MipsFastISel.cpp revision 360784
1//===- MipsFastISel.cpp - Mips FastISel implementation --------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file defines the MIPS-specific support for the FastISel class.
11/// Some of the target-specific code is generated by tablegen in the file
12/// MipsGenFastISel.inc, which is #included here.
13///
14//===----------------------------------------------------------------------===//
15
16#include "MCTargetDesc/MipsABIInfo.h"
17#include "MCTargetDesc/MipsBaseInfo.h"
18#include "MipsCCState.h"
19#include "MipsISelLowering.h"
20#include "MipsInstrInfo.h"
21#include "MipsMachineFunction.h"
22#include "MipsSubtarget.h"
23#include "MipsTargetMachine.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/SmallVector.h"
28#include "llvm/Analysis/TargetLibraryInfo.h"
29#include "llvm/CodeGen/CallingConvLower.h"
30#include "llvm/CodeGen/FastISel.h"
31#include "llvm/CodeGen/FunctionLoweringInfo.h"
32#include "llvm/CodeGen/ISDOpcodes.h"
33#include "llvm/CodeGen/MachineBasicBlock.h"
34#include "llvm/CodeGen/MachineFrameInfo.h"
35#include "llvm/CodeGen/MachineInstrBuilder.h"
36#include "llvm/CodeGen/MachineMemOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetLowering.h"
40#include "llvm/CodeGen/ValueTypes.h"
41#include "llvm/IR/Attributes.h"
42#include "llvm/IR/CallingConv.h"
43#include "llvm/IR/Constant.h"
44#include "llvm/IR/Constants.h"
45#include "llvm/IR/DataLayout.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/GetElementPtrTypeIterator.h"
48#include "llvm/IR/GlobalValue.h"
49#include "llvm/IR/GlobalVariable.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/IntrinsicInst.h"
54#include "llvm/IR/Operator.h"
55#include "llvm/IR/Type.h"
56#include "llvm/IR/User.h"
57#include "llvm/IR/Value.h"
58#include "llvm/MC/MCContext.h"
59#include "llvm/MC/MCInstrDesc.h"
60#include "llvm/MC/MCRegisterInfo.h"
61#include "llvm/MC/MCSymbol.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/Compiler.h"
64#include "llvm/Support/Debug.h"
65#include "llvm/Support/ErrorHandling.h"
66#include "llvm/Support/MachineValueType.h"
67#include "llvm/Support/MathExtras.h"
68#include "llvm/Support/raw_ostream.h"
69#include <algorithm>
70#include <array>
71#include <cassert>
72#include <cstdint>
73
74#define DEBUG_TYPE "mips-fastisel"
75
76using namespace llvm;
77
78extern cl::opt<bool> EmitJalrReloc;
79
80namespace {
81
82class MipsFastISel final : public FastISel {
83
84  // All possible address modes.
85  class Address {
86  public:
87    using BaseKind = enum { RegBase, FrameIndexBase };
88
89  private:
90    BaseKind Kind = RegBase;
91    union {
92      unsigned Reg;
93      int FI;
94    } Base;
95
96    int64_t Offset = 0;
97
98    const GlobalValue *GV = nullptr;
99
100  public:
101    // Innocuous defaults for our address.
102    Address() { Base.Reg = 0; }
103
104    void setKind(BaseKind K) { Kind = K; }
105    BaseKind getKind() const { return Kind; }
106    bool isRegBase() const { return Kind == RegBase; }
107    bool isFIBase() const { return Kind == FrameIndexBase; }
108
109    void setReg(unsigned Reg) {
110      assert(isRegBase() && "Invalid base register access!");
111      Base.Reg = Reg;
112    }
113
114    unsigned getReg() const {
115      assert(isRegBase() && "Invalid base register access!");
116      return Base.Reg;
117    }
118
119    void setFI(unsigned FI) {
120      assert(isFIBase() && "Invalid base frame index access!");
121      Base.FI = FI;
122    }
123
124    unsigned getFI() const {
125      assert(isFIBase() && "Invalid base frame index access!");
126      return Base.FI;
127    }
128
129    void setOffset(int64_t Offset_) { Offset = Offset_; }
130    int64_t getOffset() const { return Offset; }
131    void setGlobalValue(const GlobalValue *G) { GV = G; }
132    const GlobalValue *getGlobalValue() { return GV; }
133  };
134
135  /// Subtarget - Keep a pointer to the MipsSubtarget around so that we can
136  /// make the right decision when generating code for different targets.
137  const TargetMachine &TM;
138  const MipsSubtarget *Subtarget;
139  const TargetInstrInfo &TII;
140  const TargetLowering &TLI;
141  MipsFunctionInfo *MFI;
142
143  // Convenience variables to avoid some queries.
144  LLVMContext *Context;
145
146  bool fastLowerArguments() override;
147  bool fastLowerCall(CallLoweringInfo &CLI) override;
148  bool fastLowerIntrinsicCall(const IntrinsicInst *II) override;
149
150  bool UnsupportedFPMode; // To allow fast-isel to proceed and just not handle
151  // floating point but not reject doing fast-isel in other
152  // situations
153
154private:
155  // Selection routines.
156  bool selectLogicalOp(const Instruction *I);
157  bool selectLoad(const Instruction *I);
158  bool selectStore(const Instruction *I);
159  bool selectBranch(const Instruction *I);
160  bool selectSelect(const Instruction *I);
161  bool selectCmp(const Instruction *I);
162  bool selectFPExt(const Instruction *I);
163  bool selectFPTrunc(const Instruction *I);
164  bool selectFPToInt(const Instruction *I, bool IsSigned);
165  bool selectRet(const Instruction *I);
166  bool selectTrunc(const Instruction *I);
167  bool selectIntExt(const Instruction *I);
168  bool selectShift(const Instruction *I);
169  bool selectDivRem(const Instruction *I, unsigned ISDOpcode);
170
171  // Utility helper routines.
172  bool isTypeLegal(Type *Ty, MVT &VT);
173  bool isTypeSupported(Type *Ty, MVT &VT);
174  bool isLoadTypeLegal(Type *Ty, MVT &VT);
175  bool computeAddress(const Value *Obj, Address &Addr);
176  bool computeCallAddress(const Value *V, Address &Addr);
177  void simplifyAddress(Address &Addr);
178
179  // Emit helper routines.
180  bool emitCmp(unsigned DestReg, const CmpInst *CI);
181  bool emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
182                unsigned Alignment = 0);
183  bool emitStore(MVT VT, unsigned SrcReg, Address Addr,
184                 MachineMemOperand *MMO = nullptr);
185  bool emitStore(MVT VT, unsigned SrcReg, Address &Addr,
186                 unsigned Alignment = 0);
187  unsigned emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt);
188  bool emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg,
189
190                  bool IsZExt);
191  bool emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
192
193  bool emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, unsigned DestReg);
194  bool emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
195                       unsigned DestReg);
196  bool emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
197                       unsigned DestReg);
198
199  unsigned getRegEnsuringSimpleIntegerWidening(const Value *, bool IsUnsigned);
200
201  unsigned emitLogicalOp(unsigned ISDOpc, MVT RetVT, const Value *LHS,
202                         const Value *RHS);
203
204  unsigned materializeFP(const ConstantFP *CFP, MVT VT);
205  unsigned materializeGV(const GlobalValue *GV, MVT VT);
206  unsigned materializeInt(const Constant *C, MVT VT);
207  unsigned materialize32BitInt(int64_t Imm, const TargetRegisterClass *RC);
208  unsigned materializeExternalCallSym(MCSymbol *Syn);
209
210  MachineInstrBuilder emitInst(unsigned Opc) {
211    return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc));
212  }
213
214  MachineInstrBuilder emitInst(unsigned Opc, unsigned DstReg) {
215    return BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc),
216                   DstReg);
217  }
218
219  MachineInstrBuilder emitInstStore(unsigned Opc, unsigned SrcReg,
220                                    unsigned MemReg, int64_t MemOffset) {
221    return emitInst(Opc).addReg(SrcReg).addReg(MemReg).addImm(MemOffset);
222  }
223
224  MachineInstrBuilder emitInstLoad(unsigned Opc, unsigned DstReg,
225                                   unsigned MemReg, int64_t MemOffset) {
226    return emitInst(Opc, DstReg).addReg(MemReg).addImm(MemOffset);
227  }
228
229  unsigned fastEmitInst_rr(unsigned MachineInstOpcode,
230                           const TargetRegisterClass *RC,
231                           unsigned Op0, bool Op0IsKill,
232                           unsigned Op1, bool Op1IsKill);
233
234  // for some reason, this default is not generated by tablegen
235  // so we explicitly generate it here.
236  unsigned fastEmitInst_riir(uint64_t inst, const TargetRegisterClass *RC,
237                             unsigned Op0, bool Op0IsKill, uint64_t imm1,
238                             uint64_t imm2, unsigned Op3, bool Op3IsKill) {
239    return 0;
240  }
241
242  // Call handling routines.
243private:
244  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC) const;
245  bool processCallArgs(CallLoweringInfo &CLI, SmallVectorImpl<MVT> &ArgVTs,
246                       unsigned &NumBytes);
247  bool finishCall(CallLoweringInfo &CLI, MVT RetVT, unsigned NumBytes);
248
249  const MipsABIInfo &getABI() const {
250    return static_cast<const MipsTargetMachine &>(TM).getABI();
251  }
252
253public:
254  // Backend specific FastISel code.
255  explicit MipsFastISel(FunctionLoweringInfo &funcInfo,
256                        const TargetLibraryInfo *libInfo)
257      : FastISel(funcInfo, libInfo), TM(funcInfo.MF->getTarget()),
258        Subtarget(&funcInfo.MF->getSubtarget<MipsSubtarget>()),
259        TII(*Subtarget->getInstrInfo()), TLI(*Subtarget->getTargetLowering()) {
260    MFI = funcInfo.MF->getInfo<MipsFunctionInfo>();
261    Context = &funcInfo.Fn->getContext();
262    UnsupportedFPMode = Subtarget->isFP64bit() || Subtarget->useSoftFloat();
263  }
264
265  unsigned fastMaterializeAlloca(const AllocaInst *AI) override;
266  unsigned fastMaterializeConstant(const Constant *C) override;
267  bool fastSelectInstruction(const Instruction *I) override;
268
269#include "MipsGenFastISel.inc"
270};
271
272} // end anonymous namespace
273
274static bool CC_Mips(unsigned ValNo, MVT ValVT, MVT LocVT,
275                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
276                    CCState &State) LLVM_ATTRIBUTE_UNUSED;
277
278static bool CC_MipsO32_FP32(unsigned ValNo, MVT ValVT, MVT LocVT,
279                            CCValAssign::LocInfo LocInfo,
280                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
281  llvm_unreachable("should not be called");
282}
283
284static bool CC_MipsO32_FP64(unsigned ValNo, MVT ValVT, MVT LocVT,
285                            CCValAssign::LocInfo LocInfo,
286                            ISD::ArgFlagsTy ArgFlags, CCState &State) {
287  llvm_unreachable("should not be called");
288}
289
290#include "MipsGenCallingConv.inc"
291
292CCAssignFn *MipsFastISel::CCAssignFnForCall(CallingConv::ID CC) const {
293  return CC_MipsO32;
294}
295
296unsigned MipsFastISel::emitLogicalOp(unsigned ISDOpc, MVT RetVT,
297                                     const Value *LHS, const Value *RHS) {
298  // Canonicalize immediates to the RHS first.
299  if (isa<ConstantInt>(LHS) && !isa<ConstantInt>(RHS))
300    std::swap(LHS, RHS);
301
302  unsigned Opc;
303  switch (ISDOpc) {
304  case ISD::AND:
305    Opc = Mips::AND;
306    break;
307  case ISD::OR:
308    Opc = Mips::OR;
309    break;
310  case ISD::XOR:
311    Opc = Mips::XOR;
312    break;
313  default:
314    llvm_unreachable("unexpected opcode");
315  }
316
317  unsigned LHSReg = getRegForValue(LHS);
318  if (!LHSReg)
319    return 0;
320
321  unsigned RHSReg;
322  if (const auto *C = dyn_cast<ConstantInt>(RHS))
323    RHSReg = materializeInt(C, MVT::i32);
324  else
325    RHSReg = getRegForValue(RHS);
326  if (!RHSReg)
327    return 0;
328
329  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
330  if (!ResultReg)
331    return 0;
332
333  emitInst(Opc, ResultReg).addReg(LHSReg).addReg(RHSReg);
334  return ResultReg;
335}
336
337unsigned MipsFastISel::fastMaterializeAlloca(const AllocaInst *AI) {
338  assert(TLI.getValueType(DL, AI->getType(), true) == MVT::i32 &&
339         "Alloca should always return a pointer.");
340
341  DenseMap<const AllocaInst *, int>::iterator SI =
342      FuncInfo.StaticAllocaMap.find(AI);
343
344  if (SI != FuncInfo.StaticAllocaMap.end()) {
345    unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
346    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::LEA_ADDiu),
347            ResultReg)
348        .addFrameIndex(SI->second)
349        .addImm(0);
350    return ResultReg;
351  }
352
353  return 0;
354}
355
356unsigned MipsFastISel::materializeInt(const Constant *C, MVT VT) {
357  if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1)
358    return 0;
359  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
360  const ConstantInt *CI = cast<ConstantInt>(C);
361  return materialize32BitInt(CI->getZExtValue(), RC);
362}
363
364unsigned MipsFastISel::materialize32BitInt(int64_t Imm,
365                                           const TargetRegisterClass *RC) {
366  unsigned ResultReg = createResultReg(RC);
367
368  if (isInt<16>(Imm)) {
369    unsigned Opc = Mips::ADDiu;
370    emitInst(Opc, ResultReg).addReg(Mips::ZERO).addImm(Imm);
371    return ResultReg;
372  } else if (isUInt<16>(Imm)) {
373    emitInst(Mips::ORi, ResultReg).addReg(Mips::ZERO).addImm(Imm);
374    return ResultReg;
375  }
376  unsigned Lo = Imm & 0xFFFF;
377  unsigned Hi = (Imm >> 16) & 0xFFFF;
378  if (Lo) {
379    // Both Lo and Hi have nonzero bits.
380    unsigned TmpReg = createResultReg(RC);
381    emitInst(Mips::LUi, TmpReg).addImm(Hi);
382    emitInst(Mips::ORi, ResultReg).addReg(TmpReg).addImm(Lo);
383  } else {
384    emitInst(Mips::LUi, ResultReg).addImm(Hi);
385  }
386  return ResultReg;
387}
388
389unsigned MipsFastISel::materializeFP(const ConstantFP *CFP, MVT VT) {
390  if (UnsupportedFPMode)
391    return 0;
392  int64_t Imm = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
393  if (VT == MVT::f32) {
394    const TargetRegisterClass *RC = &Mips::FGR32RegClass;
395    unsigned DestReg = createResultReg(RC);
396    unsigned TempReg = materialize32BitInt(Imm, &Mips::GPR32RegClass);
397    emitInst(Mips::MTC1, DestReg).addReg(TempReg);
398    return DestReg;
399  } else if (VT == MVT::f64) {
400    const TargetRegisterClass *RC = &Mips::AFGR64RegClass;
401    unsigned DestReg = createResultReg(RC);
402    unsigned TempReg1 = materialize32BitInt(Imm >> 32, &Mips::GPR32RegClass);
403    unsigned TempReg2 =
404        materialize32BitInt(Imm & 0xFFFFFFFF, &Mips::GPR32RegClass);
405    emitInst(Mips::BuildPairF64, DestReg).addReg(TempReg2).addReg(TempReg1);
406    return DestReg;
407  }
408  return 0;
409}
410
411unsigned MipsFastISel::materializeGV(const GlobalValue *GV, MVT VT) {
412  // For now 32-bit only.
413  if (VT != MVT::i32)
414    return 0;
415  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
416  unsigned DestReg = createResultReg(RC);
417  const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
418  bool IsThreadLocal = GVar && GVar->isThreadLocal();
419  // TLS not supported at this time.
420  if (IsThreadLocal)
421    return 0;
422  emitInst(Mips::LW, DestReg)
423      .addReg(MFI->getGlobalBaseReg())
424      .addGlobalAddress(GV, 0, MipsII::MO_GOT);
425  if ((GV->hasInternalLinkage() ||
426       (GV->hasLocalLinkage() && !isa<Function>(GV)))) {
427    unsigned TempReg = createResultReg(RC);
428    emitInst(Mips::ADDiu, TempReg)
429        .addReg(DestReg)
430        .addGlobalAddress(GV, 0, MipsII::MO_ABS_LO);
431    DestReg = TempReg;
432  }
433  return DestReg;
434}
435
436unsigned MipsFastISel::materializeExternalCallSym(MCSymbol *Sym) {
437  const TargetRegisterClass *RC = &Mips::GPR32RegClass;
438  unsigned DestReg = createResultReg(RC);
439  emitInst(Mips::LW, DestReg)
440      .addReg(MFI->getGlobalBaseReg())
441      .addSym(Sym, MipsII::MO_GOT);
442  return DestReg;
443}
444
445// Materialize a constant into a register, and return the register
446// number (or zero if we failed to handle it).
447unsigned MipsFastISel::fastMaterializeConstant(const Constant *C) {
448  EVT CEVT = TLI.getValueType(DL, C->getType(), true);
449
450  // Only handle simple types.
451  if (!CEVT.isSimple())
452    return 0;
453  MVT VT = CEVT.getSimpleVT();
454
455  if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
456    return (UnsupportedFPMode) ? 0 : materializeFP(CFP, VT);
457  else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
458    return materializeGV(GV, VT);
459  else if (isa<ConstantInt>(C))
460    return materializeInt(C, VT);
461
462  return 0;
463}
464
465bool MipsFastISel::computeAddress(const Value *Obj, Address &Addr) {
466  const User *U = nullptr;
467  unsigned Opcode = Instruction::UserOp1;
468  if (const Instruction *I = dyn_cast<Instruction>(Obj)) {
469    // Don't walk into other basic blocks unless the object is an alloca from
470    // another block, otherwise it may not have a virtual register assigned.
471    if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) ||
472        FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
473      Opcode = I->getOpcode();
474      U = I;
475    }
476  } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) {
477    Opcode = C->getOpcode();
478    U = C;
479  }
480  switch (Opcode) {
481  default:
482    break;
483  case Instruction::BitCast:
484    // Look through bitcasts.
485    return computeAddress(U->getOperand(0), Addr);
486  case Instruction::GetElementPtr: {
487    Address SavedAddr = Addr;
488    int64_t TmpOffset = Addr.getOffset();
489    // Iterate through the GEP folding the constants into offsets where
490    // we can.
491    gep_type_iterator GTI = gep_type_begin(U);
492    for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e;
493         ++i, ++GTI) {
494      const Value *Op = *i;
495      if (StructType *STy = GTI.getStructTypeOrNull()) {
496        const StructLayout *SL = DL.getStructLayout(STy);
497        unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
498        TmpOffset += SL->getElementOffset(Idx);
499      } else {
500        uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType());
501        while (true) {
502          if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
503            // Constant-offset addressing.
504            TmpOffset += CI->getSExtValue() * S;
505            break;
506          }
507          if (canFoldAddIntoGEP(U, Op)) {
508            // A compatible add with a constant operand. Fold the constant.
509            ConstantInt *CI =
510                cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
511            TmpOffset += CI->getSExtValue() * S;
512            // Iterate on the other operand.
513            Op = cast<AddOperator>(Op)->getOperand(0);
514            continue;
515          }
516          // Unsupported
517          goto unsupported_gep;
518        }
519      }
520    }
521    // Try to grab the base operand now.
522    Addr.setOffset(TmpOffset);
523    if (computeAddress(U->getOperand(0), Addr))
524      return true;
525    // We failed, restore everything and try the other options.
526    Addr = SavedAddr;
527  unsupported_gep:
528    break;
529  }
530  case Instruction::Alloca: {
531    const AllocaInst *AI = cast<AllocaInst>(Obj);
532    DenseMap<const AllocaInst *, int>::iterator SI =
533        FuncInfo.StaticAllocaMap.find(AI);
534    if (SI != FuncInfo.StaticAllocaMap.end()) {
535      Addr.setKind(Address::FrameIndexBase);
536      Addr.setFI(SI->second);
537      return true;
538    }
539    break;
540  }
541  }
542  Addr.setReg(getRegForValue(Obj));
543  return Addr.getReg() != 0;
544}
545
546bool MipsFastISel::computeCallAddress(const Value *V, Address &Addr) {
547  const User *U = nullptr;
548  unsigned Opcode = Instruction::UserOp1;
549
550  if (const auto *I = dyn_cast<Instruction>(V)) {
551    // Check if the value is defined in the same basic block. This information
552    // is crucial to know whether or not folding an operand is valid.
553    if (I->getParent() == FuncInfo.MBB->getBasicBlock()) {
554      Opcode = I->getOpcode();
555      U = I;
556    }
557  } else if (const auto *C = dyn_cast<ConstantExpr>(V)) {
558    Opcode = C->getOpcode();
559    U = C;
560  }
561
562  switch (Opcode) {
563  default:
564    break;
565  case Instruction::BitCast:
566    // Look past bitcasts if its operand is in the same BB.
567      return computeCallAddress(U->getOperand(0), Addr);
568    break;
569  case Instruction::IntToPtr:
570    // Look past no-op inttoptrs if its operand is in the same BB.
571    if (TLI.getValueType(DL, U->getOperand(0)->getType()) ==
572        TLI.getPointerTy(DL))
573      return computeCallAddress(U->getOperand(0), Addr);
574    break;
575  case Instruction::PtrToInt:
576    // Look past no-op ptrtoints if its operand is in the same BB.
577    if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL))
578      return computeCallAddress(U->getOperand(0), Addr);
579    break;
580  }
581
582  if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
583    Addr.setGlobalValue(GV);
584    return true;
585  }
586
587  // If all else fails, try to materialize the value in a register.
588  if (!Addr.getGlobalValue()) {
589    Addr.setReg(getRegForValue(V));
590    return Addr.getReg() != 0;
591  }
592
593  return false;
594}
595
596bool MipsFastISel::isTypeLegal(Type *Ty, MVT &VT) {
597  EVT evt = TLI.getValueType(DL, Ty, true);
598  // Only handle simple types.
599  if (evt == MVT::Other || !evt.isSimple())
600    return false;
601  VT = evt.getSimpleVT();
602
603  // Handle all legal types, i.e. a register that will directly hold this
604  // value.
605  return TLI.isTypeLegal(VT);
606}
607
608bool MipsFastISel::isTypeSupported(Type *Ty, MVT &VT) {
609  if (Ty->isVectorTy())
610    return false;
611
612  if (isTypeLegal(Ty, VT))
613    return true;
614
615  // If this is a type than can be sign or zero-extended to a basic operation
616  // go ahead and accept it now.
617  if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16)
618    return true;
619
620  return false;
621}
622
623bool MipsFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) {
624  if (isTypeLegal(Ty, VT))
625    return true;
626  // We will extend this in a later patch:
627  //   If this is a type than can be sign or zero-extended to a basic operation
628  //   go ahead and accept it now.
629  if (VT == MVT::i8 || VT == MVT::i16)
630    return true;
631  return false;
632}
633
634// Because of how EmitCmp is called with fast-isel, you can
635// end up with redundant "andi" instructions after the sequences emitted below.
636// We should try and solve this issue in the future.
637//
638bool MipsFastISel::emitCmp(unsigned ResultReg, const CmpInst *CI) {
639  const Value *Left = CI->getOperand(0), *Right = CI->getOperand(1);
640  bool IsUnsigned = CI->isUnsigned();
641  unsigned LeftReg = getRegEnsuringSimpleIntegerWidening(Left, IsUnsigned);
642  if (LeftReg == 0)
643    return false;
644  unsigned RightReg = getRegEnsuringSimpleIntegerWidening(Right, IsUnsigned);
645  if (RightReg == 0)
646    return false;
647  CmpInst::Predicate P = CI->getPredicate();
648
649  switch (P) {
650  default:
651    return false;
652  case CmpInst::ICMP_EQ: {
653    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
654    emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
655    emitInst(Mips::SLTiu, ResultReg).addReg(TempReg).addImm(1);
656    break;
657  }
658  case CmpInst::ICMP_NE: {
659    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
660    emitInst(Mips::XOR, TempReg).addReg(LeftReg).addReg(RightReg);
661    emitInst(Mips::SLTu, ResultReg).addReg(Mips::ZERO).addReg(TempReg);
662    break;
663  }
664  case CmpInst::ICMP_UGT:
665    emitInst(Mips::SLTu, ResultReg).addReg(RightReg).addReg(LeftReg);
666    break;
667  case CmpInst::ICMP_ULT:
668    emitInst(Mips::SLTu, ResultReg).addReg(LeftReg).addReg(RightReg);
669    break;
670  case CmpInst::ICMP_UGE: {
671    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
672    emitInst(Mips::SLTu, TempReg).addReg(LeftReg).addReg(RightReg);
673    emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
674    break;
675  }
676  case CmpInst::ICMP_ULE: {
677    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
678    emitInst(Mips::SLTu, TempReg).addReg(RightReg).addReg(LeftReg);
679    emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
680    break;
681  }
682  case CmpInst::ICMP_SGT:
683    emitInst(Mips::SLT, ResultReg).addReg(RightReg).addReg(LeftReg);
684    break;
685  case CmpInst::ICMP_SLT:
686    emitInst(Mips::SLT, ResultReg).addReg(LeftReg).addReg(RightReg);
687    break;
688  case CmpInst::ICMP_SGE: {
689    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
690    emitInst(Mips::SLT, TempReg).addReg(LeftReg).addReg(RightReg);
691    emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
692    break;
693  }
694  case CmpInst::ICMP_SLE: {
695    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
696    emitInst(Mips::SLT, TempReg).addReg(RightReg).addReg(LeftReg);
697    emitInst(Mips::XORi, ResultReg).addReg(TempReg).addImm(1);
698    break;
699  }
700  case CmpInst::FCMP_OEQ:
701  case CmpInst::FCMP_UNE:
702  case CmpInst::FCMP_OLT:
703  case CmpInst::FCMP_OLE:
704  case CmpInst::FCMP_OGT:
705  case CmpInst::FCMP_OGE: {
706    if (UnsupportedFPMode)
707      return false;
708    bool IsFloat = Left->getType()->isFloatTy();
709    bool IsDouble = Left->getType()->isDoubleTy();
710    if (!IsFloat && !IsDouble)
711      return false;
712    unsigned Opc, CondMovOpc;
713    switch (P) {
714    case CmpInst::FCMP_OEQ:
715      Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
716      CondMovOpc = Mips::MOVT_I;
717      break;
718    case CmpInst::FCMP_UNE:
719      Opc = IsFloat ? Mips::C_EQ_S : Mips::C_EQ_D32;
720      CondMovOpc = Mips::MOVF_I;
721      break;
722    case CmpInst::FCMP_OLT:
723      Opc = IsFloat ? Mips::C_OLT_S : Mips::C_OLT_D32;
724      CondMovOpc = Mips::MOVT_I;
725      break;
726    case CmpInst::FCMP_OLE:
727      Opc = IsFloat ? Mips::C_OLE_S : Mips::C_OLE_D32;
728      CondMovOpc = Mips::MOVT_I;
729      break;
730    case CmpInst::FCMP_OGT:
731      Opc = IsFloat ? Mips::C_ULE_S : Mips::C_ULE_D32;
732      CondMovOpc = Mips::MOVF_I;
733      break;
734    case CmpInst::FCMP_OGE:
735      Opc = IsFloat ? Mips::C_ULT_S : Mips::C_ULT_D32;
736      CondMovOpc = Mips::MOVF_I;
737      break;
738    default:
739      llvm_unreachable("Only switching of a subset of CCs.");
740    }
741    unsigned RegWithZero = createResultReg(&Mips::GPR32RegClass);
742    unsigned RegWithOne = createResultReg(&Mips::GPR32RegClass);
743    emitInst(Mips::ADDiu, RegWithZero).addReg(Mips::ZERO).addImm(0);
744    emitInst(Mips::ADDiu, RegWithOne).addReg(Mips::ZERO).addImm(1);
745    emitInst(Opc).addReg(Mips::FCC0, RegState::Define).addReg(LeftReg)
746                 .addReg(RightReg);
747    emitInst(CondMovOpc, ResultReg)
748        .addReg(RegWithOne)
749        .addReg(Mips::FCC0)
750        .addReg(RegWithZero);
751    break;
752  }
753  }
754  return true;
755}
756
757bool MipsFastISel::emitLoad(MVT VT, unsigned &ResultReg, Address &Addr,
758                            unsigned Alignment) {
759  //
760  // more cases will be handled here in following patches.
761  //
762  unsigned Opc;
763  switch (VT.SimpleTy) {
764  case MVT::i32:
765    ResultReg = createResultReg(&Mips::GPR32RegClass);
766    Opc = Mips::LW;
767    break;
768  case MVT::i16:
769    ResultReg = createResultReg(&Mips::GPR32RegClass);
770    Opc = Mips::LHu;
771    break;
772  case MVT::i8:
773    ResultReg = createResultReg(&Mips::GPR32RegClass);
774    Opc = Mips::LBu;
775    break;
776  case MVT::f32:
777    if (UnsupportedFPMode)
778      return false;
779    ResultReg = createResultReg(&Mips::FGR32RegClass);
780    Opc = Mips::LWC1;
781    break;
782  case MVT::f64:
783    if (UnsupportedFPMode)
784      return false;
785    ResultReg = createResultReg(&Mips::AFGR64RegClass);
786    Opc = Mips::LDC1;
787    break;
788  default:
789    return false;
790  }
791  if (Addr.isRegBase()) {
792    simplifyAddress(Addr);
793    emitInstLoad(Opc, ResultReg, Addr.getReg(), Addr.getOffset());
794    return true;
795  }
796  if (Addr.isFIBase()) {
797    unsigned FI = Addr.getFI();
798    unsigned Align = 4;
799    int64_t Offset = Addr.getOffset();
800    MachineFrameInfo &MFI = MF->getFrameInfo();
801    MachineMemOperand *MMO = MF->getMachineMemOperand(
802        MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
803        MFI.getObjectSize(FI), Align);
804    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), ResultReg)
805        .addFrameIndex(FI)
806        .addImm(Offset)
807        .addMemOperand(MMO);
808    return true;
809  }
810  return false;
811}
812
813bool MipsFastISel::emitStore(MVT VT, unsigned SrcReg, Address &Addr,
814                             unsigned Alignment) {
815  //
816  // more cases will be handled here in following patches.
817  //
818  unsigned Opc;
819  switch (VT.SimpleTy) {
820  case MVT::i8:
821    Opc = Mips::SB;
822    break;
823  case MVT::i16:
824    Opc = Mips::SH;
825    break;
826  case MVT::i32:
827    Opc = Mips::SW;
828    break;
829  case MVT::f32:
830    if (UnsupportedFPMode)
831      return false;
832    Opc = Mips::SWC1;
833    break;
834  case MVT::f64:
835    if (UnsupportedFPMode)
836      return false;
837    Opc = Mips::SDC1;
838    break;
839  default:
840    return false;
841  }
842  if (Addr.isRegBase()) {
843    simplifyAddress(Addr);
844    emitInstStore(Opc, SrcReg, Addr.getReg(), Addr.getOffset());
845    return true;
846  }
847  if (Addr.isFIBase()) {
848    unsigned FI = Addr.getFI();
849    unsigned Align = 4;
850    int64_t Offset = Addr.getOffset();
851    MachineFrameInfo &MFI = MF->getFrameInfo();
852    MachineMemOperand *MMO = MF->getMachineMemOperand(
853        MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
854        MFI.getObjectSize(FI), Align);
855    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc))
856        .addReg(SrcReg)
857        .addFrameIndex(FI)
858        .addImm(Offset)
859        .addMemOperand(MMO);
860    return true;
861  }
862  return false;
863}
864
865bool MipsFastISel::selectLogicalOp(const Instruction *I) {
866  MVT VT;
867  if (!isTypeSupported(I->getType(), VT))
868    return false;
869
870  unsigned ResultReg;
871  switch (I->getOpcode()) {
872  default:
873    llvm_unreachable("Unexpected instruction.");
874  case Instruction::And:
875    ResultReg = emitLogicalOp(ISD::AND, VT, I->getOperand(0), I->getOperand(1));
876    break;
877  case Instruction::Or:
878    ResultReg = emitLogicalOp(ISD::OR, VT, I->getOperand(0), I->getOperand(1));
879    break;
880  case Instruction::Xor:
881    ResultReg = emitLogicalOp(ISD::XOR, VT, I->getOperand(0), I->getOperand(1));
882    break;
883  }
884
885  if (!ResultReg)
886    return false;
887
888  updateValueMap(I, ResultReg);
889  return true;
890}
891
892bool MipsFastISel::selectLoad(const Instruction *I) {
893  // Atomic loads need special handling.
894  if (cast<LoadInst>(I)->isAtomic())
895    return false;
896
897  // Verify we have a legal type before going any further.
898  MVT VT;
899  if (!isLoadTypeLegal(I->getType(), VT))
900    return false;
901
902  // See if we can handle this address.
903  Address Addr;
904  if (!computeAddress(I->getOperand(0), Addr))
905    return false;
906
907  unsigned ResultReg;
908  if (!emitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment()))
909    return false;
910  updateValueMap(I, ResultReg);
911  return true;
912}
913
914bool MipsFastISel::selectStore(const Instruction *I) {
915  Value *Op0 = I->getOperand(0);
916  unsigned SrcReg = 0;
917
918  // Atomic stores need special handling.
919  if (cast<StoreInst>(I)->isAtomic())
920    return false;
921
922  // Verify we have a legal type before going any further.
923  MVT VT;
924  if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT))
925    return false;
926
927  // Get the value to be stored into a register.
928  SrcReg = getRegForValue(Op0);
929  if (SrcReg == 0)
930    return false;
931
932  // See if we can handle this address.
933  Address Addr;
934  if (!computeAddress(I->getOperand(1), Addr))
935    return false;
936
937  if (!emitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment()))
938    return false;
939  return true;
940}
941
942// This can cause a redundant sltiu to be generated.
943// FIXME: try and eliminate this in a future patch.
944bool MipsFastISel::selectBranch(const Instruction *I) {
945  const BranchInst *BI = cast<BranchInst>(I);
946  MachineBasicBlock *BrBB = FuncInfo.MBB;
947  //
948  // TBB is the basic block for the case where the comparison is true.
949  // FBB is the basic block for the case where the comparison is false.
950  // if (cond) goto TBB
951  // goto FBB
952  // TBB:
953  //
954  MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
955  MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
956
957  // Fold the common case of a conditional branch with a comparison
958  // in the same block.
959  unsigned ZExtCondReg = 0;
960  if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
961    if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
962      ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
963      if (!emitCmp(ZExtCondReg, CI))
964        return false;
965    }
966  }
967
968  // For the general case, we need to mask with 1.
969  if (ZExtCondReg == 0) {
970    unsigned CondReg = getRegForValue(BI->getCondition());
971    if (CondReg == 0)
972      return false;
973
974    ZExtCondReg = emitIntExt(MVT::i1, CondReg, MVT::i32, true);
975    if (ZExtCondReg == 0)
976      return false;
977  }
978
979  BuildMI(*BrBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::BGTZ))
980      .addReg(ZExtCondReg)
981      .addMBB(TBB);
982  finishCondBranch(BI->getParent(), TBB, FBB);
983  return true;
984}
985
986bool MipsFastISel::selectCmp(const Instruction *I) {
987  const CmpInst *CI = cast<CmpInst>(I);
988  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
989  if (!emitCmp(ResultReg, CI))
990    return false;
991  updateValueMap(I, ResultReg);
992  return true;
993}
994
995// Attempt to fast-select a floating-point extend instruction.
996bool MipsFastISel::selectFPExt(const Instruction *I) {
997  if (UnsupportedFPMode)
998    return false;
999  Value *Src = I->getOperand(0);
1000  EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1001  EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1002
1003  if (SrcVT != MVT::f32 || DestVT != MVT::f64)
1004    return false;
1005
1006  unsigned SrcReg =
1007      getRegForValue(Src); // this must be a 32bit floating point register class
1008                           // maybe we should handle this differently
1009  if (!SrcReg)
1010    return false;
1011
1012  unsigned DestReg = createResultReg(&Mips::AFGR64RegClass);
1013  emitInst(Mips::CVT_D32_S, DestReg).addReg(SrcReg);
1014  updateValueMap(I, DestReg);
1015  return true;
1016}
1017
1018bool MipsFastISel::selectSelect(const Instruction *I) {
1019  assert(isa<SelectInst>(I) && "Expected a select instruction.");
1020
1021  LLVM_DEBUG(dbgs() << "selectSelect\n");
1022
1023  MVT VT;
1024  if (!isTypeSupported(I->getType(), VT) || UnsupportedFPMode) {
1025    LLVM_DEBUG(
1026        dbgs() << ".. .. gave up (!isTypeSupported || UnsupportedFPMode)\n");
1027    return false;
1028  }
1029
1030  unsigned CondMovOpc;
1031  const TargetRegisterClass *RC;
1032
1033  if (VT.isInteger() && !VT.isVector() && VT.getSizeInBits() <= 32) {
1034    CondMovOpc = Mips::MOVN_I_I;
1035    RC = &Mips::GPR32RegClass;
1036  } else if (VT == MVT::f32) {
1037    CondMovOpc = Mips::MOVN_I_S;
1038    RC = &Mips::FGR32RegClass;
1039  } else if (VT == MVT::f64) {
1040    CondMovOpc = Mips::MOVN_I_D32;
1041    RC = &Mips::AFGR64RegClass;
1042  } else
1043    return false;
1044
1045  const SelectInst *SI = cast<SelectInst>(I);
1046  const Value *Cond = SI->getCondition();
1047  unsigned Src1Reg = getRegForValue(SI->getTrueValue());
1048  unsigned Src2Reg = getRegForValue(SI->getFalseValue());
1049  unsigned CondReg = getRegForValue(Cond);
1050
1051  if (!Src1Reg || !Src2Reg || !CondReg)
1052    return false;
1053
1054  unsigned ZExtCondReg = createResultReg(&Mips::GPR32RegClass);
1055  if (!ZExtCondReg)
1056    return false;
1057
1058  if (!emitIntExt(MVT::i1, CondReg, MVT::i32, ZExtCondReg, true))
1059    return false;
1060
1061  unsigned ResultReg = createResultReg(RC);
1062  unsigned TempReg = createResultReg(RC);
1063
1064  if (!ResultReg || !TempReg)
1065    return false;
1066
1067  emitInst(TargetOpcode::COPY, TempReg).addReg(Src2Reg);
1068  emitInst(CondMovOpc, ResultReg)
1069    .addReg(Src1Reg).addReg(ZExtCondReg).addReg(TempReg);
1070  updateValueMap(I, ResultReg);
1071  return true;
1072}
1073
1074// Attempt to fast-select a floating-point truncate instruction.
1075bool MipsFastISel::selectFPTrunc(const Instruction *I) {
1076  if (UnsupportedFPMode)
1077    return false;
1078  Value *Src = I->getOperand(0);
1079  EVT SrcVT = TLI.getValueType(DL, Src->getType(), true);
1080  EVT DestVT = TLI.getValueType(DL, I->getType(), true);
1081
1082  if (SrcVT != MVT::f64 || DestVT != MVT::f32)
1083    return false;
1084
1085  unsigned SrcReg = getRegForValue(Src);
1086  if (!SrcReg)
1087    return false;
1088
1089  unsigned DestReg = createResultReg(&Mips::FGR32RegClass);
1090  if (!DestReg)
1091    return false;
1092
1093  emitInst(Mips::CVT_S_D32, DestReg).addReg(SrcReg);
1094  updateValueMap(I, DestReg);
1095  return true;
1096}
1097
1098// Attempt to fast-select a floating-point-to-integer conversion.
1099bool MipsFastISel::selectFPToInt(const Instruction *I, bool IsSigned) {
1100  if (UnsupportedFPMode)
1101    return false;
1102  MVT DstVT, SrcVT;
1103  if (!IsSigned)
1104    return false; // We don't handle this case yet. There is no native
1105                  // instruction for this but it can be synthesized.
1106  Type *DstTy = I->getType();
1107  if (!isTypeLegal(DstTy, DstVT))
1108    return false;
1109
1110  if (DstVT != MVT::i32)
1111    return false;
1112
1113  Value *Src = I->getOperand(0);
1114  Type *SrcTy = Src->getType();
1115  if (!isTypeLegal(SrcTy, SrcVT))
1116    return false;
1117
1118  if (SrcVT != MVT::f32 && SrcVT != MVT::f64)
1119    return false;
1120
1121  unsigned SrcReg = getRegForValue(Src);
1122  if (SrcReg == 0)
1123    return false;
1124
1125  // Determine the opcode for the conversion, which takes place
1126  // entirely within FPRs.
1127  unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1128  unsigned TempReg = createResultReg(&Mips::FGR32RegClass);
1129  unsigned Opc = (SrcVT == MVT::f32) ? Mips::TRUNC_W_S : Mips::TRUNC_W_D32;
1130
1131  // Generate the convert.
1132  emitInst(Opc, TempReg).addReg(SrcReg);
1133  emitInst(Mips::MFC1, DestReg).addReg(TempReg);
1134
1135  updateValueMap(I, DestReg);
1136  return true;
1137}
1138
1139bool MipsFastISel::processCallArgs(CallLoweringInfo &CLI,
1140                                   SmallVectorImpl<MVT> &OutVTs,
1141                                   unsigned &NumBytes) {
1142  CallingConv::ID CC = CLI.CallConv;
1143  SmallVector<CCValAssign, 16> ArgLocs;
1144  CCState CCInfo(CC, false, *FuncInfo.MF, ArgLocs, *Context);
1145  CCInfo.AnalyzeCallOperands(OutVTs, CLI.OutFlags, CCAssignFnForCall(CC));
1146  // Get a count of how many bytes are to be pushed on the stack.
1147  NumBytes = CCInfo.getNextStackOffset();
1148  // This is the minimum argument area used for A0-A3.
1149  if (NumBytes < 16)
1150    NumBytes = 16;
1151
1152  emitInst(Mips::ADJCALLSTACKDOWN).addImm(16).addImm(0);
1153  // Process the args.
1154  MVT firstMVT;
1155  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1156    CCValAssign &VA = ArgLocs[i];
1157    const Value *ArgVal = CLI.OutVals[VA.getValNo()];
1158    MVT ArgVT = OutVTs[VA.getValNo()];
1159
1160    if (i == 0) {
1161      firstMVT = ArgVT;
1162      if (ArgVT == MVT::f32) {
1163        VA.convertToReg(Mips::F12);
1164      } else if (ArgVT == MVT::f64) {
1165        if (Subtarget->isFP64bit())
1166          VA.convertToReg(Mips::D6_64);
1167        else
1168          VA.convertToReg(Mips::D6);
1169      }
1170    } else if (i == 1) {
1171      if ((firstMVT == MVT::f32) || (firstMVT == MVT::f64)) {
1172        if (ArgVT == MVT::f32) {
1173          VA.convertToReg(Mips::F14);
1174        } else if (ArgVT == MVT::f64) {
1175          if (Subtarget->isFP64bit())
1176            VA.convertToReg(Mips::D7_64);
1177          else
1178            VA.convertToReg(Mips::D7);
1179        }
1180      }
1181    }
1182    if (((ArgVT == MVT::i32) || (ArgVT == MVT::f32) || (ArgVT == MVT::i16) ||
1183         (ArgVT == MVT::i8)) &&
1184        VA.isMemLoc()) {
1185      switch (VA.getLocMemOffset()) {
1186      case 0:
1187        VA.convertToReg(Mips::A0);
1188        break;
1189      case 4:
1190        VA.convertToReg(Mips::A1);
1191        break;
1192      case 8:
1193        VA.convertToReg(Mips::A2);
1194        break;
1195      case 12:
1196        VA.convertToReg(Mips::A3);
1197        break;
1198      default:
1199        break;
1200      }
1201    }
1202    unsigned ArgReg = getRegForValue(ArgVal);
1203    if (!ArgReg)
1204      return false;
1205
1206    // Handle arg promotion: SExt, ZExt, AExt.
1207    switch (VA.getLocInfo()) {
1208    case CCValAssign::Full:
1209      break;
1210    case CCValAssign::AExt:
1211    case CCValAssign::SExt: {
1212      MVT DestVT = VA.getLocVT();
1213      MVT SrcVT = ArgVT;
1214      ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/false);
1215      if (!ArgReg)
1216        return false;
1217      break;
1218    }
1219    case CCValAssign::ZExt: {
1220      MVT DestVT = VA.getLocVT();
1221      MVT SrcVT = ArgVT;
1222      ArgReg = emitIntExt(SrcVT, ArgReg, DestVT, /*isZExt=*/true);
1223      if (!ArgReg)
1224        return false;
1225      break;
1226    }
1227    default:
1228      llvm_unreachable("Unknown arg promotion!");
1229    }
1230
1231    // Now copy/store arg to correct locations.
1232    if (VA.isRegLoc() && !VA.needsCustom()) {
1233      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1234              TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(ArgReg);
1235      CLI.OutRegs.push_back(VA.getLocReg());
1236    } else if (VA.needsCustom()) {
1237      llvm_unreachable("Mips does not use custom args.");
1238      return false;
1239    } else {
1240      //
1241      // FIXME: This path will currently return false. It was copied
1242      // from the AArch64 port and should be essentially fine for Mips too.
1243      // The work to finish up this path will be done in a follow-on patch.
1244      //
1245      assert(VA.isMemLoc() && "Assuming store on stack.");
1246      // Don't emit stores for undef values.
1247      if (isa<UndefValue>(ArgVal))
1248        continue;
1249
1250      // Need to store on the stack.
1251      // FIXME: This alignment is incorrect but this path is disabled
1252      // for now (will return false). We need to determine the right alignment
1253      // based on the normal alignment for the underlying machine type.
1254      //
1255      unsigned ArgSize = alignTo(ArgVT.getSizeInBits(), 4);
1256
1257      unsigned BEAlign = 0;
1258      if (ArgSize < 8 && !Subtarget->isLittle())
1259        BEAlign = 8 - ArgSize;
1260
1261      Address Addr;
1262      Addr.setKind(Address::RegBase);
1263      Addr.setReg(Mips::SP);
1264      Addr.setOffset(VA.getLocMemOffset() + BEAlign);
1265
1266      unsigned Alignment = DL.getABITypeAlignment(ArgVal->getType());
1267      MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand(
1268          MachinePointerInfo::getStack(*FuncInfo.MF, Addr.getOffset()),
1269          MachineMemOperand::MOStore, ArgVT.getStoreSize(), Alignment);
1270      (void)(MMO);
1271      // if (!emitStore(ArgVT, ArgReg, Addr, MMO))
1272      return false; // can't store on the stack yet.
1273    }
1274  }
1275
1276  return true;
1277}
1278
1279bool MipsFastISel::finishCall(CallLoweringInfo &CLI, MVT RetVT,
1280                              unsigned NumBytes) {
1281  CallingConv::ID CC = CLI.CallConv;
1282  emitInst(Mips::ADJCALLSTACKUP).addImm(16).addImm(0);
1283  if (RetVT != MVT::isVoid) {
1284    SmallVector<CCValAssign, 16> RVLocs;
1285    MipsCCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context);
1286
1287    CCInfo.AnalyzeCallResult(CLI.Ins, RetCC_Mips, CLI.RetTy,
1288                             CLI.Symbol ? CLI.Symbol->getName().data()
1289                                        : nullptr);
1290
1291    // Only handle a single return value.
1292    if (RVLocs.size() != 1)
1293      return false;
1294    // Copy all of the result registers out of their specified physreg.
1295    MVT CopyVT = RVLocs[0].getValVT();
1296    // Special handling for extended integers.
1297    if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16)
1298      CopyVT = MVT::i32;
1299
1300    unsigned ResultReg = createResultReg(TLI.getRegClassFor(CopyVT));
1301    if (!ResultReg)
1302      return false;
1303    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1304            TII.get(TargetOpcode::COPY),
1305            ResultReg).addReg(RVLocs[0].getLocReg());
1306    CLI.InRegs.push_back(RVLocs[0].getLocReg());
1307
1308    CLI.ResultReg = ResultReg;
1309    CLI.NumResultRegs = 1;
1310  }
1311  return true;
1312}
1313
1314bool MipsFastISel::fastLowerArguments() {
1315  LLVM_DEBUG(dbgs() << "fastLowerArguments\n");
1316
1317  if (!FuncInfo.CanLowerReturn) {
1318    LLVM_DEBUG(dbgs() << ".. gave up (!CanLowerReturn)\n");
1319    return false;
1320  }
1321
1322  const Function *F = FuncInfo.Fn;
1323  if (F->isVarArg()) {
1324    LLVM_DEBUG(dbgs() << ".. gave up (varargs)\n");
1325    return false;
1326  }
1327
1328  CallingConv::ID CC = F->getCallingConv();
1329  if (CC != CallingConv::C) {
1330    LLVM_DEBUG(dbgs() << ".. gave up (calling convention is not C)\n");
1331    return false;
1332  }
1333
1334  std::array<MCPhysReg, 4> GPR32ArgRegs = {{Mips::A0, Mips::A1, Mips::A2,
1335                                           Mips::A3}};
1336  std::array<MCPhysReg, 2> FGR32ArgRegs = {{Mips::F12, Mips::F14}};
1337  std::array<MCPhysReg, 2> AFGR64ArgRegs = {{Mips::D6, Mips::D7}};
1338  auto NextGPR32 = GPR32ArgRegs.begin();
1339  auto NextFGR32 = FGR32ArgRegs.begin();
1340  auto NextAFGR64 = AFGR64ArgRegs.begin();
1341
1342  struct AllocatedReg {
1343    const TargetRegisterClass *RC;
1344    unsigned Reg;
1345    AllocatedReg(const TargetRegisterClass *RC, unsigned Reg)
1346        : RC(RC), Reg(Reg) {}
1347  };
1348
1349  // Only handle simple cases. i.e. All arguments are directly mapped to
1350  // registers of the appropriate type.
1351  SmallVector<AllocatedReg, 4> Allocation;
1352  for (const auto &FormalArg : F->args()) {
1353    if (FormalArg.hasAttribute(Attribute::InReg) ||
1354        FormalArg.hasAttribute(Attribute::StructRet) ||
1355        FormalArg.hasAttribute(Attribute::ByVal)) {
1356      LLVM_DEBUG(dbgs() << ".. gave up (inreg, structret, byval)\n");
1357      return false;
1358    }
1359
1360    Type *ArgTy = FormalArg.getType();
1361    if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) {
1362      LLVM_DEBUG(dbgs() << ".. gave up (struct, array, or vector)\n");
1363      return false;
1364    }
1365
1366    EVT ArgVT = TLI.getValueType(DL, ArgTy);
1367    LLVM_DEBUG(dbgs() << ".. " << FormalArg.getArgNo() << ": "
1368                      << ArgVT.getEVTString() << "\n");
1369    if (!ArgVT.isSimple()) {
1370      LLVM_DEBUG(dbgs() << ".. .. gave up (not a simple type)\n");
1371      return false;
1372    }
1373
1374    switch (ArgVT.getSimpleVT().SimpleTy) {
1375    case MVT::i1:
1376    case MVT::i8:
1377    case MVT::i16:
1378      if (!FormalArg.hasAttribute(Attribute::SExt) &&
1379          !FormalArg.hasAttribute(Attribute::ZExt)) {
1380        // It must be any extend, this shouldn't happen for clang-generated IR
1381        // so just fall back on SelectionDAG.
1382        LLVM_DEBUG(dbgs() << ".. .. gave up (i8/i16 arg is not extended)\n");
1383        return false;
1384      }
1385
1386      if (NextGPR32 == GPR32ArgRegs.end()) {
1387        LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1388        return false;
1389      }
1390
1391      LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1392      Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1393
1394      // Allocating any GPR32 prohibits further use of floating point arguments.
1395      NextFGR32 = FGR32ArgRegs.end();
1396      NextAFGR64 = AFGR64ArgRegs.end();
1397      break;
1398
1399    case MVT::i32:
1400      if (FormalArg.hasAttribute(Attribute::ZExt)) {
1401        // The O32 ABI does not permit a zero-extended i32.
1402        LLVM_DEBUG(dbgs() << ".. .. gave up (i32 arg is zero extended)\n");
1403        return false;
1404      }
1405
1406      if (NextGPR32 == GPR32ArgRegs.end()) {
1407        LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of GPR32 arguments)\n");
1408        return false;
1409      }
1410
1411      LLVM_DEBUG(dbgs() << ".. .. GPR32(" << *NextGPR32 << ")\n");
1412      Allocation.emplace_back(&Mips::GPR32RegClass, *NextGPR32++);
1413
1414      // Allocating any GPR32 prohibits further use of floating point arguments.
1415      NextFGR32 = FGR32ArgRegs.end();
1416      NextAFGR64 = AFGR64ArgRegs.end();
1417      break;
1418
1419    case MVT::f32:
1420      if (UnsupportedFPMode) {
1421        LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1422        return false;
1423      }
1424      if (NextFGR32 == FGR32ArgRegs.end()) {
1425        LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of FGR32 arguments)\n");
1426        return false;
1427      }
1428      LLVM_DEBUG(dbgs() << ".. .. FGR32(" << *NextFGR32 << ")\n");
1429      Allocation.emplace_back(&Mips::FGR32RegClass, *NextFGR32++);
1430      // Allocating an FGR32 also allocates the super-register AFGR64, and
1431      // ABI rules require us to skip the corresponding GPR32.
1432      if (NextGPR32 != GPR32ArgRegs.end())
1433        NextGPR32++;
1434      if (NextAFGR64 != AFGR64ArgRegs.end())
1435        NextAFGR64++;
1436      break;
1437
1438    case MVT::f64:
1439      if (UnsupportedFPMode) {
1440        LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode)\n");
1441        return false;
1442      }
1443      if (NextAFGR64 == AFGR64ArgRegs.end()) {
1444        LLVM_DEBUG(dbgs() << ".. .. gave up (ran out of AFGR64 arguments)\n");
1445        return false;
1446      }
1447      LLVM_DEBUG(dbgs() << ".. .. AFGR64(" << *NextAFGR64 << ")\n");
1448      Allocation.emplace_back(&Mips::AFGR64RegClass, *NextAFGR64++);
1449      // Allocating an FGR32 also allocates the super-register AFGR64, and
1450      // ABI rules require us to skip the corresponding GPR32 pair.
1451      if (NextGPR32 != GPR32ArgRegs.end())
1452        NextGPR32++;
1453      if (NextGPR32 != GPR32ArgRegs.end())
1454        NextGPR32++;
1455      if (NextFGR32 != FGR32ArgRegs.end())
1456        NextFGR32++;
1457      break;
1458
1459    default:
1460      LLVM_DEBUG(dbgs() << ".. .. gave up (unknown type)\n");
1461      return false;
1462    }
1463  }
1464
1465  for (const auto &FormalArg : F->args()) {
1466    unsigned ArgNo = FormalArg.getArgNo();
1467    unsigned SrcReg = Allocation[ArgNo].Reg;
1468    unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, Allocation[ArgNo].RC);
1469    // FIXME: Unfortunately it's necessary to emit a copy from the livein copy.
1470    // Without this, EmitLiveInCopies may eliminate the livein if its only
1471    // use is a bitcast (which isn't turned into an instruction).
1472    unsigned ResultReg = createResultReg(Allocation[ArgNo].RC);
1473    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1474            TII.get(TargetOpcode::COPY), ResultReg)
1475        .addReg(DstReg, getKillRegState(true));
1476    updateValueMap(&FormalArg, ResultReg);
1477  }
1478
1479  // Calculate the size of the incoming arguments area.
1480  // We currently reject all the cases where this would be non-zero.
1481  unsigned IncomingArgSizeInBytes = 0;
1482
1483  // Account for the reserved argument area on ABI's that have one (O32).
1484  // It seems strange to do this on the caller side but it's necessary in
1485  // SelectionDAG's implementation.
1486  IncomingArgSizeInBytes = std::min(getABI().GetCalleeAllocdArgSizeInBytes(CC),
1487                                    IncomingArgSizeInBytes);
1488
1489  MF->getInfo<MipsFunctionInfo>()->setFormalArgInfo(IncomingArgSizeInBytes,
1490                                                    false);
1491
1492  return true;
1493}
1494
1495bool MipsFastISel::fastLowerCall(CallLoweringInfo &CLI) {
1496  CallingConv::ID CC = CLI.CallConv;
1497  bool IsTailCall = CLI.IsTailCall;
1498  bool IsVarArg = CLI.IsVarArg;
1499  const Value *Callee = CLI.Callee;
1500  MCSymbol *Symbol = CLI.Symbol;
1501
1502  // Do not handle FastCC.
1503  if (CC == CallingConv::Fast)
1504    return false;
1505
1506  // Allow SelectionDAG isel to handle tail calls.
1507  if (IsTailCall)
1508    return false;
1509
1510  // Let SDISel handle vararg functions.
1511  if (IsVarArg)
1512    return false;
1513
1514  // FIXME: Only handle *simple* calls for now.
1515  MVT RetVT;
1516  if (CLI.RetTy->isVoidTy())
1517    RetVT = MVT::isVoid;
1518  else if (!isTypeSupported(CLI.RetTy, RetVT))
1519    return false;
1520
1521  for (auto Flag : CLI.OutFlags)
1522    if (Flag.isInReg() || Flag.isSRet() || Flag.isNest() || Flag.isByVal())
1523      return false;
1524
1525  // Set up the argument vectors.
1526  SmallVector<MVT, 16> OutVTs;
1527  OutVTs.reserve(CLI.OutVals.size());
1528
1529  for (auto *Val : CLI.OutVals) {
1530    MVT VT;
1531    if (!isTypeLegal(Val->getType(), VT) &&
1532        !(VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16))
1533      return false;
1534
1535    // We don't handle vector parameters yet.
1536    if (VT.isVector() || VT.getSizeInBits() > 64)
1537      return false;
1538
1539    OutVTs.push_back(VT);
1540  }
1541
1542  Address Addr;
1543  if (!computeCallAddress(Callee, Addr))
1544    return false;
1545
1546  // Handle the arguments now that we've gotten them.
1547  unsigned NumBytes;
1548  if (!processCallArgs(CLI, OutVTs, NumBytes))
1549    return false;
1550
1551  if (!Addr.getGlobalValue())
1552    return false;
1553
1554  // Issue the call.
1555  unsigned DestAddress;
1556  if (Symbol)
1557    DestAddress = materializeExternalCallSym(Symbol);
1558  else
1559    DestAddress = materializeGV(Addr.getGlobalValue(), MVT::i32);
1560  emitInst(TargetOpcode::COPY, Mips::T9).addReg(DestAddress);
1561  MachineInstrBuilder MIB =
1562      BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Mips::JALR),
1563              Mips::RA).addReg(Mips::T9);
1564
1565  // Add implicit physical register uses to the call.
1566  for (auto Reg : CLI.OutRegs)
1567    MIB.addReg(Reg, RegState::Implicit);
1568
1569  // Add a register mask with the call-preserved registers.
1570  // Proper defs for return values will be added by setPhysRegsDeadExcept().
1571  MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC));
1572
1573  CLI.Call = MIB;
1574
1575  if (EmitJalrReloc && !Subtarget->inMips16Mode()) {
1576    // Attach callee address to the instruction, let asm printer emit
1577    // .reloc R_MIPS_JALR.
1578    if (Symbol)
1579      MIB.addSym(Symbol, MipsII::MO_JALR);
1580    else
1581      MIB.addSym(FuncInfo.MF->getContext().getOrCreateSymbol(
1582	                   Addr.getGlobalValue()->getName()), MipsII::MO_JALR);
1583  }
1584
1585  // Finish off the call including any return values.
1586  return finishCall(CLI, RetVT, NumBytes);
1587}
1588
1589bool MipsFastISel::fastLowerIntrinsicCall(const IntrinsicInst *II) {
1590  switch (II->getIntrinsicID()) {
1591  default:
1592    return false;
1593  case Intrinsic::bswap: {
1594    Type *RetTy = II->getCalledFunction()->getReturnType();
1595
1596    MVT VT;
1597    if (!isTypeSupported(RetTy, VT))
1598      return false;
1599
1600    unsigned SrcReg = getRegForValue(II->getOperand(0));
1601    if (SrcReg == 0)
1602      return false;
1603    unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1604    if (DestReg == 0)
1605      return false;
1606    if (VT == MVT::i16) {
1607      if (Subtarget->hasMips32r2()) {
1608        emitInst(Mips::WSBH, DestReg).addReg(SrcReg);
1609        updateValueMap(II, DestReg);
1610        return true;
1611      } else {
1612        unsigned TempReg[3];
1613        for (int i = 0; i < 3; i++) {
1614          TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1615          if (TempReg[i] == 0)
1616            return false;
1617        }
1618        emitInst(Mips::SLL, TempReg[0]).addReg(SrcReg).addImm(8);
1619        emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(8);
1620        emitInst(Mips::OR, TempReg[2]).addReg(TempReg[0]).addReg(TempReg[1]);
1621        emitInst(Mips::ANDi, DestReg).addReg(TempReg[2]).addImm(0xFFFF);
1622        updateValueMap(II, DestReg);
1623        return true;
1624      }
1625    } else if (VT == MVT::i32) {
1626      if (Subtarget->hasMips32r2()) {
1627        unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1628        emitInst(Mips::WSBH, TempReg).addReg(SrcReg);
1629        emitInst(Mips::ROTR, DestReg).addReg(TempReg).addImm(16);
1630        updateValueMap(II, DestReg);
1631        return true;
1632      } else {
1633        unsigned TempReg[8];
1634        for (int i = 0; i < 8; i++) {
1635          TempReg[i] = createResultReg(&Mips::GPR32RegClass);
1636          if (TempReg[i] == 0)
1637            return false;
1638        }
1639
1640        emitInst(Mips::SRL, TempReg[0]).addReg(SrcReg).addImm(8);
1641        emitInst(Mips::SRL, TempReg[1]).addReg(SrcReg).addImm(24);
1642        emitInst(Mips::ANDi, TempReg[2]).addReg(TempReg[0]).addImm(0xFF00);
1643        emitInst(Mips::OR, TempReg[3]).addReg(TempReg[1]).addReg(TempReg[2]);
1644
1645        emitInst(Mips::ANDi, TempReg[4]).addReg(SrcReg).addImm(0xFF00);
1646        emitInst(Mips::SLL, TempReg[5]).addReg(TempReg[4]).addImm(8);
1647
1648        emitInst(Mips::SLL, TempReg[6]).addReg(SrcReg).addImm(24);
1649        emitInst(Mips::OR, TempReg[7]).addReg(TempReg[3]).addReg(TempReg[5]);
1650        emitInst(Mips::OR, DestReg).addReg(TempReg[6]).addReg(TempReg[7]);
1651        updateValueMap(II, DestReg);
1652        return true;
1653      }
1654    }
1655    return false;
1656  }
1657  case Intrinsic::memcpy:
1658  case Intrinsic::memmove: {
1659    const auto *MTI = cast<MemTransferInst>(II);
1660    // Don't handle volatile.
1661    if (MTI->isVolatile())
1662      return false;
1663    if (!MTI->getLength()->getType()->isIntegerTy(32))
1664      return false;
1665    const char *IntrMemName = isa<MemCpyInst>(II) ? "memcpy" : "memmove";
1666    return lowerCallTo(II, IntrMemName, II->getNumArgOperands() - 1);
1667  }
1668  case Intrinsic::memset: {
1669    const MemSetInst *MSI = cast<MemSetInst>(II);
1670    // Don't handle volatile.
1671    if (MSI->isVolatile())
1672      return false;
1673    if (!MSI->getLength()->getType()->isIntegerTy(32))
1674      return false;
1675    return lowerCallTo(II, "memset", II->getNumArgOperands() - 1);
1676  }
1677  }
1678  return false;
1679}
1680
1681bool MipsFastISel::selectRet(const Instruction *I) {
1682  const Function &F = *I->getParent()->getParent();
1683  const ReturnInst *Ret = cast<ReturnInst>(I);
1684
1685  LLVM_DEBUG(dbgs() << "selectRet\n");
1686
1687  if (!FuncInfo.CanLowerReturn)
1688    return false;
1689
1690  // Build a list of return value registers.
1691  SmallVector<unsigned, 4> RetRegs;
1692
1693  if (Ret->getNumOperands() > 0) {
1694    CallingConv::ID CC = F.getCallingConv();
1695
1696    // Do not handle FastCC.
1697    if (CC == CallingConv::Fast)
1698      return false;
1699
1700    SmallVector<ISD::OutputArg, 4> Outs;
1701    GetReturnInfo(CC, F.getReturnType(), F.getAttributes(), Outs, TLI, DL);
1702
1703    // Analyze operands of the call, assigning locations to each operand.
1704    SmallVector<CCValAssign, 16> ValLocs;
1705    MipsCCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs,
1706                       I->getContext());
1707    CCAssignFn *RetCC = RetCC_Mips;
1708    CCInfo.AnalyzeReturn(Outs, RetCC);
1709
1710    // Only handle a single return value for now.
1711    if (ValLocs.size() != 1)
1712      return false;
1713
1714    CCValAssign &VA = ValLocs[0];
1715    const Value *RV = Ret->getOperand(0);
1716
1717    // Don't bother handling odd stuff for now.
1718    if ((VA.getLocInfo() != CCValAssign::Full) &&
1719        (VA.getLocInfo() != CCValAssign::BCvt))
1720      return false;
1721
1722    // Only handle register returns for now.
1723    if (!VA.isRegLoc())
1724      return false;
1725
1726    unsigned Reg = getRegForValue(RV);
1727    if (Reg == 0)
1728      return false;
1729
1730    unsigned SrcReg = Reg + VA.getValNo();
1731    Register DestReg = VA.getLocReg();
1732    // Avoid a cross-class copy. This is very unlikely.
1733    if (!MRI.getRegClass(SrcReg)->contains(DestReg))
1734      return false;
1735
1736    EVT RVEVT = TLI.getValueType(DL, RV->getType());
1737    if (!RVEVT.isSimple())
1738      return false;
1739
1740    if (RVEVT.isVector())
1741      return false;
1742
1743    MVT RVVT = RVEVT.getSimpleVT();
1744    if (RVVT == MVT::f128)
1745      return false;
1746
1747    // Do not handle FGR64 returns for now.
1748    if (RVVT == MVT::f64 && UnsupportedFPMode) {
1749      LLVM_DEBUG(dbgs() << ".. .. gave up (UnsupportedFPMode\n");
1750      return false;
1751    }
1752
1753    MVT DestVT = VA.getValVT();
1754    // Special handling for extended integers.
1755    if (RVVT != DestVT) {
1756      if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16)
1757        return false;
1758
1759      if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) {
1760        bool IsZExt = Outs[0].Flags.isZExt();
1761        SrcReg = emitIntExt(RVVT, SrcReg, DestVT, IsZExt);
1762        if (SrcReg == 0)
1763          return false;
1764      }
1765    }
1766
1767    // Make the copy.
1768    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc,
1769            TII.get(TargetOpcode::COPY), DestReg).addReg(SrcReg);
1770
1771    // Add register to return instruction.
1772    RetRegs.push_back(VA.getLocReg());
1773  }
1774  MachineInstrBuilder MIB = emitInst(Mips::RetRA);
1775  for (unsigned i = 0, e = RetRegs.size(); i != e; ++i)
1776    MIB.addReg(RetRegs[i], RegState::Implicit);
1777  return true;
1778}
1779
1780bool MipsFastISel::selectTrunc(const Instruction *I) {
1781  // The high bits for a type smaller than the register size are assumed to be
1782  // undefined.
1783  Value *Op = I->getOperand(0);
1784
1785  EVT SrcVT, DestVT;
1786  SrcVT = TLI.getValueType(DL, Op->getType(), true);
1787  DestVT = TLI.getValueType(DL, I->getType(), true);
1788
1789  if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8)
1790    return false;
1791  if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1)
1792    return false;
1793
1794  unsigned SrcReg = getRegForValue(Op);
1795  if (!SrcReg)
1796    return false;
1797
1798  // Because the high bits are undefined, a truncate doesn't generate
1799  // any code.
1800  updateValueMap(I, SrcReg);
1801  return true;
1802}
1803
1804bool MipsFastISel::selectIntExt(const Instruction *I) {
1805  Type *DestTy = I->getType();
1806  Value *Src = I->getOperand(0);
1807  Type *SrcTy = Src->getType();
1808
1809  bool isZExt = isa<ZExtInst>(I);
1810  unsigned SrcReg = getRegForValue(Src);
1811  if (!SrcReg)
1812    return false;
1813
1814  EVT SrcEVT, DestEVT;
1815  SrcEVT = TLI.getValueType(DL, SrcTy, true);
1816  DestEVT = TLI.getValueType(DL, DestTy, true);
1817  if (!SrcEVT.isSimple())
1818    return false;
1819  if (!DestEVT.isSimple())
1820    return false;
1821
1822  MVT SrcVT = SrcEVT.getSimpleVT();
1823  MVT DestVT = DestEVT.getSimpleVT();
1824  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1825
1826  if (!emitIntExt(SrcVT, SrcReg, DestVT, ResultReg, isZExt))
1827    return false;
1828  updateValueMap(I, ResultReg);
1829  return true;
1830}
1831
1832bool MipsFastISel::emitIntSExt32r1(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1833                                   unsigned DestReg) {
1834  unsigned ShiftAmt;
1835  switch (SrcVT.SimpleTy) {
1836  default:
1837    return false;
1838  case MVT::i8:
1839    ShiftAmt = 24;
1840    break;
1841  case MVT::i16:
1842    ShiftAmt = 16;
1843    break;
1844  }
1845  unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1846  emitInst(Mips::SLL, TempReg).addReg(SrcReg).addImm(ShiftAmt);
1847  emitInst(Mips::SRA, DestReg).addReg(TempReg).addImm(ShiftAmt);
1848  return true;
1849}
1850
1851bool MipsFastISel::emitIntSExt32r2(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1852                                   unsigned DestReg) {
1853  switch (SrcVT.SimpleTy) {
1854  default:
1855    return false;
1856  case MVT::i8:
1857    emitInst(Mips::SEB, DestReg).addReg(SrcReg);
1858    break;
1859  case MVT::i16:
1860    emitInst(Mips::SEH, DestReg).addReg(SrcReg);
1861    break;
1862  }
1863  return true;
1864}
1865
1866bool MipsFastISel::emitIntSExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1867                               unsigned DestReg) {
1868  if ((DestVT != MVT::i32) && (DestVT != MVT::i16))
1869    return false;
1870  if (Subtarget->hasMips32r2())
1871    return emitIntSExt32r2(SrcVT, SrcReg, DestVT, DestReg);
1872  return emitIntSExt32r1(SrcVT, SrcReg, DestVT, DestReg);
1873}
1874
1875bool MipsFastISel::emitIntZExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1876                               unsigned DestReg) {
1877  int64_t Imm;
1878
1879  switch (SrcVT.SimpleTy) {
1880  default:
1881    return false;
1882  case MVT::i1:
1883    Imm = 1;
1884    break;
1885  case MVT::i8:
1886    Imm = 0xff;
1887    break;
1888  case MVT::i16:
1889    Imm = 0xffff;
1890    break;
1891  }
1892
1893  emitInst(Mips::ANDi, DestReg).addReg(SrcReg).addImm(Imm);
1894  return true;
1895}
1896
1897bool MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1898                              unsigned DestReg, bool IsZExt) {
1899  // FastISel does not have plumbing to deal with extensions where the SrcVT or
1900  // DestVT are odd things, so test to make sure that they are both types we can
1901  // handle (i1/i8/i16/i32 for SrcVT and i8/i16/i32/i64 for DestVT), otherwise
1902  // bail out to SelectionDAG.
1903  if (((DestVT != MVT::i8) && (DestVT != MVT::i16) && (DestVT != MVT::i32)) ||
1904      ((SrcVT != MVT::i1) && (SrcVT != MVT::i8) && (SrcVT != MVT::i16)))
1905    return false;
1906  if (IsZExt)
1907    return emitIntZExt(SrcVT, SrcReg, DestVT, DestReg);
1908  return emitIntSExt(SrcVT, SrcReg, DestVT, DestReg);
1909}
1910
1911unsigned MipsFastISel::emitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT,
1912                                  bool isZExt) {
1913  unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
1914  bool Success = emitIntExt(SrcVT, SrcReg, DestVT, DestReg, isZExt);
1915  return Success ? DestReg : 0;
1916}
1917
1918bool MipsFastISel::selectDivRem(const Instruction *I, unsigned ISDOpcode) {
1919  EVT DestEVT = TLI.getValueType(DL, I->getType(), true);
1920  if (!DestEVT.isSimple())
1921    return false;
1922
1923  MVT DestVT = DestEVT.getSimpleVT();
1924  if (DestVT != MVT::i32)
1925    return false;
1926
1927  unsigned DivOpc;
1928  switch (ISDOpcode) {
1929  default:
1930    return false;
1931  case ISD::SDIV:
1932  case ISD::SREM:
1933    DivOpc = Mips::SDIV;
1934    break;
1935  case ISD::UDIV:
1936  case ISD::UREM:
1937    DivOpc = Mips::UDIV;
1938    break;
1939  }
1940
1941  unsigned Src0Reg = getRegForValue(I->getOperand(0));
1942  unsigned Src1Reg = getRegForValue(I->getOperand(1));
1943  if (!Src0Reg || !Src1Reg)
1944    return false;
1945
1946  emitInst(DivOpc).addReg(Src0Reg).addReg(Src1Reg);
1947  emitInst(Mips::TEQ).addReg(Src1Reg).addReg(Mips::ZERO).addImm(7);
1948
1949  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1950  if (!ResultReg)
1951    return false;
1952
1953  unsigned MFOpc = (ISDOpcode == ISD::SREM || ISDOpcode == ISD::UREM)
1954                       ? Mips::MFHI
1955                       : Mips::MFLO;
1956  emitInst(MFOpc, ResultReg);
1957
1958  updateValueMap(I, ResultReg);
1959  return true;
1960}
1961
1962bool MipsFastISel::selectShift(const Instruction *I) {
1963  MVT RetVT;
1964
1965  if (!isTypeSupported(I->getType(), RetVT))
1966    return false;
1967
1968  unsigned ResultReg = createResultReg(&Mips::GPR32RegClass);
1969  if (!ResultReg)
1970    return false;
1971
1972  unsigned Opcode = I->getOpcode();
1973  const Value *Op0 = I->getOperand(0);
1974  unsigned Op0Reg = getRegForValue(Op0);
1975  if (!Op0Reg)
1976    return false;
1977
1978  // If AShr or LShr, then we need to make sure the operand0 is sign extended.
1979  if (Opcode == Instruction::AShr || Opcode == Instruction::LShr) {
1980    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
1981    if (!TempReg)
1982      return false;
1983
1984    MVT Op0MVT = TLI.getValueType(DL, Op0->getType(), true).getSimpleVT();
1985    bool IsZExt = Opcode == Instruction::LShr;
1986    if (!emitIntExt(Op0MVT, Op0Reg, MVT::i32, TempReg, IsZExt))
1987      return false;
1988
1989    Op0Reg = TempReg;
1990  }
1991
1992  if (const auto *C = dyn_cast<ConstantInt>(I->getOperand(1))) {
1993    uint64_t ShiftVal = C->getZExtValue();
1994
1995    switch (Opcode) {
1996    default:
1997      llvm_unreachable("Unexpected instruction.");
1998    case Instruction::Shl:
1999      Opcode = Mips::SLL;
2000      break;
2001    case Instruction::AShr:
2002      Opcode = Mips::SRA;
2003      break;
2004    case Instruction::LShr:
2005      Opcode = Mips::SRL;
2006      break;
2007    }
2008
2009    emitInst(Opcode, ResultReg).addReg(Op0Reg).addImm(ShiftVal);
2010    updateValueMap(I, ResultReg);
2011    return true;
2012  }
2013
2014  unsigned Op1Reg = getRegForValue(I->getOperand(1));
2015  if (!Op1Reg)
2016    return false;
2017
2018  switch (Opcode) {
2019  default:
2020    llvm_unreachable("Unexpected instruction.");
2021  case Instruction::Shl:
2022    Opcode = Mips::SLLV;
2023    break;
2024  case Instruction::AShr:
2025    Opcode = Mips::SRAV;
2026    break;
2027  case Instruction::LShr:
2028    Opcode = Mips::SRLV;
2029    break;
2030  }
2031
2032  emitInst(Opcode, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
2033  updateValueMap(I, ResultReg);
2034  return true;
2035}
2036
2037bool MipsFastISel::fastSelectInstruction(const Instruction *I) {
2038  switch (I->getOpcode()) {
2039  default:
2040    break;
2041  case Instruction::Load:
2042    return selectLoad(I);
2043  case Instruction::Store:
2044    return selectStore(I);
2045  case Instruction::SDiv:
2046    if (!selectBinaryOp(I, ISD::SDIV))
2047      return selectDivRem(I, ISD::SDIV);
2048    return true;
2049  case Instruction::UDiv:
2050    if (!selectBinaryOp(I, ISD::UDIV))
2051      return selectDivRem(I, ISD::UDIV);
2052    return true;
2053  case Instruction::SRem:
2054    if (!selectBinaryOp(I, ISD::SREM))
2055      return selectDivRem(I, ISD::SREM);
2056    return true;
2057  case Instruction::URem:
2058    if (!selectBinaryOp(I, ISD::UREM))
2059      return selectDivRem(I, ISD::UREM);
2060    return true;
2061  case Instruction::Shl:
2062  case Instruction::LShr:
2063  case Instruction::AShr:
2064    return selectShift(I);
2065  case Instruction::And:
2066  case Instruction::Or:
2067  case Instruction::Xor:
2068    return selectLogicalOp(I);
2069  case Instruction::Br:
2070    return selectBranch(I);
2071  case Instruction::Ret:
2072    return selectRet(I);
2073  case Instruction::Trunc:
2074    return selectTrunc(I);
2075  case Instruction::ZExt:
2076  case Instruction::SExt:
2077    return selectIntExt(I);
2078  case Instruction::FPTrunc:
2079    return selectFPTrunc(I);
2080  case Instruction::FPExt:
2081    return selectFPExt(I);
2082  case Instruction::FPToSI:
2083    return selectFPToInt(I, /*isSigned*/ true);
2084  case Instruction::FPToUI:
2085    return selectFPToInt(I, /*isSigned*/ false);
2086  case Instruction::ICmp:
2087  case Instruction::FCmp:
2088    return selectCmp(I);
2089  case Instruction::Select:
2090    return selectSelect(I);
2091  }
2092  return false;
2093}
2094
2095unsigned MipsFastISel::getRegEnsuringSimpleIntegerWidening(const Value *V,
2096                                                           bool IsUnsigned) {
2097  unsigned VReg = getRegForValue(V);
2098  if (VReg == 0)
2099    return 0;
2100  MVT VMVT = TLI.getValueType(DL, V->getType(), true).getSimpleVT();
2101
2102  if (VMVT == MVT::i1)
2103    return 0;
2104
2105  if ((VMVT == MVT::i8) || (VMVT == MVT::i16)) {
2106    unsigned TempReg = createResultReg(&Mips::GPR32RegClass);
2107    if (!emitIntExt(VMVT, VReg, MVT::i32, TempReg, IsUnsigned))
2108      return 0;
2109    VReg = TempReg;
2110  }
2111  return VReg;
2112}
2113
2114void MipsFastISel::simplifyAddress(Address &Addr) {
2115  if (!isInt<16>(Addr.getOffset())) {
2116    unsigned TempReg =
2117        materialize32BitInt(Addr.getOffset(), &Mips::GPR32RegClass);
2118    unsigned DestReg = createResultReg(&Mips::GPR32RegClass);
2119    emitInst(Mips::ADDu, DestReg).addReg(TempReg).addReg(Addr.getReg());
2120    Addr.setReg(DestReg);
2121    Addr.setOffset(0);
2122  }
2123}
2124
2125unsigned MipsFastISel::fastEmitInst_rr(unsigned MachineInstOpcode,
2126                                       const TargetRegisterClass *RC,
2127                                       unsigned Op0, bool Op0IsKill,
2128                                       unsigned Op1, bool Op1IsKill) {
2129  // We treat the MUL instruction in a special way because it clobbers
2130  // the HI0 & LO0 registers. The TableGen definition of this instruction can
2131  // mark these registers only as implicitly defined. As a result, the
2132  // register allocator runs out of registers when this instruction is
2133  // followed by another instruction that defines the same registers too.
2134  // We can fix this by explicitly marking those registers as dead.
2135  if (MachineInstOpcode == Mips::MUL) {
2136    unsigned ResultReg = createResultReg(RC);
2137    const MCInstrDesc &II = TII.get(MachineInstOpcode);
2138    Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs());
2139    Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1);
2140    BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg)
2141      .addReg(Op0, getKillRegState(Op0IsKill))
2142      .addReg(Op1, getKillRegState(Op1IsKill))
2143      .addReg(Mips::HI0, RegState::ImplicitDefine | RegState::Dead)
2144      .addReg(Mips::LO0, RegState::ImplicitDefine | RegState::Dead);
2145    return ResultReg;
2146  }
2147
2148  return FastISel::fastEmitInst_rr(MachineInstOpcode, RC, Op0, Op0IsKill, Op1,
2149                                   Op1IsKill);
2150}
2151
2152namespace llvm {
2153
2154FastISel *Mips::createFastISel(FunctionLoweringInfo &funcInfo,
2155                               const TargetLibraryInfo *libInfo) {
2156  return new MipsFastISel(funcInfo, libInfo);
2157}
2158
2159} // end namespace llvm
2160