {
4405        needsLoad = true;
4406      }
4407
4408      // All FP arguments reserve stack space in the Darwin ABI.
4409      ArgOffset += isPPC64 ? 8 : ObjSize;
4410      break;
4411    case MVT::v4f32:
4412    case MVT::v4i32:
4413    case MVT::v8i16:
4414    case MVT::v16i8:
4415      // Note that vector arguments in registers don't reserve stack space,
4416      // except in varargs functions.
4417      if (VR_idx != Num_VR_Regs) {
4418        unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4419        ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4420        if (isVarArg) {
4421          while ((ArgOffset % 16) != 0) {
4422            ArgOffset += PtrByteSize;
4423            if (GPR_idx != Num_GPR_Regs)
4424              GPR_idx++;
4425          }
4426          ArgOffset += 16;
4427          GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
4428        }
4429        ++VR_idx;
4430      } else {
4431        if (!isVarArg && !isPPC64) {
4432          // Vectors go after all the nonvectors.
4433          CurArgOffset = VecArgOffset;
4434          VecArgOffset += 16;
4435        } else {
4436          // Vectors are aligned.
4437          ArgOffset = ((ArgOffset+15)/16)*16;
4438          CurArgOffset = ArgOffset;
4439          ArgOffset += 16;
4440        }
4441        needsLoad = true;
4442      }
4443      break;
4444    }
4445
4446    // We need to load the argument to a virtual register if we determined above
4447    // that we ran out of physical registers of the appropriate type.
4448    if (needsLoad) {
4449      int FI = MFI.CreateFixedObject(ObjSize,
4450                                     CurArgOffset + (ArgSize - ObjSize),
4451                                     isImmutable);
4452      SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4453      ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4454    }
4455
4456    InVals.push_back(ArgVal);
4457  }
4458
4459  // Allow for Altivec parameters at the end, if needed.
4460  if (nAltivecParamsAtEnd) {
4461    MinReservedArea = ((MinReservedArea+15)/16)*16;
4462    MinReservedArea += 16*nAltivecParamsAtEnd;
4463  }
4464
4465  // Area that is at least reserved in the caller of this function.
4466  MinReservedArea = std::max(MinReservedArea, LinkageSize + 8 * PtrByteSize);
4467
4468  // Set the size that is at least reserved in caller of this function.  Tail
4469  // call optimized functions' reserved stack space needs to be aligned so that
4470  // taking the difference between two stack areas will result in an aligned
4471  // stack.
4472  MinReservedArea =
4473      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4474  FuncInfo->setMinReservedArea(MinReservedArea);
4475
4476  // If the function takes variable number of arguments, make a frame index for
4477  // the start of the first vararg value... for expansion of llvm.va_start.
4478  if (isVarArg) {
4479    int Depth = ArgOffset;
4480
4481    FuncInfo->setVarArgsFrameIndex(
4482      MFI.CreateFixedObject(PtrVT.getSizeInBits()/8,
4483                            Depth, true));
4484    SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4485
4486    // If this function is vararg, store any remaining integer argument regs
4487    // to their spots on the stack so that they may be loaded by dereferencing
4488    // the result of va_next.
4489    for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
4490      unsigned VReg;
4491
4492      if (isPPC64)
4493        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4494      else
4495        VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
4496
4497      SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4498      SDValue Store =
4499          DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4500      MemOps.push_back(Store);
4501      // Increment the address by four for the next argument to store
4502      SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4503      FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4504    }
4505  }
4506
4507  if (!MemOps.empty())
4508    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4509
4510  return Chain;
4511}
4512
4513/// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4514/// adjusted to accommodate the arguments for the tailcall.
4515static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4516                                   unsigned ParamSize) {
4517
4518  if (!isTailCall) return 0;
4519
4520  PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4521  unsigned CallerMinReservedArea = FI->getMinReservedArea();
4522  int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4523  // Remember only if the new adjustment is bigger.
4524  if (SPDiff < FI->getTailCallSPDelta())
4525    FI->setTailCallSPDelta(SPDiff);
4526
4527  return SPDiff;
4528}
4529
4530static bool isFunctionGlobalAddress(SDValue Callee);
4531
4532static bool
4533callsShareTOCBase(const Function *Caller, SDValue Callee,
4534                    const TargetMachine &TM) {
4535   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4536   // don't have enough information to determine if the caller and calle share
4537   // the same  TOC base, so we have to pessimistically assume they don't for
4538   // correctness.
4539   GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
4540   if (!G)
4541     return false;
4542
4543   const GlobalValue *GV = G->getGlobal();
4544  // The medium and large code models are expected to provide a sufficiently
4545  // large TOC to provide all data addressing needs of a module with a
4546  // single TOC. Since each module will be addressed with a single TOC then we
4547  // only need to check that caller and callee don't cross dso boundaries.
4548  if (CodeModel::Medium == TM.getCodeModel() ||
4549      CodeModel::Large == TM.getCodeModel())
4550    return TM.shouldAssumeDSOLocal(*Caller->getParent(), GV);
4551
4552  // Otherwise we need to ensure callee and caller are in the same section,
4553  // since the linker may allocate multiple TOCs, and we don't know which
4554  // sections will belong to the same TOC base.
4555
4556  if (!GV->isStrongDefinitionForLinker())
4557    return false;
4558
4559  // Any explicitly-specified sections and section prefixes must also match.
4560  // Also, if we're using -ffunction-sections, then each function is always in
4561  // a different section (the same is true for COMDAT functions).
4562  if (TM.getFunctionSections() || GV->hasComdat() || Caller->hasComdat() ||
4563      GV->getSection() != Caller->getSection())
4564    return false;
4565  if (const auto *F = dyn_cast<Function>(GV)) {
4566    if (F->getSectionPrefix() != Caller->getSectionPrefix())
4567      return false;
4568  }
4569
4570  // If the callee might be interposed, then we can't assume the ultimate call
4571  // target will be in the same section. Even in cases where we can assume that
4572  // interposition won't happen, in any case where the linker might insert a
4573  // stub to allow for interposition, we must generate code as though
4574  // interposition might occur. To understand why this matters, consider a
4575  // situation where: a -> b -> c where the arrows indicate calls. b and c are
4576  // in the same section, but a is in a different module (i.e. has a different
4577  // TOC base pointer). If the linker allows for interposition between b and c,
4578  // then it will generate a stub for the call edge between b and c which will
4579  // save the TOC pointer into the designated stack slot allocated by b. If we
4580  // return true here, and therefore allow a tail call between b and c, that
4581  // stack slot won't exist and the b -> c stub will end up saving b'c TOC base
4582  // pointer into the stack slot allocated by a (where the a -> b stub saved
4583  // a's TOC base pointer). If we're not considering a tail call, but rather,
4584  // whether a nop is needed after the call instruction in b, because the linker
4585  // will insert a stub, it might complain about a missing nop if we omit it
4586  // (although many don't complain in this case).
4587  if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), GV))
4588    return false;
4589
4590  return true;
4591}
4592
4593static bool
4594needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4595                            const SmallVectorImpl<ISD::OutputArg> &Outs) {
4596  assert(Subtarget.is64BitELFABI());
4597
4598  const unsigned PtrByteSize = 8;
4599  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4600
4601  static const MCPhysReg GPR[] = {
4602    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4603    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4604  };
4605  static const MCPhysReg VR[] = {
4606    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4607    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4608  };
4609
4610  const unsigned NumGPRs = array_lengthof(GPR);
4611  const unsigned NumFPRs = 13;
4612  const unsigned NumVRs = array_lengthof(VR);
4613  const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4614
4615  unsigned NumBytes = LinkageSize;
4616  unsigned AvailableFPRs = NumFPRs;
4617  unsigned AvailableVRs = NumVRs;
4618
4619  for (const ISD::OutputArg& Param : Outs) {
4620    if (Param.Flags.isNest()) continue;
4621
4622    if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags,
4623                               PtrByteSize, LinkageSize, ParamAreaSize,
4624                               NumBytes, AvailableFPRs, AvailableVRs,
4625                               Subtarget.hasQPX()))
4626      return true;
4627  }
4628  return false;
4629}
4630
4631static bool
4632hasSameArgumentList(const Function *CallerFn, ImmutableCallSite CS) {
4633  if (CS.arg_size() != CallerFn->arg_size())
4634    return false;
4635
4636  ImmutableCallSite::arg_iterator CalleeArgIter = CS.arg_begin();
4637  ImmutableCallSite::arg_iterator CalleeArgEnd = CS.arg_end();
4638  Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4639
4640  for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4641    const Value* CalleeArg = *CalleeArgIter;
4642    const Value* CallerArg = &(*CallerArgIter);
4643    if (CalleeArg == CallerArg)
4644      continue;
4645
4646    // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4647    //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4648    //      }
4649    // 1st argument of callee is undef and has the same type as caller.
4650    if (CalleeArg->getType() == CallerArg->getType() &&
4651        isa<UndefValue>(CalleeArg))
4652      continue;
4653
4654    return false;
4655  }
4656
4657  return true;
4658}
4659
4660// Returns true if TCO is possible between the callers and callees
4661// calling conventions.
4662static bool
4663areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4664                                    CallingConv::ID CalleeCC) {
4665  // Tail calls are possible with fastcc and ccc.
4666  auto isTailCallableCC  = [] (CallingConv::ID CC){
4667      return  CC == CallingConv::C || CC == CallingConv::Fast;
4668  };
4669  if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4670    return false;
4671
4672  // We can safely tail call both fastcc and ccc callees from a c calling
4673  // convention caller. If the caller is fastcc, we may have less stack space
4674  // than a non-fastcc caller with the same signature so disable tail-calls in
4675  // that case.
4676  return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4677}
4678
4679bool
4680PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4681                                    SDValue Callee,
4682                                    CallingConv::ID CalleeCC,
4683                                    ImmutableCallSite CS,
4684                                    bool isVarArg,
4685                                    const SmallVectorImpl<ISD::OutputArg> &Outs,
4686                                    const SmallVectorImpl<ISD::InputArg> &Ins,
4687                                    SelectionDAG& DAG) const {
4688  bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4689
4690  if (DisableSCO && !TailCallOpt) return false;
4691
4692  // Variadic argument functions are not supported.
4693  if (isVarArg) return false;
4694
4695  auto &Caller = DAG.getMachineFunction().getFunction();
4696  // Check that the calling conventions are compatible for tco.
4697  if (!areCallingConvEligibleForTCO_64SVR4(Caller.getCallingConv(), CalleeCC))
4698    return false;
4699
4700  // Caller contains any byval parameter is not supported.
4701  if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4702    return false;
4703
4704  // Callee contains any byval parameter is not supported, too.
4705  // Note: This is a quick work around, because in some cases, e.g.
4706  // caller's stack size > callee's stack size, we are still able to apply
4707  // sibling call optimization. For example, gcc is able to do SCO for caller1
4708  // in the following example, but not for caller2.
4709  //   struct test {
4710  //     long int a;
4711  //     char ary[56];
4712  //   } gTest;
4713  //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4714  //     b->a = v.a;
4715  //     return 0;
4716  //   }
4717  //   void caller1(struct test a, struct test c, struct test *b) {
4718  //     callee(gTest, b); }
4719  //   void caller2(struct test *b) { callee(gTest, b); }
4720  if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4721    return false;
4722
4723  // If callee and caller use different calling conventions, we cannot pass
4724  // parameters on stack since offsets for the parameter area may be different.
4725  if (Caller.getCallingConv() != CalleeCC &&
4726      needStackSlotPassParameters(Subtarget, Outs))
4727    return false;
4728
4729  // No TCO/SCO on indirect call because Caller have to restore its TOC
4730  if (!isFunctionGlobalAddress(Callee) &&
4731      !isa<ExternalSymbolSDNode>(Callee))
4732    return false;
4733
4734  // If the caller and callee potentially have different TOC bases then we
4735  // cannot tail call since we need to restore the TOC pointer after the call.
4736  // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4737  if (!callsShareTOCBase(&Caller, Callee, getTargetMachine()))
4738    return false;
4739
4740  // TCO allows altering callee ABI, so we don't have to check further.
4741  if (CalleeCC == CallingConv::Fast && TailCallOpt)
4742    return true;
4743
4744  if (DisableSCO) return false;
4745
4746  // If callee use the same argument list that caller is using, then we can
4747  // apply SCO on this case. If it is not, then we need to check if callee needs
4748  // stack for passing arguments.
4749  if (!hasSameArgumentList(&Caller, CS) &&
4750      needStackSlotPassParameters(Subtarget, Outs)) {
4751    return false;
4752  }
4753
4754  return true;
4755}
4756
4757/// IsEligibleForTailCallOptimization - Check whether the call is eligible
4758/// for tail call optimization. Targets which want to do tail call
4759/// optimization should implement this function.
4760bool
4761PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
4762                                                     CallingConv::ID CalleeCC,
4763                                                     bool isVarArg,
4764                                      const SmallVectorImpl<ISD::InputArg> &Ins,
4765                                                     SelectionDAG& DAG) const {
4766  if (!getTargetMachine().Options.GuaranteedTailCallOpt)
4767    return false;
4768
4769  // Variable argument functions are not supported.
4770  if (isVarArg)
4771    return false;
4772
4773  MachineFunction &MF = DAG.getMachineFunction();
4774  CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
4775  if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
4776    // Functions containing by val parameters are not supported.
4777    for (unsigned i = 0; i != Ins.size(); i++) {
4778       ISD::ArgFlagsTy Flags = Ins[i].Flags;
4779       if (Flags.isByVal()) return false;
4780    }
4781
4782    // Non-PIC/GOT tail calls are supported.
4783    if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
4784      return true;
4785
4786    // At the moment we can only do local tail calls (in same module, hidden
4787    // or protected) if we are generating PIC.
4788    if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
4789      return G->getGlobal()->hasHiddenVisibility()
4790          || G->getGlobal()->hasProtectedVisibility();
4791  }
4792
4793  return false;
4794}
4795
4796/// isCallCompatibleAddress - Return the immediate to use if the specified
4797/// 32-bit value is representable in the immediate field of a BxA instruction.
4798static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
4799  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
4800  if (!C) return nullptr;
4801
4802  int Addr = C->getZExtValue();
4803  if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
4804      SignExtend32<26>(Addr) != Addr)
4805    return nullptr;  // Top 6 bits have to be sext of immediate.
4806
4807  return DAG
4808      .getConstant(
4809          (int)C->getZExtValue() >> 2, SDLoc(Op),
4810          DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
4811      .getNode();
4812}
4813
4814namespace {
4815
4816struct TailCallArgumentInfo {
4817  SDValue Arg;
4818  SDValue FrameIdxOp;
4819  int FrameIdx = 0;
4820
4821  TailCallArgumentInfo() = default;
4822};
4823
4824} // end anonymous namespace
4825
4826/// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
4827static void StoreTailCallArgumentsToStackSlot(
4828    SelectionDAG &DAG, SDValue Chain,
4829    const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
4830    SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
4831  for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
4832    SDValue Arg = TailCallArgs[i].Arg;
4833    SDValue FIN = TailCallArgs[i].FrameIdxOp;
4834    int FI = TailCallArgs[i].FrameIdx;
4835    // Store relative to framepointer.
4836    MemOpChains.push_back(DAG.getStore(
4837        Chain, dl, Arg, FIN,
4838        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
4839  }
4840}
4841
4842/// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
4843/// the appropriate stack slot for the tail call optimized function call.
4844static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
4845                                             SDValue OldRetAddr, SDValue OldFP,
4846                                             int SPDiff, const SDLoc &dl) {
4847  if (SPDiff) {
4848    // Calculate the new stack slot for the return address.
4849    MachineFunction &MF = DAG.getMachineFunction();
4850    const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
4851    const PPCFrameLowering *FL = Subtarget.getFrameLowering();
4852    bool isPPC64 = Subtarget.isPPC64();
4853    int SlotSize = isPPC64 ? 8 : 4;
4854    int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
4855    int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
4856                                                         NewRetAddrLoc, true);
4857    EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4858    SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
4859    Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
4860                         MachinePointerInfo::getFixedStack(MF, NewRetAddr));
4861
4862    // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
4863    // slot as the FP is never overwritten.
4864    if (Subtarget.isDarwinABI()) {
4865      int NewFPLoc = SPDiff + FL->getFramePointerSaveOffset();
4866      int NewFPIdx = MF.getFrameInfo().CreateFixedObject(SlotSize, NewFPLoc,
4867                                                         true);
4868      SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
4869      Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
4870                           MachinePointerInfo::getFixedStack(
4871                               DAG.getMachineFunction(), NewFPIdx));
4872    }
4873  }
4874  return Chain;
4875}
4876
4877/// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
4878/// the position of the argument.
4879static void
4880CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
4881                         SDValue Arg, int SPDiff, unsigned ArgOffset,
4882                     SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
4883  int Offset = ArgOffset + SPDiff;
4884  uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
4885  int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
4886  EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
4887  SDValue FIN = DAG.getFrameIndex(FI, VT);
4888  TailCallArgumentInfo Info;
4889  Info.Arg = Arg;
4890  Info.FrameIdxOp = FIN;
4891  Info.FrameIdx = FI;
4892  TailCallArguments.push_back(Info);
4893}
4894
4895/// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
4896/// stack slot. Returns the chain as result and the loaded frame pointers in
4897/// LROpOut/FPOpout. Used when tail calling.
4898SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
4899    SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
4900    SDValue &FPOpOut, const SDLoc &dl) const {
4901  if (SPDiff) {
4902    // Load the LR and FP stack slot for later adjusting.
4903    EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
4904    LROpOut = getReturnAddrFrameIndex(DAG);
4905    LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
4906    Chain = SDValue(LROpOut.getNode(), 1);
4907
4908    // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
4909    // slot as the FP is never overwritten.
4910    if (Subtarget.isDarwinABI()) {
4911      FPOpOut = getFramePointerFrameIndex(DAG);
4912      FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo());
4913      Chain = SDValue(FPOpOut.getNode(), 1);
4914    }
4915  }
4916  return Chain;
4917}
4918
4919/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
4920/// by "Src" to address "Dst" of size "Size".  Alignment information is
4921/// specified by the specific parameter attribute. The copy will be passed as
4922/// a byval function parameter.
4923/// Sometimes what we are copying is the end of a larger object, the part that
4924/// does not fit in registers.
4925static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
4926                                         SDValue Chain, ISD::ArgFlagsTy Flags,
4927                                         SelectionDAG &DAG, const SDLoc &dl) {
4928  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
4929  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
4930                       false, false, false, MachinePointerInfo(),
4931                       MachinePointerInfo());
4932}
4933
4934/// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
4935/// tail calls.
4936static void LowerMemOpCallTo(
4937    SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
4938    SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
4939    bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
4940    SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
4941  EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4942  if (!isTailCall) {
4943    if (isVector) {
4944      SDValue StackPtr;
4945      if (isPPC64)
4946        StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4947      else
4948        StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4949      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4950                           DAG.getConstant(ArgOffset, dl, PtrVT));
4951    }
4952    MemOpChains.push_back(
4953        DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
4954    // Calculate and remember argument location.
4955  } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
4956                                  TailCallArguments);
4957}
4958
4959static void
4960PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
4961                const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
4962                SDValue FPOp,
4963                SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
4964  // Emit a sequence of copyto/copyfrom virtual registers for arguments that
4965  // might overwrite each other in case of tail call optimization.
4966  SmallVector<SDValue, 8> MemOpChains2;
4967  // Do not flag preceding copytoreg stuff together with the following stuff.
4968  InFlag = SDValue();
4969  StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
4970                                    MemOpChains2, dl);
4971  if (!MemOpChains2.empty())
4972    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
4973
4974  // Store the return address to the appropriate stack slot.
4975  Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
4976
4977  // Emit callseq_end just before tailcall node.
4978  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
4979                             DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
4980  InFlag = Chain.getValue(1);
4981}
4982
4983// Is this global address that of a function that can be called by name? (as
4984// opposed to something that must hold a descriptor for an indirect call).
4985static bool isFunctionGlobalAddress(SDValue Callee) {
4986  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
4987    if (Callee.getOpcode() == ISD::GlobalTLSAddress ||
4988        Callee.getOpcode() == ISD::TargetGlobalTLSAddress)
4989      return false;
4990
4991    return G->getGlobal()->getValueType()->isFunctionTy();
4992  }
4993
4994  return false;
4995}
4996
4997SDValue PPCTargetLowering::LowerCallResult(
4998    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
4999    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5000    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5001  SmallVector<CCValAssign, 16> RVLocs;
5002  CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5003                    *DAG.getContext());
5004
5005  CCRetInfo.AnalyzeCallResult(
5006      Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5007               ? RetCC_PPC_Cold
5008               : RetCC_PPC);
5009
5010  // Copy all of the result registers out of their specified physreg.
5011  for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5012    CCValAssign &VA = RVLocs[i];
5013    assert(VA.isRegLoc() && "Can only return in registers!");
5014
5015    SDValue Val;
5016
5017    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5018      SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5019                                      InFlag);
5020      Chain = Lo.getValue(1);
5021      InFlag = Lo.getValue(2);
5022      VA = RVLocs[++i]; // skip ahead to next loc
5023      SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5024                                      InFlag);
5025      Chain = Hi.getValue(1);
5026      InFlag = Hi.getValue(2);
5027      if (!Subtarget.isLittleEndian())
5028        std::swap (Lo, Hi);
5029      Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5030    } else {
5031      Val = DAG.getCopyFromReg(Chain, dl,
5032                               VA.getLocReg(), VA.getLocVT(), InFlag);
5033      Chain = Val.getValue(1);
5034      InFlag = Val.getValue(2);
5035    }
5036
5037    switch (VA.getLocInfo()) {
5038    default: llvm_unreachable("Unknown loc info!");
5039    case CCValAssign::Full: break;
5040    case CCValAssign::AExt:
5041      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5042      break;
5043    case CCValAssign::ZExt:
5044      Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5045                        DAG.getValueType(VA.getValVT()));
5046      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5047      break;
5048    case CCValAssign::SExt:
5049      Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5050                        DAG.getValueType(VA.getValVT()));
5051      Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5052      break;
5053    }
5054
5055    InVals.push_back(Val);
5056  }
5057
5058  return Chain;
5059}
5060
5061static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5062                           const PPCSubtarget &Subtarget, bool isPatchPoint) {
5063  // PatchPoint calls are not indirect.
5064  if (isPatchPoint)
5065    return false;
5066
5067  if (isFunctionGlobalAddress(Callee) || dyn_cast<ExternalSymbolSDNode>(Callee))
5068    return false;
5069
5070  // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5071  // becuase the immediate function pointer points to a descriptor instead of
5072  // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5073  // pointer immediate points to the global entry point, while the BLA would
5074  // need to jump to the local entry point (see rL211174).
5075  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5076      isBLACompatibleAddress(Callee, DAG))
5077    return false;
5078
5079  return true;
5080}
5081
5082static unsigned getCallOpcode(bool isIndirectCall, bool isPatchPoint,
5083                              bool isTailCall, const Function &Caller,
5084                              const SDValue &Callee,
5085                              const PPCSubtarget &Subtarget,
5086                              const TargetMachine &TM) {
5087  if (isTailCall)
5088    return PPCISD::TC_RETURN;
5089
5090  // This is a call through a function pointer.
5091  if (isIndirectCall) {
5092    // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5093    // indirect calls. The save of the caller's TOC pointer to the stack will be
5094    // inserted into the DAG as part of call lowering. The restore of the TOC
5095    // pointer is modeled by using a pseudo instruction for the call opcode that
5096    // represents the 2 instruction sequence of an indirect branch and link,
5097    // immediately followed by a load of the TOC pointer from the the stack save
5098    // slot into gpr2.
5099    if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5100      return PPCISD::BCTRL_LOAD_TOC;
5101
5102    // An indirect call that does not need a TOC restore.
5103    return PPCISD::BCTRL;
5104  }
5105
5106  // The ABIs that maintain a TOC pointer accross calls need to have a nop
5107  // immediately following the call instruction if the caller and callee may
5108  // have different TOC bases. At link time if the linker determines the calls
5109  // may not share a TOC base, the call is redirected to a trampoline inserted
5110  // by the linker. The trampoline will (among other things) save the callers
5111  // TOC pointer at an ABI designated offset in the linkage area and the linker
5112  // will rewrite the nop to be a load of the TOC pointer from the linkage area
5113  // into gpr2.
5114  if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI())
5115    return callsShareTOCBase(&Caller, Callee, TM) ? PPCISD::CALL
5116                                                  : PPCISD::CALL_NOP;
5117
5118  return PPCISD::CALL;
5119}
5120
5121static bool isValidAIXExternalSymSDNode(StringRef SymName) {
5122  return StringSwitch<bool>(SymName)
5123      .Cases("__divdi3", "__fixunsdfdi", "__floatundidf", "__floatundisf",
5124             "__moddi3", "__udivdi3", "__umoddi3", true)
5125      .Cases("ceil", "floor", "memcpy", "memmove", "memset", "round", true)
5126      .Default(false);
5127}
5128
5129static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5130                               const SDLoc &dl, const PPCSubtarget &Subtarget) {
5131  if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5132    if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5133      return SDValue(Dest, 0);
5134
5135  // Returns true if the callee is local, and false otherwise.
5136  auto isLocalCallee = [&]() {
5137    const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5138    const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5139    const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5140
5141    return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5142           !dyn_cast_or_null<GlobalIFunc>(GV);
5143  };
5144
5145  // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5146  // a static relocation model causes some versions of GNU LD (2.17.50, at
5147  // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5148  // built with secure-PLT.
5149  bool UsePlt =
5150      Subtarget.is32BitELFABI() && !isLocalCallee() &&
5151      Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5152
5153  // On AIX, direct function calls reference the symbol for the function's
5154  // entry point, which is named by prepending a "." before the function's
5155  // C-linkage name.
5156  const auto getAIXFuncEntryPointSymbolSDNode =
5157      [&](StringRef FuncName, bool IsDeclaration,
5158          const XCOFF::StorageClass &SC) {
5159        auto &Context = DAG.getMachineFunction().getMMI().getContext();
5160
5161        MCSymbolXCOFF *S = cast<MCSymbolXCOFF>(
5162            Context.getOrCreateSymbol(Twine(".") + Twine(FuncName)));
5163
5164        if (IsDeclaration && !S->hasContainingCsect()) {
5165          // On AIX, an undefined symbol needs to be associated with a
5166          // MCSectionXCOFF to get the correct storage mapping class.
5167          // In this case, XCOFF::XMC_PR.
5168          MCSectionXCOFF *Sec = Context.getXCOFFSection(
5169              S->getName(), XCOFF::XMC_PR, XCOFF::XTY_ER, SC,
5170              SectionKind::getMetadata());
5171          S->setContainingCsect(Sec);
5172        }
5173
5174        MVT PtrVT =
5175            DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5176        return DAG.getMCSymbol(S, PtrVT);
5177      };
5178
5179  if (isFunctionGlobalAddress(Callee)) {
5180    const GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Callee);
5181    const GlobalValue *GV = G->getGlobal();
5182
5183    if (!Subtarget.isAIXABI())
5184      return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5185                                        UsePlt ? PPCII::MO_PLT : 0);
5186
5187    assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5188    const GlobalObject *GO = cast<GlobalObject>(GV);
5189    const XCOFF::StorageClass SC =
5190        TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(GO);
5191    return getAIXFuncEntryPointSymbolSDNode(GO->getName(), GO->isDeclaration(),
5192                                            SC);
5193  }
5194
5195  if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5196    const char *SymName = S->getSymbol();
5197    if (!Subtarget.isAIXABI())
5198      return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5199                                         UsePlt ? PPCII::MO_PLT : 0);
5200
5201    // If there exists a user-declared function whose name is the same as the
5202    // ExternalSymbol's, then we pick up the user-declared version.
5203    const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5204    if (const Function *F =
5205            dyn_cast_or_null<Function>(Mod->getNamedValue(SymName))) {
5206      const XCOFF::StorageClass SC =
5207          TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(F);
5208      return getAIXFuncEntryPointSymbolSDNode(F->getName(), F->isDeclaration(),
5209                                              SC);
5210    }
5211
5212    // TODO: Remove this when the support for ExternalSymbolSDNode is complete.
5213    if (isValidAIXExternalSymSDNode(SymName)) {
5214      return getAIXFuncEntryPointSymbolSDNode(SymName, true, XCOFF::C_EXT);
5215    }
5216
5217    report_fatal_error("Unexpected ExternalSymbolSDNode: " + Twine(SymName));
5218  }
5219
5220  // No transformation needed.
5221  assert(Callee.getNode() && "What no callee?");
5222  return Callee;
5223}
5224
5225static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5226  assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5227         "Expected a CALLSEQ_STARTSDNode.");
5228
5229  // The last operand is the chain, except when the node has glue. If the node
5230  // has glue, then the last operand is the glue, and the chain is the second
5231  // last operand.
5232  SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5233  if (LastValue.getValueType() != MVT::Glue)
5234    return LastValue;
5235
5236  return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5237}
5238
5239// Creates the node that moves a functions address into the count register
5240// to prepare for an indirect call instruction.
5241static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5242                                SDValue &Glue, SDValue &Chain,
5243                                const SDLoc &dl) {
5244  SDValue MTCTROps[] = {Chain, Callee, Glue};
5245  EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5246  Chain = DAG.getNode(PPCISD::MTCTR, dl, makeArrayRef(ReturnTypes, 2),
5247                      makeArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5248  // The glue is the second value produced.
5249  Glue = Chain.getValue(1);
5250}
5251
5252static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5253                                          SDValue &Glue, SDValue &Chain,
5254                                          SDValue CallSeqStart,
5255                                          ImmutableCallSite CS, const SDLoc &dl,
5256                                          bool hasNest,
5257                                          const PPCSubtarget &Subtarget) {
5258  // Function pointers in the 64-bit SVR4 ABI do not point to the function
5259  // entry point, but to the function descriptor (the function entry point
5260  // address is part of the function descriptor though).
5261  // The function descriptor is a three doubleword structure with the
5262  // following fields: function entry point, TOC base address and
5263  // environment pointer.
5264  // Thus for a call through a function pointer, the following actions need
5265  // to be performed:
5266  //   1. Save the TOC of the caller in the TOC save area of its stack
5267  //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5268  //   2. Load the address of the function entry point from the function
5269  //      descriptor.
5270  //   3. Load the TOC of the callee from the function descriptor into r2.
5271  //   4. Load the environment pointer from the function descriptor into
5272  //      r11.
5273  //   5. Branch to the function entry point address.
5274  //   6. On return of the callee, the TOC of the caller needs to be
5275  //      restored (this is done in FinishCall()).
5276  //
5277  // The loads are scheduled at the beginning of the call sequence, and the
5278  // register copies are flagged together to ensure that no other
5279  // operations can be scheduled in between. E.g. without flagging the
5280  // copies together, a TOC access in the caller could be scheduled between
5281  // the assignment of the callee TOC and the branch to the callee, which leads
5282  // to incorrect code.
5283
5284  // Start by loading the function address from the descriptor.
5285  SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5286  auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5287                      ? (MachineMemOperand::MODereferenceable |
5288                         MachineMemOperand::MOInvariant)
5289                      : MachineMemOperand::MONone;
5290
5291  MachinePointerInfo MPI(CS ? CS.getCalledValue() : nullptr);
5292
5293  // Registers used in building the DAG.
5294  const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5295  const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5296
5297  // Offsets of descriptor members.
5298  const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5299  const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5300
5301  const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5302  const unsigned Alignment = Subtarget.isPPC64() ? 8 : 4;
5303
5304  // One load for the functions entry point address.
5305  SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5306                                    Alignment, MMOFlags);
5307
5308  // One for loading the TOC anchor for the module that contains the called
5309  // function.
5310  SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5311  SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5312  SDValue TOCPtr =
5313      DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5314                  MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5315
5316  // One for loading the environment pointer.
5317  SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5318  SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5319  SDValue LoadEnvPtr =
5320      DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5321                  MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5322
5323
5324  // Then copy the newly loaded TOC anchor to the TOC pointer.
5325  SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5326  Chain = TOCVal.getValue(0);
5327  Glue = TOCVal.getValue(1);
5328
5329  // If the function call has an explicit 'nest' parameter, it takes the
5330  // place of the environment pointer.
5331  assert((!hasNest || !Subtarget.isAIXABI()) &&
5332         "Nest parameter is not supported on AIX.");
5333  if (!hasNest) {
5334    SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5335    Chain = EnvVal.getValue(0);
5336    Glue = EnvVal.getValue(1);
5337  }
5338
5339  // The rest of the indirect call sequence is the same as the non-descriptor
5340  // DAG.
5341  prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5342}
5343
5344static void
5345buildCallOperands(SmallVectorImpl<SDValue> &Ops, CallingConv::ID CallConv,
5346                  const SDLoc &dl, bool isTailCall, bool isVarArg,
5347                  bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5348                  SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5349                  SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5350                  const PPCSubtarget &Subtarget, bool isIndirect) {
5351  const bool IsPPC64 = Subtarget.isPPC64();
5352  // MVT for a general purpose register.
5353  const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5354
5355  // First operand is always the chain.
5356  Ops.push_back(Chain);
5357
5358  // If it's a direct call pass the callee as the second operand.
5359  if (!isIndirect)
5360    Ops.push_back(Callee);
5361  else {
5362    assert(!isPatchPoint && "Patch point call are not indirect.");
5363
5364    // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5365    // on the stack (this would have been done in `LowerCall_64SVR4` or
5366    // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5367    // represents both the indirect branch and a load that restores the TOC
5368    // pointer from the linkage area. The operand for the TOC restore is an add
5369    // of the TOC save offset to the stack pointer. This must be the second
5370    // operand: after the chain input but before any other variadic arguments.
5371    if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
5372      const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5373
5374      SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5375      unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5376      SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5377      SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5378      Ops.push_back(AddTOC);
5379    }
5380
5381    // Add the register used for the environment pointer.
5382    if (Subtarget.usesFunctionDescriptors() && !hasNest)
5383      Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5384                                    RegVT));
5385
5386
5387    // Add CTR register as callee so a bctr can be emitted later.
5388    if (isTailCall)
5389      Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5390  }
5391
5392  // If this is a tail call add stack pointer delta.
5393  if (isTailCall)
5394    Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5395
5396  // Add argument registers to the end of the list so that they are known live
5397  // into the call.
5398  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5399    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5400                                  RegsToPass[i].second.getValueType()));
5401
5402  // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5403  // no way to mark dependencies as implicit here.
5404  // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5405  if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !isPatchPoint)
5406    Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5407
5408  // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5409  if (isVarArg && Subtarget.is32BitELFABI())
5410    Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5411
5412  // Add a register mask operand representing the call-preserved registers.
5413  const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5414  const uint32_t *Mask =
5415      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
5416  assert(Mask && "Missing call preserved mask for calling convention");
5417  Ops.push_back(DAG.getRegisterMask(Mask));
5418
5419  // If the glue is valid, it is the last operand.
5420  if (Glue.getNode())
5421    Ops.push_back(Glue);
5422}
5423
5424SDValue PPCTargetLowering::FinishCall(
5425    CallingConv::ID CallConv, const SDLoc &dl, bool isTailCall, bool isVarArg,
5426    bool isPatchPoint, bool hasNest, SelectionDAG &DAG,
5427    SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5428    SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5429    unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5430    SmallVectorImpl<SDValue> &InVals, ImmutableCallSite CS) const {
5431
5432  if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI())
5433    setUsesTOCBasePtr(DAG);
5434
5435  const bool isIndirect = isIndirectCall(Callee, DAG, Subtarget, isPatchPoint);
5436  unsigned CallOpc = getCallOpcode(isIndirect, isPatchPoint, isTailCall,
5437                                   DAG.getMachineFunction().getFunction(),
5438                                   Callee, Subtarget, DAG.getTarget());
5439
5440  if (!isIndirect)
5441    Callee = transformCallee(Callee, DAG, dl, Subtarget);
5442  else if (Subtarget.usesFunctionDescriptors())
5443    prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CS,
5444                                  dl, hasNest, Subtarget);
5445  else
5446    prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5447
5448  // Build the operand list for the call instruction.
5449  SmallVector<SDValue, 8> Ops;
5450  buildCallOperands(Ops, CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5451                    hasNest, DAG, RegsToPass, Glue, Chain, Callee, SPDiff,
5452                    Subtarget, isIndirect);
5453
5454  // Emit tail call.
5455  if (isTailCall) {
5456    assert(((Callee.getOpcode() == ISD::Register &&
5457             cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5458            Callee.getOpcode() == ISD::TargetExternalSymbol ||
5459            Callee.getOpcode() == ISD::TargetGlobalAddress ||
5460            isa<ConstantSDNode>(Callee)) &&
5461           "Expecting a global address, external symbol, absolute value or "
5462           "register");
5463    assert(CallOpc == PPCISD::TC_RETURN &&
5464           "Unexpected call opcode for a tail call.");
5465    DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5466    return DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5467  }
5468
5469  std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5470  Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5471  Glue = Chain.getValue(1);
5472
5473  // When performing tail call optimization the callee pops its arguments off
5474  // the stack. Account for this here so these bytes can be pushed back on in
5475  // PPCFrameLowering::eliminateCallFramePseudoInstr.
5476  int BytesCalleePops = (CallConv == CallingConv::Fast &&
5477                         getTargetMachine().Options.GuaranteedTailCallOpt)
5478                            ? NumBytes
5479                            : 0;
5480
5481  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
5482                             DAG.getIntPtrConstant(BytesCalleePops, dl, true),
5483                             Glue, dl);
5484  Glue = Chain.getValue(1);
5485
5486  return LowerCallResult(Chain, Glue, CallConv, isVarArg, Ins, dl, DAG, InVals);
5487}
5488
5489SDValue
5490PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5491                             SmallVectorImpl<SDValue> &InVals) const {
5492  SelectionDAG &DAG                     = CLI.DAG;
5493  SDLoc &dl                             = CLI.DL;
5494  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5495  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5496  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5497  SDValue Chain                         = CLI.Chain;
5498  SDValue Callee                        = CLI.Callee;
5499  bool &isTailCall                      = CLI.IsTailCall;
5500  CallingConv::ID CallConv              = CLI.CallConv;
5501  bool isVarArg                         = CLI.IsVarArg;
5502  bool isPatchPoint                     = CLI.IsPatchPoint;
5503  ImmutableCallSite CS                  = CLI.CS;
5504
5505  if (isTailCall) {
5506    if (Subtarget.useLongCalls() && !(CS && CS.isMustTailCall()))
5507      isTailCall = false;
5508    else if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5509      isTailCall =
5510        IsEligibleForTailCallOptimization_64SVR4(Callee, CallConv, CS,
5511                                                 isVarArg, Outs, Ins, DAG);
5512    else
5513      isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
5514                                                     Ins, DAG);
5515    if (isTailCall) {
5516      ++NumTailCalls;
5517      if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5518        ++NumSiblingCalls;
5519
5520      assert(isa<GlobalAddressSDNode>(Callee) &&
5521             "Callee should be an llvm::Function object.");
5522      LLVM_DEBUG(
5523          const GlobalValue *GV =
5524              cast<GlobalAddressSDNode>(Callee)->getGlobal();
5525          const unsigned Width =
5526              80 - strlen("TCO caller: ") - strlen(", callee linkage: 0, 0");
5527          dbgs() << "TCO caller: "
5528                 << left_justify(DAG.getMachineFunction().getName(), Width)
5529                 << ", callee linkage: " << GV->getVisibility() << ", "
5530                 << GV->getLinkage() << "\n");
5531    }
5532  }
5533
5534  if (!isTailCall && CS && CS.isMustTailCall())
5535    report_fatal_error("failed to perform tail call elimination on a call "
5536                       "site marked musttail");
5537
5538  // When long calls (i.e. indirect calls) are always used, calls are always
5539  // made via function pointer. If we have a function name, first translate it
5540  // into a pointer.
5541  if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5542      !isTailCall)
5543    Callee = LowerGlobalAddress(Callee, DAG);
5544
5545  if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5546    return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
5547                            isTailCall, isPatchPoint, Outs, OutVals, Ins,
5548                            dl, DAG, InVals, CS);
5549
5550  if (Subtarget.isSVR4ABI())
5551    return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
5552                            isTailCall, isPatchPoint, Outs, OutVals, Ins,
5553                            dl, DAG, InVals, CS);
5554
5555  if (Subtarget.isAIXABI())
5556    return LowerCall_AIX(Chain, Callee, CallConv, isVarArg,
5557                         isTailCall, isPatchPoint, Outs, OutVals, Ins,
5558                         dl, DAG, InVals, CS);
5559
5560  return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
5561                          isTailCall, isPatchPoint, Outs, OutVals, Ins,
5562                          dl, DAG, InVals, CS);
5563}
5564
5565SDValue PPCTargetLowering::LowerCall_32SVR4(
5566    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5567    bool isTailCall, bool isPatchPoint,
5568    const SmallVectorImpl<ISD::OutputArg> &Outs,
5569    const SmallVectorImpl<SDValue> &OutVals,
5570    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5571    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5572    ImmutableCallSite CS) const {
5573  // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5574  // of the 32-bit SVR4 ABI stack frame layout.
5575
5576  assert((CallConv == CallingConv::C ||
5577          CallConv == CallingConv::Cold ||
5578          CallConv == CallingConv::Fast) && "Unknown calling convention!");
5579
5580  unsigned PtrByteSize = 4;
5581
5582  MachineFunction &MF = DAG.getMachineFunction();
5583
5584  // Mark this function as potentially containing a function that contains a
5585  // tail call. As a consequence the frame pointer will be used for dynamicalloc
5586  // and restoring the callers stack pointer in this functions epilog. This is
5587  // done because by tail calling the called function might overwrite the value
5588  // in this function's (MF) stack pointer stack slot 0(SP).
5589  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5590      CallConv == CallingConv::Fast)
5591    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5592
5593  // Count how many bytes are to be pushed on the stack, including the linkage
5594  // area, parameter list area and the part of the local variable space which
5595  // contains copies of aggregates which are passed by value.
5596
5597  // Assign locations to all of the outgoing arguments.
5598  SmallVector<CCValAssign, 16> ArgLocs;
5599  PPCCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
5600
5601  // Reserve space for the linkage area on the stack.
5602  CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5603                       PtrByteSize);
5604  if (useSoftFloat())
5605    CCInfo.PreAnalyzeCallOperands(Outs);
5606
5607  if (isVarArg) {
5608    // Handle fixed and variable vector arguments differently.
5609    // Fixed vector arguments go into registers as long as registers are
5610    // available. Variable vector arguments always go into memory.
5611    unsigned NumArgs = Outs.size();
5612
5613    for (unsigned i = 0; i != NumArgs; ++i) {
5614      MVT ArgVT = Outs[i].VT;
5615      ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5616      bool Result;
5617
5618      if (Outs[i].IsFixed) {
5619        Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5620                               CCInfo);
5621      } else {
5622        Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5623                                      ArgFlags, CCInfo);
5624      }
5625
5626      if (Result) {
5627#ifndef NDEBUG
5628        errs() << "Call operand #" << i << " has unhandled type "
5629             << EVT(ArgVT).getEVTString() << "\n";
5630#endif
5631        llvm_unreachable(nullptr);
5632      }
5633    }
5634  } else {
5635    // All arguments are treated the same.
5636    CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5637  }
5638  CCInfo.clearWasPPCF128();
5639
5640  // Assign locations to all of the outgoing aggregate by value arguments.
5641  SmallVector<CCValAssign, 16> ByValArgLocs;
5642  CCState CCByValInfo(CallConv, isVarArg, MF, ByValArgLocs, *DAG.getContext());
5643
5644  // Reserve stack space for the allocations in CCInfo.
5645  CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
5646
5647  CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5648
5649  // Size of the linkage area, parameter list area and the part of the local
5650  // space variable where copies of aggregates which are passed by value are
5651  // stored.
5652  unsigned NumBytes = CCByValInfo.getNextStackOffset();
5653
5654  // Calculate by how many bytes the stack has to be adjusted in case of tail
5655  // call optimization.
5656  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5657
5658  // Adjust the stack pointer for the new arguments...
5659  // These operations are automatically eliminated by the prolog/epilog pass
5660  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5661  SDValue CallSeqStart = Chain;
5662
5663  // Load the return address and frame pointer so it can be moved somewhere else
5664  // later.
5665  SDValue LROp, FPOp;
5666  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5667
5668  // Set up a copy of the stack pointer for use loading and storing any
5669  // arguments that may not fit in the registers available for argument
5670  // passing.
5671  SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5672
5673  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5674  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5675  SmallVector<SDValue, 8> MemOpChains;
5676
5677  bool seenFloatArg = false;
5678  // Walk the register/memloc assignments, inserting copies/loads.
5679  // i - Tracks the index into the list of registers allocated for the call
5680  // RealArgIdx - Tracks the index into the list of actual function arguments
5681  // j - Tracks the index into the list of byval arguments
5682  for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5683       i != e;
5684       ++i, ++RealArgIdx) {
5685    CCValAssign &VA = ArgLocs[i];
5686    SDValue Arg = OutVals[RealArgIdx];
5687    ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5688
5689    if (Flags.isByVal()) {
5690      // Argument is an aggregate which is passed by value, thus we need to
5691      // create a copy of it in the local variable space of the current stack
5692      // frame (which is the stack frame of the caller) and pass the address of
5693      // this copy to the callee.
5694      assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5695      CCValAssign &ByValVA = ByValArgLocs[j++];
5696      assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5697
5698      // Memory reserved in the local variable space of the callers stack frame.
5699      unsigned LocMemOffset = ByValVA.getLocMemOffset();
5700
5701      SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5702      PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5703                           StackPtr, PtrOff);
5704
5705      // Create a copy of the argument in the local area of the current
5706      // stack frame.
5707      SDValue MemcpyCall =
5708        CreateCopyOfByValArgument(Arg, PtrOff,
5709                                  CallSeqStart.getNode()->getOperand(0),
5710                                  Flags, DAG, dl);
5711
5712      // This must go outside the CALLSEQ_START..END.
5713      SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
5714                                                     SDLoc(MemcpyCall));
5715      DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5716                             NewCallSeqStart.getNode());
5717      Chain = CallSeqStart = NewCallSeqStart;
5718
5719      // Pass the address of the aggregate copy on the stack either in a
5720      // physical register or in the parameter list area of the current stack
5721      // frame to the callee.
5722      Arg = PtrOff;
5723    }
5724
5725    // When useCRBits() is true, there can be i1 arguments.
5726    // It is because getRegisterType(MVT::i1) => MVT::i1,
5727    // and for other integer types getRegisterType() => MVT::i32.
5728    // Extend i1 and ensure callee will get i32.
5729    if (Arg.getValueType() == MVT::i1)
5730      Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
5731                        dl, MVT::i32, Arg);
5732
5733    if (VA.isRegLoc()) {
5734      seenFloatArg |= VA.getLocVT().isFloatingPoint();
5735      // Put argument in a physical register.
5736      if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
5737        bool IsLE = Subtarget.isLittleEndian();
5738        SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5739                        DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
5740        RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
5741        SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
5742                           DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
5743        RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
5744                             SVal.getValue(0)));
5745      } else
5746        RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
5747    } else {
5748      // Put argument in the parameter list area of the current stack frame.
5749      assert(VA.isMemLoc());
5750      unsigned LocMemOffset = VA.getLocMemOffset();
5751
5752      if (!isTailCall) {
5753        SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5754        PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5755                             StackPtr, PtrOff);
5756
5757        MemOpChains.push_back(
5758            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5759      } else {
5760        // Calculate and remember argument location.
5761        CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
5762                                 TailCallArguments);
5763      }
5764    }
5765  }
5766
5767  if (!MemOpChains.empty())
5768    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
5769
5770  // Build a sequence of copy-to-reg nodes chained together with token chain
5771  // and flag operands which copy the outgoing args into the appropriate regs.
5772  SDValue InFlag;
5773  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
5774    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
5775                             RegsToPass[i].second, InFlag);
5776    InFlag = Chain.getValue(1);
5777  }
5778
5779  // Set CR bit 6 to true if this is a vararg call with floating args passed in
5780  // registers.
5781  if (isVarArg) {
5782    SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
5783    SDValue Ops[] = { Chain, InFlag };
5784
5785    Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
5786                        dl, VTs, makeArrayRef(Ops, InFlag.getNode() ? 2 : 1));
5787
5788    InFlag = Chain.getValue(1);
5789  }
5790
5791  if (isTailCall)
5792    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
5793                    TailCallArguments);
5794
5795  return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
5796                    /* unused except on PPC64 ELFv1 */ false, DAG,
5797                    RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
5798                    NumBytes, Ins, InVals, CS);
5799}
5800
5801// Copy an argument into memory, being careful to do this outside the
5802// call sequence for the call to which the argument belongs.
5803SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
5804    SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
5805    SelectionDAG &DAG, const SDLoc &dl) const {
5806  SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
5807                        CallSeqStart.getNode()->getOperand(0),
5808                        Flags, DAG, dl);
5809  // The MEMCPY must go outside the CALLSEQ_START..END.
5810  int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
5811  SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
5812                                                 SDLoc(MemcpyCall));
5813  DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
5814                         NewCallSeqStart.getNode());
5815  return NewCallSeqStart;
5816}
5817
5818SDValue PPCTargetLowering::LowerCall_64SVR4(
5819    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
5820    bool isTailCall, bool isPatchPoint,
5821    const SmallVectorImpl<ISD::OutputArg> &Outs,
5822    const SmallVectorImpl<SDValue> &OutVals,
5823    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5824    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5825    ImmutableCallSite CS) const {
5826  bool isELFv2ABI = Subtarget.isELFv2ABI();
5827  bool isLittleEndian = Subtarget.isLittleEndian();
5828  unsigned NumOps = Outs.size();
5829  bool hasNest = false;
5830  bool IsSibCall = false;
5831
5832  EVT PtrVT = getPointerTy(DAG.getDataLayout());
5833  unsigned PtrByteSize = 8;
5834
5835  MachineFunction &MF = DAG.getMachineFunction();
5836
5837  if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
5838    IsSibCall = true;
5839
5840  // Mark this function as potentially containing a function that contains a
5841  // tail call. As a consequence the frame pointer will be used for dynamicalloc
5842  // and restoring the callers stack pointer in this functions epilog. This is
5843  // done because by tail calling the called function might overwrite the value
5844  // in this function's (MF) stack pointer stack slot 0(SP).
5845  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5846      CallConv == CallingConv::Fast)
5847    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5848
5849  assert(!(CallConv == CallingConv::Fast && isVarArg) &&
5850         "fastcc not supported on varargs functions");
5851
5852  // Count how many bytes are to be pushed on the stack, including the linkage
5853  // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
5854  // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
5855  // area is 32 bytes reserved space for [SP][CR][LR][TOC].
5856  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
5857  unsigned NumBytes = LinkageSize;
5858  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
5859  unsigned &QFPR_idx = FPR_idx;
5860
5861  static const MCPhysReg GPR[] = {
5862    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
5863    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
5864  };
5865  static const MCPhysReg VR[] = {
5866    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
5867    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
5868  };
5869
5870  const unsigned NumGPRs = array_lengthof(GPR);
5871  const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
5872  const unsigned NumVRs  = array_lengthof(VR);
5873  const unsigned NumQFPRs = NumFPRs;
5874
5875  // On ELFv2, we can avoid allocating the parameter area if all the arguments
5876  // can be passed to the callee in registers.
5877  // For the fast calling convention, there is another check below.
5878  // Note: We should keep consistent with LowerFormalArguments_64SVR4()
5879  bool HasParameterArea = !isELFv2ABI || isVarArg || CallConv == CallingConv::Fast;
5880  if (!HasParameterArea) {
5881    unsigned ParamAreaSize = NumGPRs * PtrByteSize;
5882    unsigned AvailableFPRs = NumFPRs;
5883    unsigned AvailableVRs = NumVRs;
5884    unsigned NumBytesTmp = NumBytes;
5885    for (unsigned i = 0; i != NumOps; ++i) {
5886      if (Outs[i].Flags.isNest()) continue;
5887      if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
5888                                PtrByteSize, LinkageSize, ParamAreaSize,
5889                                NumBytesTmp, AvailableFPRs, AvailableVRs,
5890                                Subtarget.hasQPX()))
5891        HasParameterArea = true;
5892    }
5893  }
5894
5895  // When using the fast calling convention, we don't provide backing for
5896  // arguments that will be in registers.
5897  unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
5898
5899  // Avoid allocating parameter area for fastcc functions if all the arguments
5900  // can be passed in the registers.
5901  if (CallConv == CallingConv::Fast)
5902    HasParameterArea = false;
5903
5904  // Add up all the space actually used.
5905  for (unsigned i = 0; i != NumOps; ++i) {
5906    ISD::ArgFlagsTy Flags = Outs[i].Flags;
5907    EVT ArgVT = Outs[i].VT;
5908    EVT OrigVT = Outs[i].ArgVT;
5909
5910    if (Flags.isNest())
5911      continue;
5912
5913    if (CallConv == CallingConv::Fast) {
5914      if (Flags.isByVal()) {
5915        NumGPRsUsed += (Flags.getByValSize()+7)/8;
5916        if (NumGPRsUsed > NumGPRs)
5917          HasParameterArea = true;
5918      } else {
5919        switch (ArgVT.getSimpleVT().SimpleTy) {
5920        default: llvm_unreachable("Unexpected ValueType for argument!");
5921        case MVT::i1:
5922        case MVT::i32:
5923        case MVT::i64:
5924          if (++NumGPRsUsed <= NumGPRs)
5925            continue;
5926          break;
5927        case MVT::v4i32:
5928        case MVT::v8i16:
5929        case MVT::v16i8:
5930        case MVT::v2f64:
5931        case MVT::v2i64:
5932        case MVT::v1i128:
5933        case MVT::f128:
5934          if (++NumVRsUsed <= NumVRs)
5935            continue;
5936          break;
5937        case MVT::v4f32:
5938          // When using QPX, this is handled like a FP register, otherwise, it
5939          // is an Altivec register.
5940          if (Subtarget.hasQPX()) {
5941            if (++NumFPRsUsed <= NumFPRs)
5942              continue;
5943          } else {
5944            if (++NumVRsUsed <= NumVRs)
5945              continue;
5946          }
5947          break;
5948        case MVT::f32:
5949        case MVT::f64:
5950        case MVT::v4f64: // QPX
5951        case MVT::v4i1:  // QPX
5952          if (++NumFPRsUsed <= NumFPRs)
5953            continue;
5954          break;
5955        }
5956        HasParameterArea = true;
5957      }
5958    }
5959
5960    /* Respect alignment of argument on the stack.  */
5961    unsigned Align =
5962      CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
5963    NumBytes = ((NumBytes + Align - 1) / Align) * Align;
5964
5965    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
5966    if (Flags.isInConsecutiveRegsLast())
5967      NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
5968  }
5969
5970  unsigned NumBytesActuallyUsed = NumBytes;
5971
5972  // In the old ELFv1 ABI,
5973  // the prolog code of the callee may store up to 8 GPR argument registers to
5974  // the stack, allowing va_start to index over them in memory if its varargs.
5975  // Because we cannot tell if this is needed on the caller side, we have to
5976  // conservatively assume that it is needed.  As such, make sure we have at
5977  // least enough stack space for the caller to store the 8 GPRs.
5978  // In the ELFv2 ABI, we allocate the parameter area iff a callee
5979  // really requires memory operands, e.g. a vararg function.
5980  if (HasParameterArea)
5981    NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
5982  else
5983    NumBytes = LinkageSize;
5984
5985  // Tail call needs the stack to be aligned.
5986  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5987      CallConv == CallingConv::Fast)
5988    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
5989
5990  int SPDiff = 0;
5991
5992  // Calculate by how many bytes the stack has to be adjusted in case of tail
5993  // call optimization.
5994  if (!IsSibCall)
5995    SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
5996
5997  // To protect arguments on the stack from being clobbered in a tail call,
5998  // force all the loads to happen before doing any other lowering.
5999  if (isTailCall)
6000    Chain = DAG.getStackArgumentTokenFactor(Chain);
6001
6002  // Adjust the stack pointer for the new arguments...
6003  // These operations are automatically eliminated by the prolog/epilog pass
6004  if (!IsSibCall)
6005    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6006  SDValue CallSeqStart = Chain;
6007
6008  // Load the return address and frame pointer so it can be move somewhere else
6009  // later.
6010  SDValue LROp, FPOp;
6011  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6012
6013  // Set up a copy of the stack pointer for use loading and storing any
6014  // arguments that may not fit in the registers available for argument
6015  // passing.
6016  SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6017
6018  // Figure out which arguments are going to go in registers, and which in
6019  // memory.  Also, if this is a vararg function, floating point operations
6020  // must be stored to our stack, and loaded into integer regs as well, if
6021  // any integer regs are available for argument passing.
6022  unsigned ArgOffset = LinkageSize;
6023
6024  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6025  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6026
6027  SmallVector<SDValue, 8> MemOpChains;
6028  for (unsigned i = 0; i != NumOps; ++i) {
6029    SDValue Arg = OutVals[i];
6030    ISD::ArgFlagsTy Flags = Outs[i].Flags;
6031    EVT ArgVT = Outs[i].VT;
6032    EVT OrigVT = Outs[i].ArgVT;
6033
6034    // PtrOff will be used to store the current argument to the stack if a
6035    // register cannot be found for it.
6036    SDValue PtrOff;
6037
6038    // We re-align the argument offset for each argument, except when using the
6039    // fast calling convention, when we need to make sure we do that only when
6040    // we'll actually use a stack slot.
6041    auto ComputePtrOff = [&]() {
6042      /* Respect alignment of argument on the stack.  */
6043      unsigned Align =
6044        CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6045      ArgOffset = ((ArgOffset + Align - 1) / Align) * Align;
6046
6047      PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6048
6049      PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6050    };
6051
6052    if (CallConv != CallingConv::Fast) {
6053      ComputePtrOff();
6054
6055      /* Compute GPR index associated with argument offset.  */
6056      GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6057      GPR_idx = std::min(GPR_idx, NumGPRs);
6058    }
6059
6060    // Promote integers to 64-bit values.
6061    if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6062      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6063      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6064      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6065    }
6066
6067    // FIXME memcpy is used way more than necessary.  Correctness first.
6068    // Note: "by value" is code for passing a structure by value, not
6069    // basic types.
6070    if (Flags.isByVal()) {
6071      // Note: Size includes alignment padding, so
6072      //   struct x { short a; char b; }
6073      // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6074      // These are the proper values we need for right-justifying the
6075      // aggregate in a parameter register.
6076      unsigned Size = Flags.getByValSize();
6077
6078      // An empty aggregate parameter takes up no storage and no
6079      // registers.
6080      if (Size == 0)
6081        continue;
6082
6083      if (CallConv == CallingConv::Fast)
6084        ComputePtrOff();
6085
6086      // All aggregates smaller than 8 bytes must be passed right-justified.
6087      if (Size==1 || Size==2 || Size==4) {
6088        EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6089        if (GPR_idx != NumGPRs) {
6090          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6091                                        MachinePointerInfo(), VT);
6092          MemOpChains.push_back(Load.getValue(1));
6093          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6094
6095          ArgOffset += PtrByteSize;
6096          continue;
6097        }
6098      }
6099
6100      if (GPR_idx == NumGPRs && Size < 8) {
6101        SDValue AddPtr = PtrOff;
6102        if (!isLittleEndian) {
6103          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6104                                          PtrOff.getValueType());
6105          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6106        }
6107        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6108                                                          CallSeqStart,
6109                                                          Flags, DAG, dl);
6110        ArgOffset += PtrByteSize;
6111        continue;
6112      }
6113      // Copy entire object into memory.  There are cases where gcc-generated
6114      // code assumes it is there, even if it could be put entirely into
6115      // registers.  (This is not what the doc says.)
6116
6117      // FIXME: The above statement is likely due to a misunderstanding of the
6118      // documents.  All arguments must be copied into the parameter area BY
6119      // THE CALLEE in the event that the callee takes the address of any
6120      // formal argument.  That has not yet been implemented.  However, it is
6121      // reasonable to use the stack area as a staging area for the register
6122      // load.
6123
6124      // Skip this for small aggregates, as we will use the same slot for a
6125      // right-justified copy, below.
6126      if (Size >= 8)
6127        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6128                                                          CallSeqStart,
6129                                                          Flags, DAG, dl);
6130
6131      // When a register is available, pass a small aggregate right-justified.
6132      if (Size < 8 && GPR_idx != NumGPRs) {
6133        // The easiest way to get this right-justified in a register
6134        // is to copy the structure into the rightmost portion of a
6135        // local variable slot, then load the whole slot into the
6136        // register.
6137        // FIXME: The memcpy seems to produce pretty awful code for
6138        // small aggregates, particularly for packed ones.
6139        // FIXME: It would be preferable to use the slot in the
6140        // parameter save area instead of a new local variable.
6141        SDValue AddPtr = PtrOff;
6142        if (!isLittleEndian) {
6143          SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6144          AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6145        }
6146        Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6147                                                          CallSeqStart,
6148                                                          Flags, DAG, dl);
6149
6150        // Load the slot into the register.
6151        SDValue Load =
6152            DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6153        MemOpChains.push_back(Load.getValue(1));
6154        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6155
6156        // Done with this argument.
6157        ArgOffset += PtrByteSize;
6158        continue;
6159      }
6160
6161      // For aggregates larger than PtrByteSize, copy the pieces of the
6162      // object that fit into registers from the parameter save area.
6163      for (unsigned j=0; j<Size; j+=PtrByteSize) {
6164        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6165        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6166        if (GPR_idx != NumGPRs) {
6167          SDValue Load =
6168              DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6169          MemOpChains.push_back(Load.getValue(1));
6170          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6171          ArgOffset += PtrByteSize;
6172        } else {
6173          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6174          break;
6175        }
6176      }
6177      continue;
6178    }
6179
6180    switch (Arg.getSimpleValueType().SimpleTy) {
6181    default: llvm_unreachable("Unexpected ValueType for argument!");
6182    case MVT::i1:
6183    case MVT::i32:
6184    case MVT::i64:
6185      if (Flags.isNest()) {
6186        // The 'nest' parameter, if any, is passed in R11.
6187        RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6188        hasNest = true;
6189        break;
6190      }
6191
6192      // These can be scalar arguments or elements of an integer array type
6193      // passed directly.  Clang may use those instead of "byval" aggregate
6194      // types to avoid forcing arguments to memory unnecessarily.
6195      if (GPR_idx != NumGPRs) {
6196        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6197      } else {
6198        if (CallConv == CallingConv::Fast)
6199          ComputePtrOff();
6200
6201        assert(HasParameterArea &&
6202               "Parameter area must exist to pass an argument in memory.");
6203        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6204                         true, isTailCall, false, MemOpChains,
6205                         TailCallArguments, dl);
6206        if (CallConv == CallingConv::Fast)
6207          ArgOffset += PtrByteSize;
6208      }
6209      if (CallConv != CallingConv::Fast)
6210        ArgOffset += PtrByteSize;
6211      break;
6212    case MVT::f32:
6213    case MVT::f64: {
6214      // These can be scalar arguments or elements of a float array type
6215      // passed directly.  The latter are used to implement ELFv2 homogenous
6216      // float aggregates.
6217
6218      // Named arguments go into FPRs first, and once they overflow, the
6219      // remaining arguments go into GPRs and then the parameter save area.
6220      // Unnamed arguments for vararg functions always go to GPRs and
6221      // then the parameter save area.  For now, put all arguments to vararg
6222      // routines always in both locations (FPR *and* GPR or stack slot).
6223      bool NeedGPROrStack = isVarArg || FPR_idx == NumFPRs;
6224      bool NeededLoad = false;
6225
6226      // First load the argument into the next available FPR.
6227      if (FPR_idx != NumFPRs)
6228        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6229
6230      // Next, load the argument into GPR or stack slot if needed.
6231      if (!NeedGPROrStack)
6232        ;
6233      else if (GPR_idx != NumGPRs && CallConv != CallingConv::Fast) {
6234        // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6235        // once we support fp <-> gpr moves.
6236
6237        // In the non-vararg case, this can only ever happen in the
6238        // presence of f32 array types, since otherwise we never run
6239        // out of FPRs before running out of GPRs.
6240        SDValue ArgVal;
6241
6242        // Double values are always passed in a single GPR.
6243        if (Arg.getValueType() != MVT::f32) {
6244          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6245
6246        // Non-array float values are extended and passed in a GPR.
6247        } else if (!Flags.isInConsecutiveRegs()) {
6248          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6249          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6250
6251        // If we have an array of floats, we collect every odd element
6252        // together with its predecessor into one GPR.
6253        } else if (ArgOffset % PtrByteSize != 0) {
6254          SDValue Lo, Hi;
6255          Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6256          Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6257          if (!isLittleEndian)
6258            std::swap(Lo, Hi);
6259          ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6260
6261        // The final element, if even, goes into the first half of a GPR.
6262        } else if (Flags.isInConsecutiveRegsLast()) {
6263          ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6264          ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6265          if (!isLittleEndian)
6266            ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6267                                 DAG.getConstant(32, dl, MVT::i32));
6268
6269        // Non-final even elements are skipped; they will be handled
6270        // together the with subsequent argument on the next go-around.
6271        } else
6272          ArgVal = SDValue();
6273
6274        if (ArgVal.getNode())
6275          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6276      } else {
6277        if (CallConv == CallingConv::Fast)
6278          ComputePtrOff();
6279
6280        // Single-precision floating-point values are mapped to the
6281        // second (rightmost) word of the stack doubleword.
6282        if (Arg.getValueType() == MVT::f32 &&
6283            !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6284          SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6285          PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6286        }
6287
6288        assert(HasParameterArea &&
6289               "Parameter area must exist to pass an argument in memory.");
6290        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6291                         true, isTailCall, false, MemOpChains,
6292                         TailCallArguments, dl);
6293
6294        NeededLoad = true;
6295      }
6296      // When passing an array of floats, the array occupies consecutive
6297      // space in the argument area; only round up to the next doubleword
6298      // at the end of the array.  Otherwise, each float takes 8 bytes.
6299      if (CallConv != CallingConv::Fast || NeededLoad) {
6300        ArgOffset += (Arg.getValueType() == MVT::f32 &&
6301                      Flags.isInConsecutiveRegs()) ? 4 : 8;
6302        if (Flags.isInConsecutiveRegsLast())
6303          ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6304      }
6305      break;
6306    }
6307    case MVT::v4f32:
6308    case MVT::v4i32:
6309    case MVT::v8i16:
6310    case MVT::v16i8:
6311    case MVT::v2f64:
6312    case MVT::v2i64:
6313    case MVT::v1i128:
6314    case MVT::f128:
6315      if (!Subtarget.hasQPX()) {
6316      // These can be scalar arguments or elements of a vector array type
6317      // passed directly.  The latter are used to implement ELFv2 homogenous
6318      // vector aggregates.
6319
6320      // For a varargs call, named arguments go into VRs or on the stack as
6321      // usual; unnamed arguments always go to the stack or the corresponding
6322      // GPRs when within range.  For now, we always put the value in both
6323      // locations (or even all three).
6324      if (isVarArg) {
6325        assert(HasParameterArea &&
6326               "Parameter area must exist if we have a varargs call.");
6327        // We could elide this store in the case where the object fits
6328        // entirely in R registers.  Maybe later.
6329        SDValue Store =
6330            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6331        MemOpChains.push_back(Store);
6332        if (VR_idx != NumVRs) {
6333          SDValue Load =
6334              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6335          MemOpChains.push_back(Load.getValue(1));
6336          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6337        }
6338        ArgOffset += 16;
6339        for (unsigned i=0; i<16; i+=PtrByteSize) {
6340          if (GPR_idx == NumGPRs)
6341            break;
6342          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6343                                   DAG.getConstant(i, dl, PtrVT));
6344          SDValue Load =
6345              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6346          MemOpChains.push_back(Load.getValue(1));
6347          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6348        }
6349        break;
6350      }
6351
6352      // Non-varargs Altivec params go into VRs or on the stack.
6353      if (VR_idx != NumVRs) {
6354        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6355      } else {
6356        if (CallConv == CallingConv::Fast)
6357          ComputePtrOff();
6358
6359        assert(HasParameterArea &&
6360               "Parameter area must exist to pass an argument in memory.");
6361        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6362                         true, isTailCall, true, MemOpChains,
6363                         TailCallArguments, dl);
6364        if (CallConv == CallingConv::Fast)
6365          ArgOffset += 16;
6366      }
6367
6368      if (CallConv != CallingConv::Fast)
6369        ArgOffset += 16;
6370      break;
6371      } // not QPX
6372
6373      assert(Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32 &&
6374             "Invalid QPX parameter type");
6375
6376      LLVM_FALLTHROUGH;
6377    case MVT::v4f64:
6378    case MVT::v4i1: {
6379      bool IsF32 = Arg.getValueType().getSimpleVT().SimpleTy == MVT::v4f32;
6380      if (isVarArg) {
6381        assert(HasParameterArea &&
6382               "Parameter area must exist if we have a varargs call.");
6383        // We could elide this store in the case where the object fits
6384        // entirely in R registers.  Maybe later.
6385        SDValue Store =
6386            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6387        MemOpChains.push_back(Store);
6388        if (QFPR_idx != NumQFPRs) {
6389          SDValue Load = DAG.getLoad(IsF32 ? MVT::v4f32 : MVT::v4f64, dl, Store,
6390                                     PtrOff, MachinePointerInfo());
6391          MemOpChains.push_back(Load.getValue(1));
6392          RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Load));
6393        }
6394        ArgOffset += (IsF32 ? 16 : 32);
6395        for (unsigned i = 0; i < (IsF32 ? 16U : 32U); i += PtrByteSize) {
6396          if (GPR_idx == NumGPRs)
6397            break;
6398          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6399                                   DAG.getConstant(i, dl, PtrVT));
6400          SDValue Load =
6401              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6402          MemOpChains.push_back(Load.getValue(1));
6403          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6404        }
6405        break;
6406      }
6407
6408      // Non-varargs QPX params go into registers or on the stack.
6409      if (QFPR_idx != NumQFPRs) {
6410        RegsToPass.push_back(std::make_pair(QFPR[QFPR_idx++], Arg));
6411      } else {
6412        if (CallConv == CallingConv::Fast)
6413          ComputePtrOff();
6414
6415        assert(HasParameterArea &&
6416               "Parameter area must exist to pass an argument in memory.");
6417        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6418                         true, isTailCall, true, MemOpChains,
6419                         TailCallArguments, dl);
6420        if (CallConv == CallingConv::Fast)
6421          ArgOffset += (IsF32 ? 16 : 32);
6422      }
6423
6424      if (CallConv != CallingConv::Fast)
6425        ArgOffset += (IsF32 ? 16 : 32);
6426      break;
6427      }
6428    }
6429  }
6430
6431  assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6432         "mismatch in size of parameter area");
6433  (void)NumBytesActuallyUsed;
6434
6435  if (!MemOpChains.empty())
6436    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6437
6438  // Check if this is an indirect call (MTCTR/BCTRL).
6439  // See prepareDescriptorIndirectCall and buildCallOperands for more
6440  // information about calls through function pointers in the 64-bit SVR4 ABI.
6441  if (!isTailCall && !isPatchPoint &&
6442      !isFunctionGlobalAddress(Callee) &&
6443      !isa<ExternalSymbolSDNode>(Callee)) {
6444    // Load r2 into a virtual register and store it to the TOC save area.
6445    setUsesTOCBasePtr(DAG);
6446    SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6447    // TOC save area offset.
6448    unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6449    SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6450    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6451    Chain = DAG.getStore(
6452        Val.getValue(1), dl, Val, AddPtr,
6453        MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
6454    // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6455    // This does not mean the MTCTR instruction must use R12; it's easier
6456    // to model this as an extra parameter, so do that.
6457    if (isELFv2ABI && !isPatchPoint)
6458      RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6459  }
6460
6461  // Build a sequence of copy-to-reg nodes chained together with token chain
6462  // and flag operands which copy the outgoing args into the appropriate regs.
6463  SDValue InFlag;
6464  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6465    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6466                             RegsToPass[i].second, InFlag);
6467    InFlag = Chain.getValue(1);
6468  }
6469
6470  if (isTailCall && !IsSibCall)
6471    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6472                    TailCallArguments);
6473
6474  return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint, hasNest,
6475                    DAG, RegsToPass, InFlag, Chain, CallSeqStart, Callee,
6476                    SPDiff, NumBytes, Ins, InVals, CS);
6477}
6478
6479SDValue PPCTargetLowering::LowerCall_Darwin(
6480    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
6481    bool isTailCall, bool isPatchPoint,
6482    const SmallVectorImpl<ISD::OutputArg> &Outs,
6483    const SmallVectorImpl<SDValue> &OutVals,
6484    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6485    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6486    ImmutableCallSite CS) const {
6487  unsigned NumOps = Outs.size();
6488
6489  EVT PtrVT = getPointerTy(DAG.getDataLayout());
6490  bool isPPC64 = PtrVT == MVT::i64;
6491  unsigned PtrByteSize = isPPC64 ? 8 : 4;
6492
6493  MachineFunction &MF = DAG.getMachineFunction();
6494
6495  // Mark this function as potentially containing a function that contains a
6496  // tail call. As a consequence the frame pointer will be used for dynamicalloc
6497  // and restoring the callers stack pointer in this functions epilog. This is
6498  // done because by tail calling the called function might overwrite the value
6499  // in this function's (MF) stack pointer stack slot 0(SP).
6500  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6501      CallConv == CallingConv::Fast)
6502    MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6503
6504  // Count how many bytes are to be pushed on the stack, including the linkage
6505  // area, and parameter passing area.  We start with 24/48 bytes, which is
6506  // prereserved space for [SP][CR][LR][3 x unused].
6507  unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6508  unsigned NumBytes = LinkageSize;
6509
6510  // Add up all the space actually used.
6511  // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
6512  // they all go in registers, but we must reserve stack space for them for
6513  // possible use by the caller.  In varargs or 64-bit calls, parameters are
6514  // assigned stack space in order, with padding so Altivec parameters are
6515  // 16-byte aligned.
6516  unsigned nAltivecParamsAtEnd = 0;
6517  for (unsigned i = 0; i != NumOps; ++i) {
6518    ISD::ArgFlagsTy Flags = Outs[i].Flags;
6519    EVT ArgVT = Outs[i].VT;
6520    // Varargs Altivec parameters are padded to a 16 byte boundary.
6521    if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
6522        ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
6523        ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64) {
6524      if (!isVarArg && !isPPC64) {
6525        // Non-varargs Altivec parameters go after all the non-Altivec
6526        // parameters; handle those later so we know how much padding we need.
6527        nAltivecParamsAtEnd++;
6528        continue;
6529      }
6530      // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
6531      NumBytes = ((NumBytes+15)/16)*16;
6532    }
6533    NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6534  }
6535
6536  // Allow for Altivec parameters at the end, if needed.
6537  if (nAltivecParamsAtEnd) {
6538    NumBytes = ((NumBytes+15)/16)*16;
6539    NumBytes += 16*nAltivecParamsAtEnd;
6540  }
6541
6542  // The prolog code of the callee may store up to 8 GPR argument registers to
6543  // the stack, allowing va_start to index over them in memory if its varargs.
6544  // Because we cannot tell if this is needed on the caller side, we have to
6545  // conservatively assume that it is needed.  As such, make sure we have at
6546  // least enough stack space for the caller to store the 8 GPRs.
6547  NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6548
6549  // Tail call needs the stack to be aligned.
6550  if (getTargetMachine().Options.GuaranteedTailCallOpt &&
6551      CallConv == CallingConv::Fast)
6552    NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6553
6554  // Calculate by how many bytes the stack has to be adjusted in case of tail
6555  // call optimization.
6556  int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
6557
6558  // To protect arguments on the stack from being clobbered in a tail call,
6559  // force all the loads to happen before doing any other lowering.
6560  if (isTailCall)
6561    Chain = DAG.getStackArgumentTokenFactor(Chain);
6562
6563  // Adjust the stack pointer for the new arguments...
6564  // These operations are automatically eliminated by the prolog/epilog pass
6565  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6566  SDValue CallSeqStart = Chain;
6567
6568  // Load the return address and frame pointer so it can be move somewhere else
6569  // later.
6570  SDValue LROp, FPOp;
6571  Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6572
6573  // Set up a copy of the stack pointer for use loading and storing any
6574  // arguments that may not fit in the registers available for argument
6575  // passing.
6576  SDValue StackPtr;
6577  if (isPPC64)
6578    StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6579  else
6580    StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
6581
6582  // Figure out which arguments are going to go in registers, and which in
6583  // memory.  Also, if this is a vararg function, floating point operations
6584  // must be stored to our stack, and loaded into integer regs as well, if
6585  // any integer regs are available for argument passing.
6586  unsigned ArgOffset = LinkageSize;
6587  unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6588
6589  static const MCPhysReg GPR_32[] = {           // 32-bit registers.
6590    PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6591    PPC::R7, PPC::R8, PPC::R9, PPC::R10,
6592  };
6593  static const MCPhysReg GPR_64[] = {           // 64-bit registers.
6594    PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6595    PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6596  };
6597  static const MCPhysReg VR[] = {
6598    PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6599    PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6600  };
6601  const unsigned NumGPRs = array_lengthof(GPR_32);
6602  const unsigned NumFPRs = 13;
6603  const unsigned NumVRs  = array_lengthof(VR);
6604
6605  const MCPhysReg *GPR = isPPC64 ? GPR_64 : GPR_32;
6606
6607  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6608  SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6609
6610  SmallVector<SDValue, 8> MemOpChains;
6611  for (unsigned i = 0; i != NumOps; ++i) {
6612    SDValue Arg = OutVals[i];
6613    ISD::ArgFlagsTy Flags = Outs[i].Flags;
6614
6615    // PtrOff will be used to store the current argument to the stack if a
6616    // register cannot be found for it.
6617    SDValue PtrOff;
6618
6619    PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6620
6621    PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6622
6623    // On PPC64, promote integers to 64-bit values.
6624    if (isPPC64 && Arg.getValueType() == MVT::i32) {
6625      // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6626      unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6627      Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6628    }
6629
6630    // FIXME memcpy is used way more than necessary.  Correctness first.
6631    // Note: "by value" is code for passing a structure by value, not
6632    // basic types.
6633    if (Flags.isByVal()) {
6634      unsigned Size = Flags.getByValSize();
6635      // Very small objects are passed right-justified.  Everything else is
6636      // passed left-justified.
6637      if (Size==1 || Size==2) {
6638        EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
6639        if (GPR_idx != NumGPRs) {
6640          SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6641                                        MachinePointerInfo(), VT);
6642          MemOpChains.push_back(Load.getValue(1));
6643          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6644
6645          ArgOffset += PtrByteSize;
6646        } else {
6647          SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6648                                          PtrOff.getValueType());
6649          SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6650          Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6651                                                            CallSeqStart,
6652                                                            Flags, DAG, dl);
6653          ArgOffset += PtrByteSize;
6654        }
6655        continue;
6656      }
6657      // Copy entire object into memory.  There are cases where gcc-generated
6658      // code assumes it is there, even if it could be put entirely into
6659      // registers.  (This is not what the doc says.)
6660      Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6661                                                        CallSeqStart,
6662                                                        Flags, DAG, dl);
6663
6664      // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
6665      // copy the pieces of the object that fit into registers from the
6666      // parameter save area.
6667      for (unsigned j=0; j<Size; j+=PtrByteSize) {
6668        SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6669        SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6670        if (GPR_idx != NumGPRs) {
6671          SDValue Load =
6672              DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo());
6673          MemOpChains.push_back(Load.getValue(1));
6674          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6675          ArgOffset += PtrByteSize;
6676        } else {
6677          ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6678          break;
6679        }
6680      }
6681      continue;
6682    }
6683
6684    switch (Arg.getSimpleValueType().SimpleTy) {
6685    default: llvm_unreachable("Unexpected ValueType for argument!");
6686    case MVT::i1:
6687    case MVT::i32:
6688    case MVT::i64:
6689      if (GPR_idx != NumGPRs) {
6690        if (Arg.getValueType() == MVT::i1)
6691          Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, PtrVT, Arg);
6692
6693        RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6694      } else {
6695        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6696                         isPPC64, isTailCall, false, MemOpChains,
6697                         TailCallArguments, dl);
6698      }
6699      ArgOffset += PtrByteSize;
6700      break;
6701    case MVT::f32:
6702    case MVT::f64:
6703      if (FPR_idx != NumFPRs) {
6704        RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6705
6706        if (isVarArg) {
6707          SDValue Store =
6708              DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6709          MemOpChains.push_back(Store);
6710
6711          // Float varargs are always shadowed in available integer registers
6712          if (GPR_idx != NumGPRs) {
6713            SDValue Load =
6714                DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6715            MemOpChains.push_back(Load.getValue(1));
6716            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6717          }
6718          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
6719            SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6720            PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6721            SDValue Load =
6722                DAG.getLoad(PtrVT, dl, Store, PtrOff, MachinePointerInfo());
6723            MemOpChains.push_back(Load.getValue(1));
6724            RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6725          }
6726        } else {
6727          // If we have any FPRs remaining, we may also have GPRs remaining.
6728          // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
6729          // GPRs.
6730          if (GPR_idx != NumGPRs)
6731            ++GPR_idx;
6732          if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
6733              !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
6734            ++GPR_idx;
6735        }
6736      } else
6737        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6738                         isPPC64, isTailCall, false, MemOpChains,
6739                         TailCallArguments, dl);
6740      if (isPPC64)
6741        ArgOffset += 8;
6742      else
6743        ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
6744      break;
6745    case MVT::v4f32:
6746    case MVT::v4i32:
6747    case MVT::v8i16:
6748    case MVT::v16i8:
6749      if (isVarArg) {
6750        // These go aligned on the stack, or in the corresponding R registers
6751        // when within range.  The Darwin PPC ABI doc claims they also go in
6752        // V registers; in fact gcc does this only for arguments that are
6753        // prototyped, not for those that match the ...  We do it for all
6754        // arguments, seems to work.
6755        while (ArgOffset % 16 !=0) {
6756          ArgOffset += PtrByteSize;
6757          if (GPR_idx != NumGPRs)
6758            GPR_idx++;
6759        }
6760        // We could elide this store in the case where the object fits
6761        // entirely in R registers.  Maybe later.
6762        PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
6763                             DAG.getConstant(ArgOffset, dl, PtrVT));
6764        SDValue Store =
6765            DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6766        MemOpChains.push_back(Store);
6767        if (VR_idx != NumVRs) {
6768          SDValue Load =
6769              DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6770          MemOpChains.push_back(Load.getValue(1));
6771          RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6772        }
6773        ArgOffset += 16;
6774        for (unsigned i=0; i<16; i+=PtrByteSize) {
6775          if (GPR_idx == NumGPRs)
6776            break;
6777          SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6778                                   DAG.getConstant(i, dl, PtrVT));
6779          SDValue Load =
6780              DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6781          MemOpChains.push_back(Load.getValue(1));
6782          RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6783        }
6784        break;
6785      }
6786
6787      // Non-varargs Altivec params generally go in registers, but have
6788      // stack space allocated at the end.
6789      if (VR_idx != NumVRs) {
6790        // Doesn't have GPR space allocated.
6791        RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6792      } else if (nAltivecParamsAtEnd==0) {
6793        // We are emitting Altivec params in order.
6794        LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6795                         isPPC64, isTailCall, true, MemOpChains,
6796                         TailCallArguments, dl);
6797        ArgOffset += 16;
6798      }
6799      break;
6800    }
6801  }
6802  // If all Altivec parameters fit in registers, as they usually do,
6803  // they get stack space following the non-Altivec parameters.  We
6804  // don't track this here because nobody below needs it.
6805  // If there are more Altivec parameters than fit in registers emit
6806  // the stores here.
6807  if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
6808    unsigned j = 0;
6809    // Offset is aligned; skip 1st 12 params which go in V registers.
6810    ArgOffset = ((ArgOffset+15)/16)*16;
6811    ArgOffset += 12*16;
6812    for (unsigned i = 0; i != NumOps; ++i) {
6813      SDValue Arg = OutVals[i];
6814      EVT ArgType = Outs[i].VT;
6815      if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
6816          ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
6817        if (++j > NumVRs) {
6818          SDValue PtrOff;
6819          // We are emitting Altivec params in order.
6820          LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6821                           isPPC64, isTailCall, true, MemOpChains,
6822                           TailCallArguments, dl);
6823          ArgOffset += 16;
6824        }
6825      }
6826    }
6827  }
6828
6829  if (!MemOpChains.empty())
6830    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6831
6832  // On Darwin, R12 must contain the address of an indirect callee.  This does
6833  // not mean the MTCTR instruction must use R12; it's easier to model this as
6834  // an extra parameter, so do that.
6835  if (!isTailCall &&
6836      !isFunctionGlobalAddress(Callee) &&
6837      !isa<ExternalSymbolSDNode>(Callee) &&
6838      !isBLACompatibleAddress(Callee, DAG))
6839    RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
6840                                                   PPC::R12), Callee));
6841
6842  // Build a sequence of copy-to-reg nodes chained together with token chain
6843  // and flag operands which copy the outgoing args into the appropriate regs.
6844  SDValue InFlag;
6845  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6846    Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6847                             RegsToPass[i].second, InFlag);
6848    InFlag = Chain.getValue(1);
6849  }
6850
6851  if (isTailCall)
6852    PrepareTailCall(DAG, InFlag, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6853                    TailCallArguments);
6854
6855  return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
6856                    /* unused except on PPC64 ELFv1 */ false, DAG,
6857                    RegsToPass, InFlag, Chain, CallSeqStart, Callee, SPDiff,
6858                    NumBytes, Ins, InVals, CS);
6859}
6860
6861static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6862                   CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6863                   CCState &State) {
6864
6865  if (ValVT == MVT::f128)
6866    report_fatal_error("f128 is unimplemented on AIX.");
6867
6868  if (ArgFlags.isByVal())
6869    report_fatal_error("Passing structure by value is unimplemented.");
6870
6871  if (ArgFlags.isNest())
6872    report_fatal_error("Nest arguments are unimplemented.");
6873
6874  if (ValVT.isVector() || LocVT.isVector())
6875    report_fatal_error("Vector arguments are unimplemented on AIX.");
6876
6877  const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6878      State.getMachineFunction().getSubtarget());
6879  const bool IsPPC64 = Subtarget.isPPC64();
6880  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
6881
6882  static const MCPhysReg GPR_32[] = {// 32-bit registers.
6883                                     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6884                                     PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6885  static const MCPhysReg GPR_64[] = {// 64-bit registers.
6886                                     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6887                                     PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6888
6889  // Arguments always reserve parameter save area.
6890  switch (ValVT.SimpleTy) {
6891  default:
6892    report_fatal_error("Unhandled value type for argument.");
6893  case MVT::i64:
6894    // i64 arguments should have been split to i32 for PPC32.
6895    assert(IsPPC64 && "PPC32 should have split i64 values.");
6896    LLVM_FALLTHROUGH;
6897  case MVT::i1:
6898  case MVT::i32:
6899    State.AllocateStack(PtrByteSize, PtrByteSize);
6900    if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6901      MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6902      // Promote integers if needed.
6903      if (ValVT.getSizeInBits() < RegVT.getSizeInBits())
6904        LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6905                                    : CCValAssign::LocInfo::ZExt;
6906      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6907    }
6908    else
6909      report_fatal_error("Handling of placing parameters on the stack is "
6910                         "unimplemented!");
6911    return false;
6912
6913  case MVT::f32:
6914  case MVT::f64: {
6915    // Parameter save area (PSA) is reserved even if the float passes in fpr.
6916    const unsigned StoreSize = LocVT.getStoreSize();
6917    // Floats are always 4-byte aligned in the PSA on AIX.
6918    // This includes f64 in 64-bit mode for ABI compatibility.
6919    State.AllocateStack(IsPPC64 ? 8 : StoreSize, 4);
6920    if (unsigned Reg = State.AllocateReg(FPR))
6921      State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
6922    else
6923      report_fatal_error("Handling of placing parameters on the stack is "
6924                         "unimplemented!");
6925
6926    // AIX requires that GPRs are reserved for float arguments.
6927    // Successfully reserved GPRs are only initialized for vararg calls.
6928    MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6929    for (unsigned I = 0; I < StoreSize; I += PtrByteSize) {
6930      if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6931        if (State.isVarArg()) {
6932          // Custom handling is required for:
6933          //   f64 in PPC32 needs to be split into 2 GPRs.
6934          //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6935          State.addLoc(
6936              CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6937        }
6938      } else if (State.isVarArg()) {
6939        report_fatal_error("Handling of placing parameters on the stack is "
6940                           "unimplemented!");
6941      }
6942    }
6943
6944    return false;
6945  }
6946  }
6947  return true;
6948}
6949
6950static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6951                                                    bool IsPPC64) {
6952  assert((IsPPC64 || SVT != MVT::i64) &&
6953         "i64 should have been split for 32-bit codegen.");
6954
6955  switch (SVT) {
6956  default:
6957    report_fatal_error("Unexpected value type for formal argument");
6958  case MVT::i1:
6959  case MVT::i32:
6960  case MVT::i64:
6961    return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6962  case MVT::f32:
6963    return &PPC::F4RCRegClass;
6964  case MVT::f64:
6965    return &PPC::F8RCRegClass;
6966  }
6967}
6968
6969static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6970                                        SelectionDAG &DAG, SDValue ArgValue,
6971                                        MVT LocVT, const SDLoc &dl) {
6972  assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6973  assert(ValVT.getSizeInBits() < LocVT.getSizeInBits());
6974
6975  if (Flags.isSExt())
6976    ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6977                           DAG.getValueType(ValVT));
6978  else if (Flags.isZExt())
6979    ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6980                           DAG.getValueType(ValVT));
6981
6982  return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6983}
6984
6985SDValue PPCTargetLowering::LowerFormalArguments_AIX(
6986    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
6987    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6988    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
6989
6990  assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
6991          CallConv == CallingConv::Fast) &&
6992         "Unexpected calling convention!");
6993
6994  if (isVarArg)
6995    report_fatal_error("This call type is unimplemented on AIX.");
6996
6997  if (getTargetMachine().Options.GuaranteedTailCallOpt)
6998    report_fatal_error("Tail call support is unimplemented on AIX.");
6999
7000  if (useSoftFloat())
7001    report_fatal_error("Soft float support is unimplemented on AIX.");
7002
7003  const PPCSubtarget &Subtarget =
7004      static_cast<const PPCSubtarget &>(DAG.getSubtarget());
7005  if (Subtarget.hasQPX())
7006    report_fatal_error("QPX support is not supported on AIX.");
7007
7008  const bool IsPPC64 = Subtarget.isPPC64();
7009  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7010
7011  // Assign locations to all of the incoming arguments.
7012  SmallVector<CCValAssign, 16> ArgLocs;
7013  MachineFunction &MF = DAG.getMachineFunction();
7014  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7015
7016  // Reserve space for the linkage area on the stack.
7017  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7018  // On AIX a minimum of 8 words is saved to the parameter save area.
7019  const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7020  CCInfo.AllocateStack(LinkageSize + MinParameterSaveArea, PtrByteSize);
7021  CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7022
7023  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
7024    CCValAssign &VA = ArgLocs[i];
7025    SDValue ArgValue;
7026    ISD::ArgFlagsTy Flags = Ins[i].Flags;
7027    if (VA.isRegLoc()) {
7028      EVT ValVT = VA.getValVT();
7029      MVT LocVT = VA.getLocVT();
7030      MVT::SimpleValueType SVT = ValVT.getSimpleVT().SimpleTy;
7031      unsigned VReg =
7032          MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64));
7033      ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7034      if (ValVT.isScalarInteger() &&
7035          (ValVT.getSizeInBits() < LocVT.getSizeInBits())) {
7036        ArgValue =
7037            truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7038      }
7039      InVals.push_back(ArgValue);
7040    } else {
7041      report_fatal_error("Handling of formal arguments on the stack is "
7042                         "unimplemented!");
7043    }
7044  }
7045
7046  // Area that is at least reserved in the caller of this function.
7047  unsigned MinReservedArea = CCInfo.getNextStackOffset();
7048
7049  // Set the size that is at least reserved in caller of this function. Tail
7050  // call optimized function's reserved stack space needs to be aligned so
7051  // that taking the difference between two stack areas will result in an
7052  // aligned stack.
7053  MinReservedArea =
7054      EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
7055  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7056  FuncInfo->setMinReservedArea(MinReservedArea);
7057
7058  return Chain;
7059}
7060
7061SDValue PPCTargetLowering::LowerCall_AIX(
7062    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool isVarArg,
7063    bool isTailCall, bool isPatchPoint,
7064    const SmallVectorImpl<ISD::OutputArg> &Outs,
7065    const SmallVectorImpl<SDValue> &OutVals,
7066    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7067    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7068    ImmutableCallSite CS) const {
7069
7070  assert((CallConv == CallingConv::C ||
7071          CallConv == CallingConv::Cold ||
7072          CallConv == CallingConv::Fast) && "Unexpected calling convention!");
7073
7074  if (isPatchPoint)
7075    report_fatal_error("This call type is unimplemented on AIX.");
7076
7077  const PPCSubtarget& Subtarget =
7078      static_cast<const PPCSubtarget&>(DAG.getSubtarget());
7079  if (Subtarget.hasQPX())
7080    report_fatal_error("QPX is not supported on AIX.");
7081  if (Subtarget.hasAltivec())
7082    report_fatal_error("Altivec support is unimplemented on AIX.");
7083
7084  MachineFunction &MF = DAG.getMachineFunction();
7085  SmallVector<CCValAssign, 16> ArgLocs;
7086  CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7087
7088  // Reserve space for the linkage save area (LSA) on the stack.
7089  // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7090  //   [SP][CR][LR][2 x reserved][TOC].
7091  // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7092  const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7093  const bool IsPPC64 = Subtarget.isPPC64();
7094  const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7095  CCInfo.AllocateStack(LinkageSize, PtrByteSize);
7096  CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7097
7098  // The prolog code of the callee may store up to 8 GPR argument registers to
7099  // the stack, allowing va_start to index over them in memory if the callee
7100  // is variadic.
7101  // Because we cannot tell if this is needed on the caller side, we have to
7102  // conservatively assume that it is needed.  As such, make sure we have at
7103  // least enough stack space for the caller to store the 8 GPRs.
7104  const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7105  const unsigned NumBytes = LinkageSize + MinParameterSaveAreaSize;
7106
7107  // Adjust the stack pointer for the new arguments...
7108  // These operations are automatically eliminated by the prolog/epilog pass.
7109  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7110  SDValue CallSeqStart = Chain;
7111
7112  SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7113
7114  for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7115    CCValAssign &VA = ArgLocs[I++];
7116
7117    if (VA.isMemLoc())
7118      report_fatal_error("Handling of placing parameters on the stack is "
7119                         "unimplemented!");
7120    if (!VA.isRegLoc())
7121      report_fatal_error(
7122          "Unexpected non-register location for function call argument.");
7123
7124    SDValue Arg = OutVals[VA.getValNo()];
7125
7126    if (!VA.needsCustom()) {
7127      switch (VA.getLocInfo()) {
7128      default:
7129        report_fatal_error("Unexpected argument extension type.");
7130      case CCValAssign::Full:
7131        break;
7132      case CCValAssign::ZExt:
7133        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7134        break;
7135      case CCValAssign::SExt:
7136        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7137        break;
7138      }
7139      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7140
7141      continue;
7142    }
7143
7144    // Custom handling is used for GPR initializations for vararg float
7145    // arguments.
7146    assert(isVarArg && VA.getValVT().isFloatingPoint() &&
7147           VA.getLocVT().isInteger() &&
7148           "Unexpected custom register handling for calling convention.");
7149
7150    SDValue ArgAsInt =
7151        DAG.getBitcast(MVT::getIntegerVT(VA.getValVT().getSizeInBits()), Arg);
7152
7153    if (Arg.getValueType().getStoreSize() == VA.getLocVT().getStoreSize())
7154      // f32 in 32-bit GPR
7155      // f64 in 64-bit GPR
7156      RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7157    else if (Arg.getValueType().getSizeInBits() < VA.getLocVT().getSizeInBits())
7158      // f32 in 64-bit GPR.
7159      RegsToPass.push_back(std::make_pair(
7160          VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, VA.getLocVT())));
7161    else {
7162      // f64 in two 32-bit GPRs
7163      // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7164      assert(Arg.getValueType() == MVT::f64 && isVarArg && !IsPPC64 &&
7165             "Unexpected custom register for argument!");
7166      CCValAssign &GPR1 = VA;
7167      SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7168                                     DAG.getConstant(32, dl, MVT::i8));
7169      RegsToPass.push_back(std::make_pair(
7170          GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7171      assert(I != E && "A second custom GPR is expected!");
7172      CCValAssign &GPR2 = ArgLocs[I++];
7173      assert(GPR2.isRegLoc() && GPR2.getValNo() == GPR1.getValNo() &&
7174             GPR2.needsCustom() && "A second custom GPR is expected!");
7175      RegsToPass.push_back(std::make_pair(
7176          GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7177    }
7178  }
7179
7180  // For indirect calls, we need to save the TOC base to the stack for
7181  // restoration after the call.
7182  if (!isTailCall && !isPatchPoint &&
7183      !isFunctionGlobalAddress(Callee) && !isa<ExternalSymbolSDNode>(Callee)) {
7184    const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7185    const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7186    const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7187    const unsigned TOCSaveOffset =
7188        Subtarget.getFrameLowering()->getTOCSaveOffset();
7189
7190    setUsesTOCBasePtr(DAG);
7191    SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7192    SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7193    SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7194    SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7195    Chain = DAG.getStore(
7196        Val.getValue(1), dl, Val, AddPtr,
7197        MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7198  }
7199
7200  // Build a sequence of copy-to-reg nodes chained together with token chain
7201  // and flag operands which copy the outgoing args into the appropriate regs.
7202  SDValue InFlag;
7203  for (auto Reg : RegsToPass) {
7204    Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InFlag);
7205    InFlag = Chain.getValue(1);
7206  }
7207
7208  const int SPDiff = 0;
7209  return FinishCall(CallConv, dl, isTailCall, isVarArg, isPatchPoint,
7210                    /* unused except on PPC64 ELFv1 */ false, DAG, RegsToPass,
7211                    InFlag, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins,
7212                    InVals, CS);
7213}
7214
7215bool
7216PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7217                                  MachineFunction &MF, bool isVarArg,
7218                                  const SmallVectorImpl<ISD::OutputArg> &Outs,
7219                                  LLVMContext &Context) const {
7220  SmallVector<CCValAssign, 16> RVLocs;
7221  CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7222  return CCInfo.CheckReturn(
7223      Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7224                ? RetCC_PPC_Cold
7225                : RetCC_PPC);
7226}
7227
7228SDValue
7229PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7230                               bool isVarArg,
7231                               const SmallVectorImpl<ISD::OutputArg> &Outs,
7232                               const SmallVectorImpl<SDValue> &OutVals,
7233                               const SDLoc &dl, SelectionDAG &DAG) const {
7234  SmallVector<CCValAssign, 16> RVLocs;
7235  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7236                 *DAG.getContext());
7237  CCInfo.AnalyzeReturn(Outs,
7238                       (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7239                           ? RetCC_PPC_Cold
7240                           : RetCC_PPC);
7241
7242  SDValue Flag;
7243  SmallVector<SDValue, 4> RetOps(1, Chain);
7244
7245  // Copy the result values into the output registers.
7246  for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7247    CCValAssign &VA = RVLocs[i];
7248    assert(VA.isRegLoc() && "Can only return in registers!");
7249
7250    SDValue Arg = OutVals[RealResIdx];
7251
7252    switch (VA.getLocInfo()) {
7253    default: llvm_unreachable("Unknown loc info!");
7254    case CCValAssign::Full: break;
7255    case CCValAssign::AExt:
7256      Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7257      break;
7258    case CCValAssign::ZExt:
7259      Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7260      break;
7261    case CCValAssign::SExt:
7262      Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7263      break;
7264    }
7265    if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7266      bool isLittleEndian = Subtarget.isLittleEndian();
7267      // Legalize ret f64 -> ret 2 x i32.
7268      SDValue SVal =
7269          DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7270                      DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7271      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7272      RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7273      SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7274                         DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7275      Flag = Chain.getValue(1);
7276      VA = RVLocs[++i]; // skip ahead to next loc
7277      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Flag);
7278    } else
7279      Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
7280    Flag = Chain.getValue(1);
7281    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7282  }
7283
7284  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
7285  const MCPhysReg *I =
7286    TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
7287  if (I) {
7288    for (; *I; ++I) {
7289
7290      if (PPC::G8RCRegClass.contains(*I))
7291        RetOps.push_back(DAG.getRegister(*I, MVT::i64));
7292      else if (PPC::F8RCRegClass.contains(*I))
7293        RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
7294      else if (PPC::CRRCRegClass.contains(*I))
7295        RetOps.push_back(DAG.getRegister(*I, MVT::i1));
7296      else if (PPC::VRRCRegClass.contains(*I))
7297        RetOps.push_back(DAG.getRegister(*I, MVT::Other));
7298      else
7299        llvm_unreachable("Unexpected register class in CSRsViaCopy!");
7300    }
7301  }
7302
7303  RetOps[0] = Chain;  // Update chain.
7304
7305  // Add the flag if we have it.
7306  if (Flag.getNode())
7307    RetOps.push_back(Flag);
7308
7309  return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, RetOps);
7310}
7311
7312SDValue
7313PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7314                                                SelectionDAG &DAG) const {
7315  SDLoc dl(Op);
7316
7317  // Get the correct type for integers.
7318  EVT IntVT = Op.getValueType();
7319
7320  // Get the inputs.
7321  SDValue Chain = Op.getOperand(0);
7322  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7323  // Build a DYNAREAOFFSET node.
7324  SDValue Ops[2] = {Chain, FPSIdx};
7325  SDVTList VTs = DAG.getVTList(IntVT);
7326  return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7327}
7328
7329SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7330                                             SelectionDAG &DAG) const {
7331  // When we pop the dynamic allocation we need to restore the SP link.
7332  SDLoc dl(Op);
7333
7334  // Get the correct type for pointers.
7335  EVT PtrVT = getPointerTy(DAG.getDataLayout());
7336
7337  // Construct the stack pointer operand.
7338  bool isPPC64 = Subtarget.isPPC64();
7339  unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7340  SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7341
7342  // Get the operands for the STACKRESTORE.
7343  SDValue Chain = Op.getOperand(0);
7344  SDValue SaveSP = Op.getOperand(1);
7345
7346  // Load the old link SP.
7347  SDValue LoadLinkSP =
7348      DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7349
7350  // Restore the stack pointer.
7351  Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7352
7353  // Store the old link SP.
7354  return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7355}
7356
7357SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7358  MachineFunction &MF = DAG.getMachineFunction();
7359  bool isPPC64 = Subtarget.isPPC64();
7360  EVT PtrVT = getPointerTy(MF.getDataLayout());
7361
7362  // Get current frame pointer save index.  The users of this index will be
7363  // primarily DYNALLOC instructions.
7364  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7365  int RASI = FI->getReturnAddrSaveIndex();
7366
7367  // If the frame pointer save index hasn't been defined yet.
7368  if (!RASI) {
7369    // Find out what the fix offset of the frame pointer save area.
7370    int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7371    // Allocate the frame index for frame pointer save area.
7372    RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7373    // Save the result.
7374    FI->setReturnAddrSaveIndex(RASI);
7375  }
7376  return DAG.getFrameIndex(RASI, PtrVT);
7377}
7378
7379SDValue
7380PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7381  MachineFunction &MF = DAG.getMachineFunction();
7382  bool isPPC64 = Subtarget.isPPC64();
7383  EVT PtrVT = getPointerTy(MF.getDataLayout());
7384
7385  // Get current frame pointer save index.  The users of this index will be
7386  // primarily DYNALLOC instructions.
7387  PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7388  int FPSI = FI->getFramePointerSaveIndex();
7389
7390  // If the frame pointer save index hasn't been defined yet.
7391  if (!FPSI) {
7392    // Find out what the fix offset of the frame pointer save area.
7393    int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7394    // Allocate the frame index for frame pointer save area.
7395    FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7396    // Save the result.
7397    FI->setFramePointerSaveIndex(FPSI);
7398  }
7399  return DAG.getFrameIndex(FPSI, PtrVT);
7400}
7401
7402SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7403                                                   SelectionDAG &DAG) const {
7404  // Get the inputs.
7405  SDValue Chain = Op.getOperand(0);
7406  SDValue Size  = Op.getOperand(1);
7407  SDLoc dl(Op);
7408
7409  // Get the correct type for pointers.
7410  EVT PtrVT = getPointerTy(DAG.getDataLayout());
7411  // Negate the size.
7412  SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7413                                DAG.getConstant(0, dl, PtrVT), Size);
7414  // Construct a node for the frame pointer save index.
7415  SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7416  // Build a DYNALLOC node.
7417  SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7418  SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7419  return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7420}
7421
7422SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7423                                                     SelectionDAG &DAG) const {
7424  MachineFunction &MF = DAG.getMachineFunction();
7425
7426  bool isPPC64 = Subtarget.isPPC64();
7427  EVT PtrVT = getPointerTy(DAG.getDataLayout());
7428
7429  int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7430  return DAG.getFrameIndex(FI, PtrVT);
7431}
7432
7433SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7434                                               SelectionDAG &DAG) const {
7435  SDLoc DL(Op);
7436  return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7437                     DAG.getVTList(MVT::i32, MVT::Other),
7438                     Op.getOperand(0), Op.getOperand(1));
7439}
7440
7441SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7442                                                SelectionDAG &DAG) const {
7443  SDLoc DL(Op);
7444  return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7445                     Op.getOperand(0), Op.getOperand(1));
7446}
7447
7448SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7449  if (Op.getValueType().isVector())
7450    return LowerVectorLoad(Op, DAG);
7451
7452  assert(Op.getValueType() == MVT::i1 &&
7453         "Custom lowering only for i1 loads");
7454
7455  // First, load 8 bits into 32 bits, then truncate to 1 bit.
7456
7457  SDLoc dl(Op);
7458  LoadSDNode *LD = cast<LoadSDNode>(Op);
7459
7460  SDValue Chain = LD->getChain();
7461  SDValue BasePtr = LD->getBasePtr();
7462  MachineMemOperand *MMO = LD->getMemOperand();
7463
7464  SDValue NewLD =
7465      DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7466                     BasePtr, MVT::i8, MMO);
7467  SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7468
7469  SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7470  return DAG.getMergeValues(Ops, dl);
7471}
7472
7473SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7474  if (Op.getOperand(1).getValueType().isVector())
7475    return LowerVectorStore(Op, DAG);
7476
7477  assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7478         "Custom lowering only for i1 stores");
7479
7480  // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7481
7482  SDLoc dl(Op);
7483  StoreSDNode *ST = cast<StoreSDNode>(Op);
7484
7485  SDValue Chain = ST->getChain();
7486  SDValue BasePtr = ST->getBasePtr();
7487  SDValue Value = ST->getValue();
7488  MachineMemOperand *MMO = ST->getMemOperand();
7489
7490  Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7491                      Value);
7492  return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7493}
7494
7495// FIXME: Remove this once the ANDI glue bug is fixed:
7496SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7497  assert(Op.getValueType() == MVT::i1 &&
7498         "Custom lowering only for i1 results");
7499
7500  SDLoc DL(Op);
7501  return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7502}
7503
7504SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7505                                               SelectionDAG &DAG) const {
7506
7507  // Implements a vector truncate that fits in a vector register as a shuffle.
7508  // We want to legalize vector truncates down to where the source fits in
7509  // a vector register (and target is therefore smaller than vector register
7510  // size).  At that point legalization will try to custom lower the sub-legal
7511  // result and get here - where we can contain the truncate as a single target
7512  // operation.
7513
7514  // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7515  //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7516  //
7517  // We will implement it for big-endian ordering as this (where x denotes
7518  // undefined):
7519  //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7520  //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7521  //
7522  // The same operation in little-endian ordering will be:
7523  //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7524  //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7525
7526  assert(Op.getValueType().isVector() && "Vector type expected.");
7527
7528  SDLoc DL(Op);
7529  SDValue N1 = Op.getOperand(0);
7530  unsigned SrcSize = N1.getValueType().getSizeInBits();
7531  assert(SrcSize <= 128 && "Source must fit in an Altivec/VSX vector");
7532  SDValue WideSrc = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
7533
7534  EVT TrgVT = Op.getValueType();
7535  unsigned TrgNumElts = TrgVT.getVectorNumElements();
7536  EVT EltVT = TrgVT.getVectorElementType();
7537  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7538  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7539
7540  // First list the elements we want to keep.
7541  unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
7542  SmallVector<int, 16> ShuffV;
7543  if (Subtarget.isLittleEndian())
7544    for (unsigned i = 0; i < TrgNumElts; ++i)
7545      ShuffV.push_back(i * SizeMult);
7546  else
7547    for (unsigned i = 1; i <= TrgNumElts; ++i)
7548      ShuffV.push_back(i * SizeMult - 1);
7549
7550  // Populate the remaining elements with undefs.
7551  for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
7552    // ShuffV.push_back(i + WideNumElts);
7553    ShuffV.push_back(WideNumElts + 1);
7554
7555  SDValue Conv = DAG.getNode(ISD::BITCAST, DL, WideVT, WideSrc);
7556  return DAG.getVectorShuffle(WideVT, DL, Conv, DAG.getUNDEF(WideVT), ShuffV);
7557}
7558
7559/// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
7560/// possible.
7561SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
7562  // Not FP? Not a fsel.
7563  if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
7564      !Op.getOperand(2).getValueType().isFloatingPoint())
7565    return Op;
7566
7567  bool HasNoInfs = DAG.getTarget().Options.NoInfsFPMath;
7568  bool HasNoNaNs = DAG.getTarget().Options.NoNaNsFPMath;
7569  // We might be able to do better than this under some circumstances, but in
7570  // general, fsel-based lowering of select is a finite-math-only optimization.
7571  // For more information, see section F.3 of the 2.06 ISA specification.
7572  // With ISA 3.0, we have xsmaxcdp/xsmincdp which are OK to emit even in the
7573  // presence of infinities.
7574  if (!Subtarget.hasP9Vector() && (!HasNoInfs || !HasNoNaNs))
7575    return Op;
7576  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
7577
7578  EVT ResVT = Op.getValueType();
7579  EVT CmpVT = Op.getOperand(0).getValueType();
7580  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
7581  SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
7582  SDLoc dl(Op);
7583
7584  if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
7585    switch (CC) {
7586    default:
7587      // Not a min/max but with finite math, we may still be able to use fsel.
7588      if (HasNoInfs && HasNoNaNs)
7589        break;
7590      return Op;
7591    case ISD::SETOGT:
7592    case ISD::SETGT:
7593      return DAG.getNode(PPCISD::XSMAXCDP, dl, Op.getValueType(), LHS, RHS);
7594    case ISD::SETOLT:
7595    case ISD::SETLT:
7596      return DAG.getNode(PPCISD::XSMINCDP, dl, Op.getValueType(), LHS, RHS);
7597    }
7598  }
7599
7600  // TODO: Propagate flags from the select rather than global settings.
7601  SDNodeFlags Flags;
7602  Flags.setNoInfs(true);
7603  Flags.setNoNaNs(true);
7604
7605  // If the RHS of the comparison is a 0.0, we don't need to do the
7606  // subtraction at all.
7607  SDValue Sel1;
7608  if (isFloatingPointZero(RHS))
7609    switch (CC) {
7610    default: break;       // SETUO etc aren't handled by fsel.
7611    case ISD::SETNE:
7612      std::swap(TV, FV);
7613      LLVM_FALLTHROUGH;
7614    case ISD::SETEQ:
7615      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7616        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7617      Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7618      if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7619        Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7620      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7621                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
7622    case ISD::SETULT:
7623    case ISD::SETLT:
7624      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7625      LLVM_FALLTHROUGH;
7626    case ISD::SETOGE:
7627    case ISD::SETGE:
7628      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7629        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7630      return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
7631    case ISD::SETUGT:
7632    case ISD::SETGT:
7633      std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
7634      LLVM_FALLTHROUGH;
7635    case ISD::SETOLE:
7636    case ISD::SETLE:
7637      if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
7638        LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
7639      return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7640                         DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
7641    }
7642
7643  SDValue Cmp;
7644  switch (CC) {
7645  default: break;       // SETUO etc aren't handled by fsel.
7646  case ISD::SETNE:
7647    std::swap(TV, FV);
7648    LLVM_FALLTHROUGH;
7649  case ISD::SETEQ:
7650    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7651    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7652      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7653    Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7654    if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
7655      Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
7656    return DAG.getNode(PPCISD::FSEL, dl, ResVT,
7657                       DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
7658  case ISD::SETULT:
7659  case ISD::SETLT:
7660    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7661    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7662      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7663    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7664  case ISD::SETOGE:
7665  case ISD::SETGE:
7666    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
7667    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7668      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7669    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7670  case ISD::SETUGT:
7671  case ISD::SETGT:
7672    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7673    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7674      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7675    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
7676  case ISD::SETOLE:
7677  case ISD::SETLE:
7678    Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
7679    if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
7680      Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
7681    return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
7682  }
7683  return Op;
7684}
7685
7686void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
7687                                               SelectionDAG &DAG,
7688                                               const SDLoc &dl) const {
7689  assert(Op.getOperand(0).getValueType().isFloatingPoint());
7690  SDValue Src = Op.getOperand(0);
7691  if (Src.getValueType() == MVT::f32)
7692    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7693
7694  SDValue Tmp;
7695  switch (Op.getSimpleValueType().SimpleTy) {
7696  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7697  case MVT::i32:
7698    Tmp = DAG.getNode(
7699        Op.getOpcode() == ISD::FP_TO_SINT
7700            ? PPCISD::FCTIWZ
7701            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7702        dl, MVT::f64, Src);
7703    break;
7704  case MVT::i64:
7705    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7706           "i64 FP_TO_UINT is supported only with FPCVT");
7707    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7708                                                        PPCISD::FCTIDUZ,
7709                      dl, MVT::f64, Src);
7710    break;
7711  }
7712
7713  // Convert the FP value to an int value through memory.
7714  bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
7715    (Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT());
7716  SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
7717  int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
7718  MachinePointerInfo MPI =
7719      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
7720
7721  // Emit a store to the stack slot.
7722  SDValue Chain;
7723  if (i32Stack) {
7724    MachineFunction &MF = DAG.getMachineFunction();
7725    MachineMemOperand *MMO =
7726      MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, 4);
7727    SDValue Ops[] = { DAG.getEntryNode(), Tmp, FIPtr };
7728    Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
7729              DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
7730  } else
7731    Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr, MPI);
7732
7733  // Result is a load from the stack slot.  If loading 4 bytes, make sure to
7734  // add in a bias on big endian.
7735  if (Op.getValueType() == MVT::i32 && !i32Stack) {
7736    FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
7737                        DAG.getConstant(4, dl, FIPtr.getValueType()));
7738    MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
7739  }
7740
7741  RLI.Chain = Chain;
7742  RLI.Ptr = FIPtr;
7743  RLI.MPI = MPI;
7744}
7745
7746/// Custom lowers floating point to integer conversions to use
7747/// the direct move instructions available in ISA 2.07 to avoid the
7748/// need for load/store combinations.
7749SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
7750                                                    SelectionDAG &DAG,
7751                                                    const SDLoc &dl) const {
7752  assert(Op.getOperand(0).getValueType().isFloatingPoint());
7753  SDValue Src = Op.getOperand(0);
7754
7755  if (Src.getValueType() == MVT::f32)
7756    Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
7757
7758  SDValue Tmp;
7759  switch (Op.getSimpleValueType().SimpleTy) {
7760  default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
7761  case MVT::i32:
7762    Tmp = DAG.getNode(
7763        Op.getOpcode() == ISD::FP_TO_SINT
7764            ? PPCISD::FCTIWZ
7765            : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ),
7766        dl, MVT::f64, Src);
7767    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i32, Tmp);
7768    break;
7769  case MVT::i64:
7770    assert((Op.getOpcode() == ISD::FP_TO_SINT || Subtarget.hasFPCVT()) &&
7771           "i64 FP_TO_UINT is supported only with FPCVT");
7772    Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
7773                                                        PPCISD::FCTIDUZ,
7774                      dl, MVT::f64, Src);
7775    Tmp = DAG.getNode(PPCISD::MFVSR, dl, MVT::i64, Tmp);
7776    break;
7777  }
7778  return Tmp;
7779}
7780
7781SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
7782                                          const SDLoc &dl) const {
7783
7784  // FP to INT conversions are legal for f128.
7785  if (EnableQuadPrecision && (Op->getOperand(0).getValueType() == MVT::f128))
7786    return Op;
7787
7788  // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
7789  // PPC (the libcall is not available).
7790  if (Op.getOperand(0).getValueType() == MVT::ppcf128) {
7791    if (Op.getValueType() == MVT::i32) {
7792      if (Op.getOpcode() == ISD::FP_TO_SINT) {
7793        SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7794                                 MVT::f64, Op.getOperand(0),
7795                                 DAG.getIntPtrConstant(0, dl));
7796        SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
7797                                 MVT::f64, Op.getOperand(0),
7798                                 DAG.getIntPtrConstant(1, dl));
7799
7800        // Add the two halves of the long double in round-to-zero mode.
7801        SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
7802
7803        // Now use a smaller FP_TO_SINT.
7804        return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
7805      }
7806      if (Op.getOpcode() == ISD::FP_TO_UINT) {
7807        const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
7808        APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
7809        SDValue Tmp = DAG.getConstantFP(APF, dl, MVT::ppcf128);
7810        //  X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
7811        // FIXME: generated code sucks.
7812        // TODO: Are there fast-math-flags to propagate to this FSUB?
7813        SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128,
7814                                   Op.getOperand(0), Tmp);
7815        True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
7816        True = DAG.getNode(ISD::ADD, dl, MVT::i32, True,
7817                           DAG.getConstant(0x80000000, dl, MVT::i32));
7818        SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32,
7819                                    Op.getOperand(0));
7820        return DAG.getSelectCC(dl, Op.getOperand(0), Tmp, True, False,
7821                               ISD::SETGE);
7822      }
7823    }
7824
7825    return SDValue();
7826  }
7827
7828  if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
7829    return LowerFP_TO_INTDirectMove(Op, DAG, dl);
7830
7831  ReuseLoadInfo RLI;
7832  LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7833
7834  return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
7835                     RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
7836}
7837
7838// We're trying to insert a regular store, S, and then a load, L. If the
7839// incoming value, O, is a load, we might just be able to have our load use the
7840// address used by O. However, we don't know if anything else will store to
7841// that address before we can load from it. To prevent this situation, we need
7842// to insert our load, L, into the chain as a peer of O. To do this, we give L
7843// the same chain operand as O, we create a token factor from the chain results
7844// of O and L, and we replace all uses of O's chain result with that token
7845// factor (see spliceIntoChain below for this last part).
7846bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
7847                                            ReuseLoadInfo &RLI,
7848                                            SelectionDAG &DAG,
7849                                            ISD::LoadExtType ET) const {
7850  SDLoc dl(Op);
7851  bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
7852                       (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
7853  if (ET == ISD::NON_EXTLOAD &&
7854      (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
7855      isOperationLegalOrCustom(Op.getOpcode(),
7856                               Op.getOperand(0).getValueType())) {
7857
7858    LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
7859    return true;
7860  }
7861
7862  LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
7863  if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
7864      LD->isNonTemporal())
7865    return false;
7866  if (LD->getMemoryVT() != MemVT)
7867    return false;
7868
7869  RLI.Ptr = LD->getBasePtr();
7870  if (LD->isIndexed() && !LD->getOffset().isUndef()) {
7871    assert(LD->getAddressingMode() == ISD::PRE_INC &&
7872           "Non-pre-inc AM on PPC?");
7873    RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
7874                          LD->getOffset());
7875  }
7876
7877  RLI.Chain = LD->getChain();
7878  RLI.MPI = LD->getPointerInfo();
7879  RLI.IsDereferenceable = LD->isDereferenceable();
7880  RLI.IsInvariant = LD->isInvariant();
7881  RLI.Alignment = LD->getAlignment();
7882  RLI.AAInfo = LD->getAAInfo();
7883  RLI.Ranges = LD->getRanges();
7884
7885  RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
7886  return true;
7887}
7888
7889// Given the head of the old chain, ResChain, insert a token factor containing
7890// it and NewResChain, and make users of ResChain now be users of that token
7891// factor.
7892// TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
7893void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
7894                                        SDValue NewResChain,
7895                                        SelectionDAG &DAG) const {
7896  if (!ResChain)
7897    return;
7898
7899  SDLoc dl(NewResChain);
7900
7901  SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
7902                           NewResChain, DAG.getUNDEF(MVT::Other));
7903  assert(TF.getNode() != NewResChain.getNode() &&
7904         "A new TF really is required here");
7905
7906  DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
7907  DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
7908}
7909
7910/// Analyze profitability of direct move
7911/// prefer float load to int load plus direct move
7912/// when there is no integer use of int load
7913bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
7914  SDNode *Origin = Op.getOperand(0).getNode();
7915  if (Origin->getOpcode() != ISD::LOAD)
7916    return true;
7917
7918  // If there is no LXSIBZX/LXSIHZX, like Power8,
7919  // prefer direct move if the memory size is 1 or 2 bytes.
7920  MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
7921  if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
7922    return true;
7923
7924  for (SDNode::use_iterator UI = Origin->use_begin(),
7925                            UE = Origin->use_end();
7926       UI != UE; ++UI) {
7927
7928    // Only look at the users of the loaded value.
7929    if (UI.getUse().get().getResNo() != 0)
7930      continue;
7931
7932    if (UI->getOpcode() != ISD::SINT_TO_FP &&
7933        UI->getOpcode() != ISD::UINT_TO_FP)
7934      return true;
7935  }
7936
7937  return false;
7938}
7939
7940/// Custom lowers integer to floating point conversions to use
7941/// the direct move instructions available in ISA 2.07 to avoid the
7942/// need for load/store combinations.
7943SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
7944                                                    SelectionDAG &DAG,
7945                                                    const SDLoc &dl) const {
7946  assert((Op.getValueType() == MVT::f32 ||
7947          Op.getValueType() == MVT::f64) &&
7948         "Invalid floating point type as target of conversion");
7949  assert(Subtarget.hasFPCVT() &&
7950         "Int to FP conversions with direct moves require FPCVT");
7951  SDValue FP;
7952  SDValue Src = Op.getOperand(0);
7953  bool SinglePrec = Op.getValueType() == MVT::f32;
7954  bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
7955  bool Signed = Op.getOpcode() == ISD::SINT_TO_FP;
7956  unsigned ConvOp = Signed ? (SinglePrec ? PPCISD::FCFIDS : PPCISD::FCFID) :
7957                             (SinglePrec ? PPCISD::FCFIDUS : PPCISD::FCFIDU);
7958
7959  if (WordInt) {
7960    FP = DAG.getNode(Signed ? PPCISD::MTVSRA : PPCISD::MTVSRZ,
7961                     dl, MVT::f64, Src);
7962    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7963  }
7964  else {
7965    FP = DAG.getNode(PPCISD::MTVSRA, dl, MVT::f64, Src);
7966    FP = DAG.getNode(ConvOp, dl, SinglePrec ? MVT::f32 : MVT::f64, FP);
7967  }
7968
7969  return FP;
7970}
7971
7972static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
7973
7974  EVT VecVT = Vec.getValueType();
7975  assert(VecVT.isVector() && "Expected a vector type.");
7976  assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
7977
7978  EVT EltVT = VecVT.getVectorElementType();
7979  unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7980  EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7981
7982  unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
7983  SmallVector<SDValue, 16> Ops(NumConcat);
7984  Ops[0] = Vec;
7985  SDValue UndefVec = DAG.getUNDEF(VecVT);
7986  for (unsigned i = 1; i < NumConcat; ++i)
7987    Ops[i] = UndefVec;
7988
7989  return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
7990}
7991
7992SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
7993                                                const SDLoc &dl) const {
7994
7995  unsigned Opc = Op.getOpcode();
7996  assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP) &&
7997         "Unexpected conversion type");
7998  assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
7999         "Supports conversions to v2f64/v4f32 only.");
8000
8001  bool SignedConv = Opc == ISD::SINT_TO_FP;
8002  bool FourEltRes = Op.getValueType() == MVT::v4f32;
8003
8004  SDValue Wide = widenVec(DAG, Op.getOperand(0), dl);
8005  EVT WideVT = Wide.getValueType();
8006  unsigned WideNumElts = WideVT.getVectorNumElements();
8007  MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8008
8009  SmallVector<int, 16> ShuffV;
8010  for (unsigned i = 0; i < WideNumElts; ++i)
8011    ShuffV.push_back(i + WideNumElts);
8012
8013  int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8014  int SaveElts = FourEltRes ? 4 : 2;
8015  if (Subtarget.isLittleEndian())
8016    for (int i = 0; i < SaveElts; i++)
8017      ShuffV[i * Stride] = i;
8018  else
8019    for (int i = 1; i <= SaveElts; i++)
8020      ShuffV[i * Stride - 1] = i - 1;
8021
8022  SDValue ShuffleSrc2 =
8023      SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8024  SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8025  unsigned ExtendOp =
8026      SignedConv ? (unsigned)PPCISD::SExtVElems : (unsigned)ISD::BITCAST;
8027
8028  SDValue Extend;
8029  if (!Subtarget.hasP9Altivec() && SignedConv) {
8030    Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8031    Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8032                         DAG.getValueType(Op.getOperand(0).getValueType()));
8033  } else
8034    Extend = DAG.getNode(ExtendOp, dl, IntermediateVT, Arrange);
8035
8036  return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8037}
8038
8039SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8040                                          SelectionDAG &DAG) const {
8041  SDLoc dl(Op);
8042
8043  EVT InVT = Op.getOperand(0).getValueType();
8044  EVT OutVT = Op.getValueType();
8045  if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8046      isOperationCustom(Op.getOpcode(), InVT))
8047    return LowerINT_TO_FPVector(Op, DAG, dl);
8048
8049  // Conversions to f128 are legal.
8050  if (EnableQuadPrecision && (Op.getValueType() == MVT::f128))
8051    return Op;
8052
8053  if (Subtarget.hasQPX() && Op.getOperand(0).getValueType() == MVT::v4i1) {
8054    if (Op.getValueType() != MVT::v4f32 && Op.getValueType() != MVT::v4f64)
8055      return SDValue();
8056
8057    SDValue Value = Op.getOperand(0);
8058    // The values are now known to be -1 (false) or 1 (true). To convert this
8059    // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
8060    // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
8061    Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
8062
8063    SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
8064
8065    Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
8066
8067    if (Op.getValueType() != MVT::v4f64)
8068      Value = DAG.getNode(ISD::FP_ROUND, dl,
8069                          Op.getValueType(), Value,
8070                          DAG.getIntPtrConstant(1, dl));
8071    return Value;
8072  }
8073
8074  // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8075  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8076    return SDValue();
8077
8078  if (Op.getOperand(0).getValueType() == MVT::i1)
8079    return DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Op.getOperand(0),
8080                       DAG.getConstantFP(1.0, dl, Op.getValueType()),
8081                       DAG.getConstantFP(0.0, dl, Op.getValueType()));
8082
8083  // If we have direct moves, we can do all the conversion, skip the store/load
8084  // however, without FPCVT we can't do most conversions.
8085  if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8086      Subtarget.isPPC64() && Subtarget.hasFPCVT())
8087    return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8088
8089  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
8090         "UINT_TO_FP is supported only with FPCVT");
8091
8092  // If we have FCFIDS, then use it when converting to single-precision.
8093  // Otherwise, convert to double-precision and then round.
8094  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8095                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
8096                                                            : PPCISD::FCFIDS)
8097                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
8098                                                            : PPCISD::FCFID);
8099  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
8100                  ? MVT::f32
8101                  : MVT::f64;
8102
8103  if (Op.getOperand(0).getValueType() == MVT::i64) {
8104    SDValue SINT = Op.getOperand(0);
8105    // When converting to single-precision, we actually need to convert
8106    // to double-precision first and then round to single-precision.
8107    // To avoid double-rounding effects during that operation, we have
8108    // to prepare the input operand.  Bits that might be truncated when
8109    // converting to double-precision are replaced by a bit that won't
8110    // be lost at this stage, but is below the single-precision rounding
8111    // position.
8112    //
8113    // However, if -enable-unsafe-fp-math is in effect, accept double
8114    // rounding to avoid the extra overhead.
8115    if (Op.getValueType() == MVT::f32 &&
8116        !Subtarget.hasFPCVT() &&
8117        !DAG.getTarget().Options.UnsafeFPMath) {
8118
8119      // Twiddle input to make sure the low 11 bits are zero.  (If this
8120      // is the case, we are guaranteed the value will fit into the 53 bit
8121      // mantissa of an IEEE double-precision value without rounding.)
8122      // If any of those low 11 bits were not zero originally, make sure
8123      // bit 12 (value 2048) is set instead, so that the final rounding
8124      // to single-precision gets the correct result.
8125      SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8126                                  SINT, DAG.getConstant(2047, dl, MVT::i64));
8127      Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8128                          Round, DAG.getConstant(2047, dl, MVT::i64));
8129      Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8130      Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8131                          Round, DAG.getConstant(-2048, dl, MVT::i64));
8132
8133      // However, we cannot use that value unconditionally: if the magnitude
8134      // of the input value is small, the bit-twiddling we did above might
8135      // end up visibly changing the output.  Fortunately, in that case, we
8136      // don't need to twiddle bits since the original input will convert
8137      // exactly to double-precision floating-point already.  Therefore,
8138      // construct a conditional to use the original value if the top 11
8139      // bits are all sign-bit copies, and use the rounded value computed
8140      // above otherwise.
8141      SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8142                                 SINT, DAG.getConstant(53, dl, MVT::i32));
8143      Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8144                         Cond, DAG.getConstant(1, dl, MVT::i64));
8145      Cond = DAG.getSetCC(dl, MVT::i32,
8146                          Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8147
8148      SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8149    }
8150
8151    ReuseLoadInfo RLI;
8152    SDValue Bits;
8153
8154    MachineFunction &MF = DAG.getMachineFunction();
8155    if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8156      Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8157                         RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8158      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8159    } else if (Subtarget.hasLFIWAX() &&
8160               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8161      MachineMemOperand *MMO =
8162        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8163                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8164      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8165      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8166                                     DAG.getVTList(MVT::f64, MVT::Other),
8167                                     Ops, MVT::i32, MMO);
8168      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8169    } else if (Subtarget.hasFPCVT() &&
8170               canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8171      MachineMemOperand *MMO =
8172        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8173                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8174      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8175      Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8176                                     DAG.getVTList(MVT::f64, MVT::Other),
8177                                     Ops, MVT::i32, MMO);
8178      spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8179    } else if (((Subtarget.hasLFIWAX() &&
8180                 SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8181                (Subtarget.hasFPCVT() &&
8182                 SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8183               SINT.getOperand(0).getValueType() == MVT::i32) {
8184      MachineFrameInfo &MFI = MF.getFrameInfo();
8185      EVT PtrVT = getPointerTy(DAG.getDataLayout());
8186
8187      int FrameIdx = MFI.CreateStackObject(4, 4, false);
8188      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8189
8190      SDValue Store =
8191          DAG.getStore(DAG.getEntryNode(), dl, SINT.getOperand(0), FIdx,
8192                       MachinePointerInfo::getFixedStack(
8193                           DAG.getMachineFunction(), FrameIdx));
8194
8195      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8196             "Expected an i32 store");
8197
8198      RLI.Ptr = FIdx;
8199      RLI.Chain = Store;
8200      RLI.MPI =
8201          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8202      RLI.Alignment = 4;
8203
8204      MachineMemOperand *MMO =
8205        MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8206                                RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8207      SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8208      Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8209                                     PPCISD::LFIWZX : PPCISD::LFIWAX,
8210                                     dl, DAG.getVTList(MVT::f64, MVT::Other),
8211                                     Ops, MVT::i32, MMO);
8212    } else
8213      Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8214
8215    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Bits);
8216
8217    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8218      FP = DAG.getNode(ISD::FP_ROUND, dl,
8219                       MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
8220    return FP;
8221  }
8222
8223  assert(Op.getOperand(0).getValueType() == MVT::i32 &&
8224         "Unhandled INT_TO_FP type in custom expander!");
8225  // Since we only generate this in 64-bit mode, we can take advantage of
8226  // 64-bit registers.  In particular, sign extend the input value into the
8227  // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8228  // then lfd it and fcfid it.
8229  MachineFunction &MF = DAG.getMachineFunction();
8230  MachineFrameInfo &MFI = MF.getFrameInfo();
8231  EVT PtrVT = getPointerTy(MF.getDataLayout());
8232
8233  SDValue Ld;
8234  if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8235    ReuseLoadInfo RLI;
8236    bool ReusingLoad;
8237    if (!(ReusingLoad = canReuseLoadAddress(Op.getOperand(0), MVT::i32, RLI,
8238                                            DAG))) {
8239      int FrameIdx = MFI.CreateStackObject(4, 4, false);
8240      SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8241
8242      SDValue Store =
8243          DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
8244                       MachinePointerInfo::getFixedStack(
8245                           DAG.getMachineFunction(), FrameIdx));
8246
8247      assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8248             "Expected an i32 store");
8249
8250      RLI.Ptr = FIdx;
8251      RLI.Chain = Store;
8252      RLI.MPI =
8253          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8254      RLI.Alignment = 4;
8255    }
8256
8257    MachineMemOperand *MMO =
8258      MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8259                              RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8260    SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8261    Ld = DAG.getMemIntrinsicNode(Op.getOpcode() == ISD::UINT_TO_FP ?
8262                                   PPCISD::LFIWZX : PPCISD::LFIWAX,
8263                                 dl, DAG.getVTList(MVT::f64, MVT::Other),
8264                                 Ops, MVT::i32, MMO);
8265    if (ReusingLoad)
8266      spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8267  } else {
8268    assert(Subtarget.isPPC64() &&
8269           "i32->FP without LFIWAX supported only on PPC64");
8270
8271    int FrameIdx = MFI.CreateStackObject(8, 8, false);
8272    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8273
8274    SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64,
8275                                Op.getOperand(0));
8276
8277    // STD the extended value into the stack slot.
8278    SDValue Store = DAG.getStore(
8279        DAG.getEntryNode(), dl, Ext64, FIdx,
8280        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8281
8282    // Load the value as a double.
8283    Ld = DAG.getLoad(
8284        MVT::f64, dl, Store, FIdx,
8285        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8286  }
8287
8288  // FCFID it and return it.
8289  SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Ld);
8290  if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT())
8291    FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8292                     DAG.getIntPtrConstant(0, dl));
8293  return FP;
8294}
8295
8296SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
8297                                            SelectionDAG &DAG) const {
8298  SDLoc dl(Op);
8299  /*
8300   The rounding mode is in bits 30:31 of FPSR, and has the following
8301   settings:
8302     00 Round to nearest
8303     01 Round to 0
8304     10 Round to +inf
8305     11 Round to -inf
8306
8307  FLT_ROUNDS, on the other hand, expects the following:
8308    -1 Undefined
8309     0 Round to 0
8310     1 Round to nearest
8311     2 Round to +inf
8312     3 Round to -inf
8313
8314  To perform the conversion, we do:
8315    ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8316  */
8317
8318  MachineFunction &MF = DAG.getMachineFunction();
8319  EVT VT = Op.getValueType();
8320  EVT PtrVT = getPointerTy(MF.getDataLayout());
8321
8322  // Save FP Control Word to register
8323  EVT NodeTys[] = {
8324    MVT::f64,    // return register
8325    MVT::Glue    // unused in this context
8326  };
8327  SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, None);
8328
8329  // Save FP register to stack slot
8330  int SSFI = MF.getFrameInfo().CreateStackObject(8, 8, false);
8331  SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8332  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain, StackSlot,
8333                               MachinePointerInfo());
8334
8335  // Load FP Control Word from low 32 bits of stack slot.
8336  SDValue Four = DAG.getConstant(4, dl, PtrVT);
8337  SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8338  SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo());
8339
8340  // Transform as necessary
8341  SDValue CWD1 =
8342    DAG.getNode(ISD::AND, dl, MVT::i32,
8343                CWD, DAG.getConstant(3, dl, MVT::i32));
8344  SDValue CWD2 =
8345    DAG.getNode(ISD::SRL, dl, MVT::i32,
8346                DAG.getNode(ISD::AND, dl, MVT::i32,
8347                            DAG.getNode(ISD::XOR, dl, MVT::i32,
8348                                        CWD, DAG.getConstant(3, dl, MVT::i32)),
8349                            DAG.getConstant(3, dl, MVT::i32)),
8350                DAG.getConstant(1, dl, MVT::i32));
8351
8352  SDValue RetVal =
8353    DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8354
8355  return DAG.getNode((VT.getSizeInBits() < 16 ?
8356                      ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
8357}
8358
8359SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8360  EVT VT = Op.getValueType();
8361  unsigned BitWidth = VT.getSizeInBits();
8362  SDLoc dl(Op);
8363  assert(Op.getNumOperands() == 3 &&
8364         VT == Op.getOperand(1).getValueType() &&
8365         "Unexpected SHL!");
8366
8367  // Expand into a bunch of logical ops.  Note that these ops
8368  // depend on the PPC behavior for oversized shift amounts.
8369  SDValue Lo = Op.getOperand(0);
8370  SDValue Hi = Op.getOperand(1);
8371  SDValue Amt = Op.getOperand(2);
8372  EVT AmtVT = Amt.getValueType();
8373
8374  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8375                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8376  SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8377  SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8378  SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8379  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8380                             DAG.getConstant(-BitWidth, dl, AmtVT));
8381  SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8382  SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8383  SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8384  SDValue OutOps[] = { OutLo, OutHi };
8385  return DAG.getMergeValues(OutOps, dl);
8386}
8387
8388SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8389  EVT VT = Op.getValueType();
8390  SDLoc dl(Op);
8391  unsigned BitWidth = VT.getSizeInBits();
8392  assert(Op.getNumOperands() == 3 &&
8393         VT == Op.getOperand(1).getValueType() &&
8394         "Unexpected SRL!");
8395
8396  // Expand into a bunch of logical ops.  Note that these ops
8397  // depend on the PPC behavior for oversized shift amounts.
8398  SDValue Lo = Op.getOperand(0);
8399  SDValue Hi = Op.getOperand(1);
8400  SDValue Amt = Op.getOperand(2);
8401  EVT AmtVT = Amt.getValueType();
8402
8403  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8404                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8405  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8406  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8407  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8408  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8409                             DAG.getConstant(-BitWidth, dl, AmtVT));
8410  SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
8411  SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8412  SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
8413  SDValue OutOps[] = { OutLo, OutHi };
8414  return DAG.getMergeValues(OutOps, dl);
8415}
8416
8417SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
8418  SDLoc dl(Op);
8419  EVT VT = Op.getValueType();
8420  unsigned BitWidth = VT.getSizeInBits();
8421  assert(Op.getNumOperands() == 3 &&
8422         VT == Op.getOperand(1).getValueType() &&
8423         "Unexpected SRA!");
8424
8425  // Expand into a bunch of logical ops, followed by a select_cc.
8426  SDValue Lo = Op.getOperand(0);
8427  SDValue Hi = Op.getOperand(1);
8428  SDValue Amt = Op.getOperand(2);
8429  EVT AmtVT = Amt.getValueType();
8430
8431  SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8432                             DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8433  SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
8434  SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
8435  SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8436  SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8437                             DAG.getConstant(-BitWidth, dl, AmtVT));
8438  SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
8439  SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
8440  SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
8441                                  Tmp4, Tmp6, ISD::SETLE);
8442  SDValue OutOps[] = { OutLo, OutHi };
8443  return DAG.getMergeValues(OutOps, dl);
8444}
8445
8446//===----------------------------------------------------------------------===//
8447// Vector related lowering.
8448//
8449
8450/// BuildSplatI - Build a canonical splati of Val with an element size of
8451/// SplatSize.  Cast the result to VT.
8452static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
8453                           SelectionDAG &DAG, const SDLoc &dl) {
8454  static const MVT VTys[] = { // canonical VT to use for each size.
8455    MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
8456  };
8457
8458  EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
8459
8460  // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
8461  if (Val == -1)
8462    SplatSize = 1;
8463
8464  EVT CanonicalVT = VTys[SplatSize-1];
8465
8466  // Build a canonical splat for this value.
8467  return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
8468}
8469
8470/// BuildIntrinsicOp - Return a unary operator intrinsic node with the
8471/// specified intrinsic ID.
8472static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
8473                                const SDLoc &dl, EVT DestVT = MVT::Other) {
8474  if (DestVT == MVT::Other) DestVT = Op.getValueType();
8475  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8476                     DAG.getConstant(IID, dl, MVT::i32), Op);
8477}
8478
8479/// BuildIntrinsicOp - Return a binary operator intrinsic node with the
8480/// specified intrinsic ID.
8481static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
8482                                SelectionDAG &DAG, const SDLoc &dl,
8483                                EVT DestVT = MVT::Other) {
8484  if (DestVT == MVT::Other) DestVT = LHS.getValueType();
8485  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8486                     DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
8487}
8488
8489/// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
8490/// specified intrinsic ID.
8491static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
8492                                SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
8493                                EVT DestVT = MVT::Other) {
8494  if (DestVT == MVT::Other) DestVT = Op0.getValueType();
8495  return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
8496                     DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
8497}
8498
8499/// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
8500/// amount.  The result has the specified value type.
8501static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
8502                           SelectionDAG &DAG, const SDLoc &dl) {
8503  // Force LHS/RHS to be the right type.
8504  LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
8505  RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
8506
8507  int Ops[16];
8508  for (unsigned i = 0; i != 16; ++i)
8509    Ops[i] = i + Amt;
8510  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
8511  return DAG.getNode(ISD::BITCAST, dl, VT, T);
8512}
8513
8514/// Do we have an efficient pattern in a .td file for this node?
8515///
8516/// \param V - pointer to the BuildVectorSDNode being matched
8517/// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
8518///
8519/// There are some patterns where it is beneficial to keep a BUILD_VECTOR
8520/// node as a BUILD_VECTOR node rather than expanding it. The patterns where
8521/// the opposite is true (expansion is beneficial) are:
8522/// - The node builds a vector out of integers that are not 32 or 64-bits
8523/// - The node builds a vector out of constants
8524/// - The node is a "load-and-splat"
8525/// In all other cases, we will choose to keep the BUILD_VECTOR.
8526static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
8527                                            bool HasDirectMove,
8528                                            bool HasP8Vector) {
8529  EVT VecVT = V->getValueType(0);
8530  bool RightType = VecVT == MVT::v2f64 ||
8531    (HasP8Vector && VecVT == MVT::v4f32) ||
8532    (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
8533  if (!RightType)
8534    return false;
8535
8536  bool IsSplat = true;
8537  bool IsLoad = false;
8538  SDValue Op0 = V->getOperand(0);
8539
8540  // This function is called in a block that confirms the node is not a constant
8541  // splat. So a constant BUILD_VECTOR here means the vector is built out of
8542  // different constants.
8543  if (V->isConstant())
8544    return false;
8545  for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
8546    if (V->getOperand(i).isUndef())
8547      return false;
8548    // We want to expand nodes that represent load-and-splat even if the
8549    // loaded value is a floating point truncation or conversion to int.
8550    if (V->getOperand(i).getOpcode() == ISD::LOAD ||
8551        (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
8552         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8553        (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
8554         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
8555        (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
8556         V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
8557      IsLoad = true;
8558    // If the operands are different or the input is not a load and has more
8559    // uses than just this BV node, then it isn't a splat.
8560    if (V->getOperand(i) != Op0 ||
8561        (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
8562      IsSplat = false;
8563  }
8564  return !(IsSplat && IsLoad);
8565}
8566
8567// Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
8568SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
8569
8570  SDLoc dl(Op);
8571  SDValue Op0 = Op->getOperand(0);
8572
8573  if (!EnableQuadPrecision ||
8574      (Op.getValueType() != MVT::f128 ) ||
8575      (Op0.getOpcode() != ISD::BUILD_PAIR) ||
8576      (Op0.getOperand(0).getValueType() !=  MVT::i64) ||
8577      (Op0.getOperand(1).getValueType() != MVT::i64))
8578    return SDValue();
8579
8580  return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
8581                     Op0.getOperand(1));
8582}
8583
8584static const SDValue *getNormalLoadInput(const SDValue &Op) {
8585  const SDValue *InputLoad = &Op;
8586  if (InputLoad->getOpcode() == ISD::BITCAST)
8587    InputLoad = &InputLoad->getOperand(0);
8588  if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR)
8589    InputLoad = &InputLoad->getOperand(0);
8590  if (InputLoad->getOpcode() != ISD::LOAD)
8591    return nullptr;
8592  LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8593  return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
8594}
8595
8596// If this is a case we can't handle, return null and let the default
8597// expansion code take care of it.  If we CAN select this case, and if it
8598// selects to a single instruction, return Op.  Otherwise, if we can codegen
8599// this case more efficiently than a constant pool load, lower it to the
8600// sequence of ops that should be used.
8601SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
8602                                             SelectionDAG &DAG) const {
8603  SDLoc dl(Op);
8604  BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
8605  assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
8606
8607  if (Subtarget.hasQPX() && Op.getValueType() == MVT::v4i1) {
8608    // We first build an i32 vector, load it into a QPX register,
8609    // then convert it to a floating-point vector and compare it
8610    // to a zero vector to get the boolean result.
8611    MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8612    int FrameIdx = MFI.CreateStackObject(16, 16, false);
8613    MachinePointerInfo PtrInfo =
8614        MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8615    EVT PtrVT = getPointerTy(DAG.getDataLayout());
8616    SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8617
8618    assert(BVN->getNumOperands() == 4 &&
8619      "BUILD_VECTOR for v4i1 does not have 4 operands");
8620
8621    bool IsConst = true;
8622    for (unsigned i = 0; i < 4; ++i) {
8623      if (BVN->getOperand(i).isUndef()) continue;
8624      if (!isa<ConstantSDNode>(BVN->getOperand(i))) {
8625        IsConst = false;
8626        break;
8627      }
8628    }
8629
8630    if (IsConst) {
8631      Constant *One =
8632        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), 1.0);
8633      Constant *NegOne =
8634        ConstantFP::get(Type::getFloatTy(*DAG.getContext()), -1.0);
8635
8636      Constant *CV[4];
8637      for (unsigned i = 0; i < 4; ++i) {
8638        if (BVN->getOperand(i).isUndef())
8639          CV[i] = UndefValue::get(Type::getFloatTy(*DAG.getContext()));
8640        else if (isNullConstant(BVN->getOperand(i)))
8641          CV[i] = NegOne;
8642        else
8643          CV[i] = One;
8644      }
8645
8646      Constant *CP = ConstantVector::get(CV);
8647      SDValue CPIdx = DAG.getConstantPool(CP, getPointerTy(DAG.getDataLayout()),
8648                                          16 /* alignment */);
8649
8650      SDValue Ops[] = {DAG.getEntryNode(), CPIdx};
8651      SDVTList VTs = DAG.getVTList({MVT::v4i1, /*chain*/ MVT::Other});
8652      return DAG.getMemIntrinsicNode(
8653          PPCISD::QVLFSb, dl, VTs, Ops, MVT::v4f32,
8654          MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
8655    }
8656
8657    SmallVector<SDValue, 4> Stores;
8658    for (unsigned i = 0; i < 4; ++i) {
8659      if (BVN->getOperand(i).isUndef()) continue;
8660
8661      unsigned Offset = 4*i;
8662      SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
8663      Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
8664
8665      unsigned StoreSize = BVN->getOperand(i).getValueType().getStoreSize();
8666      if (StoreSize > 4) {
8667        Stores.push_back(
8668            DAG.getTruncStore(DAG.getEntryNode(), dl, BVN->getOperand(i), Idx,
8669                              PtrInfo.getWithOffset(Offset), MVT::i32));
8670      } else {
8671        SDValue StoreValue = BVN->getOperand(i);
8672        if (StoreSize < 4)
8673          StoreValue = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, StoreValue);
8674
8675        Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, StoreValue, Idx,
8676                                      PtrInfo.getWithOffset(Offset)));
8677      }
8678    }
8679
8680    SDValue StoreChain;
8681    if (!Stores.empty())
8682      StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8683    else
8684      StoreChain = DAG.getEntryNode();
8685
8686    // Now load from v4i32 into the QPX register; this will extend it to
8687    // v4i64 but not yet convert it to a floating point. Nevertheless, this
8688    // is typed as v4f64 because the QPX register integer states are not
8689    // explicitly represented.
8690
8691    SDValue Ops[] = {StoreChain,
8692                     DAG.getConstant(Intrinsic::ppc_qpx_qvlfiwz, dl, MVT::i32),
8693                     FIdx};
8694    SDVTList VTs = DAG.getVTList({MVT::v4f64, /*chain*/ MVT::Other});
8695
8696    SDValue LoadedVect = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN,
8697      dl, VTs, Ops, MVT::v4i32, PtrInfo);
8698    LoadedVect = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
8699      DAG.getConstant(Intrinsic::ppc_qpx_qvfcfidu, dl, MVT::i32),
8700      LoadedVect);
8701
8702    SDValue FPZeros = DAG.getConstantFP(0.0, dl, MVT::v4f64);
8703
8704    return DAG.getSetCC(dl, MVT::v4i1, LoadedVect, FPZeros, ISD::SETEQ);
8705  }
8706
8707  // All other QPX vectors are handled by generic code.
8708  if (Subtarget.hasQPX())
8709    return SDValue();
8710
8711  // Check if this is a splat of a constant value.
8712  APInt APSplatBits, APSplatUndef;
8713  unsigned SplatBitSize;
8714  bool HasAnyUndefs;
8715  if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
8716                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
8717      SplatBitSize > 32) {
8718
8719    const SDValue *InputLoad = getNormalLoadInput(Op.getOperand(0));
8720    // Handle load-and-splat patterns as we have instructions that will do this
8721    // in one go.
8722    if (InputLoad && DAG.isSplatValue(Op, true)) {
8723      LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
8724
8725      // We have handling for 4 and 8 byte elements.
8726      unsigned ElementSize = LD->getMemoryVT().getScalarSizeInBits();
8727
8728      // Checking for a single use of this load, we have to check for vector
8729      // width (128 bits) / ElementSize uses (since each operand of the
8730      // BUILD_VECTOR is a separate use of the value.
8731      if (InputLoad->getNode()->hasNUsesOfValue(128 / ElementSize, 0) &&
8732          ((Subtarget.hasVSX() && ElementSize == 64) ||
8733           (Subtarget.hasP9Vector() && ElementSize == 32))) {
8734        SDValue Ops[] = {
8735          LD->getChain(),    // Chain
8736          LD->getBasePtr(),  // Ptr
8737          DAG.getValueType(Op.getValueType()) // VT
8738        };
8739        return
8740          DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl,
8741                                  DAG.getVTList(Op.getValueType(), MVT::Other),
8742                                  Ops, LD->getMemoryVT(), LD->getMemOperand());
8743      }
8744    }
8745
8746    // BUILD_VECTOR nodes that are not constant splats of up to 32-bits can be
8747    // lowered to VSX instructions under certain conditions.
8748    // Without VSX, there is no pattern more efficient than expanding the node.
8749    if (Subtarget.hasVSX() &&
8750        haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
8751                                        Subtarget.hasP8Vector()))
8752      return Op;
8753    return SDValue();
8754  }
8755
8756  unsigned SplatBits = APSplatBits.getZExtValue();
8757  unsigned SplatUndef = APSplatUndef.getZExtValue();
8758  unsigned SplatSize = SplatBitSize / 8;
8759
8760  // First, handle single instruction cases.
8761
8762  // All zeros?
8763  if (SplatBits == 0) {
8764    // Canonicalize all zero vectors to be v4i32.
8765    if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
8766      SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
8767      Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
8768    }
8769    return Op;
8770  }
8771
8772  // We have XXSPLTIB for constant splats one byte wide
8773  // FIXME: SplatBits is an unsigned int being cast to an int while passing it
8774  // as an argument to BuildSplatiI. Given SplatSize == 1 it is okay here.
8775  if (Subtarget.hasP9Vector() && SplatSize == 1)
8776    return BuildSplatI(SplatBits, SplatSize, Op.getValueType(), DAG, dl);
8777
8778  // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
8779  int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
8780                    (32-SplatBitSize));
8781  if (SextVal >= -16 && SextVal <= 15)
8782    return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
8783
8784  // Two instruction sequences.
8785
8786  // If this value is in the range [-32,30] and is even, use:
8787  //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
8788  // If this value is in the range [17,31] and is odd, use:
8789  //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
8790  // If this value is in the range [-31,-17] and is odd, use:
8791  //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
8792  // Note the last two are three-instruction sequences.
8793  if (SextVal >= -32 && SextVal <= 31) {
8794    // To avoid having these optimizations undone by constant folding,
8795    // we convert to a pseudo that will be expanded later into one of
8796    // the above forms.
8797    SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
8798    EVT VT = (SplatSize == 1 ? MVT::v16i8 :
8799              (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
8800    SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
8801    SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
8802    if (VT == Op.getValueType())
8803      return RetVal;
8804    else
8805      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
8806  }
8807
8808  // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
8809  // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
8810  // for fneg/fabs.
8811  if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
8812    // Make -1 and vspltisw -1:
8813    SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
8814
8815    // Make the VSLW intrinsic, computing 0x8000_0000.
8816    SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
8817                                   OnesV, DAG, dl);
8818
8819    // xor by OnesV to invert it.
8820    Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
8821    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8822  }
8823
8824  // Check to see if this is a wide variety of vsplti*, binop self cases.
8825  static const signed char SplatCsts[] = {
8826    -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
8827    -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
8828  };
8829
8830  for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
8831    // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
8832    // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
8833    int i = SplatCsts[idx];
8834
8835    // Figure out what shift amount will be used by altivec if shifted by i in
8836    // this splat size.
8837    unsigned TypeShiftAmt = i & (SplatBitSize-1);
8838
8839    // vsplti + shl self.
8840    if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
8841      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8842      static const unsigned IIDs[] = { // Intrinsic to use for each size.
8843        Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
8844        Intrinsic::ppc_altivec_vslw
8845      };
8846      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8847      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8848    }
8849
8850    // vsplti + srl self.
8851    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8852      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8853      static const unsigned IIDs[] = { // Intrinsic to use for each size.
8854        Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
8855        Intrinsic::ppc_altivec_vsrw
8856      };
8857      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8858      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8859    }
8860
8861    // vsplti + sra self.
8862    if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
8863      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8864      static const unsigned IIDs[] = { // Intrinsic to use for each size.
8865        Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
8866        Intrinsic::ppc_altivec_vsraw
8867      };
8868      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8869      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8870    }
8871
8872    // vsplti + rol self.
8873    if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
8874                         ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
8875      SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
8876      static const unsigned IIDs[] = { // Intrinsic to use for each size.
8877        Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
8878        Intrinsic::ppc_altivec_vrlw
8879      };
8880      Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
8881      return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
8882    }
8883
8884    // t = vsplti c, result = vsldoi t, t, 1
8885    if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
8886      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8887      unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
8888      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8889    }
8890    // t = vsplti c, result = vsldoi t, t, 2
8891    if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
8892      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8893      unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
8894      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8895    }
8896    // t = vsplti c, result = vsldoi t, t, 3
8897    if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
8898      SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
8899      unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
8900      return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
8901    }
8902  }
8903
8904  return SDValue();
8905}
8906
8907/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
8908/// the specified operations to build the shuffle.
8909static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
8910                                      SDValue RHS, SelectionDAG &DAG,
8911                                      const SDLoc &dl) {
8912  unsigned OpNum = (PFEntry >> 26) & 0x0F;
8913  unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
8914  unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
8915
8916  enum {
8917    OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
8918    OP_VMRGHW,
8919    OP_VMRGLW,
8920    OP_VSPLTISW0,
8921    OP_VSPLTISW1,
8922    OP_VSPLTISW2,
8923    OP_VSPLTISW3,
8924    OP_VSLDOI4,
8925    OP_VSLDOI8,
8926    OP_VSLDOI12
8927  };
8928
8929  if (OpNum == OP_COPY) {
8930    if (LHSID == (1*9+2)*9+3) return LHS;
8931    assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
8932    return RHS;
8933  }
8934
8935  SDValue OpLHS, OpRHS;
8936  OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
8937  OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
8938
8939  int ShufIdxs[16];
8940  switch (OpNum) {
8941  default: llvm_unreachable("Unknown i32 permute!");
8942  case OP_VMRGHW:
8943    ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
8944    ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
8945    ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
8946    ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
8947    break;
8948  case OP_VMRGLW:
8949    ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
8950    ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
8951    ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
8952    ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
8953    break;
8954  case OP_VSPLTISW0:
8955    for (unsigned i = 0; i != 16; ++i)
8956      ShufIdxs[i] = (i&3)+0;
8957    break;
8958  case OP_VSPLTISW1:
8959    for (unsigned i = 0; i != 16; ++i)
8960      ShufIdxs[i] = (i&3)+4;
8961    break;
8962  case OP_VSPLTISW2:
8963    for (unsigned i = 0; i != 16; ++i)
8964      ShufIdxs[i] = (i&3)+8;
8965    break;
8966  case OP_VSPLTISW3:
8967    for (unsigned i = 0; i != 16; ++i)
8968      ShufIdxs[i] = (i&3)+12;
8969    break;
8970  case OP_VSLDOI4:
8971    return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
8972  case OP_VSLDOI8:
8973    return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
8974  case OP_VSLDOI12:
8975    return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
8976  }
8977  EVT VT = OpLHS.getValueType();
8978  OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
8979  OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
8980  SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
8981  return DAG.getNode(ISD::BITCAST, dl, VT, T);
8982}
8983
8984/// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
8985/// by the VINSERTB instruction introduced in ISA 3.0, else just return default
8986/// SDValue.
8987SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
8988                                           SelectionDAG &DAG) const {
8989  const unsigned BytesInVector = 16;
8990  bool IsLE = Subtarget.isLittleEndian();
8991  SDLoc dl(N);
8992  SDValue V1 = N->getOperand(0);
8993  SDValue V2 = N->getOperand(1);
8994  unsigned ShiftElts = 0, InsertAtByte = 0;
8995  bool Swap = false;
8996
8997  // Shifts required to get the byte we want at element 7.
8998  unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
8999                                   0, 15, 14, 13, 12, 11, 10, 9};
9000  unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9001                                1, 2,  3,  4,  5,  6,  7,  8};
9002
9003  ArrayRef<int> Mask = N->getMask();
9004  int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9005
9006  // For each mask element, find out if we're just inserting something
9007  // from V2 into V1 or vice versa.
9008  // Possible permutations inserting an element from V2 into V1:
9009  //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9010  //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9011  //   ...
9012  //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9013  // Inserting from V1 into V2 will be similar, except mask range will be
9014  // [16,31].
9015
9016  bool FoundCandidate = false;
9017  // If both vector operands for the shuffle are the same vector, the mask
9018  // will contain only elements from the first one and the second one will be
9019  // undef.
9020  unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9021  // Go through the mask of half-words to find an element that's being moved
9022  // from one vector to the other.
9023  for (unsigned i = 0; i < BytesInVector; ++i) {
9024    unsigned CurrentElement = Mask[i];
9025    // If 2nd operand is undefined, we should only look for element 7 in the
9026    // Mask.
9027    if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9028      continue;
9029
9030    bool OtherElementsInOrder = true;
9031    // Examine the other elements in the Mask to see if they're in original
9032    // order.
9033    for (unsigned j = 0; j < BytesInVector; ++j) {
9034      if (j == i)
9035        continue;
9036      // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9037      // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9038      // in which we always assume we're always picking from the 1st operand.
9039      int MaskOffset =
9040          (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9041      if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9042        OtherElementsInOrder = false;
9043        break;
9044      }
9045    }
9046    // If other elements are in original order, we record the number of shifts
9047    // we need to get the element we want into element 7. Also record which byte
9048    // in the vector we should insert into.
9049    if (OtherElementsInOrder) {
9050      // If 2nd operand is undefined, we assume no shifts and no swapping.
9051      if (V2.isUndef()) {
9052        ShiftElts = 0;
9053        Swap = false;
9054      } else {
9055        // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9056        ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9057                         : BigEndianShifts[CurrentElement & 0xF];
9058        Swap = CurrentElement < BytesInVector;
9059      }
9060      InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9061      FoundCandidate = true;
9062      break;
9063    }
9064  }
9065
9066  if (!FoundCandidate)
9067    return SDValue();
9068
9069  // Candidate found, construct the proper SDAG sequence with VINSERTB,
9070  // optionally with VECSHL if shift is required.
9071  if (Swap)
9072    std::swap(V1, V2);
9073  if (V2.isUndef())
9074    V2 = V1;
9075  if (ShiftElts) {
9076    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9077                              DAG.getConstant(ShiftElts, dl, MVT::i32));
9078    return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9079                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
9080  }
9081  return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9082                     DAG.getConstant(InsertAtByte, dl, MVT::i32));
9083}
9084
9085/// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9086/// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9087/// SDValue.
9088SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9089                                           SelectionDAG &DAG) const {
9090  const unsigned NumHalfWords = 8;
9091  const unsigned BytesInVector = NumHalfWords * 2;
9092  // Check that the shuffle is on half-words.
9093  if (!isNByteElemShuffleMask(N, 2, 1))
9094    return SDValue();
9095
9096  bool IsLE = Subtarget.isLittleEndian();
9097  SDLoc dl(N);
9098  SDValue V1 = N->getOperand(0);
9099  SDValue V2 = N->getOperand(1);
9100  unsigned ShiftElts = 0, InsertAtByte = 0;
9101  bool Swap = false;
9102
9103  // Shifts required to get the half-word we want at element 3.
9104  unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9105  unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9106
9107  uint32_t Mask = 0;
9108  uint32_t OriginalOrderLow = 0x1234567;
9109  uint32_t OriginalOrderHigh = 0x89ABCDEF;
9110  // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9111  // 32-bit space, only need 4-bit nibbles per element.
9112  for (unsigned i = 0; i < NumHalfWords; ++i) {
9113    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9114    Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9115  }
9116
9117  // For each mask element, find out if we're just inserting something
9118  // from V2 into V1 or vice versa.  Possible permutations inserting an element
9119  // from V2 into V1:
9120  //   X, 1, 2, 3, 4, 5, 6, 7
9121  //   0, X, 2, 3, 4, 5, 6, 7
9122  //   0, 1, X, 3, 4, 5, 6, 7
9123  //   0, 1, 2, X, 4, 5, 6, 7
9124  //   0, 1, 2, 3, X, 5, 6, 7
9125  //   0, 1, 2, 3, 4, X, 6, 7
9126  //   0, 1, 2, 3, 4, 5, X, 7
9127  //   0, 1, 2, 3, 4, 5, 6, X
9128  // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9129
9130  bool FoundCandidate = false;
9131  // Go through the mask of half-words to find an element that's being moved
9132  // from one vector to the other.
9133  for (unsigned i = 0; i < NumHalfWords; ++i) {
9134    unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9135    uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9136    uint32_t MaskOtherElts = ~(0xF << MaskShift);
9137    uint32_t TargetOrder = 0x0;
9138
9139    // If both vector operands for the shuffle are the same vector, the mask
9140    // will contain only elements from the first one and the second one will be
9141    // undef.
9142    if (V2.isUndef()) {
9143      ShiftElts = 0;
9144      unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9145      TargetOrder = OriginalOrderLow;
9146      Swap = false;
9147      // Skip if not the correct element or mask of other elements don't equal
9148      // to our expected order.
9149      if (MaskOneElt == VINSERTHSrcElem &&
9150          (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9151        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9152        FoundCandidate = true;
9153        break;
9154      }
9155    } else { // If both operands are defined.
9156      // Target order is [8,15] if the current mask is between [0,7].
9157      TargetOrder =
9158          (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9159      // Skip if mask of other elements don't equal our expected order.
9160      if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9161        // We only need the last 3 bits for the number of shifts.
9162        ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9163                         : BigEndianShifts[MaskOneElt & 0x7];
9164        InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9165        Swap = MaskOneElt < NumHalfWords;
9166        FoundCandidate = true;
9167        break;
9168      }
9169    }
9170  }
9171
9172  if (!FoundCandidate)
9173    return SDValue();
9174
9175  // Candidate found, construct the proper SDAG sequence with VINSERTH,
9176  // optionally with VECSHL if shift is required.
9177  if (Swap)
9178    std::swap(V1, V2);
9179  if (V2.isUndef())
9180    V2 = V1;
9181  SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9182  if (ShiftElts) {
9183    // Double ShiftElts because we're left shifting on v16i8 type.
9184    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9185                              DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9186    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9187    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9188                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
9189    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9190  }
9191  SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9192  SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9193                            DAG.getConstant(InsertAtByte, dl, MVT::i32));
9194  return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9195}
9196
9197/// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
9198/// is a shuffle we can handle in a single instruction, return it.  Otherwise,
9199/// return the code it can be lowered into.  Worst case, it can always be
9200/// lowered into a vperm.
9201SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
9202                                               SelectionDAG &DAG) const {
9203  SDLoc dl(Op);
9204  SDValue V1 = Op.getOperand(0);
9205  SDValue V2 = Op.getOperand(1);
9206  ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
9207  EVT VT = Op.getValueType();
9208  bool isLittleEndian = Subtarget.isLittleEndian();
9209
9210  unsigned ShiftElts, InsertAtByte;
9211  bool Swap = false;
9212
9213  // If this is a load-and-splat, we can do that with a single instruction
9214  // in some cases. However if the load has multiple uses, we don't want to
9215  // combine it because that will just produce multiple loads.
9216  const SDValue *InputLoad = getNormalLoadInput(V1);
9217  if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
9218      (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
9219      InputLoad->hasOneUse()) {
9220    bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
9221    int SplatIdx =
9222      PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
9223
9224    LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9225    // For 4-byte load-and-splat, we need Power9.
9226    if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
9227      uint64_t Offset = 0;
9228      if (IsFourByte)
9229        Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
9230      else
9231        Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
9232      SDValue BasePtr = LD->getBasePtr();
9233      if (Offset != 0)
9234        BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
9235                              BasePtr, DAG.getIntPtrConstant(Offset, dl));
9236      SDValue Ops[] = {
9237        LD->getChain(),    // Chain
9238        BasePtr,           // BasePtr
9239        DAG.getValueType(Op.getValueType()) // VT
9240      };
9241      SDVTList VTL =
9242        DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
9243      SDValue LdSplt =
9244        DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
9245                                Ops, LD->getMemoryVT(), LD->getMemOperand());
9246      if (LdSplt.getValueType() != SVOp->getValueType(0))
9247        LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
9248      return LdSplt;
9249    }
9250  }
9251  if (Subtarget.hasP9Vector() &&
9252      PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
9253                           isLittleEndian)) {
9254    if (Swap)
9255      std::swap(V1, V2);
9256    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9257    SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
9258    if (ShiftElts) {
9259      SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
9260                                DAG.getConstant(ShiftElts, dl, MVT::i32));
9261      SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
9262                                DAG.getConstant(InsertAtByte, dl, MVT::i32));
9263      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9264    }
9265    SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
9266                              DAG.getConstant(InsertAtByte, dl, MVT::i32));
9267    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9268  }
9269
9270  if (Subtarget.hasP9Altivec()) {
9271    SDValue NewISDNode;
9272    if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
9273      return NewISDNode;
9274
9275    if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
9276      return NewISDNode;
9277  }
9278
9279  if (Subtarget.hasVSX() &&
9280      PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9281    if (Swap)
9282      std::swap(V1, V2);
9283    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9284    SDValue Conv2 =
9285        DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
9286
9287    SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
9288                              DAG.getConstant(ShiftElts, dl, MVT::i32));
9289    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
9290  }
9291
9292  if (Subtarget.hasVSX() &&
9293    PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
9294    if (Swap)
9295      std::swap(V1, V2);
9296    SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9297    SDValue Conv2 =
9298        DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
9299
9300    SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
9301                              DAG.getConstant(ShiftElts, dl, MVT::i32));
9302    return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
9303  }
9304
9305  if (Subtarget.hasP9Vector()) {
9306     if (PPC::isXXBRHShuffleMask(SVOp)) {
9307      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9308      SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
9309      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
9310    } else if (PPC::isXXBRWShuffleMask(SVOp)) {
9311      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9312      SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
9313      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
9314    } else if (PPC::isXXBRDShuffleMask(SVOp)) {
9315      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
9316      SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
9317      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
9318    } else if (PPC::isXXBRQShuffleMask(SVOp)) {
9319      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
9320      SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
9321      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
9322    }
9323  }
9324
9325  if (Subtarget.hasVSX()) {
9326    if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
9327      int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
9328
9329      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
9330      SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
9331                                  DAG.getConstant(SplatIdx, dl, MVT::i32));
9332      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
9333    }
9334
9335    // Left shifts of 8 bytes are actually swaps. Convert accordingly.
9336    if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
9337      SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
9338      SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
9339      return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
9340    }
9341  }
9342
9343  if (Subtarget.hasQPX()) {
9344    if (VT.getVectorNumElements() != 4)
9345      return SDValue();
9346
9347    if (V2.isUndef()) V2 = V1;
9348
9349    int AlignIdx = PPC::isQVALIGNIShuffleMask(SVOp);
9350    if (AlignIdx != -1) {
9351      return DAG.getNode(PPCISD::QVALIGNI, dl, VT, V1, V2,
9352                         DAG.getConstant(AlignIdx, dl, MVT::i32));
9353    } else if (SVOp->isSplat()) {
9354      int SplatIdx = SVOp->getSplatIndex();
9355      if (SplatIdx >= 4) {
9356        std::swap(V1, V2);
9357        SplatIdx -= 4;
9358      }
9359
9360      return DAG.getNode(PPCISD::QVESPLATI, dl, VT, V1,
9361                         DAG.getConstant(SplatIdx, dl, MVT::i32));
9362    }
9363
9364    // Lower this into a qvgpci/qvfperm pair.
9365
9366    // Compute the qvgpci literal
9367    unsigned idx = 0;
9368    for (unsigned i = 0; i < 4; ++i) {
9369      int m = SVOp->getMaskElt(i);
9370      unsigned mm = m >= 0 ? (unsigned) m : i;
9371      idx |= mm << (3-i)*3;
9372    }
9373
9374    SDValue V3 = DAG.getNode(PPCISD::QVGPCI, dl, MVT::v4f64,
9375                             DAG.getConstant(idx, dl, MVT::i32));
9376    return DAG.getNode(PPCISD::QVFPERM, dl, VT, V1, V2, V3);
9377  }
9378
9379  // Cases that are handled by instructions that take permute immediates
9380  // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
9381  // selected by the instruction selector.
9382  if (V2.isUndef()) {
9383    if (PPC::isSplatShuffleMask(SVOp, 1) ||
9384        PPC::isSplatShuffleMask(SVOp, 2) ||
9385        PPC::isSplatShuffleMask(SVOp, 4) ||
9386        PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
9387        PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
9388        PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
9389        PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
9390        PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
9391        PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
9392        PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
9393        PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
9394        PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
9395        (Subtarget.hasP8Altivec() && (
9396         PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
9397         PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
9398         PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
9399      return Op;
9400    }
9401  }
9402
9403  // Altivec has a variety of "shuffle immediates" that take two vector inputs
9404  // and produce a fixed permutation.  If any of these match, do not lower to
9405  // VPERM.
9406  unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
9407  if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9408      PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9409      PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
9410      PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9411      PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9412      PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9413      PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
9414      PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
9415      PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
9416      (Subtarget.hasP8Altivec() && (
9417       PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
9418       PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
9419       PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
9420    return Op;
9421
9422  // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
9423  // perfect shuffle table to emit an optimal matching sequence.
9424  ArrayRef<int> PermMask = SVOp->getMask();
9425
9426  unsigned PFIndexes[4];
9427  bool isFourElementShuffle = true;
9428  for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
9429    unsigned EltNo = 8;   // Start out undef.
9430    for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
9431      if (PermMask[i*4+j] < 0)
9432        continue;   // Undef, ignore it.
9433
9434      unsigned ByteSource = PermMask[i*4+j];
9435      if ((ByteSource & 3) != j) {
9436        isFourElementShuffle = false;
9437        break;
9438      }
9439
9440      if (EltNo == 8) {
9441        EltNo = ByteSource/4;
9442      } else if (EltNo != ByteSource/4) {
9443        isFourElementShuffle = false;
9444        break;
9445      }
9446    }
9447    PFIndexes[i] = EltNo;
9448  }
9449
9450  // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
9451  // perfect shuffle vector to determine if it is cost effective to do this as
9452  // discrete instructions, or whether we should use a vperm.
9453  // For now, we skip this for little endian until such time as we have a
9454  // little-endian perfect shuffle table.
9455  if (isFourElementShuffle && !isLittleEndian) {
9456    // Compute the index in the perfect shuffle table.
9457    unsigned PFTableIndex =
9458      PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
9459
9460    unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
9461    unsigned Cost  = (PFEntry >> 30);
9462
9463    // Determining when to avoid vperm is tricky.  Many things affect the cost
9464    // of vperm, particularly how many times the perm mask needs to be computed.
9465    // For example, if the perm mask can be hoisted out of a loop or is already
9466    // used (perhaps because there are multiple permutes with the same shuffle
9467    // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
9468    // the loop requires an extra register.
9469    //
9470    // As a compromise, we only emit discrete instructions if the shuffle can be
9471    // generated in 3 or fewer operations.  When we have loop information
9472    // available, if this block is within a loop, we should avoid using vperm
9473    // for 3-operation perms and use a constant pool load instead.
9474    if (Cost < 3)
9475      return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
9476  }
9477
9478  // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
9479  // vector that will get spilled to the constant pool.
9480  if (V2.isUndef()) V2 = V1;
9481
9482  // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
9483  // that it is in input element units, not in bytes.  Convert now.
9484
9485  // For little endian, the order of the input vectors is reversed, and
9486  // the permutation mask is complemented with respect to 31.  This is
9487  // necessary to produce proper semantics with the big-endian-biased vperm
9488  // instruction.
9489  EVT EltVT = V1.getValueType().getVectorElementType();
9490  unsigned BytesPerElement = EltVT.getSizeInBits()/8;
9491
9492  SmallVector<SDValue, 16> ResultMask;
9493  for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
9494    unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
9495
9496    for (unsigned j = 0; j != BytesPerElement; ++j)
9497      if (isLittleEndian)
9498        ResultMask.push_back(DAG.getConstant(31 - (SrcElt*BytesPerElement + j),
9499                                             dl, MVT::i32));
9500      else
9501        ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement + j, dl,
9502                                             MVT::i32));
9503  }
9504
9505  SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
9506  if (isLittleEndian)
9507    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9508                       V2, V1, VPermMask);
9509  else
9510    return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(),
9511                       V1, V2, VPermMask);
9512}
9513
9514/// getVectorCompareInfo - Given an intrinsic, return false if it is not a
9515/// vector comparison.  If it is, return true and fill in Opc/isDot with
9516/// information about the intrinsic.
9517static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
9518                                 bool &isDot, const PPCSubtarget &Subtarget) {
9519  unsigned IntrinsicID =
9520      cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
9521  CompareOpc = -1;
9522  isDot = false;
9523  switch (IntrinsicID) {
9524  default:
9525    return false;
9526  // Comparison predicates.
9527  case Intrinsic::ppc_altivec_vcmpbfp_p:
9528    CompareOpc = 966;
9529    isDot = true;
9530    break;
9531  case Intrinsic::ppc_altivec_vcmpeqfp_p:
9532    CompareOpc = 198;
9533    isDot = true;
9534    break;
9535  case Intrinsic::ppc_altivec_vcmpequb_p:
9536    CompareOpc = 6;
9537    isDot = true;
9538    break;
9539  case Intrinsic::ppc_altivec_vcmpequh_p:
9540    CompareOpc = 70;
9541    isDot = true;
9542    break;
9543  case Intrinsic::ppc_altivec_vcmpequw_p:
9544    CompareOpc = 134;
9545    isDot = true;
9546    break;
9547  case Intrinsic::ppc_altivec_vcmpequd_p:
9548    if (Subtarget.hasP8Altivec()) {
9549      CompareOpc = 199;
9550      isDot = true;
9551    } else
9552      return false;
9553    break;
9554  case Intrinsic::ppc_altivec_vcmpneb_p:
9555  case Intrinsic::ppc_altivec_vcmpneh_p:
9556  case Intrinsic::ppc_altivec_vcmpnew_p:
9557  case Intrinsic::ppc_altivec_vcmpnezb_p:
9558  case Intrinsic::ppc_altivec_vcmpnezh_p:
9559  case Intrinsic::ppc_altivec_vcmpnezw_p:
9560    if (Subtarget.hasP9Altivec()) {
9561      switch (IntrinsicID) {
9562      default:
9563        llvm_unreachable("Unknown comparison intrinsic.");
9564      case Intrinsic::ppc_altivec_vcmpneb_p:
9565        CompareOpc = 7;
9566        break;
9567      case Intrinsic::ppc_altivec_vcmpneh_p:
9568        CompareOpc = 71;
9569        break;
9570      case Intrinsic::ppc_altivec_vcmpnew_p:
9571        CompareOpc = 135;
9572        break;
9573      case Intrinsic::ppc_altivec_vcmpnezb_p:
9574        CompareOpc = 263;
9575        break;
9576      case Intrinsic::ppc_altivec_vcmpnezh_p:
9577        CompareOpc = 327;
9578        break;
9579      case Intrinsic::ppc_altivec_vcmpnezw_p:
9580        CompareOpc = 391;
9581        break;
9582      }
9583      isDot = true;
9584    } else
9585      return false;
9586    break;
9587  case Intrinsic::ppc_altivec_vcmpgefp_p:
9588    CompareOpc = 454;
9589    isDot = true;
9590    break;
9591  case Intrinsic::ppc_altivec_vcmpgtfp_p:
9592    CompareOpc = 710;
9593    isDot = true;
9594    break;
9595  case Intrinsic::ppc_altivec_vcmpgtsb_p:
9596    CompareOpc = 774;
9597    isDot = true;
9598    break;
9599  case Intrinsic::ppc_altivec_vcmpgtsh_p:
9600    CompareOpc = 838;
9601    isDot = true;
9602    break;
9603  case Intrinsic::ppc_altivec_vcmpgtsw_p:
9604    CompareOpc = 902;
9605    isDot = true;
9606    break;
9607  case Intrinsic::ppc_altivec_vcmpgtsd_p:
9608    if (Subtarget.hasP8Altivec()) {
9609      CompareOpc = 967;
9610      isDot = true;
9611    } else
9612      return false;
9613    break;
9614  case Intrinsic::ppc_altivec_vcmpgtub_p:
9615    CompareOpc = 518;
9616    isDot = true;
9617    break;
9618  case Intrinsic::ppc_altivec_vcmpgtuh_p:
9619    CompareOpc = 582;
9620    isDot = true;
9621    break;
9622  case Intrinsic::ppc_altivec_vcmpgtuw_p:
9623    CompareOpc = 646;
9624    isDot = true;
9625    break;
9626  case Intrinsic::ppc_altivec_vcmpgtud_p:
9627    if (Subtarget.hasP8Altivec()) {
9628      CompareOpc = 711;
9629      isDot = true;
9630    } else
9631      return false;
9632    break;
9633
9634  // VSX predicate comparisons use the same infrastructure
9635  case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9636  case Intrinsic::ppc_vsx_xvcmpgedp_p:
9637  case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9638  case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9639  case Intrinsic::ppc_vsx_xvcmpgesp_p:
9640  case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9641    if (Subtarget.hasVSX()) {
9642      switch (IntrinsicID) {
9643      case Intrinsic::ppc_vsx_xvcmpeqdp_p:
9644        CompareOpc = 99;
9645        break;
9646      case Intrinsic::ppc_vsx_xvcmpgedp_p:
9647        CompareOpc = 115;
9648        break;
9649      case Intrinsic::ppc_vsx_xvcmpgtdp_p:
9650        CompareOpc = 107;
9651        break;
9652      case Intrinsic::ppc_vsx_xvcmpeqsp_p:
9653        CompareOpc = 67;
9654        break;
9655      case Intrinsic::ppc_vsx_xvcmpgesp_p:
9656        CompareOpc = 83;
9657        break;
9658      case Intrinsic::ppc_vsx_xvcmpgtsp_p:
9659        CompareOpc = 75;
9660        break;
9661      }
9662      isDot = true;
9663    } else
9664      return false;
9665    break;
9666
9667  // Normal Comparisons.
9668  case Intrinsic::ppc_altivec_vcmpbfp:
9669    CompareOpc = 966;
9670    break;
9671  case Intrinsic::ppc_altivec_vcmpeqfp:
9672    CompareOpc = 198;
9673    break;
9674  case Intrinsic::ppc_altivec_vcmpequb:
9675    CompareOpc = 6;
9676    break;
9677  case Intrinsic::ppc_altivec_vcmpequh:
9678    CompareOpc = 70;
9679    break;
9680  case Intrinsic::ppc_altivec_vcmpequw:
9681    CompareOpc = 134;
9682    break;
9683  case Intrinsic::ppc_altivec_vcmpequd:
9684    if (Subtarget.hasP8Altivec())
9685      CompareOpc = 199;
9686    else
9687      return false;
9688    break;
9689  case Intrinsic::ppc_altivec_vcmpneb:
9690  case Intrinsic::ppc_altivec_vcmpneh:
9691  case Intrinsic::ppc_altivec_vcmpnew:
9692  case Intrinsic::ppc_altivec_vcmpnezb:
9693  case Intrinsic::ppc_altivec_vcmpnezh:
9694  case Intrinsic::ppc_altivec_vcmpnezw:
9695    if (Subtarget.hasP9Altivec())
9696      switch (IntrinsicID) {
9697      default:
9698        llvm_unreachable("Unknown comparison intrinsic.");
9699      case Intrinsic::ppc_altivec_vcmpneb:
9700        CompareOpc = 7;
9701        break;
9702      case Intrinsic::ppc_altivec_vcmpneh:
9703        CompareOpc = 71;
9704        break;
9705      case Intrinsic::ppc_altivec_vcmpnew:
9706        CompareOpc = 135;
9707        break;
9708      case Intrinsic::ppc_altivec_vcmpnezb:
9709        CompareOpc = 263;
9710        break;
9711      case Intrinsic::ppc_altivec_vcmpnezh:
9712        CompareOpc = 327;
9713        break;
9714      case Intrinsic::ppc_altivec_vcmpnezw:
9715        CompareOpc = 391;
9716        break;
9717      }
9718    else
9719      return false;
9720    break;
9721  case Intrinsic::ppc_altivec_vcmpgefp:
9722    CompareOpc = 454;
9723    break;
9724  case Intrinsic::ppc_altivec_vcmpgtfp:
9725    CompareOpc = 710;
9726    break;
9727  case Intrinsic::ppc_altivec_vcmpgtsb:
9728    CompareOpc = 774;
9729    break;
9730  case Intrinsic::ppc_altivec_vcmpgtsh:
9731    CompareOpc = 838;
9732    break;
9733  case Intrinsic::ppc_altivec_vcmpgtsw:
9734    CompareOpc = 902;
9735    break;
9736  case Intrinsic::ppc_altivec_vcmpgtsd:
9737    if (Subtarget.hasP8Altivec())
9738      CompareOpc = 967;
9739    else
9740      return false;
9741    break;
9742  case Intrinsic::ppc_altivec_vcmpgtub:
9743    CompareOpc = 518;
9744    break;
9745  case Intrinsic::ppc_altivec_vcmpgtuh:
9746    CompareOpc = 582;
9747    break;
9748  case Intrinsic::ppc_altivec_vcmpgtuw:
9749    CompareOpc = 646;
9750    break;
9751  case Intrinsic::ppc_altivec_vcmpgtud:
9752    if (Subtarget.hasP8Altivec())
9753      CompareOpc = 711;
9754    else
9755      return false;
9756    break;
9757  }
9758  return true;
9759}
9760
9761/// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
9762/// lower, do it, otherwise return null.
9763SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
9764                                                   SelectionDAG &DAG) const {
9765  unsigned IntrinsicID =
9766    cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9767
9768  SDLoc dl(Op);
9769
9770  if (IntrinsicID == Intrinsic::thread_pointer) {
9771    // Reads the thread pointer register, used for __builtin_thread_pointer.
9772    if (Subtarget.isPPC64())
9773      return DAG.getRegister(PPC::X13, MVT::i64);
9774    return DAG.getRegister(PPC::R2, MVT::i32);
9775  }
9776
9777  // If this is a lowered altivec predicate compare, CompareOpc is set to the
9778  // opcode number of the comparison.
9779  int CompareOpc;
9780  bool isDot;
9781  if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
9782    return SDValue();    // Don't custom lower most intrinsics.
9783
9784  // If this is a non-dot comparison, make the VCMP node and we are done.
9785  if (!isDot) {
9786    SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
9787                              Op.getOperand(1), Op.getOperand(2),
9788                              DAG.getConstant(CompareOpc, dl, MVT::i32));
9789    return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
9790  }
9791
9792  // Create the PPCISD altivec 'dot' comparison node.
9793  SDValue Ops[] = {
9794    Op.getOperand(2),  // LHS
9795    Op.getOperand(3),  // RHS
9796    DAG.getConstant(CompareOpc, dl, MVT::i32)
9797  };
9798  EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
9799  SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
9800
9801  // Now that we have the comparison, emit a copy from the CR to a GPR.
9802  // This is flagged to the above dot comparison.
9803  SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
9804                                DAG.getRegister(PPC::CR6, MVT::i32),
9805                                CompNode.getValue(1));
9806
9807  // Unpack the result based on how the target uses it.
9808  unsigned BitNo;   // Bit # of CR6.
9809  bool InvertBit;   // Invert result?
9810  switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
9811  default:  // Can't happen, don't crash on invalid number though.
9812  case 0:   // Return the value of the EQ bit of CR6.
9813    BitNo = 0; InvertBit = false;
9814    break;
9815  case 1:   // Return the inverted value of the EQ bit of CR6.
9816    BitNo = 0; InvertBit = true;
9817    break;
9818  case 2:   // Return the value of the LT bit of CR6.
9819    BitNo = 2; InvertBit = false;
9820    break;
9821  case 3:   // Return the inverted value of the LT bit of CR6.
9822    BitNo = 2; InvertBit = true;
9823    break;
9824  }
9825
9826  // Shift the bit into the low position.
9827  Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
9828                      DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
9829  // Isolate the bit.
9830  Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
9831                      DAG.getConstant(1, dl, MVT::i32));
9832
9833  // If we are supposed to, toggle the bit.
9834  if (InvertBit)
9835    Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
9836                        DAG.getConstant(1, dl, MVT::i32));
9837  return Flags;
9838}
9839
9840SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
9841                                               SelectionDAG &DAG) const {
9842  // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
9843  // the beginning of the argument list.
9844  int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
9845  SDLoc DL(Op);
9846  switch (cast<ConstantSDNode>(Op.getOperand(ArgStart))->getZExtValue()) {
9847  case Intrinsic::ppc_cfence: {
9848    assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
9849    assert(Subtarget.isPPC64() && "Only 64-bit is supported for now.");
9850    return SDValue(DAG.getMachineNode(PPC::CFENCE8, DL, MVT::Other,
9851                                      DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64,
9852                                                  Op.getOperand(ArgStart + 1)),
9853                                      Op.getOperand(0)),
9854                   0);
9855  }
9856  default:
9857    break;
9858  }
9859  return SDValue();
9860}
9861
9862SDValue PPCTargetLowering::LowerREM(SDValue Op, SelectionDAG &DAG) const {
9863  // Check for a DIV with the same operands as this REM.
9864  for (auto UI : Op.getOperand(1)->uses()) {
9865    if ((Op.getOpcode() == ISD::SREM && UI->getOpcode() == ISD::SDIV) ||
9866        (Op.getOpcode() == ISD::UREM && UI->getOpcode() == ISD::UDIV))
9867      if (UI->getOperand(0) == Op.getOperand(0) &&
9868          UI->getOperand(1) == Op.getOperand(1))
9869        return SDValue();
9870  }
9871  return Op;
9872}
9873
9874// Lower scalar BSWAP64 to xxbrd.
9875SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
9876  SDLoc dl(Op);
9877  // MTVSRDD
9878  Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
9879                   Op.getOperand(0));
9880  // XXBRD
9881  Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
9882  // MFVSRD
9883  int VectorIndex = 0;
9884  if (Subtarget.isLittleEndian())
9885    VectorIndex = 1;
9886  Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
9887                   DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
9888  return Op;
9889}
9890
9891// ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
9892// compared to a value that is atomically loaded (atomic loads zero-extend).
9893SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
9894                                                SelectionDAG &DAG) const {
9895  assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
9896         "Expecting an atomic compare-and-swap here.");
9897  SDLoc dl(Op);
9898  auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
9899  EVT MemVT = AtomicNode->getMemoryVT();
9900  if (MemVT.getSizeInBits() >= 32)
9901    return Op;
9902
9903  SDValue CmpOp = Op.getOperand(2);
9904  // If this is already correctly zero-extended, leave it alone.
9905  auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
9906  if (DAG.MaskedValueIsZero(CmpOp, HighBits))
9907    return Op;
9908
9909  // Clear the high bits of the compare operand.
9910  unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
9911  SDValue NewCmpOp =
9912    DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
9913                DAG.getConstant(MaskVal, dl, MVT::i32));
9914
9915  // Replace the existing compare operand with the properly zero-extended one.
9916  SmallVector<SDValue, 4> Ops;
9917  for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
9918    Ops.push_back(AtomicNode->getOperand(i));
9919  Ops[2] = NewCmpOp;
9920  MachineMemOperand *MMO = AtomicNode->getMemOperand();
9921  SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
9922  auto NodeTy =
9923    (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
9924  return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
9925}
9926
9927SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
9928                                                 SelectionDAG &DAG) const {
9929  SDLoc dl(Op);
9930  // Create a stack slot that is 16-byte aligned.
9931  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
9932  int FrameIdx = MFI.CreateStackObject(16, 16, false);
9933  EVT PtrVT = getPointerTy(DAG.getDataLayout());
9934  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
9935
9936  // Store the input value into Value#0 of the stack slot.
9937  SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
9938                               MachinePointerInfo());
9939  // Load it out.
9940  return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
9941}
9942
9943SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
9944                                                  SelectionDAG &DAG) const {
9945  assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
9946         "Should only be called for ISD::INSERT_VECTOR_ELT");
9947
9948  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
9949  // We have legal lowering for constant indices but not for variable ones.
9950  if (!C)
9951    return SDValue();
9952
9953  EVT VT = Op.getValueType();
9954  SDLoc dl(Op);
9955  SDValue V1 = Op.getOperand(0);
9956  SDValue V2 = Op.getOperand(1);
9957  // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
9958  if (VT == MVT::v8i16 || VT == MVT::v16i8) {
9959    SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
9960    unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
9961    unsigned InsertAtElement = C->getZExtValue();
9962    unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
9963    if (Subtarget.isLittleEndian()) {
9964      InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
9965    }
9966    return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
9967                       DAG.getConstant(InsertAtByte, dl, MVT::i32));
9968  }
9969  return Op;
9970}
9971
9972SDValue PPCTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
9973                                                   SelectionDAG &DAG) const {
9974  SDLoc dl(Op);
9975  SDNode *N = Op.getNode();
9976
9977  assert(N->getOperand(0).getValueType() == MVT::v4i1 &&
9978         "Unknown extract_vector_elt type");
9979
9980  SDValue Value = N->getOperand(0);
9981
9982  // The first part of this is like the store lowering except that we don't
9983  // need to track the chain.
9984
9985  // The values are now known to be -1 (false) or 1 (true). To convert this
9986  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
9987  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
9988  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
9989
9990  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
9991  // understand how to form the extending load.
9992  SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
9993
9994  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
9995
9996  // Now convert to an integer and store.
9997  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
9998    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
9999    Value);
10000
10001  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10002  int FrameIdx = MFI.CreateStackObject(16, 16, false);
10003  MachinePointerInfo PtrInfo =
10004      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10005  EVT PtrVT = getPointerTy(DAG.getDataLayout());
10006  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10007
10008  SDValue StoreChain = DAG.getEntryNode();
10009  SDValue Ops[] = {StoreChain,
10010                   DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10011                   Value, FIdx};
10012  SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10013
10014  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10015    dl, VTs, Ops, MVT::v4i32, PtrInfo);
10016
10017  // Extract the value requested.
10018  unsigned Offset = 4*cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
10019  SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10020  Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10021
10022  SDValue IntVal =
10023      DAG.getLoad(MVT::i32, dl, StoreChain, Idx, PtrInfo.getWithOffset(Offset));
10024
10025  if (!Subtarget.useCRBits())
10026    return IntVal;
10027
10028  return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, IntVal);
10029}
10030
10031/// Lowering for QPX v4i1 loads
10032SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
10033                                           SelectionDAG &DAG) const {
10034  SDLoc dl(Op);
10035  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
10036  SDValue LoadChain = LN->getChain();
10037  SDValue BasePtr = LN->getBasePtr();
10038
10039  if (Op.getValueType() == MVT::v4f64 ||
10040      Op.getValueType() == MVT::v4f32) {
10041    EVT MemVT = LN->getMemoryVT();
10042    unsigned Alignment = LN->getAlignment();
10043
10044    // If this load is properly aligned, then it is legal.
10045    if (Alignment >= MemVT.getStoreSize())
10046      return Op;
10047
10048    EVT ScalarVT = Op.getValueType().getScalarType(),
10049        ScalarMemVT = MemVT.getScalarType();
10050    unsigned Stride = ScalarMemVT.getStoreSize();
10051
10052    SDValue Vals[4], LoadChains[4];
10053    for (unsigned Idx = 0; Idx < 4; ++Idx) {
10054      SDValue Load;
10055      if (ScalarVT != ScalarMemVT)
10056        Load = DAG.getExtLoad(LN->getExtensionType(), dl, ScalarVT, LoadChain,
10057                              BasePtr,
10058                              LN->getPointerInfo().getWithOffset(Idx * Stride),
10059                              ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10060                              LN->getMemOperand()->getFlags(), LN->getAAInfo());
10061      else
10062        Load = DAG.getLoad(ScalarVT, dl, LoadChain, BasePtr,
10063                           LN->getPointerInfo().getWithOffset(Idx * Stride),
10064                           MinAlign(Alignment, Idx * Stride),
10065                           LN->getMemOperand()->getFlags(), LN->getAAInfo());
10066
10067      if (Idx == 0 && LN->isIndexed()) {
10068        assert(LN->getAddressingMode() == ISD::PRE_INC &&
10069               "Unknown addressing mode on vector load");
10070        Load = DAG.getIndexedLoad(Load, dl, BasePtr, LN->getOffset(),
10071                                  LN->getAddressingMode());
10072      }
10073
10074      Vals[Idx] = Load;
10075      LoadChains[Idx] = Load.getValue(1);
10076
10077      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10078                            DAG.getConstant(Stride, dl,
10079                                            BasePtr.getValueType()));
10080    }
10081
10082    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10083    SDValue Value = DAG.getBuildVector(Op.getValueType(), dl, Vals);
10084
10085    if (LN->isIndexed()) {
10086      SDValue RetOps[] = { Value, Vals[0].getValue(1), TF };
10087      return DAG.getMergeValues(RetOps, dl);
10088    }
10089
10090    SDValue RetOps[] = { Value, TF };
10091    return DAG.getMergeValues(RetOps, dl);
10092  }
10093
10094  assert(Op.getValueType() == MVT::v4i1 && "Unknown load to lower");
10095  assert(LN->isUnindexed() && "Indexed v4i1 loads are not supported");
10096
10097  // To lower v4i1 from a byte array, we load the byte elements of the
10098  // vector and then reuse the BUILD_VECTOR logic.
10099
10100  SDValue VectElmts[4], VectElmtChains[4];
10101  for (unsigned i = 0; i < 4; ++i) {
10102    SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10103    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10104
10105    VectElmts[i] = DAG.getExtLoad(
10106        ISD::EXTLOAD, dl, MVT::i32, LoadChain, Idx,
10107        LN->getPointerInfo().getWithOffset(i), MVT::i8,
10108        /* Alignment = */ 1, LN->getMemOperand()->getFlags(), LN->getAAInfo());
10109    VectElmtChains[i] = VectElmts[i].getValue(1);
10110  }
10111
10112  LoadChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, VectElmtChains);
10113  SDValue Value = DAG.getBuildVector(MVT::v4i1, dl, VectElmts);
10114
10115  SDValue RVals[] = { Value, LoadChain };
10116  return DAG.getMergeValues(RVals, dl);
10117}
10118
10119/// Lowering for QPX v4i1 stores
10120SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
10121                                            SelectionDAG &DAG) const {
10122  SDLoc dl(Op);
10123  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
10124  SDValue StoreChain = SN->getChain();
10125  SDValue BasePtr = SN->getBasePtr();
10126  SDValue Value = SN->getValue();
10127
10128  if (Value.getValueType() == MVT::v4f64 ||
10129      Value.getValueType() == MVT::v4f32) {
10130    EVT MemVT = SN->getMemoryVT();
10131    unsigned Alignment = SN->getAlignment();
10132
10133    // If this store is properly aligned, then it is legal.
10134    if (Alignment >= MemVT.getStoreSize())
10135      return Op;
10136
10137    EVT ScalarVT = Value.getValueType().getScalarType(),
10138        ScalarMemVT = MemVT.getScalarType();
10139    unsigned Stride = ScalarMemVT.getStoreSize();
10140
10141    SDValue Stores[4];
10142    for (unsigned Idx = 0; Idx < 4; ++Idx) {
10143      SDValue Ex = DAG.getNode(
10144          ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, Value,
10145          DAG.getConstant(Idx, dl, getVectorIdxTy(DAG.getDataLayout())));
10146      SDValue Store;
10147      if (ScalarVT != ScalarMemVT)
10148        Store =
10149            DAG.getTruncStore(StoreChain, dl, Ex, BasePtr,
10150                              SN->getPointerInfo().getWithOffset(Idx * Stride),
10151                              ScalarMemVT, MinAlign(Alignment, Idx * Stride),
10152                              SN->getMemOperand()->getFlags(), SN->getAAInfo());
10153      else
10154        Store = DAG.getStore(StoreChain, dl, Ex, BasePtr,
10155                             SN->getPointerInfo().getWithOffset(Idx * Stride),
10156                             MinAlign(Alignment, Idx * Stride),
10157                             SN->getMemOperand()->getFlags(), SN->getAAInfo());
10158
10159      if (Idx == 0 && SN->isIndexed()) {
10160        assert(SN->getAddressingMode() == ISD::PRE_INC &&
10161               "Unknown addressing mode on vector store");
10162        Store = DAG.getIndexedStore(Store, dl, BasePtr, SN->getOffset(),
10163                                    SN->getAddressingMode());
10164      }
10165
10166      BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
10167                            DAG.getConstant(Stride, dl,
10168                                            BasePtr.getValueType()));
10169      Stores[Idx] = Store;
10170    }
10171
10172    SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10173
10174    if (SN->isIndexed()) {
10175      SDValue RetOps[] = { TF, Stores[0].getValue(1) };
10176      return DAG.getMergeValues(RetOps, dl);
10177    }
10178
10179    return TF;
10180  }
10181
10182  assert(SN->isUnindexed() && "Indexed v4i1 stores are not supported");
10183  assert(Value.getValueType() == MVT::v4i1 && "Unknown store to lower");
10184
10185  // The values are now known to be -1 (false) or 1 (true). To convert this
10186  // into 0 (false) and 1 (true), add 1 and then divide by 2 (multiply by 0.5).
10187  // This can be done with an fma and the 0.5 constant: (V+1.0)*0.5 = 0.5*V+0.5
10188  Value = DAG.getNode(PPCISD::QBFLT, dl, MVT::v4f64, Value);
10189
10190  // FIXME: We can make this an f32 vector, but the BUILD_VECTOR code needs to
10191  // understand how to form the extending load.
10192  SDValue FPHalfs = DAG.getConstantFP(0.5, dl, MVT::v4f64);
10193
10194  Value = DAG.getNode(ISD::FMA, dl, MVT::v4f64, Value, FPHalfs, FPHalfs);
10195
10196  // Now convert to an integer and store.
10197  Value = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f64,
10198    DAG.getConstant(Intrinsic::ppc_qpx_qvfctiwu, dl, MVT::i32),
10199    Value);
10200
10201  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
10202  int FrameIdx = MFI.CreateStackObject(16, 16, false);
10203  MachinePointerInfo PtrInfo =
10204      MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
10205  EVT PtrVT = getPointerTy(DAG.getDataLayout());
10206  SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
10207
10208  SDValue Ops[] = {StoreChain,
10209                   DAG.getConstant(Intrinsic::ppc_qpx_qvstfiw, dl, MVT::i32),
10210                   Value, FIdx};
10211  SDVTList VTs = DAG.getVTList(/*chain*/ MVT::Other);
10212
10213  StoreChain = DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID,
10214    dl, VTs, Ops, MVT::v4i32, PtrInfo);
10215
10216  // Move data into the byte array.
10217  SDValue Loads[4], LoadChains[4];
10218  for (unsigned i = 0; i < 4; ++i) {
10219    unsigned Offset = 4*i;
10220    SDValue Idx = DAG.getConstant(Offset, dl, FIdx.getValueType());
10221    Idx = DAG.getNode(ISD::ADD, dl, FIdx.getValueType(), FIdx, Idx);
10222
10223    Loads[i] = DAG.getLoad(MVT::i32, dl, StoreChain, Idx,
10224                           PtrInfo.getWithOffset(Offset));
10225    LoadChains[i] = Loads[i].getValue(1);
10226  }
10227
10228  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
10229
10230  SDValue Stores[4];
10231  for (unsigned i = 0; i < 4; ++i) {
10232    SDValue Idx = DAG.getConstant(i, dl, BasePtr.getValueType());
10233    Idx = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, Idx);
10234
10235    Stores[i] = DAG.getTruncStore(
10236        StoreChain, dl, Loads[i], Idx, SN->getPointerInfo().getWithOffset(i),
10237        MVT::i8, /* Alignment = */ 1, SN->getMemOperand()->getFlags(),
10238        SN->getAAInfo());
10239  }
10240
10241  StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
10242
10243  return StoreChain;
10244}
10245
10246SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
10247  SDLoc dl(Op);
10248  if (Op.getValueType() == MVT::v4i32) {
10249    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10250
10251    SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
10252    SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
10253
10254    SDValue RHSSwap =   // = vrlw RHS, 16
10255      BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
10256
10257    // Shrinkify inputs to v8i16.
10258    LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
10259    RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
10260    RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
10261
10262    // Low parts multiplied together, generating 32-bit results (we ignore the
10263    // top parts).
10264    SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
10265                                        LHS, RHS, DAG, dl, MVT::v4i32);
10266
10267    SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
10268                                      LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
10269    // Shift the high parts up 16 bits.
10270    HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
10271                              Neg16, DAG, dl);
10272    return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
10273  } else if (Op.getValueType() == MVT::v8i16) {
10274    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10275
10276    SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
10277
10278    return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
10279                            LHS, RHS, Zero, DAG, dl);
10280  } else if (Op.getValueType() == MVT::v16i8) {
10281    SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
10282    bool isLittleEndian = Subtarget.isLittleEndian();
10283
10284    // Multiply the even 8-bit parts, producing 16-bit sums.
10285    SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
10286                                           LHS, RHS, DAG, dl, MVT::v8i16);
10287    EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
10288
10289    // Multiply the odd 8-bit parts, producing 16-bit sums.
10290    SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
10291                                          LHS, RHS, DAG, dl, MVT::v8i16);
10292    OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
10293
10294    // Merge the results together.  Because vmuleub and vmuloub are
10295    // instructions with a big-endian bias, we must reverse the
10296    // element numbering and reverse the meaning of "odd" and "even"
10297    // when generating little endian code.
10298    int Ops[16];
10299    for (unsigned i = 0; i != 8; ++i) {
10300      if (isLittleEndian) {
10301        Ops[i*2  ] = 2*i;
10302        Ops[i*2+1] = 2*i+16;
10303      } else {
10304        Ops[i*2  ] = 2*i+1;
10305        Ops[i*2+1] = 2*i+1+16;
10306      }
10307    }
10308    if (isLittleEndian)
10309      return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
10310    else
10311      return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
10312  } else {
10313    llvm_unreachable("Unknown mul to lower!");
10314  }
10315}
10316
10317SDValue PPCTargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const {
10318
10319  assert(Op.getOpcode() == ISD::ABS && "Should only be called for ISD::ABS");
10320
10321  EVT VT = Op.getValueType();
10322  assert(VT.isVector() &&
10323         "Only set vector abs as custom, scalar abs shouldn't reach here!");
10324  assert((VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
10325          VT == MVT::v16i8) &&
10326         "Unexpected vector element type!");
10327  assert((VT != MVT::v2i64 || Subtarget.hasP8Altivec()) &&
10328         "Current subtarget doesn't support smax v2i64!");
10329
10330  // For vector abs, it can be lowered to:
10331  // abs x
10332  // ==>
10333  // y = -x
10334  // smax(x, y)
10335
10336  SDLoc dl(Op);
10337  SDValue X = Op.getOperand(0);
10338  SDValue Zero = DAG.getConstant(0, dl, VT);
10339  SDValue Y = DAG.getNode(ISD::SUB, dl, VT, Zero, X);
10340
10341  // SMAX patch https://reviews.llvm.org/D47332
10342  // hasn't landed yet, so use intrinsic first here.
10343  // TODO: Should use SMAX directly once SMAX patch landed
10344  Intrinsic::ID BifID = Intrinsic::ppc_altivec_vmaxsw;
10345  if (VT == MVT::v2i64)
10346    BifID = Intrinsic::ppc_altivec_vmaxsd;
10347  else if (VT == MVT::v8i16)
10348    BifID = Intrinsic::ppc_altivec_vmaxsh;
10349  else if (VT == MVT::v16i8)
10350    BifID = Intrinsic::ppc_altivec_vmaxsb;
10351
10352  return BuildIntrinsicOp(BifID, X, Y, DAG, dl, VT);
10353}
10354
10355// Custom lowering for fpext vf32 to v2f64
10356SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
10357
10358  assert(Op.getOpcode() == ISD::FP_EXTEND &&
10359         "Should only be called for ISD::FP_EXTEND");
10360
10361  // We only want to custom lower an extend from v2f32 to v2f64.
10362  if (Op.getValueType() != MVT::v2f64 ||
10363      Op.getOperand(0).getValueType() != MVT::v2f32)
10364    return SDValue();
10365
10366  SDLoc dl(Op);
10367  SDValue Op0 = Op.getOperand(0);
10368
10369  switch (Op0.getOpcode()) {
10370  default:
10371    return SDValue();
10372  case ISD::EXTRACT_SUBVECTOR: {
10373    assert(Op0.getNumOperands() == 2 &&
10374           isa<ConstantSDNode>(Op0->getOperand(1)) &&
10375           "Node should have 2 operands with second one being a constant!");
10376
10377    if (Op0.getOperand(0).getValueType() != MVT::v4f32)
10378      return SDValue();
10379
10380    // Custom lower is only done for high or low doubleword.
10381    int Idx = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
10382    if (Idx % 2 != 0)
10383      return SDValue();
10384
10385    // Since input is v4f32, at this point Idx is either 0 or 2.
10386    // Shift to get the doubleword position we want.
10387    int DWord = Idx >> 1;
10388
10389    // High and low word positions are different on little endian.
10390    if (Subtarget.isLittleEndian())
10391      DWord ^= 0x1;
10392
10393    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
10394                       Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
10395  }
10396  case ISD::FADD:
10397  case ISD::FMUL:
10398  case ISD::FSUB: {
10399    SDValue NewLoad[2];
10400    for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
10401      // Ensure both input are loads.
10402      SDValue LdOp = Op0.getOperand(i);
10403      if (LdOp.getOpcode() != ISD::LOAD)
10404        return SDValue();
10405      // Generate new load node.
10406      LoadSDNode *LD = cast<LoadSDNode>(LdOp);
10407      SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10408      NewLoad[i] = DAG.getMemIntrinsicNode(
10409          PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10410          LD->getMemoryVT(), LD->getMemOperand());
10411    }
10412    SDValue NewOp =
10413        DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
10414                    NewLoad[1], Op0.getNode()->getFlags());
10415    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
10416                       DAG.getConstant(0, dl, MVT::i32));
10417  }
10418  case ISD::LOAD: {
10419    LoadSDNode *LD = cast<LoadSDNode>(Op0);
10420    SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
10421    SDValue NewLd = DAG.getMemIntrinsicNode(
10422        PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
10423        LD->getMemoryVT(), LD->getMemOperand());
10424    return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
10425                       DAG.getConstant(0, dl, MVT::i32));
10426  }
10427  }
10428  llvm_unreachable("ERROR:Should return for all cases within swtich.");
10429}
10430
10431/// LowerOperation - Provide custom lowering hooks for some operations.
10432///
10433SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10434  switch (Op.getOpcode()) {
10435  default: llvm_unreachable("Wasn't expecting to be able to lower this!");
10436  case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10437  case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10438  case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10439  case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10440  case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10441  case ISD::SETCC:              return LowerSETCC(Op, DAG);
10442  case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10443  case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10444
10445  // Variable argument lowering.
10446  case ISD::VASTART:            return LowerVASTART(Op, DAG);
10447  case ISD::VAARG:              return LowerVAARG(Op, DAG);
10448  case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10449
10450  case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
10451  case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10452  case ISD::GET_DYNAMIC_AREA_OFFSET:
10453    return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
10454
10455  // Exception handling lowering.
10456  case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
10457  case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
10458  case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
10459
10460  case ISD::LOAD:               return LowerLOAD(Op, DAG);
10461  case ISD::STORE:              return LowerSTORE(Op, DAG);
10462  case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
10463  case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
10464  case ISD::FP_TO_UINT:
10465  case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
10466  case ISD::UINT_TO_FP:
10467  case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
10468  case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10469
10470  // Lower 64-bit shifts.
10471  case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
10472  case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
10473  case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
10474
10475  // Vector-related lowering.
10476  case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10477  case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10478  case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10479  case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10480  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10481  case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10482  case ISD::MUL:                return LowerMUL(Op, DAG);
10483  case ISD::ABS:                return LowerABS(Op, DAG);
10484  case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
10485
10486  // For counter-based loop handling.
10487  case ISD::INTRINSIC_W_CHAIN:  return SDValue();
10488
10489  case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10490
10491  // Frame & Return address.
10492  case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10493  case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10494
10495  case ISD::INTRINSIC_VOID:
10496    return LowerINTRINSIC_VOID(Op, DAG);
10497  case ISD::SREM:
10498  case ISD::UREM:
10499    return LowerREM(Op, DAG);
10500  case ISD::BSWAP:
10501    return LowerBSWAP(Op, DAG);
10502  case ISD::ATOMIC_CMP_SWAP:
10503    return LowerATOMIC_CMP_SWAP(Op, DAG);
10504  }
10505}
10506
10507void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
10508                                           SmallVectorImpl<SDValue>&Results,
10509                                           SelectionDAG &DAG) const {
10510  SDLoc dl(N);
10511  switch (N->getOpcode()) {
10512  default:
10513    llvm_unreachable("Do not know how to custom type legalize this operation!");
10514  case ISD::READCYCLECOUNTER: {
10515    SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10516    SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
10517
10518    Results.push_back(RTB);
10519    Results.push_back(RTB.getValue(1));
10520    Results.push_back(RTB.getValue(2));
10521    break;
10522  }
10523  case ISD::INTRINSIC_W_CHAIN: {
10524    if (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() !=
10525        Intrinsic::loop_decrement)
10526      break;
10527
10528    assert(N->getValueType(0) == MVT::i1 &&
10529           "Unexpected result type for CTR decrement intrinsic");
10530    EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
10531                                 N->getValueType(0));
10532    SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
10533    SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
10534                                 N->getOperand(1));
10535
10536    Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
10537    Results.push_back(NewInt.getValue(1));
10538    break;
10539  }
10540  case ISD::VAARG: {
10541    if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
10542      return;
10543
10544    EVT VT = N->getValueType(0);
10545
10546    if (VT == MVT::i64) {
10547      SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
10548
10549      Results.push_back(NewNode);
10550      Results.push_back(NewNode.getValue(1));
10551    }
10552    return;
10553  }
10554  case ISD::FP_TO_SINT:
10555  case ISD::FP_TO_UINT:
10556    // LowerFP_TO_INT() can only handle f32 and f64.
10557    if (N->getOperand(0).getValueType() == MVT::ppcf128)
10558      return;
10559    Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
10560    return;
10561  case ISD::TRUNCATE: {
10562    EVT TrgVT = N->getValueType(0);
10563    EVT OpVT = N->getOperand(0).getValueType();
10564    if (TrgVT.isVector() &&
10565        isOperationCustom(N->getOpcode(), TrgVT) &&
10566        OpVT.getSizeInBits() <= 128 &&
10567        isPowerOf2_32(OpVT.getVectorElementType().getSizeInBits()))
10568      Results.push_back(LowerTRUNCATEVector(SDValue(N, 0), DAG));
10569    return;
10570  }
10571  case ISD::BITCAST:
10572    // Don't handle bitcast here.
10573    return;
10574  }
10575}
10576
10577//===----------------------------------------------------------------------===//
10578//  Other Lowering Code
10579//===----------------------------------------------------------------------===//
10580
10581static Instruction* callIntrinsic(IRBuilder<> &Builder, Intrinsic::ID Id) {
10582  Module *M = Builder.GetInsertBlock()->getParent()->getParent();
10583  Function *Func = Intrinsic::getDeclaration(M, Id);
10584  return Builder.CreateCall(Func, {});
10585}
10586
10587// The mappings for emitLeading/TrailingFence is taken from
10588// http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
10589Instruction *PPCTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
10590                                                 Instruction *Inst,
10591                                                 AtomicOrdering Ord) const {
10592  if (Ord == AtomicOrdering::SequentiallyConsistent)
10593    return callIntrinsic(Builder, Intrinsic::ppc_sync);
10594  if (isReleaseOrStronger(Ord))
10595    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10596  return nullptr;
10597}
10598
10599Instruction *PPCTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
10600                                                  Instruction *Inst,
10601                                                  AtomicOrdering Ord) const {
10602  if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
10603    // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
10604    // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
10605    // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
10606    if (isa<LoadInst>(Inst) && Subtarget.isPPC64())
10607      return Builder.CreateCall(
10608          Intrinsic::getDeclaration(
10609              Builder.GetInsertBlock()->getParent()->getParent(),
10610              Intrinsic::ppc_cfence, {Inst->getType()}),
10611          {Inst});
10612    // FIXME: Can use isync for rmw operation.
10613    return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
10614  }
10615  return nullptr;
10616}
10617
10618MachineBasicBlock *
10619PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
10620                                    unsigned AtomicSize,
10621                                    unsigned BinOpcode,
10622                                    unsigned CmpOpcode,
10623                                    unsigned CmpPred) const {
10624  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10625  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10626
10627  auto LoadMnemonic = PPC::LDARX;
10628  auto StoreMnemonic = PPC::STDCX;
10629  switch (AtomicSize) {
10630  default:
10631    llvm_unreachable("Unexpected size of atomic entity");
10632  case 1:
10633    LoadMnemonic = PPC::LBARX;
10634    StoreMnemonic = PPC::STBCX;
10635    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10636    break;
10637  case 2:
10638    LoadMnemonic = PPC::LHARX;
10639    StoreMnemonic = PPC::STHCX;
10640    assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
10641    break;
10642  case 4:
10643    LoadMnemonic = PPC::LWARX;
10644    StoreMnemonic = PPC::STWCX;
10645    break;
10646  case 8:
10647    LoadMnemonic = PPC::LDARX;
10648    StoreMnemonic = PPC::STDCX;
10649    break;
10650  }
10651
10652  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10653  MachineFunction *F = BB->getParent();
10654  MachineFunction::iterator It = ++BB->getIterator();
10655
10656  Register dest = MI.getOperand(0).getReg();
10657  Register ptrA = MI.getOperand(1).getReg();
10658  Register ptrB = MI.getOperand(2).getReg();
10659  Register incr = MI.getOperand(3).getReg();
10660  DebugLoc dl = MI.getDebugLoc();
10661
10662  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10663  MachineBasicBlock *loop2MBB =
10664    CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10665  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10666  F->insert(It, loopMBB);
10667  if (CmpOpcode)
10668    F->insert(It, loop2MBB);
10669  F->insert(It, exitMBB);
10670  exitMBB->splice(exitMBB->begin(), BB,
10671                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
10672  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10673
10674  MachineRegisterInfo &RegInfo = F->getRegInfo();
10675  Register TmpReg = (!BinOpcode) ? incr :
10676    RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
10677                                           : &PPC::GPRCRegClass);
10678
10679  //  thisMBB:
10680  //   ...
10681  //   fallthrough --> loopMBB
10682  BB->addSuccessor(loopMBB);
10683
10684  //  loopMBB:
10685  //   l[wd]arx dest, ptr
10686  //   add r0, dest, incr
10687  //   st[wd]cx. r0, ptr
10688  //   bne- loopMBB
10689  //   fallthrough --> exitMBB
10690
10691  // For max/min...
10692  //  loopMBB:
10693  //   l[wd]arx dest, ptr
10694  //   cmpl?[wd] incr, dest
10695  //   bgt exitMBB
10696  //  loop2MBB:
10697  //   st[wd]cx. dest, ptr
10698  //   bne- loopMBB
10699  //   fallthrough --> exitMBB
10700
10701  BB = loopMBB;
10702  BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
10703    .addReg(ptrA).addReg(ptrB);
10704  if (BinOpcode)
10705    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
10706  if (CmpOpcode) {
10707    // Signed comparisons of byte or halfword values must be sign-extended.
10708    if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
10709      Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
10710      BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
10711              ExtReg).addReg(dest);
10712      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10713        .addReg(incr).addReg(ExtReg);
10714    } else
10715      BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10716        .addReg(incr).addReg(dest);
10717
10718    BuildMI(BB, dl, TII->get(PPC::BCC))
10719      .addImm(CmpPred).addReg(PPC::CR0).addMBB(exitMBB);
10720    BB->addSuccessor(loop2MBB);
10721    BB->addSuccessor(exitMBB);
10722    BB = loop2MBB;
10723  }
10724  BuildMI(BB, dl, TII->get(StoreMnemonic))
10725    .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
10726  BuildMI(BB, dl, TII->get(PPC::BCC))
10727    .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
10728  BB->addSuccessor(loopMBB);
10729  BB->addSuccessor(exitMBB);
10730
10731  //  exitMBB:
10732  //   ...
10733  BB = exitMBB;
10734  return BB;
10735}
10736
10737MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
10738    MachineInstr &MI, MachineBasicBlock *BB,
10739    bool is8bit, // operation
10740    unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
10741  // If we support part-word atomic mnemonics, just use them
10742  if (Subtarget.hasPartwordAtomics())
10743    return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
10744                            CmpPred);
10745
10746  // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
10747  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10748  // In 64 bit mode we have to use 64 bits for addresses, even though the
10749  // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
10750  // registers without caring whether they're 32 or 64, but here we're
10751  // doing actual arithmetic on the addresses.
10752  bool is64bit = Subtarget.isPPC64();
10753  bool isLittleEndian = Subtarget.isLittleEndian();
10754  unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
10755
10756  const BasicBlock *LLVM_BB = BB->getBasicBlock();
10757  MachineFunction *F = BB->getParent();
10758  MachineFunction::iterator It = ++BB->getIterator();
10759
10760  Register dest = MI.getOperand(0).getReg();
10761  Register ptrA = MI.getOperand(1).getReg();
10762  Register ptrB = MI.getOperand(2).getReg();
10763  Register incr = MI.getOperand(3).getReg();
10764  DebugLoc dl = MI.getDebugLoc();
10765
10766  MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
10767  MachineBasicBlock *loop2MBB =
10768      CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
10769  MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
10770  F->insert(It, loopMBB);
10771  if (CmpOpcode)
10772    F->insert(It, loop2MBB);
10773  F->insert(It, exitMBB);
10774  exitMBB->splice(exitMBB->begin(), BB,
10775                  std::next(MachineBasicBlock::iterator(MI)), BB->end());
10776  exitMBB->transferSuccessorsAndUpdatePHIs(BB);
10777
10778  MachineRegisterInfo &RegInfo = F->getRegInfo();
10779  const TargetRegisterClass *RC =
10780      is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
10781  const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
10782
10783  Register PtrReg = RegInfo.createVirtualRegister(RC);
10784  Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
10785  Register ShiftReg =
10786      isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
10787  Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
10788  Register MaskReg = RegInfo.createVirtualRegister(GPRC);
10789  Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
10790  Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
10791  Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
10792  Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
10793  Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
10794  Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
10795  Register Ptr1Reg;
10796  Register TmpReg =
10797      (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
10798
10799  //  thisMBB:
10800  //   ...
10801  //   fallthrough --> loopMBB
10802  BB->addSuccessor(loopMBB);
10803
10804  // The 4-byte load must be aligned, while a char or short may be
10805  // anywhere in the word.  Hence all this nasty bookkeeping code.
10806  //   add ptr1, ptrA, ptrB [copy if ptrA==0]
10807  //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
10808  //   xori shift, shift1, 24 [16]
10809  //   rlwinm ptr, ptr1, 0, 0, 29
10810  //   slw incr2, incr, shift
10811  //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
10812  //   slw mask, mask2, shift
10813  //  loopMBB:
10814  //   lwarx tmpDest, ptr
10815  //   add tmp, tmpDest, incr2
10816  //   andc tmp2, tmpDest, mask
10817  //   and tmp3, tmp, mask
10818  //   or tmp4, tmp3, tmp2
10819  //   stwcx. tmp4, ptr
10820  //   bne- loopMBB
10821  //   fallthrough --> exitMBB
10822  //   srw dest, tmpDest, shift
10823  if (ptrA != ZeroReg) {
10824    Ptr1Reg = RegInfo.createVirtualRegister(RC);
10825    BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
10826        .addReg(ptrA)
10827        .addReg(ptrB);
10828  } else {
10829    Ptr1Reg = ptrB;
10830  }
10831  // We need use 32-bit subregister to avoid mismatch register class in 64-bit
10832  // mode.
10833  BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
10834      .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
10835      .addImm(3)
10836      .addImm(27)
10837      .addImm(is8bit ? 28 : 27);
10838  if (!isLittleEndian)
10839    BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
10840        .addReg(Shift1Reg)
10841        .addImm(is8bit ? 24 : 16);
10842  if (is64bit)
10843    BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
10844        .addReg(Ptr1Reg)
10845        .addImm(0)
10846        .addImm(61);
10847  else
10848    BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
10849        .addReg(Ptr1Reg)
10850        .addImm(0)
10851        .addImm(0)
10852        .addImm(29);
10853  BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
10854  if (is8bit)
10855    BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
10856  else {
10857    BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
10858    BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
10859        .addReg(Mask3Reg)
10860        .addImm(65535);
10861  }
10862  BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
10863      .addReg(Mask2Reg)
10864      .addReg(ShiftReg);
10865
10866  BB = loopMBB;
10867  BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
10868      .addReg(ZeroReg)
10869      .addReg(PtrReg);
10870  if (BinOpcode)
10871    BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
10872        .addReg(Incr2Reg)
10873        .addReg(TmpDestReg);
10874  BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
10875      .addReg(TmpDestReg)
10876      .addReg(MaskReg);
10877  BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
10878  if (CmpOpcode) {
10879    // For unsigned comparisons, we can directly compare the shifted values.
10880    // For signed comparisons we shift and sign extend.
10881    Register SReg = RegInfo.createVirtualRegister(GPRC);
10882    BuildMI(BB, dl, TII->get(PPC::AND), SReg)
10883        .addReg(TmpDestReg)
10884        .addReg(MaskReg);
10885    unsigned ValueReg = SReg;
10886    unsigned CmpReg = Incr2Reg;
10887    if (CmpOpcode == PPC::CMPW) {
10888      ValueReg = RegInfo.createVirtualRegister(GPRC);
10889      BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
10890          .addReg(SReg)
10891          .addReg(ShiftReg);
10892      Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
10893      BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
10894          .addReg(ValueReg);
10895      ValueReg = ValueSReg;
10896      CmpReg = incr;
10897    }
10898    BuildMI(BB, dl, TII->get(CmpOpcode), PPC::CR0)
10899        .addReg(CmpReg)
10900        .addReg(ValueReg);
10901    BuildMI(BB, dl, TII->get(PPC::BCC))
10902        .addImm(CmpPred)
10903        .addReg(PPC::CR0)
10904        .addMBB(exitMBB);
10905    BB->addSuccessor(loop2MBB);
10906    BB->addSuccessor(exitMBB);
10907    BB = loop2MBB;
10908  }
10909  BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
10910  BuildMI(BB, dl, TII->get(PPC::STWCX))
10911      .addReg(Tmp4Reg)
10912      .addReg(ZeroReg)
10913      .addReg(PtrReg);
10914  BuildMI(BB, dl, TII->get(PPC::BCC))
10915      .addImm(PPC::PRED_NE)
10916      .addReg(PPC::CR0)
10917      .addMBB(loopMBB);
10918  BB->addSuccessor(loopMBB);
10919  BB->addSuccessor(exitMBB);
10920
10921  //  exitMBB:
10922  //   ...
10923  BB = exitMBB;
10924  BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
10925      .addReg(TmpDestReg)
10926      .addReg(ShiftReg);
10927  return BB;
10928}
10929
10930llvm::MachineBasicBlock *
10931PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
10932                                    MachineBasicBlock *MBB) const {
10933  DebugLoc DL = MI.getDebugLoc();
10934  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
10935  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
10936
10937  MachineFunction *MF = MBB->getParent();
10938  MachineRegisterInfo &MRI = MF->getRegInfo();
10939
10940  const BasicBlock *BB = MBB->getBasicBlock();
10941  MachineFunction::iterator I = ++MBB->getIterator();
10942
10943  Register DstReg = MI.getOperand(0).getReg();
10944  const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
10945  assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
10946  Register mainDstReg = MRI.createVirtualRegister(RC);
10947  Register restoreDstReg = MRI.createVirtualRegister(RC);
10948
10949  MVT PVT = getPointerTy(MF->getDataLayout());
10950  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
10951         "Invalid Pointer Size!");
10952  // For v = setjmp(buf), we generate
10953  //
10954  // thisMBB:
10955  //  SjLjSetup mainMBB
10956  //  bl mainMBB
10957  //  v_restore = 1
10958  //  b sinkMBB
10959  //
10960  // mainMBB:
10961  //  buf[LabelOffset] = LR
10962  //  v_main = 0
10963  //
10964  // sinkMBB:
10965  //  v = phi(main, restore)
10966  //
10967
10968  MachineBasicBlock *thisMBB = MBB;
10969  MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
10970  MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
10971  MF->insert(I, mainMBB);
10972  MF->insert(I, sinkMBB);
10973
10974  MachineInstrBuilder MIB;
10975
10976  // Transfer the remainder of BB and its successor edges to sinkMBB.
10977  sinkMBB->splice(sinkMBB->begin(), MBB,
10978                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
10979  sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
10980
10981  // Note that the structure of the jmp_buf used here is not compatible
10982  // with that used by libc, and is not designed to be. Specifically, it
10983  // stores only those 'reserved' registers that LLVM does not otherwise
10984  // understand how to spill. Also, by convention, by the time this
10985  // intrinsic is called, Clang has already stored the frame address in the
10986  // first slot of the buffer and stack address in the third. Following the
10987  // X86 target code, we'll store the jump address in the second slot. We also
10988  // need to save the TOC pointer (R2) to handle jumps between shared
10989  // libraries, and that will be stored in the fourth slot. The thread
10990  // identifier (R13) is not affected.
10991
10992  // thisMBB:
10993  const int64_t LabelOffset = 1 * PVT.getStoreSize();
10994  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
10995  const int64_t BPOffset    = 4 * PVT.getStoreSize();
10996
10997  // Prepare IP either in reg.
10998  const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
10999  Register LabelReg = MRI.createVirtualRegister(PtrRC);
11000  Register BufReg = MI.getOperand(1).getReg();
11001
11002  if (Subtarget.is64BitELFABI()) {
11003    setUsesTOCBasePtr(*MBB->getParent());
11004    MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
11005              .addReg(PPC::X2)
11006              .addImm(TOCOffset)
11007              .addReg(BufReg)
11008              .cloneMemRefs(MI);
11009  }
11010
11011  // Naked functions never have a base pointer, and so we use r1. For all
11012  // other functions, this decision must be delayed until during PEI.
11013  unsigned BaseReg;
11014  if (MF->getFunction().hasFnAttribute(Attribute::Naked))
11015    BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
11016  else
11017    BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
11018
11019  MIB = BuildMI(*thisMBB, MI, DL,
11020                TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
11021            .addReg(BaseReg)
11022            .addImm(BPOffset)
11023            .addReg(BufReg)
11024            .cloneMemRefs(MI);
11025
11026  // Setup
11027  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
11028  MIB.addRegMask(TRI->getNoPreservedMask());
11029
11030  BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
11031
11032  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
11033          .addMBB(mainMBB);
11034  MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
11035
11036  thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
11037  thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
11038
11039  // mainMBB:
11040  //  mainDstReg = 0
11041  MIB =
11042      BuildMI(mainMBB, DL,
11043              TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
11044
11045  // Store IP
11046  if (Subtarget.isPPC64()) {
11047    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
11048            .addReg(LabelReg)
11049            .addImm(LabelOffset)
11050            .addReg(BufReg);
11051  } else {
11052    MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
11053            .addReg(LabelReg)
11054            .addImm(LabelOffset)
11055            .addReg(BufReg);
11056  }
11057  MIB.cloneMemRefs(MI);
11058
11059  BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
11060  mainMBB->addSuccessor(sinkMBB);
11061
11062  // sinkMBB:
11063  BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11064          TII->get(PPC::PHI), DstReg)
11065    .addReg(mainDstReg).addMBB(mainMBB)
11066    .addReg(restoreDstReg).addMBB(thisMBB);
11067
11068  MI.eraseFromParent();
11069  return sinkMBB;
11070}
11071
11072MachineBasicBlock *
11073PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
11074                                     MachineBasicBlock *MBB) const {
11075  DebugLoc DL = MI.getDebugLoc();
11076  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11077
11078  MachineFunction *MF = MBB->getParent();
11079  MachineRegisterInfo &MRI = MF->getRegInfo();
11080
11081  MVT PVT = getPointerTy(MF->getDataLayout());
11082  assert((PVT == MVT::i64 || PVT == MVT::i32) &&
11083         "Invalid Pointer Size!");
11084
11085  const TargetRegisterClass *RC =
11086    (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11087  Register Tmp = MRI.createVirtualRegister(RC);
11088  // Since FP is only updated here but NOT referenced, it's treated as GPR.
11089  unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
11090  unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
11091  unsigned BP =
11092      (PVT == MVT::i64)
11093          ? PPC::X30
11094          : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
11095                                                              : PPC::R30);
11096
11097  MachineInstrBuilder MIB;
11098
11099  const int64_t LabelOffset = 1 * PVT.getStoreSize();
11100  const int64_t SPOffset    = 2 * PVT.getStoreSize();
11101  const int64_t TOCOffset   = 3 * PVT.getStoreSize();
11102  const int64_t BPOffset    = 4 * PVT.getStoreSize();
11103
11104  Register BufReg = MI.getOperand(0).getReg();
11105
11106  // Reload FP (the jumped-to function may not have had a
11107  // frame pointer, and if so, then its r31 will be restored
11108  // as necessary).
11109  if (PVT == MVT::i64) {
11110    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
11111            .addImm(0)
11112            .addReg(BufReg);
11113  } else {
11114    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
11115            .addImm(0)
11116            .addReg(BufReg);
11117  }
11118  MIB.cloneMemRefs(MI);
11119
11120  // Reload IP
11121  if (PVT == MVT::i64) {
11122    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
11123            .addImm(LabelOffset)
11124            .addReg(BufReg);
11125  } else {
11126    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
11127            .addImm(LabelOffset)
11128            .addReg(BufReg);
11129  }
11130  MIB.cloneMemRefs(MI);
11131
11132  // Reload SP
11133  if (PVT == MVT::i64) {
11134    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
11135            .addImm(SPOffset)
11136            .addReg(BufReg);
11137  } else {
11138    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
11139            .addImm(SPOffset)
11140            .addReg(BufReg);
11141  }
11142  MIB.cloneMemRefs(MI);
11143
11144  // Reload BP
11145  if (PVT == MVT::i64) {
11146    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
11147            .addImm(BPOffset)
11148            .addReg(BufReg);
11149  } else {
11150    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
11151            .addImm(BPOffset)
11152            .addReg(BufReg);
11153  }
11154  MIB.cloneMemRefs(MI);
11155
11156  // Reload TOC
11157  if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
11158    setUsesTOCBasePtr(*MBB->getParent());
11159    MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
11160              .addImm(TOCOffset)
11161              .addReg(BufReg)
11162              .cloneMemRefs(MI);
11163  }
11164
11165  // Jump
11166  BuildMI(*MBB, MI, DL,
11167          TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
11168  BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
11169
11170  MI.eraseFromParent();
11171  return MBB;
11172}
11173
11174MachineBasicBlock *
11175PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
11176                                               MachineBasicBlock *BB) const {
11177  if (MI.getOpcode() == TargetOpcode::STACKMAP ||
11178      MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11179    if (Subtarget.is64BitELFABI() &&
11180        MI.getOpcode() == TargetOpcode::PATCHPOINT) {
11181      // Call lowering should have added an r2 operand to indicate a dependence
11182      // on the TOC base pointer value. It can't however, because there is no
11183      // way to mark the dependence as implicit there, and so the stackmap code
11184      // will confuse it with a regular operand. Instead, add the dependence
11185      // here.
11186      MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
11187    }
11188
11189    return emitPatchPoint(MI, BB);
11190  }
11191
11192  if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
11193      MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
11194    return emitEHSjLjSetJmp(MI, BB);
11195  } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
11196             MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
11197    return emitEHSjLjLongJmp(MI, BB);
11198  }
11199
11200  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11201
11202  // To "insert" these instructions we actually have to insert their
11203  // control-flow patterns.
11204  const BasicBlock *LLVM_BB = BB->getBasicBlock();
11205  MachineFunction::iterator It = ++BB->getIterator();
11206
11207  MachineFunction *F = BB->getParent();
11208
11209  if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11210      MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
11211      MI.getOpcode() == PPC::SELECT_I8) {
11212    SmallVector<MachineOperand, 2> Cond;
11213    if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
11214        MI.getOpcode() == PPC::SELECT_CC_I8)
11215      Cond.push_back(MI.getOperand(4));
11216    else
11217      Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
11218    Cond.push_back(MI.getOperand(1));
11219
11220    DebugLoc dl = MI.getDebugLoc();
11221    TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
11222                      MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
11223  } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
11224             MI.getOpcode() == PPC::SELECT_CC_F8 ||
11225             MI.getOpcode() == PPC::SELECT_CC_F16 ||
11226             MI.getOpcode() == PPC::SELECT_CC_QFRC ||
11227             MI.getOpcode() == PPC::SELECT_CC_QSRC ||
11228             MI.getOpcode() == PPC::SELECT_CC_QBRC ||
11229             MI.getOpcode() == PPC::SELECT_CC_VRRC ||
11230             MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
11231             MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
11232             MI.getOpcode() == PPC::SELECT_CC_VSRC ||
11233             MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
11234             MI.getOpcode() == PPC::SELECT_CC_SPE ||
11235             MI.getOpcode() == PPC::SELECT_F4 ||
11236             MI.getOpcode() == PPC::SELECT_F8 ||
11237             MI.getOpcode() == PPC::SELECT_F16 ||
11238             MI.getOpcode() == PPC::SELECT_QFRC ||
11239             MI.getOpcode() == PPC::SELECT_QSRC ||
11240             MI.getOpcode() == PPC::SELECT_QBRC ||
11241             MI.getOpcode() == PPC::SELECT_SPE ||
11242             MI.getOpcode() == PPC::SELECT_SPE4 ||
11243             MI.getOpcode() == PPC::SELECT_VRRC ||
11244             MI.getOpcode() == PPC::SELECT_VSFRC ||
11245             MI.getOpcode() == PPC::SELECT_VSSRC ||
11246             MI.getOpcode() == PPC::SELECT_VSRC) {
11247    // The incoming instruction knows the destination vreg to set, the
11248    // condition code register to branch on, the true/false values to
11249    // select between, and a branch opcode to use.
11250
11251    //  thisMBB:
11252    //  ...
11253    //   TrueVal = ...
11254    //   cmpTY ccX, r1, r2
11255    //   bCC copy1MBB
11256    //   fallthrough --> copy0MBB
11257    MachineBasicBlock *thisMBB = BB;
11258    MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11259    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11260    DebugLoc dl = MI.getDebugLoc();
11261    F->insert(It, copy0MBB);
11262    F->insert(It, sinkMBB);
11263
11264    // Transfer the remainder of BB and its successor edges to sinkMBB.
11265    sinkMBB->splice(sinkMBB->begin(), BB,
11266                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
11267    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11268
11269    // Next, add the true and fallthrough blocks as its successors.
11270    BB->addSuccessor(copy0MBB);
11271    BB->addSuccessor(sinkMBB);
11272
11273    if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
11274        MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
11275        MI.getOpcode() == PPC::SELECT_F16 ||
11276        MI.getOpcode() == PPC::SELECT_SPE4 ||
11277        MI.getOpcode() == PPC::SELECT_SPE ||
11278        MI.getOpcode() == PPC::SELECT_QFRC ||
11279        MI.getOpcode() == PPC::SELECT_QSRC ||
11280        MI.getOpcode() == PPC::SELECT_QBRC ||
11281        MI.getOpcode() == PPC::SELECT_VRRC ||
11282        MI.getOpcode() == PPC::SELECT_VSFRC ||
11283        MI.getOpcode() == PPC::SELECT_VSSRC ||
11284        MI.getOpcode() == PPC::SELECT_VSRC) {
11285      BuildMI(BB, dl, TII->get(PPC::BC))
11286          .addReg(MI.getOperand(1).getReg())
11287          .addMBB(sinkMBB);
11288    } else {
11289      unsigned SelectPred = MI.getOperand(4).getImm();
11290      BuildMI(BB, dl, TII->get(PPC::BCC))
11291          .addImm(SelectPred)
11292          .addReg(MI.getOperand(1).getReg())
11293          .addMBB(sinkMBB);
11294    }
11295
11296    //  copy0MBB:
11297    //   %FalseValue = ...
11298    //   # fallthrough to sinkMBB
11299    BB = copy0MBB;
11300
11301    // Update machine-CFG edges
11302    BB->addSuccessor(sinkMBB);
11303
11304    //  sinkMBB:
11305    //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11306    //  ...
11307    BB = sinkMBB;
11308    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
11309        .addReg(MI.getOperand(3).getReg())
11310        .addMBB(copy0MBB)
11311        .addReg(MI.getOperand(2).getReg())
11312        .addMBB(thisMBB);
11313  } else if (MI.getOpcode() == PPC::ReadTB) {
11314    // To read the 64-bit time-base register on a 32-bit target, we read the
11315    // two halves. Should the counter have wrapped while it was being read, we
11316    // need to try again.
11317    // ...
11318    // readLoop:
11319    // mfspr Rx,TBU # load from TBU
11320    // mfspr Ry,TB  # load from TB
11321    // mfspr Rz,TBU # load from TBU
11322    // cmpw crX,Rx,Rz # check if 'old'='new'
11323    // bne readLoop   # branch if they're not equal
11324    // ...
11325
11326    MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
11327    MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11328    DebugLoc dl = MI.getDebugLoc();
11329    F->insert(It, readMBB);
11330    F->insert(It, sinkMBB);
11331
11332    // Transfer the remainder of BB and its successor edges to sinkMBB.
11333    sinkMBB->splice(sinkMBB->begin(), BB,
11334                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
11335    sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11336
11337    BB->addSuccessor(readMBB);
11338    BB = readMBB;
11339
11340    MachineRegisterInfo &RegInfo = F->getRegInfo();
11341    Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11342    Register LoReg = MI.getOperand(0).getReg();
11343    Register HiReg = MI.getOperand(1).getReg();
11344
11345    BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
11346    BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
11347    BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
11348
11349    Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11350
11351    BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
11352        .addReg(HiReg)
11353        .addReg(ReadAgainReg);
11354    BuildMI(BB, dl, TII->get(PPC::BCC))
11355        .addImm(PPC::PRED_NE)
11356        .addReg(CmpReg)
11357        .addMBB(readMBB);
11358
11359    BB->addSuccessor(readMBB);
11360    BB->addSuccessor(sinkMBB);
11361  } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
11362    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
11363  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
11364    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
11365  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
11366    BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
11367  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
11368    BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
11369
11370  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
11371    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
11372  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
11373    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
11374  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
11375    BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
11376  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
11377    BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
11378
11379  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
11380    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
11381  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
11382    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
11383  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
11384    BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
11385  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
11386    BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
11387
11388  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
11389    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
11390  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
11391    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
11392  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
11393    BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
11394  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
11395    BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
11396
11397  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
11398    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
11399  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
11400    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
11401  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
11402    BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
11403  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
11404    BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
11405
11406  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
11407    BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
11408  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
11409    BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
11410  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
11411    BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
11412  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
11413    BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
11414
11415  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
11416    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GE);
11417  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
11418    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GE);
11419  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
11420    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GE);
11421  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
11422    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GE);
11423
11424  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
11425    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LE);
11426  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
11427    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LE);
11428  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
11429    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LE);
11430  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
11431    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LE);
11432
11433  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
11434    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GE);
11435  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
11436    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GE);
11437  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
11438    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GE);
11439  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
11440    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GE);
11441
11442  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
11443    BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LE);
11444  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
11445    BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LE);
11446  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
11447    BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LE);
11448  else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
11449    BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LE);
11450
11451  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
11452    BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
11453  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
11454    BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
11455  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
11456    BB = EmitAtomicBinary(MI, BB, 4, 0);
11457  else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
11458    BB = EmitAtomicBinary(MI, BB, 8, 0);
11459  else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
11460           MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
11461           (Subtarget.hasPartwordAtomics() &&
11462            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
11463           (Subtarget.hasPartwordAtomics() &&
11464            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
11465    bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
11466
11467    auto LoadMnemonic = PPC::LDARX;
11468    auto StoreMnemonic = PPC::STDCX;
11469    switch (MI.getOpcode()) {
11470    default:
11471      llvm_unreachable("Compare and swap of unknown size");
11472    case PPC::ATOMIC_CMP_SWAP_I8:
11473      LoadMnemonic = PPC::LBARX;
11474      StoreMnemonic = PPC::STBCX;
11475      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11476      break;
11477    case PPC::ATOMIC_CMP_SWAP_I16:
11478      LoadMnemonic = PPC::LHARX;
11479      StoreMnemonic = PPC::STHCX;
11480      assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
11481      break;
11482    case PPC::ATOMIC_CMP_SWAP_I32:
11483      LoadMnemonic = PPC::LWARX;
11484      StoreMnemonic = PPC::STWCX;
11485      break;
11486    case PPC::ATOMIC_CMP_SWAP_I64:
11487      LoadMnemonic = PPC::LDARX;
11488      StoreMnemonic = PPC::STDCX;
11489      break;
11490    }
11491    Register dest = MI.getOperand(0).getReg();
11492    Register ptrA = MI.getOperand(1).getReg();
11493    Register ptrB = MI.getOperand(2).getReg();
11494    Register oldval = MI.getOperand(3).getReg();
11495    Register newval = MI.getOperand(4).getReg();
11496    DebugLoc dl = MI.getDebugLoc();
11497
11498    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11499    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11500    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11501    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11502    F->insert(It, loop1MBB);
11503    F->insert(It, loop2MBB);
11504    F->insert(It, midMBB);
11505    F->insert(It, exitMBB);
11506    exitMBB->splice(exitMBB->begin(), BB,
11507                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
11508    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11509
11510    //  thisMBB:
11511    //   ...
11512    //   fallthrough --> loopMBB
11513    BB->addSuccessor(loop1MBB);
11514
11515    // loop1MBB:
11516    //   l[bhwd]arx dest, ptr
11517    //   cmp[wd] dest, oldval
11518    //   bne- midMBB
11519    // loop2MBB:
11520    //   st[bhwd]cx. newval, ptr
11521    //   bne- loopMBB
11522    //   b exitBB
11523    // midMBB:
11524    //   st[bhwd]cx. dest, ptr
11525    // exitBB:
11526    BB = loop1MBB;
11527    BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
11528    BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
11529        .addReg(oldval)
11530        .addReg(dest);
11531    BuildMI(BB, dl, TII->get(PPC::BCC))
11532        .addImm(PPC::PRED_NE)
11533        .addReg(PPC::CR0)
11534        .addMBB(midMBB);
11535    BB->addSuccessor(loop2MBB);
11536    BB->addSuccessor(midMBB);
11537
11538    BB = loop2MBB;
11539    BuildMI(BB, dl, TII->get(StoreMnemonic))
11540        .addReg(newval)
11541        .addReg(ptrA)
11542        .addReg(ptrB);
11543    BuildMI(BB, dl, TII->get(PPC::BCC))
11544        .addImm(PPC::PRED_NE)
11545        .addReg(PPC::CR0)
11546        .addMBB(loop1MBB);
11547    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11548    BB->addSuccessor(loop1MBB);
11549    BB->addSuccessor(exitMBB);
11550
11551    BB = midMBB;
11552    BuildMI(BB, dl, TII->get(StoreMnemonic))
11553        .addReg(dest)
11554        .addReg(ptrA)
11555        .addReg(ptrB);
11556    BB->addSuccessor(exitMBB);
11557
11558    //  exitMBB:
11559    //   ...
11560    BB = exitMBB;
11561  } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
11562             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
11563    // We must use 64-bit registers for addresses when targeting 64-bit,
11564    // since we're actually doing arithmetic on them.  Other registers
11565    // can be 32-bit.
11566    bool is64bit = Subtarget.isPPC64();
11567    bool isLittleEndian = Subtarget.isLittleEndian();
11568    bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
11569
11570    Register dest = MI.getOperand(0).getReg();
11571    Register ptrA = MI.getOperand(1).getReg();
11572    Register ptrB = MI.getOperand(2).getReg();
11573    Register oldval = MI.getOperand(3).getReg();
11574    Register newval = MI.getOperand(4).getReg();
11575    DebugLoc dl = MI.getDebugLoc();
11576
11577    MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
11578    MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
11579    MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
11580    MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11581    F->insert(It, loop1MBB);
11582    F->insert(It, loop2MBB);
11583    F->insert(It, midMBB);
11584    F->insert(It, exitMBB);
11585    exitMBB->splice(exitMBB->begin(), BB,
11586                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
11587    exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11588
11589    MachineRegisterInfo &RegInfo = F->getRegInfo();
11590    const TargetRegisterClass *RC =
11591        is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
11592    const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
11593
11594    Register PtrReg = RegInfo.createVirtualRegister(RC);
11595    Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
11596    Register ShiftReg =
11597        isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
11598    Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
11599    Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
11600    Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
11601    Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
11602    Register MaskReg = RegInfo.createVirtualRegister(GPRC);
11603    Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
11604    Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
11605    Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
11606    Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
11607    Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
11608    Register Ptr1Reg;
11609    Register TmpReg = RegInfo.createVirtualRegister(GPRC);
11610    Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
11611    //  thisMBB:
11612    //   ...
11613    //   fallthrough --> loopMBB
11614    BB->addSuccessor(loop1MBB);
11615
11616    // The 4-byte load must be aligned, while a char or short may be
11617    // anywhere in the word.  Hence all this nasty bookkeeping code.
11618    //   add ptr1, ptrA, ptrB [copy if ptrA==0]
11619    //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
11620    //   xori shift, shift1, 24 [16]
11621    //   rlwinm ptr, ptr1, 0, 0, 29
11622    //   slw newval2, newval, shift
11623    //   slw oldval2, oldval,shift
11624    //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
11625    //   slw mask, mask2, shift
11626    //   and newval3, newval2, mask
11627    //   and oldval3, oldval2, mask
11628    // loop1MBB:
11629    //   lwarx tmpDest, ptr
11630    //   and tmp, tmpDest, mask
11631    //   cmpw tmp, oldval3
11632    //   bne- midMBB
11633    // loop2MBB:
11634    //   andc tmp2, tmpDest, mask
11635    //   or tmp4, tmp2, newval3
11636    //   stwcx. tmp4, ptr
11637    //   bne- loop1MBB
11638    //   b exitBB
11639    // midMBB:
11640    //   stwcx. tmpDest, ptr
11641    // exitBB:
11642    //   srw dest, tmpDest, shift
11643    if (ptrA != ZeroReg) {
11644      Ptr1Reg = RegInfo.createVirtualRegister(RC);
11645      BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
11646          .addReg(ptrA)
11647          .addReg(ptrB);
11648    } else {
11649      Ptr1Reg = ptrB;
11650    }
11651
11652    // We need use 32-bit subregister to avoid mismatch register class in 64-bit
11653    // mode.
11654    BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
11655        .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
11656        .addImm(3)
11657        .addImm(27)
11658        .addImm(is8bit ? 28 : 27);
11659    if (!isLittleEndian)
11660      BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
11661          .addReg(Shift1Reg)
11662          .addImm(is8bit ? 24 : 16);
11663    if (is64bit)
11664      BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
11665          .addReg(Ptr1Reg)
11666          .addImm(0)
11667          .addImm(61);
11668    else
11669      BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
11670          .addReg(Ptr1Reg)
11671          .addImm(0)
11672          .addImm(0)
11673          .addImm(29);
11674    BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
11675        .addReg(newval)
11676        .addReg(ShiftReg);
11677    BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
11678        .addReg(oldval)
11679        .addReg(ShiftReg);
11680    if (is8bit)
11681      BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
11682    else {
11683      BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
11684      BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
11685          .addReg(Mask3Reg)
11686          .addImm(65535);
11687    }
11688    BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
11689        .addReg(Mask2Reg)
11690        .addReg(ShiftReg);
11691    BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
11692        .addReg(NewVal2Reg)
11693        .addReg(MaskReg);
11694    BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
11695        .addReg(OldVal2Reg)
11696        .addReg(MaskReg);
11697
11698    BB = loop1MBB;
11699    BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
11700        .addReg(ZeroReg)
11701        .addReg(PtrReg);
11702    BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
11703        .addReg(TmpDestReg)
11704        .addReg(MaskReg);
11705    BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
11706        .addReg(TmpReg)
11707        .addReg(OldVal3Reg);
11708    BuildMI(BB, dl, TII->get(PPC::BCC))
11709        .addImm(PPC::PRED_NE)
11710        .addReg(PPC::CR0)
11711        .addMBB(midMBB);
11712    BB->addSuccessor(loop2MBB);
11713    BB->addSuccessor(midMBB);
11714
11715    BB = loop2MBB;
11716    BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
11717        .addReg(TmpDestReg)
11718        .addReg(MaskReg);
11719    BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
11720        .addReg(Tmp2Reg)
11721        .addReg(NewVal3Reg);
11722    BuildMI(BB, dl, TII->get(PPC::STWCX))
11723        .addReg(Tmp4Reg)
11724        .addReg(ZeroReg)
11725        .addReg(PtrReg);
11726    BuildMI(BB, dl, TII->get(PPC::BCC))
11727        .addImm(PPC::PRED_NE)
11728        .addReg(PPC::CR0)
11729        .addMBB(loop1MBB);
11730    BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
11731    BB->addSuccessor(loop1MBB);
11732    BB->addSuccessor(exitMBB);
11733
11734    BB = midMBB;
11735    BuildMI(BB, dl, TII->get(PPC::STWCX))
11736        .addReg(TmpDestReg)
11737        .addReg(ZeroReg)
11738        .addReg(PtrReg);
11739    BB->addSuccessor(exitMBB);
11740
11741    //  exitMBB:
11742    //   ...
11743    BB = exitMBB;
11744    BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
11745        .addReg(TmpReg)
11746        .addReg(ShiftReg);
11747  } else if (MI.getOpcode() == PPC::FADDrtz) {
11748    // This pseudo performs an FADD with rounding mode temporarily forced
11749    // to round-to-zero.  We emit this via custom inserter since the FPSCR
11750    // is not modeled at the SelectionDAG level.
11751    Register Dest = MI.getOperand(0).getReg();
11752    Register Src1 = MI.getOperand(1).getReg();
11753    Register Src2 = MI.getOperand(2).getReg();
11754    DebugLoc dl = MI.getDebugLoc();
11755
11756    MachineRegisterInfo &RegInfo = F->getRegInfo();
11757    Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11758
11759    // Save FPSCR value.
11760    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
11761
11762    // Set rounding mode to round-to-zero.
11763    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
11764    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
11765
11766    // Perform addition.
11767    BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
11768
11769    // Restore FPSCR value.
11770    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
11771  } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11772             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
11773             MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11774             MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
11775    unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
11776                       MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
11777                          ? PPC::ANDI8_rec
11778                          : PPC::ANDI_rec;
11779    bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
11780                 MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
11781
11782    MachineRegisterInfo &RegInfo = F->getRegInfo();
11783    Register Dest = RegInfo.createVirtualRegister(
11784        Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
11785
11786    DebugLoc Dl = MI.getDebugLoc();
11787    BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
11788        .addReg(MI.getOperand(1).getReg())
11789        .addImm(1);
11790    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11791            MI.getOperand(0).getReg())
11792        .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
11793  } else if (MI.getOpcode() == PPC::TCHECK_RET) {
11794    DebugLoc Dl = MI.getDebugLoc();
11795    MachineRegisterInfo &RegInfo = F->getRegInfo();
11796    Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11797    BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
11798    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11799            MI.getOperand(0).getReg())
11800        .addReg(CRReg);
11801  } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
11802    DebugLoc Dl = MI.getDebugLoc();
11803    unsigned Imm = MI.getOperand(1).getImm();
11804    BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
11805    BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
11806            MI.getOperand(0).getReg())
11807        .addReg(PPC::CR0EQ);
11808  } else if (MI.getOpcode() == PPC::SETRNDi) {
11809    DebugLoc dl = MI.getDebugLoc();
11810    Register OldFPSCRReg = MI.getOperand(0).getReg();
11811
11812    // Save FPSCR value.
11813    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11814
11815    // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
11816    // the following settings:
11817    //   00 Round to nearest
11818    //   01 Round to 0
11819    //   10 Round to +inf
11820    //   11 Round to -inf
11821
11822    // When the operand is immediate, using the two least significant bits of
11823    // the immediate to set the bits 62:63 of FPSCR.
11824    unsigned Mode = MI.getOperand(1).getImm();
11825    BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
11826      .addImm(31);
11827
11828    BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
11829      .addImm(30);
11830  } else if (MI.getOpcode() == PPC::SETRND) {
11831    DebugLoc dl = MI.getDebugLoc();
11832
11833    // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
11834    // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
11835    // If the target doesn't have DirectMove, we should use stack to do the
11836    // conversion, because the target doesn't have the instructions like mtvsrd
11837    // or mfvsrd to do this conversion directly.
11838    auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
11839      if (Subtarget.hasDirectMove()) {
11840        BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
11841          .addReg(SrcReg);
11842      } else {
11843        // Use stack to do the register copy.
11844        unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
11845        MachineRegisterInfo &RegInfo = F->getRegInfo();
11846        const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
11847        if (RC == &PPC::F8RCRegClass) {
11848          // Copy register from F8RCRegClass to G8RCRegclass.
11849          assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
11850                 "Unsupported RegClass.");
11851
11852          StoreOp = PPC::STFD;
11853          LoadOp = PPC::LD;
11854        } else {
11855          // Copy register from G8RCRegClass to F8RCRegclass.
11856          assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
11857                 (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
11858                 "Unsupported RegClass.");
11859        }
11860
11861        MachineFrameInfo &MFI = F->getFrameInfo();
11862        int FrameIdx = MFI.CreateStackObject(8, 8, false);
11863
11864        MachineMemOperand *MMOStore = F->getMachineMemOperand(
11865          MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11866          MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
11867          MFI.getObjectAlignment(FrameIdx));
11868
11869        // Store the SrcReg into the stack.
11870        BuildMI(*BB, MI, dl, TII->get(StoreOp))
11871          .addReg(SrcReg)
11872          .addImm(0)
11873          .addFrameIndex(FrameIdx)
11874          .addMemOperand(MMOStore);
11875
11876        MachineMemOperand *MMOLoad = F->getMachineMemOperand(
11877          MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
11878          MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
11879          MFI.getObjectAlignment(FrameIdx));
11880
11881        // Load from the stack where SrcReg is stored, and save to DestReg,
11882        // so we have done the RegClass conversion from RegClass::SrcReg to
11883        // RegClass::DestReg.
11884        BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
11885          .addImm(0)
11886          .addFrameIndex(FrameIdx)
11887          .addMemOperand(MMOLoad);
11888      }
11889    };
11890
11891    Register OldFPSCRReg = MI.getOperand(0).getReg();
11892
11893    // Save FPSCR value.
11894    BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
11895
11896    // When the operand is gprc register, use two least significant bits of the
11897    // register and mtfsf instruction to set the bits 62:63 of FPSCR.
11898    //
11899    // copy OldFPSCRTmpReg, OldFPSCRReg
11900    // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
11901    // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
11902    // copy NewFPSCRReg, NewFPSCRTmpReg
11903    // mtfsf 255, NewFPSCRReg
11904    MachineOperand SrcOp = MI.getOperand(1);
11905    MachineRegisterInfo &RegInfo = F->getRegInfo();
11906    Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11907
11908    copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
11909
11910    Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11911    Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11912
11913    // The first operand of INSERT_SUBREG should be a register which has
11914    // subregisters, we only care about its RegClass, so we should use an
11915    // IMPLICIT_DEF register.
11916    BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
11917    BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
11918      .addReg(ImDefReg)
11919      .add(SrcOp)
11920      .addImm(1);
11921
11922    Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
11923    BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
11924      .addReg(OldFPSCRTmpReg)
11925      .addReg(ExtSrcReg)
11926      .addImm(0)
11927      .addImm(62);
11928
11929    Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
11930    copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
11931
11932    // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
11933    // bits of FPSCR.
11934    BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
11935      .addImm(255)
11936      .addReg(NewFPSCRReg)
11937      .addImm(0)
11938      .addImm(0);
11939  } else {
11940    llvm_unreachable("Unexpected instr type to insert");
11941  }
11942
11943  MI.eraseFromParent(); // The pseudo instruction is gone now.
11944  return BB;
11945}
11946
11947//===----------------------------------------------------------------------===//
11948// Target Optimization Hooks
11949//===----------------------------------------------------------------------===//
11950
11951static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
11952  // For the estimates, convergence is quadratic, so we essentially double the
11953  // number of digits correct after every iteration. For both FRE and FRSQRTE,
11954  // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
11955  // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
11956  int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
11957  if (VT.getScalarType() == MVT::f64)
11958    RefinementSteps++;
11959  return RefinementSteps;
11960}
11961
11962SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
11963                                           int Enabled, int &RefinementSteps,
11964                                           bool &UseOneConstNR,
11965                                           bool Reciprocal) const {
11966  EVT VT = Operand.getValueType();
11967  if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
11968      (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
11969      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11970      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11971      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11972      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11973    if (RefinementSteps == ReciprocalEstimate::Unspecified)
11974      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11975
11976    // The Newton-Raphson computation with a single constant does not provide
11977    // enough accuracy on some CPUs.
11978    UseOneConstNR = !Subtarget.needsTwoConstNR();
11979    return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
11980  }
11981  return SDValue();
11982}
11983
11984SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
11985                                            int Enabled,
11986                                            int &RefinementSteps) const {
11987  EVT VT = Operand.getValueType();
11988  if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
11989      (VT == MVT::f64 && Subtarget.hasFRE()) ||
11990      (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
11991      (VT == MVT::v2f64 && Subtarget.hasVSX()) ||
11992      (VT == MVT::v4f32 && Subtarget.hasQPX()) ||
11993      (VT == MVT::v4f64 && Subtarget.hasQPX())) {
11994    if (RefinementSteps == ReciprocalEstimate::Unspecified)
11995      RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
11996    return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
11997  }
11998  return SDValue();
11999}
12000
12001unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
12002  // Note: This functionality is used only when unsafe-fp-math is enabled, and
12003  // on cores with reciprocal estimates (which are used when unsafe-fp-math is
12004  // enabled for division), this functionality is redundant with the default
12005  // combiner logic (once the division -> reciprocal/multiply transformation
12006  // has taken place). As a result, this matters more for older cores than for
12007  // newer ones.
12008
12009  // Combine multiple FDIVs with the same divisor into multiple FMULs by the
12010  // reciprocal if there are two or more FDIVs (for embedded cores with only
12011  // one FP pipeline) for three or more FDIVs (for generic OOO cores).
12012  switch (Subtarget.getCPUDirective()) {
12013  default:
12014    return 3;
12015  case PPC::DIR_440:
12016  case PPC::DIR_A2:
12017  case PPC::DIR_E500:
12018  case PPC::DIR_E500mc:
12019  case PPC::DIR_E5500:
12020    return 2;
12021  }
12022}
12023
12024// isConsecutiveLSLoc needs to work even if all adds have not yet been
12025// collapsed, and so we need to look through chains of them.
12026static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
12027                                     int64_t& Offset, SelectionDAG &DAG) {
12028  if (DAG.isBaseWithConstantOffset(Loc)) {
12029    Base = Loc.getOperand(0);
12030    Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
12031
12032    // The base might itself be a base plus an offset, and if so, accumulate
12033    // that as well.
12034    getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
12035  }
12036}
12037
12038static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
12039                            unsigned Bytes, int Dist,
12040                            SelectionDAG &DAG) {
12041  if (VT.getSizeInBits() / 8 != Bytes)
12042    return false;
12043
12044  SDValue BaseLoc = Base->getBasePtr();
12045  if (Loc.getOpcode() == ISD::FrameIndex) {
12046    if (BaseLoc.getOpcode() != ISD::FrameIndex)
12047      return false;
12048    const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
12049    int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
12050    int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
12051    int FS  = MFI.getObjectSize(FI);
12052    int BFS = MFI.getObjectSize(BFI);
12053    if (FS != BFS || FS != (int)Bytes) return false;
12054    return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
12055  }
12056
12057  SDValue Base1 = Loc, Base2 = BaseLoc;
12058  int64_t Offset1 = 0, Offset2 = 0;
12059  getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
12060  getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
12061  if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
12062    return true;
12063
12064  const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12065  const GlobalValue *GV1 = nullptr;
12066  const GlobalValue *GV2 = nullptr;
12067  Offset1 = 0;
12068  Offset2 = 0;
12069  bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
12070  bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
12071  if (isGA1 && isGA2 && GV1 == GV2)
12072    return Offset1 == (Offset2 + Dist*Bytes);
12073  return false;
12074}
12075
12076// Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
12077// not enforce equality of the chain operands.
12078static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
12079                            unsigned Bytes, int Dist,
12080                            SelectionDAG &DAG) {
12081  if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
12082    EVT VT = LS->getMemoryVT();
12083    SDValue Loc = LS->getBasePtr();
12084    return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
12085  }
12086
12087  if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
12088    EVT VT;
12089    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12090    default: return false;
12091    case Intrinsic::ppc_qpx_qvlfd:
12092    case Intrinsic::ppc_qpx_qvlfda:
12093      VT = MVT::v4f64;
12094      break;
12095    case Intrinsic::ppc_qpx_qvlfs:
12096    case Intrinsic::ppc_qpx_qvlfsa:
12097      VT = MVT::v4f32;
12098      break;
12099    case Intrinsic::ppc_qpx_qvlfcd:
12100    case Intrinsic::ppc_qpx_qvlfcda:
12101      VT = MVT::v2f64;
12102      break;
12103    case Intrinsic::ppc_qpx_qvlfcs:
12104    case Intrinsic::ppc_qpx_qvlfcsa:
12105      VT = MVT::v2f32;
12106      break;
12107    case Intrinsic::ppc_qpx_qvlfiwa:
12108    case Intrinsic::ppc_qpx_qvlfiwz:
12109    case Intrinsic::ppc_altivec_lvx:
12110    case Intrinsic::ppc_altivec_lvxl:
12111    case Intrinsic::ppc_vsx_lxvw4x:
12112    case Intrinsic::ppc_vsx_lxvw4x_be:
12113      VT = MVT::v4i32;
12114      break;
12115    case Intrinsic::ppc_vsx_lxvd2x:
12116    case Intrinsic::ppc_vsx_lxvd2x_be:
12117      VT = MVT::v2f64;
12118      break;
12119    case Intrinsic::ppc_altivec_lvebx:
12120      VT = MVT::i8;
12121      break;
12122    case Intrinsic::ppc_altivec_lvehx:
12123      VT = MVT::i16;
12124      break;
12125    case Intrinsic::ppc_altivec_lvewx:
12126      VT = MVT::i32;
12127      break;
12128    }
12129
12130    return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
12131  }
12132
12133  if (N->getOpcode() == ISD::INTRINSIC_VOID) {
12134    EVT VT;
12135    switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
12136    default: return false;
12137    case Intrinsic::ppc_qpx_qvstfd:
12138    case Intrinsic::ppc_qpx_qvstfda:
12139      VT = MVT::v4f64;
12140      break;
12141    case Intrinsic::ppc_qpx_qvstfs:
12142    case Intrinsic::ppc_qpx_qvstfsa:
12143      VT = MVT::v4f32;
12144      break;
12145    case Intrinsic::ppc_qpx_qvstfcd:
12146    case Intrinsic::ppc_qpx_qvstfcda:
12147      VT = MVT::v2f64;
12148      break;
12149    case Intrinsic::ppc_qpx_qvstfcs:
12150    case Intrinsic::ppc_qpx_qvstfcsa:
12151      VT = MVT::v2f32;
12152      break;
12153    case Intrinsic::ppc_qpx_qvstfiw:
12154    case Intrinsic::ppc_qpx_qvstfiwa:
12155    case Intrinsic::ppc_altivec_stvx:
12156    case Intrinsic::ppc_altivec_stvxl:
12157    case Intrinsic::ppc_vsx_stxvw4x:
12158      VT = MVT::v4i32;
12159      break;
12160    case Intrinsic::ppc_vsx_stxvd2x:
12161      VT = MVT::v2f64;
12162      break;
12163    case Intrinsic::ppc_vsx_stxvw4x_be:
12164      VT = MVT::v4i32;
12165      break;
12166    case Intrinsic::ppc_vsx_stxvd2x_be:
12167      VT = MVT::v2f64;
12168      break;
12169    case Intrinsic::ppc_altivec_stvebx:
12170      VT = MVT::i8;
12171      break;
12172    case Intrinsic::ppc_altivec_stvehx:
12173      VT = MVT::i16;
12174      break;
12175    case Intrinsic::ppc_altivec_stvewx:
12176      VT = MVT::i32;
12177      break;
12178    }
12179
12180    return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
12181  }
12182
12183  return false;
12184}
12185
12186// Return true is there is a nearyby consecutive load to the one provided
12187// (regardless of alignment). We search up and down the chain, looking though
12188// token factors and other loads (but nothing else). As a result, a true result
12189// indicates that it is safe to create a new consecutive load adjacent to the
12190// load provided.
12191static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
12192  SDValue Chain = LD->getChain();
12193  EVT VT = LD->getMemoryVT();
12194
12195  SmallSet<SDNode *, 16> LoadRoots;
12196  SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
12197  SmallSet<SDNode *, 16> Visited;
12198
12199  // First, search up the chain, branching to follow all token-factor operands.
12200  // If we find a consecutive load, then we're done, otherwise, record all
12201  // nodes just above the top-level loads and token factors.
12202  while (!Queue.empty()) {
12203    SDNode *ChainNext = Queue.pop_back_val();
12204    if (!Visited.insert(ChainNext).second)
12205      continue;
12206
12207    if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
12208      if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12209        return true;
12210
12211      if (!Visited.count(ChainLD->getChain().getNode()))
12212        Queue.push_back(ChainLD->getChain().getNode());
12213    } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
12214      for (const SDUse &O : ChainNext->ops())
12215        if (!Visited.count(O.getNode()))
12216          Queue.push_back(O.getNode());
12217    } else
12218      LoadRoots.insert(ChainNext);
12219  }
12220
12221  // Second, search down the chain, starting from the top-level nodes recorded
12222  // in the first phase. These top-level nodes are the nodes just above all
12223  // loads and token factors. Starting with their uses, recursively look though
12224  // all loads (just the chain uses) and token factors to find a consecutive
12225  // load.
12226  Visited.clear();
12227  Queue.clear();
12228
12229  for (SmallSet<SDNode *, 16>::iterator I = LoadRoots.begin(),
12230       IE = LoadRoots.end(); I != IE; ++I) {
12231    Queue.push_back(*I);
12232
12233    while (!Queue.empty()) {
12234      SDNode *LoadRoot = Queue.pop_back_val();
12235      if (!Visited.insert(LoadRoot).second)
12236        continue;
12237
12238      if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
12239        if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
12240          return true;
12241
12242      for (SDNode::use_iterator UI = LoadRoot->use_begin(),
12243           UE = LoadRoot->use_end(); UI != UE; ++UI)
12244        if (((isa<MemSDNode>(*UI) &&
12245            cast<MemSDNode>(*UI)->getChain().getNode() == LoadRoot) ||
12246            UI->getOpcode() == ISD::TokenFactor) && !Visited.count(*UI))
12247          Queue.push_back(*UI);
12248    }
12249  }
12250
12251  return false;
12252}
12253
12254/// This function is called when we have proved that a SETCC node can be replaced
12255/// by subtraction (and other supporting instructions) so that the result of
12256/// comparison is kept in a GPR instead of CR. This function is purely for
12257/// codegen purposes and has some flags to guide the codegen process.
12258static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
12259                                     bool Swap, SDLoc &DL, SelectionDAG &DAG) {
12260  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12261
12262  // Zero extend the operands to the largest legal integer. Originally, they
12263  // must be of a strictly smaller size.
12264  auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
12265                         DAG.getConstant(Size, DL, MVT::i32));
12266  auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
12267                         DAG.getConstant(Size, DL, MVT::i32));
12268
12269  // Swap if needed. Depends on the condition code.
12270  if (Swap)
12271    std::swap(Op0, Op1);
12272
12273  // Subtract extended integers.
12274  auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
12275
12276  // Move the sign bit to the least significant position and zero out the rest.
12277  // Now the least significant bit carries the result of original comparison.
12278  auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
12279                             DAG.getConstant(Size - 1, DL, MVT::i32));
12280  auto Final = Shifted;
12281
12282  // Complement the result if needed. Based on the condition code.
12283  if (Complement)
12284    Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
12285                        DAG.getConstant(1, DL, MVT::i64));
12286
12287  return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
12288}
12289
12290SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
12291                                                  DAGCombinerInfo &DCI) const {
12292  assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
12293
12294  SelectionDAG &DAG = DCI.DAG;
12295  SDLoc DL(N);
12296
12297  // Size of integers being compared has a critical role in the following
12298  // analysis, so we prefer to do this when all types are legal.
12299  if (!DCI.isAfterLegalizeDAG())
12300    return SDValue();
12301
12302  // If all users of SETCC extend its value to a legal integer type
12303  // then we replace SETCC with a subtraction
12304  for (SDNode::use_iterator UI = N->use_begin(),
12305       UE = N->use_end(); UI != UE; ++UI) {
12306    if (UI->getOpcode() != ISD::ZERO_EXTEND)
12307      return SDValue();
12308  }
12309
12310  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12311  auto OpSize = N->getOperand(0).getValueSizeInBits();
12312
12313  unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
12314
12315  if (OpSize < Size) {
12316    switch (CC) {
12317    default: break;
12318    case ISD::SETULT:
12319      return generateEquivalentSub(N, Size, false, false, DL, DAG);
12320    case ISD::SETULE:
12321      return generateEquivalentSub(N, Size, true, true, DL, DAG);
12322    case ISD::SETUGT:
12323      return generateEquivalentSub(N, Size, false, true, DL, DAG);
12324    case ISD::SETUGE:
12325      return generateEquivalentSub(N, Size, true, false, DL, DAG);
12326    }
12327  }
12328
12329  return SDValue();
12330}
12331
12332SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
12333                                                  DAGCombinerInfo &DCI) const {
12334  SelectionDAG &DAG = DCI.DAG;
12335  SDLoc dl(N);
12336
12337  assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
12338  // If we're tracking CR bits, we need to be careful that we don't have:
12339  //   trunc(binary-ops(zext(x), zext(y)))
12340  // or
12341  //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
12342  // such that we're unnecessarily moving things into GPRs when it would be
12343  // better to keep them in CR bits.
12344
12345  // Note that trunc here can be an actual i1 trunc, or can be the effective
12346  // truncation that comes from a setcc or select_cc.
12347  if (N->getOpcode() == ISD::TRUNCATE &&
12348      N->getValueType(0) != MVT::i1)
12349    return SDValue();
12350
12351  if (N->getOperand(0).getValueType() != MVT::i32 &&
12352      N->getOperand(0).getValueType() != MVT::i64)
12353    return SDValue();
12354
12355  if (N->getOpcode() == ISD::SETCC ||
12356      N->getOpcode() == ISD::SELECT_CC) {
12357    // If we're looking at a comparison, then we need to make sure that the
12358    // high bits (all except for the first) don't matter the result.
12359    ISD::CondCode CC =
12360      cast<CondCodeSDNode>(N->getOperand(
12361        N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
12362    unsigned OpBits = N->getOperand(0).getValueSizeInBits();
12363
12364    if (ISD::isSignedIntSetCC(CC)) {
12365      if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
12366          DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
12367        return SDValue();
12368    } else if (ISD::isUnsignedIntSetCC(CC)) {
12369      if (!DAG.MaskedValueIsZero(N->getOperand(0),
12370                                 APInt::getHighBitsSet(OpBits, OpBits-1)) ||
12371          !DAG.MaskedValueIsZero(N->getOperand(1),
12372                                 APInt::getHighBitsSet(OpBits, OpBits-1)))
12373        return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
12374                                             : SDValue());
12375    } else {
12376      // This is neither a signed nor an unsigned comparison, just make sure
12377      // that the high bits are equal.
12378      KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
12379      KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
12380
12381      // We don't really care about what is known about the first bit (if
12382      // anything), so clear it in all masks prior to comparing them.
12383      Op1Known.Zero.clearBit(0); Op1Known.One.clearBit(0);
12384      Op2Known.Zero.clearBit(0); Op2Known.One.clearBit(0);
12385
12386      if (Op1Known.Zero != Op2Known.Zero || Op1Known.One != Op2Known.One)
12387        return SDValue();
12388    }
12389  }
12390
12391  // We now know that the higher-order bits are irrelevant, we just need to
12392  // make sure that all of the intermediate operations are bit operations, and
12393  // all inputs are extensions.
12394  if (N->getOperand(0).getOpcode() != ISD::AND &&
12395      N->getOperand(0).getOpcode() != ISD::OR  &&
12396      N->getOperand(0).getOpcode() != ISD::XOR &&
12397      N->getOperand(0).getOpcode() != ISD::SELECT &&
12398      N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
12399      N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
12400      N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
12401      N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
12402      N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
12403    return SDValue();
12404
12405  if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
12406      N->getOperand(1).getOpcode() != ISD::AND &&
12407      N->getOperand(1).getOpcode() != ISD::OR  &&
12408      N->getOperand(1).getOpcode() != ISD::XOR &&
12409      N->getOperand(1).getOpcode() != ISD::SELECT &&
12410      N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
12411      N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
12412      N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
12413      N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
12414      N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
12415    return SDValue();
12416
12417  SmallVector<SDValue, 4> Inputs;
12418  SmallVector<SDValue, 8> BinOps, PromOps;
12419  SmallPtrSet<SDNode *, 16> Visited;
12420
12421  for (unsigned i = 0; i < 2; ++i) {
12422    if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12423          N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12424          N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12425          N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12426        isa<ConstantSDNode>(N->getOperand(i)))
12427      Inputs.push_back(N->getOperand(i));
12428    else
12429      BinOps.push_back(N->getOperand(i));
12430
12431    if (N->getOpcode() == ISD::TRUNCATE)
12432      break;
12433  }
12434
12435  // Visit all inputs, collect all binary operations (and, or, xor and
12436  // select) that are all fed by extensions.
12437  while (!BinOps.empty()) {
12438    SDValue BinOp = BinOps.back();
12439    BinOps.pop_back();
12440
12441    if (!Visited.insert(BinOp.getNode()).second)
12442      continue;
12443
12444    PromOps.push_back(BinOp);
12445
12446    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12447      // The condition of the select is not promoted.
12448      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12449        continue;
12450      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12451        continue;
12452
12453      if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12454            BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12455            BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
12456           BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
12457          isa<ConstantSDNode>(BinOp.getOperand(i))) {
12458        Inputs.push_back(BinOp.getOperand(i));
12459      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12460                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12461                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12462                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12463                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
12464                 BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12465                 BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
12466                 BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
12467                 BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
12468        BinOps.push_back(BinOp.getOperand(i));
12469      } else {
12470        // We have an input that is not an extension or another binary
12471        // operation; we'll abort this transformation.
12472        return SDValue();
12473      }
12474    }
12475  }
12476
12477  // Make sure that this is a self-contained cluster of operations (which
12478  // is not quite the same thing as saying that everything has only one
12479  // use).
12480  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12481    if (isa<ConstantSDNode>(Inputs[i]))
12482      continue;
12483
12484    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12485                              UE = Inputs[i].getNode()->use_end();
12486         UI != UE; ++UI) {
12487      SDNode *User = *UI;
12488      if (User != N && !Visited.count(User))
12489        return SDValue();
12490
12491      // Make sure that we're not going to promote the non-output-value
12492      // operand(s) or SELECT or SELECT_CC.
12493      // FIXME: Although we could sometimes handle this, and it does occur in
12494      // practice that one of the condition inputs to the select is also one of
12495      // the outputs, we currently can't deal with this.
12496      if (User->getOpcode() == ISD::SELECT) {
12497        if (User->getOperand(0) == Inputs[i])
12498          return SDValue();
12499      } else if (User->getOpcode() == ISD::SELECT_CC) {
12500        if (User->getOperand(0) == Inputs[i] ||
12501            User->getOperand(1) == Inputs[i])
12502          return SDValue();
12503      }
12504    }
12505  }
12506
12507  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12508    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12509                              UE = PromOps[i].getNode()->use_end();
12510         UI != UE; ++UI) {
12511      SDNode *User = *UI;
12512      if (User != N && !Visited.count(User))
12513        return SDValue();
12514
12515      // Make sure that we're not going to promote the non-output-value
12516      // operand(s) or SELECT or SELECT_CC.
12517      // FIXME: Although we could sometimes handle this, and it does occur in
12518      // practice that one of the condition inputs to the select is also one of
12519      // the outputs, we currently can't deal with this.
12520      if (User->getOpcode() == ISD::SELECT) {
12521        if (User->getOperand(0) == PromOps[i])
12522          return SDValue();
12523      } else if (User->getOpcode() == ISD::SELECT_CC) {
12524        if (User->getOperand(0) == PromOps[i] ||
12525            User->getOperand(1) == PromOps[i])
12526          return SDValue();
12527      }
12528    }
12529  }
12530
12531  // Replace all inputs with the extension operand.
12532  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12533    // Constants may have users outside the cluster of to-be-promoted nodes,
12534    // and so we need to replace those as we do the promotions.
12535    if (isa<ConstantSDNode>(Inputs[i]))
12536      continue;
12537    else
12538      DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
12539  }
12540
12541  std::list<HandleSDNode> PromOpHandles;
12542  for (auto &PromOp : PromOps)
12543    PromOpHandles.emplace_back(PromOp);
12544
12545  // Replace all operations (these are all the same, but have a different
12546  // (i1) return type). DAG.getNode will validate that the types of
12547  // a binary operator match, so go through the list in reverse so that
12548  // we've likely promoted both operands first. Any intermediate truncations or
12549  // extensions disappear.
12550  while (!PromOpHandles.empty()) {
12551    SDValue PromOp = PromOpHandles.back().getValue();
12552    PromOpHandles.pop_back();
12553
12554    if (PromOp.getOpcode() == ISD::TRUNCATE ||
12555        PromOp.getOpcode() == ISD::SIGN_EXTEND ||
12556        PromOp.getOpcode() == ISD::ZERO_EXTEND ||
12557        PromOp.getOpcode() == ISD::ANY_EXTEND) {
12558      if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
12559          PromOp.getOperand(0).getValueType() != MVT::i1) {
12560        // The operand is not yet ready (see comment below).
12561        PromOpHandles.emplace_front(PromOp);
12562        continue;
12563      }
12564
12565      SDValue RepValue = PromOp.getOperand(0);
12566      if (isa<ConstantSDNode>(RepValue))
12567        RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
12568
12569      DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
12570      continue;
12571    }
12572
12573    unsigned C;
12574    switch (PromOp.getOpcode()) {
12575    default:             C = 0; break;
12576    case ISD::SELECT:    C = 1; break;
12577    case ISD::SELECT_CC: C = 2; break;
12578    }
12579
12580    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12581         PromOp.getOperand(C).getValueType() != MVT::i1) ||
12582        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12583         PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
12584      // The to-be-promoted operands of this node have not yet been
12585      // promoted (this should be rare because we're going through the
12586      // list backward, but if one of the operands has several users in
12587      // this cluster of to-be-promoted nodes, it is possible).
12588      PromOpHandles.emplace_front(PromOp);
12589      continue;
12590    }
12591
12592    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12593                                PromOp.getNode()->op_end());
12594
12595    // If there are any constant inputs, make sure they're replaced now.
12596    for (unsigned i = 0; i < 2; ++i)
12597      if (isa<ConstantSDNode>(Ops[C+i]))
12598        Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
12599
12600    DAG.ReplaceAllUsesOfValueWith(PromOp,
12601      DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
12602  }
12603
12604  // Now we're left with the initial truncation itself.
12605  if (N->getOpcode() == ISD::TRUNCATE)
12606    return N->getOperand(0);
12607
12608  // Otherwise, this is a comparison. The operands to be compared have just
12609  // changed type (to i1), but everything else is the same.
12610  return SDValue(N, 0);
12611}
12612
12613SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
12614                                                  DAGCombinerInfo &DCI) const {
12615  SelectionDAG &DAG = DCI.DAG;
12616  SDLoc dl(N);
12617
12618  // If we're tracking CR bits, we need to be careful that we don't have:
12619  //   zext(binary-ops(trunc(x), trunc(y)))
12620  // or
12621  //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
12622  // such that we're unnecessarily moving things into CR bits that can more
12623  // efficiently stay in GPRs. Note that if we're not certain that the high
12624  // bits are set as required by the final extension, we still may need to do
12625  // some masking to get the proper behavior.
12626
12627  // This same functionality is important on PPC64 when dealing with
12628  // 32-to-64-bit extensions; these occur often when 32-bit values are used as
12629  // the return values of functions. Because it is so similar, it is handled
12630  // here as well.
12631
12632  if (N->getValueType(0) != MVT::i32 &&
12633      N->getValueType(0) != MVT::i64)
12634    return SDValue();
12635
12636  if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
12637        (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
12638    return SDValue();
12639
12640  if (N->getOperand(0).getOpcode() != ISD::AND &&
12641      N->getOperand(0).getOpcode() != ISD::OR  &&
12642      N->getOperand(0).getOpcode() != ISD::XOR &&
12643      N->getOperand(0).getOpcode() != ISD::SELECT &&
12644      N->getOperand(0).getOpcode() != ISD::SELECT_CC)
12645    return SDValue();
12646
12647  SmallVector<SDValue, 4> Inputs;
12648  SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
12649  SmallPtrSet<SDNode *, 16> Visited;
12650
12651  // Visit all inputs, collect all binary operations (and, or, xor and
12652  // select) that are all fed by truncations.
12653  while (!BinOps.empty()) {
12654    SDValue BinOp = BinOps.back();
12655    BinOps.pop_back();
12656
12657    if (!Visited.insert(BinOp.getNode()).second)
12658      continue;
12659
12660    PromOps.push_back(BinOp);
12661
12662    for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
12663      // The condition of the select is not promoted.
12664      if (BinOp.getOpcode() == ISD::SELECT && i == 0)
12665        continue;
12666      if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
12667        continue;
12668
12669      if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
12670          isa<ConstantSDNode>(BinOp.getOperand(i))) {
12671        Inputs.push_back(BinOp.getOperand(i));
12672      } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
12673                 BinOp.getOperand(i).getOpcode() == ISD::OR  ||
12674                 BinOp.getOperand(i).getOpcode() == ISD::XOR ||
12675                 BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
12676                 BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
12677        BinOps.push_back(BinOp.getOperand(i));
12678      } else {
12679        // We have an input that is not a truncation or another binary
12680        // operation; we'll abort this transformation.
12681        return SDValue();
12682      }
12683    }
12684  }
12685
12686  // The operands of a select that must be truncated when the select is
12687  // promoted because the operand is actually part of the to-be-promoted set.
12688  DenseMap<SDNode *, EVT> SelectTruncOp[2];
12689
12690  // Make sure that this is a self-contained cluster of operations (which
12691  // is not quite the same thing as saying that everything has only one
12692  // use).
12693  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12694    if (isa<ConstantSDNode>(Inputs[i]))
12695      continue;
12696
12697    for (SDNode::use_iterator UI = Inputs[i].getNode()->use_begin(),
12698                              UE = Inputs[i].getNode()->use_end();
12699         UI != UE; ++UI) {
12700      SDNode *User = *UI;
12701      if (User != N && !Visited.count(User))
12702        return SDValue();
12703
12704      // If we're going to promote the non-output-value operand(s) or SELECT or
12705      // SELECT_CC, record them for truncation.
12706      if (User->getOpcode() == ISD::SELECT) {
12707        if (User->getOperand(0) == Inputs[i])
12708          SelectTruncOp[0].insert(std::make_pair(User,
12709                                    User->getOperand(0).getValueType()));
12710      } else if (User->getOpcode() == ISD::SELECT_CC) {
12711        if (User->getOperand(0) == Inputs[i])
12712          SelectTruncOp[0].insert(std::make_pair(User,
12713                                    User->getOperand(0).getValueType()));
12714        if (User->getOperand(1) == Inputs[i])
12715          SelectTruncOp[1].insert(std::make_pair(User,
12716                                    User->getOperand(1).getValueType()));
12717      }
12718    }
12719  }
12720
12721  for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
12722    for (SDNode::use_iterator UI = PromOps[i].getNode()->use_begin(),
12723                              UE = PromOps[i].getNode()->use_end();
12724         UI != UE; ++UI) {
12725      SDNode *User = *UI;
12726      if (User != N && !Visited.count(User))
12727        return SDValue();
12728
12729      // If we're going to promote the non-output-value operand(s) or SELECT or
12730      // SELECT_CC, record them for truncation.
12731      if (User->getOpcode() == ISD::SELECT) {
12732        if (User->getOperand(0) == PromOps[i])
12733          SelectTruncOp[0].insert(std::make_pair(User,
12734                                    User->getOperand(0).getValueType()));
12735      } else if (User->getOpcode() == ISD::SELECT_CC) {
12736        if (User->getOperand(0) == PromOps[i])
12737          SelectTruncOp[0].insert(std::make_pair(User,
12738                                    User->getOperand(0).getValueType()));
12739        if (User->getOperand(1) == PromOps[i])
12740          SelectTruncOp[1].insert(std::make_pair(User,
12741                                    User->getOperand(1).getValueType()));
12742      }
12743    }
12744  }
12745
12746  unsigned PromBits = N->getOperand(0).getValueSizeInBits();
12747  bool ReallyNeedsExt = false;
12748  if (N->getOpcode() != ISD::ANY_EXTEND) {
12749    // If all of the inputs are not already sign/zero extended, then
12750    // we'll still need to do that at the end.
12751    for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12752      if (isa<ConstantSDNode>(Inputs[i]))
12753        continue;
12754
12755      unsigned OpBits =
12756        Inputs[i].getOperand(0).getValueSizeInBits();
12757      assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
12758
12759      if ((N->getOpcode() == ISD::ZERO_EXTEND &&
12760           !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
12761                                  APInt::getHighBitsSet(OpBits,
12762                                                        OpBits-PromBits))) ||
12763          (N->getOpcode() == ISD::SIGN_EXTEND &&
12764           DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
12765             (OpBits-(PromBits-1)))) {
12766        ReallyNeedsExt = true;
12767        break;
12768      }
12769    }
12770  }
12771
12772  // Replace all inputs, either with the truncation operand, or a
12773  // truncation or extension to the final output type.
12774  for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
12775    // Constant inputs need to be replaced with the to-be-promoted nodes that
12776    // use them because they might have users outside of the cluster of
12777    // promoted nodes.
12778    if (isa<ConstantSDNode>(Inputs[i]))
12779      continue;
12780
12781    SDValue InSrc = Inputs[i].getOperand(0);
12782    if (Inputs[i].getValueType() == N->getValueType(0))
12783      DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
12784    else if (N->getOpcode() == ISD::SIGN_EXTEND)
12785      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12786        DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
12787    else if (N->getOpcode() == ISD::ZERO_EXTEND)
12788      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12789        DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
12790    else
12791      DAG.ReplaceAllUsesOfValueWith(Inputs[i],
12792        DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
12793  }
12794
12795  std::list<HandleSDNode> PromOpHandles;
12796  for (auto &PromOp : PromOps)
12797    PromOpHandles.emplace_back(PromOp);
12798
12799  // Replace all operations (these are all the same, but have a different
12800  // (promoted) return type). DAG.getNode will validate that the types of
12801  // a binary operator match, so go through the list in reverse so that
12802  // we've likely promoted both operands first.
12803  while (!PromOpHandles.empty()) {
12804    SDValue PromOp = PromOpHandles.back().getValue();
12805    PromOpHandles.pop_back();
12806
12807    unsigned C;
12808    switch (PromOp.getOpcode()) {
12809    default:             C = 0; break;
12810    case ISD::SELECT:    C = 1; break;
12811    case ISD::SELECT_CC: C = 2; break;
12812    }
12813
12814    if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
12815         PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
12816        (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
12817         PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
12818      // The to-be-promoted operands of this node have not yet been
12819      // promoted (this should be rare because we're going through the
12820      // list backward, but if one of the operands has several users in
12821      // this cluster of to-be-promoted nodes, it is possible).
12822      PromOpHandles.emplace_front(PromOp);
12823      continue;
12824    }
12825
12826    // For SELECT and SELECT_CC nodes, we do a similar check for any
12827    // to-be-promoted comparison inputs.
12828    if (PromOp.getOpcode() == ISD::SELECT ||
12829        PromOp.getOpcode() == ISD::SELECT_CC) {
12830      if ((SelectTruncOp[0].count(PromOp.getNode()) &&
12831           PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
12832          (SelectTruncOp[1].count(PromOp.getNode()) &&
12833           PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
12834        PromOpHandles.emplace_front(PromOp);
12835        continue;
12836      }
12837    }
12838
12839    SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
12840                                PromOp.getNode()->op_end());
12841
12842    // If this node has constant inputs, then they'll need to be promoted here.
12843    for (unsigned i = 0; i < 2; ++i) {
12844      if (!isa<ConstantSDNode>(Ops[C+i]))
12845        continue;
12846      if (Ops[C+i].getValueType() == N->getValueType(0))
12847        continue;
12848
12849      if (N->getOpcode() == ISD::SIGN_EXTEND)
12850        Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12851      else if (N->getOpcode() == ISD::ZERO_EXTEND)
12852        Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12853      else
12854        Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
12855    }
12856
12857    // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
12858    // truncate them again to the original value type.
12859    if (PromOp.getOpcode() == ISD::SELECT ||
12860        PromOp.getOpcode() == ISD::SELECT_CC) {
12861      auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
12862      if (SI0 != SelectTruncOp[0].end())
12863        Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
12864      auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
12865      if (SI1 != SelectTruncOp[1].end())
12866        Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
12867    }
12868
12869    DAG.ReplaceAllUsesOfValueWith(PromOp,
12870      DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
12871  }
12872
12873  // Now we're left with the initial extension itself.
12874  if (!ReallyNeedsExt)
12875    return N->getOperand(0);
12876
12877  // To zero extend, just mask off everything except for the first bit (in the
12878  // i1 case).
12879  if (N->getOpcode() == ISD::ZERO_EXTEND)
12880    return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
12881                       DAG.getConstant(APInt::getLowBitsSet(
12882                                         N->getValueSizeInBits(0), PromBits),
12883                                       dl, N->getValueType(0)));
12884
12885  assert(N->getOpcode() == ISD::SIGN_EXTEND &&
12886         "Invalid extension type");
12887  EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
12888  SDValue ShiftCst =
12889      DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
12890  return DAG.getNode(
12891      ISD::SRA, dl, N->getValueType(0),
12892      DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
12893      ShiftCst);
12894}
12895
12896SDValue PPCTargetLowering::combineSetCC(SDNode *N,
12897                                        DAGCombinerInfo &DCI) const {
12898  assert(N->getOpcode() == ISD::SETCC &&
12899         "Should be called with a SETCC node");
12900
12901  ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
12902  if (CC == ISD::SETNE || CC == ISD::SETEQ) {
12903    SDValue LHS = N->getOperand(0);
12904    SDValue RHS = N->getOperand(1);
12905
12906    // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
12907    if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
12908        LHS.hasOneUse())
12909      std::swap(LHS, RHS);
12910
12911    // x == 0-y --> x+y == 0
12912    // x != 0-y --> x+y != 0
12913    if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
12914        RHS.hasOneUse()) {
12915      SDLoc DL(N);
12916      SelectionDAG &DAG = DCI.DAG;
12917      EVT VT = N->getValueType(0);
12918      EVT OpVT = LHS.getValueType();
12919      SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
12920      return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
12921    }
12922  }
12923
12924  return DAGCombineTruncBoolExt(N, DCI);
12925}
12926
12927// Is this an extending load from an f32 to an f64?
12928static bool isFPExtLoad(SDValue Op) {
12929  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
12930    return LD->getExtensionType() == ISD::EXTLOAD &&
12931      Op.getValueType() == MVT::f64;
12932  return false;
12933}
12934
12935/// Reduces the number of fp-to-int conversion when building a vector.
12936///
12937/// If this vector is built out of floating to integer conversions,
12938/// transform it to a vector built out of floating point values followed by a
12939/// single floating to integer conversion of the vector.
12940/// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
12941/// becomes (fptosi (build_vector ($A, $B, ...)))
12942SDValue PPCTargetLowering::
12943combineElementTruncationToVectorTruncation(SDNode *N,
12944                                           DAGCombinerInfo &DCI) const {
12945  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
12946         "Should be called with a BUILD_VECTOR node");
12947
12948  SelectionDAG &DAG = DCI.DAG;
12949  SDLoc dl(N);
12950
12951  SDValue FirstInput = N->getOperand(0);
12952  assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
12953         "The input operand must be an fp-to-int conversion.");
12954
12955  // This combine happens after legalization so the fp_to_[su]i nodes are
12956  // already converted to PPCSISD nodes.
12957  unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
12958  if (FirstConversion == PPCISD::FCTIDZ ||
12959      FirstConversion == PPCISD::FCTIDUZ ||
12960      FirstConversion == PPCISD::FCTIWZ ||
12961      FirstConversion == PPCISD::FCTIWUZ) {
12962    bool IsSplat = true;
12963    bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
12964      FirstConversion == PPCISD::FCTIWUZ;
12965    EVT SrcVT = FirstInput.getOperand(0).getValueType();
12966    SmallVector<SDValue, 4> Ops;
12967    EVT TargetVT = N->getValueType(0);
12968    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12969      SDValue NextOp = N->getOperand(i);
12970      if (NextOp.getOpcode() != PPCISD::MFVSR)
12971        return SDValue();
12972      unsigned NextConversion = NextOp.getOperand(0).getOpcode();
12973      if (NextConversion != FirstConversion)
12974        return SDValue();
12975      // If we are converting to 32-bit integers, we need to add an FP_ROUND.
12976      // This is not valid if the input was originally double precision. It is
12977      // also not profitable to do unless this is an extending load in which
12978      // case doing this combine will allow us to combine consecutive loads.
12979      if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
12980        return SDValue();
12981      if (N->getOperand(i) != FirstInput)
12982        IsSplat = false;
12983    }
12984
12985    // If this is a splat, we leave it as-is since there will be only a single
12986    // fp-to-int conversion followed by a splat of the integer. This is better
12987    // for 32-bit and smaller ints and neutral for 64-bit ints.
12988    if (IsSplat)
12989      return SDValue();
12990
12991    // Now that we know we have the right type of node, get its operands
12992    for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
12993      SDValue In = N->getOperand(i).getOperand(0);
12994      if (Is32Bit) {
12995        // For 32-bit values, we need to add an FP_ROUND node (if we made it
12996        // here, we know that all inputs are extending loads so this is safe).
12997        if (In.isUndef())
12998          Ops.push_back(DAG.getUNDEF(SrcVT));
12999        else {
13000          SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl,
13001                                      MVT::f32, In.getOperand(0),
13002                                      DAG.getIntPtrConstant(1, dl));
13003          Ops.push_back(Trunc);
13004        }
13005      } else
13006        Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
13007    }
13008
13009    unsigned Opcode;
13010    if (FirstConversion == PPCISD::FCTIDZ ||
13011        FirstConversion == PPCISD::FCTIWZ)
13012      Opcode = ISD::FP_TO_SINT;
13013    else
13014      Opcode = ISD::FP_TO_UINT;
13015
13016    EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
13017    SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
13018    return DAG.getNode(Opcode, dl, TargetVT, BV);
13019  }
13020  return SDValue();
13021}
13022
13023/// Reduce the number of loads when building a vector.
13024///
13025/// Building a vector out of multiple loads can be converted to a load
13026/// of the vector type if the loads are consecutive. If the loads are
13027/// consecutive but in descending order, a shuffle is added at the end
13028/// to reorder the vector.
13029static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
13030  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13031         "Should be called with a BUILD_VECTOR node");
13032
13033  SDLoc dl(N);
13034
13035  // Return early for non byte-sized type, as they can't be consecutive.
13036  if (!N->getValueType(0).getVectorElementType().isByteSized())
13037    return SDValue();
13038
13039  bool InputsAreConsecutiveLoads = true;
13040  bool InputsAreReverseConsecutive = true;
13041  unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
13042  SDValue FirstInput = N->getOperand(0);
13043  bool IsRoundOfExtLoad = false;
13044
13045  if (FirstInput.getOpcode() == ISD::FP_ROUND &&
13046      FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
13047    LoadSDNode *LD = dyn_cast<LoadSDNode>(FirstInput.getOperand(0));
13048    IsRoundOfExtLoad = LD->getExtensionType() == ISD::EXTLOAD;
13049  }
13050  // Not a build vector of (possibly fp_rounded) loads.
13051  if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
13052      N->getNumOperands() == 1)
13053    return SDValue();
13054
13055  for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
13056    // If any inputs are fp_round(extload), they all must be.
13057    if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
13058      return SDValue();
13059
13060    SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
13061      N->getOperand(i);
13062    if (NextInput.getOpcode() != ISD::LOAD)
13063      return SDValue();
13064
13065    SDValue PreviousInput =
13066      IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
13067    LoadSDNode *LD1 = dyn_cast<LoadSDNode>(PreviousInput);
13068    LoadSDNode *LD2 = dyn_cast<LoadSDNode>(NextInput);
13069
13070    // If any inputs are fp_round(extload), they all must be.
13071    if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
13072      return SDValue();
13073
13074    if (!isConsecutiveLS(LD2, LD1, ElemSize, 1, DAG))
13075      InputsAreConsecutiveLoads = false;
13076    if (!isConsecutiveLS(LD1, LD2, ElemSize, 1, DAG))
13077      InputsAreReverseConsecutive = false;
13078
13079    // Exit early if the loads are neither consecutive nor reverse consecutive.
13080    if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
13081      return SDValue();
13082  }
13083
13084  assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
13085         "The loads cannot be both consecutive and reverse consecutive.");
13086
13087  SDValue FirstLoadOp =
13088    IsRoundOfExtLoad ? FirstInput.getOperand(0) : FirstInput;
13089  SDValue LastLoadOp =
13090    IsRoundOfExtLoad ? N->getOperand(N->getNumOperands()-1).getOperand(0) :
13091                       N->getOperand(N->getNumOperands()-1);
13092
13093  LoadSDNode *LD1 = dyn_cast<LoadSDNode>(FirstLoadOp);
13094  LoadSDNode *LDL = dyn_cast<LoadSDNode>(LastLoadOp);
13095  if (InputsAreConsecutiveLoads) {
13096    assert(LD1 && "Input needs to be a LoadSDNode.");
13097    return DAG.getLoad(N->getValueType(0), dl, LD1->getChain(),
13098                       LD1->getBasePtr(), LD1->getPointerInfo(),
13099                       LD1->getAlignment());
13100  }
13101  if (InputsAreReverseConsecutive) {
13102    assert(LDL && "Input needs to be a LoadSDNode.");
13103    SDValue Load = DAG.getLoad(N->getValueType(0), dl, LDL->getChain(),
13104                               LDL->getBasePtr(), LDL->getPointerInfo(),
13105                               LDL->getAlignment());
13106    SmallVector<int, 16> Ops;
13107    for (int i = N->getNumOperands() - 1; i >= 0; i--)
13108      Ops.push_back(i);
13109
13110    return DAG.getVectorShuffle(N->getValueType(0), dl, Load,
13111                                DAG.getUNDEF(N->getValueType(0)), Ops);
13112  }
13113  return SDValue();
13114}
13115
13116// This function adds the required vector_shuffle needed to get
13117// the elements of the vector extract in the correct position
13118// as specified by the CorrectElems encoding.
13119static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
13120                                      SDValue Input, uint64_t Elems,
13121                                      uint64_t CorrectElems) {
13122  SDLoc dl(N);
13123
13124  unsigned NumElems = Input.getValueType().getVectorNumElements();
13125  SmallVector<int, 16> ShuffleMask(NumElems, -1);
13126
13127  // Knowing the element indices being extracted from the original
13128  // vector and the order in which they're being inserted, just put
13129  // them at element indices required for the instruction.
13130  for (unsigned i = 0; i < N->getNumOperands(); i++) {
13131    if (DAG.getDataLayout().isLittleEndian())
13132      ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
13133    else
13134      ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
13135    CorrectElems = CorrectElems >> 8;
13136    Elems = Elems >> 8;
13137  }
13138
13139  SDValue Shuffle =
13140      DAG.getVectorShuffle(Input.getValueType(), dl, Input,
13141                           DAG.getUNDEF(Input.getValueType()), ShuffleMask);
13142
13143  EVT Ty = N->getValueType(0);
13144  SDValue BV = DAG.getNode(PPCISD::SExtVElems, dl, Ty, Shuffle);
13145  return BV;
13146}
13147
13148// Look for build vector patterns where input operands come from sign
13149// extended vector_extract elements of specific indices. If the correct indices
13150// aren't used, add a vector shuffle to fix up the indices and create a new
13151// PPCISD:SExtVElems node which selects the vector sign extend instructions
13152// during instruction selection.
13153static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
13154  // This array encodes the indices that the vector sign extend instructions
13155  // extract from when extending from one type to another for both BE and LE.
13156  // The right nibble of each byte corresponds to the LE incides.
13157  // and the left nibble of each byte corresponds to the BE incides.
13158  // For example: 0x3074B8FC  byte->word
13159  // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
13160  // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
13161  // For example: 0x000070F8  byte->double word
13162  // For LE: the allowed indices are: 0x0,0x8
13163  // For BE: the allowed indices are: 0x7,0xF
13164  uint64_t TargetElems[] = {
13165      0x3074B8FC, // b->w
13166      0x000070F8, // b->d
13167      0x10325476, // h->w
13168      0x00003074, // h->d
13169      0x00001032, // w->d
13170  };
13171
13172  uint64_t Elems = 0;
13173  int Index;
13174  SDValue Input;
13175
13176  auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
13177    if (!Op)
13178      return false;
13179    if (Op.getOpcode() != ISD::SIGN_EXTEND &&
13180        Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
13181      return false;
13182
13183    // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
13184    // of the right width.
13185    SDValue Extract = Op.getOperand(0);
13186    if (Extract.getOpcode() == ISD::ANY_EXTEND)
13187      Extract = Extract.getOperand(0);
13188    if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13189      return false;
13190
13191    ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
13192    if (!ExtOp)
13193      return false;
13194
13195    Index = ExtOp->getZExtValue();
13196    if (Input && Input != Extract.getOperand(0))
13197      return false;
13198
13199    if (!Input)
13200      Input = Extract.getOperand(0);
13201
13202    Elems = Elems << 8;
13203    Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
13204    Elems |= Index;
13205
13206    return true;
13207  };
13208
13209  // If the build vector operands aren't sign extended vector extracts,
13210  // of the same input vector, then return.
13211  for (unsigned i = 0; i < N->getNumOperands(); i++) {
13212    if (!isSExtOfVecExtract(N->getOperand(i))) {
13213      return SDValue();
13214    }
13215  }
13216
13217  // If the vector extract indicies are not correct, add the appropriate
13218  // vector_shuffle.
13219  int TgtElemArrayIdx;
13220  int InputSize = Input.getValueType().getScalarSizeInBits();
13221  int OutputSize = N->getValueType(0).getScalarSizeInBits();
13222  if (InputSize + OutputSize == 40)
13223    TgtElemArrayIdx = 0;
13224  else if (InputSize + OutputSize == 72)
13225    TgtElemArrayIdx = 1;
13226  else if (InputSize + OutputSize == 48)
13227    TgtElemArrayIdx = 2;
13228  else if (InputSize + OutputSize == 80)
13229    TgtElemArrayIdx = 3;
13230  else if (InputSize + OutputSize == 96)
13231    TgtElemArrayIdx = 4;
13232  else
13233    return SDValue();
13234
13235  uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
13236  CorrectElems = DAG.getDataLayout().isLittleEndian()
13237                     ? CorrectElems & 0x0F0F0F0F0F0F0F0F
13238                     : CorrectElems & 0xF0F0F0F0F0F0F0F0;
13239  if (Elems != CorrectElems) {
13240    return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
13241  }
13242
13243  // Regular lowering will catch cases where a shuffle is not needed.
13244  return SDValue();
13245}
13246
13247SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
13248                                                 DAGCombinerInfo &DCI) const {
13249  assert(N->getOpcode() == ISD::BUILD_VECTOR &&
13250         "Should be called with a BUILD_VECTOR node");
13251
13252  SelectionDAG &DAG = DCI.DAG;
13253  SDLoc dl(N);
13254
13255  if (!Subtarget.hasVSX())
13256    return SDValue();
13257
13258  // The target independent DAG combiner will leave a build_vector of
13259  // float-to-int conversions intact. We can generate MUCH better code for
13260  // a float-to-int conversion of a vector of floats.
13261  SDValue FirstInput = N->getOperand(0);
13262  if (FirstInput.getOpcode() == PPCISD::MFVSR) {
13263    SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
13264    if (Reduced)
13265      return Reduced;
13266  }
13267
13268  // If we're building a vector out of consecutive loads, just load that
13269  // vector type.
13270  SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
13271  if (Reduced)
13272    return Reduced;
13273
13274  // If we're building a vector out of extended elements from another vector
13275  // we have P9 vector integer extend instructions. The code assumes legal
13276  // input types (i.e. it can't handle things like v4i16) so do not run before
13277  // legalization.
13278  if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
13279    Reduced = combineBVOfVecSExt(N, DAG);
13280    if (Reduced)
13281      return Reduced;
13282  }
13283
13284
13285  if (N->getValueType(0) != MVT::v2f64)
13286    return SDValue();
13287
13288  // Looking for:
13289  // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
13290  if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
13291      FirstInput.getOpcode() != ISD::UINT_TO_FP)
13292    return SDValue();
13293  if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
13294      N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
13295    return SDValue();
13296  if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
13297    return SDValue();
13298
13299  SDValue Ext1 = FirstInput.getOperand(0);
13300  SDValue Ext2 = N->getOperand(1).getOperand(0);
13301  if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
13302     Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
13303    return SDValue();
13304
13305  ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
13306  ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
13307  if (!Ext1Op || !Ext2Op)
13308    return SDValue();
13309  if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
13310      Ext1.getOperand(0) != Ext2.getOperand(0))
13311    return SDValue();
13312
13313  int FirstElem = Ext1Op->getZExtValue();
13314  int SecondElem = Ext2Op->getZExtValue();
13315  int SubvecIdx;
13316  if (FirstElem == 0 && SecondElem == 1)
13317    SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
13318  else if (FirstElem == 2 && SecondElem == 3)
13319    SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
13320  else
13321    return SDValue();
13322
13323  SDValue SrcVec = Ext1.getOperand(0);
13324  auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
13325    PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
13326  return DAG.getNode(NodeType, dl, MVT::v2f64,
13327                     SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
13328}
13329
13330SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
13331                                              DAGCombinerInfo &DCI) const {
13332  assert((N->getOpcode() == ISD::SINT_TO_FP ||
13333          N->getOpcode() == ISD::UINT_TO_FP) &&
13334         "Need an int -> FP conversion node here");
13335
13336  if (useSoftFloat() || !Subtarget.has64BitSupport())
13337    return SDValue();
13338
13339  SelectionDAG &DAG = DCI.DAG;
13340  SDLoc dl(N);
13341  SDValue Op(N, 0);
13342
13343  // Don't handle ppc_fp128 here or conversions that are out-of-range capable
13344  // from the hardware.
13345  if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
13346    return SDValue();
13347  if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
13348      Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
13349    return SDValue();
13350
13351  SDValue FirstOperand(Op.getOperand(0));
13352  bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
13353    (FirstOperand.getValueType() == MVT::i8 ||
13354     FirstOperand.getValueType() == MVT::i16);
13355  if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
13356    bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
13357    bool DstDouble = Op.getValueType() == MVT::f64;
13358    unsigned ConvOp = Signed ?
13359      (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
13360      (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
13361    SDValue WidthConst =
13362      DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
13363                            dl, false);
13364    LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
13365    SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
13366    SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
13367                                         DAG.getVTList(MVT::f64, MVT::Other),
13368                                         Ops, MVT::i8, LDN->getMemOperand());
13369
13370    // For signed conversion, we need to sign-extend the value in the VSR
13371    if (Signed) {
13372      SDValue ExtOps[] = { Ld, WidthConst };
13373      SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
13374      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
13375    } else
13376      return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
13377  }
13378
13379
13380  // For i32 intermediate values, unfortunately, the conversion functions
13381  // leave the upper 32 bits of the value are undefined. Within the set of
13382  // scalar instructions, we have no method for zero- or sign-extending the
13383  // value. Thus, we cannot handle i32 intermediate values here.
13384  if (Op.getOperand(0).getValueType() == MVT::i32)
13385    return SDValue();
13386
13387  assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
13388         "UINT_TO_FP is supported only with FPCVT");
13389
13390  // If we have FCFIDS, then use it when converting to single-precision.
13391  // Otherwise, convert to double-precision and then round.
13392  unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13393                       ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
13394                                                            : PPCISD::FCFIDS)
13395                       : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
13396                                                            : PPCISD::FCFID);
13397  MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
13398                  ? MVT::f32
13399                  : MVT::f64;
13400
13401  // If we're converting from a float, to an int, and back to a float again,
13402  // then we don't need the store/load pair at all.
13403  if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
13404       Subtarget.hasFPCVT()) ||
13405      (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
13406    SDValue Src = Op.getOperand(0).getOperand(0);
13407    if (Src.getValueType() == MVT::f32) {
13408      Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
13409      DCI.AddToWorklist(Src.getNode());
13410    } else if (Src.getValueType() != MVT::f64) {
13411      // Make sure that we don't pick up a ppc_fp128 source value.
13412      return SDValue();
13413    }
13414
13415    unsigned FCTOp =
13416      Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
13417                                                        PPCISD::FCTIDUZ;
13418
13419    SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
13420    SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
13421
13422    if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
13423      FP = DAG.getNode(ISD::FP_ROUND, dl,
13424                       MVT::f32, FP, DAG.getIntPtrConstant(0, dl));
13425      DCI.AddToWorklist(FP.getNode());
13426    }
13427
13428    return FP;
13429  }
13430
13431  return SDValue();
13432}
13433
13434// expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
13435// builtins) into loads with swaps.
13436SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
13437                                              DAGCombinerInfo &DCI) const {
13438  SelectionDAG &DAG = DCI.DAG;
13439  SDLoc dl(N);
13440  SDValue Chain;
13441  SDValue Base;
13442  MachineMemOperand *MMO;
13443
13444  switch (N->getOpcode()) {
13445  default:
13446    llvm_unreachable("Unexpected opcode for little endian VSX load");
13447  case ISD::LOAD: {
13448    LoadSDNode *LD = cast<LoadSDNode>(N);
13449    Chain = LD->getChain();
13450    Base = LD->getBasePtr();
13451    MMO = LD->getMemOperand();
13452    // If the MMO suggests this isn't a load of a full vector, leave
13453    // things alone.  For a built-in, we have to make the change for
13454    // correctness, so if there is a size problem that will be a bug.
13455    if (MMO->getSize() < 16)
13456      return SDValue();
13457    break;
13458  }
13459  case ISD::INTRINSIC_W_CHAIN: {
13460    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13461    Chain = Intrin->getChain();
13462    // Similarly to the store case below, Intrin->getBasePtr() doesn't get
13463    // us what we want. Get operand 2 instead.
13464    Base = Intrin->getOperand(2);
13465    MMO = Intrin->getMemOperand();
13466    break;
13467  }
13468  }
13469
13470  MVT VecTy = N->getValueType(0).getSimpleVT();
13471
13472  // Do not expand to PPCISD::LXVD2X + PPCISD::XXSWAPD when the load is
13473  // aligned and the type is a vector with elements up to 4 bytes
13474  if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13475      && VecTy.getScalarSizeInBits() <= 32 ) {
13476    return SDValue();
13477  }
13478
13479  SDValue LoadOps[] = { Chain, Base };
13480  SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
13481                                         DAG.getVTList(MVT::v2f64, MVT::Other),
13482                                         LoadOps, MVT::v2f64, MMO);
13483
13484  DCI.AddToWorklist(Load.getNode());
13485  Chain = Load.getValue(1);
13486  SDValue Swap = DAG.getNode(
13487      PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
13488  DCI.AddToWorklist(Swap.getNode());
13489
13490  // Add a bitcast if the resulting load type doesn't match v2f64.
13491  if (VecTy != MVT::v2f64) {
13492    SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
13493    DCI.AddToWorklist(N.getNode());
13494    // Package {bitcast value, swap's chain} to match Load's shape.
13495    return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
13496                       N, Swap.getValue(1));
13497  }
13498
13499  return Swap;
13500}
13501
13502// expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
13503// builtins) into stores with swaps.
13504SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
13505                                               DAGCombinerInfo &DCI) const {
13506  SelectionDAG &DAG = DCI.DAG;
13507  SDLoc dl(N);
13508  SDValue Chain;
13509  SDValue Base;
13510  unsigned SrcOpnd;
13511  MachineMemOperand *MMO;
13512
13513  switch (N->getOpcode()) {
13514  default:
13515    llvm_unreachable("Unexpected opcode for little endian VSX store");
13516  case ISD::STORE: {
13517    StoreSDNode *ST = cast<StoreSDNode>(N);
13518    Chain = ST->getChain();
13519    Base = ST->getBasePtr();
13520    MMO = ST->getMemOperand();
13521    SrcOpnd = 1;
13522    // If the MMO suggests this isn't a store of a full vector, leave
13523    // things alone.  For a built-in, we have to make the change for
13524    // correctness, so if there is a size problem that will be a bug.
13525    if (MMO->getSize() < 16)
13526      return SDValue();
13527    break;
13528  }
13529  case ISD::INTRINSIC_VOID: {
13530    MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
13531    Chain = Intrin->getChain();
13532    // Intrin->getBasePtr() oddly does not get what we want.
13533    Base = Intrin->getOperand(3);
13534    MMO = Intrin->getMemOperand();
13535    SrcOpnd = 2;
13536    break;
13537  }
13538  }
13539
13540  SDValue Src = N->getOperand(SrcOpnd);
13541  MVT VecTy = Src.getValueType().getSimpleVT();
13542
13543  // Do not expand to PPCISD::XXSWAPD and PPCISD::STXVD2X when the load is
13544  // aligned and the type is a vector with elements up to 4 bytes
13545  if (Subtarget.needsSwapsForVSXMemOps() && !(MMO->getAlignment()%16)
13546      && VecTy.getScalarSizeInBits() <= 32 ) {
13547    return SDValue();
13548  }
13549
13550  // All stores are done as v2f64 and possible bit cast.
13551  if (VecTy != MVT::v2f64) {
13552    Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
13553    DCI.AddToWorklist(Src.getNode());
13554  }
13555
13556  SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
13557                             DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
13558  DCI.AddToWorklist(Swap.getNode());
13559  Chain = Swap.getValue(1);
13560  SDValue StoreOps[] = { Chain, Swap, Base };
13561  SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
13562                                          DAG.getVTList(MVT::Other),
13563                                          StoreOps, VecTy, MMO);
13564  DCI.AddToWorklist(Store.getNode());
13565  return Store;
13566}
13567
13568// Handle DAG combine for STORE (FP_TO_INT F).
13569SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
13570                                               DAGCombinerInfo &DCI) const {
13571
13572  SelectionDAG &DAG = DCI.DAG;
13573  SDLoc dl(N);
13574  unsigned Opcode = N->getOperand(1).getOpcode();
13575
13576  assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT)
13577         && "Not a FP_TO_INT Instruction!");
13578
13579  SDValue Val = N->getOperand(1).getOperand(0);
13580  EVT Op1VT = N->getOperand(1).getValueType();
13581  EVT ResVT = Val.getValueType();
13582
13583  // Floating point types smaller than 32 bits are not legal on Power.
13584  if (ResVT.getScalarSizeInBits() < 32)
13585    return SDValue();
13586
13587  // Only perform combine for conversion to i64/i32 or power9 i16/i8.
13588  bool ValidTypeForStoreFltAsInt =
13589        (Op1VT == MVT::i32 || Op1VT == MVT::i64 ||
13590         (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
13591
13592  if (ResVT == MVT::ppcf128 || !Subtarget.hasP8Altivec() ||
13593      cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
13594    return SDValue();
13595
13596  // Extend f32 values to f64
13597  if (ResVT.getScalarSizeInBits() == 32) {
13598    Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
13599    DCI.AddToWorklist(Val.getNode());
13600  }
13601
13602  // Set signed or unsigned conversion opcode.
13603  unsigned ConvOpcode = (Opcode == ISD::FP_TO_SINT) ?
13604                          PPCISD::FP_TO_SINT_IN_VSR :
13605                          PPCISD::FP_TO_UINT_IN_VSR;
13606
13607  Val = DAG.getNode(ConvOpcode,
13608                    dl, ResVT == MVT::f128 ? MVT::f128 : MVT::f64, Val);
13609  DCI.AddToWorklist(Val.getNode());
13610
13611  // Set number of bytes being converted.
13612  unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
13613  SDValue Ops[] = { N->getOperand(0), Val, N->getOperand(2),
13614                    DAG.getIntPtrConstant(ByteSize, dl, false),
13615                    DAG.getValueType(Op1VT) };
13616
13617  Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
13618          DAG.getVTList(MVT::Other), Ops,
13619          cast<StoreSDNode>(N)->getMemoryVT(),
13620          cast<StoreSDNode>(N)->getMemOperand());
13621
13622  DCI.AddToWorklist(Val.getNode());
13623  return Val;
13624}
13625
13626SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
13627                                                LSBaseSDNode *LSBase,
13628                                                DAGCombinerInfo &DCI) const {
13629  assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
13630        "Not a reverse memop pattern!");
13631
13632  auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
13633    auto Mask = SVN->getMask();
13634    int i = 0;
13635    auto I = Mask.rbegin();
13636    auto E = Mask.rend();
13637
13638    for (; I != E; ++I) {
13639      if (*I != i)
13640        return false;
13641      i++;
13642    }
13643    return true;
13644  };
13645
13646  SelectionDAG &DAG = DCI.DAG;
13647  EVT VT = SVN->getValueType(0);
13648
13649  if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
13650    return SDValue();
13651
13652  // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
13653  // See comment in PPCVSXSwapRemoval.cpp.
13654  // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
13655  if (!Subtarget.hasP9Vector())
13656    return SDValue();
13657
13658  if(!IsElementReverse(SVN))
13659    return SDValue();
13660
13661  if (LSBase->getOpcode() == ISD::LOAD) {
13662    SDLoc dl(SVN);
13663    SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
13664    return DAG.getMemIntrinsicNode(
13665        PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
13666        LSBase->getMemoryVT(), LSBase->getMemOperand());
13667  }
13668
13669  if (LSBase->getOpcode() == ISD::STORE) {
13670    SDLoc dl(LSBase);
13671    SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
13672                          LSBase->getBasePtr()};
13673    return DAG.getMemIntrinsicNode(
13674        PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
13675        LSBase->getMemoryVT(), LSBase->getMemOperand());
13676  }
13677
13678  llvm_unreachable("Expected a load or store node here");
13679}
13680
13681SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
13682                                             DAGCombinerInfo &DCI) const {
13683  SelectionDAG &DAG = DCI.DAG;
13684  SDLoc dl(N);
13685  switch (N->getOpcode()) {
13686  default: break;
13687  case ISD::ADD:
13688    return combineADD(N, DCI);
13689  case ISD::SHL:
13690    return combineSHL(N, DCI);
13691  case ISD::SRA:
13692    return combineSRA(N, DCI);
13693  case ISD::SRL:
13694    return combineSRL(N, DCI);
13695  case ISD::MUL:
13696    return combineMUL(N, DCI);
13697  case PPCISD::SHL:
13698    if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
13699        return N->getOperand(0);
13700    break;
13701  case PPCISD::SRL:
13702    if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
13703        return N->getOperand(0);
13704    break;
13705  case PPCISD::SRA:
13706    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
13707      if (C->isNullValue() ||   //  0 >>s V -> 0.
13708          C->isAllOnesValue())    // -1 >>s V -> -1.
13709        return N->getOperand(0);
13710    }
13711    break;
13712  case ISD::SIGN_EXTEND:
13713  case ISD::ZERO_EXTEND:
13714  case ISD::ANY_EXTEND:
13715    return DAGCombineExtBoolTrunc(N, DCI);
13716  case ISD::TRUNCATE:
13717    return combineTRUNCATE(N, DCI);
13718  case ISD::SETCC:
13719    if (SDValue CSCC = combineSetCC(N, DCI))
13720      return CSCC;
13721    LLVM_FALLTHROUGH;
13722  case ISD::SELECT_CC:
13723    return DAGCombineTruncBoolExt(N, DCI);
13724  case ISD::SINT_TO_FP:
13725  case ISD::UINT_TO_FP:
13726    return combineFPToIntToFP(N, DCI);
13727  case ISD::VECTOR_SHUFFLE:
13728    if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
13729      LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
13730      return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
13731    }
13732    break;
13733  case ISD::STORE: {
13734
13735    EVT Op1VT = N->getOperand(1).getValueType();
13736    unsigned Opcode = N->getOperand(1).getOpcode();
13737
13738    if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT) {
13739      SDValue Val= combineStoreFPToInt(N, DCI);
13740      if (Val)
13741        return Val;
13742    }
13743
13744    if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
13745      ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
13746      SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
13747      if (Val)
13748        return Val;
13749    }
13750
13751    // Turn STORE (BSWAP) -> sthbrx/stwbrx.
13752    if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
13753        N->getOperand(1).getNode()->hasOneUse() &&
13754        (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
13755         (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
13756
13757      // STBRX can only handle simple types and it makes no sense to store less
13758      // two bytes in byte-reversed order.
13759      EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
13760      if (mVT.isExtended() || mVT.getSizeInBits() < 16)
13761        break;
13762
13763      SDValue BSwapOp = N->getOperand(1).getOperand(0);
13764      // Do an any-extend to 32-bits if this is a half-word input.
13765      if (BSwapOp.getValueType() == MVT::i16)
13766        BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
13767
13768      // If the type of BSWAP operand is wider than stored memory width
13769      // it need to be shifted to the right side before STBRX.
13770      if (Op1VT.bitsGT(mVT)) {
13771        int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
13772        BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
13773                              DAG.getConstant(Shift, dl, MVT::i32));
13774        // Need to truncate if this is a bswap of i64 stored as i32/i16.
13775        if (Op1VT == MVT::i64)
13776          BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
13777      }
13778
13779      SDValue Ops[] = {
13780        N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
13781      };
13782      return
13783        DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
13784                                Ops, cast<StoreSDNode>(N)->getMemoryVT(),
13785                                cast<StoreSDNode>(N)->getMemOperand());
13786    }
13787
13788    // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
13789    // So it can increase the chance of CSE constant construction.
13790    if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
13791        isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
13792      // Need to sign-extended to 64-bits to handle negative values.
13793      EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
13794      uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
13795                                    MemVT.getSizeInBits());
13796      SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
13797
13798      // DAG.getTruncStore() can't be used here because it doesn't accept
13799      // the general (base + offset) addressing mode.
13800      // So we use UpdateNodeOperands and setTruncatingStore instead.
13801      DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
13802                             N->getOperand(3));
13803      cast<StoreSDNode>(N)->setTruncatingStore(true);
13804      return SDValue(N, 0);
13805    }
13806
13807    // For little endian, VSX stores require generating xxswapd/lxvd2x.
13808    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
13809    if (Op1VT.isSimple()) {
13810      MVT StoreVT = Op1VT.getSimpleVT();
13811      if (Subtarget.needsSwapsForVSXMemOps() &&
13812          (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
13813           StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
13814        return expandVSXStoreForLE(N, DCI);
13815    }
13816    break;
13817  }
13818  case ISD::LOAD: {
13819    LoadSDNode *LD = cast<LoadSDNode>(N);
13820    EVT VT = LD->getValueType(0);
13821
13822    // For little endian, VSX loads require generating lxvd2x/xxswapd.
13823    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
13824    if (VT.isSimple()) {
13825      MVT LoadVT = VT.getSimpleVT();
13826      if (Subtarget.needsSwapsForVSXMemOps() &&
13827          (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
13828           LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
13829        return expandVSXLoadForLE(N, DCI);
13830    }
13831
13832    // We sometimes end up with a 64-bit integer load, from which we extract
13833    // two single-precision floating-point numbers. This happens with
13834    // std::complex<float>, and other similar structures, because of the way we
13835    // canonicalize structure copies. However, if we lack direct moves,
13836    // then the final bitcasts from the extracted integer values to the
13837    // floating-point numbers turn into store/load pairs. Even with direct moves,
13838    // just loading the two floating-point numbers is likely better.
13839    auto ReplaceTwoFloatLoad = [&]() {
13840      if (VT != MVT::i64)
13841        return false;
13842
13843      if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
13844          LD->isVolatile())
13845        return false;
13846
13847      //  We're looking for a sequence like this:
13848      //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
13849      //      t16: i64 = srl t13, Constant:i32<32>
13850      //    t17: i32 = truncate t16
13851      //  t18: f32 = bitcast t17
13852      //    t19: i32 = truncate t13
13853      //  t20: f32 = bitcast t19
13854
13855      if (!LD->hasNUsesOfValue(2, 0))
13856        return false;
13857
13858      auto UI = LD->use_begin();
13859      while (UI.getUse().getResNo() != 0) ++UI;
13860      SDNode *Trunc = *UI++;
13861      while (UI.getUse().getResNo() != 0) ++UI;
13862      SDNode *RightShift = *UI;
13863      if (Trunc->getOpcode() != ISD::TRUNCATE)
13864        std::swap(Trunc, RightShift);
13865
13866      if (Trunc->getOpcode() != ISD::TRUNCATE ||
13867          Trunc->getValueType(0) != MVT::i32 ||
13868          !Trunc->hasOneUse())
13869        return false;
13870      if (RightShift->getOpcode() != ISD::SRL ||
13871          !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
13872          RightShift->getConstantOperandVal(1) != 32 ||
13873          !RightShift->hasOneUse())
13874        return false;
13875
13876      SDNode *Trunc2 = *RightShift->use_begin();
13877      if (Trunc2->getOpcode() != ISD::TRUNCATE ||
13878          Trunc2->getValueType(0) != MVT::i32 ||
13879          !Trunc2->hasOneUse())
13880        return false;
13881
13882      SDNode *Bitcast = *Trunc->use_begin();
13883      SDNode *Bitcast2 = *Trunc2->use_begin();
13884
13885      if (Bitcast->getOpcode() != ISD::BITCAST ||
13886          Bitcast->getValueType(0) != MVT::f32)
13887        return false;
13888      if (Bitcast2->getOpcode() != ISD::BITCAST ||
13889          Bitcast2->getValueType(0) != MVT::f32)
13890        return false;
13891
13892      if (Subtarget.isLittleEndian())
13893        std::swap(Bitcast, Bitcast2);
13894
13895      // Bitcast has the second float (in memory-layout order) and Bitcast2
13896      // has the first one.
13897
13898      SDValue BasePtr = LD->getBasePtr();
13899      if (LD->isIndexed()) {
13900        assert(LD->getAddressingMode() == ISD::PRE_INC &&
13901               "Non-pre-inc AM on PPC?");
13902        BasePtr =
13903          DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
13904                      LD->getOffset());
13905      }
13906
13907      auto MMOFlags =
13908          LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
13909      SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
13910                                      LD->getPointerInfo(), LD->getAlignment(),
13911                                      MMOFlags, LD->getAAInfo());
13912      SDValue AddPtr =
13913        DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
13914                    BasePtr, DAG.getIntPtrConstant(4, dl));
13915      SDValue FloatLoad2 = DAG.getLoad(
13916          MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
13917          LD->getPointerInfo().getWithOffset(4),
13918          MinAlign(LD->getAlignment(), 4), MMOFlags, LD->getAAInfo());
13919
13920      if (LD->isIndexed()) {
13921        // Note that DAGCombine should re-form any pre-increment load(s) from
13922        // what is produced here if that makes sense.
13923        DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
13924      }
13925
13926      DCI.CombineTo(Bitcast2, FloatLoad);
13927      DCI.CombineTo(Bitcast, FloatLoad2);
13928
13929      DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
13930                                    SDValue(FloatLoad2.getNode(), 1));
13931      return true;
13932    };
13933
13934    if (ReplaceTwoFloatLoad())
13935      return SDValue(N, 0);
13936
13937    EVT MemVT = LD->getMemoryVT();
13938    Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
13939    unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
13940    Type *STy = MemVT.getScalarType().getTypeForEVT(*DAG.getContext());
13941    unsigned ScalarABIAlignment = DAG.getDataLayout().getABITypeAlignment(STy);
13942    if (LD->isUnindexed() && VT.isVector() &&
13943        ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
13944          // P8 and later hardware should just use LOAD.
13945          !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 ||
13946                                       VT == MVT::v4i32 || VT == MVT::v4f32)) ||
13947         (Subtarget.hasQPX() && (VT == MVT::v4f64 || VT == MVT::v4f32) &&
13948          LD->getAlignment() >= ScalarABIAlignment)) &&
13949        LD->getAlignment() < ABIAlignment) {
13950      // This is a type-legal unaligned Altivec or QPX load.
13951      SDValue Chain = LD->getChain();
13952      SDValue Ptr = LD->getBasePtr();
13953      bool isLittleEndian = Subtarget.isLittleEndian();
13954
13955      // This implements the loading of unaligned vectors as described in
13956      // the venerable Apple Velocity Engine overview. Specifically:
13957      // https://developer.apple.com/hardwaredrivers/ve/alignment.html
13958      // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
13959      //
13960      // The general idea is to expand a sequence of one or more unaligned
13961      // loads into an alignment-based permutation-control instruction (lvsl
13962      // or lvsr), a series of regular vector loads (which always truncate
13963      // their input address to an aligned address), and a series of
13964      // permutations.  The results of these permutations are the requested
13965      // loaded values.  The trick is that the last "extra" load is not taken
13966      // from the address you might suspect (sizeof(vector) bytes after the
13967      // last requested load), but rather sizeof(vector) - 1 bytes after the
13968      // last requested vector. The point of this is to avoid a page fault if
13969      // the base address happened to be aligned. This works because if the
13970      // base address is aligned, then adding less than a full vector length
13971      // will cause the last vector in the sequence to be (re)loaded.
13972      // Otherwise, the next vector will be fetched as you might suspect was
13973      // necessary.
13974
13975      // We might be able to reuse the permutation generation from
13976      // a different base address offset from this one by an aligned amount.
13977      // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
13978      // optimization later.
13979      Intrinsic::ID Intr, IntrLD, IntrPerm;
13980      MVT PermCntlTy, PermTy, LDTy;
13981      if (Subtarget.hasAltivec()) {
13982        Intr = isLittleEndian ?  Intrinsic::ppc_altivec_lvsr :
13983                                 Intrinsic::ppc_altivec_lvsl;
13984        IntrLD = Intrinsic::ppc_altivec_lvx;
13985        IntrPerm = Intrinsic::ppc_altivec_vperm;
13986        PermCntlTy = MVT::v16i8;
13987        PermTy = MVT::v4i32;
13988        LDTy = MVT::v4i32;
13989      } else {
13990        Intr =   MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlpcld :
13991                                       Intrinsic::ppc_qpx_qvlpcls;
13992        IntrLD = MemVT == MVT::v4f64 ? Intrinsic::ppc_qpx_qvlfd :
13993                                       Intrinsic::ppc_qpx_qvlfs;
13994        IntrPerm = Intrinsic::ppc_qpx_qvfperm;
13995        PermCntlTy = MVT::v4f64;
13996        PermTy = MVT::v4f64;
13997        LDTy = MemVT.getSimpleVT();
13998      }
13999
14000      SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
14001
14002      // Create the new MMO for the new base load. It is like the original MMO,
14003      // but represents an area in memory almost twice the vector size centered
14004      // on the original address. If the address is unaligned, we might start
14005      // reading up to (sizeof(vector)-1) bytes below the address of the
14006      // original unaligned load.
14007      MachineFunction &MF = DAG.getMachineFunction();
14008      MachineMemOperand *BaseMMO =
14009        MF.getMachineMemOperand(LD->getMemOperand(),
14010                                -(long)MemVT.getStoreSize()+1,
14011                                2*MemVT.getStoreSize()-1);
14012
14013      // Create the new base load.
14014      SDValue LDXIntID =
14015          DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
14016      SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
14017      SDValue BaseLoad =
14018        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14019                                DAG.getVTList(PermTy, MVT::Other),
14020                                BaseLoadOps, LDTy, BaseMMO);
14021
14022      // Note that the value of IncOffset (which is provided to the next
14023      // load's pointer info offset value, and thus used to calculate the
14024      // alignment), and the value of IncValue (which is actually used to
14025      // increment the pointer value) are different! This is because we
14026      // require the next load to appear to be aligned, even though it
14027      // is actually offset from the base pointer by a lesser amount.
14028      int IncOffset = VT.getSizeInBits() / 8;
14029      int IncValue = IncOffset;
14030
14031      // Walk (both up and down) the chain looking for another load at the real
14032      // (aligned) offset (the alignment of the other load does not matter in
14033      // this case). If found, then do not use the offset reduction trick, as
14034      // that will prevent the loads from being later combined (as they would
14035      // otherwise be duplicates).
14036      if (!findConsecutiveLoad(LD, DAG))
14037        --IncValue;
14038
14039      SDValue Increment =
14040          DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
14041      Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
14042
14043      MachineMemOperand *ExtraMMO =
14044        MF.getMachineMemOperand(LD->getMemOperand(),
14045                                1, 2*MemVT.getStoreSize()-1);
14046      SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
14047      SDValue ExtraLoad =
14048        DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
14049                                DAG.getVTList(PermTy, MVT::Other),
14050                                ExtraLoadOps, LDTy, ExtraMMO);
14051
14052      SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
14053        BaseLoad.getValue(1), ExtraLoad.getValue(1));
14054
14055      // Because vperm has a big-endian bias, we must reverse the order
14056      // of the input vectors and complement the permute control vector
14057      // when generating little endian code.  We have already handled the
14058      // latter by using lvsr instead of lvsl, so just reverse BaseLoad
14059      // and ExtraLoad here.
14060      SDValue Perm;
14061      if (isLittleEndian)
14062        Perm = BuildIntrinsicOp(IntrPerm,
14063                                ExtraLoad, BaseLoad, PermCntl, DAG, dl);
14064      else
14065        Perm = BuildIntrinsicOp(IntrPerm,
14066                                BaseLoad, ExtraLoad, PermCntl, DAG, dl);
14067
14068      if (VT != PermTy)
14069        Perm = Subtarget.hasAltivec() ?
14070                 DAG.getNode(ISD::BITCAST, dl, VT, Perm) :
14071                 DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, // QPX
14072                               DAG.getTargetConstant(1, dl, MVT::i64));
14073                               // second argument is 1 because this rounding
14074                               // is always exact.
14075
14076      // The output of the permutation is our loaded result, the TokenFactor is
14077      // our new chain.
14078      DCI.CombineTo(N, Perm, TF);
14079      return SDValue(N, 0);
14080    }
14081    }
14082    break;
14083    case ISD::INTRINSIC_WO_CHAIN: {
14084      bool isLittleEndian = Subtarget.isLittleEndian();
14085      unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
14086      Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
14087                                           : Intrinsic::ppc_altivec_lvsl);
14088      if ((IID == Intr ||
14089           IID == Intrinsic::ppc_qpx_qvlpcld  ||
14090           IID == Intrinsic::ppc_qpx_qvlpcls) &&
14091        N->getOperand(1)->getOpcode() == ISD::ADD) {
14092        SDValue Add = N->getOperand(1);
14093
14094        int Bits = IID == Intrinsic::ppc_qpx_qvlpcld ?
14095                   5 /* 32 byte alignment */ : 4 /* 16 byte alignment */;
14096
14097        if (DAG.MaskedValueIsZero(Add->getOperand(1),
14098                                  APInt::getAllOnesValue(Bits /* alignment */)
14099                                      .zext(Add.getScalarValueSizeInBits()))) {
14100          SDNode *BasePtr = Add->getOperand(0).getNode();
14101          for (SDNode::use_iterator UI = BasePtr->use_begin(),
14102                                    UE = BasePtr->use_end();
14103               UI != UE; ++UI) {
14104            if (UI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14105                cast<ConstantSDNode>(UI->getOperand(0))->getZExtValue() == IID) {
14106              // We've found another LVSL/LVSR, and this address is an aligned
14107              // multiple of that one. The results will be the same, so use the
14108              // one we've just found instead.
14109
14110              return SDValue(*UI, 0);
14111            }
14112          }
14113        }
14114
14115        if (isa<ConstantSDNode>(Add->getOperand(1))) {
14116          SDNode *BasePtr = Add->getOperand(0).getNode();
14117          for (SDNode::use_iterator UI = BasePtr->use_begin(),
14118               UE = BasePtr->use_end(); UI != UE; ++UI) {
14119            if (UI->getOpcode() == ISD::ADD &&
14120                isa<ConstantSDNode>(UI->getOperand(1)) &&
14121                (cast<ConstantSDNode>(Add->getOperand(1))->getZExtValue() -
14122                 cast<ConstantSDNode>(UI->getOperand(1))->getZExtValue()) %
14123                (1ULL << Bits) == 0) {
14124              SDNode *OtherAdd = *UI;
14125              for (SDNode::use_iterator VI = OtherAdd->use_begin(),
14126                   VE = OtherAdd->use_end(); VI != VE; ++VI) {
14127                if (VI->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14128                    cast<ConstantSDNode>(VI->getOperand(0))->getZExtValue() == IID) {
14129                  return SDValue(*VI, 0);
14130                }
14131              }
14132            }
14133          }
14134        }
14135      }
14136
14137      // Combine vmaxsw/h/b(a, a's negation) to abs(a)
14138      // Expose the vabsduw/h/b opportunity for down stream
14139      if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
14140          (IID == Intrinsic::ppc_altivec_vmaxsw ||
14141           IID == Intrinsic::ppc_altivec_vmaxsh ||
14142           IID == Intrinsic::ppc_altivec_vmaxsb)) {
14143        SDValue V1 = N->getOperand(1);
14144        SDValue V2 = N->getOperand(2);
14145        if ((V1.getSimpleValueType() == MVT::v4i32 ||
14146             V1.getSimpleValueType() == MVT::v8i16 ||
14147             V1.getSimpleValueType() == MVT::v16i8) &&
14148            V1.getSimpleValueType() == V2.getSimpleValueType()) {
14149          // (0-a, a)
14150          if (V1.getOpcode() == ISD::SUB &&
14151              ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
14152              V1.getOperand(1) == V2) {
14153            return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
14154          }
14155          // (a, 0-a)
14156          if (V2.getOpcode() == ISD::SUB &&
14157              ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
14158              V2.getOperand(1) == V1) {
14159            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14160          }
14161          // (x-y, y-x)
14162          if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
14163              V1.getOperand(0) == V2.getOperand(1) &&
14164              V1.getOperand(1) == V2.getOperand(0)) {
14165            return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
14166          }
14167        }
14168      }
14169    }
14170
14171    break;
14172  case ISD::INTRINSIC_W_CHAIN:
14173    // For little endian, VSX loads require generating lxvd2x/xxswapd.
14174    // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
14175    if (Subtarget.needsSwapsForVSXMemOps()) {
14176      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14177      default:
14178        break;
14179      case Intrinsic::ppc_vsx_lxvw4x:
14180      case Intrinsic::ppc_vsx_lxvd2x:
14181        return expandVSXLoadForLE(N, DCI);
14182      }
14183    }
14184    break;
14185  case ISD::INTRINSIC_VOID:
14186    // For little endian, VSX stores require generating xxswapd/stxvd2x.
14187    // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
14188    if (Subtarget.needsSwapsForVSXMemOps()) {
14189      switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
14190      default:
14191        break;
14192      case Intrinsic::ppc_vsx_stxvw4x:
14193      case Intrinsic::ppc_vsx_stxvd2x:
14194        return expandVSXStoreForLE(N, DCI);
14195      }
14196    }
14197    break;
14198  case ISD::BSWAP:
14199    // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
14200    if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
14201        N->getOperand(0).hasOneUse() &&
14202        (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
14203         (Subtarget.hasLDBRX() && Subtarget.isPPC64() &&
14204          N->getValueType(0) == MVT::i64))) {
14205      SDValue Load = N->getOperand(0);
14206      LoadSDNode *LD = cast<LoadSDNode>(Load);
14207      // Create the byte-swapping load.
14208      SDValue Ops[] = {
14209        LD->getChain(),    // Chain
14210        LD->getBasePtr(),  // Ptr
14211        DAG.getValueType(N->getValueType(0)) // VT
14212      };
14213      SDValue BSLoad =
14214        DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
14215                                DAG.getVTList(N->getValueType(0) == MVT::i64 ?
14216                                              MVT::i64 : MVT::i32, MVT::Other),
14217                                Ops, LD->getMemoryVT(), LD->getMemOperand());
14218
14219      // If this is an i16 load, insert the truncate.
14220      SDValue ResVal = BSLoad;
14221      if (N->getValueType(0) == MVT::i16)
14222        ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
14223
14224      // First, combine the bswap away.  This makes the value produced by the
14225      // load dead.
14226      DCI.CombineTo(N, ResVal);
14227
14228      // Next, combine the load away, we give it a bogus result value but a real
14229      // chain result.  The result value is dead because the bswap is dead.
14230      DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
14231
14232      // Return N so it doesn't get rechecked!
14233      return SDValue(N, 0);
14234    }
14235    break;
14236  case PPCISD::VCMP:
14237    // If a VCMPo node already exists with exactly the same operands as this
14238    // node, use its result instead of this node (VCMPo computes both a CR6 and
14239    // a normal output).
14240    //
14241    if (!N->getOperand(0).hasOneUse() &&
14242        !N->getOperand(1).hasOneUse() &&
14243        !N->getOperand(2).hasOneUse()) {
14244
14245      // Scan all of the users of the LHS, looking for VCMPo's that match.
14246      SDNode *VCMPoNode = nullptr;
14247
14248      SDNode *LHSN = N->getOperand(0).getNode();
14249      for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
14250           UI != E; ++UI)
14251        if (UI->getOpcode() == PPCISD::VCMPo &&
14252            UI->getOperand(1) == N->getOperand(1) &&
14253            UI->getOperand(2) == N->getOperand(2) &&
14254            UI->getOperand(0) == N->getOperand(0)) {
14255          VCMPoNode = *UI;
14256          break;
14257        }
14258
14259      // If there is no VCMPo node, or if the flag value has a single use, don't
14260      // transform this.
14261      if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
14262        break;
14263
14264      // Look at the (necessarily single) use of the flag value.  If it has a
14265      // chain, this transformation is more complex.  Note that multiple things
14266      // could use the value result, which we should ignore.
14267      SDNode *FlagUser = nullptr;
14268      for (SDNode::use_iterator UI = VCMPoNode->use_begin();
14269           FlagUser == nullptr; ++UI) {
14270        assert(UI != VCMPoNode->use_end() && "Didn't find user!");
14271        SDNode *User = *UI;
14272        for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
14273          if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
14274            FlagUser = User;
14275            break;
14276          }
14277        }
14278      }
14279
14280      // If the user is a MFOCRF instruction, we know this is safe.
14281      // Otherwise we give up for right now.
14282      if (FlagUser->getOpcode() == PPCISD::MFOCRF)
14283        return SDValue(VCMPoNode, 0);
14284    }
14285    break;
14286  case ISD::BRCOND: {
14287    SDValue Cond = N->getOperand(1);
14288    SDValue Target = N->getOperand(2);
14289
14290    if (Cond.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14291        cast<ConstantSDNode>(Cond.getOperand(1))->getZExtValue() ==
14292          Intrinsic::loop_decrement) {
14293
14294      // We now need to make the intrinsic dead (it cannot be instruction
14295      // selected).
14296      DAG.ReplaceAllUsesOfValueWith(Cond.getValue(1), Cond.getOperand(0));
14297      assert(Cond.getNode()->hasOneUse() &&
14298             "Counter decrement has more than one use");
14299
14300      return DAG.getNode(PPCISD::BDNZ, dl, MVT::Other,
14301                         N->getOperand(0), Target);
14302    }
14303  }
14304  break;
14305  case ISD::BR_CC: {
14306    // If this is a branch on an altivec predicate comparison, lower this so
14307    // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
14308    // lowering is done pre-legalize, because the legalizer lowers the predicate
14309    // compare down to code that is difficult to reassemble.
14310    ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
14311    SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
14312
14313    // Sometimes the promoted value of the intrinsic is ANDed by some non-zero
14314    // value. If so, pass-through the AND to get to the intrinsic.
14315    if (LHS.getOpcode() == ISD::AND &&
14316        LHS.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14317        cast<ConstantSDNode>(LHS.getOperand(0).getOperand(1))->getZExtValue() ==
14318          Intrinsic::loop_decrement &&
14319        isa<ConstantSDNode>(LHS.getOperand(1)) &&
14320        !isNullConstant(LHS.getOperand(1)))
14321      LHS = LHS.getOperand(0);
14322
14323    if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
14324        cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() ==
14325          Intrinsic::loop_decrement &&
14326        isa<ConstantSDNode>(RHS)) {
14327      assert((CC == ISD::SETEQ || CC == ISD::SETNE) &&
14328             "Counter decrement comparison is not EQ or NE");
14329
14330      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14331      bool isBDNZ = (CC == ISD::SETEQ && Val) ||
14332                    (CC == ISD::SETNE && !Val);
14333
14334      // We now need to make the intrinsic dead (it cannot be instruction
14335      // selected).
14336      DAG.ReplaceAllUsesOfValueWith(LHS.getValue(1), LHS.getOperand(0));
14337      assert(LHS.getNode()->hasOneUse() &&
14338             "Counter decrement has more than one use");
14339
14340      return DAG.getNode(isBDNZ ? PPCISD::BDNZ : PPCISD::BDZ, dl, MVT::Other,
14341                         N->getOperand(0), N->getOperand(4));
14342    }
14343
14344    int CompareOpc;
14345    bool isDot;
14346
14347    if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
14348        isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
14349        getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
14350      assert(isDot && "Can't compare against a vector result!");
14351
14352      // If this is a comparison against something other than 0/1, then we know
14353      // that the condition is never/always true.
14354      unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
14355      if (Val != 0 && Val != 1) {
14356        if (CC == ISD::SETEQ)      // Cond never true, remove branch.
14357          return N->getOperand(0);
14358        // Always !=, turn it into an unconditional branch.
14359        return DAG.getNode(ISD::BR, dl, MVT::Other,
14360                           N->getOperand(0), N->getOperand(4));
14361      }
14362
14363      bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
14364
14365      // Create the PPCISD altivec 'dot' comparison node.
14366      SDValue Ops[] = {
14367        LHS.getOperand(2),  // LHS of compare
14368        LHS.getOperand(3),  // RHS of compare
14369        DAG.getConstant(CompareOpc, dl, MVT::i32)
14370      };
14371      EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
14372      SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops);
14373
14374      // Unpack the result based on how the target uses it.
14375      PPC::Predicate CompOpc;
14376      switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
14377      default:  // Can't happen, don't crash on invalid number though.
14378      case 0:   // Branch on the value of the EQ bit of CR6.
14379        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
14380        break;
14381      case 1:   // Branch on the inverted value of the EQ bit of CR6.
14382        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
14383        break;
14384      case 2:   // Branch on the value of the LT bit of CR6.
14385        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
14386        break;
14387      case 3:   // Branch on the inverted value of the LT bit of CR6.
14388        CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
14389        break;
14390      }
14391
14392      return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
14393                         DAG.getConstant(CompOpc, dl, MVT::i32),
14394                         DAG.getRegister(PPC::CR6, MVT::i32),
14395                         N->getOperand(4), CompNode.getValue(1));
14396    }
14397    break;
14398  }
14399  case ISD::BUILD_VECTOR:
14400    return DAGCombineBuildVector(N, DCI);
14401  case ISD::ABS:
14402    return combineABS(N, DCI);
14403  case ISD::VSELECT:
14404    return combineVSelect(N, DCI);
14405  }
14406
14407  return SDValue();
14408}
14409
14410SDValue
14411PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
14412                                 SelectionDAG &DAG,
14413                                 SmallVectorImpl<SDNode *> &Created) const {
14414  // fold (sdiv X, pow2)
14415  EVT VT = N->getValueType(0);
14416  if (VT == MVT::i64 && !Subtarget.isPPC64())
14417    return SDValue();
14418  if ((VT != MVT::i32 && VT != MVT::i64) ||
14419      !(Divisor.isPowerOf2() || (-Divisor).isPowerOf2()))
14420    return SDValue();
14421
14422  SDLoc DL(N);
14423  SDValue N0 = N->getOperand(0);
14424
14425  bool IsNegPow2 = (-Divisor).isPowerOf2();
14426  unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countTrailingZeros();
14427  SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
14428
14429  SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
14430  Created.push_back(Op.getNode());
14431
14432  if (IsNegPow2) {
14433    Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
14434    Created.push_back(Op.getNode());
14435  }
14436
14437  return Op;
14438}
14439
14440//===----------------------------------------------------------------------===//
14441// Inline Assembly Support
14442//===----------------------------------------------------------------------===//
14443
14444void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
14445                                                      KnownBits &Known,
14446                                                      const APInt &DemandedElts,
14447                                                      const SelectionDAG &DAG,
14448                                                      unsigned Depth) const {
14449  Known.resetAll();
14450  switch (Op.getOpcode()) {
14451  default: break;
14452  case PPCISD::LBRX: {
14453    // lhbrx is known to have the top bits cleared out.
14454    if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
14455      Known.Zero = 0xFFFF0000;
14456    break;
14457  }
14458  case ISD::INTRINSIC_WO_CHAIN: {
14459    switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
14460    default: break;
14461    case Intrinsic::ppc_altivec_vcmpbfp_p:
14462    case Intrinsic::ppc_altivec_vcmpeqfp_p:
14463    case Intrinsic::ppc_altivec_vcmpequb_p:
14464    case Intrinsic::ppc_altivec_vcmpequh_p:
14465    case Intrinsic::ppc_altivec_vcmpequw_p:
14466    case Intrinsic::ppc_altivec_vcmpequd_p:
14467    case Intrinsic::ppc_altivec_vcmpgefp_p:
14468    case Intrinsic::ppc_altivec_vcmpgtfp_p:
14469    case Intrinsic::ppc_altivec_vcmpgtsb_p:
14470    case Intrinsic::ppc_altivec_vcmpgtsh_p:
14471    case Intrinsic::ppc_altivec_vcmpgtsw_p:
14472    case Intrinsic::ppc_altivec_vcmpgtsd_p:
14473    case Intrinsic::ppc_altivec_vcmpgtub_p:
14474    case Intrinsic::ppc_altivec_vcmpgtuh_p:
14475    case Intrinsic::ppc_altivec_vcmpgtuw_p:
14476    case Intrinsic::ppc_altivec_vcmpgtud_p:
14477      Known.Zero = ~1U;  // All bits but the low one are known to be zero.
14478      break;
14479    }
14480  }
14481  }
14482}
14483
14484Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
14485  switch (Subtarget.getCPUDirective()) {
14486  default: break;
14487  case PPC::DIR_970:
14488  case PPC::DIR_PWR4:
14489  case PPC::DIR_PWR5:
14490  case PPC::DIR_PWR5X:
14491  case PPC::DIR_PWR6:
14492  case PPC::DIR_PWR6X:
14493  case PPC::DIR_PWR7:
14494  case PPC::DIR_PWR8:
14495  case PPC::DIR_PWR9:
14496  case PPC::DIR_PWR_FUTURE: {
14497    if (!ML)
14498      break;
14499
14500    if (!DisableInnermostLoopAlign32) {
14501      // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
14502      // so that we can decrease cache misses and branch-prediction misses.
14503      // Actual alignment of the loop will depend on the hotness check and other
14504      // logic in alignBlocks.
14505      if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
14506        return Align(32);
14507    }
14508
14509    const PPCInstrInfo *TII = Subtarget.getInstrInfo();
14510
14511    // For small loops (between 5 and 8 instructions), align to a 32-byte
14512    // boundary so that the entire loop fits in one instruction-cache line.
14513    uint64_t LoopSize = 0;
14514    for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
14515      for (auto J = (*I)->begin(), JE = (*I)->end(); J != JE; ++J) {
14516        LoopSize += TII->getInstSizeInBytes(*J);
14517        if (LoopSize > 32)
14518          break;
14519      }
14520
14521    if (LoopSize > 16 && LoopSize <= 32)
14522      return Align(32);
14523
14524    break;
14525  }
14526  }
14527
14528  return TargetLowering::getPrefLoopAlignment(ML);
14529}
14530
14531/// getConstraintType - Given a constraint, return the type of
14532/// constraint it is for this target.
14533PPCTargetLowering::ConstraintType
14534PPCTargetLowering::getConstraintType(StringRef Constraint) const {
14535  if (Constraint.size() == 1) {
14536    switch (Constraint[0]) {
14537    default: break;
14538    case 'b':
14539    case 'r':
14540    case 'f':
14541    case 'd':
14542    case 'v':
14543    case 'y':
14544      return C_RegisterClass;
14545    case 'Z':
14546      // FIXME: While Z does indicate a memory constraint, it specifically
14547      // indicates an r+r address (used in conjunction with the 'y' modifier
14548      // in the replacement string). Currently, we're forcing the base
14549      // register to be r0 in the asm printer (which is interpreted as zero)
14550      // and forming the complete address in the second register. This is
14551      // suboptimal.
14552      return C_Memory;
14553    }
14554  } else if (Constraint == "wc") { // individual CR bits.
14555    return C_RegisterClass;
14556  } else if (Constraint == "wa" || Constraint == "wd" ||
14557             Constraint == "wf" || Constraint == "ws" ||
14558             Constraint == "wi" || Constraint == "ww") {
14559    return C_RegisterClass; // VSX registers.
14560  }
14561  return TargetLowering::getConstraintType(Constraint);
14562}
14563
14564/// Examine constraint type and operand type and determine a weight value.
14565/// This object must already have been set up with the operand type
14566/// and the current alternative constraint selected.
14567TargetLowering::ConstraintWeight
14568PPCTargetLowering::getSingleConstraintMatchWeight(
14569    AsmOperandInfo &info, const char *constraint) const {
14570  ConstraintWeight weight = CW_Invalid;
14571  Value *CallOperandVal = info.CallOperandVal;
14572    // If we don't have a value, we can't do a match,
14573    // but allow it at the lowest weight.
14574  if (!CallOperandVal)
14575    return CW_Default;
14576  Type *type = CallOperandVal->getType();
14577
14578  // Look at the constraint type.
14579  if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
14580    return CW_Register; // an individual CR bit.
14581  else if ((StringRef(constraint) == "wa" ||
14582            StringRef(constraint) == "wd" ||
14583            StringRef(constraint) == "wf") &&
14584           type->isVectorTy())
14585    return CW_Register;
14586  else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
14587    return CW_Register; // just hold 64-bit integers data.
14588  else if (StringRef(constraint) == "ws" && type->isDoubleTy())
14589    return CW_Register;
14590  else if (StringRef(constraint) == "ww" && type->isFloatTy())
14591    return CW_Register;
14592
14593  switch (*constraint) {
14594  default:
14595    weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14596    break;
14597  case 'b':
14598    if (type->isIntegerTy())
14599      weight = CW_Register;
14600    break;
14601  case 'f':
14602    if (type->isFloatTy())
14603      weight = CW_Register;
14604    break;
14605  case 'd':
14606    if (type->isDoubleTy())
14607      weight = CW_Register;
14608    break;
14609  case 'v':
14610    if (type->isVectorTy())
14611      weight = CW_Register;
14612    break;
14613  case 'y':
14614    weight = CW_Register;
14615    break;
14616  case 'Z':
14617    weight = CW_Memory;
14618    break;
14619  }
14620  return weight;
14621}
14622
14623std::pair<unsigned, const TargetRegisterClass *>
14624PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
14625                                                StringRef Constraint,
14626                                                MVT VT) const {
14627  if (Constraint.size() == 1) {
14628    // GCC RS6000 Constraint Letters
14629    switch (Constraint[0]) {
14630    case 'b':   // R1-R31
14631      if (VT == MVT::i64 && Subtarget.isPPC64())
14632        return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
14633      return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
14634    case 'r':   // R0-R31
14635      if (VT == MVT::i64 && Subtarget.isPPC64())
14636        return std::make_pair(0U, &PPC::G8RCRegClass);
14637      return std::make_pair(0U, &PPC::GPRCRegClass);
14638    // 'd' and 'f' constraints are both defined to be "the floating point
14639    // registers", where one is for 32-bit and the other for 64-bit. We don't
14640    // really care overly much here so just give them all the same reg classes.
14641    case 'd':
14642    case 'f':
14643      if (Subtarget.hasSPE()) {
14644        if (VT == MVT::f32 || VT == MVT::i32)
14645          return std::make_pair(0U, &PPC::GPRCRegClass);
14646        if (VT == MVT::f64 || VT == MVT::i64)
14647          return std::make_pair(0U, &PPC::SPERCRegClass);
14648      } else {
14649        if (VT == MVT::f32 || VT == MVT::i32)
14650          return std::make_pair(0U, &PPC::F4RCRegClass);
14651        if (VT == MVT::f64 || VT == MVT::i64)
14652          return std::make_pair(0U, &PPC::F8RCRegClass);
14653        if (VT == MVT::v4f64 && Subtarget.hasQPX())
14654          return std::make_pair(0U, &PPC::QFRCRegClass);
14655        if (VT == MVT::v4f32 && Subtarget.hasQPX())
14656          return std::make_pair(0U, &PPC::QSRCRegClass);
14657      }
14658      break;
14659    case 'v':
14660      if (VT == MVT::v4f64 && Subtarget.hasQPX())
14661        return std::make_pair(0U, &PPC::QFRCRegClass);
14662      if (VT == MVT::v4f32 && Subtarget.hasQPX())
14663        return std::make_pair(0U, &PPC::QSRCRegClass);
14664      if (Subtarget.hasAltivec())
14665        return std::make_pair(0U, &PPC::VRRCRegClass);
14666      break;
14667    case 'y':   // crrc
14668      return std::make_pair(0U, &PPC::CRRCRegClass);
14669    }
14670  } else if (Constraint == "wc" && Subtarget.useCRBits()) {
14671    // An individual CR bit.
14672    return std::make_pair(0U, &PPC::CRBITRCRegClass);
14673  } else if ((Constraint == "wa" || Constraint == "wd" ||
14674             Constraint == "wf" || Constraint == "wi") &&
14675             Subtarget.hasVSX()) {
14676    return std::make_pair(0U, &PPC::VSRCRegClass);
14677  } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
14678    if (VT == MVT::f32 && Subtarget.hasP8Vector())
14679      return std::make_pair(0U, &PPC::VSSRCRegClass);
14680    else
14681      return std::make_pair(0U, &PPC::VSFRCRegClass);
14682  }
14683
14684  // If we name a VSX register, we can't defer to the base class because it
14685  // will not recognize the correct register (their names will be VSL{0-31}
14686  // and V{0-31} so they won't match). So we match them here.
14687  if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
14688    int VSNum = atoi(Constraint.data() + 3);
14689    assert(VSNum >= 0 && VSNum <= 63 &&
14690           "Attempted to access a vsr out of range");
14691    if (VSNum < 32)
14692      return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
14693    return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
14694  }
14695  std::pair<unsigned, const TargetRegisterClass *> R =
14696      TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
14697
14698  // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
14699  // (which we call X[0-9]+). If a 64-bit value has been requested, and a
14700  // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
14701  // register.
14702  // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
14703  // the AsmName field from *RegisterInfo.td, then this would not be necessary.
14704  if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
14705      PPC::GPRCRegClass.contains(R.first))
14706    return std::make_pair(TRI->getMatchingSuperReg(R.first,
14707                            PPC::sub_32, &PPC::G8RCRegClass),
14708                          &PPC::G8RCRegClass);
14709
14710  // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
14711  if (!R.second && StringRef("{cc}").equals_lower(Constraint)) {
14712    R.first = PPC::CR0;
14713    R.second = &PPC::CRRCRegClass;
14714  }
14715
14716  return R;
14717}
14718
14719/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14720/// vector.  If it is invalid, don't add anything to Ops.
14721void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14722                                                     std::string &Constraint,
14723                                                     std::vector<SDValue>&Ops,
14724                                                     SelectionDAG &DAG) const {
14725  SDValue Result;
14726
14727  // Only support length 1 constraints.
14728  if (Constraint.length() > 1) return;
14729
14730  char Letter = Constraint[0];
14731  switch (Letter) {
14732  default: break;
14733  case 'I':
14734  case 'J':
14735  case 'K':
14736  case 'L':
14737  case 'M':
14738  case 'N':
14739  case 'O':
14740  case 'P': {
14741    ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
14742    if (!CST) return; // Must be an immediate to match.
14743    SDLoc dl(Op);
14744    int64_t Value = CST->getSExtValue();
14745    EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
14746                         // numbers are printed as such.
14747    switch (Letter) {
14748    default: llvm_unreachable("Unknown constraint letter!");
14749    case 'I':  // "I" is a signed 16-bit constant.
14750      if (isInt<16>(Value))
14751        Result = DAG.getTargetConstant(Value, dl, TCVT);
14752      break;
14753    case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
14754      if (isShiftedUInt<16, 16>(Value))
14755        Result = DAG.getTargetConstant(Value, dl, TCVT);
14756      break;
14757    case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
14758      if (isShiftedInt<16, 16>(Value))
14759        Result = DAG.getTargetConstant(Value, dl, TCVT);
14760      break;
14761    case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
14762      if (isUInt<16>(Value))
14763        Result = DAG.getTargetConstant(Value, dl, TCVT);
14764      break;
14765    case 'M':  // "M" is a constant that is greater than 31.
14766      if (Value > 31)
14767        Result = DAG.getTargetConstant(Value, dl, TCVT);
14768      break;
14769    case 'N':  // "N" is a positive constant that is an exact power of two.
14770      if (Value > 0 && isPowerOf2_64(Value))
14771        Result = DAG.getTargetConstant(Value, dl, TCVT);
14772      break;
14773    case 'O':  // "O" is the constant zero.
14774      if (Value == 0)
14775        Result = DAG.getTargetConstant(Value, dl, TCVT);
14776      break;
14777    case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
14778      if (isInt<16>(-Value))
14779        Result = DAG.getTargetConstant(Value, dl, TCVT);
14780      break;
14781    }
14782    break;
14783  }
14784  }
14785
14786  if (Result.getNode()) {
14787    Ops.push_back(Result);
14788    return;
14789  }
14790
14791  // Handle standard constraint letters.
14792  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14793}
14794
14795// isLegalAddressingMode - Return true if the addressing mode represented
14796// by AM is legal for this target, for a load/store of the specified type.
14797bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
14798                                              const AddrMode &AM, Type *Ty,
14799                                              unsigned AS, Instruction *I) const {
14800  // PPC does not allow r+i addressing modes for vectors!
14801  if (Ty->isVectorTy() && AM.BaseOffs != 0)
14802    return false;
14803
14804  // PPC allows a sign-extended 16-bit immediate field.
14805  if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
14806    return false;
14807
14808  // No global is ever allowed as a base.
14809  if (AM.BaseGV)
14810    return false;
14811
14812  // PPC only support r+r,
14813  switch (AM.Scale) {
14814  case 0:  // "r+i" or just "i", depending on HasBaseReg.
14815    break;
14816  case 1:
14817    if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
14818      return false;
14819    // Otherwise we have r+r or r+i.
14820    break;
14821  case 2:
14822    if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
14823      return false;
14824    // Allow 2*r as r+r.
14825    break;
14826  default:
14827    // No other scales are supported.
14828    return false;
14829  }
14830
14831  return true;
14832}
14833
14834SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
14835                                           SelectionDAG &DAG) const {
14836  MachineFunction &MF = DAG.getMachineFunction();
14837  MachineFrameInfo &MFI = MF.getFrameInfo();
14838  MFI.setReturnAddressIsTaken(true);
14839
14840  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
14841    return SDValue();
14842
14843  SDLoc dl(Op);
14844  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14845
14846  // Make sure the function does not optimize away the store of the RA to
14847  // the stack.
14848  PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
14849  FuncInfo->setLRStoreRequired();
14850  bool isPPC64 = Subtarget.isPPC64();
14851  auto PtrVT = getPointerTy(MF.getDataLayout());
14852
14853  if (Depth > 0) {
14854    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
14855    SDValue Offset =
14856        DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
14857                        isPPC64 ? MVT::i64 : MVT::i32);
14858    return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
14859                       DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
14860                       MachinePointerInfo());
14861  }
14862
14863  // Just load the return address off the stack.
14864  SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
14865  return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
14866                     MachinePointerInfo());
14867}
14868
14869SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
14870                                          SelectionDAG &DAG) const {
14871  SDLoc dl(Op);
14872  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
14873
14874  MachineFunction &MF = DAG.getMachineFunction();
14875  MachineFrameInfo &MFI = MF.getFrameInfo();
14876  MFI.setFrameAddressIsTaken(true);
14877
14878  EVT PtrVT = getPointerTy(MF.getDataLayout());
14879  bool isPPC64 = PtrVT == MVT::i64;
14880
14881  // Naked functions never have a frame pointer, and so we use r1. For all
14882  // other functions, this decision must be delayed until during PEI.
14883  unsigned FrameReg;
14884  if (MF.getFunction().hasFnAttribute(Attribute::Naked))
14885    FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
14886  else
14887    FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
14888
14889  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
14890                                         PtrVT);
14891  while (Depth--)
14892    FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
14893                            FrameAddr, MachinePointerInfo());
14894  return FrameAddr;
14895}
14896
14897// FIXME? Maybe this could be a TableGen attribute on some registers and
14898// this table could be generated automatically from RegInfo.
14899Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
14900                                              const MachineFunction &MF) const {
14901  bool isPPC64 = Subtarget.isPPC64();
14902  bool IsDarwinABI = Subtarget.isDarwinABI();
14903
14904  bool is64Bit = isPPC64 && VT == LLT::scalar(64);
14905  if (!is64Bit && VT != LLT::scalar(32))
14906    report_fatal_error("Invalid register global variable type");
14907
14908  Register Reg = StringSwitch<Register>(RegName)
14909                   .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
14910                   .Case("r2", (IsDarwinABI || isPPC64) ? Register() : PPC::R2)
14911                   .Case("r13", (!isPPC64 && IsDarwinABI) ? Register() :
14912                                  (is64Bit ? PPC::X13 : PPC::R13))
14913                   .Default(Register());
14914
14915  if (Reg)
14916    return Reg;
14917  report_fatal_error("Invalid register name global variable");
14918}
14919
14920bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
14921  // 32-bit SVR4 ABI access everything as got-indirect.
14922  if (Subtarget.is32BitELFABI())
14923    return true;
14924
14925  // AIX accesses everything indirectly through the TOC, which is similar to
14926  // the GOT.
14927  if (Subtarget.isAIXABI())
14928    return true;
14929
14930  CodeModel::Model CModel = getTargetMachine().getCodeModel();
14931  // If it is small or large code model, module locals are accessed
14932  // indirectly by loading their address from .toc/.got.
14933  if (CModel == CodeModel::Small || CModel == CodeModel::Large)
14934    return true;
14935
14936  // JumpTable and BlockAddress are accessed as got-indirect.
14937  if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
14938    return true;
14939
14940  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
14941    return Subtarget.isGVIndirectSymbol(G->getGlobal());
14942
14943  return false;
14944}
14945
14946bool
14947PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
14948  // The PowerPC target isn't yet aware of offsets.
14949  return false;
14950}
14951
14952bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
14953                                           const CallInst &I,
14954                                           MachineFunction &MF,
14955                                           unsigned Intrinsic) const {
14956  switch (Intrinsic) {
14957  case Intrinsic::ppc_qpx_qvlfd:
14958  case Intrinsic::ppc_qpx_qvlfs:
14959  case Intrinsic::ppc_qpx_qvlfcd:
14960  case Intrinsic::ppc_qpx_qvlfcs:
14961  case Intrinsic::ppc_qpx_qvlfiwa:
14962  case Intrinsic::ppc_qpx_qvlfiwz:
14963  case Intrinsic::ppc_altivec_lvx:
14964  case Intrinsic::ppc_altivec_lvxl:
14965  case Intrinsic::ppc_altivec_lvebx:
14966  case Intrinsic::ppc_altivec_lvehx:
14967  case Intrinsic::ppc_altivec_lvewx:
14968  case Intrinsic::ppc_vsx_lxvd2x:
14969  case Intrinsic::ppc_vsx_lxvw4x: {
14970    EVT VT;
14971    switch (Intrinsic) {
14972    case Intrinsic::ppc_altivec_lvebx:
14973      VT = MVT::i8;
14974      break;
14975    case Intrinsic::ppc_altivec_lvehx:
14976      VT = MVT::i16;
14977      break;
14978    case Intrinsic::ppc_altivec_lvewx:
14979      VT = MVT::i32;
14980      break;
14981    case Intrinsic::ppc_vsx_lxvd2x:
14982      VT = MVT::v2f64;
14983      break;
14984    case Intrinsic::ppc_qpx_qvlfd:
14985      VT = MVT::v4f64;
14986      break;
14987    case Intrinsic::ppc_qpx_qvlfs:
14988      VT = MVT::v4f32;
14989      break;
14990    case Intrinsic::ppc_qpx_qvlfcd:
14991      VT = MVT::v2f64;
14992      break;
14993    case Intrinsic::ppc_qpx_qvlfcs:
14994      VT = MVT::v2f32;
14995      break;
14996    default:
14997      VT = MVT::v4i32;
14998      break;
14999    }
15000
15001    Info.opc = ISD::INTRINSIC_W_CHAIN;
15002    Info.memVT = VT;
15003    Info.ptrVal = I.getArgOperand(0);
15004    Info.offset = -VT.getStoreSize()+1;
15005    Info.size = 2*VT.getStoreSize()-1;
15006    Info.align = Align::None();
15007    Info.flags = MachineMemOperand::MOLoad;
15008    return true;
15009  }
15010  case Intrinsic::ppc_qpx_qvlfda:
15011  case Intrinsic::ppc_qpx_qvlfsa:
15012  case Intrinsic::ppc_qpx_qvlfcda:
15013  case Intrinsic::ppc_qpx_qvlfcsa:
15014  case Intrinsic::ppc_qpx_qvlfiwaa:
15015  case Intrinsic::ppc_qpx_qvlfiwza: {
15016    EVT VT;
15017    switch (Intrinsic) {
15018    case Intrinsic::ppc_qpx_qvlfda:
15019      VT = MVT::v4f64;
15020      break;
15021    case Intrinsic::ppc_qpx_qvlfsa:
15022      VT = MVT::v4f32;
15023      break;
15024    case Intrinsic::ppc_qpx_qvlfcda:
15025      VT = MVT::v2f64;
15026      break;
15027    case Intrinsic::ppc_qpx_qvlfcsa:
15028      VT = MVT::v2f32;
15029      break;
15030    default:
15031      VT = MVT::v4i32;
15032      break;
15033    }
15034
15035    Info.opc = ISD::INTRINSIC_W_CHAIN;
15036    Info.memVT = VT;
15037    Info.ptrVal = I.getArgOperand(0);
15038    Info.offset = 0;
15039    Info.size = VT.getStoreSize();
15040    Info.align = Align::None();
15041    Info.flags = MachineMemOperand::MOLoad;
15042    return true;
15043  }
15044  case Intrinsic::ppc_qpx_qvstfd:
15045  case Intrinsic::ppc_qpx_qvstfs:
15046  case Intrinsic::ppc_qpx_qvstfcd:
15047  case Intrinsic::ppc_qpx_qvstfcs:
15048  case Intrinsic::ppc_qpx_qvstfiw:
15049  case Intrinsic::ppc_altivec_stvx:
15050  case Intrinsic::ppc_altivec_stvxl:
15051  case Intrinsic::ppc_altivec_stvebx:
15052  case Intrinsic::ppc_altivec_stvehx:
15053  case Intrinsic::ppc_altivec_stvewx:
15054  case Intrinsic::ppc_vsx_stxvd2x:
15055  case Intrinsic::ppc_vsx_stxvw4x: {
15056    EVT VT;
15057    switch (Intrinsic) {
15058    case Intrinsic::ppc_altivec_stvebx:
15059      VT = MVT::i8;
15060      break;
15061    case Intrinsic::ppc_altivec_stvehx:
15062      VT = MVT::i16;
15063      break;
15064    case Intrinsic::ppc_altivec_stvewx:
15065      VT = MVT::i32;
15066      break;
15067    case Intrinsic::ppc_vsx_stxvd2x:
15068      VT = MVT::v2f64;
15069      break;
15070    case Intrinsic::ppc_qpx_qvstfd:
15071      VT = MVT::v4f64;
15072      break;
15073    case Intrinsic::ppc_qpx_qvstfs:
15074      VT = MVT::v4f32;
15075      break;
15076    case Intrinsic::ppc_qpx_qvstfcd:
15077      VT = MVT::v2f64;
15078      break;
15079    case Intrinsic::ppc_qpx_qvstfcs:
15080      VT = MVT::v2f32;
15081      break;
15082    default:
15083      VT = MVT::v4i32;
15084      break;
15085    }
15086
15087    Info.opc = ISD::INTRINSIC_VOID;
15088    Info.memVT = VT;
15089    Info.ptrVal = I.getArgOperand(1);
15090    Info.offset = -VT.getStoreSize()+1;
15091    Info.size = 2*VT.getStoreSize()-1;
15092    Info.align = Align::None();
15093    Info.flags = MachineMemOperand::MOStore;
15094    return true;
15095  }
15096  case Intrinsic::ppc_qpx_qvstfda:
15097  case Intrinsic::ppc_qpx_qvstfsa:
15098  case Intrinsic::ppc_qpx_qvstfcda:
15099  case Intrinsic::ppc_qpx_qvstfcsa:
15100  case Intrinsic::ppc_qpx_qvstfiwa: {
15101    EVT VT;
15102    switch (Intrinsic) {
15103    case Intrinsic::ppc_qpx_qvstfda:
15104      VT = MVT::v4f64;
15105      break;
15106    case Intrinsic::ppc_qpx_qvstfsa:
15107      VT = MVT::v4f32;
15108      break;
15109    case Intrinsic::ppc_qpx_qvstfcda:
15110      VT = MVT::v2f64;
15111      break;
15112    case Intrinsic::ppc_qpx_qvstfcsa:
15113      VT = MVT::v2f32;
15114      break;
15115    default:
15116      VT = MVT::v4i32;
15117      break;
15118    }
15119
15120    Info.opc = ISD::INTRINSIC_VOID;
15121    Info.memVT = VT;
15122    Info.ptrVal = I.getArgOperand(1);
15123    Info.offset = 0;
15124    Info.size = VT.getStoreSize();
15125    Info.align = Align::None();
15126    Info.flags = MachineMemOperand::MOStore;
15127    return true;
15128  }
15129  default:
15130    break;
15131  }
15132
15133  return false;
15134}
15135
15136/// getOptimalMemOpType - Returns the target specific optimal type for load
15137/// and store operations as a result of memset, memcpy, and memmove
15138/// lowering. If DstAlign is zero that means it's safe to destination
15139/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
15140/// means there isn't a need to check it against alignment requirement,
15141/// probably because the source does not need to be loaded. If 'IsMemset' is
15142/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
15143/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
15144/// source is constant so it does not need to be loaded.
15145/// It returns EVT::Other if the type should be determined using generic
15146/// target-independent logic.
15147EVT PPCTargetLowering::getOptimalMemOpType(
15148    uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
15149    bool ZeroMemset, bool MemcpyStrSrc,
15150    const AttributeList &FuncAttributes) const {
15151  if (getTargetMachine().getOptLevel() != CodeGenOpt::None) {
15152    // When expanding a memset, require at least two QPX instructions to cover
15153    // the cost of loading the value to be stored from the constant pool.
15154    if (Subtarget.hasQPX() && Size >= 32 && (!IsMemset || Size >= 64) &&
15155       (!SrcAlign || SrcAlign >= 32) && (!DstAlign || DstAlign >= 32) &&
15156        !FuncAttributes.hasFnAttribute(Attribute::NoImplicitFloat)) {
15157      return MVT::v4f64;
15158    }
15159
15160    // We should use Altivec/VSX loads and stores when available. For unaligned
15161    // addresses, unaligned VSX loads are only fast starting with the P8.
15162    if (Subtarget.hasAltivec() && Size >= 16 &&
15163        (((!SrcAlign || SrcAlign >= 16) && (!DstAlign || DstAlign >= 16)) ||
15164         ((IsMemset && Subtarget.hasVSX()) || Subtarget.hasP8Vector())))
15165      return MVT::v4i32;
15166  }
15167
15168  if (Subtarget.isPPC64()) {
15169    return MVT::i64;
15170  }
15171
15172  return MVT::i32;
15173}
15174
15175/// Returns true if it is beneficial to convert a load of a constant
15176/// to just the constant itself.
15177bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
15178                                                          Type *Ty) const {
15179  assert(Ty->isIntegerTy());
15180
15181  unsigned BitSize = Ty->getPrimitiveSizeInBits();
15182  return !(BitSize == 0 || BitSize > 64);
15183}
15184
15185bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
15186  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
15187    return false;
15188  unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
15189  unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
15190  return NumBits1 == 64 && NumBits2 == 32;
15191}
15192
15193bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
15194  if (!VT1.isInteger() || !VT2.isInteger())
15195    return false;
15196  unsigned NumBits1 = VT1.getSizeInBits();
15197  unsigned NumBits2 = VT2.getSizeInBits();
15198  return NumBits1 == 64 && NumBits2 == 32;
15199}
15200
15201bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
15202  // Generally speaking, zexts are not free, but they are free when they can be
15203  // folded with other operations.
15204  if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
15205    EVT MemVT = LD->getMemoryVT();
15206    if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
15207         (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
15208        (LD->getExtensionType() == ISD::NON_EXTLOAD ||
15209         LD->getExtensionType() == ISD::ZEXTLOAD))
15210      return true;
15211  }
15212
15213  // FIXME: Add other cases...
15214  //  - 32-bit shifts with a zext to i64
15215  //  - zext after ctlz, bswap, etc.
15216  //  - zext after and by a constant mask
15217
15218  return TargetLowering::isZExtFree(Val, VT2);
15219}
15220
15221bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
15222  assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
15223         "invalid fpext types");
15224  // Extending to float128 is not free.
15225  if (DestVT == MVT::f128)
15226    return false;
15227  return true;
15228}
15229
15230bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
15231  return isInt<16>(Imm) || isUInt<16>(Imm);
15232}
15233
15234bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
15235  return isInt<16>(Imm) || isUInt<16>(Imm);
15236}
15237
15238bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
15239                                                       unsigned,
15240                                                       unsigned,
15241                                                       MachineMemOperand::Flags,
15242                                                       bool *Fast) const {
15243  if (DisablePPCUnaligned)
15244    return false;
15245
15246  // PowerPC supports unaligned memory access for simple non-vector types.
15247  // Although accessing unaligned addresses is not as efficient as accessing
15248  // aligned addresses, it is generally more efficient than manual expansion,
15249  // and generally only traps for software emulation when crossing page
15250  // boundaries.
15251
15252  if (!VT.isSimple())
15253    return false;
15254
15255  if (VT.getSimpleVT().isVector()) {
15256    if (Subtarget.hasVSX()) {
15257      if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
15258          VT != MVT::v4f32 && VT != MVT::v4i32)
15259        return false;
15260    } else {
15261      return false;
15262    }
15263  }
15264
15265  if (VT == MVT::ppcf128)
15266    return false;
15267
15268  if (Fast)
15269    *Fast = true;
15270
15271  return true;
15272}
15273
15274bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
15275                                                   EVT VT) const {
15276  VT = VT.getScalarType();
15277
15278  if (!VT.isSimple())
15279    return false;
15280
15281  switch (VT.getSimpleVT().SimpleTy) {
15282  case MVT::f32:
15283  case MVT::f64:
15284    return true;
15285  case MVT::f128:
15286    return (EnableQuadPrecision && Subtarget.hasP9Vector());
15287  default:
15288    break;
15289  }
15290
15291  return false;
15292}
15293
15294const MCPhysReg *
15295PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
15296  // LR is a callee-save register, but we must treat it as clobbered by any call
15297  // site. Hence we include LR in the scratch registers, which are in turn added
15298  // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
15299  // to CTR, which is used by any indirect call.
15300  static const MCPhysReg ScratchRegs[] = {
15301    PPC::X12, PPC::LR8, PPC::CTR8, 0
15302  };
15303
15304  return ScratchRegs;
15305}
15306
15307unsigned PPCTargetLowering::getExceptionPointerRegister(
15308    const Constant *PersonalityFn) const {
15309  return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
15310}
15311
15312unsigned PPCTargetLowering::getExceptionSelectorRegister(
15313    const Constant *PersonalityFn) const {
15314  return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
15315}
15316
15317bool
15318PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
15319                     EVT VT , unsigned DefinedValues) const {
15320  if (VT == MVT::v2i64)
15321    return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
15322
15323  if (Subtarget.hasVSX() || Subtarget.hasQPX())
15324    return true;
15325
15326  return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
15327}
15328
15329Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
15330  if (DisableILPPref || Subtarget.enableMachineScheduler())
15331    return TargetLowering::getSchedulingPreference(N);
15332
15333  return Sched::ILP;
15334}
15335
15336// Create a fast isel object.
15337FastISel *
15338PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
15339                                  const TargetLibraryInfo *LibInfo) const {
15340  return PPC::createFastISel(FuncInfo, LibInfo);
15341}
15342
15343void PPCTargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
15344  if (Subtarget.isDarwinABI()) return;
15345  if (!Subtarget.isPPC64()) return;
15346
15347  // Update IsSplitCSR in PPCFunctionInfo
15348  PPCFunctionInfo *PFI = Entry->getParent()->getInfo<PPCFunctionInfo>();
15349  PFI->setIsSplitCSR(true);
15350}
15351
15352void PPCTargetLowering::insertCopiesSplitCSR(
15353  MachineBasicBlock *Entry,
15354  const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
15355  const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
15356  const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
15357  if (!IStart)
15358    return;
15359
15360  const TargetInstrInfo *TII = Subtarget.getInstrInfo();
15361  MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
15362  MachineBasicBlock::iterator MBBI = Entry->begin();
15363  for (const MCPhysReg *I = IStart; *I; ++I) {
15364    const TargetRegisterClass *RC = nullptr;
15365    if (PPC::G8RCRegClass.contains(*I))
15366      RC = &PPC::G8RCRegClass;
15367    else if (PPC::F8RCRegClass.contains(*I))
15368      RC = &PPC::F8RCRegClass;
15369    else if (PPC::CRRCRegClass.contains(*I))
15370      RC = &PPC::CRRCRegClass;
15371    else if (PPC::VRRCRegClass.contains(*I))
15372      RC = &PPC::VRRCRegClass;
15373    else
15374      llvm_unreachable("Unexpected register class in CSRsViaCopy!");
15375
15376    Register NewVR = MRI->createVirtualRegister(RC);
15377    // Create copy from CSR to a virtual register.
15378    // FIXME: this currently does not emit CFI pseudo-instructions, it works
15379    // fine for CXX_FAST_TLS since the C++-style TLS access functions should be
15380    // nounwind. If we want to generalize this later, we may need to emit
15381    // CFI pseudo-instructions.
15382    assert(Entry->getParent()->getFunction().hasFnAttribute(
15383             Attribute::NoUnwind) &&
15384           "Function should be nounwind in insertCopiesSplitCSR!");
15385    Entry->addLiveIn(*I);
15386    BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
15387      .addReg(*I);
15388
15389    // Insert the copy-back instructions right before the terminator.
15390    for (auto *Exit : Exits)
15391      BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
15392              TII->get(TargetOpcode::COPY), *I)
15393        .addReg(NewVR);
15394  }
15395}
15396
15397// Override to enable LOAD_STACK_GUARD lowering on Linux.
15398bool PPCTargetLowering::useLoadStackGuardNode() const {
15399  if (!Subtarget.isTargetLinux())
15400    return TargetLowering::useLoadStackGuardNode();
15401  return true;
15402}
15403
15404// Override to disable global variable loading on Linux.
15405void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
15406  if (!Subtarget.isTargetLinux())
15407    return TargetLowering::insertSSPDeclarations(M);
15408}
15409
15410bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
15411                                     bool ForCodeSize) const {
15412  if (!VT.isSimple() || !Subtarget.hasVSX())
15413    return false;
15414
15415  switch(VT.getSimpleVT().SimpleTy) {
15416  default:
15417    // For FP types that are currently not supported by PPC backend, return
15418    // false. Examples: f16, f80.
15419    return false;
15420  case MVT::f32:
15421  case MVT::f64:
15422  case MVT::ppcf128:
15423    return Imm.isPosZero();
15424  }
15425}
15426
15427// For vector shift operation op, fold
15428// (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
15429static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
15430                                  SelectionDAG &DAG) {
15431  SDValue N0 = N->getOperand(0);
15432  SDValue N1 = N->getOperand(1);
15433  EVT VT = N0.getValueType();
15434  unsigned OpSizeInBits = VT.getScalarSizeInBits();
15435  unsigned Opcode = N->getOpcode();
15436  unsigned TargetOpcode;
15437
15438  switch (Opcode) {
15439  default:
15440    llvm_unreachable("Unexpected shift operation");
15441  case ISD::SHL:
15442    TargetOpcode = PPCISD::SHL;
15443    break;
15444  case ISD::SRL:
15445    TargetOpcode = PPCISD::SRL;
15446    break;
15447  case ISD::SRA:
15448    TargetOpcode = PPCISD::SRA;
15449    break;
15450  }
15451
15452  if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
15453      N1->getOpcode() == ISD::AND)
15454    if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
15455      if (Mask->getZExtValue() == OpSizeInBits - 1)
15456        return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
15457
15458  return SDValue();
15459}
15460
15461SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
15462  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15463    return Value;
15464
15465  SDValue N0 = N->getOperand(0);
15466  ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
15467  if (!Subtarget.isISA3_0() ||
15468      N0.getOpcode() != ISD::SIGN_EXTEND ||
15469      N0.getOperand(0).getValueType() != MVT::i32 ||
15470      CN1 == nullptr || N->getValueType(0) != MVT::i64)
15471    return SDValue();
15472
15473  // We can't save an operation here if the value is already extended, and
15474  // the existing shift is easier to combine.
15475  SDValue ExtsSrc = N0.getOperand(0);
15476  if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
15477      ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
15478    return SDValue();
15479
15480  SDLoc DL(N0);
15481  SDValue ShiftBy = SDValue(CN1, 0);
15482  // We want the shift amount to be i32 on the extswli, but the shift could
15483  // have an i64.
15484  if (ShiftBy.getValueType() == MVT::i64)
15485    ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
15486
15487  return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
15488                         ShiftBy);
15489}
15490
15491SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
15492  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15493    return Value;
15494
15495  return SDValue();
15496}
15497
15498SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
15499  if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
15500    return Value;
15501
15502  return SDValue();
15503}
15504
15505// Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
15506// Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
15507// When C is zero, the equation (addi Z, -C) can be simplified to Z
15508// Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
15509static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
15510                                 const PPCSubtarget &Subtarget) {
15511  if (!Subtarget.isPPC64())
15512    return SDValue();
15513
15514  SDValue LHS = N->getOperand(0);
15515  SDValue RHS = N->getOperand(1);
15516
15517  auto isZextOfCompareWithConstant = [](SDValue Op) {
15518    if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
15519        Op.getValueType() != MVT::i64)
15520      return false;
15521
15522    SDValue Cmp = Op.getOperand(0);
15523    if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
15524        Cmp.getOperand(0).getValueType() != MVT::i64)
15525      return false;
15526
15527    if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
15528      int64_t NegConstant = 0 - Constant->getSExtValue();
15529      // Due to the limitations of the addi instruction,
15530      // -C is required to be [-32768, 32767].
15531      return isInt<16>(NegConstant);
15532    }
15533
15534    return false;
15535  };
15536
15537  bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
15538  bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
15539
15540  // If there is a pattern, canonicalize a zext operand to the RHS.
15541  if (LHSHasPattern && !RHSHasPattern)
15542    std::swap(LHS, RHS);
15543  else if (!LHSHasPattern && !RHSHasPattern)
15544    return SDValue();
15545
15546  SDLoc DL(N);
15547  SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
15548  SDValue Cmp = RHS.getOperand(0);
15549  SDValue Z = Cmp.getOperand(0);
15550  auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1));
15551
15552  assert(Constant && "Constant Should not be a null pointer.");
15553  int64_t NegConstant = 0 - Constant->getSExtValue();
15554
15555  switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
15556  default: break;
15557  case ISD::SETNE: {
15558    //                                 when C == 0
15559    //                             --> addze X, (addic Z, -1).carry
15560    //                            /
15561    // add X, (zext(setne Z, C))--
15562    //                            \    when -32768 <= -C <= 32767 && C != 0
15563    //                             --> addze X, (addic (addi Z, -C), -1).carry
15564    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15565                              DAG.getConstant(NegConstant, DL, MVT::i64));
15566    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15567    SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15568                               AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
15569    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15570                       SDValue(Addc.getNode(), 1));
15571    }
15572  case ISD::SETEQ: {
15573    //                                 when C == 0
15574    //                             --> addze X, (subfic Z, 0).carry
15575    //                            /
15576    // add X, (zext(sete  Z, C))--
15577    //                            \    when -32768 <= -C <= 32767 && C != 0
15578    //                             --> addze X, (subfic (addi Z, -C), 0).carry
15579    SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
15580                              DAG.getConstant(NegConstant, DL, MVT::i64));
15581    SDValue AddOrZ = NegConstant != 0 ? Add : Z;
15582    SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
15583                               DAG.getConstant(0, DL, MVT::i64), AddOrZ);
15584    return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
15585                       SDValue(Subc.getNode(), 1));
15586    }
15587  }
15588
15589  return SDValue();
15590}
15591
15592SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
15593  if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
15594    return Value;
15595
15596  return SDValue();
15597}
15598
15599// Detect TRUNCATE operations on bitcasts of float128 values.
15600// What we are looking for here is the situtation where we extract a subset
15601// of bits from a 128 bit float.
15602// This can be of two forms:
15603// 1) BITCAST of f128 feeding TRUNCATE
15604// 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
15605// The reason this is required is because we do not have a legal i128 type
15606// and so we want to prevent having to store the f128 and then reload part
15607// of it.
15608SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
15609                                           DAGCombinerInfo &DCI) const {
15610  // If we are using CRBits then try that first.
15611  if (Subtarget.useCRBits()) {
15612    // Check if CRBits did anything and return that if it did.
15613    if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
15614      return CRTruncValue;
15615  }
15616
15617  SDLoc dl(N);
15618  SDValue Op0 = N->getOperand(0);
15619
15620  // Looking for a truncate of i128 to i64.
15621  if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
15622    return SDValue();
15623
15624  int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
15625
15626  // SRL feeding TRUNCATE.
15627  if (Op0.getOpcode() == ISD::SRL) {
15628    ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
15629    // The right shift has to be by 64 bits.
15630    if (!ConstNode || ConstNode->getZExtValue() != 64)
15631      return SDValue();
15632
15633    // Switch the element number to extract.
15634    EltToExtract = EltToExtract ? 0 : 1;
15635    // Update Op0 past the SRL.
15636    Op0 = Op0.getOperand(0);
15637  }
15638
15639  // BITCAST feeding a TRUNCATE possibly via SRL.
15640  if (Op0.getOpcode() == ISD::BITCAST &&
15641      Op0.getValueType() == MVT::i128 &&
15642      Op0.getOperand(0).getValueType() == MVT::f128) {
15643    SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
15644    return DCI.DAG.getNode(
15645        ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
15646        DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
15647  }
15648  return SDValue();
15649}
15650
15651SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
15652  SelectionDAG &DAG = DCI.DAG;
15653
15654  ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
15655  if (!ConstOpOrElement)
15656    return SDValue();
15657
15658  // An imul is usually smaller than the alternative sequence for legal type.
15659  if (DAG.getMachineFunction().getFunction().hasMinSize() &&
15660      isOperationLegal(ISD::MUL, N->getValueType(0)))
15661    return SDValue();
15662
15663  auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
15664    switch (this->Subtarget.getCPUDirective()) {
15665    default:
15666      // TODO: enhance the condition for subtarget before pwr8
15667      return false;
15668    case PPC::DIR_PWR8:
15669      //  type        mul     add    shl
15670      // scalar        4       1      1
15671      // vector        7       2      2
15672      return true;
15673    case PPC::DIR_PWR9:
15674    case PPC::DIR_PWR_FUTURE:
15675      //  type        mul     add    shl
15676      // scalar        5       2      2
15677      // vector        7       2      2
15678
15679      // The cycle RATIO of related operations are showed as a table above.
15680      // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
15681      // scalar and vector type. For 2 instrs patterns, add/sub + shl
15682      // are 4, it is always profitable; but for 3 instrs patterns
15683      // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
15684      // So we should only do it for vector type.
15685      return IsAddOne && IsNeg ? VT.isVector() : true;
15686    }
15687  };
15688
15689  EVT VT = N->getValueType(0);
15690  SDLoc DL(N);
15691
15692  const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
15693  bool IsNeg = MulAmt.isNegative();
15694  APInt MulAmtAbs = MulAmt.abs();
15695
15696  if ((MulAmtAbs - 1).isPowerOf2()) {
15697    // (mul x, 2^N + 1) => (add (shl x, N), x)
15698    // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
15699
15700    if (!IsProfitable(IsNeg, true, VT))
15701      return SDValue();
15702
15703    SDValue Op0 = N->getOperand(0);
15704    SDValue Op1 =
15705        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15706                    DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
15707    SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
15708
15709    if (!IsNeg)
15710      return Res;
15711
15712    return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
15713  } else if ((MulAmtAbs + 1).isPowerOf2()) {
15714    // (mul x, 2^N - 1) => (sub (shl x, N), x)
15715    // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
15716
15717    if (!IsProfitable(IsNeg, false, VT))
15718      return SDValue();
15719
15720    SDValue Op0 = N->getOperand(0);
15721    SDValue Op1 =
15722        DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
15723                    DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
15724
15725    if (!IsNeg)
15726      return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
15727    else
15728      return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
15729
15730  } else {
15731    return SDValue();
15732  }
15733}
15734
15735bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
15736  // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
15737  if (!Subtarget.is64BitELFABI())
15738    return false;
15739
15740  // If not a tail call then no need to proceed.
15741  if (!CI->isTailCall())
15742    return false;
15743
15744  // If sibling calls have been disabled and tail-calls aren't guaranteed
15745  // there is no reason to duplicate.
15746  auto &TM = getTargetMachine();
15747  if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
15748    return false;
15749
15750  // Can't tail call a function called indirectly, or if it has variadic args.
15751  const Function *Callee = CI->getCalledFunction();
15752  if (!Callee || Callee->isVarArg())
15753    return false;
15754
15755  // Make sure the callee and caller calling conventions are eligible for tco.
15756  const Function *Caller = CI->getParent()->getParent();
15757  if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
15758                                           CI->getCallingConv()))
15759      return false;
15760
15761  // If the function is local then we have a good chance at tail-calling it
15762  return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
15763}
15764
15765bool PPCTargetLowering::hasBitPreservingFPLogic(EVT VT) const {
15766  if (!Subtarget.hasVSX())
15767    return false;
15768  if (Subtarget.hasP9Vector() && VT == MVT::f128)
15769    return true;
15770  return VT == MVT::f32 || VT == MVT::f64 ||
15771    VT == MVT::v4f32 || VT == MVT::v2f64;
15772}
15773
15774bool PPCTargetLowering::
15775isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
15776  const Value *Mask = AndI.getOperand(1);
15777  // If the mask is suitable for andi. or andis. we should sink the and.
15778  if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
15779    // Can't handle constants wider than 64-bits.
15780    if (CI->getBitWidth() > 64)
15781      return false;
15782    int64_t ConstVal = CI->getZExtValue();
15783    return isUInt<16>(ConstVal) ||
15784      (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
15785  }
15786
15787  // For non-constant masks, we can always use the record-form and.
15788  return true;
15789}
15790
15791// Transform (abs (sub (zext a), (zext b))) to (vabsd a b 0)
15792// Transform (abs (sub (zext a), (zext_invec b))) to (vabsd a b 0)
15793// Transform (abs (sub (zext_invec a), (zext_invec b))) to (vabsd a b 0)
15794// Transform (abs (sub (zext_invec a), (zext b))) to (vabsd a b 0)
15795// Transform (abs (sub a, b) to (vabsd a b 1)) if a & b of type v4i32
15796SDValue PPCTargetLowering::combineABS(SDNode *N, DAGCombinerInfo &DCI) const {
15797  assert((N->getOpcode() == ISD::ABS) && "Need ABS node here");
15798  assert(Subtarget.hasP9Altivec() &&
15799         "Only combine this when P9 altivec supported!");
15800  EVT VT = N->getValueType(0);
15801  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15802    return SDValue();
15803
15804  SelectionDAG &DAG = DCI.DAG;
15805  SDLoc dl(N);
15806  if (N->getOperand(0).getOpcode() == ISD::SUB) {
15807    // Even for signed integers, if it's known to be positive (as signed
15808    // integer) due to zero-extended inputs.
15809    unsigned SubOpcd0 = N->getOperand(0)->getOperand(0).getOpcode();
15810    unsigned SubOpcd1 = N->getOperand(0)->getOperand(1).getOpcode();
15811    if ((SubOpcd0 == ISD::ZERO_EXTEND ||
15812         SubOpcd0 == ISD::ZERO_EXTEND_VECTOR_INREG) &&
15813        (SubOpcd1 == ISD::ZERO_EXTEND ||
15814         SubOpcd1 == ISD::ZERO_EXTEND_VECTOR_INREG)) {
15815      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15816                         N->getOperand(0)->getOperand(0),
15817                         N->getOperand(0)->getOperand(1),
15818                         DAG.getTargetConstant(0, dl, MVT::i32));
15819    }
15820
15821    // For type v4i32, it can be optimized with xvnegsp + vabsduw
15822    if (N->getOperand(0).getValueType() == MVT::v4i32 &&
15823        N->getOperand(0).hasOneUse()) {
15824      return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(0).getValueType(),
15825                         N->getOperand(0)->getOperand(0),
15826                         N->getOperand(0)->getOperand(1),
15827                         DAG.getTargetConstant(1, dl, MVT::i32));
15828    }
15829  }
15830
15831  return SDValue();
15832}
15833
15834// For type v4i32/v8ii16/v16i8, transform
15835// from (vselect (setcc a, b, setugt), (sub a, b), (sub b, a)) to (vabsd a, b)
15836// from (vselect (setcc a, b, setuge), (sub a, b), (sub b, a)) to (vabsd a, b)
15837// from (vselect (setcc a, b, setult), (sub b, a), (sub a, b)) to (vabsd a, b)
15838// from (vselect (setcc a, b, setule), (sub b, a), (sub a, b)) to (vabsd a, b)
15839SDValue PPCTargetLowering::combineVSelect(SDNode *N,
15840                                          DAGCombinerInfo &DCI) const {
15841  assert((N->getOpcode() == ISD::VSELECT) && "Need VSELECT node here");
15842  assert(Subtarget.hasP9Altivec() &&
15843         "Only combine this when P9 altivec supported!");
15844
15845  SelectionDAG &DAG = DCI.DAG;
15846  SDLoc dl(N);
15847  SDValue Cond = N->getOperand(0);
15848  SDValue TrueOpnd = N->getOperand(1);
15849  SDValue FalseOpnd = N->getOperand(2);
15850  EVT VT = N->getOperand(1).getValueType();
15851
15852  if (Cond.getOpcode() != ISD::SETCC || TrueOpnd.getOpcode() != ISD::SUB ||
15853      FalseOpnd.getOpcode() != ISD::SUB)
15854    return SDValue();
15855
15856  // ABSD only available for type v4i32/v8i16/v16i8
15857  if (VT != MVT::v4i32 && VT != MVT::v8i16 && VT != MVT::v16i8)
15858    return SDValue();
15859
15860  // At least to save one more dependent computation
15861  if (!(Cond.hasOneUse() || TrueOpnd.hasOneUse() || FalseOpnd.hasOneUse()))
15862    return SDValue();
15863
15864  ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
15865
15866  // Can only handle unsigned comparison here
15867  switch (CC) {
15868  default:
15869    return SDValue();
15870  case ISD::SETUGT:
15871  case ISD::SETUGE:
15872    break;
15873  case ISD::SETULT:
15874  case ISD::SETULE:
15875    std::swap(TrueOpnd, FalseOpnd);
15876    break;
15877  }
15878
15879  SDValue CmpOpnd1 = Cond.getOperand(0);
15880  SDValue CmpOpnd2 = Cond.getOperand(1);
15881
15882  // SETCC CmpOpnd1 CmpOpnd2 cond
15883  // TrueOpnd = CmpOpnd1 - CmpOpnd2
15884  // FalseOpnd = CmpOpnd2 - CmpOpnd1
15885  if (TrueOpnd.getOperand(0) == CmpOpnd1 &&
15886      TrueOpnd.getOperand(1) == CmpOpnd2 &&
15887      FalseOpnd.getOperand(0) == CmpOpnd2 &&
15888      FalseOpnd.getOperand(1) == CmpOpnd1) {
15889    return DAG.getNode(PPCISD::VABSD, dl, N->getOperand(1).getValueType(),
15890                       CmpOpnd1, CmpOpnd2,
15891                       DAG.getTargetConstant(0, dl, MVT::i32));
15892  }
15893
15894  return SDValue();
15895}
15896