HexagonISelLowering.cpp revision 360784
1//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the interfaces that Hexagon uses to lower LLVM code
10// into a selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "HexagonISelLowering.h"
15#include "Hexagon.h"
16#include "HexagonMachineFunctionInfo.h"
17#include "HexagonRegisterInfo.h"
18#include "HexagonSubtarget.h"
19#include "HexagonTargetMachine.h"
20#include "HexagonTargetObjectFile.h"
21#include "llvm/ADT/APInt.h"
22#include "llvm/ADT/ArrayRef.h"
23#include "llvm/ADT/SmallVector.h"
24#include "llvm/ADT/StringSwitch.h"
25#include "llvm/CodeGen/CallingConvLower.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineRegisterInfo.h"
30#include "llvm/CodeGen/RuntimeLibcalls.h"
31#include "llvm/CodeGen/SelectionDAG.h"
32#include "llvm/CodeGen/TargetCallingConv.h"
33#include "llvm/CodeGen/ValueTypes.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/CallingConv.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GlobalValue.h"
40#include "llvm/IR/InlineAsm.h"
41#include "llvm/IR/Instructions.h"
42#include "llvm/IR/IntrinsicInst.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/IntrinsicsHexagon.h"
45#include "llvm/IR/Module.h"
46#include "llvm/IR/Type.h"
47#include "llvm/IR/Value.h"
48#include "llvm/MC/MCRegisterInfo.h"
49#include "llvm/Support/Casting.h"
50#include "llvm/Support/CodeGen.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/MathExtras.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetMachine.h"
57#include <algorithm>
58#include <cassert>
59#include <cstddef>
60#include <cstdint>
61#include <limits>
62#include <utility>
63
64using namespace llvm;
65
66#define DEBUG_TYPE "hexagon-lowering"
67
68static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
69  cl::init(true), cl::Hidden,
70  cl::desc("Control jump table emission on Hexagon target"));
71
72static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
73  cl::Hidden, cl::ZeroOrMore, cl::init(false),
74  cl::desc("Enable Hexagon SDNode scheduling"));
75
76static cl::opt<bool> EnableFastMath("ffast-math",
77  cl::Hidden, cl::ZeroOrMore, cl::init(false),
78  cl::desc("Enable Fast Math processing"));
79
80static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
81  cl::Hidden, cl::ZeroOrMore, cl::init(5),
82  cl::desc("Set minimum jump tables"));
83
84static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
85  cl::Hidden, cl::ZeroOrMore, cl::init(6),
86  cl::desc("Max #stores to inline memcpy"));
87
88static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
89  cl::Hidden, cl::ZeroOrMore, cl::init(4),
90  cl::desc("Max #stores to inline memcpy"));
91
92static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
93  cl::Hidden, cl::ZeroOrMore, cl::init(6),
94  cl::desc("Max #stores to inline memmove"));
95
96static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
97  cl::Hidden, cl::ZeroOrMore, cl::init(4),
98  cl::desc("Max #stores to inline memmove"));
99
100static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
101  cl::Hidden, cl::ZeroOrMore, cl::init(8),
102  cl::desc("Max #stores to inline memset"));
103
104static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
105  cl::Hidden, cl::ZeroOrMore, cl::init(4),
106  cl::desc("Max #stores to inline memset"));
107
108static cl::opt<bool> AlignLoads("hexagon-align-loads",
109  cl::Hidden, cl::init(false),
110  cl::desc("Rewrite unaligned loads as a pair of aligned loads"));
111
112
113namespace {
114
115  class HexagonCCState : public CCState {
116    unsigned NumNamedVarArgParams = 0;
117
118  public:
119    HexagonCCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
120                   SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
121                   unsigned NumNamedArgs)
122        : CCState(CC, IsVarArg, MF, locs, C),
123          NumNamedVarArgParams(NumNamedArgs) {}
124    unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
125  };
126
127} // end anonymous namespace
128
129
130// Implement calling convention for Hexagon.
131
132static bool CC_SkipOdd(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
133                       CCValAssign::LocInfo &LocInfo,
134                       ISD::ArgFlagsTy &ArgFlags, CCState &State) {
135  static const MCPhysReg ArgRegs[] = {
136    Hexagon::R0, Hexagon::R1, Hexagon::R2,
137    Hexagon::R3, Hexagon::R4, Hexagon::R5
138  };
139  const unsigned NumArgRegs = array_lengthof(ArgRegs);
140  unsigned RegNum = State.getFirstUnallocated(ArgRegs);
141
142  // RegNum is an index into ArgRegs: skip a register if RegNum is odd.
143  if (RegNum != NumArgRegs && RegNum % 2 == 1)
144    State.AllocateReg(ArgRegs[RegNum]);
145
146  // Always return false here, as this function only makes sure that the first
147  // unallocated register has an even register number and does not actually
148  // allocate a register for the current argument.
149  return false;
150}
151
152#include "HexagonGenCallingConv.inc"
153
154
155SDValue
156HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
157      const {
158  return SDValue();
159}
160
161/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
162/// by "Src" to address "Dst" of size "Size".  Alignment information is
163/// specified by the specific parameter attribute. The copy will be passed as
164/// a byval function parameter.  Sometimes what we are copying is the end of a
165/// larger object, the part that does not fit in registers.
166static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
167                                         SDValue Chain, ISD::ArgFlagsTy Flags,
168                                         SelectionDAG &DAG, const SDLoc &dl) {
169  SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
170  return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
171                       /*isVolatile=*/false, /*AlwaysInline=*/false,
172                       /*isTailCall=*/false,
173                       MachinePointerInfo(), MachinePointerInfo());
174}
175
176bool
177HexagonTargetLowering::CanLowerReturn(
178    CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
179    const SmallVectorImpl<ISD::OutputArg> &Outs,
180    LLVMContext &Context) const {
181  SmallVector<CCValAssign, 16> RVLocs;
182  CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
183
184  if (MF.getSubtarget<HexagonSubtarget>().useHVXOps())
185    return CCInfo.CheckReturn(Outs, RetCC_Hexagon_HVX);
186  return CCInfo.CheckReturn(Outs, RetCC_Hexagon);
187}
188
189// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
190// passed by value, the function prototype is modified to return void and
191// the value is stored in memory pointed by a pointer passed by caller.
192SDValue
193HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
194                                   bool IsVarArg,
195                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
196                                   const SmallVectorImpl<SDValue> &OutVals,
197                                   const SDLoc &dl, SelectionDAG &DAG) const {
198  // CCValAssign - represent the assignment of the return value to locations.
199  SmallVector<CCValAssign, 16> RVLocs;
200
201  // CCState - Info about the registers and stack slot.
202  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
203                 *DAG.getContext());
204
205  // Analyze return values of ISD::RET
206  if (Subtarget.useHVXOps())
207    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon_HVX);
208  else
209    CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
210
211  SDValue Flag;
212  SmallVector<SDValue, 4> RetOps(1, Chain);
213
214  // Copy the result values into the output registers.
215  for (unsigned i = 0; i != RVLocs.size(); ++i) {
216    CCValAssign &VA = RVLocs[i];
217
218    Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
219
220    // Guarantee that all emitted copies are stuck together with flags.
221    Flag = Chain.getValue(1);
222    RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
223  }
224
225  RetOps[0] = Chain;  // Update chain.
226
227  // Add the flag if we have it.
228  if (Flag.getNode())
229    RetOps.push_back(Flag);
230
231  return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
232}
233
234bool HexagonTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
235  // If either no tail call or told not to tail call at all, don't.
236  return CI->isTailCall();
237}
238
239Register HexagonTargetLowering::getRegisterByName(
240      const char* RegName, LLT VT, const MachineFunction &) const {
241  // Just support r19, the linux kernel uses it.
242  Register Reg = StringSwitch<Register>(RegName)
243                     .Case("r0", Hexagon::R0)
244                     .Case("r1", Hexagon::R1)
245                     .Case("r2", Hexagon::R2)
246                     .Case("r3", Hexagon::R3)
247                     .Case("r4", Hexagon::R4)
248                     .Case("r5", Hexagon::R5)
249                     .Case("r6", Hexagon::R6)
250                     .Case("r7", Hexagon::R7)
251                     .Case("r8", Hexagon::R8)
252                     .Case("r9", Hexagon::R9)
253                     .Case("r10", Hexagon::R10)
254                     .Case("r11", Hexagon::R11)
255                     .Case("r12", Hexagon::R12)
256                     .Case("r13", Hexagon::R13)
257                     .Case("r14", Hexagon::R14)
258                     .Case("r15", Hexagon::R15)
259                     .Case("r16", Hexagon::R16)
260                     .Case("r17", Hexagon::R17)
261                     .Case("r18", Hexagon::R18)
262                     .Case("r19", Hexagon::R19)
263                     .Case("r20", Hexagon::R20)
264                     .Case("r21", Hexagon::R21)
265                     .Case("r22", Hexagon::R22)
266                     .Case("r23", Hexagon::R23)
267                     .Case("r24", Hexagon::R24)
268                     .Case("r25", Hexagon::R25)
269                     .Case("r26", Hexagon::R26)
270                     .Case("r27", Hexagon::R27)
271                     .Case("r28", Hexagon::R28)
272                     .Case("r29", Hexagon::R29)
273                     .Case("r30", Hexagon::R30)
274                     .Case("r31", Hexagon::R31)
275                     .Case("r1:0", Hexagon::D0)
276                     .Case("r3:2", Hexagon::D1)
277                     .Case("r5:4", Hexagon::D2)
278                     .Case("r7:6", Hexagon::D3)
279                     .Case("r9:8", Hexagon::D4)
280                     .Case("r11:10", Hexagon::D5)
281                     .Case("r13:12", Hexagon::D6)
282                     .Case("r15:14", Hexagon::D7)
283                     .Case("r17:16", Hexagon::D8)
284                     .Case("r19:18", Hexagon::D9)
285                     .Case("r21:20", Hexagon::D10)
286                     .Case("r23:22", Hexagon::D11)
287                     .Case("r25:24", Hexagon::D12)
288                     .Case("r27:26", Hexagon::D13)
289                     .Case("r29:28", Hexagon::D14)
290                     .Case("r31:30", Hexagon::D15)
291                     .Case("sp", Hexagon::R29)
292                     .Case("fp", Hexagon::R30)
293                     .Case("lr", Hexagon::R31)
294                     .Case("p0", Hexagon::P0)
295                     .Case("p1", Hexagon::P1)
296                     .Case("p2", Hexagon::P2)
297                     .Case("p3", Hexagon::P3)
298                     .Case("sa0", Hexagon::SA0)
299                     .Case("lc0", Hexagon::LC0)
300                     .Case("sa1", Hexagon::SA1)
301                     .Case("lc1", Hexagon::LC1)
302                     .Case("m0", Hexagon::M0)
303                     .Case("m1", Hexagon::M1)
304                     .Case("usr", Hexagon::USR)
305                     .Case("ugp", Hexagon::UGP)
306                     .Default(Register());
307  if (Reg)
308    return Reg;
309
310  report_fatal_error("Invalid register name global variable");
311}
312
313/// LowerCallResult - Lower the result values of an ISD::CALL into the
314/// appropriate copies out of appropriate physical registers.  This assumes that
315/// Chain/Glue are the input chain/glue to use, and that TheCall is the call
316/// being lowered. Returns a SDNode with the same number of values as the
317/// ISD::CALL.
318SDValue HexagonTargetLowering::LowerCallResult(
319    SDValue Chain, SDValue Glue, CallingConv::ID CallConv, bool IsVarArg,
320    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
321    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
322    const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const {
323  // Assign locations to each value returned by this call.
324  SmallVector<CCValAssign, 16> RVLocs;
325
326  CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
327                 *DAG.getContext());
328
329  if (Subtarget.useHVXOps())
330    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon_HVX);
331  else
332    CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
333
334  // Copy all of the result registers out of their specified physreg.
335  for (unsigned i = 0; i != RVLocs.size(); ++i) {
336    SDValue RetVal;
337    if (RVLocs[i].getValVT() == MVT::i1) {
338      // Return values of type MVT::i1 require special handling. The reason
339      // is that MVT::i1 is associated with the PredRegs register class, but
340      // values of that type are still returned in R0. Generate an explicit
341      // copy into a predicate register from R0, and treat the value of the
342      // predicate register as the call result.
343      auto &MRI = DAG.getMachineFunction().getRegInfo();
344      SDValue FR0 = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
345                                       MVT::i32, Glue);
346      // FR0 = (Value, Chain, Glue)
347      Register PredR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
348      SDValue TPR = DAG.getCopyToReg(FR0.getValue(1), dl, PredR,
349                                     FR0.getValue(0), FR0.getValue(2));
350      // TPR = (Chain, Glue)
351      // Don't glue this CopyFromReg, because it copies from a virtual
352      // register. If it is glued to the call, InstrEmitter will add it
353      // as an implicit def to the call (EmitMachineNode).
354      RetVal = DAG.getCopyFromReg(TPR.getValue(0), dl, PredR, MVT::i1);
355      Glue = TPR.getValue(1);
356      Chain = TPR.getValue(0);
357    } else {
358      RetVal = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
359                                  RVLocs[i].getValVT(), Glue);
360      Glue = RetVal.getValue(2);
361      Chain = RetVal.getValue(1);
362    }
363    InVals.push_back(RetVal.getValue(0));
364  }
365
366  return Chain;
367}
368
369/// LowerCall - Functions arguments are copied from virtual regs to
370/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
371SDValue
372HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
373                                 SmallVectorImpl<SDValue> &InVals) const {
374  SelectionDAG &DAG                     = CLI.DAG;
375  SDLoc &dl                             = CLI.DL;
376  SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
377  SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
378  SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
379  SDValue Chain                         = CLI.Chain;
380  SDValue Callee                        = CLI.Callee;
381  CallingConv::ID CallConv              = CLI.CallConv;
382  bool IsVarArg                         = CLI.IsVarArg;
383  bool DoesNotReturn                    = CLI.DoesNotReturn;
384
385  bool IsStructRet    = Outs.empty() ? false : Outs[0].Flags.isSRet();
386  MachineFunction &MF = DAG.getMachineFunction();
387  MachineFrameInfo &MFI = MF.getFrameInfo();
388  auto PtrVT = getPointerTy(MF.getDataLayout());
389
390  unsigned NumParams = CLI.CS.getInstruction()
391                        ? CLI.CS.getFunctionType()->getNumParams()
392                        : 0;
393  if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee))
394    Callee = DAG.getTargetGlobalAddress(GAN->getGlobal(), dl, MVT::i32);
395
396  // Analyze operands of the call, assigning locations to each operand.
397  SmallVector<CCValAssign, 16> ArgLocs;
398  HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
399                        NumParams);
400
401  if (Subtarget.useHVXOps())
402    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_HVX);
403  else
404    CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
405
406  if (CLI.IsTailCall) {
407    bool StructAttrFlag = MF.getFunction().hasStructRetAttr();
408    CLI.IsTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
409                        IsVarArg, IsStructRet, StructAttrFlag, Outs,
410                        OutVals, Ins, DAG);
411    for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
412      CCValAssign &VA = ArgLocs[i];
413      if (VA.isMemLoc()) {
414        CLI.IsTailCall = false;
415        break;
416      }
417    }
418    LLVM_DEBUG(dbgs() << (CLI.IsTailCall ? "Eligible for Tail Call\n"
419                                         : "Argument must be passed on stack. "
420                                           "Not eligible for Tail Call\n"));
421  }
422  // Get a count of how many bytes are to be pushed on the stack.
423  unsigned NumBytes = CCInfo.getNextStackOffset();
424  SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
425  SmallVector<SDValue, 8> MemOpChains;
426
427  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
428  SDValue StackPtr =
429      DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
430
431  bool NeedsArgAlign = false;
432  unsigned LargestAlignSeen = 0;
433  // Walk the register/memloc assignments, inserting copies/loads.
434  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
435    CCValAssign &VA = ArgLocs[i];
436    SDValue Arg = OutVals[i];
437    ISD::ArgFlagsTy Flags = Outs[i].Flags;
438    // Record if we need > 8 byte alignment on an argument.
439    bool ArgAlign = Subtarget.isHVXVectorType(VA.getValVT());
440    NeedsArgAlign |= ArgAlign;
441
442    // Promote the value if needed.
443    switch (VA.getLocInfo()) {
444      default:
445        // Loc info must be one of Full, BCvt, SExt, ZExt, or AExt.
446        llvm_unreachable("Unknown loc info!");
447      case CCValAssign::Full:
448        break;
449      case CCValAssign::BCvt:
450        Arg = DAG.getBitcast(VA.getLocVT(), Arg);
451        break;
452      case CCValAssign::SExt:
453        Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
454        break;
455      case CCValAssign::ZExt:
456        Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
457        break;
458      case CCValAssign::AExt:
459        Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
460        break;
461    }
462
463    if (VA.isMemLoc()) {
464      unsigned LocMemOffset = VA.getLocMemOffset();
465      SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
466                                        StackPtr.getValueType());
467      MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
468      if (ArgAlign)
469        LargestAlignSeen = std::max(LargestAlignSeen,
470                             (unsigned)VA.getLocVT().getStoreSizeInBits() >> 3);
471      if (Flags.isByVal()) {
472        // The argument is a struct passed by value. According to LLVM, "Arg"
473        // is a pointer.
474        MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
475                                                        Flags, DAG, dl));
476      } else {
477        MachinePointerInfo LocPI = MachinePointerInfo::getStack(
478            DAG.getMachineFunction(), LocMemOffset);
479        SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI);
480        MemOpChains.push_back(S);
481      }
482      continue;
483    }
484
485    // Arguments that can be passed on register must be kept at RegsToPass
486    // vector.
487    if (VA.isRegLoc())
488      RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
489  }
490
491  if (NeedsArgAlign && Subtarget.hasV60Ops()) {
492    LLVM_DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
493    unsigned VecAlign = HRI.getSpillAlignment(Hexagon::HvxVRRegClass);
494    LargestAlignSeen = std::max(LargestAlignSeen, VecAlign);
495    MFI.ensureMaxAlignment(LargestAlignSeen);
496  }
497  // Transform all store nodes into one single node because all store
498  // nodes are independent of each other.
499  if (!MemOpChains.empty())
500    Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
501
502  SDValue Glue;
503  if (!CLI.IsTailCall) {
504    Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
505    Glue = Chain.getValue(1);
506  }
507
508  // Build a sequence of copy-to-reg nodes chained together with token
509  // chain and flag operands which copy the outgoing args into registers.
510  // The Glue is necessary since all emitted instructions must be
511  // stuck together.
512  if (!CLI.IsTailCall) {
513    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
514      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
515                               RegsToPass[i].second, Glue);
516      Glue = Chain.getValue(1);
517    }
518  } else {
519    // For tail calls lower the arguments to the 'real' stack slot.
520    //
521    // Force all the incoming stack arguments to be loaded from the stack
522    // before any new outgoing arguments are stored to the stack, because the
523    // outgoing stack slots may alias the incoming argument stack slots, and
524    // the alias isn't otherwise explicit. This is slightly more conservative
525    // than necessary, because it means that each store effectively depends
526    // on every argument instead of just those arguments it would clobber.
527    //
528    // Do not flag preceding copytoreg stuff together with the following stuff.
529    Glue = SDValue();
530    for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
531      Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
532                               RegsToPass[i].second, Glue);
533      Glue = Chain.getValue(1);
534    }
535    Glue = SDValue();
536  }
537
538  bool LongCalls = MF.getSubtarget<HexagonSubtarget>().useLongCalls();
539  unsigned Flags = LongCalls ? HexagonII::HMOTF_ConstExtended : 0;
540
541  // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
542  // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
543  // node so that legalize doesn't hack it.
544  if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
545    Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT, 0, Flags);
546  } else if (ExternalSymbolSDNode *S =
547             dyn_cast<ExternalSymbolSDNode>(Callee)) {
548    Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT, Flags);
549  }
550
551  // Returns a chain & a flag for retval copy to use.
552  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
553  SmallVector<SDValue, 8> Ops;
554  Ops.push_back(Chain);
555  Ops.push_back(Callee);
556
557  // Add argument registers to the end of the list so that they are
558  // known live into the call.
559  for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
560    Ops.push_back(DAG.getRegister(RegsToPass[i].first,
561                                  RegsToPass[i].second.getValueType()));
562  }
563
564  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallConv);
565  assert(Mask && "Missing call preserved mask for calling convention");
566  Ops.push_back(DAG.getRegisterMask(Mask));
567
568  if (Glue.getNode())
569    Ops.push_back(Glue);
570
571  if (CLI.IsTailCall) {
572    MFI.setHasTailCall();
573    return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
574  }
575
576  // Set this here because we need to know this for "hasFP" in frame lowering.
577  // The target-independent code calls getFrameRegister before setting it, and
578  // getFrameRegister uses hasFP to determine whether the function has FP.
579  MFI.setHasCalls(true);
580
581  unsigned OpCode = DoesNotReturn ? HexagonISD::CALLnr : HexagonISD::CALL;
582  Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
583  Glue = Chain.getValue(1);
584
585  // Create the CALLSEQ_END node.
586  Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
587                             DAG.getIntPtrConstant(0, dl, true), Glue, dl);
588  Glue = Chain.getValue(1);
589
590  // Handle result values, copying them out of physregs into vregs that we
591  // return.
592  return LowerCallResult(Chain, Glue, CallConv, IsVarArg, Ins, dl, DAG,
593                         InVals, OutVals, Callee);
594}
595
596/// Returns true by value, base pointer and offset pointer and addressing
597/// mode by reference if this node can be combined with a load / store to
598/// form a post-indexed load / store.
599bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
600      SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM,
601      SelectionDAG &DAG) const {
602  LSBaseSDNode *LSN = dyn_cast<LSBaseSDNode>(N);
603  if (!LSN)
604    return false;
605  EVT VT = LSN->getMemoryVT();
606  if (!VT.isSimple())
607    return false;
608  bool IsLegalType = VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
609                     VT == MVT::i64 || VT == MVT::f32 || VT == MVT::f64 ||
610                     VT == MVT::v2i16 || VT == MVT::v2i32 || VT == MVT::v4i8 ||
611                     VT == MVT::v4i16 || VT == MVT::v8i8 ||
612                     Subtarget.isHVXVectorType(VT.getSimpleVT());
613  if (!IsLegalType)
614    return false;
615
616  if (Op->getOpcode() != ISD::ADD)
617    return false;
618  Base = Op->getOperand(0);
619  Offset = Op->getOperand(1);
620  if (!isa<ConstantSDNode>(Offset.getNode()))
621    return false;
622  AM = ISD::POST_INC;
623
624  int32_t V = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
625  return Subtarget.getInstrInfo()->isValidAutoIncImm(VT, V);
626}
627
628SDValue
629HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
630  MachineFunction &MF = DAG.getMachineFunction();
631  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
632  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
633  unsigned LR = HRI.getRARegister();
634
635  if ((Op.getOpcode() != ISD::INLINEASM &&
636       Op.getOpcode() != ISD::INLINEASM_BR) || HMFI.hasClobberLR())
637    return Op;
638
639  unsigned NumOps = Op.getNumOperands();
640  if (Op.getOperand(NumOps-1).getValueType() == MVT::Glue)
641    --NumOps;  // Ignore the flag operand.
642
643  for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
644    unsigned Flags = cast<ConstantSDNode>(Op.getOperand(i))->getZExtValue();
645    unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
646    ++i;  // Skip the ID value.
647
648    switch (InlineAsm::getKind(Flags)) {
649      default:
650        llvm_unreachable("Bad flags!");
651      case InlineAsm::Kind_RegUse:
652      case InlineAsm::Kind_Imm:
653      case InlineAsm::Kind_Mem:
654        i += NumVals;
655        break;
656      case InlineAsm::Kind_Clobber:
657      case InlineAsm::Kind_RegDef:
658      case InlineAsm::Kind_RegDefEarlyClobber: {
659        for (; NumVals; --NumVals, ++i) {
660          unsigned Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
661          if (Reg != LR)
662            continue;
663          HMFI.setHasClobberLR(true);
664          return Op;
665        }
666        break;
667      }
668    }
669  }
670
671  return Op;
672}
673
674// Need to transform ISD::PREFETCH into something that doesn't inherit
675// all of the properties of ISD::PREFETCH, specifically SDNPMayLoad and
676// SDNPMayStore.
677SDValue HexagonTargetLowering::LowerPREFETCH(SDValue Op,
678                                             SelectionDAG &DAG) const {
679  SDValue Chain = Op.getOperand(0);
680  SDValue Addr = Op.getOperand(1);
681  // Lower it to DCFETCH($reg, #0).  A "pat" will try to merge the offset in,
682  // if the "reg" is fed by an "add".
683  SDLoc DL(Op);
684  SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
685  return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
686}
687
688// Custom-handle ISD::READCYCLECOUNTER because the target-independent SDNode
689// is marked as having side-effects, while the register read on Hexagon does
690// not have any. TableGen refuses to accept the direct pattern from that node
691// to the A4_tfrcpp.
692SDValue HexagonTargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
693                                                     SelectionDAG &DAG) const {
694  SDValue Chain = Op.getOperand(0);
695  SDLoc dl(Op);
696  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
697  return DAG.getNode(HexagonISD::READCYCLE, dl, VTs, Chain);
698}
699
700SDValue HexagonTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
701      SelectionDAG &DAG) const {
702  SDValue Chain = Op.getOperand(0);
703  unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
704  // Lower the hexagon_prefetch builtin to DCFETCH, as above.
705  if (IntNo == Intrinsic::hexagon_prefetch) {
706    SDValue Addr = Op.getOperand(2);
707    SDLoc DL(Op);
708    SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
709    return DAG.getNode(HexagonISD::DCFETCH, DL, MVT::Other, Chain, Addr, Zero);
710  }
711  return SDValue();
712}
713
714SDValue
715HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
716                                               SelectionDAG &DAG) const {
717  SDValue Chain = Op.getOperand(0);
718  SDValue Size = Op.getOperand(1);
719  SDValue Align = Op.getOperand(2);
720  SDLoc dl(Op);
721
722  ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
723  assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
724
725  unsigned A = AlignConst->getSExtValue();
726  auto &HFI = *Subtarget.getFrameLowering();
727  // "Zero" means natural stack alignment.
728  if (A == 0)
729    A = HFI.getStackAlignment();
730
731  LLVM_DEBUG({
732    dbgs () << __func__ << " Align: " << A << " Size: ";
733    Size.getNode()->dump(&DAG);
734    dbgs() << "\n";
735  });
736
737  SDValue AC = DAG.getConstant(A, dl, MVT::i32);
738  SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
739  SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
740
741  DAG.ReplaceAllUsesOfValueWith(Op, AA);
742  return AA;
743}
744
745SDValue HexagonTargetLowering::LowerFormalArguments(
746    SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
747    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
748    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
749  MachineFunction &MF = DAG.getMachineFunction();
750  MachineFrameInfo &MFI = MF.getFrameInfo();
751  MachineRegisterInfo &MRI = MF.getRegInfo();
752
753  // Assign locations to all of the incoming arguments.
754  SmallVector<CCValAssign, 16> ArgLocs;
755  HexagonCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext(),
756                        MF.getFunction().getFunctionType()->getNumParams());
757
758  if (Subtarget.useHVXOps())
759    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon_HVX);
760  else
761    CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
762
763  // For LLVM, in the case when returning a struct by value (>8byte),
764  // the first argument is a pointer that points to the location on caller's
765  // stack where the return value will be stored. For Hexagon, the location on
766  // caller's stack is passed only when the struct size is smaller than (and
767  // equal to) 8 bytes. If not, no address will be passed into callee and
768  // callee return the result direclty through R0/R1.
769
770  auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
771
772  for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
773    CCValAssign &VA = ArgLocs[i];
774    ISD::ArgFlagsTy Flags = Ins[i].Flags;
775    bool ByVal = Flags.isByVal();
776
777    // Arguments passed in registers:
778    // 1. 32- and 64-bit values and HVX vectors are passed directly,
779    // 2. Large structs are passed via an address, and the address is
780    //    passed in a register.
781    if (VA.isRegLoc() && ByVal && Flags.getByValSize() <= 8)
782      llvm_unreachable("ByValSize must be bigger than 8 bytes");
783
784    bool InReg = VA.isRegLoc() &&
785                 (!ByVal || (ByVal && Flags.getByValSize() > 8));
786
787    if (InReg) {
788      MVT RegVT = VA.getLocVT();
789      if (VA.getLocInfo() == CCValAssign::BCvt)
790        RegVT = VA.getValVT();
791
792      const TargetRegisterClass *RC = getRegClassFor(RegVT);
793      Register VReg = MRI.createVirtualRegister(RC);
794      SDValue Copy = DAG.getCopyFromReg(Chain, dl, VReg, RegVT);
795
796      // Treat values of type MVT::i1 specially: they are passed in
797      // registers of type i32, but they need to remain as values of
798      // type i1 for consistency of the argument lowering.
799      if (VA.getValVT() == MVT::i1) {
800        assert(RegVT.getSizeInBits() <= 32);
801        SDValue T = DAG.getNode(ISD::AND, dl, RegVT,
802                                Copy, DAG.getConstant(1, dl, RegVT));
803        Copy = DAG.getSetCC(dl, MVT::i1, T, DAG.getConstant(0, dl, RegVT),
804                            ISD::SETNE);
805      } else {
806#ifndef NDEBUG
807        unsigned RegSize = RegVT.getSizeInBits();
808        assert(RegSize == 32 || RegSize == 64 ||
809               Subtarget.isHVXVectorType(RegVT));
810#endif
811      }
812      InVals.push_back(Copy);
813      MRI.addLiveIn(VA.getLocReg(), VReg);
814    } else {
815      assert(VA.isMemLoc() && "Argument should be passed in memory");
816
817      // If it's a byval parameter, then we need to compute the
818      // "real" size, not the size of the pointer.
819      unsigned ObjSize = Flags.isByVal()
820                            ? Flags.getByValSize()
821                            : VA.getLocVT().getStoreSizeInBits() / 8;
822
823      // Create the frame index object for this incoming parameter.
824      int Offset = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
825      int FI = MFI.CreateFixedObject(ObjSize, Offset, true);
826      SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
827
828      if (Flags.isByVal()) {
829        // If it's a pass-by-value aggregate, then do not dereference the stack
830        // location. Instead, we should generate a reference to the stack
831        // location.
832        InVals.push_back(FIN);
833      } else {
834        SDValue L = DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
835                                MachinePointerInfo::getFixedStack(MF, FI, 0));
836        InVals.push_back(L);
837      }
838    }
839  }
840
841
842  if (IsVarArg) {
843    // This will point to the next argument passed via stack.
844    int Offset = HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset();
845    int FI = MFI.CreateFixedObject(Hexagon_PointerSize, Offset, true);
846    HMFI.setVarArgsFrameIndex(FI);
847  }
848
849  return Chain;
850}
851
852SDValue
853HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
854  // VASTART stores the address of the VarArgsFrameIndex slot into the
855  // memory location argument.
856  MachineFunction &MF = DAG.getMachineFunction();
857  HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
858  SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
859  const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
860  return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, Op.getOperand(1),
861                      MachinePointerInfo(SV));
862}
863
864SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
865  const SDLoc &dl(Op);
866  SDValue LHS = Op.getOperand(0);
867  SDValue RHS = Op.getOperand(1);
868  ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
869  MVT ResTy = ty(Op);
870  MVT OpTy = ty(LHS);
871
872  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
873    MVT ElemTy = OpTy.getVectorElementType();
874    assert(ElemTy.isScalarInteger());
875    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
876                                  OpTy.getVectorNumElements());
877    return DAG.getSetCC(dl, ResTy,
878                        DAG.getSExtOrTrunc(LHS, SDLoc(LHS), WideTy),
879                        DAG.getSExtOrTrunc(RHS, SDLoc(RHS), WideTy), CC);
880  }
881
882  // Treat all other vector types as legal.
883  if (ResTy.isVector())
884    return Op;
885
886  // Comparisons of short integers should use sign-extend, not zero-extend,
887  // since we can represent small negative values in the compare instructions.
888  // The LLVM default is to use zero-extend arbitrarily in these cases.
889  auto isSExtFree = [this](SDValue N) {
890    switch (N.getOpcode()) {
891      case ISD::TRUNCATE: {
892        // A sign-extend of a truncate of a sign-extend is free.
893        SDValue Op = N.getOperand(0);
894        if (Op.getOpcode() != ISD::AssertSext)
895          return false;
896        EVT OrigTy = cast<VTSDNode>(Op.getOperand(1))->getVT();
897        unsigned ThisBW = ty(N).getSizeInBits();
898        unsigned OrigBW = OrigTy.getSizeInBits();
899        // The type that was sign-extended to get the AssertSext must be
900        // narrower than the type of N (so that N has still the same value
901        // as the original).
902        return ThisBW >= OrigBW;
903      }
904      case ISD::LOAD:
905        // We have sign-extended loads.
906        return true;
907    }
908    return false;
909  };
910
911  if (OpTy == MVT::i8 || OpTy == MVT::i16) {
912    ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
913    bool IsNegative = C && C->getAPIntValue().isNegative();
914    if (IsNegative || isSExtFree(LHS) || isSExtFree(RHS))
915      return DAG.getSetCC(dl, ResTy,
916                          DAG.getSExtOrTrunc(LHS, SDLoc(LHS), MVT::i32),
917                          DAG.getSExtOrTrunc(RHS, SDLoc(RHS), MVT::i32), CC);
918  }
919
920  return SDValue();
921}
922
923SDValue
924HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
925  SDValue PredOp = Op.getOperand(0);
926  SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
927  MVT OpTy = ty(Op1);
928  const SDLoc &dl(Op);
929
930  if (OpTy == MVT::v2i16 || OpTy == MVT::v4i8) {
931    MVT ElemTy = OpTy.getVectorElementType();
932    assert(ElemTy.isScalarInteger());
933    MVT WideTy = MVT::getVectorVT(MVT::getIntegerVT(2*ElemTy.getSizeInBits()),
934                                  OpTy.getVectorNumElements());
935    // Generate (trunc (select (_, sext, sext))).
936    return DAG.getSExtOrTrunc(
937              DAG.getSelect(dl, WideTy, PredOp,
938                            DAG.getSExtOrTrunc(Op1, dl, WideTy),
939                            DAG.getSExtOrTrunc(Op2, dl, WideTy)),
940              dl, OpTy);
941  }
942
943  return SDValue();
944}
945
946static Constant *convert_i1_to_i8(const Constant *ConstVal) {
947  SmallVector<Constant *, 128> NewConst;
948  const ConstantVector *CV = dyn_cast<ConstantVector>(ConstVal);
949  if (!CV)
950    return nullptr;
951
952  LLVMContext &Ctx = ConstVal->getContext();
953  IRBuilder<> IRB(Ctx);
954  unsigned NumVectorElements = CV->getNumOperands();
955  assert(isPowerOf2_32(NumVectorElements) &&
956         "conversion only supported for pow2 VectorSize!");
957
958  for (unsigned i = 0; i < NumVectorElements / 8; ++i) {
959    uint8_t x = 0;
960    for (unsigned j = 0; j < 8; ++j) {
961      uint8_t y = CV->getOperand(i * 8 + j)->getUniqueInteger().getZExtValue();
962      x |= y << (7 - j);
963    }
964    assert((x == 0 || x == 255) && "Either all 0's or all 1's expected!");
965    NewConst.push_back(IRB.getInt8(x));
966  }
967  return ConstantVector::get(NewConst);
968}
969
970SDValue
971HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
972  EVT ValTy = Op.getValueType();
973  ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
974  Constant *CVal = nullptr;
975  bool isVTi1Type = false;
976  if (const Constant *ConstVal = dyn_cast<Constant>(CPN->getConstVal())) {
977    Type *CValTy = ConstVal->getType();
978    if (CValTy->isVectorTy() &&
979        CValTy->getVectorElementType()->isIntegerTy(1)) {
980      CVal = convert_i1_to_i8(ConstVal);
981      isVTi1Type = (CVal != nullptr);
982    }
983  }
984  unsigned Align = CPN->getAlignment();
985  bool IsPositionIndependent = isPositionIndependent();
986  unsigned char TF = IsPositionIndependent ? HexagonII::MO_PCREL : 0;
987
988  unsigned Offset = 0;
989  SDValue T;
990  if (CPN->isMachineConstantPoolEntry())
991    T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, Offset,
992                                  TF);
993  else if (isVTi1Type)
994    T = DAG.getTargetConstantPool(CVal, ValTy, Align, Offset, TF);
995  else
996    T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, Offset, TF);
997
998  assert(cast<ConstantPoolSDNode>(T)->getTargetFlags() == TF &&
999         "Inconsistent target flag encountered");
1000
1001  if (IsPositionIndependent)
1002    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
1003  return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
1004}
1005
1006SDValue
1007HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1008  EVT VT = Op.getValueType();
1009  int Idx = cast<JumpTableSDNode>(Op)->getIndex();
1010  if (isPositionIndependent()) {
1011    SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
1012    return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
1013  }
1014
1015  SDValue T = DAG.getTargetJumpTable(Idx, VT);
1016  return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
1017}
1018
1019SDValue
1020HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
1021  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1022  MachineFunction &MF = DAG.getMachineFunction();
1023  MachineFrameInfo &MFI = MF.getFrameInfo();
1024  MFI.setReturnAddressIsTaken(true);
1025
1026  if (verifyReturnAddressArgumentIsConstant(Op, DAG))
1027    return SDValue();
1028
1029  EVT VT = Op.getValueType();
1030  SDLoc dl(Op);
1031  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1032  if (Depth) {
1033    SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
1034    SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
1035    return DAG.getLoad(VT, dl, DAG.getEntryNode(),
1036                       DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
1037                       MachinePointerInfo());
1038  }
1039
1040  // Return LR, which contains the return address. Mark it an implicit live-in.
1041  unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
1042  return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
1043}
1044
1045SDValue
1046HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
1047  const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
1048  MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
1049  MFI.setFrameAddressIsTaken(true);
1050
1051  EVT VT = Op.getValueType();
1052  SDLoc dl(Op);
1053  unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1054  SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
1055                                         HRI.getFrameRegister(), VT);
1056  while (Depth--)
1057    FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1058                            MachinePointerInfo());
1059  return FrameAddr;
1060}
1061
1062SDValue
1063HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
1064  SDLoc dl(Op);
1065  return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1066}
1067
1068SDValue
1069HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
1070  SDLoc dl(Op);
1071  auto *GAN = cast<GlobalAddressSDNode>(Op);
1072  auto PtrVT = getPointerTy(DAG.getDataLayout());
1073  auto *GV = GAN->getGlobal();
1074  int64_t Offset = GAN->getOffset();
1075
1076  auto &HLOF = *HTM.getObjFileLowering();
1077  Reloc::Model RM = HTM.getRelocationModel();
1078
1079  if (RM == Reloc::Static) {
1080    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
1081    const GlobalObject *GO = GV->getBaseObject();
1082    if (GO && Subtarget.useSmallData() && HLOF.isGlobalInSmallSection(GO, HTM))
1083      return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
1084    return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
1085  }
1086
1087  bool UsePCRel = getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1088  if (UsePCRel) {
1089    SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
1090                                            HexagonII::MO_PCREL);
1091    return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
1092  }
1093
1094  // Use GOT index.
1095  SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
1096  SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
1097  SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
1098  return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
1099}
1100
1101// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
1102SDValue
1103HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1104  const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1105  SDLoc dl(Op);
1106  EVT PtrVT = getPointerTy(DAG.getDataLayout());
1107
1108  Reloc::Model RM = HTM.getRelocationModel();
1109  if (RM == Reloc::Static) {
1110    SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
1111    return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
1112  }
1113
1114  SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
1115  return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
1116}
1117
1118SDValue
1119HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
1120      const {
1121  EVT PtrVT = getPointerTy(DAG.getDataLayout());
1122  SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
1123                                               HexagonII::MO_PCREL);
1124  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
1125}
1126
1127SDValue
1128HexagonTargetLowering::GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
1129      GlobalAddressSDNode *GA, SDValue Glue, EVT PtrVT, unsigned ReturnReg,
1130      unsigned char OperandFlags) const {
1131  MachineFunction &MF = DAG.getMachineFunction();
1132  MachineFrameInfo &MFI = MF.getFrameInfo();
1133  SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1134  SDLoc dl(GA);
1135  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
1136                                           GA->getValueType(0),
1137                                           GA->getOffset(),
1138                                           OperandFlags);
1139  // Create Operands for the call.The Operands should have the following:
1140  // 1. Chain SDValue
1141  // 2. Callee which in this case is the Global address value.
1142  // 3. Registers live into the call.In this case its R0, as we
1143  //    have just one argument to be passed.
1144  // 4. Glue.
1145  // Note: The order is important.
1146
1147  const auto &HRI = *Subtarget.getRegisterInfo();
1148  const uint32_t *Mask = HRI.getCallPreservedMask(MF, CallingConv::C);
1149  assert(Mask && "Missing call preserved mask for calling convention");
1150  SDValue Ops[] = { Chain, TGA, DAG.getRegister(Hexagon::R0, PtrVT),
1151                    DAG.getRegisterMask(Mask), Glue };
1152  Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, Ops);
1153
1154  // Inform MFI that function has calls.
1155  MFI.setAdjustsStack(true);
1156
1157  Glue = Chain.getValue(1);
1158  return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Glue);
1159}
1160
1161//
1162// Lower using the intial executable model for TLS addresses
1163//
1164SDValue
1165HexagonTargetLowering::LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
1166      SelectionDAG &DAG) const {
1167  SDLoc dl(GA);
1168  int64_t Offset = GA->getOffset();
1169  auto PtrVT = getPointerTy(DAG.getDataLayout());
1170
1171  // Get the thread pointer.
1172  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1173
1174  bool IsPositionIndependent = isPositionIndependent();
1175  unsigned char TF =
1176      IsPositionIndependent ? HexagonII::MO_IEGOT : HexagonII::MO_IE;
1177
1178  // First generate the TLS symbol address
1179  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT,
1180                                           Offset, TF);
1181
1182  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1183
1184  if (IsPositionIndependent) {
1185    // Generate the GOT pointer in case of position independent code
1186    SDValue GOT = LowerGLOBAL_OFFSET_TABLE(Sym, DAG);
1187
1188    // Add the TLS Symbol address to GOT pointer.This gives
1189    // GOT relative relocation for the symbol.
1190    Sym = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1191  }
1192
1193  // Load the offset value for TLS symbol.This offset is relative to
1194  // thread pointer.
1195  SDValue LoadOffset =
1196      DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Sym, MachinePointerInfo());
1197
1198  // Address of the thread local variable is the add of thread
1199  // pointer and the offset of the variable.
1200  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, LoadOffset);
1201}
1202
1203//
1204// Lower using the local executable model for TLS addresses
1205//
1206SDValue
1207HexagonTargetLowering::LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
1208      SelectionDAG &DAG) const {
1209  SDLoc dl(GA);
1210  int64_t Offset = GA->getOffset();
1211  auto PtrVT = getPointerTy(DAG.getDataLayout());
1212
1213  // Get the thread pointer.
1214  SDValue TP = DAG.getCopyFromReg(DAG.getEntryNode(), dl, Hexagon::UGP, PtrVT);
1215  // Generate the TLS symbol address
1216  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1217                                           HexagonII::MO_TPREL);
1218  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1219
1220  // Address of the thread local variable is the add of thread
1221  // pointer and the offset of the variable.
1222  return DAG.getNode(ISD::ADD, dl, PtrVT, TP, Sym);
1223}
1224
1225//
1226// Lower using the general dynamic model for TLS addresses
1227//
1228SDValue
1229HexagonTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
1230      SelectionDAG &DAG) const {
1231  SDLoc dl(GA);
1232  int64_t Offset = GA->getOffset();
1233  auto PtrVT = getPointerTy(DAG.getDataLayout());
1234
1235  // First generate the TLS symbol address
1236  SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, PtrVT, Offset,
1237                                           HexagonII::MO_GDGOT);
1238
1239  // Then, generate the GOT pointer
1240  SDValue GOT = LowerGLOBAL_OFFSET_TABLE(TGA, DAG);
1241
1242  // Add the TLS symbol and the GOT pointer
1243  SDValue Sym = DAG.getNode(HexagonISD::CONST32, dl, PtrVT, TGA);
1244  SDValue Chain = DAG.getNode(ISD::ADD, dl, PtrVT, GOT, Sym);
1245
1246  // Copy over the argument to R0
1247  SDValue InFlag;
1248  Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, Hexagon::R0, Chain, InFlag);
1249  InFlag = Chain.getValue(1);
1250
1251  unsigned Flags =
1252      static_cast<const HexagonSubtarget &>(DAG.getSubtarget()).useLongCalls()
1253          ? HexagonII::MO_GDPLT | HexagonII::HMOTF_ConstExtended
1254          : HexagonII::MO_GDPLT;
1255
1256  return GetDynamicTLSAddr(DAG, Chain, GA, InFlag, PtrVT,
1257                           Hexagon::R0, Flags);
1258}
1259
1260//
1261// Lower TLS addresses.
1262//
1263// For now for dynamic models, we only support the general dynamic model.
1264//
1265SDValue
1266HexagonTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1267      SelectionDAG &DAG) const {
1268  GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1269
1270  switch (HTM.getTLSModel(GA->getGlobal())) {
1271    case TLSModel::GeneralDynamic:
1272    case TLSModel::LocalDynamic:
1273      return LowerToTLSGeneralDynamicModel(GA, DAG);
1274    case TLSModel::InitialExec:
1275      return LowerToTLSInitialExecModel(GA, DAG);
1276    case TLSModel::LocalExec:
1277      return LowerToTLSLocalExecModel(GA, DAG);
1278  }
1279  llvm_unreachable("Bogus TLS model");
1280}
1281
1282//===----------------------------------------------------------------------===//
1283// TargetLowering Implementation
1284//===----------------------------------------------------------------------===//
1285
1286HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1287                                             const HexagonSubtarget &ST)
1288    : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
1289      Subtarget(ST) {
1290  auto &HRI = *Subtarget.getRegisterInfo();
1291
1292  setPrefLoopAlignment(Align(16));
1293  setMinFunctionAlignment(Align(4));
1294  setPrefFunctionAlignment(Align(16));
1295  setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
1296  setBooleanContents(TargetLoweringBase::UndefinedBooleanContent);
1297  setBooleanVectorContents(TargetLoweringBase::UndefinedBooleanContent);
1298
1299  setMaxAtomicSizeInBitsSupported(64);
1300  setMinCmpXchgSizeInBits(32);
1301
1302  if (EnableHexSDNodeSched)
1303    setSchedulingPreference(Sched::VLIW);
1304  else
1305    setSchedulingPreference(Sched::Source);
1306
1307  // Limits for inline expansion of memcpy/memmove
1308  MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
1309  MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
1310  MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
1311  MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
1312  MaxStoresPerMemset = MaxStoresPerMemsetCL;
1313  MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
1314
1315  //
1316  // Set up register classes.
1317  //
1318
1319  addRegisterClass(MVT::i1,    &Hexagon::PredRegsRegClass);
1320  addRegisterClass(MVT::v2i1,  &Hexagon::PredRegsRegClass);  // bbbbaaaa
1321  addRegisterClass(MVT::v4i1,  &Hexagon::PredRegsRegClass);  // ddccbbaa
1322  addRegisterClass(MVT::v8i1,  &Hexagon::PredRegsRegClass);  // hgfedcba
1323  addRegisterClass(MVT::i32,   &Hexagon::IntRegsRegClass);
1324  addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
1325  addRegisterClass(MVT::v4i8,  &Hexagon::IntRegsRegClass);
1326  addRegisterClass(MVT::i64,   &Hexagon::DoubleRegsRegClass);
1327  addRegisterClass(MVT::v8i8,  &Hexagon::DoubleRegsRegClass);
1328  addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
1329  addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
1330
1331  addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1332  addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1333
1334  //
1335  // Handling of scalar operations.
1336  //
1337  // All operations default to "legal", except:
1338  // - indexed loads and stores (pre-/post-incremented),
1339  // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
1340  //   ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
1341  //   FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
1342  //   FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
1343  // which default to "expand" for at least one type.
1344
1345  // Misc operations.
1346  setOperationAction(ISD::ConstantFP,           MVT::f32,   Legal);
1347  setOperationAction(ISD::ConstantFP,           MVT::f64,   Legal);
1348  setOperationAction(ISD::TRAP,                 MVT::Other, Legal);
1349  setOperationAction(ISD::ConstantPool,         MVT::i32,   Custom);
1350  setOperationAction(ISD::JumpTable,            MVT::i32,   Custom);
1351  setOperationAction(ISD::BUILD_PAIR,           MVT::i64,   Expand);
1352  setOperationAction(ISD::SIGN_EXTEND_INREG,    MVT::i1,    Expand);
1353  setOperationAction(ISD::INLINEASM,            MVT::Other, Custom);
1354  setOperationAction(ISD::INLINEASM_BR,         MVT::Other, Custom);
1355  setOperationAction(ISD::PREFETCH,             MVT::Other, Custom);
1356  setOperationAction(ISD::READCYCLECOUNTER,     MVT::i64,   Custom);
1357  setOperationAction(ISD::INTRINSIC_VOID,       MVT::Other, Custom);
1358  setOperationAction(ISD::EH_RETURN,            MVT::Other, Custom);
1359  setOperationAction(ISD::GLOBAL_OFFSET_TABLE,  MVT::i32,   Custom);
1360  setOperationAction(ISD::GlobalTLSAddress,     MVT::i32,   Custom);
1361  setOperationAction(ISD::ATOMIC_FENCE,         MVT::Other, Custom);
1362
1363  // Custom legalize GlobalAddress nodes into CONST32.
1364  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1365  setOperationAction(ISD::GlobalAddress, MVT::i8,  Custom);
1366  setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
1367
1368  // Hexagon needs to optimize cases with negative constants.
1369  setOperationAction(ISD::SETCC, MVT::i8,    Custom);
1370  setOperationAction(ISD::SETCC, MVT::i16,   Custom);
1371  setOperationAction(ISD::SETCC, MVT::v4i8,  Custom);
1372  setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
1373
1374  // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1375  setOperationAction(ISD::VASTART, MVT::Other, Custom);
1376  setOperationAction(ISD::VAEND,   MVT::Other, Expand);
1377  setOperationAction(ISD::VAARG,   MVT::Other, Expand);
1378  setOperationAction(ISD::VACOPY,  MVT::Other, Expand);
1379
1380  setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1381  setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1382  setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1383
1384  if (EmitJumpTables)
1385    setMinimumJumpTableEntries(MinimumJumpTables);
1386  else
1387    setMinimumJumpTableEntries(std::numeric_limits<unsigned>::max());
1388  setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1389
1390  setOperationAction(ISD::ABS, MVT::i32, Legal);
1391  setOperationAction(ISD::ABS, MVT::i64, Legal);
1392
1393  // Hexagon has A4_addp_c and A4_subp_c that take and generate a carry bit,
1394  // but they only operate on i64.
1395  for (MVT VT : MVT::integer_valuetypes()) {
1396    setOperationAction(ISD::UADDO,    VT, Custom);
1397    setOperationAction(ISD::USUBO,    VT, Custom);
1398    setOperationAction(ISD::SADDO,    VT, Expand);
1399    setOperationAction(ISD::SSUBO,    VT, Expand);
1400    setOperationAction(ISD::ADDCARRY, VT, Expand);
1401    setOperationAction(ISD::SUBCARRY, VT, Expand);
1402  }
1403  setOperationAction(ISD::ADDCARRY, MVT::i64, Custom);
1404  setOperationAction(ISD::SUBCARRY, MVT::i64, Custom);
1405
1406  setOperationAction(ISD::CTLZ, MVT::i8,  Promote);
1407  setOperationAction(ISD::CTLZ, MVT::i16, Promote);
1408  setOperationAction(ISD::CTTZ, MVT::i8,  Promote);
1409  setOperationAction(ISD::CTTZ, MVT::i16, Promote);
1410
1411  // Popcount can count # of 1s in i64 but returns i32.
1412  setOperationAction(ISD::CTPOP, MVT::i8,  Promote);
1413  setOperationAction(ISD::CTPOP, MVT::i16, Promote);
1414  setOperationAction(ISD::CTPOP, MVT::i32, Promote);
1415  setOperationAction(ISD::CTPOP, MVT::i64, Legal);
1416
1417  setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1418  setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
1419  setOperationAction(ISD::BSWAP, MVT::i32, Legal);
1420  setOperationAction(ISD::BSWAP, MVT::i64, Legal);
1421
1422  setOperationAction(ISD::FSHL, MVT::i32, Legal);
1423  setOperationAction(ISD::FSHL, MVT::i64, Legal);
1424  setOperationAction(ISD::FSHR, MVT::i32, Legal);
1425  setOperationAction(ISD::FSHR, MVT::i64, Legal);
1426
1427  for (unsigned IntExpOp :
1428       {ISD::SDIV,      ISD::UDIV,      ISD::SREM,      ISD::UREM,
1429        ISD::SDIVREM,   ISD::UDIVREM,   ISD::ROTL,      ISD::ROTR,
1430        ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
1431        ISD::SMUL_LOHI, ISD::UMUL_LOHI}) {
1432    for (MVT VT : MVT::integer_valuetypes())
1433      setOperationAction(IntExpOp, VT, Expand);
1434  }
1435
1436  for (unsigned FPExpOp :
1437       {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
1438        ISD::FPOW, ISD::FCOPYSIGN}) {
1439    for (MVT VT : MVT::fp_valuetypes())
1440      setOperationAction(FPExpOp, VT, Expand);
1441  }
1442
1443  // No extending loads from i32.
1444  for (MVT VT : MVT::integer_valuetypes()) {
1445    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
1446    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
1447    setLoadExtAction(ISD::EXTLOAD,  VT, MVT::i32, Expand);
1448  }
1449  // Turn FP truncstore into trunc + store.
1450  setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1451  // Turn FP extload into load/fpextend.
1452  for (MVT VT : MVT::fp_valuetypes())
1453    setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1454
1455  // Expand BR_CC and SELECT_CC for all integer and fp types.
1456  for (MVT VT : MVT::integer_valuetypes()) {
1457    setOperationAction(ISD::BR_CC,     VT, Expand);
1458    setOperationAction(ISD::SELECT_CC, VT, Expand);
1459  }
1460  for (MVT VT : MVT::fp_valuetypes()) {
1461    setOperationAction(ISD::BR_CC,     VT, Expand);
1462    setOperationAction(ISD::SELECT_CC, VT, Expand);
1463  }
1464  setOperationAction(ISD::BR_CC, MVT::Other, Expand);
1465
1466  //
1467  // Handling of vector operations.
1468  //
1469
1470  // Set the action for vector operations to "expand", then override it with
1471  // either "custom" or "legal" for specific cases.
1472  static const unsigned VectExpOps[] = {
1473    // Integer arithmetic:
1474    ISD::ADD,     ISD::SUB,     ISD::MUL,     ISD::SDIV,      ISD::UDIV,
1475    ISD::SREM,    ISD::UREM,    ISD::SDIVREM, ISD::UDIVREM,   ISD::SADDO,
1476    ISD::UADDO,   ISD::SSUBO,   ISD::USUBO,   ISD::SMUL_LOHI, ISD::UMUL_LOHI,
1477    // Logical/bit:
1478    ISD::AND,     ISD::OR,      ISD::XOR,     ISD::ROTL,    ISD::ROTR,
1479    ISD::CTPOP,   ISD::CTLZ,    ISD::CTTZ,
1480    // Floating point arithmetic/math functions:
1481    ISD::FADD,    ISD::FSUB,    ISD::FMUL,    ISD::FMA,     ISD::FDIV,
1482    ISD::FREM,    ISD::FNEG,    ISD::FABS,    ISD::FSQRT,   ISD::FSIN,
1483    ISD::FCOS,    ISD::FPOW,    ISD::FLOG,    ISD::FLOG2,
1484    ISD::FLOG10,  ISD::FEXP,    ISD::FEXP2,   ISD::FCEIL,   ISD::FTRUNC,
1485    ISD::FRINT,   ISD::FNEARBYINT,            ISD::FROUND,  ISD::FFLOOR,
1486    ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
1487    // Misc:
1488    ISD::BR_CC,   ISD::SELECT_CC,             ISD::ConstantPool,
1489    // Vector:
1490    ISD::BUILD_VECTOR,          ISD::SCALAR_TO_VECTOR,
1491    ISD::EXTRACT_VECTOR_ELT,    ISD::INSERT_VECTOR_ELT,
1492    ISD::EXTRACT_SUBVECTOR,     ISD::INSERT_SUBVECTOR,
1493    ISD::CONCAT_VECTORS,        ISD::VECTOR_SHUFFLE
1494  };
1495
1496  for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1497    for (unsigned VectExpOp : VectExpOps)
1498      setOperationAction(VectExpOp, VT, Expand);
1499
1500    // Expand all extending loads and truncating stores:
1501    for (MVT TargetVT : MVT::fixedlen_vector_valuetypes()) {
1502      if (TargetVT == VT)
1503        continue;
1504      setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
1505      setLoadExtAction(ISD::ZEXTLOAD, TargetVT, VT, Expand);
1506      setLoadExtAction(ISD::SEXTLOAD, TargetVT, VT, Expand);
1507      setTruncStoreAction(VT, TargetVT, Expand);
1508    }
1509
1510    // Normalize all inputs to SELECT to be vectors of i32.
1511    if (VT.getVectorElementType() != MVT::i32) {
1512      MVT VT32 = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
1513      setOperationAction(ISD::SELECT, VT, Promote);
1514      AddPromotedToType(ISD::SELECT, VT, VT32);
1515    }
1516    setOperationAction(ISD::SRA, VT, Custom);
1517    setOperationAction(ISD::SHL, VT, Custom);
1518    setOperationAction(ISD::SRL, VT, Custom);
1519  }
1520
1521  // Extending loads from (native) vectors of i8 into (native) vectors of i16
1522  // are legal.
1523  setLoadExtAction(ISD::EXTLOAD,  MVT::v2i16, MVT::v2i8, Legal);
1524  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1525  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, MVT::v2i8, Legal);
1526  setLoadExtAction(ISD::EXTLOAD,  MVT::v4i16, MVT::v4i8, Legal);
1527  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1528  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Legal);
1529
1530  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1531  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1532  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1533
1534  // Types natively supported:
1535  for (MVT NativeVT : {MVT::v8i1, MVT::v4i1, MVT::v2i1, MVT::v4i8,
1536                       MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1537    setOperationAction(ISD::BUILD_VECTOR,       NativeVT, Custom);
1538    setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
1539    setOperationAction(ISD::INSERT_VECTOR_ELT,  NativeVT, Custom);
1540    setOperationAction(ISD::EXTRACT_SUBVECTOR,  NativeVT, Custom);
1541    setOperationAction(ISD::INSERT_SUBVECTOR,   NativeVT, Custom);
1542    setOperationAction(ISD::CONCAT_VECTORS,     NativeVT, Custom);
1543
1544    setOperationAction(ISD::ADD, NativeVT, Legal);
1545    setOperationAction(ISD::SUB, NativeVT, Legal);
1546    setOperationAction(ISD::MUL, NativeVT, Legal);
1547    setOperationAction(ISD::AND, NativeVT, Legal);
1548    setOperationAction(ISD::OR,  NativeVT, Legal);
1549    setOperationAction(ISD::XOR, NativeVT, Legal);
1550  }
1551
1552  // Custom lower unaligned loads.
1553  // Also, for both loads and stores, verify the alignment of the address
1554  // in case it is a compile-time constant. This is a usability feature to
1555  // provide a meaningful error message to users.
1556  for (MVT VT : {MVT::i16, MVT::i32, MVT::v4i8, MVT::i64, MVT::v8i8,
1557                 MVT::v2i16, MVT::v4i16, MVT::v2i32}) {
1558    setOperationAction(ISD::LOAD,  VT, Custom);
1559    setOperationAction(ISD::STORE, VT, Custom);
1560  }
1561
1562  for (MVT VT : {MVT::v2i16, MVT::v4i8, MVT::v8i8, MVT::v2i32, MVT::v4i16,
1563                 MVT::v2i32}) {
1564    setCondCodeAction(ISD::SETNE,  VT, Expand);
1565    setCondCodeAction(ISD::SETLE,  VT, Expand);
1566    setCondCodeAction(ISD::SETGE,  VT, Expand);
1567    setCondCodeAction(ISD::SETLT,  VT, Expand);
1568    setCondCodeAction(ISD::SETULE, VT, Expand);
1569    setCondCodeAction(ISD::SETUGE, VT, Expand);
1570    setCondCodeAction(ISD::SETULT, VT, Expand);
1571  }
1572
1573  // Custom-lower bitcasts from i8 to v8i1.
1574  setOperationAction(ISD::BITCAST,        MVT::i8,    Custom);
1575  setOperationAction(ISD::SETCC,          MVT::v2i16, Custom);
1576  setOperationAction(ISD::VSELECT,        MVT::v4i8,  Custom);
1577  setOperationAction(ISD::VSELECT,        MVT::v2i16, Custom);
1578  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i8,  Custom);
1579  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
1580  setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8,  Custom);
1581
1582  // V5+.
1583  setOperationAction(ISD::FMA,  MVT::f64, Expand);
1584  setOperationAction(ISD::FADD, MVT::f64, Expand);
1585  setOperationAction(ISD::FSUB, MVT::f64, Expand);
1586  setOperationAction(ISD::FMUL, MVT::f64, Expand);
1587
1588  setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1589  setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1590
1591  setOperationAction(ISD::FP_TO_UINT, MVT::i1,  Promote);
1592  setOperationAction(ISD::FP_TO_UINT, MVT::i8,  Promote);
1593  setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1594  setOperationAction(ISD::FP_TO_SINT, MVT::i1,  Promote);
1595  setOperationAction(ISD::FP_TO_SINT, MVT::i8,  Promote);
1596  setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1597  setOperationAction(ISD::UINT_TO_FP, MVT::i1,  Promote);
1598  setOperationAction(ISD::UINT_TO_FP, MVT::i8,  Promote);
1599  setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1600  setOperationAction(ISD::SINT_TO_FP, MVT::i1,  Promote);
1601  setOperationAction(ISD::SINT_TO_FP, MVT::i8,  Promote);
1602  setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1603
1604  // Handling of indexed loads/stores: default is "expand".
1605  //
1606  for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64, MVT::f32, MVT::f64,
1607                 MVT::v2i16, MVT::v2i32, MVT::v4i8, MVT::v4i16, MVT::v8i8}) {
1608    setIndexedLoadAction(ISD::POST_INC, VT, Legal);
1609    setIndexedStoreAction(ISD::POST_INC, VT, Legal);
1610  }
1611
1612  // Subtarget-specific operation actions.
1613  //
1614  if (Subtarget.hasV60Ops()) {
1615    setOperationAction(ISD::ROTL, MVT::i32, Legal);
1616    setOperationAction(ISD::ROTL, MVT::i64, Legal);
1617    setOperationAction(ISD::ROTR, MVT::i32, Legal);
1618    setOperationAction(ISD::ROTR, MVT::i64, Legal);
1619  }
1620  if (Subtarget.hasV66Ops()) {
1621    setOperationAction(ISD::FADD, MVT::f64, Legal);
1622    setOperationAction(ISD::FSUB, MVT::f64, Legal);
1623  }
1624
1625  setTargetDAGCombine(ISD::VSELECT);
1626
1627  if (Subtarget.useHVXOps())
1628    initializeHVXLowering();
1629
1630  computeRegisterProperties(&HRI);
1631
1632  //
1633  // Library calls for unsupported operations
1634  //
1635  bool FastMath  = EnableFastMath;
1636
1637  setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1638  setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1639  setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1640  setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1641  setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1642  setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1643  setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1644  setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1645
1646  setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1647  setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1648  setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1649  setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1650  setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1651  setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1652
1653  // This is the only fast library function for sqrtd.
1654  if (FastMath)
1655    setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
1656
1657  // Prefix is: nothing  for "slow-math",
1658  //            "fast2_" for V5+ fast-math double-precision
1659  // (actually, keep fast-math and fast-math2 separate for now)
1660  if (FastMath) {
1661    setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
1662    setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
1663    setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
1664    setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
1665    setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
1666  } else {
1667    setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1668    setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1669    setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1670    setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1671    setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1672  }
1673
1674  if (FastMath)
1675    setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
1676  else
1677    setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
1678
1679  // These cause problems when the shift amount is non-constant.
1680  setLibcallName(RTLIB::SHL_I128, nullptr);
1681  setLibcallName(RTLIB::SRL_I128, nullptr);
1682  setLibcallName(RTLIB::SRA_I128, nullptr);
1683}
1684
1685const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1686  switch ((HexagonISD::NodeType)Opcode) {
1687  case HexagonISD::ADDC:          return "HexagonISD::ADDC";
1688  case HexagonISD::SUBC:          return "HexagonISD::SUBC";
1689  case HexagonISD::ALLOCA:        return "HexagonISD::ALLOCA";
1690  case HexagonISD::AT_GOT:        return "HexagonISD::AT_GOT";
1691  case HexagonISD::AT_PCREL:      return "HexagonISD::AT_PCREL";
1692  case HexagonISD::BARRIER:       return "HexagonISD::BARRIER";
1693  case HexagonISD::CALL:          return "HexagonISD::CALL";
1694  case HexagonISD::CALLnr:        return "HexagonISD::CALLnr";
1695  case HexagonISD::CALLR:         return "HexagonISD::CALLR";
1696  case HexagonISD::COMBINE:       return "HexagonISD::COMBINE";
1697  case HexagonISD::CONST32_GP:    return "HexagonISD::CONST32_GP";
1698  case HexagonISD::CONST32:       return "HexagonISD::CONST32";
1699  case HexagonISD::CP:            return "HexagonISD::CP";
1700  case HexagonISD::DCFETCH:       return "HexagonISD::DCFETCH";
1701  case HexagonISD::EH_RETURN:     return "HexagonISD::EH_RETURN";
1702  case HexagonISD::TSTBIT:        return "HexagonISD::TSTBIT";
1703  case HexagonISD::EXTRACTU:      return "HexagonISD::EXTRACTU";
1704  case HexagonISD::INSERT:        return "HexagonISD::INSERT";
1705  case HexagonISD::JT:            return "HexagonISD::JT";
1706  case HexagonISD::RET_FLAG:      return "HexagonISD::RET_FLAG";
1707  case HexagonISD::TC_RETURN:     return "HexagonISD::TC_RETURN";
1708  case HexagonISD::VASL:          return "HexagonISD::VASL";
1709  case HexagonISD::VASR:          return "HexagonISD::VASR";
1710  case HexagonISD::VLSR:          return "HexagonISD::VLSR";
1711  case HexagonISD::VSPLAT:        return "HexagonISD::VSPLAT";
1712  case HexagonISD::VEXTRACTW:     return "HexagonISD::VEXTRACTW";
1713  case HexagonISD::VINSERTW0:     return "HexagonISD::VINSERTW0";
1714  case HexagonISD::VROR:          return "HexagonISD::VROR";
1715  case HexagonISD::READCYCLE:     return "HexagonISD::READCYCLE";
1716  case HexagonISD::PTRUE:         return "HexagonISD::PTRUE";
1717  case HexagonISD::PFALSE:        return "HexagonISD::PFALSE";
1718  case HexagonISD::VZERO:         return "HexagonISD::VZERO";
1719  case HexagonISD::VSPLATW:       return "HexagonISD::VSPLATW";
1720  case HexagonISD::D2P:           return "HexagonISD::D2P";
1721  case HexagonISD::P2D:           return "HexagonISD::P2D";
1722  case HexagonISD::V2Q:           return "HexagonISD::V2Q";
1723  case HexagonISD::Q2V:           return "HexagonISD::Q2V";
1724  case HexagonISD::QCAT:          return "HexagonISD::QCAT";
1725  case HexagonISD::QTRUE:         return "HexagonISD::QTRUE";
1726  case HexagonISD::QFALSE:        return "HexagonISD::QFALSE";
1727  case HexagonISD::TYPECAST:      return "HexagonISD::TYPECAST";
1728  case HexagonISD::VALIGN:        return "HexagonISD::VALIGN";
1729  case HexagonISD::VALIGNADDR:    return "HexagonISD::VALIGNADDR";
1730  case HexagonISD::OP_END:        break;
1731  }
1732  return nullptr;
1733}
1734
1735void
1736HexagonTargetLowering::validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
1737      unsigned NeedAlign) const {
1738  auto *CA = dyn_cast<ConstantSDNode>(Ptr);
1739  if (!CA)
1740    return;
1741  unsigned Addr = CA->getZExtValue();
1742  unsigned HaveAlign = Addr != 0 ? 1u << countTrailingZeros(Addr) : NeedAlign;
1743  if (HaveAlign < NeedAlign) {
1744    std::string ErrMsg;
1745    raw_string_ostream O(ErrMsg);
1746    O << "Misaligned constant address: " << format_hex(Addr, 10)
1747      << " has alignment " << HaveAlign
1748      << ", but the memory access requires " << NeedAlign;
1749    if (DebugLoc DL = dl.getDebugLoc())
1750      DL.print(O << ", at ");
1751    report_fatal_error(O.str());
1752  }
1753}
1754
1755// Bit-reverse Load Intrinsic: Check if the instruction is a bit reverse load
1756// intrinsic.
1757static bool isBrevLdIntrinsic(const Value *Inst) {
1758  unsigned ID = cast<IntrinsicInst>(Inst)->getIntrinsicID();
1759  return (ID == Intrinsic::hexagon_L2_loadrd_pbr ||
1760          ID == Intrinsic::hexagon_L2_loadri_pbr ||
1761          ID == Intrinsic::hexagon_L2_loadrh_pbr ||
1762          ID == Intrinsic::hexagon_L2_loadruh_pbr ||
1763          ID == Intrinsic::hexagon_L2_loadrb_pbr ||
1764          ID == Intrinsic::hexagon_L2_loadrub_pbr);
1765}
1766
1767// Bit-reverse Load Intrinsic :Crawl up and figure out the object from previous
1768// instruction. So far we only handle bitcast, extract value and bit reverse
1769// load intrinsic instructions. Should we handle CGEP ?
1770static Value *getBrevLdObject(Value *V) {
1771  if (Operator::getOpcode(V) == Instruction::ExtractValue ||
1772      Operator::getOpcode(V) == Instruction::BitCast)
1773    V = cast<Operator>(V)->getOperand(0);
1774  else if (isa<IntrinsicInst>(V) && isBrevLdIntrinsic(V))
1775    V = cast<Instruction>(V)->getOperand(0);
1776  return V;
1777}
1778
1779// Bit-reverse Load Intrinsic: For a PHI Node return either an incoming edge or
1780// a back edge. If the back edge comes from the intrinsic itself, the incoming
1781// edge is returned.
1782static Value *returnEdge(const PHINode *PN, Value *IntrBaseVal) {
1783  const BasicBlock *Parent = PN->getParent();
1784  int Idx = -1;
1785  for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1786    BasicBlock *Blk = PN->getIncomingBlock(i);
1787    // Determine if the back edge is originated from intrinsic.
1788    if (Blk == Parent) {
1789      Value *BackEdgeVal = PN->getIncomingValue(i);
1790      Value *BaseVal;
1791      // Loop over till we return the same Value or we hit the IntrBaseVal.
1792      do {
1793        BaseVal = BackEdgeVal;
1794        BackEdgeVal = getBrevLdObject(BackEdgeVal);
1795      } while ((BaseVal != BackEdgeVal) && (IntrBaseVal != BackEdgeVal));
1796      // If the getBrevLdObject returns IntrBaseVal, we should return the
1797      // incoming edge.
1798      if (IntrBaseVal == BackEdgeVal)
1799        continue;
1800      Idx = i;
1801      break;
1802    } else // Set the node to incoming edge.
1803      Idx = i;
1804  }
1805  assert(Idx >= 0 && "Unexpected index to incoming argument in PHI");
1806  return PN->getIncomingValue(Idx);
1807}
1808
1809// Bit-reverse Load Intrinsic: Figure out the underlying object the base
1810// pointer points to, for the bit-reverse load intrinsic. Setting this to
1811// memoperand might help alias analysis to figure out the dependencies.
1812static Value *getUnderLyingObjectForBrevLdIntr(Value *V) {
1813  Value *IntrBaseVal = V;
1814  Value *BaseVal;
1815  // Loop over till we return the same Value, implies we either figure out
1816  // the object or we hit a PHI
1817  do {
1818    BaseVal = V;
1819    V = getBrevLdObject(V);
1820  } while (BaseVal != V);
1821
1822  // Identify the object from PHINode.
1823  if (const PHINode *PN = dyn_cast<PHINode>(V))
1824    return returnEdge(PN, IntrBaseVal);
1825  // For non PHI nodes, the object is the last value returned by getBrevLdObject
1826  else
1827    return V;
1828}
1829
1830/// Given an intrinsic, checks if on the target the intrinsic will need to map
1831/// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1832/// true and store the intrinsic information into the IntrinsicInfo that was
1833/// passed to the function.
1834bool HexagonTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
1835                                               const CallInst &I,
1836                                               MachineFunction &MF,
1837                                               unsigned Intrinsic) const {
1838  switch (Intrinsic) {
1839  case Intrinsic::hexagon_L2_loadrd_pbr:
1840  case Intrinsic::hexagon_L2_loadri_pbr:
1841  case Intrinsic::hexagon_L2_loadrh_pbr:
1842  case Intrinsic::hexagon_L2_loadruh_pbr:
1843  case Intrinsic::hexagon_L2_loadrb_pbr:
1844  case Intrinsic::hexagon_L2_loadrub_pbr: {
1845    Info.opc = ISD::INTRINSIC_W_CHAIN;
1846    auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
1847    auto &Cont = I.getCalledFunction()->getParent()->getContext();
1848    // The intrinsic function call is of the form { ElTy, i8* }
1849    // @llvm.hexagon.L2.loadXX.pbr(i8*, i32). The pointer and memory access type
1850    // should be derived from ElTy.
1851    Type *ElTy = I.getCalledFunction()->getReturnType()->getStructElementType(0);
1852    Info.memVT = MVT::getVT(ElTy);
1853    llvm::Value *BasePtrVal = I.getOperand(0);
1854    Info.ptrVal = getUnderLyingObjectForBrevLdIntr(BasePtrVal);
1855    // The offset value comes through Modifier register. For now, assume the
1856    // offset is 0.
1857    Info.offset = 0;
1858    Info.align =
1859        MaybeAlign(DL.getABITypeAlignment(Info.memVT.getTypeForEVT(Cont)));
1860    Info.flags = MachineMemOperand::MOLoad;
1861    return true;
1862  }
1863  case Intrinsic::hexagon_V6_vgathermw:
1864  case Intrinsic::hexagon_V6_vgathermw_128B:
1865  case Intrinsic::hexagon_V6_vgathermh:
1866  case Intrinsic::hexagon_V6_vgathermh_128B:
1867  case Intrinsic::hexagon_V6_vgathermhw:
1868  case Intrinsic::hexagon_V6_vgathermhw_128B:
1869  case Intrinsic::hexagon_V6_vgathermwq:
1870  case Intrinsic::hexagon_V6_vgathermwq_128B:
1871  case Intrinsic::hexagon_V6_vgathermhq:
1872  case Intrinsic::hexagon_V6_vgathermhq_128B:
1873  case Intrinsic::hexagon_V6_vgathermhwq:
1874  case Intrinsic::hexagon_V6_vgathermhwq_128B: {
1875    const Module &M = *I.getParent()->getParent()->getParent();
1876    Info.opc = ISD::INTRINSIC_W_CHAIN;
1877    Type *VecTy = I.getArgOperand(1)->getType();
1878    Info.memVT = MVT::getVT(VecTy);
1879    Info.ptrVal = I.getArgOperand(0);
1880    Info.offset = 0;
1881    Info.align =
1882        MaybeAlign(M.getDataLayout().getTypeAllocSizeInBits(VecTy) / 8);
1883    Info.flags = MachineMemOperand::MOLoad |
1884                 MachineMemOperand::MOStore |
1885                 MachineMemOperand::MOVolatile;
1886    return true;
1887  }
1888  default:
1889    break;
1890  }
1891  return false;
1892}
1893
1894bool HexagonTargetLowering::hasBitTest(SDValue X, SDValue Y) const {
1895  return X.getValueType().isScalarInteger(); // 'tstbit'
1896}
1897
1898bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1899  return isTruncateFree(EVT::getEVT(Ty1), EVT::getEVT(Ty2));
1900}
1901
1902bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1903  if (!VT1.isSimple() || !VT2.isSimple())
1904    return false;
1905  return VT1.getSimpleVT() == MVT::i64 && VT2.getSimpleVT() == MVT::i32;
1906}
1907
1908bool HexagonTargetLowering::isFMAFasterThanFMulAndFAdd(
1909    const MachineFunction &MF, EVT VT) const {
1910  return isOperationLegalOrCustom(ISD::FMA, VT);
1911}
1912
1913// Should we expand the build vector with shuffles?
1914bool HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
1915      unsigned DefinedValues) const {
1916  return false;
1917}
1918
1919bool HexagonTargetLowering::isShuffleMaskLegal(ArrayRef<int> Mask,
1920                                               EVT VT) const {
1921  return true;
1922}
1923
1924TargetLoweringBase::LegalizeTypeAction
1925HexagonTargetLowering::getPreferredVectorAction(MVT VT) const {
1926  unsigned VecLen = VT.getVectorNumElements();
1927  MVT ElemTy = VT.getVectorElementType();
1928
1929  if (VecLen == 1 || VT.isScalableVector())
1930    return TargetLoweringBase::TypeScalarizeVector;
1931
1932  if (Subtarget.useHVXOps()) {
1933    unsigned HwLen = Subtarget.getVectorLength();
1934    // If the size of VT is at least half of the vector length,
1935    // widen the vector. Note: the threshold was not selected in
1936    // any scientific way.
1937    ArrayRef<MVT> Tys = Subtarget.getHVXElementTypes();
1938    if (llvm::find(Tys, ElemTy) != Tys.end()) {
1939      unsigned HwWidth = 8*HwLen;
1940      unsigned VecWidth = VT.getSizeInBits();
1941      if (VecWidth >= HwWidth/2 && VecWidth < HwWidth)
1942        return TargetLoweringBase::TypeWidenVector;
1943    }
1944    // Split vectors of i1 that correspond to (byte) vector pairs.
1945    if (ElemTy == MVT::i1 && VecLen == 2*HwLen)
1946      return TargetLoweringBase::TypeSplitVector;
1947  }
1948
1949  // Always widen (remaining) vectors of i1.
1950  if (ElemTy == MVT::i1)
1951    return TargetLoweringBase::TypeWidenVector;
1952
1953  return TargetLoweringBase::TypeSplitVector;
1954}
1955
1956std::pair<SDValue, int>
1957HexagonTargetLowering::getBaseAndOffset(SDValue Addr) const {
1958  if (Addr.getOpcode() == ISD::ADD) {
1959    SDValue Op1 = Addr.getOperand(1);
1960    if (auto *CN = dyn_cast<const ConstantSDNode>(Op1.getNode()))
1961      return { Addr.getOperand(0), CN->getSExtValue() };
1962  }
1963  return { Addr, 0 };
1964}
1965
1966// Lower a vector shuffle (V1, V2, V3).  V1 and V2 are the two vectors
1967// to select data from, V3 is the permutation.
1968SDValue
1969HexagonTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG)
1970      const {
1971  const auto *SVN = cast<ShuffleVectorSDNode>(Op);
1972  ArrayRef<int> AM = SVN->getMask();
1973  assert(AM.size() <= 8 && "Unexpected shuffle mask");
1974  unsigned VecLen = AM.size();
1975
1976  MVT VecTy = ty(Op);
1977  assert(!Subtarget.isHVXVectorType(VecTy, true) &&
1978         "HVX shuffles should be legal");
1979  assert(VecTy.getSizeInBits() <= 64 && "Unexpected vector length");
1980
1981  SDValue Op0 = Op.getOperand(0);
1982  SDValue Op1 = Op.getOperand(1);
1983  const SDLoc &dl(Op);
1984
1985  // If the inputs are not the same as the output, bail. This is not an
1986  // error situation, but complicates the handling and the default expansion
1987  // (into BUILD_VECTOR) should be adequate.
1988  if (ty(Op0) != VecTy || ty(Op1) != VecTy)
1989    return SDValue();
1990
1991  // Normalize the mask so that the first non-negative index comes from
1992  // the first operand.
1993  SmallVector<int,8> Mask(AM.begin(), AM.end());
1994  unsigned F = llvm::find_if(AM, [](int M) { return M >= 0; }) - AM.data();
1995  if (F == AM.size())
1996    return DAG.getUNDEF(VecTy);
1997  if (AM[F] >= int(VecLen)) {
1998    ShuffleVectorSDNode::commuteMask(Mask);
1999    std::swap(Op0, Op1);
2000  }
2001
2002  // Express the shuffle mask in terms of bytes.
2003  SmallVector<int,8> ByteMask;
2004  unsigned ElemBytes = VecTy.getVectorElementType().getSizeInBits() / 8;
2005  for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
2006    int M = Mask[i];
2007    if (M < 0) {
2008      for (unsigned j = 0; j != ElemBytes; ++j)
2009        ByteMask.push_back(-1);
2010    } else {
2011      for (unsigned j = 0; j != ElemBytes; ++j)
2012        ByteMask.push_back(M*ElemBytes + j);
2013    }
2014  }
2015  assert(ByteMask.size() <= 8);
2016
2017  // All non-undef (non-negative) indexes are well within [0..127], so they
2018  // fit in a single byte. Build two 64-bit words:
2019  // - MaskIdx where each byte is the corresponding index (for non-negative
2020  //   indexes), and 0xFF for negative indexes, and
2021  // - MaskUnd that has 0xFF for each negative index.
2022  uint64_t MaskIdx = 0;
2023  uint64_t MaskUnd = 0;
2024  for (unsigned i = 0, e = ByteMask.size(); i != e; ++i) {
2025    unsigned S = 8*i;
2026    uint64_t M = ByteMask[i] & 0xFF;
2027    if (M == 0xFF)
2028      MaskUnd |= M << S;
2029    MaskIdx |= M << S;
2030  }
2031
2032  if (ByteMask.size() == 4) {
2033    // Identity.
2034    if (MaskIdx == (0x03020100 | MaskUnd))
2035      return Op0;
2036    // Byte swap.
2037    if (MaskIdx == (0x00010203 | MaskUnd)) {
2038      SDValue T0 = DAG.getBitcast(MVT::i32, Op0);
2039      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i32, T0);
2040      return DAG.getBitcast(VecTy, T1);
2041    }
2042
2043    // Byte packs.
2044    SDValue Concat10 = DAG.getNode(HexagonISD::COMBINE, dl,
2045                                   typeJoin({ty(Op1), ty(Op0)}), {Op1, Op0});
2046    if (MaskIdx == (0x06040200 | MaskUnd))
2047      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat10}, DAG);
2048    if (MaskIdx == (0x07050301 | MaskUnd))
2049      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat10}, DAG);
2050
2051    SDValue Concat01 = DAG.getNode(HexagonISD::COMBINE, dl,
2052                                   typeJoin({ty(Op0), ty(Op1)}), {Op0, Op1});
2053    if (MaskIdx == (0x02000604 | MaskUnd))
2054      return getInstr(Hexagon::S2_vtrunehb, dl, VecTy, {Concat01}, DAG);
2055    if (MaskIdx == (0x03010705 | MaskUnd))
2056      return getInstr(Hexagon::S2_vtrunohb, dl, VecTy, {Concat01}, DAG);
2057  }
2058
2059  if (ByteMask.size() == 8) {
2060    // Identity.
2061    if (MaskIdx == (0x0706050403020100ull | MaskUnd))
2062      return Op0;
2063    // Byte swap.
2064    if (MaskIdx == (0x0001020304050607ull | MaskUnd)) {
2065      SDValue T0 = DAG.getBitcast(MVT::i64, Op0);
2066      SDValue T1 = DAG.getNode(ISD::BSWAP, dl, MVT::i64, T0);
2067      return DAG.getBitcast(VecTy, T1);
2068    }
2069
2070    // Halfword picks.
2071    if (MaskIdx == (0x0d0c050409080100ull | MaskUnd))
2072      return getInstr(Hexagon::S2_shuffeh, dl, VecTy, {Op1, Op0}, DAG);
2073    if (MaskIdx == (0x0f0e07060b0a0302ull | MaskUnd))
2074      return getInstr(Hexagon::S2_shuffoh, dl, VecTy, {Op1, Op0}, DAG);
2075    if (MaskIdx == (0x0d0c090805040100ull | MaskUnd))
2076      return getInstr(Hexagon::S2_vtrunewh, dl, VecTy, {Op1, Op0}, DAG);
2077    if (MaskIdx == (0x0f0e0b0a07060302ull | MaskUnd))
2078      return getInstr(Hexagon::S2_vtrunowh, dl, VecTy, {Op1, Op0}, DAG);
2079    if (MaskIdx == (0x0706030205040100ull | MaskUnd)) {
2080      VectorPair P = opSplit(Op0, dl, DAG);
2081      return getInstr(Hexagon::S2_packhl, dl, VecTy, {P.second, P.first}, DAG);
2082    }
2083
2084    // Byte packs.
2085    if (MaskIdx == (0x0e060c040a020800ull | MaskUnd))
2086      return getInstr(Hexagon::S2_shuffeb, dl, VecTy, {Op1, Op0}, DAG);
2087    if (MaskIdx == (0x0f070d050b030901ull | MaskUnd))
2088      return getInstr(Hexagon::S2_shuffob, dl, VecTy, {Op1, Op0}, DAG);
2089  }
2090
2091  return SDValue();
2092}
2093
2094// Create a Hexagon-specific node for shifting a vector by an integer.
2095SDValue
2096HexagonTargetLowering::getVectorShiftByInt(SDValue Op, SelectionDAG &DAG)
2097      const {
2098  if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode())) {
2099    if (SDValue S = BVN->getSplatValue()) {
2100      unsigned NewOpc;
2101      switch (Op.getOpcode()) {
2102        case ISD::SHL:
2103          NewOpc = HexagonISD::VASL;
2104          break;
2105        case ISD::SRA:
2106          NewOpc = HexagonISD::VASR;
2107          break;
2108        case ISD::SRL:
2109          NewOpc = HexagonISD::VLSR;
2110          break;
2111        default:
2112          llvm_unreachable("Unexpected shift opcode");
2113      }
2114      return DAG.getNode(NewOpc, SDLoc(Op), ty(Op), Op.getOperand(0), S);
2115    }
2116  }
2117
2118  return SDValue();
2119}
2120
2121SDValue
2122HexagonTargetLowering::LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const {
2123  return getVectorShiftByInt(Op, DAG);
2124}
2125
2126SDValue
2127HexagonTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
2128  if (isa<ConstantSDNode>(Op.getOperand(1).getNode()))
2129    return Op;
2130  return SDValue();
2131}
2132
2133SDValue
2134HexagonTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
2135  MVT ResTy = ty(Op);
2136  SDValue InpV = Op.getOperand(0);
2137  MVT InpTy = ty(InpV);
2138  assert(ResTy.getSizeInBits() == InpTy.getSizeInBits());
2139  const SDLoc &dl(Op);
2140
2141  // Handle conversion from i8 to v8i1.
2142  if (ResTy == MVT::v8i1) {
2143    SDValue Sc = DAG.getBitcast(tyScalar(InpTy), InpV);
2144    SDValue Ext = DAG.getZExtOrTrunc(Sc, dl, MVT::i32);
2145    return getInstr(Hexagon::C2_tfrrp, dl, ResTy, Ext, DAG);
2146  }
2147
2148  return SDValue();
2149}
2150
2151bool
2152HexagonTargetLowering::getBuildVectorConstInts(ArrayRef<SDValue> Values,
2153      MVT VecTy, SelectionDAG &DAG,
2154      MutableArrayRef<ConstantInt*> Consts) const {
2155  MVT ElemTy = VecTy.getVectorElementType();
2156  unsigned ElemWidth = ElemTy.getSizeInBits();
2157  IntegerType *IntTy = IntegerType::get(*DAG.getContext(), ElemWidth);
2158  bool AllConst = true;
2159
2160  for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2161    SDValue V = Values[i];
2162    if (V.isUndef()) {
2163      Consts[i] = ConstantInt::get(IntTy, 0);
2164      continue;
2165    }
2166    // Make sure to always cast to IntTy.
2167    if (auto *CN = dyn_cast<ConstantSDNode>(V.getNode())) {
2168      const ConstantInt *CI = CN->getConstantIntValue();
2169      Consts[i] = ConstantInt::get(IntTy, CI->getValue().getSExtValue());
2170    } else if (auto *CN = dyn_cast<ConstantFPSDNode>(V.getNode())) {
2171      const ConstantFP *CF = CN->getConstantFPValue();
2172      APInt A = CF->getValueAPF().bitcastToAPInt();
2173      Consts[i] = ConstantInt::get(IntTy, A.getZExtValue());
2174    } else {
2175      AllConst = false;
2176    }
2177  }
2178  return AllConst;
2179}
2180
2181SDValue
2182HexagonTargetLowering::buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl,
2183                                     MVT VecTy, SelectionDAG &DAG) const {
2184  MVT ElemTy = VecTy.getVectorElementType();
2185  assert(VecTy.getVectorNumElements() == Elem.size());
2186
2187  SmallVector<ConstantInt*,4> Consts(Elem.size());
2188  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2189
2190  unsigned First, Num = Elem.size();
2191  for (First = 0; First != Num; ++First)
2192    if (!isUndef(Elem[First]))
2193      break;
2194  if (First == Num)
2195    return DAG.getUNDEF(VecTy);
2196
2197  if (AllConst &&
2198      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2199    return getZero(dl, VecTy, DAG);
2200
2201  if (ElemTy == MVT::i16) {
2202    assert(Elem.size() == 2);
2203    if (AllConst) {
2204      uint32_t V = (Consts[0]->getZExtValue() & 0xFFFF) |
2205                   Consts[1]->getZExtValue() << 16;
2206      return DAG.getBitcast(MVT::v2i16, DAG.getConstant(V, dl, MVT::i32));
2207    }
2208    SDValue N = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32,
2209                         {Elem[1], Elem[0]}, DAG);
2210    return DAG.getBitcast(MVT::v2i16, N);
2211  }
2212
2213  if (ElemTy == MVT::i8) {
2214    // First try generating a constant.
2215    if (AllConst) {
2216      int32_t V = (Consts[0]->getZExtValue() & 0xFF) |
2217                  (Consts[1]->getZExtValue() & 0xFF) << 8 |
2218                  (Consts[1]->getZExtValue() & 0xFF) << 16 |
2219                  Consts[2]->getZExtValue() << 24;
2220      return DAG.getBitcast(MVT::v4i8, DAG.getConstant(V, dl, MVT::i32));
2221    }
2222
2223    // Then try splat.
2224    bool IsSplat = true;
2225    for (unsigned i = 0; i != Num; ++i) {
2226      if (i == First)
2227        continue;
2228      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2229        continue;
2230      IsSplat = false;
2231      break;
2232    }
2233    if (IsSplat) {
2234      // Legalize the operand to VSPLAT.
2235      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2236      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2237    }
2238
2239    // Generate
2240    //   (zxtb(Elem[0]) | (zxtb(Elem[1]) << 8)) |
2241    //   (zxtb(Elem[2]) | (zxtb(Elem[3]) << 8)) << 16
2242    assert(Elem.size() == 4);
2243    SDValue Vs[4];
2244    for (unsigned i = 0; i != 4; ++i) {
2245      Vs[i] = DAG.getZExtOrTrunc(Elem[i], dl, MVT::i32);
2246      Vs[i] = DAG.getZeroExtendInReg(Vs[i], dl, MVT::i8);
2247    }
2248    SDValue S8 = DAG.getConstant(8, dl, MVT::i32);
2249    SDValue T0 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[1], S8});
2250    SDValue T1 = DAG.getNode(ISD::SHL, dl, MVT::i32, {Vs[3], S8});
2251    SDValue B0 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[0], T0});
2252    SDValue B1 = DAG.getNode(ISD::OR, dl, MVT::i32, {Vs[2], T1});
2253
2254    SDValue R = getInstr(Hexagon::A2_combine_ll, dl, MVT::i32, {B1, B0}, DAG);
2255    return DAG.getBitcast(MVT::v4i8, R);
2256  }
2257
2258#ifndef NDEBUG
2259  dbgs() << "VecTy: " << EVT(VecTy).getEVTString() << '\n';
2260#endif
2261  llvm_unreachable("Unexpected vector element type");
2262}
2263
2264SDValue
2265HexagonTargetLowering::buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl,
2266                                     MVT VecTy, SelectionDAG &DAG) const {
2267  MVT ElemTy = VecTy.getVectorElementType();
2268  assert(VecTy.getVectorNumElements() == Elem.size());
2269
2270  SmallVector<ConstantInt*,8> Consts(Elem.size());
2271  bool AllConst = getBuildVectorConstInts(Elem, VecTy, DAG, Consts);
2272
2273  unsigned First, Num = Elem.size();
2274  for (First = 0; First != Num; ++First)
2275    if (!isUndef(Elem[First]))
2276      break;
2277  if (First == Num)
2278    return DAG.getUNDEF(VecTy);
2279
2280  if (AllConst &&
2281      llvm::all_of(Consts, [](ConstantInt *CI) { return CI->isZero(); }))
2282    return getZero(dl, VecTy, DAG);
2283
2284  // First try splat if possible.
2285  if (ElemTy == MVT::i16) {
2286    bool IsSplat = true;
2287    for (unsigned i = 0; i != Num; ++i) {
2288      if (i == First)
2289        continue;
2290      if (Elem[i] == Elem[First] || isUndef(Elem[i]))
2291        continue;
2292      IsSplat = false;
2293      break;
2294    }
2295    if (IsSplat) {
2296      // Legalize the operand to VSPLAT.
2297      SDValue Ext = DAG.getZExtOrTrunc(Elem[First], dl, MVT::i32);
2298      return DAG.getNode(HexagonISD::VSPLAT, dl, VecTy, Ext);
2299    }
2300  }
2301
2302  // Then try constant.
2303  if (AllConst) {
2304    uint64_t Val = 0;
2305    unsigned W = ElemTy.getSizeInBits();
2306    uint64_t Mask = (ElemTy == MVT::i8)  ? 0xFFull
2307                  : (ElemTy == MVT::i16) ? 0xFFFFull : 0xFFFFFFFFull;
2308    for (unsigned i = 0; i != Num; ++i)
2309      Val = (Val << W) | (Consts[Num-1-i]->getZExtValue() & Mask);
2310    SDValue V0 = DAG.getConstant(Val, dl, MVT::i64);
2311    return DAG.getBitcast(VecTy, V0);
2312  }
2313
2314  // Build two 32-bit vectors and concatenate.
2315  MVT HalfTy = MVT::getVectorVT(ElemTy, Num/2);
2316  SDValue L = (ElemTy == MVT::i32)
2317                ? Elem[0]
2318                : buildVector32(Elem.take_front(Num/2), dl, HalfTy, DAG);
2319  SDValue H = (ElemTy == MVT::i32)
2320                ? Elem[1]
2321                : buildVector32(Elem.drop_front(Num/2), dl, HalfTy, DAG);
2322  return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, {H, L});
2323}
2324
2325SDValue
2326HexagonTargetLowering::extractVector(SDValue VecV, SDValue IdxV,
2327                                     const SDLoc &dl, MVT ValTy, MVT ResTy,
2328                                     SelectionDAG &DAG) const {
2329  MVT VecTy = ty(VecV);
2330  assert(!ValTy.isVector() ||
2331         VecTy.getVectorElementType() == ValTy.getVectorElementType());
2332  unsigned VecWidth = VecTy.getSizeInBits();
2333  unsigned ValWidth = ValTy.getSizeInBits();
2334  unsigned ElemWidth = VecTy.getVectorElementType().getSizeInBits();
2335  assert((VecWidth % ElemWidth) == 0);
2336  auto *IdxN = dyn_cast<ConstantSDNode>(IdxV);
2337
2338  // Special case for v{8,4,2}i1 (the only boolean vectors legal in Hexagon
2339  // without any coprocessors).
2340  if (ElemWidth == 1) {
2341    assert(VecWidth == VecTy.getVectorNumElements() && "Sanity failure");
2342    assert(VecWidth == 8 || VecWidth == 4 || VecWidth == 2);
2343    // Check if this is an extract of the lowest bit.
2344    if (IdxN) {
2345      // Extracting the lowest bit is a no-op, but it changes the type,
2346      // so it must be kept as an operation to avoid errors related to
2347      // type mismatches.
2348      if (IdxN->isNullValue() && ValTy.getSizeInBits() == 1)
2349        return DAG.getNode(HexagonISD::TYPECAST, dl, MVT::i1, VecV);
2350    }
2351
2352    // If the value extracted is a single bit, use tstbit.
2353    if (ValWidth == 1) {
2354      SDValue A0 = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32, {VecV}, DAG);
2355      SDValue M0 = DAG.getConstant(8 / VecWidth, dl, MVT::i32);
2356      SDValue I0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, M0);
2357      return DAG.getNode(HexagonISD::TSTBIT, dl, MVT::i1, A0, I0);
2358    }
2359
2360    // Each bool vector (v2i1, v4i1, v8i1) always occupies 8 bits in
2361    // a predicate register. The elements of the vector are repeated
2362    // in the register (if necessary) so that the total number is 8.
2363    // The extracted subvector will need to be expanded in such a way.
2364    unsigned Scale = VecWidth / ValWidth;
2365
2366    // Generate (p2d VecV) >> 8*Idx to move the interesting bytes to
2367    // position 0.
2368    assert(ty(IdxV) == MVT::i32);
2369    unsigned VecRep = 8 / VecWidth;
2370    SDValue S0 = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2371                             DAG.getConstant(8*VecRep, dl, MVT::i32));
2372    SDValue T0 = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2373    SDValue T1 = DAG.getNode(ISD::SRL, dl, MVT::i64, T0, S0);
2374    while (Scale > 1) {
2375      // The longest possible subvector is at most 32 bits, so it is always
2376      // contained in the low subregister.
2377      T1 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, T1);
2378      T1 = expandPredicate(T1, dl, DAG);
2379      Scale /= 2;
2380    }
2381
2382    return DAG.getNode(HexagonISD::D2P, dl, ResTy, T1);
2383  }
2384
2385  assert(VecWidth == 32 || VecWidth == 64);
2386
2387  // Cast everything to scalar integer types.
2388  MVT ScalarTy = tyScalar(VecTy);
2389  VecV = DAG.getBitcast(ScalarTy, VecV);
2390
2391  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2392  SDValue ExtV;
2393
2394  if (IdxN) {
2395    unsigned Off = IdxN->getZExtValue() * ElemWidth;
2396    if (VecWidth == 64 && ValWidth == 32) {
2397      assert(Off == 0 || Off == 32);
2398      unsigned SubIdx = Off == 0 ? Hexagon::isub_lo : Hexagon::isub_hi;
2399      ExtV = DAG.getTargetExtractSubreg(SubIdx, dl, MVT::i32, VecV);
2400    } else if (Off == 0 && (ValWidth % 8) == 0) {
2401      ExtV = DAG.getZeroExtendInReg(VecV, dl, tyScalar(ValTy));
2402    } else {
2403      SDValue OffV = DAG.getConstant(Off, dl, MVT::i32);
2404      // The return type of EXTRACTU must be the same as the type of the
2405      // input vector.
2406      ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2407                         {VecV, WidthV, OffV});
2408    }
2409  } else {
2410    if (ty(IdxV) != MVT::i32)
2411      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2412    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2413                               DAG.getConstant(ElemWidth, dl, MVT::i32));
2414    ExtV = DAG.getNode(HexagonISD::EXTRACTU, dl, ScalarTy,
2415                       {VecV, WidthV, OffV});
2416  }
2417
2418  // Cast ExtV to the requested result type.
2419  ExtV = DAG.getZExtOrTrunc(ExtV, dl, tyScalar(ResTy));
2420  ExtV = DAG.getBitcast(ResTy, ExtV);
2421  return ExtV;
2422}
2423
2424SDValue
2425HexagonTargetLowering::insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
2426                                    const SDLoc &dl, MVT ValTy,
2427                                    SelectionDAG &DAG) const {
2428  MVT VecTy = ty(VecV);
2429  if (VecTy.getVectorElementType() == MVT::i1) {
2430    MVT ValTy = ty(ValV);
2431    assert(ValTy.getVectorElementType() == MVT::i1);
2432    SDValue ValR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, ValV);
2433    unsigned VecLen = VecTy.getVectorNumElements();
2434    unsigned Scale = VecLen / ValTy.getVectorNumElements();
2435    assert(Scale > 1);
2436
2437    for (unsigned R = Scale; R > 1; R /= 2) {
2438      ValR = contractPredicate(ValR, dl, DAG);
2439      ValR = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2440                         DAG.getUNDEF(MVT::i32), ValR);
2441    }
2442    // The longest possible subvector is at most 32 bits, so it is always
2443    // contained in the low subregister.
2444    ValR = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, ValR);
2445
2446    unsigned ValBytes = 64 / Scale;
2447    SDValue Width = DAG.getConstant(ValBytes*8, dl, MVT::i32);
2448    SDValue Idx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
2449                              DAG.getConstant(8, dl, MVT::i32));
2450    SDValue VecR = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, VecV);
2451    SDValue Ins = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2452                              {VecR, ValR, Width, Idx});
2453    return DAG.getNode(HexagonISD::D2P, dl, VecTy, Ins);
2454  }
2455
2456  unsigned VecWidth = VecTy.getSizeInBits();
2457  unsigned ValWidth = ValTy.getSizeInBits();
2458  assert(VecWidth == 32 || VecWidth == 64);
2459  assert((VecWidth % ValWidth) == 0);
2460
2461  // Cast everything to scalar integer types.
2462  MVT ScalarTy = MVT::getIntegerVT(VecWidth);
2463  // The actual type of ValV may be different than ValTy (which is related
2464  // to the vector type).
2465  unsigned VW = ty(ValV).getSizeInBits();
2466  ValV = DAG.getBitcast(MVT::getIntegerVT(VW), ValV);
2467  VecV = DAG.getBitcast(ScalarTy, VecV);
2468  if (VW != VecWidth)
2469    ValV = DAG.getAnyExtOrTrunc(ValV, dl, ScalarTy);
2470
2471  SDValue WidthV = DAG.getConstant(ValWidth, dl, MVT::i32);
2472  SDValue InsV;
2473
2474  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(IdxV)) {
2475    unsigned W = C->getZExtValue() * ValWidth;
2476    SDValue OffV = DAG.getConstant(W, dl, MVT::i32);
2477    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2478                       {VecV, ValV, WidthV, OffV});
2479  } else {
2480    if (ty(IdxV) != MVT::i32)
2481      IdxV = DAG.getZExtOrTrunc(IdxV, dl, MVT::i32);
2482    SDValue OffV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, WidthV);
2483    InsV = DAG.getNode(HexagonISD::INSERT, dl, ScalarTy,
2484                       {VecV, ValV, WidthV, OffV});
2485  }
2486
2487  return DAG.getNode(ISD::BITCAST, dl, VecTy, InsV);
2488}
2489
2490SDValue
2491HexagonTargetLowering::expandPredicate(SDValue Vec32, const SDLoc &dl,
2492                                       SelectionDAG &DAG) const {
2493  assert(ty(Vec32).getSizeInBits() == 32);
2494  if (isUndef(Vec32))
2495    return DAG.getUNDEF(MVT::i64);
2496  return getInstr(Hexagon::S2_vsxtbh, dl, MVT::i64, {Vec32}, DAG);
2497}
2498
2499SDValue
2500HexagonTargetLowering::contractPredicate(SDValue Vec64, const SDLoc &dl,
2501                                         SelectionDAG &DAG) const {
2502  assert(ty(Vec64).getSizeInBits() == 64);
2503  if (isUndef(Vec64))
2504    return DAG.getUNDEF(MVT::i32);
2505  return getInstr(Hexagon::S2_vtrunehb, dl, MVT::i32, {Vec64}, DAG);
2506}
2507
2508SDValue
2509HexagonTargetLowering::getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG)
2510      const {
2511  if (Ty.isVector()) {
2512    assert(Ty.isInteger() && "Only integer vectors are supported here");
2513    unsigned W = Ty.getSizeInBits();
2514    if (W <= 64)
2515      return DAG.getBitcast(Ty, DAG.getConstant(0, dl, MVT::getIntegerVT(W)));
2516    return DAG.getNode(HexagonISD::VZERO, dl, Ty);
2517  }
2518
2519  if (Ty.isInteger())
2520    return DAG.getConstant(0, dl, Ty);
2521  if (Ty.isFloatingPoint())
2522    return DAG.getConstantFP(0.0, dl, Ty);
2523  llvm_unreachable("Invalid type for zero");
2524}
2525
2526SDValue
2527HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
2528  MVT VecTy = ty(Op);
2529  unsigned BW = VecTy.getSizeInBits();
2530  const SDLoc &dl(Op);
2531  SmallVector<SDValue,8> Ops;
2532  for (unsigned i = 0, e = Op.getNumOperands(); i != e; ++i)
2533    Ops.push_back(Op.getOperand(i));
2534
2535  if (BW == 32)
2536    return buildVector32(Ops, dl, VecTy, DAG);
2537  if (BW == 64)
2538    return buildVector64(Ops, dl, VecTy, DAG);
2539
2540  if (VecTy == MVT::v8i1 || VecTy == MVT::v4i1 || VecTy == MVT::v2i1) {
2541    // Check if this is a special case or all-0 or all-1.
2542    bool All0 = true, All1 = true;
2543    for (SDValue P : Ops) {
2544      auto *CN = dyn_cast<ConstantSDNode>(P.getNode());
2545      if (CN == nullptr) {
2546        All0 = All1 = false;
2547        break;
2548      }
2549      uint32_t C = CN->getZExtValue();
2550      All0 &= (C == 0);
2551      All1 &= (C == 1);
2552    }
2553    if (All0)
2554      return DAG.getNode(HexagonISD::PFALSE, dl, VecTy);
2555    if (All1)
2556      return DAG.getNode(HexagonISD::PTRUE, dl, VecTy);
2557
2558    // For each i1 element in the resulting predicate register, put 1
2559    // shifted by the index of the element into a general-purpose register,
2560    // then or them together and transfer it back into a predicate register.
2561    SDValue Rs[8];
2562    SDValue Z = getZero(dl, MVT::i32, DAG);
2563    // Always produce 8 bits, repeat inputs if necessary.
2564    unsigned Rep = 8 / VecTy.getVectorNumElements();
2565    for (unsigned i = 0; i != 8; ++i) {
2566      SDValue S = DAG.getConstant(1ull << i, dl, MVT::i32);
2567      Rs[i] = DAG.getSelect(dl, MVT::i32, Ops[i/Rep], S, Z);
2568    }
2569    for (ArrayRef<SDValue> A(Rs); A.size() != 1; A = A.drop_back(A.size()/2)) {
2570      for (unsigned i = 0, e = A.size()/2; i != e; ++i)
2571        Rs[i] = DAG.getNode(ISD::OR, dl, MVT::i32, Rs[2*i], Rs[2*i+1]);
2572    }
2573    // Move the value directly to a predicate register.
2574    return getInstr(Hexagon::C2_tfrrp, dl, VecTy, {Rs[0]}, DAG);
2575  }
2576
2577  return SDValue();
2578}
2579
2580SDValue
2581HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
2582                                           SelectionDAG &DAG) const {
2583  MVT VecTy = ty(Op);
2584  const SDLoc &dl(Op);
2585  if (VecTy.getSizeInBits() == 64) {
2586    assert(Op.getNumOperands() == 2);
2587    return DAG.getNode(HexagonISD::COMBINE, dl, VecTy, Op.getOperand(1),
2588                       Op.getOperand(0));
2589  }
2590
2591  MVT ElemTy = VecTy.getVectorElementType();
2592  if (ElemTy == MVT::i1) {
2593    assert(VecTy == MVT::v2i1 || VecTy == MVT::v4i1 || VecTy == MVT::v8i1);
2594    MVT OpTy = ty(Op.getOperand(0));
2595    // Scale is how many times the operands need to be contracted to match
2596    // the representation in the target register.
2597    unsigned Scale = VecTy.getVectorNumElements() / OpTy.getVectorNumElements();
2598    assert(Scale == Op.getNumOperands() && Scale > 1);
2599
2600    // First, convert all bool vectors to integers, then generate pairwise
2601    // inserts to form values of doubled length. Up until there are only
2602    // two values left to concatenate, all of these values will fit in a
2603    // 32-bit integer, so keep them as i32 to use 32-bit inserts.
2604    SmallVector<SDValue,4> Words[2];
2605    unsigned IdxW = 0;
2606
2607    for (SDValue P : Op.getNode()->op_values()) {
2608      SDValue W = DAG.getNode(HexagonISD::P2D, dl, MVT::i64, P);
2609      for (unsigned R = Scale; R > 1; R /= 2) {
2610        W = contractPredicate(W, dl, DAG);
2611        W = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2612                        DAG.getUNDEF(MVT::i32), W);
2613      }
2614      W = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, W);
2615      Words[IdxW].push_back(W);
2616    }
2617
2618    while (Scale > 2) {
2619      SDValue WidthV = DAG.getConstant(64 / Scale, dl, MVT::i32);
2620      Words[IdxW ^ 1].clear();
2621
2622      for (unsigned i = 0, e = Words[IdxW].size(); i != e; i += 2) {
2623        SDValue W0 = Words[IdxW][i], W1 = Words[IdxW][i+1];
2624        // Insert W1 into W0 right next to the significant bits of W0.
2625        SDValue T = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32,
2626                                {W0, W1, WidthV, WidthV});
2627        Words[IdxW ^ 1].push_back(T);
2628      }
2629      IdxW ^= 1;
2630      Scale /= 2;
2631    }
2632
2633    // Another sanity check. At this point there should only be two words
2634    // left, and Scale should be 2.
2635    assert(Scale == 2 && Words[IdxW].size() == 2);
2636
2637    SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64,
2638                             Words[IdxW][1], Words[IdxW][0]);
2639    return DAG.getNode(HexagonISD::D2P, dl, VecTy, WW);
2640  }
2641
2642  return SDValue();
2643}
2644
2645SDValue
2646HexagonTargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
2647                                               SelectionDAG &DAG) const {
2648  SDValue Vec = Op.getOperand(0);
2649  MVT ElemTy = ty(Vec).getVectorElementType();
2650  return extractVector(Vec, Op.getOperand(1), SDLoc(Op), ElemTy, ty(Op), DAG);
2651}
2652
2653SDValue
2654HexagonTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
2655                                              SelectionDAG &DAG) const {
2656  return extractVector(Op.getOperand(0), Op.getOperand(1), SDLoc(Op),
2657                       ty(Op), ty(Op), DAG);
2658}
2659
2660SDValue
2661HexagonTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
2662                                              SelectionDAG &DAG) const {
2663  return insertVector(Op.getOperand(0), Op.getOperand(1), Op.getOperand(2),
2664                      SDLoc(Op), ty(Op).getVectorElementType(), DAG);
2665}
2666
2667SDValue
2668HexagonTargetLowering::LowerINSERT_SUBVECTOR(SDValue Op,
2669                                             SelectionDAG &DAG) const {
2670  SDValue ValV = Op.getOperand(1);
2671  return insertVector(Op.getOperand(0), ValV, Op.getOperand(2),
2672                      SDLoc(Op), ty(ValV), DAG);
2673}
2674
2675bool
2676HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
2677  // Assuming the caller does not have either a signext or zeroext modifier, and
2678  // only one value is accepted, any reasonable truncation is allowed.
2679  if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
2680    return false;
2681
2682  // FIXME: in principle up to 64-bit could be made safe, but it would be very
2683  // fragile at the moment: any support for multiple value returns would be
2684  // liable to disallow tail calls involving i64 -> iN truncation in many cases.
2685  return Ty1->getPrimitiveSizeInBits() <= 32;
2686}
2687
2688SDValue
2689HexagonTargetLowering::LowerLoad(SDValue Op, SelectionDAG &DAG) const {
2690  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2691  unsigned ClaimAlign = LN->getAlignment();
2692  validateConstPtrAlignment(LN->getBasePtr(), SDLoc(Op), ClaimAlign);
2693  // Call LowerUnalignedLoad for all loads, it recognizes loads that
2694  // don't need extra aligning.
2695  return LowerUnalignedLoad(Op, DAG);
2696}
2697
2698SDValue
2699HexagonTargetLowering::LowerStore(SDValue Op, SelectionDAG &DAG) const {
2700  StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
2701  unsigned ClaimAlign = SN->getAlignment();
2702  SDValue Ptr = SN->getBasePtr();
2703  const SDLoc &dl(Op);
2704  validateConstPtrAlignment(Ptr, dl, ClaimAlign);
2705
2706  MVT StoreTy = SN->getMemoryVT().getSimpleVT();
2707  unsigned NeedAlign = Subtarget.getTypeAlignment(StoreTy);
2708  if (ClaimAlign < NeedAlign)
2709    return expandUnalignedStore(SN, DAG);
2710  return Op;
2711}
2712
2713SDValue
2714HexagonTargetLowering::LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG)
2715      const {
2716  LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
2717  MVT LoadTy = ty(Op);
2718  unsigned NeedAlign = Subtarget.getTypeAlignment(LoadTy);
2719  unsigned HaveAlign = LN->getAlignment();
2720  if (HaveAlign >= NeedAlign)
2721    return Op;
2722
2723  const SDLoc &dl(Op);
2724  const DataLayout &DL = DAG.getDataLayout();
2725  LLVMContext &Ctx = *DAG.getContext();
2726
2727  // If the load aligning is disabled or the load can be broken up into two
2728  // smaller legal loads, do the default (target-independent) expansion.
2729  bool DoDefault = false;
2730  // Handle it in the default way if this is an indexed load.
2731  if (!LN->isUnindexed())
2732    DoDefault = true;
2733
2734  if (!AlignLoads) {
2735    if (allowsMemoryAccessForAlignment(Ctx, DL, LN->getMemoryVT(),
2736                                       *LN->getMemOperand()))
2737      return Op;
2738    DoDefault = true;
2739  }
2740  if (!DoDefault && (2 * HaveAlign) == NeedAlign) {
2741    // The PartTy is the equivalent of "getLoadableTypeOfSize(HaveAlign)".
2742    MVT PartTy = HaveAlign <= 8 ? MVT::getIntegerVT(8 * HaveAlign)
2743                                : MVT::getVectorVT(MVT::i8, HaveAlign);
2744    DoDefault =
2745        allowsMemoryAccessForAlignment(Ctx, DL, PartTy, *LN->getMemOperand());
2746  }
2747  if (DoDefault) {
2748    std::pair<SDValue, SDValue> P = expandUnalignedLoad(LN, DAG);
2749    return DAG.getMergeValues({P.first, P.second}, dl);
2750  }
2751
2752  // The code below generates two loads, both aligned as NeedAlign, and
2753  // with the distance of NeedAlign between them. For that to cover the
2754  // bits that need to be loaded (and without overlapping), the size of
2755  // the loads should be equal to NeedAlign. This is true for all loadable
2756  // types, but add an assertion in case something changes in the future.
2757  assert(LoadTy.getSizeInBits() == 8*NeedAlign);
2758
2759  unsigned LoadLen = NeedAlign;
2760  SDValue Base = LN->getBasePtr();
2761  SDValue Chain = LN->getChain();
2762  auto BO = getBaseAndOffset(Base);
2763  unsigned BaseOpc = BO.first.getOpcode();
2764  if (BaseOpc == HexagonISD::VALIGNADDR && BO.second % LoadLen == 0)
2765    return Op;
2766
2767  if (BO.second % LoadLen != 0) {
2768    BO.first = DAG.getNode(ISD::ADD, dl, MVT::i32, BO.first,
2769                           DAG.getConstant(BO.second % LoadLen, dl, MVT::i32));
2770    BO.second -= BO.second % LoadLen;
2771  }
2772  SDValue BaseNoOff = (BaseOpc != HexagonISD::VALIGNADDR)
2773      ? DAG.getNode(HexagonISD::VALIGNADDR, dl, MVT::i32, BO.first,
2774                    DAG.getConstant(NeedAlign, dl, MVT::i32))
2775      : BO.first;
2776  SDValue Base0 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second, dl);
2777  SDValue Base1 = DAG.getMemBasePlusOffset(BaseNoOff, BO.second+LoadLen, dl);
2778
2779  MachineMemOperand *WideMMO = nullptr;
2780  if (MachineMemOperand *MMO = LN->getMemOperand()) {
2781    MachineFunction &MF = DAG.getMachineFunction();
2782    WideMMO = MF.getMachineMemOperand(MMO->getPointerInfo(), MMO->getFlags(),
2783                    2*LoadLen, LoadLen, MMO->getAAInfo(), MMO->getRanges(),
2784                    MMO->getSyncScopeID(), MMO->getOrdering(),
2785                    MMO->getFailureOrdering());
2786  }
2787
2788  SDValue Load0 = DAG.getLoad(LoadTy, dl, Chain, Base0, WideMMO);
2789  SDValue Load1 = DAG.getLoad(LoadTy, dl, Chain, Base1, WideMMO);
2790
2791  SDValue Aligned = DAG.getNode(HexagonISD::VALIGN, dl, LoadTy,
2792                                {Load1, Load0, BaseNoOff.getOperand(0)});
2793  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2794                                 Load0.getValue(1), Load1.getValue(1));
2795  SDValue M = DAG.getMergeValues({Aligned, NewChain}, dl);
2796  return M;
2797}
2798
2799SDValue
2800HexagonTargetLowering::LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const {
2801  SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
2802  auto *CY = dyn_cast<ConstantSDNode>(Y);
2803  if (!CY)
2804    return SDValue();
2805
2806  const SDLoc &dl(Op);
2807  SDVTList VTs = Op.getNode()->getVTList();
2808  assert(VTs.NumVTs == 2);
2809  assert(VTs.VTs[1] == MVT::i1);
2810  unsigned Opc = Op.getOpcode();
2811
2812  if (CY) {
2813    uint32_t VY = CY->getZExtValue();
2814    assert(VY != 0 && "This should have been folded");
2815    // X +/- 1
2816    if (VY != 1)
2817      return SDValue();
2818
2819    if (Opc == ISD::UADDO) {
2820      SDValue Op = DAG.getNode(ISD::ADD, dl, VTs.VTs[0], {X, Y});
2821      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op, getZero(dl, ty(Op), DAG),
2822                                ISD::SETEQ);
2823      return DAG.getMergeValues({Op, Ov}, dl);
2824    }
2825    if (Opc == ISD::USUBO) {
2826      SDValue Op = DAG.getNode(ISD::SUB, dl, VTs.VTs[0], {X, Y});
2827      SDValue Ov = DAG.getSetCC(dl, MVT::i1, Op,
2828                                DAG.getConstant(-1, dl, ty(Op)), ISD::SETEQ);
2829      return DAG.getMergeValues({Op, Ov}, dl);
2830    }
2831  }
2832
2833  return SDValue();
2834}
2835
2836SDValue
2837HexagonTargetLowering::LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const {
2838  const SDLoc &dl(Op);
2839  unsigned Opc = Op.getOpcode();
2840  SDValue X = Op.getOperand(0), Y = Op.getOperand(1), C = Op.getOperand(2);
2841
2842  if (Opc == ISD::ADDCARRY)
2843    return DAG.getNode(HexagonISD::ADDC, dl, Op.getNode()->getVTList(),
2844                       { X, Y, C });
2845
2846  EVT CarryTy = C.getValueType();
2847  SDValue SubC = DAG.getNode(HexagonISD::SUBC, dl, Op.getNode()->getVTList(),
2848                             { X, Y, DAG.getLogicalNOT(dl, C, CarryTy) });
2849  SDValue Out[] = { SubC.getValue(0),
2850                    DAG.getLogicalNOT(dl, SubC.getValue(1), CarryTy) };
2851  return DAG.getMergeValues(Out, dl);
2852}
2853
2854SDValue
2855HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
2856  SDValue Chain     = Op.getOperand(0);
2857  SDValue Offset    = Op.getOperand(1);
2858  SDValue Handler   = Op.getOperand(2);
2859  SDLoc dl(Op);
2860  auto PtrVT = getPointerTy(DAG.getDataLayout());
2861
2862  // Mark function as containing a call to EH_RETURN.
2863  HexagonMachineFunctionInfo *FuncInfo =
2864    DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
2865  FuncInfo->setHasEHReturn();
2866
2867  unsigned OffsetReg = Hexagon::R28;
2868
2869  SDValue StoreAddr =
2870      DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
2871                  DAG.getIntPtrConstant(4, dl));
2872  Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo());
2873  Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
2874
2875  // Not needed we already use it as explict input to EH_RETURN.
2876  // MF.getRegInfo().addLiveOut(OffsetReg);
2877
2878  return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
2879}
2880
2881SDValue
2882HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2883  unsigned Opc = Op.getOpcode();
2884
2885  // Handle INLINEASM first.
2886  if (Opc == ISD::INLINEASM || Opc == ISD::INLINEASM_BR)
2887    return LowerINLINEASM(Op, DAG);
2888
2889  if (isHvxOperation(Op)) {
2890    // If HVX lowering returns nothing, try the default lowering.
2891    if (SDValue V = LowerHvxOperation(Op, DAG))
2892      return V;
2893  }
2894
2895  switch (Opc) {
2896    default:
2897#ifndef NDEBUG
2898      Op.getNode()->dumpr(&DAG);
2899      if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
2900        errs() << "Error: check for a non-legal type in this operation\n";
2901#endif
2902      llvm_unreachable("Should not custom lower this!");
2903    case ISD::CONCAT_VECTORS:       return LowerCONCAT_VECTORS(Op, DAG);
2904    case ISD::INSERT_SUBVECTOR:     return LowerINSERT_SUBVECTOR(Op, DAG);
2905    case ISD::INSERT_VECTOR_ELT:    return LowerINSERT_VECTOR_ELT(Op, DAG);
2906    case ISD::EXTRACT_SUBVECTOR:    return LowerEXTRACT_SUBVECTOR(Op, DAG);
2907    case ISD::EXTRACT_VECTOR_ELT:   return LowerEXTRACT_VECTOR_ELT(Op, DAG);
2908    case ISD::BUILD_VECTOR:         return LowerBUILD_VECTOR(Op, DAG);
2909    case ISD::VECTOR_SHUFFLE:       return LowerVECTOR_SHUFFLE(Op, DAG);
2910    case ISD::BITCAST:              return LowerBITCAST(Op, DAG);
2911    case ISD::LOAD:                 return LowerLoad(Op, DAG);
2912    case ISD::STORE:                return LowerStore(Op, DAG);
2913    case ISD::UADDO:
2914    case ISD::USUBO:                return LowerUAddSubO(Op, DAG);
2915    case ISD::ADDCARRY:
2916    case ISD::SUBCARRY:             return LowerAddSubCarry(Op, DAG);
2917    case ISD::SRA:
2918    case ISD::SHL:
2919    case ISD::SRL:                  return LowerVECTOR_SHIFT(Op, DAG);
2920    case ISD::ROTL:                 return LowerROTL(Op, DAG);
2921    case ISD::ConstantPool:         return LowerConstantPool(Op, DAG);
2922    case ISD::JumpTable:            return LowerJumpTable(Op, DAG);
2923    case ISD::EH_RETURN:            return LowerEH_RETURN(Op, DAG);
2924    case ISD::RETURNADDR:           return LowerRETURNADDR(Op, DAG);
2925    case ISD::FRAMEADDR:            return LowerFRAMEADDR(Op, DAG);
2926    case ISD::GlobalTLSAddress:     return LowerGlobalTLSAddress(Op, DAG);
2927    case ISD::ATOMIC_FENCE:         return LowerATOMIC_FENCE(Op, DAG);
2928    case ISD::GlobalAddress:        return LowerGLOBALADDRESS(Op, DAG);
2929    case ISD::BlockAddress:         return LowerBlockAddress(Op, DAG);
2930    case ISD::GLOBAL_OFFSET_TABLE:  return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
2931    case ISD::VASTART:              return LowerVASTART(Op, DAG);
2932    case ISD::DYNAMIC_STACKALLOC:   return LowerDYNAMIC_STACKALLOC(Op, DAG);
2933    case ISD::SETCC:                return LowerSETCC(Op, DAG);
2934    case ISD::VSELECT:              return LowerVSELECT(Op, DAG);
2935    case ISD::INTRINSIC_WO_CHAIN:   return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2936    case ISD::INTRINSIC_VOID:       return LowerINTRINSIC_VOID(Op, DAG);
2937    case ISD::PREFETCH:             return LowerPREFETCH(Op, DAG);
2938    case ISD::READCYCLECOUNTER:     return LowerREADCYCLECOUNTER(Op, DAG);
2939      break;
2940  }
2941
2942  return SDValue();
2943}
2944
2945void
2946HexagonTargetLowering::LowerOperationWrapper(SDNode *N,
2947                                             SmallVectorImpl<SDValue> &Results,
2948                                             SelectionDAG &DAG) const {
2949  // We are only custom-lowering stores to verify the alignment of the
2950  // address if it is a compile-time constant. Since a store can be modified
2951  // during type-legalization (the value being stored may need legalization),
2952  // return empty Results here to indicate that we don't really make any
2953  // changes in the custom lowering.
2954  if (N->getOpcode() != ISD::STORE)
2955    return TargetLowering::LowerOperationWrapper(N, Results, DAG);
2956}
2957
2958void
2959HexagonTargetLowering::ReplaceNodeResults(SDNode *N,
2960                                          SmallVectorImpl<SDValue> &Results,
2961                                          SelectionDAG &DAG) const {
2962  const SDLoc &dl(N);
2963  switch (N->getOpcode()) {
2964    case ISD::SRL:
2965    case ISD::SRA:
2966    case ISD::SHL:
2967      return;
2968    case ISD::BITCAST:
2969      // Handle a bitcast from v8i1 to i8.
2970      if (N->getValueType(0) == MVT::i8) {
2971        SDValue P = getInstr(Hexagon::C2_tfrpr, dl, MVT::i32,
2972                             N->getOperand(0), DAG);
2973        SDValue T = DAG.getAnyExtOrTrunc(P, dl, MVT::i8);
2974        Results.push_back(T);
2975      }
2976      break;
2977  }
2978}
2979
2980SDValue
2981HexagonTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
2982      const {
2983  SDValue Op(N, 0);
2984  if (isHvxOperation(Op)) {
2985    if (SDValue V = PerformHvxDAGCombine(N, DCI))
2986      return V;
2987    return SDValue();
2988  }
2989
2990  const SDLoc &dl(Op);
2991  unsigned Opc = Op.getOpcode();
2992
2993  if (Opc == HexagonISD::P2D) {
2994    SDValue P = Op.getOperand(0);
2995    switch (P.getOpcode()) {
2996      case HexagonISD::PTRUE:
2997        return DCI.DAG.getConstant(-1, dl, ty(Op));
2998      case HexagonISD::PFALSE:
2999        return getZero(dl, ty(Op), DCI.DAG);
3000      default:
3001        break;
3002    }
3003  } else if (Opc == ISD::VSELECT) {
3004    // This is pretty much duplicated in HexagonISelLoweringHVX...
3005    //
3006    // (vselect (xor x, ptrue), v0, v1) -> (vselect x, v1, v0)
3007    SDValue Cond = Op.getOperand(0);
3008    if (Cond->getOpcode() == ISD::XOR) {
3009      SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
3010      if (C1->getOpcode() == HexagonISD::PTRUE) {
3011        SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
3012                                       Op.getOperand(2), Op.getOperand(1));
3013        return VSel;
3014      }
3015    }
3016  }
3017
3018  return SDValue();
3019}
3020
3021/// Returns relocation base for the given PIC jumptable.
3022SDValue
3023HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3024                                                SelectionDAG &DAG) const {
3025  int Idx = cast<JumpTableSDNode>(Table)->getIndex();
3026  EVT VT = Table.getValueType();
3027  SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
3028  return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
3029}
3030
3031//===----------------------------------------------------------------------===//
3032// Inline Assembly Support
3033//===----------------------------------------------------------------------===//
3034
3035TargetLowering::ConstraintType
3036HexagonTargetLowering::getConstraintType(StringRef Constraint) const {
3037  if (Constraint.size() == 1) {
3038    switch (Constraint[0]) {
3039      case 'q':
3040      case 'v':
3041        if (Subtarget.useHVXOps())
3042          return C_RegisterClass;
3043        break;
3044      case 'a':
3045        return C_RegisterClass;
3046      default:
3047        break;
3048    }
3049  }
3050  return TargetLowering::getConstraintType(Constraint);
3051}
3052
3053std::pair<unsigned, const TargetRegisterClass*>
3054HexagonTargetLowering::getRegForInlineAsmConstraint(
3055    const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
3056
3057  if (Constraint.size() == 1) {
3058    switch (Constraint[0]) {
3059    case 'r':   // R0-R31
3060      switch (VT.SimpleTy) {
3061      default:
3062        return {0u, nullptr};
3063      case MVT::i1:
3064      case MVT::i8:
3065      case MVT::i16:
3066      case MVT::i32:
3067      case MVT::f32:
3068        return {0u, &Hexagon::IntRegsRegClass};
3069      case MVT::i64:
3070      case MVT::f64:
3071        return {0u, &Hexagon::DoubleRegsRegClass};
3072      }
3073      break;
3074    case 'a': // M0-M1
3075      if (VT != MVT::i32)
3076        return {0u, nullptr};
3077      return {0u, &Hexagon::ModRegsRegClass};
3078    case 'q': // q0-q3
3079      switch (VT.getSizeInBits()) {
3080      default:
3081        return {0u, nullptr};
3082      case 512:
3083      case 1024:
3084        return {0u, &Hexagon::HvxQRRegClass};
3085      }
3086      break;
3087    case 'v': // V0-V31
3088      switch (VT.getSizeInBits()) {
3089      default:
3090        return {0u, nullptr};
3091      case 512:
3092        return {0u, &Hexagon::HvxVRRegClass};
3093      case 1024:
3094        if (Subtarget.hasV60Ops() && Subtarget.useHVX128BOps())
3095          return {0u, &Hexagon::HvxVRRegClass};
3096        return {0u, &Hexagon::HvxWRRegClass};
3097      case 2048:
3098        return {0u, &Hexagon::HvxWRRegClass};
3099      }
3100      break;
3101    default:
3102      return {0u, nullptr};
3103    }
3104  }
3105
3106  return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3107}
3108
3109/// isFPImmLegal - Returns true if the target can instruction select the
3110/// specified FP immediate natively. If false, the legalizer will
3111/// materialize the FP immediate as a load from a constant pool.
3112bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
3113                                         bool ForCodeSize) const {
3114  return true;
3115}
3116
3117/// isLegalAddressingMode - Return true if the addressing mode represented by
3118/// AM is legal for this target, for a load/store of the specified type.
3119bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3120                                                  const AddrMode &AM, Type *Ty,
3121                                                  unsigned AS, Instruction *I) const {
3122  if (Ty->isSized()) {
3123    // When LSR detects uses of the same base address to access different
3124    // types (e.g. unions), it will assume a conservative type for these
3125    // uses:
3126    //   LSR Use: Kind=Address of void in addrspace(4294967295), ...
3127    // The type Ty passed here would then be "void". Skip the alignment
3128    // checks, but do not return false right away, since that confuses
3129    // LSR into crashing.
3130    unsigned A = DL.getABITypeAlignment(Ty);
3131    // The base offset must be a multiple of the alignment.
3132    if ((AM.BaseOffs % A) != 0)
3133      return false;
3134    // The shifted offset must fit in 11 bits.
3135    if (!isInt<11>(AM.BaseOffs >> Log2_32(A)))
3136      return false;
3137  }
3138
3139  // No global is ever allowed as a base.
3140  if (AM.BaseGV)
3141    return false;
3142
3143  int Scale = AM.Scale;
3144  if (Scale < 0)
3145    Scale = -Scale;
3146  switch (Scale) {
3147  case 0:  // No scale reg, "r+i", "r", or just "i".
3148    break;
3149  default: // No scaled addressing mode.
3150    return false;
3151  }
3152  return true;
3153}
3154
3155/// Return true if folding a constant offset with the given GlobalAddress is
3156/// legal.  It is frequently not legal in PIC relocation models.
3157bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
3158      const {
3159  return HTM.getRelocationModel() == Reloc::Static;
3160}
3161
3162/// isLegalICmpImmediate - Return true if the specified immediate is legal
3163/// icmp immediate, that is the target has icmp instructions which can compare
3164/// a register against the immediate without having to materialize the
3165/// immediate into a register.
3166bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
3167  return Imm >= -512 && Imm <= 511;
3168}
3169
3170/// IsEligibleForTailCallOptimization - Check whether the call is eligible
3171/// for tail call optimization. Targets which want to do tail call
3172/// optimization should implement this function.
3173bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
3174                                 SDValue Callee,
3175                                 CallingConv::ID CalleeCC,
3176                                 bool IsVarArg,
3177                                 bool IsCalleeStructRet,
3178                                 bool IsCallerStructRet,
3179                                 const SmallVectorImpl<ISD::OutputArg> &Outs,
3180                                 const SmallVectorImpl<SDValue> &OutVals,
3181                                 const SmallVectorImpl<ISD::InputArg> &Ins,
3182                                 SelectionDAG& DAG) const {
3183  const Function &CallerF = DAG.getMachineFunction().getFunction();
3184  CallingConv::ID CallerCC = CallerF.getCallingConv();
3185  bool CCMatch = CallerCC == CalleeCC;
3186
3187  // ***************************************************************************
3188  //  Look for obvious safe cases to perform tail call optimization that do not
3189  //  require ABI changes.
3190  // ***************************************************************************
3191
3192  // If this is a tail call via a function pointer, then don't do it!
3193  if (!isa<GlobalAddressSDNode>(Callee) &&
3194      !isa<ExternalSymbolSDNode>(Callee)) {
3195    return false;
3196  }
3197
3198  // Do not optimize if the calling conventions do not match and the conventions
3199  // used are not C or Fast.
3200  if (!CCMatch) {
3201    bool R = (CallerCC == CallingConv::C || CallerCC == CallingConv::Fast);
3202    bool E = (CalleeCC == CallingConv::C || CalleeCC == CallingConv::Fast);
3203    // If R & E, then ok.
3204    if (!R || !E)
3205      return false;
3206  }
3207
3208  // Do not tail call optimize vararg calls.
3209  if (IsVarArg)
3210    return false;
3211
3212  // Also avoid tail call optimization if either caller or callee uses struct
3213  // return semantics.
3214  if (IsCalleeStructRet || IsCallerStructRet)
3215    return false;
3216
3217  // In addition to the cases above, we also disable Tail Call Optimization if
3218  // the calling convention code that at least one outgoing argument needs to
3219  // go on the stack. We cannot check that here because at this point that
3220  // information is not available.
3221  return true;
3222}
3223
3224/// Returns the target specific optimal type for load and store operations as
3225/// a result of memset, memcpy, and memmove lowering.
3226///
3227/// If DstAlign is zero that means it's safe to destination alignment can
3228/// satisfy any constraint. Similarly if SrcAlign is zero it means there isn't
3229/// a need to check it against alignment requirement, probably because the
3230/// source does not need to be loaded. If 'IsMemset' is true, that means it's
3231/// expanding a memset. If 'ZeroMemset' is true, that means it's a memset of
3232/// zero. 'MemcpyStrSrc' indicates whether the memcpy source is constant so it
3233/// does not need to be loaded.  It returns EVT::Other if the type should be
3234/// determined using generic target-independent logic.
3235EVT HexagonTargetLowering::getOptimalMemOpType(uint64_t Size,
3236      unsigned DstAlign, unsigned SrcAlign, bool IsMemset, bool ZeroMemset,
3237      bool MemcpyStrSrc, const AttributeList &FuncAttributes) const {
3238
3239  auto Aligned = [](unsigned GivenA, unsigned MinA) -> bool {
3240    return (GivenA % MinA) == 0;
3241  };
3242
3243  if (Size >= 8 && Aligned(DstAlign, 8) && (IsMemset || Aligned(SrcAlign, 8)))
3244    return MVT::i64;
3245  if (Size >= 4 && Aligned(DstAlign, 4) && (IsMemset || Aligned(SrcAlign, 4)))
3246    return MVT::i32;
3247  if (Size >= 2 && Aligned(DstAlign, 2) && (IsMemset || Aligned(SrcAlign, 2)))
3248    return MVT::i16;
3249
3250  return MVT::Other;
3251}
3252
3253bool HexagonTargetLowering::allowsMisalignedMemoryAccesses(
3254    EVT VT, unsigned AS, unsigned Align, MachineMemOperand::Flags Flags,
3255    bool *Fast) const {
3256  if (Fast)
3257    *Fast = false;
3258  return Subtarget.isHVXVectorType(VT.getSimpleVT());
3259}
3260
3261std::pair<const TargetRegisterClass*, uint8_t>
3262HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
3263      MVT VT) const {
3264  if (Subtarget.isHVXVectorType(VT, true)) {
3265    unsigned BitWidth = VT.getSizeInBits();
3266    unsigned VecWidth = Subtarget.getVectorLength() * 8;
3267
3268    if (VT.getVectorElementType() == MVT::i1)
3269      return std::make_pair(&Hexagon::HvxQRRegClass, 1);
3270    if (BitWidth == VecWidth)
3271      return std::make_pair(&Hexagon::HvxVRRegClass, 1);
3272    assert(BitWidth == 2 * VecWidth);
3273    return std::make_pair(&Hexagon::HvxWRRegClass, 1);
3274  }
3275
3276  return TargetLowering::findRepresentativeClass(TRI, VT);
3277}
3278
3279bool HexagonTargetLowering::shouldReduceLoadWidth(SDNode *Load,
3280      ISD::LoadExtType ExtTy, EVT NewVT) const {
3281  // TODO: This may be worth removing. Check regression tests for diffs.
3282  if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT))
3283    return false;
3284
3285  auto *L = cast<LoadSDNode>(Load);
3286  std::pair<SDValue,int> BO = getBaseAndOffset(L->getBasePtr());
3287  // Small-data object, do not shrink.
3288  if (BO.first.getOpcode() == HexagonISD::CONST32_GP)
3289    return false;
3290  if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(BO.first)) {
3291    auto &HTM = static_cast<const HexagonTargetMachine&>(getTargetMachine());
3292    const auto *GO = dyn_cast_or_null<const GlobalObject>(GA->getGlobal());
3293    return !GO || !HTM.getObjFileLowering()->isGlobalInSmallSection(GO, HTM);
3294  }
3295  return true;
3296}
3297
3298Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
3299      AtomicOrdering Ord) const {
3300  BasicBlock *BB = Builder.GetInsertBlock();
3301  Module *M = BB->getParent()->getParent();
3302  auto PT = cast<PointerType>(Addr->getType());
3303  Type *Ty = PT->getElementType();
3304  unsigned SZ = Ty->getPrimitiveSizeInBits();
3305  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
3306  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
3307                                   : Intrinsic::hexagon_L4_loadd_locked;
3308  Function *Fn = Intrinsic::getDeclaration(M, IntID);
3309
3310  PointerType *NewPtrTy
3311    = Builder.getIntNTy(SZ)->getPointerTo(PT->getAddressSpace());
3312  Addr = Builder.CreateBitCast(Addr, NewPtrTy);
3313
3314  Value *Call = Builder.CreateCall(Fn, Addr, "larx");
3315
3316  return Builder.CreateBitCast(Call, Ty);
3317}
3318
3319/// Perform a store-conditional operation to Addr. Return the status of the
3320/// store. This should be 0 if the store succeeded, non-zero otherwise.
3321Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
3322      Value *Val, Value *Addr, AtomicOrdering Ord) const {
3323  BasicBlock *BB = Builder.GetInsertBlock();
3324  Module *M = BB->getParent()->getParent();
3325  Type *Ty = Val->getType();
3326  unsigned SZ = Ty->getPrimitiveSizeInBits();
3327
3328  Type *CastTy = Builder.getIntNTy(SZ);
3329  assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
3330  Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
3331                                   : Intrinsic::hexagon_S4_stored_locked;
3332  Function *Fn = Intrinsic::getDeclaration(M, IntID);
3333
3334  unsigned AS = Addr->getType()->getPointerAddressSpace();
3335  Addr = Builder.CreateBitCast(Addr, CastTy->getPointerTo(AS));
3336  Val = Builder.CreateBitCast(Val, CastTy);
3337
3338  Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
3339  Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
3340  Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
3341  return Ext;
3342}
3343
3344TargetLowering::AtomicExpansionKind
3345HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
3346  // Do not expand loads and stores that don't exceed 64 bits.
3347  return LI->getType()->getPrimitiveSizeInBits() > 64
3348             ? AtomicExpansionKind::LLOnly
3349             : AtomicExpansionKind::None;
3350}
3351
3352bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
3353  // Do not expand loads and stores that don't exceed 64 bits.
3354  return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
3355}
3356
3357TargetLowering::AtomicExpansionKind
3358HexagonTargetLowering::shouldExpandAtomicCmpXchgInIR(
3359    AtomicCmpXchgInst *AI) const {
3360  const DataLayout &DL = AI->getModule()->getDataLayout();
3361  unsigned Size = DL.getTypeStoreSize(AI->getCompareOperand()->getType());
3362  if (Size >= 4 && Size <= 8)
3363    return AtomicExpansionKind::LLSC;
3364  return AtomicExpansionKind::None;
3365}
3366