LanaiISelLowering.cpp revision 360784
1//===-- LanaiISelLowering.cpp - Lanai DAG Lowering Implementation ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the LanaiTargetLowering class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "LanaiISelLowering.h"
14#include "Lanai.h"
15#include "LanaiCondCode.h"
16#include "LanaiMachineFunctionInfo.h"
17#include "LanaiSubtarget.h"
18#include "LanaiTargetObjectFile.h"
19#include "MCTargetDesc/LanaiBaseInfo.h"
20#include "llvm/ADT/APInt.h"
21#include "llvm/ADT/ArrayRef.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/StringSwitch.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/SelectionDAGNodes.h"
33#include "llvm/CodeGen/TargetCallingConv.h"
34#include "llvm/CodeGen/ValueTypes.h"
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/DerivedTypes.h"
37#include "llvm/IR/Function.h"
38#include "llvm/IR/GlobalValue.h"
39#include "llvm/Support/Casting.h"
40#include "llvm/Support/CodeGen.h"
41#include "llvm/Support/CommandLine.h"
42#include "llvm/Support/Debug.h"
43#include "llvm/Support/ErrorHandling.h"
44#include "llvm/Support/KnownBits.h"
45#include "llvm/Support/MachineValueType.h"
46#include "llvm/Support/MathExtras.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Target/TargetMachine.h"
49#include <cassert>
50#include <cmath>
51#include <cstdint>
52#include <cstdlib>
53#include <utility>
54
55#define DEBUG_TYPE "lanai-lower"
56
57using namespace llvm;
58
59// Limit on number of instructions the lowered multiplication may have before a
60// call to the library function should be generated instead. The threshold is
61// currently set to 14 as this was the smallest threshold that resulted in all
62// constant multiplications being lowered. A threshold of 5 covered all cases
63// except for one multiplication which required 14. mulsi3 requires 16
64// instructions (including the prologue and epilogue but excluding instructions
65// at call site). Until we can inline mulsi3, generating at most 14 instructions
66// will be faster than invoking mulsi3.
67static cl::opt<int> LanaiLowerConstantMulThreshold(
68    "lanai-constant-mul-threshold", cl::Hidden,
69    cl::desc("Maximum number of instruction to generate when lowering constant "
70             "multiplication instead of calling library function [default=14]"),
71    cl::init(14));
72
73LanaiTargetLowering::LanaiTargetLowering(const TargetMachine &TM,
74                                         const LanaiSubtarget &STI)
75    : TargetLowering(TM) {
76  // Set up the register classes.
77  addRegisterClass(MVT::i32, &Lanai::GPRRegClass);
78
79  // Compute derived properties from the register classes
80  TRI = STI.getRegisterInfo();
81  computeRegisterProperties(TRI);
82
83  setStackPointerRegisterToSaveRestore(Lanai::SP);
84
85  setOperationAction(ISD::BR_CC, MVT::i32, Custom);
86  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
87  setOperationAction(ISD::BRCOND, MVT::Other, Expand);
88  setOperationAction(ISD::SETCC, MVT::i32, Custom);
89  setOperationAction(ISD::SELECT, MVT::i32, Expand);
90  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
91
92  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
93  setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
94  setOperationAction(ISD::JumpTable, MVT::i32, Custom);
95  setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
96
97  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
98  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
99  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
100
101  setOperationAction(ISD::VASTART, MVT::Other, Custom);
102  setOperationAction(ISD::VAARG, MVT::Other, Expand);
103  setOperationAction(ISD::VACOPY, MVT::Other, Expand);
104  setOperationAction(ISD::VAEND, MVT::Other, Expand);
105
106  setOperationAction(ISD::SDIV, MVT::i32, Expand);
107  setOperationAction(ISD::UDIV, MVT::i32, Expand);
108  setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
109  setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
110  setOperationAction(ISD::SREM, MVT::i32, Expand);
111  setOperationAction(ISD::UREM, MVT::i32, Expand);
112
113  setOperationAction(ISD::MUL, MVT::i32, Custom);
114  setOperationAction(ISD::MULHU, MVT::i32, Expand);
115  setOperationAction(ISD::MULHS, MVT::i32, Expand);
116  setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
117  setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
118
119  setOperationAction(ISD::ROTR, MVT::i32, Expand);
120  setOperationAction(ISD::ROTL, MVT::i32, Expand);
121  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
122  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
123  setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
124
125  setOperationAction(ISD::BSWAP, MVT::i32, Expand);
126  setOperationAction(ISD::CTPOP, MVT::i32, Legal);
127  setOperationAction(ISD::CTLZ, MVT::i32, Legal);
128  setOperationAction(ISD::CTTZ, MVT::i32, Legal);
129
130  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
131  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
132  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
133
134  // Extended load operations for i1 types must be promoted
135  for (MVT VT : MVT::integer_valuetypes()) {
136    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
137    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
138    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
139  }
140
141  setTargetDAGCombine(ISD::ADD);
142  setTargetDAGCombine(ISD::SUB);
143  setTargetDAGCombine(ISD::AND);
144  setTargetDAGCombine(ISD::OR);
145  setTargetDAGCombine(ISD::XOR);
146
147  // Function alignments
148  setMinFunctionAlignment(Align(4));
149  setPrefFunctionAlignment(Align(4));
150
151  setJumpIsExpensive(true);
152
153  // TODO: Setting the minimum jump table entries needed before a
154  // switch is transformed to a jump table to 100 to avoid creating jump tables
155  // as this was causing bad performance compared to a large group of if
156  // statements. Re-evaluate this on new benchmarks.
157  setMinimumJumpTableEntries(100);
158
159  // Use fast calling convention for library functions.
160  for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
161    setLibcallCallingConv(static_cast<RTLIB::Libcall>(I), CallingConv::Fast);
162  }
163
164  MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
165  MaxStoresPerMemsetOptSize = 8;
166  MaxStoresPerMemcpy = 16; // For @llvm.memcpy -> sequence of stores
167  MaxStoresPerMemcpyOptSize = 8;
168  MaxStoresPerMemmove = 16; // For @llvm.memmove -> sequence of stores
169  MaxStoresPerMemmoveOptSize = 8;
170
171  // Booleans always contain 0 or 1.
172  setBooleanContents(ZeroOrOneBooleanContent);
173}
174
175SDValue LanaiTargetLowering::LowerOperation(SDValue Op,
176                                            SelectionDAG &DAG) const {
177  switch (Op.getOpcode()) {
178  case ISD::MUL:
179    return LowerMUL(Op, DAG);
180  case ISD::BR_CC:
181    return LowerBR_CC(Op, DAG);
182  case ISD::ConstantPool:
183    return LowerConstantPool(Op, DAG);
184  case ISD::GlobalAddress:
185    return LowerGlobalAddress(Op, DAG);
186  case ISD::BlockAddress:
187    return LowerBlockAddress(Op, DAG);
188  case ISD::JumpTable:
189    return LowerJumpTable(Op, DAG);
190  case ISD::SELECT_CC:
191    return LowerSELECT_CC(Op, DAG);
192  case ISD::SETCC:
193    return LowerSETCC(Op, DAG);
194  case ISD::SHL_PARTS:
195    return LowerSHL_PARTS(Op, DAG);
196  case ISD::SRL_PARTS:
197    return LowerSRL_PARTS(Op, DAG);
198  case ISD::VASTART:
199    return LowerVASTART(Op, DAG);
200  case ISD::DYNAMIC_STACKALLOC:
201    return LowerDYNAMIC_STACKALLOC(Op, DAG);
202  case ISD::RETURNADDR:
203    return LowerRETURNADDR(Op, DAG);
204  case ISD::FRAMEADDR:
205    return LowerFRAMEADDR(Op, DAG);
206  default:
207    llvm_unreachable("unimplemented operand");
208  }
209}
210
211//===----------------------------------------------------------------------===//
212//                       Lanai Inline Assembly Support
213//===----------------------------------------------------------------------===//
214
215Register LanaiTargetLowering::getRegisterByName(
216  const char *RegName, LLT /*VT*/,
217  const MachineFunction & /*MF*/) const {
218  // Only unallocatable registers should be matched here.
219  Register Reg = StringSwitch<unsigned>(RegName)
220                     .Case("pc", Lanai::PC)
221                     .Case("sp", Lanai::SP)
222                     .Case("fp", Lanai::FP)
223                     .Case("rr1", Lanai::RR1)
224                     .Case("r10", Lanai::R10)
225                     .Case("rr2", Lanai::RR2)
226                     .Case("r11", Lanai::R11)
227                     .Case("rca", Lanai::RCA)
228                     .Default(0);
229
230  if (Reg)
231    return Reg;
232  report_fatal_error("Invalid register name global variable");
233}
234
235std::pair<unsigned, const TargetRegisterClass *>
236LanaiTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
237                                                  StringRef Constraint,
238                                                  MVT VT) const {
239  if (Constraint.size() == 1)
240    // GCC Constraint Letters
241    switch (Constraint[0]) {
242    case 'r': // GENERAL_REGS
243      return std::make_pair(0U, &Lanai::GPRRegClass);
244    default:
245      break;
246    }
247
248  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
249}
250
251// Examine constraint type and operand type and determine a weight value.
252// This object must already have been set up with the operand type
253// and the current alternative constraint selected.
254TargetLowering::ConstraintWeight
255LanaiTargetLowering::getSingleConstraintMatchWeight(
256    AsmOperandInfo &Info, const char *Constraint) const {
257  ConstraintWeight Weight = CW_Invalid;
258  Value *CallOperandVal = Info.CallOperandVal;
259  // If we don't have a value, we can't do a match,
260  // but allow it at the lowest weight.
261  if (CallOperandVal == nullptr)
262    return CW_Default;
263  // Look at the constraint type.
264  switch (*Constraint) {
265  case 'I': // signed 16 bit immediate
266  case 'J': // integer zero
267  case 'K': // unsigned 16 bit immediate
268  case 'L': // immediate in the range 0 to 31
269  case 'M': // signed 32 bit immediate where lower 16 bits are 0
270  case 'N': // signed 26 bit immediate
271  case 'O': // integer zero
272    if (isa<ConstantInt>(CallOperandVal))
273      Weight = CW_Constant;
274    break;
275  default:
276    Weight = TargetLowering::getSingleConstraintMatchWeight(Info, Constraint);
277    break;
278  }
279  return Weight;
280}
281
282// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
283// vector.  If it is invalid, don't add anything to Ops.
284void LanaiTargetLowering::LowerAsmOperandForConstraint(
285    SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
286    SelectionDAG &DAG) const {
287  SDValue Result(nullptr, 0);
288
289  // Only support length 1 constraints for now.
290  if (Constraint.length() > 1)
291    return;
292
293  char ConstraintLetter = Constraint[0];
294  switch (ConstraintLetter) {
295  case 'I': // Signed 16 bit constant
296    // If this fails, the parent routine will give an error
297    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
298      if (isInt<16>(C->getSExtValue())) {
299        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
300                                       Op.getValueType());
301        break;
302      }
303    }
304    return;
305  case 'J': // integer zero
306  case 'O':
307    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
308      if (C->getZExtValue() == 0) {
309        Result = DAG.getTargetConstant(0, SDLoc(C), Op.getValueType());
310        break;
311      }
312    }
313    return;
314  case 'K': // unsigned 16 bit immediate
315    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
316      if (isUInt<16>(C->getZExtValue())) {
317        Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(C),
318                                       Op.getValueType());
319        break;
320      }
321    }
322    return;
323  case 'L': // immediate in the range 0 to 31
324    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
325      if (C->getZExtValue() <= 31) {
326        Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(C),
327                                       Op.getValueType());
328        break;
329      }
330    }
331    return;
332  case 'M': // signed 32 bit immediate where lower 16 bits are 0
333    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
334      int64_t Val = C->getSExtValue();
335      if ((isInt<32>(Val)) && ((Val & 0xffff) == 0)) {
336        Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
337        break;
338      }
339    }
340    return;
341  case 'N': // signed 26 bit immediate
342    if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
343      int64_t Val = C->getSExtValue();
344      if ((Val >= -33554432) && (Val <= 33554431)) {
345        Result = DAG.getTargetConstant(Val, SDLoc(C), Op.getValueType());
346        break;
347      }
348    }
349    return;
350  default:
351    break; // This will fall through to the generic implementation
352  }
353
354  if (Result.getNode()) {
355    Ops.push_back(Result);
356    return;
357  }
358
359  TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
360}
361
362//===----------------------------------------------------------------------===//
363//                      Calling Convention Implementation
364//===----------------------------------------------------------------------===//
365
366#include "LanaiGenCallingConv.inc"
367
368static unsigned NumFixedArgs;
369static bool CC_Lanai32_VarArg(unsigned ValNo, MVT ValVT, MVT LocVT,
370                              CCValAssign::LocInfo LocInfo,
371                              ISD::ArgFlagsTy ArgFlags, CCState &State) {
372  // Handle fixed arguments with default CC.
373  // Note: Both the default and fast CC handle VarArg the same and hence the
374  // calling convention of the function is not considered here.
375  if (ValNo < NumFixedArgs) {
376    return CC_Lanai32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
377  }
378
379  // Promote i8/i16 args to i32
380  if (LocVT == MVT::i8 || LocVT == MVT::i16) {
381    LocVT = MVT::i32;
382    if (ArgFlags.isSExt())
383      LocInfo = CCValAssign::SExt;
384    else if (ArgFlags.isZExt())
385      LocInfo = CCValAssign::ZExt;
386    else
387      LocInfo = CCValAssign::AExt;
388  }
389
390  // VarArgs get passed on stack
391  unsigned Offset = State.AllocateStack(4, 4);
392  State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
393  return false;
394}
395
396SDValue LanaiTargetLowering::LowerFormalArguments(
397    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
398    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
399    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
400  switch (CallConv) {
401  case CallingConv::C:
402  case CallingConv::Fast:
403    return LowerCCCArguments(Chain, CallConv, IsVarArg, Ins, DL, DAG, InVals);
404  default:
405    report_fatal_error("Unsupported calling convention");
406  }
407}
408
409SDValue LanaiTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
410                                       SmallVectorImpl<SDValue> &InVals) const {
411  SelectionDAG &DAG = CLI.DAG;
412  SDLoc &DL = CLI.DL;
413  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
414  SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
415  SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
416  SDValue Chain = CLI.Chain;
417  SDValue Callee = CLI.Callee;
418  bool &IsTailCall = CLI.IsTailCall;
419  CallingConv::ID CallConv = CLI.CallConv;
420  bool IsVarArg = CLI.IsVarArg;
421
422  // Lanai target does not yet support tail call optimization.
423  IsTailCall = false;
424
425  switch (CallConv) {
426  case CallingConv::Fast:
427  case CallingConv::C:
428    return LowerCCCCallTo(Chain, Callee, CallConv, IsVarArg, IsTailCall, Outs,
429                          OutVals, Ins, DL, DAG, InVals);
430  default:
431    report_fatal_error("Unsupported calling convention");
432  }
433}
434
435// LowerCCCArguments - transform physical registers into virtual registers and
436// generate load operations for arguments places on the stack.
437SDValue LanaiTargetLowering::LowerCCCArguments(
438    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
439    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
440    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
441  MachineFunction &MF = DAG.getMachineFunction();
442  MachineFrameInfo &MFI = MF.getFrameInfo();
443  MachineRegisterInfo &RegInfo = MF.getRegInfo();
444  LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
445
446  // Assign locations to all of the incoming arguments.
447  SmallVector<CCValAssign, 16> ArgLocs;
448  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
449                 *DAG.getContext());
450  if (CallConv == CallingConv::Fast) {
451    CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32_Fast);
452  } else {
453    CCInfo.AnalyzeFormalArguments(Ins, CC_Lanai32);
454  }
455
456  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
457    CCValAssign &VA = ArgLocs[i];
458    if (VA.isRegLoc()) {
459      // Arguments passed in registers
460      EVT RegVT = VA.getLocVT();
461      switch (RegVT.getSimpleVT().SimpleTy) {
462      case MVT::i32: {
463        Register VReg = RegInfo.createVirtualRegister(&Lanai::GPRRegClass);
464        RegInfo.addLiveIn(VA.getLocReg(), VReg);
465        SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, RegVT);
466
467        // If this is an 8/16-bit value, it is really passed promoted to 32
468        // bits. Insert an assert[sz]ext to capture this, then truncate to the
469        // right size.
470        if (VA.getLocInfo() == CCValAssign::SExt)
471          ArgValue = DAG.getNode(ISD::AssertSext, DL, RegVT, ArgValue,
472                                 DAG.getValueType(VA.getValVT()));
473        else if (VA.getLocInfo() == CCValAssign::ZExt)
474          ArgValue = DAG.getNode(ISD::AssertZext, DL, RegVT, ArgValue,
475                                 DAG.getValueType(VA.getValVT()));
476
477        if (VA.getLocInfo() != CCValAssign::Full)
478          ArgValue = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), ArgValue);
479
480        InVals.push_back(ArgValue);
481        break;
482      }
483      default:
484        LLVM_DEBUG(dbgs() << "LowerFormalArguments Unhandled argument type: "
485                          << RegVT.getEVTString() << "\n");
486        llvm_unreachable("unhandled argument type");
487      }
488    } else {
489      // Sanity check
490      assert(VA.isMemLoc());
491      // Load the argument to a virtual register
492      unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8;
493      // Check that the argument fits in stack slot
494      if (ObjSize > 4) {
495        errs() << "LowerFormalArguments Unhandled argument type: "
496               << EVT(VA.getLocVT()).getEVTString() << "\n";
497      }
498      // Create the frame index object for this incoming parameter...
499      int FI = MFI.CreateFixedObject(ObjSize, VA.getLocMemOffset(), true);
500
501      // Create the SelectionDAG nodes corresponding to a load
502      // from this parameter
503      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
504      InVals.push_back(DAG.getLoad(
505          VA.getLocVT(), DL, Chain, FIN,
506          MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
507    }
508  }
509
510  // The Lanai ABI for returning structs by value requires that we copy
511  // the sret argument into rv for the return. Save the argument into
512  // a virtual register so that we can access it from the return points.
513  if (MF.getFunction().hasStructRetAttr()) {
514    unsigned Reg = LanaiMFI->getSRetReturnReg();
515    if (!Reg) {
516      Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
517      LanaiMFI->setSRetReturnReg(Reg);
518    }
519    SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[0]);
520    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain);
521  }
522
523  if (IsVarArg) {
524    // Record the frame index of the first variable argument
525    // which is a value necessary to VASTART.
526    int FI = MFI.CreateFixedObject(4, CCInfo.getNextStackOffset(), true);
527    LanaiMFI->setVarArgsFrameIndex(FI);
528  }
529
530  return Chain;
531}
532
533SDValue
534LanaiTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
535                                 bool IsVarArg,
536                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
537                                 const SmallVectorImpl<SDValue> &OutVals,
538                                 const SDLoc &DL, SelectionDAG &DAG) const {
539  // CCValAssign - represent the assignment of the return value to a location
540  SmallVector<CCValAssign, 16> RVLocs;
541
542  // CCState - Info about the registers and stack slot.
543  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
544                 *DAG.getContext());
545
546  // Analize return values.
547  CCInfo.AnalyzeReturn(Outs, RetCC_Lanai32);
548
549  SDValue Flag;
550  SmallVector<SDValue, 4> RetOps(1, Chain);
551
552  // Copy the result values into the output registers.
553  for (unsigned i = 0; i != RVLocs.size(); ++i) {
554    CCValAssign &VA = RVLocs[i];
555    assert(VA.isRegLoc() && "Can only return in registers!");
556
557    Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), OutVals[i], Flag);
558
559    // Guarantee that all emitted copies are stuck together with flags.
560    Flag = Chain.getValue(1);
561    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
562  }
563
564  // The Lanai ABI for returning structs by value requires that we copy
565  // the sret argument into rv for the return. We saved the argument into
566  // a virtual register in the entry block, so now we copy the value out
567  // and into rv.
568  if (DAG.getMachineFunction().getFunction().hasStructRetAttr()) {
569    MachineFunction &MF = DAG.getMachineFunction();
570    LanaiMachineFunctionInfo *LanaiMFI = MF.getInfo<LanaiMachineFunctionInfo>();
571    unsigned Reg = LanaiMFI->getSRetReturnReg();
572    assert(Reg &&
573           "SRetReturnReg should have been set in LowerFormalArguments().");
574    SDValue Val =
575        DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(DAG.getDataLayout()));
576
577    Chain = DAG.getCopyToReg(Chain, DL, Lanai::RV, Val, Flag);
578    Flag = Chain.getValue(1);
579    RetOps.push_back(
580        DAG.getRegister(Lanai::RV, getPointerTy(DAG.getDataLayout())));
581  }
582
583  RetOps[0] = Chain; // Update chain
584
585  unsigned Opc = LanaiISD::RET_FLAG;
586  if (Flag.getNode())
587    RetOps.push_back(Flag);
588
589  // Return Void
590  return DAG.getNode(Opc, DL, MVT::Other,
591                     ArrayRef<SDValue>(&RetOps[0], RetOps.size()));
592}
593
594// LowerCCCCallTo - functions arguments are copied from virtual regs to
595// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
596SDValue LanaiTargetLowering::LowerCCCCallTo(
597    SDValue Chain, SDValue Callee, CallingConv::ID CallConv, bool IsVarArg,
598    bool /*IsTailCall*/, const SmallVectorImpl<ISD::OutputArg> &Outs,
599    const SmallVectorImpl<SDValue> &OutVals,
600    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
601    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
602  // Analyze operands of the call, assigning locations to each operand.
603  SmallVector<CCValAssign, 16> ArgLocs;
604  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), ArgLocs,
605                 *DAG.getContext());
606  GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
607  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
608
609  NumFixedArgs = 0;
610  if (IsVarArg && G) {
611    const Function *CalleeFn = dyn_cast<Function>(G->getGlobal());
612    if (CalleeFn)
613      NumFixedArgs = CalleeFn->getFunctionType()->getNumParams();
614  }
615  if (NumFixedArgs)
616    CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_VarArg);
617  else {
618    if (CallConv == CallingConv::Fast)
619      CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32_Fast);
620    else
621      CCInfo.AnalyzeCallOperands(Outs, CC_Lanai32);
622  }
623
624  // Get a count of how many bytes are to be pushed on the stack.
625  unsigned NumBytes = CCInfo.getNextStackOffset();
626
627  // Create local copies for byval args.
628  SmallVector<SDValue, 8> ByValArgs;
629  for (unsigned I = 0, E = Outs.size(); I != E; ++I) {
630    ISD::ArgFlagsTy Flags = Outs[I].Flags;
631    if (!Flags.isByVal())
632      continue;
633
634    SDValue Arg = OutVals[I];
635    unsigned Size = Flags.getByValSize();
636    unsigned Align = Flags.getByValAlign();
637
638    int FI = MFI.CreateStackObject(Size, Align, false);
639    SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
640    SDValue SizeNode = DAG.getConstant(Size, DL, MVT::i32);
641
642    Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
643                          /*IsVolatile=*/false,
644                          /*AlwaysInline=*/false,
645                          /*isTailCall=*/false, MachinePointerInfo(),
646                          MachinePointerInfo());
647    ByValArgs.push_back(FIPtr);
648  }
649
650  Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
651
652  SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
653  SmallVector<SDValue, 12> MemOpChains;
654  SDValue StackPtr;
655
656  // Walk the register/memloc assignments, inserting copies/loads.
657  for (unsigned I = 0, J = 0, E = ArgLocs.size(); I != E; ++I) {
658    CCValAssign &VA = ArgLocs[I];
659    SDValue Arg = OutVals[I];
660    ISD::ArgFlagsTy Flags = Outs[I].Flags;
661
662    // Promote the value if needed.
663    switch (VA.getLocInfo()) {
664    case CCValAssign::Full:
665      break;
666    case CCValAssign::SExt:
667      Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
668      break;
669    case CCValAssign::ZExt:
670      Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
671      break;
672    case CCValAssign::AExt:
673      Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
674      break;
675    default:
676      llvm_unreachable("Unknown loc info!");
677    }
678
679    // Use local copy if it is a byval arg.
680    if (Flags.isByVal())
681      Arg = ByValArgs[J++];
682
683    // Arguments that can be passed on register must be kept at RegsToPass
684    // vector
685    if (VA.isRegLoc()) {
686      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
687    } else {
688      assert(VA.isMemLoc());
689
690      if (StackPtr.getNode() == nullptr)
691        StackPtr = DAG.getCopyFromReg(Chain, DL, Lanai::SP,
692                                      getPointerTy(DAG.getDataLayout()));
693
694      SDValue PtrOff =
695          DAG.getNode(ISD::ADD, DL, getPointerTy(DAG.getDataLayout()), StackPtr,
696                      DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
697
698      MemOpChains.push_back(
699          DAG.getStore(Chain, DL, Arg, PtrOff, MachinePointerInfo()));
700    }
701  }
702
703  // Transform all store nodes into one single node because all store nodes are
704  // independent of each other.
705  if (!MemOpChains.empty())
706    Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
707                        ArrayRef<SDValue>(&MemOpChains[0], MemOpChains.size()));
708
709  SDValue InFlag;
710
711  // Build a sequence of copy-to-reg nodes chained together with token chain and
712  // flag operands which copy the outgoing args into registers.  The InFlag in
713  // necessary since all emitted instructions must be stuck together.
714  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) {
715    Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first,
716                             RegsToPass[I].second, InFlag);
717    InFlag = Chain.getValue(1);
718  }
719
720  // If the callee is a GlobalAddress node (quite common, every direct call is)
721  // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
722  // Likewise ExternalSymbol -> TargetExternalSymbol.
723  uint8_t OpFlag = LanaiII::MO_NO_FLAG;
724  if (G) {
725    Callee = DAG.getTargetGlobalAddress(
726        G->getGlobal(), DL, getPointerTy(DAG.getDataLayout()), 0, OpFlag);
727  } else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) {
728    Callee = DAG.getTargetExternalSymbol(
729        E->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlag);
730  }
731
732  // Returns a chain & a flag for retval copy to use.
733  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
734  SmallVector<SDValue, 8> Ops;
735  Ops.push_back(Chain);
736  Ops.push_back(Callee);
737
738  // Add a register mask operand representing the call-preserved registers.
739  // TODO: Should return-twice functions be handled?
740  const uint32_t *Mask =
741      TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
742  assert(Mask && "Missing call preserved mask for calling convention");
743  Ops.push_back(DAG.getRegisterMask(Mask));
744
745  // Add argument registers to the end of the list so that they are
746  // known live into the call.
747  for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I)
748    Ops.push_back(DAG.getRegister(RegsToPass[I].first,
749                                  RegsToPass[I].second.getValueType()));
750
751  if (InFlag.getNode())
752    Ops.push_back(InFlag);
753
754  Chain = DAG.getNode(LanaiISD::CALL, DL, NodeTys,
755                      ArrayRef<SDValue>(&Ops[0], Ops.size()));
756  InFlag = Chain.getValue(1);
757
758  // Create the CALLSEQ_END node.
759  Chain = DAG.getCALLSEQ_END(
760      Chain,
761      DAG.getConstant(NumBytes, DL, getPointerTy(DAG.getDataLayout()), true),
762      DAG.getConstant(0, DL, getPointerTy(DAG.getDataLayout()), true), InFlag,
763      DL);
764  InFlag = Chain.getValue(1);
765
766  // Handle result values, copying them out of physregs into vregs that we
767  // return.
768  return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
769                         InVals);
770}
771
772// LowerCallResult - Lower the result values of a call into the
773// appropriate copies out of appropriate physical registers.
774SDValue LanaiTargetLowering::LowerCallResult(
775    SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
776    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
777    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
778  // Assign locations to each value returned by this call.
779  SmallVector<CCValAssign, 16> RVLocs;
780  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
781                 *DAG.getContext());
782
783  CCInfo.AnalyzeCallResult(Ins, RetCC_Lanai32);
784
785  // Copy all of the result registers out of their specified physreg.
786  for (unsigned I = 0; I != RVLocs.size(); ++I) {
787    Chain = DAG.getCopyFromReg(Chain, DL, RVLocs[I].getLocReg(),
788                               RVLocs[I].getValVT(), InFlag)
789                .getValue(1);
790    InFlag = Chain.getValue(2);
791    InVals.push_back(Chain.getValue(0));
792  }
793
794  return Chain;
795}
796
797//===----------------------------------------------------------------------===//
798//                      Custom Lowerings
799//===----------------------------------------------------------------------===//
800
801static LPCC::CondCode IntCondCCodeToICC(SDValue CC, const SDLoc &DL,
802                                        SDValue &RHS, SelectionDAG &DAG) {
803  ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
804
805  // For integer, only the SETEQ, SETNE, SETLT, SETLE, SETGT, SETGE, SETULT,
806  // SETULE, SETUGT, and SETUGE opcodes are used (see CodeGen/ISDOpcodes.h)
807  // and Lanai only supports integer comparisons, so only provide definitions
808  // for them.
809  switch (SetCCOpcode) {
810  case ISD::SETEQ:
811    return LPCC::ICC_EQ;
812  case ISD::SETGT:
813    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
814      if (RHSC->getZExtValue() == 0xFFFFFFFF) {
815        // X > -1 -> X >= 0 -> is_plus(X)
816        RHS = DAG.getConstant(0, DL, RHS.getValueType());
817        return LPCC::ICC_PL;
818      }
819    return LPCC::ICC_GT;
820  case ISD::SETUGT:
821    return LPCC::ICC_UGT;
822  case ISD::SETLT:
823    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
824      if (RHSC->getZExtValue() == 0)
825        // X < 0 -> is_minus(X)
826        return LPCC::ICC_MI;
827    return LPCC::ICC_LT;
828  case ISD::SETULT:
829    return LPCC::ICC_ULT;
830  case ISD::SETLE:
831    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
832      if (RHSC->getZExtValue() == 0xFFFFFFFF) {
833        // X <= -1 -> X < 0 -> is_minus(X)
834        RHS = DAG.getConstant(0, DL, RHS.getValueType());
835        return LPCC::ICC_MI;
836      }
837    return LPCC::ICC_LE;
838  case ISD::SETULE:
839    return LPCC::ICC_ULE;
840  case ISD::SETGE:
841    if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS))
842      if (RHSC->getZExtValue() == 0)
843        // X >= 0 -> is_plus(X)
844        return LPCC::ICC_PL;
845    return LPCC::ICC_GE;
846  case ISD::SETUGE:
847    return LPCC::ICC_UGE;
848  case ISD::SETNE:
849    return LPCC::ICC_NE;
850  case ISD::SETONE:
851  case ISD::SETUNE:
852  case ISD::SETOGE:
853  case ISD::SETOLE:
854  case ISD::SETOLT:
855  case ISD::SETOGT:
856  case ISD::SETOEQ:
857  case ISD::SETUEQ:
858  case ISD::SETO:
859  case ISD::SETUO:
860    llvm_unreachable("Unsupported comparison.");
861  default:
862    llvm_unreachable("Unknown integer condition code!");
863  }
864}
865
866SDValue LanaiTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
867  SDValue Chain = Op.getOperand(0);
868  SDValue Cond = Op.getOperand(1);
869  SDValue LHS = Op.getOperand(2);
870  SDValue RHS = Op.getOperand(3);
871  SDValue Dest = Op.getOperand(4);
872  SDLoc DL(Op);
873
874  LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
875  SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
876  SDValue Flag =
877      DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
878
879  return DAG.getNode(LanaiISD::BR_CC, DL, Op.getValueType(), Chain, Dest,
880                     TargetCC, Flag);
881}
882
883SDValue LanaiTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
884  EVT VT = Op->getValueType(0);
885  if (VT != MVT::i32)
886    return SDValue();
887
888  ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op->getOperand(1));
889  if (!C)
890    return SDValue();
891
892  int64_t MulAmt = C->getSExtValue();
893  int32_t HighestOne = -1;
894  uint32_t NonzeroEntries = 0;
895  int SignedDigit[32] = {0};
896
897  // Convert to non-adjacent form (NAF) signed-digit representation.
898  // NAF is a signed-digit form where no adjacent digits are non-zero. It is the
899  // minimal Hamming weight representation of a number (on average 1/3 of the
900  // digits will be non-zero vs 1/2 for regular binary representation). And as
901  // the non-zero digits will be the only digits contributing to the instruction
902  // count, this is desirable. The next loop converts it to NAF (following the
903  // approach in 'Guide to Elliptic Curve Cryptography' [ISBN: 038795273X]) by
904  // choosing the non-zero coefficients such that the resulting quotient is
905  // divisible by 2 which will cause the next coefficient to be zero.
906  int64_t E = std::abs(MulAmt);
907  int S = (MulAmt < 0 ? -1 : 1);
908  int I = 0;
909  while (E > 0) {
910    int ZI = 0;
911    if (E % 2 == 1) {
912      ZI = 2 - (E % 4);
913      if (ZI != 0)
914        ++NonzeroEntries;
915    }
916    SignedDigit[I] = S * ZI;
917    if (SignedDigit[I] == 1)
918      HighestOne = I;
919    E = (E - ZI) / 2;
920    ++I;
921  }
922
923  // Compute number of instructions required. Due to differences in lowering
924  // between the different processors this count is not exact.
925  // Start by assuming a shift and a add/sub for every non-zero entry (hence
926  // every non-zero entry requires 1 shift and 1 add/sub except for the first
927  // entry).
928  int32_t InstrRequired = 2 * NonzeroEntries - 1;
929  // Correct possible over-adding due to shift by 0 (which is not emitted).
930  if (std::abs(MulAmt) % 2 == 1)
931    --InstrRequired;
932  // Return if the form generated would exceed the instruction threshold.
933  if (InstrRequired > LanaiLowerConstantMulThreshold)
934    return SDValue();
935
936  SDValue Res;
937  SDLoc DL(Op);
938  SDValue V = Op->getOperand(0);
939
940  // Initialize the running sum. Set the running sum to the maximal shifted
941  // positive value (i.e., largest i such that zi == 1 and MulAmt has V<<i as a
942  // term NAF).
943  if (HighestOne == -1)
944    Res = DAG.getConstant(0, DL, MVT::i32);
945  else {
946    Res = DAG.getNode(ISD::SHL, DL, VT, V,
947                      DAG.getConstant(HighestOne, DL, MVT::i32));
948    SignedDigit[HighestOne] = 0;
949  }
950
951  // Assemble multiplication from shift, add, sub using NAF form and running
952  // sum.
953  for (unsigned int I = 0; I < sizeof(SignedDigit) / sizeof(SignedDigit[0]);
954       ++I) {
955    if (SignedDigit[I] == 0)
956      continue;
957
958    // Shifted multiplicand (v<<i).
959    SDValue Op =
960        DAG.getNode(ISD::SHL, DL, VT, V, DAG.getConstant(I, DL, MVT::i32));
961    if (SignedDigit[I] == 1)
962      Res = DAG.getNode(ISD::ADD, DL, VT, Res, Op);
963    else if (SignedDigit[I] == -1)
964      Res = DAG.getNode(ISD::SUB, DL, VT, Res, Op);
965  }
966  return Res;
967}
968
969SDValue LanaiTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
970  SDValue LHS = Op.getOperand(0);
971  SDValue RHS = Op.getOperand(1);
972  SDValue Cond = Op.getOperand(2);
973  SDLoc DL(Op);
974
975  LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
976  SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
977  SDValue Flag =
978      DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
979
980  return DAG.getNode(LanaiISD::SETCC, DL, Op.getValueType(), TargetCC, Flag);
981}
982
983SDValue LanaiTargetLowering::LowerSELECT_CC(SDValue Op,
984                                            SelectionDAG &DAG) const {
985  SDValue LHS = Op.getOperand(0);
986  SDValue RHS = Op.getOperand(1);
987  SDValue TrueV = Op.getOperand(2);
988  SDValue FalseV = Op.getOperand(3);
989  SDValue Cond = Op.getOperand(4);
990  SDLoc DL(Op);
991
992  LPCC::CondCode CC = IntCondCCodeToICC(Cond, DL, RHS, DAG);
993  SDValue TargetCC = DAG.getConstant(CC, DL, MVT::i32);
994  SDValue Flag =
995      DAG.getNode(LanaiISD::SET_FLAG, DL, MVT::Glue, LHS, RHS, TargetCC);
996
997  SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
998  return DAG.getNode(LanaiISD::SELECT_CC, DL, VTs, TrueV, FalseV, TargetCC,
999                     Flag);
1000}
1001
1002SDValue LanaiTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
1003  MachineFunction &MF = DAG.getMachineFunction();
1004  LanaiMachineFunctionInfo *FuncInfo = MF.getInfo<LanaiMachineFunctionInfo>();
1005
1006  SDLoc DL(Op);
1007  SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1008                                 getPointerTy(DAG.getDataLayout()));
1009
1010  // vastart just stores the address of the VarArgsFrameIndex slot into the
1011  // memory location argument.
1012  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1013  return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
1014                      MachinePointerInfo(SV));
1015}
1016
1017SDValue LanaiTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1018                                                     SelectionDAG &DAG) const {
1019  SDValue Chain = Op.getOperand(0);
1020  SDValue Size = Op.getOperand(1);
1021  SDLoc DL(Op);
1022
1023  unsigned SPReg = getStackPointerRegisterToSaveRestore();
1024
1025  // Get a reference to the stack pointer.
1026  SDValue StackPointer = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i32);
1027
1028  // Subtract the dynamic size from the actual stack size to
1029  // obtain the new stack size.
1030  SDValue Sub = DAG.getNode(ISD::SUB, DL, MVT::i32, StackPointer, Size);
1031
1032  // For Lanai, the outgoing memory arguments area should be on top of the
1033  // alloca area on the stack i.e., the outgoing memory arguments should be
1034  // at a lower address than the alloca area. Move the alloca area down the
1035  // stack by adding back the space reserved for outgoing arguments to SP
1036  // here.
1037  //
1038  // We do not know what the size of the outgoing args is at this point.
1039  // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
1040  // stack pointer. We replace this instruction with on that has the correct,
1041  // known offset in emitPrologue().
1042  SDValue ArgAdjust = DAG.getNode(LanaiISD::ADJDYNALLOC, DL, MVT::i32, Sub);
1043
1044  // The Sub result contains the new stack start address, so it
1045  // must be placed in the stack pointer register.
1046  SDValue CopyChain = DAG.getCopyToReg(Chain, DL, SPReg, Sub);
1047
1048  SDValue Ops[2] = {ArgAdjust, CopyChain};
1049  return DAG.getMergeValues(Ops, DL);
1050}
1051
1052SDValue LanaiTargetLowering::LowerRETURNADDR(SDValue Op,
1053                                             SelectionDAG &DAG) const {
1054  MachineFunction &MF = DAG.getMachineFunction();
1055  MachineFrameInfo &MFI = MF.getFrameInfo();
1056  MFI.setReturnAddressIsTaken(true);
1057
1058  EVT VT = Op.getValueType();
1059  SDLoc DL(Op);
1060  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1061  if (Depth) {
1062    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1063    const unsigned Offset = -4;
1064    SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1065                              DAG.getIntPtrConstant(Offset, DL));
1066    return DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1067  }
1068
1069  // Return the link register, which contains the return address.
1070  // Mark it an implicit live-in.
1071  unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
1072  return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
1073}
1074
1075SDValue LanaiTargetLowering::LowerFRAMEADDR(SDValue Op,
1076                                            SelectionDAG &DAG) const {
1077  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1078  MFI.setFrameAddressIsTaken(true);
1079
1080  EVT VT = Op.getValueType();
1081  SDLoc DL(Op);
1082  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Lanai::FP, VT);
1083  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1084  while (Depth--) {
1085    const unsigned Offset = -8;
1086    SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
1087                              DAG.getIntPtrConstant(Offset, DL));
1088    FrameAddr =
1089        DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
1090  }
1091  return FrameAddr;
1092}
1093
1094const char *LanaiTargetLowering::getTargetNodeName(unsigned Opcode) const {
1095  switch (Opcode) {
1096  case LanaiISD::ADJDYNALLOC:
1097    return "LanaiISD::ADJDYNALLOC";
1098  case LanaiISD::RET_FLAG:
1099    return "LanaiISD::RET_FLAG";
1100  case LanaiISD::CALL:
1101    return "LanaiISD::CALL";
1102  case LanaiISD::SELECT_CC:
1103    return "LanaiISD::SELECT_CC";
1104  case LanaiISD::SETCC:
1105    return "LanaiISD::SETCC";
1106  case LanaiISD::SUBBF:
1107    return "LanaiISD::SUBBF";
1108  case LanaiISD::SET_FLAG:
1109    return "LanaiISD::SET_FLAG";
1110  case LanaiISD::BR_CC:
1111    return "LanaiISD::BR_CC";
1112  case LanaiISD::Wrapper:
1113    return "LanaiISD::Wrapper";
1114  case LanaiISD::HI:
1115    return "LanaiISD::HI";
1116  case LanaiISD::LO:
1117    return "LanaiISD::LO";
1118  case LanaiISD::SMALL:
1119    return "LanaiISD::SMALL";
1120  default:
1121    return nullptr;
1122  }
1123}
1124
1125SDValue LanaiTargetLowering::LowerConstantPool(SDValue Op,
1126                                               SelectionDAG &DAG) const {
1127  SDLoc DL(Op);
1128  ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
1129  const Constant *C = N->getConstVal();
1130  const LanaiTargetObjectFile *TLOF =
1131      static_cast<const LanaiTargetObjectFile *>(
1132          getTargetMachine().getObjFileLowering());
1133
1134  // If the code model is small or constant will be placed in the small section,
1135  // then assume address will fit in 21-bits.
1136  if (getTargetMachine().getCodeModel() == CodeModel::Small ||
1137      TLOF->isConstantInSmallSection(DAG.getDataLayout(), C)) {
1138    SDValue Small = DAG.getTargetConstantPool(
1139        C, MVT::i32, N->getAlignment(), N->getOffset(), LanaiII::MO_NO_FLAG);
1140    return DAG.getNode(ISD::OR, DL, MVT::i32,
1141                       DAG.getRegister(Lanai::R0, MVT::i32),
1142                       DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1143  } else {
1144    uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1145    uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1146
1147    SDValue Hi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1148                                           N->getOffset(), OpFlagHi);
1149    SDValue Lo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
1150                                           N->getOffset(), OpFlagLo);
1151    Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1152    Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1153    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1154    return Result;
1155  }
1156}
1157
1158SDValue LanaiTargetLowering::LowerGlobalAddress(SDValue Op,
1159                                                SelectionDAG &DAG) const {
1160  SDLoc DL(Op);
1161  const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1162  int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1163
1164  const LanaiTargetObjectFile *TLOF =
1165      static_cast<const LanaiTargetObjectFile *>(
1166          getTargetMachine().getObjFileLowering());
1167
1168  // If the code model is small or global variable will be placed in the small
1169  // section, then assume address will fit in 21-bits.
1170  const GlobalObject *GO = GV->getBaseObject();
1171  if (TLOF->isGlobalInSmallSection(GO, getTargetMachine())) {
1172    SDValue Small = DAG.getTargetGlobalAddress(
1173        GV, DL, getPointerTy(DAG.getDataLayout()), Offset, LanaiII::MO_NO_FLAG);
1174    return DAG.getNode(ISD::OR, DL, MVT::i32,
1175                       DAG.getRegister(Lanai::R0, MVT::i32),
1176                       DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1177  } else {
1178    uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1179    uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1180
1181    // Create the TargetGlobalAddress node, folding in the constant offset.
1182    SDValue Hi = DAG.getTargetGlobalAddress(
1183        GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagHi);
1184    SDValue Lo = DAG.getTargetGlobalAddress(
1185        GV, DL, getPointerTy(DAG.getDataLayout()), Offset, OpFlagLo);
1186    Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1187    Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1188    return DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1189  }
1190}
1191
1192SDValue LanaiTargetLowering::LowerBlockAddress(SDValue Op,
1193                                               SelectionDAG &DAG) const {
1194  SDLoc DL(Op);
1195  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1196
1197  uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1198  uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1199
1200  SDValue Hi = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagHi);
1201  SDValue Lo = DAG.getBlockAddress(BA, MVT::i32, true, OpFlagLo);
1202  Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1203  Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1204  SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1205  return Result;
1206}
1207
1208SDValue LanaiTargetLowering::LowerJumpTable(SDValue Op,
1209                                            SelectionDAG &DAG) const {
1210  SDLoc DL(Op);
1211  JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1212
1213  // If the code model is small assume address will fit in 21-bits.
1214  if (getTargetMachine().getCodeModel() == CodeModel::Small) {
1215    SDValue Small = DAG.getTargetJumpTable(
1216        JT->getIndex(), getPointerTy(DAG.getDataLayout()), LanaiII::MO_NO_FLAG);
1217    return DAG.getNode(ISD::OR, DL, MVT::i32,
1218                       DAG.getRegister(Lanai::R0, MVT::i32),
1219                       DAG.getNode(LanaiISD::SMALL, DL, MVT::i32, Small));
1220  } else {
1221    uint8_t OpFlagHi = LanaiII::MO_ABS_HI;
1222    uint8_t OpFlagLo = LanaiII::MO_ABS_LO;
1223
1224    SDValue Hi = DAG.getTargetJumpTable(
1225        JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagHi);
1226    SDValue Lo = DAG.getTargetJumpTable(
1227        JT->getIndex(), getPointerTy(DAG.getDataLayout()), OpFlagLo);
1228    Hi = DAG.getNode(LanaiISD::HI, DL, MVT::i32, Hi);
1229    Lo = DAG.getNode(LanaiISD::LO, DL, MVT::i32, Lo);
1230    SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Hi, Lo);
1231    return Result;
1232  }
1233}
1234
1235SDValue LanaiTargetLowering::LowerSHL_PARTS(SDValue Op,
1236                                            SelectionDAG &DAG) const {
1237  EVT VT = Op.getValueType();
1238  unsigned VTBits = VT.getSizeInBits();
1239  SDLoc dl(Op);
1240  assert(Op.getNumOperands() == 3 && "Unexpected SHL!");
1241  SDValue ShOpLo = Op.getOperand(0);
1242  SDValue ShOpHi = Op.getOperand(1);
1243  SDValue ShAmt = Op.getOperand(2);
1244
1245  // Performs the following for (ShOpLo + (ShOpHi << 32)) << ShAmt:
1246  //   LoBitsForHi = (ShAmt == 0) ? 0 : (ShOpLo >> (32-ShAmt))
1247  //   HiBitsForHi = ShOpHi << ShAmt
1248  //   Hi = (ShAmt >= 32) ? (ShOpLo << (ShAmt-32)) : (LoBitsForHi | HiBitsForHi)
1249  //   Lo = (ShAmt >= 32) ? 0 : (ShOpLo << ShAmt)
1250  //   return (Hi << 32) | Lo;
1251
1252  SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1253                                 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1254  SDValue LoBitsForHi = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
1255
1256  // If ShAmt == 0, we just calculated "(SRL ShOpLo, 32)" which is "undef". We
1257  // wanted 0, so CSEL it directly.
1258  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1259  SDValue SetCC = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1260  LoBitsForHi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, LoBitsForHi);
1261
1262  SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1263                                   DAG.getConstant(VTBits, dl, MVT::i32));
1264  SDValue HiBitsForHi = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
1265  SDValue HiForNormalShift =
1266      DAG.getNode(ISD::OR, dl, VT, LoBitsForHi, HiBitsForHi);
1267
1268  SDValue HiForBigShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
1269
1270  SetCC = DAG.getSetCC(dl, MVT::i32, ExtraShAmt, Zero, ISD::SETGE);
1271  SDValue Hi =
1272      DAG.getSelect(dl, MVT::i32, SetCC, HiForBigShift, HiForNormalShift);
1273
1274  // Lanai shifts of larger than register sizes are wrapped rather than
1275  // clamped, so we can't just emit "lo << b" if b is too big.
1276  SDValue LoForNormalShift = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
1277  SDValue Lo = DAG.getSelect(
1278      dl, MVT::i32, SetCC, DAG.getConstant(0, dl, MVT::i32), LoForNormalShift);
1279
1280  SDValue Ops[2] = {Lo, Hi};
1281  return DAG.getMergeValues(Ops, dl);
1282}
1283
1284SDValue LanaiTargetLowering::LowerSRL_PARTS(SDValue Op,
1285                                            SelectionDAG &DAG) const {
1286  MVT VT = Op.getSimpleValueType();
1287  unsigned VTBits = VT.getSizeInBits();
1288  SDLoc dl(Op);
1289  SDValue ShOpLo = Op.getOperand(0);
1290  SDValue ShOpHi = Op.getOperand(1);
1291  SDValue ShAmt = Op.getOperand(2);
1292
1293  // Performs the following for a >> b:
1294  //   unsigned r_high = a_high >> b;
1295  //   r_high = (32 - b <= 0) ? 0 : r_high;
1296  //
1297  //   unsigned r_low = a_low >> b;
1298  //   r_low = (32 - b <= 0) ? r_high : r_low;
1299  //   r_low = (b == 0) ? r_low : r_low | (a_high << (32 - b));
1300  //   return (unsigned long long)r_high << 32 | r_low;
1301  // Note: This takes advantage of Lanai's shift behavior to avoid needing to
1302  // mask the shift amount.
1303
1304  SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
1305  SDValue NegatedPlus32 = DAG.getNode(
1306      ISD::SUB, dl, MVT::i32, DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
1307  SDValue SetCC = DAG.getSetCC(dl, MVT::i32, NegatedPlus32, Zero, ISD::SETLE);
1308
1309  SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpHi, ShAmt);
1310  Hi = DAG.getSelect(dl, MVT::i32, SetCC, Zero, Hi);
1311
1312  SDValue Lo = DAG.getNode(ISD::SRL, dl, MVT::i32, ShOpLo, ShAmt);
1313  Lo = DAG.getSelect(dl, MVT::i32, SetCC, Hi, Lo);
1314  SDValue CarryBits =
1315      DAG.getNode(ISD::SHL, dl, MVT::i32, ShOpHi, NegatedPlus32);
1316  SDValue ShiftIsZero = DAG.getSetCC(dl, MVT::i32, ShAmt, Zero, ISD::SETEQ);
1317  Lo = DAG.getSelect(dl, MVT::i32, ShiftIsZero, Lo,
1318                     DAG.getNode(ISD::OR, dl, MVT::i32, Lo, CarryBits));
1319
1320  SDValue Ops[2] = {Lo, Hi};
1321  return DAG.getMergeValues(Ops, dl);
1322}
1323
1324// Helper function that checks if N is a null or all ones constant.
1325static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
1326  return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
1327}
1328
1329// Return true if N is conditionally 0 or all ones.
1330// Detects these expressions where cc is an i1 value:
1331//
1332//   (select cc 0, y)   [AllOnes=0]
1333//   (select cc y, 0)   [AllOnes=0]
1334//   (zext cc)          [AllOnes=0]
1335//   (sext cc)          [AllOnes=0/1]
1336//   (select cc -1, y)  [AllOnes=1]
1337//   (select cc y, -1)  [AllOnes=1]
1338//
1339// * AllOnes determines whether to check for an all zero (AllOnes false) or an
1340//   all ones operand (AllOnes true).
1341// * Invert is set when N is the all zero/ones constant when CC is false.
1342// * OtherOp is set to the alternative value of N.
1343//
1344// For example, for (select cc X, Y) and AllOnes = 0 if:
1345// * X = 0, Invert = False and OtherOp = Y
1346// * Y = 0, Invert = True and OtherOp = X
1347static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, SDValue &CC,
1348                                       bool &Invert, SDValue &OtherOp,
1349                                       SelectionDAG &DAG) {
1350  switch (N->getOpcode()) {
1351  default:
1352    return false;
1353  case ISD::SELECT: {
1354    CC = N->getOperand(0);
1355    SDValue N1 = N->getOperand(1);
1356    SDValue N2 = N->getOperand(2);
1357    if (isZeroOrAllOnes(N1, AllOnes)) {
1358      Invert = false;
1359      OtherOp = N2;
1360      return true;
1361    }
1362    if (isZeroOrAllOnes(N2, AllOnes)) {
1363      Invert = true;
1364      OtherOp = N1;
1365      return true;
1366    }
1367    return false;
1368  }
1369  case ISD::ZERO_EXTEND: {
1370    // (zext cc) can never be the all ones value.
1371    if (AllOnes)
1372      return false;
1373    CC = N->getOperand(0);
1374    if (CC.getValueType() != MVT::i1)
1375      return false;
1376    SDLoc dl(N);
1377    EVT VT = N->getValueType(0);
1378    OtherOp = DAG.getConstant(1, dl, VT);
1379    Invert = true;
1380    return true;
1381  }
1382  case ISD::SIGN_EXTEND: {
1383    CC = N->getOperand(0);
1384    if (CC.getValueType() != MVT::i1)
1385      return false;
1386    SDLoc dl(N);
1387    EVT VT = N->getValueType(0);
1388    Invert = !AllOnes;
1389    if (AllOnes)
1390      // When looking for an AllOnes constant, N is an sext, and the 'other'
1391      // value is 0.
1392      OtherOp = DAG.getConstant(0, dl, VT);
1393    else
1394      OtherOp =
1395          DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, VT);
1396    return true;
1397  }
1398  }
1399}
1400
1401// Combine a constant select operand into its use:
1402//
1403//   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
1404//   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
1405//   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
1406//   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
1407//   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
1408//
1409// The transform is rejected if the select doesn't have a constant operand that
1410// is null, or all ones when AllOnes is set.
1411//
1412// Also recognize sext/zext from i1:
1413//
1414//   (add (zext cc), x) -> (select cc (add x, 1), x)
1415//   (add (sext cc), x) -> (select cc (add x, -1), x)
1416//
1417// These transformations eventually create predicated instructions.
1418static SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
1419                                   TargetLowering::DAGCombinerInfo &DCI,
1420                                   bool AllOnes) {
1421  SelectionDAG &DAG = DCI.DAG;
1422  EVT VT = N->getValueType(0);
1423  SDValue NonConstantVal;
1424  SDValue CCOp;
1425  bool SwapSelectOps;
1426  if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
1427                                  NonConstantVal, DAG))
1428    return SDValue();
1429
1430  // Slct is now know to be the desired identity constant when CC is true.
1431  SDValue TrueVal = OtherOp;
1432  SDValue FalseVal =
1433      DAG.getNode(N->getOpcode(), SDLoc(N), VT, OtherOp, NonConstantVal);
1434  // Unless SwapSelectOps says CC should be false.
1435  if (SwapSelectOps)
1436    std::swap(TrueVal, FalseVal);
1437
1438  return DAG.getNode(ISD::SELECT, SDLoc(N), VT, CCOp, TrueVal, FalseVal);
1439}
1440
1441// Attempt combineSelectAndUse on each operand of a commutative operator N.
1442static SDValue
1443combineSelectAndUseCommutative(SDNode *N, TargetLowering::DAGCombinerInfo &DCI,
1444                               bool AllOnes) {
1445  SDValue N0 = N->getOperand(0);
1446  SDValue N1 = N->getOperand(1);
1447  if (N0.getNode()->hasOneUse())
1448    if (SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes))
1449      return Result;
1450  if (N1.getNode()->hasOneUse())
1451    if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes))
1452      return Result;
1453  return SDValue();
1454}
1455
1456// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
1457static SDValue PerformSUBCombine(SDNode *N,
1458                                 TargetLowering::DAGCombinerInfo &DCI) {
1459  SDValue N0 = N->getOperand(0);
1460  SDValue N1 = N->getOperand(1);
1461
1462  // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
1463  if (N1.getNode()->hasOneUse())
1464    if (SDValue Result = combineSelectAndUse(N, N1, N0, DCI, /*AllOnes=*/false))
1465      return Result;
1466
1467  return SDValue();
1468}
1469
1470SDValue LanaiTargetLowering::PerformDAGCombine(SDNode *N,
1471                                               DAGCombinerInfo &DCI) const {
1472  switch (N->getOpcode()) {
1473  default:
1474    break;
1475  case ISD::ADD:
1476  case ISD::OR:
1477  case ISD::XOR:
1478    return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/false);
1479  case ISD::AND:
1480    return combineSelectAndUseCommutative(N, DCI, /*AllOnes=*/true);
1481  case ISD::SUB:
1482    return PerformSUBCombine(N, DCI);
1483  }
1484
1485  return SDValue();
1486}
1487
1488void LanaiTargetLowering::computeKnownBitsForTargetNode(
1489    const SDValue Op, KnownBits &Known, const APInt &DemandedElts,
1490    const SelectionDAG &DAG, unsigned Depth) const {
1491  unsigned BitWidth = Known.getBitWidth();
1492  switch (Op.getOpcode()) {
1493  default:
1494    break;
1495  case LanaiISD::SETCC:
1496    Known = KnownBits(BitWidth);
1497    Known.Zero.setBits(1, BitWidth);
1498    break;
1499  case LanaiISD::SELECT_CC:
1500    KnownBits Known2;
1501    Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1);
1502    Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1);
1503    Known.Zero &= Known2.Zero;
1504    Known.One &= Known2.One;
1505    break;
1506  }
1507}
1508