HexagonConstExtenders.cpp revision 360784
1//===- HexagonConstExtenders.cpp ------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "HexagonInstrInfo.h"
10#include "HexagonRegisterInfo.h"
11#include "HexagonSubtarget.h"
12#include "llvm/ADT/SmallVector.h"
13#include "llvm/CodeGen/MachineDominators.h"
14#include "llvm/CodeGen/MachineFunctionPass.h"
15#include "llvm/CodeGen/MachineInstrBuilder.h"
16#include "llvm/CodeGen/MachineRegisterInfo.h"
17#include "llvm/CodeGen/Register.h"
18#include "llvm/InitializePasses.h"
19#include "llvm/Pass.h"
20#include "llvm/Support/CommandLine.h"
21#include "llvm/Support/raw_ostream.h"
22#include <map>
23#include <set>
24#include <utility>
25#include <vector>
26
27#define DEBUG_TYPE "hexagon-cext-opt"
28
29using namespace llvm;
30
31static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold",
32  cl::init(3), cl::Hidden, cl::ZeroOrMore,
33  cl::desc("Minimum number of extenders to trigger replacement"));
34
35static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0),
36  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements"));
37
38namespace llvm {
39  void initializeHexagonConstExtendersPass(PassRegistry&);
40  FunctionPass *createHexagonConstExtenders();
41}
42
43static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) {
44  assert(isPowerOf2_32(A));
45  int32_t U = (V & -A) + O;
46  return U >= V ? U : U+A;
47}
48
49static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) {
50  assert(isPowerOf2_32(A));
51  int32_t U = (V & -A) + O;
52  return U <= V ? U : U-A;
53}
54
55namespace {
56  struct OffsetRange {
57    // The range of values between Min and Max that are of form Align*N+Offset,
58    // for some integer N. Min and Max are required to be of that form as well,
59    // except in the case of an empty range.
60    int32_t Min = INT_MIN, Max = INT_MAX;
61    uint8_t Align = 1;
62    uint8_t Offset = 0;
63
64    OffsetRange() = default;
65    OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0)
66      : Min(L), Max(H), Align(A), Offset(O) {}
67    OffsetRange &intersect(OffsetRange A) {
68      if (Align < A.Align)
69        std::swap(*this, A);
70
71      // Align >= A.Align.
72      if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) {
73        Min = adjustUp(std::max(Min, A.Min), Align, Offset);
74        Max = adjustDown(std::min(Max, A.Max), Align, Offset);
75      } else {
76        // Make an empty range.
77        Min = 0;
78        Max = -1;
79      }
80      // Canonicalize empty ranges.
81      if (Min > Max)
82        std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
83      return *this;
84    }
85    OffsetRange &shift(int32_t S) {
86      Min += S;
87      Max += S;
88      Offset = (Offset+S) % Align;
89      return *this;
90    }
91    OffsetRange &extendBy(int32_t D) {
92      // If D < 0, extend Min, otherwise extend Max.
93      assert(D % Align == 0);
94      if (D < 0)
95        Min = (INT_MIN-D < Min) ? Min+D : INT_MIN;
96      else
97        Max = (INT_MAX-D > Max) ? Max+D : INT_MAX;
98      return *this;
99    }
100    bool empty() const {
101      return Min > Max;
102    }
103    bool contains(int32_t V) const {
104      return Min <= V && V <= Max && (V-Offset) % Align == 0;
105    }
106    bool operator==(const OffsetRange &R) const {
107      return Min == R.Min && Max == R.Max && Align == R.Align;
108    }
109    bool operator!=(const OffsetRange &R) const {
110      return !operator==(R);
111    }
112    bool operator<(const OffsetRange &R) const {
113      if (Min != R.Min)
114        return Min < R.Min;
115      if (Max != R.Max)
116        return Max < R.Max;
117      return Align < R.Align;
118    }
119    static OffsetRange zero() { return {0, 0, 1}; }
120  };
121
122  struct RangeTree {
123    struct Node {
124      Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
125      unsigned Height = 1;
126      unsigned Count = 1;
127      int32_t MaxEnd;
128      const OffsetRange &Range;
129      Node *Left = nullptr, *Right = nullptr;
130    };
131
132    Node *Root = nullptr;
133
134    void add(const OffsetRange &R) {
135      Root = add(Root, R);
136    }
137    void erase(const Node *N) {
138      Root = remove(Root, N);
139      delete N;
140    }
141    void order(SmallVectorImpl<Node*> &Seq) const {
142      order(Root, Seq);
143    }
144    SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
145      SmallVector<Node*,8> Nodes;
146      nodesWith(Root, P, CheckAlign, Nodes);
147      return Nodes;
148    }
149    void dump() const;
150    ~RangeTree() {
151      SmallVector<Node*,8> Nodes;
152      order(Nodes);
153      for (Node *N : Nodes)
154        delete N;
155    }
156
157  private:
158    void dump(const Node *N) const;
159    void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
160    void nodesWith(Node *N, int32_t P, bool CheckA,
161                   SmallVectorImpl<Node*> &Seq) const;
162
163    Node *add(Node *N, const OffsetRange &R);
164    Node *remove(Node *N, const Node *D);
165    Node *rotateLeft(Node *Lower, Node *Higher);
166    Node *rotateRight(Node *Lower, Node *Higher);
167    unsigned height(Node *N) {
168      return N != nullptr ? N->Height : 0;
169    }
170    Node *update(Node *N) {
171      assert(N != nullptr);
172      N->Height = 1 + std::max(height(N->Left), height(N->Right));
173      if (N->Left)
174        N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
175      if (N->Right)
176        N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
177      return N;
178    }
179    Node *rebalance(Node *N) {
180      assert(N != nullptr);
181      int32_t Balance = height(N->Right) - height(N->Left);
182      if (Balance < -1)
183        return rotateRight(N->Left, N);
184      if (Balance > 1)
185        return rotateLeft(N->Right, N);
186      return N;
187    }
188  };
189
190  struct Loc {
191    MachineBasicBlock *Block = nullptr;
192    MachineBasicBlock::iterator At;
193
194    Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It)
195      : Block(B), At(It) {
196      if (B->end() == It) {
197        Pos = -1;
198      } else {
199        assert(It->getParent() == B);
200        Pos = std::distance(B->begin(), It);
201      }
202    }
203    bool operator<(Loc A) const {
204      if (Block != A.Block)
205        return Block->getNumber() < A.Block->getNumber();
206      if (A.Pos == -1)
207        return Pos != A.Pos;
208      return Pos != -1 && Pos < A.Pos;
209    }
210  private:
211    int Pos = 0;
212  };
213
214  struct HexagonConstExtenders : public MachineFunctionPass {
215    static char ID;
216    HexagonConstExtenders() : MachineFunctionPass(ID) {}
217
218    void getAnalysisUsage(AnalysisUsage &AU) const override {
219      AU.addRequired<MachineDominatorTree>();
220      AU.addPreserved<MachineDominatorTree>();
221      MachineFunctionPass::getAnalysisUsage(AU);
222    }
223
224    StringRef getPassName() const override {
225      return "Hexagon constant-extender optimization";
226    }
227    bool runOnMachineFunction(MachineFunction &MF) override;
228
229  private:
230    struct Register {
231      Register() = default;
232      Register(unsigned R, unsigned S) : Reg(R), Sub(S) {}
233      Register(const MachineOperand &Op)
234        : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
235      Register &operator=(const MachineOperand &Op) {
236        if (Op.isReg()) {
237          Reg = Op.getReg();
238          Sub = Op.getSubReg();
239        } else if (Op.isFI()) {
240          Reg = llvm::Register::index2StackSlot(Op.getIndex());
241        }
242        return *this;
243      }
244      bool isVReg() const {
245        return Reg != 0 && !llvm::Register::isStackSlot(Reg) &&
246               llvm::Register::isVirtualRegister(Reg);
247      }
248      bool isSlot() const {
249        return Reg != 0 && llvm::Register::isStackSlot(Reg);
250      }
251      operator MachineOperand() const {
252        if (isVReg())
253          return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false,
254                          /*Kill*/false, /*Dead*/false, /*Undef*/false,
255                          /*EarlyClobber*/false, Sub);
256        if (llvm::Register::isStackSlot(Reg)) {
257          int FI = llvm::Register::stackSlot2Index(Reg);
258          return MachineOperand::CreateFI(FI);
259        }
260        llvm_unreachable("Cannot create MachineOperand");
261      }
262      bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; }
263      bool operator!=(Register R) const { return !operator==(R); }
264      bool operator<(Register R) const {
265        // For std::map.
266        return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
267      }
268      unsigned Reg = 0, Sub = 0;
269    };
270
271    struct ExtExpr {
272      // A subexpression in which the extender is used. In general, this
273      // represents an expression where adding D to the extender will be
274      // equivalent to adding D to the expression as a whole. In other
275      // words, expr(add(##V,D) = add(expr(##V),D).
276
277      // The original motivation for this are the io/ur addressing modes,
278      // where the offset is extended. Consider the io example:
279      // In memw(Rs+##V), the ##V could be replaced by a register Rt to
280      // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
281      // register Rt must have exactly the value of ##V. If there was
282      // another instruction memw(Rs+##V+4), it would need a different Rt.
283      // Now, if Rt was initialized as "##V+Rs<<0", both of these
284      // instructions could use the same Rt, just with different offsets.
285      // Here it's clear that "initializer+4" should be the same as if
286      // the offset 4 was added to the ##V in the initializer.
287
288      // The only kinds of expressions that support the requirement of
289      // commuting with addition are addition and subtraction from ##V.
290      // Include shifting the Rs to account for the ur addressing mode:
291      //   ##Val + Rs << S
292      //   ##Val - Rs
293      Register Rs;
294      unsigned S = 0;
295      bool Neg = false;
296
297      ExtExpr() = default;
298      ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {}
299      // Expression is trivial if it does not modify the extender.
300      bool trivial() const {
301        return Rs.Reg == 0;
302      }
303      bool operator==(const ExtExpr &Ex) const {
304        return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
305      }
306      bool operator!=(const ExtExpr &Ex) const {
307        return !operator==(Ex);
308      }
309      bool operator<(const ExtExpr &Ex) const {
310        if (Rs != Ex.Rs)
311          return Rs < Ex.Rs;
312        if (S != Ex.S)
313          return S < Ex.S;
314        return !Neg && Ex.Neg;
315      }
316    };
317
318    struct ExtDesc {
319      MachineInstr *UseMI = nullptr;
320      unsigned OpNum = -1u;
321      // The subexpression in which the extender is used (e.g. address
322      // computation).
323      ExtExpr Expr;
324      // Optional register that is assigned the value of Expr.
325      Register Rd;
326      // Def means that the output of the instruction may differ from the
327      // original by a constant c, and that the difference can be corrected
328      // by adding/subtracting c in all users of the defined register.
329      bool IsDef = false;
330
331      MachineOperand &getOp() {
332        return UseMI->getOperand(OpNum);
333      }
334      const MachineOperand &getOp() const {
335        return UseMI->getOperand(OpNum);
336      }
337    };
338
339    struct ExtRoot {
340      union {
341        const ConstantFP *CFP;  // MO_FPImmediate
342        const char *SymbolName; // MO_ExternalSymbol
343        const GlobalValue *GV;  // MO_GlobalAddress
344        const BlockAddress *BA; // MO_BlockAddress
345        int64_t ImmVal;         // MO_Immediate, MO_TargetIndex,
346                                // and MO_ConstantPoolIndex
347      } V;
348      unsigned Kind;            // Same as in MachineOperand.
349      unsigned char TF;         // TargetFlags.
350
351      ExtRoot(const MachineOperand &Op);
352      bool operator==(const ExtRoot &ER) const {
353        return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
354      }
355      bool operator!=(const ExtRoot &ER) const {
356        return !operator==(ER);
357      }
358      bool operator<(const ExtRoot &ER) const;
359    };
360
361    struct ExtValue : public ExtRoot {
362      int32_t Offset;
363
364      ExtValue(const MachineOperand &Op);
365      ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
366      ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {}
367      bool operator<(const ExtValue &EV) const;
368      bool operator==(const ExtValue &EV) const {
369        return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
370      }
371      bool operator!=(const ExtValue &EV) const {
372        return !operator==(EV);
373      }
374      explicit operator MachineOperand() const;
375    };
376
377    using IndexList = SetVector<unsigned>;
378    using ExtenderInit = std::pair<ExtValue, ExtExpr>;
379    using AssignmentMap = std::map<ExtenderInit, IndexList>;
380    using LocDefList = std::vector<std::pair<Loc, IndexList>>;
381
382    const HexagonInstrInfo *HII = nullptr;
383    const HexagonRegisterInfo *HRI = nullptr;
384    MachineDominatorTree *MDT = nullptr;
385    MachineRegisterInfo *MRI = nullptr;
386    std::vector<ExtDesc> Extenders;
387    std::vector<unsigned> NewRegs;
388
389    bool isStoreImmediate(unsigned Opc) const;
390    bool isRegOffOpcode(unsigned ExtOpc) const ;
391    unsigned getRegOffOpcode(unsigned ExtOpc) const;
392    unsigned getDirectRegReplacement(unsigned ExtOpc) const;
393    OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
394    OffsetRange getOffsetRange(const ExtDesc &ED) const;
395    OffsetRange getOffsetRange(Register Rd) const;
396
397    void recordExtender(MachineInstr &MI, unsigned OpNum);
398    void collectInstr(MachineInstr &MI);
399    void collect(MachineFunction &MF);
400    void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
401                     AssignmentMap &IMap);
402    void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
403                            LocDefList &Defs);
404    Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
405    bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
406    bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
407                          Register ExtR, int32_t &Diff);
408    bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI);
409    bool replaceExtenders(const AssignmentMap &IMap);
410
411    unsigned getOperandIndex(const MachineInstr &MI,
412                             const MachineOperand &Op) const;
413    const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
414    const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
415    const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;
416
417    friend struct PrintRegister;
418    friend struct PrintExpr;
419    friend struct PrintInit;
420    friend struct PrintIMap;
421    friend raw_ostream &operator<< (raw_ostream &OS,
422                                    const struct PrintRegister &P);
423    friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P);
424    friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P);
425    friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
426    friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
427    friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
428    friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR);
429    friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P);
430  };
431
432  using HCE = HexagonConstExtenders;
433
434  LLVM_ATTRIBUTE_UNUSED
435  raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
436    if (OR.Min > OR.Max)
437      OS << '!';
438    OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align)
439       << '+' << unsigned(OR.Offset);
440    return OS;
441  }
442
443  struct PrintRegister {
444    PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
445      : Rs(R), HRI(I) {}
446    HCE::Register Rs;
447    const HexagonRegisterInfo &HRI;
448  };
449
450  LLVM_ATTRIBUTE_UNUSED
451  raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
452    if (P.Rs.Reg != 0)
453      OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
454    else
455      OS << "noreg";
456    return OS;
457  }
458
459  struct PrintExpr {
460    PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
461      : Ex(E), HRI(I) {}
462    const HCE::ExtExpr &Ex;
463    const HexagonRegisterInfo &HRI;
464  };
465
466  LLVM_ATTRIBUTE_UNUSED
467  raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
468    OS << "## " << (P.Ex.Neg ? "- " : "+ ");
469    if (P.Ex.Rs.Reg != 0)
470      OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
471    else
472      OS << "__";
473    OS << " << " << P.Ex.S;
474    return OS;
475  }
476
477  struct PrintInit {
478    PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
479      : ExtI(EI), HRI(I) {}
480    const HCE::ExtenderInit &ExtI;
481    const HexagonRegisterInfo &HRI;
482  };
483
484  LLVM_ATTRIBUTE_UNUSED
485  raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
486    OS << '[' << P.ExtI.first << ", "
487       << PrintExpr(P.ExtI.second, P.HRI) << ']';
488    return OS;
489  }
490
491  LLVM_ATTRIBUTE_UNUSED
492  raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
493    assert(ED.OpNum != -1u);
494    const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
495    const MachineFunction &MF = *MBB.getParent();
496    const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
497    OS << "bb#" << MBB.getNumber() << ": ";
498    if (ED.Rd.Reg != 0)
499      OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
500    else
501      OS << "__";
502    OS << " = " << PrintExpr(ED.Expr, HRI);
503    if (ED.IsDef)
504      OS << ", def";
505    return OS;
506  }
507
508  LLVM_ATTRIBUTE_UNUSED
509  raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
510    switch (ER.Kind) {
511      case MachineOperand::MO_Immediate:
512        OS << "imm:" << ER.V.ImmVal;
513        break;
514      case MachineOperand::MO_FPImmediate:
515        OS << "fpi:" << *ER.V.CFP;
516        break;
517      case MachineOperand::MO_ExternalSymbol:
518        OS << "sym:" << *ER.V.SymbolName;
519        break;
520      case MachineOperand::MO_GlobalAddress:
521        OS << "gad:" << ER.V.GV->getName();
522        break;
523      case MachineOperand::MO_BlockAddress:
524        OS << "blk:" << *ER.V.BA;
525        break;
526      case MachineOperand::MO_TargetIndex:
527        OS << "tgi:" << ER.V.ImmVal;
528        break;
529      case MachineOperand::MO_ConstantPoolIndex:
530        OS << "cpi:" << ER.V.ImmVal;
531        break;
532      case MachineOperand::MO_JumpTableIndex:
533        OS << "jti:" << ER.V.ImmVal;
534        break;
535      default:
536        OS << "???:" << ER.V.ImmVal;
537        break;
538    }
539    return OS;
540  }
541
542  LLVM_ATTRIBUTE_UNUSED
543  raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
544    OS << HCE::ExtRoot(EV) << "  off:" << EV.Offset;
545    return OS;
546  }
547
548  struct PrintIMap {
549    PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
550      : IMap(M), HRI(I) {}
551    const HCE::AssignmentMap &IMap;
552    const HexagonRegisterInfo &HRI;
553  };
554
555  LLVM_ATTRIBUTE_UNUSED
556  raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
557    OS << "{\n";
558    for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) {
559      OS << "  " << PrintInit(Q.first, P.HRI) << " -> {";
560      for (unsigned I : Q.second)
561        OS << ' ' << I;
562      OS << " }\n";
563    }
564    OS << "}\n";
565    return OS;
566  }
567}
568
569INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",
570      "Hexagon constant-extender optimization", false, false)
571INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
572INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",
573      "Hexagon constant-extender optimization", false, false)
574
575static unsigned ReplaceCounter = 0;
576
577char HCE::ID = 0;
578
579#ifndef NDEBUG
580LLVM_DUMP_METHOD void RangeTree::dump() const {
581  dbgs() << "Root: " << Root << '\n';
582  if (Root)
583    dump(Root);
584}
585
586LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const {
587  dbgs() << "Node: " << N << '\n';
588  dbgs() << "  Height: " << N->Height << '\n';
589  dbgs() << "  Count: " << N->Count << '\n';
590  dbgs() << "  MaxEnd: " << N->MaxEnd << '\n';
591  dbgs() << "  Range: " << N->Range << '\n';
592  dbgs() << "  Left: " << N->Left << '\n';
593  dbgs() << "  Right: " << N->Right << "\n\n";
594
595  if (N->Left)
596    dump(N->Left);
597  if (N->Right)
598    dump(N->Right);
599}
600#endif
601
602void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
603  if (N == nullptr)
604    return;
605  order(N->Left, Seq);
606  Seq.push_back(N);
607  order(N->Right, Seq);
608}
609
610void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
611      SmallVectorImpl<Node*> &Seq) const {
612  if (N == nullptr || N->MaxEnd < P)
613    return;
614  nodesWith(N->Left, P, CheckA, Seq);
615  if (N->Range.Min <= P) {
616    if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max))
617      Seq.push_back(N);
618    nodesWith(N->Right, P, CheckA, Seq);
619  }
620}
621
622RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
623  if (N == nullptr)
624    return new Node(R);
625
626  if (N->Range == R) {
627    N->Count++;
628    return N;
629  }
630
631  if (R < N->Range)
632    N->Left = add(N->Left, R);
633  else
634    N->Right = add(N->Right, R);
635  return rebalance(update(N));
636}
637
638RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
639  assert(N != nullptr);
640
641  if (N != D) {
642    assert(N->Range != D->Range && "N and D should not be equal");
643    if (D->Range < N->Range)
644      N->Left = remove(N->Left, D);
645    else
646      N->Right = remove(N->Right, D);
647    return rebalance(update(N));
648  }
649
650  // We got to the node we need to remove. If any of its children are
651  // missing, simply replace it with the other child.
652  if (N->Left == nullptr || N->Right == nullptr)
653    return (N->Left == nullptr) ? N->Right : N->Left;
654
655  // Find the rightmost child of N->Left, remove it and plug it in place
656  // of N.
657  Node *M = N->Left;
658  while (M->Right)
659    M = M->Right;
660  M->Left = remove(N->Left, M);
661  M->Right = N->Right;
662  return rebalance(update(M));
663}
664
665RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
666  assert(Higher->Right == Lower);
667  // The Lower node is on the right from Higher. Make sure that Lower's
668  // balance is greater to the right. Otherwise the rotation will create
669  // an unbalanced tree again.
670  if (height(Lower->Left) > height(Lower->Right))
671    Lower = rotateRight(Lower->Left, Lower);
672  assert(height(Lower->Left) <= height(Lower->Right));
673  Higher->Right = Lower->Left;
674  update(Higher);
675  Lower->Left = Higher;
676  update(Lower);
677  return Lower;
678}
679
680RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
681  assert(Higher->Left == Lower);
682  // The Lower node is on the left from Higher. Make sure that Lower's
683  // balance is greater to the left. Otherwise the rotation will create
684  // an unbalanced tree again.
685  if (height(Lower->Left) < height(Lower->Right))
686    Lower = rotateLeft(Lower->Right, Lower);
687  assert(height(Lower->Left) >= height(Lower->Right));
688  Higher->Left = Lower->Right;
689  update(Higher);
690  Lower->Right = Higher;
691  update(Lower);
692  return Lower;
693}
694
695
696HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
697  // Always store ImmVal, since it's the field used for comparisons.
698  V.ImmVal = 0;
699  if (Op.isImm())
700    ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root).
701  else if (Op.isFPImm())
702    V.CFP = Op.getFPImm();
703  else if (Op.isSymbol())
704    V.SymbolName = Op.getSymbolName();
705  else if (Op.isGlobal())
706    V.GV = Op.getGlobal();
707  else if (Op.isBlockAddress())
708    V.BA = Op.getBlockAddress();
709  else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
710    V.ImmVal = Op.getIndex();
711  else
712    llvm_unreachable("Unexpected operand type");
713
714  Kind = Op.getType();
715  TF = Op.getTargetFlags();
716}
717
718bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
719  if (Kind != ER.Kind)
720    return Kind < ER.Kind;
721  switch (Kind) {
722    case MachineOperand::MO_Immediate:
723    case MachineOperand::MO_TargetIndex:
724    case MachineOperand::MO_ConstantPoolIndex:
725    case MachineOperand::MO_JumpTableIndex:
726      return V.ImmVal < ER.V.ImmVal;
727    case MachineOperand::MO_FPImmediate: {
728      const APFloat &ThisF = V.CFP->getValueAPF();
729      const APFloat &OtherF = ER.V.CFP->getValueAPF();
730      return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
731    }
732    case MachineOperand::MO_ExternalSymbol:
733      return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
734    case MachineOperand::MO_GlobalAddress:
735      // Do not use GUIDs, since they depend on the source path. Moving the
736      // source file to a different directory could cause different GUID
737      // values for a pair of given symbols. These symbols could then compare
738      // "less" in one directory, but "greater" in another.
739      assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty());
740      return V.GV->getName() < ER.V.GV->getName();
741    case MachineOperand::MO_BlockAddress: {
742      const BasicBlock *ThisB = V.BA->getBasicBlock();
743      const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
744      assert(ThisB->getParent() == OtherB->getParent());
745      const Function &F = *ThisB->getParent();
746      return std::distance(F.begin(), ThisB->getIterator()) <
747             std::distance(F.begin(), OtherB->getIterator());
748    }
749  }
750  return V.ImmVal < ER.V.ImmVal;
751}
752
753HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
754  if (Op.isImm())
755    Offset = Op.getImm();
756  else if (Op.isFPImm() || Op.isJTI())
757    Offset = 0;
758  else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
759           Op.isCPI() || Op.isTargetIndex())
760    Offset = Op.getOffset();
761  else
762    llvm_unreachable("Unexpected operand type");
763}
764
765bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
766  const ExtRoot &ER = *this;
767  if (!(ER == ExtRoot(EV)))
768    return ER < EV;
769  return Offset < EV.Offset;
770}
771
772HCE::ExtValue::operator MachineOperand() const {
773  switch (Kind) {
774    case MachineOperand::MO_Immediate:
775      return MachineOperand::CreateImm(V.ImmVal + Offset);
776    case MachineOperand::MO_FPImmediate:
777      assert(Offset == 0);
778      return MachineOperand::CreateFPImm(V.CFP);
779    case MachineOperand::MO_ExternalSymbol:
780      assert(Offset == 0);
781      return MachineOperand::CreateES(V.SymbolName, TF);
782    case MachineOperand::MO_GlobalAddress:
783      return MachineOperand::CreateGA(V.GV, Offset, TF);
784    case MachineOperand::MO_BlockAddress:
785      return MachineOperand::CreateBA(V.BA, Offset, TF);
786    case MachineOperand::MO_TargetIndex:
787      return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
788    case MachineOperand::MO_ConstantPoolIndex:
789      return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
790    case MachineOperand::MO_JumpTableIndex:
791      assert(Offset == 0);
792      return MachineOperand::CreateJTI(V.ImmVal, TF);
793    default:
794      llvm_unreachable("Unhandled kind");
795 }
796}
797
798bool HCE::isStoreImmediate(unsigned Opc) const {
799  switch (Opc) {
800    case Hexagon::S4_storeirbt_io:
801    case Hexagon::S4_storeirbf_io:
802    case Hexagon::S4_storeirht_io:
803    case Hexagon::S4_storeirhf_io:
804    case Hexagon::S4_storeirit_io:
805    case Hexagon::S4_storeirif_io:
806    case Hexagon::S4_storeirb_io:
807    case Hexagon::S4_storeirh_io:
808    case Hexagon::S4_storeiri_io:
809      return true;
810    default:
811      break;
812  }
813  return false;
814}
815
816bool HCE::isRegOffOpcode(unsigned Opc) const {
817  switch (Opc) {
818    case Hexagon::L2_loadrub_io:
819    case Hexagon::L2_loadrb_io:
820    case Hexagon::L2_loadruh_io:
821    case Hexagon::L2_loadrh_io:
822    case Hexagon::L2_loadri_io:
823    case Hexagon::L2_loadrd_io:
824    case Hexagon::L2_loadbzw2_io:
825    case Hexagon::L2_loadbzw4_io:
826    case Hexagon::L2_loadbsw2_io:
827    case Hexagon::L2_loadbsw4_io:
828    case Hexagon::L2_loadalignh_io:
829    case Hexagon::L2_loadalignb_io:
830    case Hexagon::L2_ploadrubt_io:
831    case Hexagon::L2_ploadrubf_io:
832    case Hexagon::L2_ploadrbt_io:
833    case Hexagon::L2_ploadrbf_io:
834    case Hexagon::L2_ploadruht_io:
835    case Hexagon::L2_ploadruhf_io:
836    case Hexagon::L2_ploadrht_io:
837    case Hexagon::L2_ploadrhf_io:
838    case Hexagon::L2_ploadrit_io:
839    case Hexagon::L2_ploadrif_io:
840    case Hexagon::L2_ploadrdt_io:
841    case Hexagon::L2_ploadrdf_io:
842    case Hexagon::S2_storerb_io:
843    case Hexagon::S2_storerh_io:
844    case Hexagon::S2_storerf_io:
845    case Hexagon::S2_storeri_io:
846    case Hexagon::S2_storerd_io:
847    case Hexagon::S2_pstorerbt_io:
848    case Hexagon::S2_pstorerbf_io:
849    case Hexagon::S2_pstorerht_io:
850    case Hexagon::S2_pstorerhf_io:
851    case Hexagon::S2_pstorerft_io:
852    case Hexagon::S2_pstorerff_io:
853    case Hexagon::S2_pstorerit_io:
854    case Hexagon::S2_pstorerif_io:
855    case Hexagon::S2_pstorerdt_io:
856    case Hexagon::S2_pstorerdf_io:
857    case Hexagon::A2_addi:
858      return true;
859    default:
860      break;
861  }
862  return false;
863}
864
865unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
866  // If there exists an instruction that takes a register and offset,
867  // that corresponds to the ExtOpc, return it, otherwise return 0.
868  using namespace Hexagon;
869  switch (ExtOpc) {
870    case A2_tfrsi:    return A2_addi;
871    default:
872      break;
873  }
874  const MCInstrDesc &D = HII->get(ExtOpc);
875  if (D.mayLoad() || D.mayStore()) {
876    uint64_t F = D.TSFlags;
877    unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
878    switch (AM) {
879      case HexagonII::Absolute:
880      case HexagonII::AbsoluteSet:
881      case HexagonII::BaseLongOffset:
882        switch (ExtOpc) {
883          case PS_loadrubabs:
884          case L4_loadrub_ap:
885          case L4_loadrub_ur:     return L2_loadrub_io;
886          case PS_loadrbabs:
887          case L4_loadrb_ap:
888          case L4_loadrb_ur:      return L2_loadrb_io;
889          case PS_loadruhabs:
890          case L4_loadruh_ap:
891          case L4_loadruh_ur:     return L2_loadruh_io;
892          case PS_loadrhabs:
893          case L4_loadrh_ap:
894          case L4_loadrh_ur:      return L2_loadrh_io;
895          case PS_loadriabs:
896          case L4_loadri_ap:
897          case L4_loadri_ur:      return L2_loadri_io;
898          case PS_loadrdabs:
899          case L4_loadrd_ap:
900          case L4_loadrd_ur:      return L2_loadrd_io;
901          case L4_loadbzw2_ap:
902          case L4_loadbzw2_ur:    return L2_loadbzw2_io;
903          case L4_loadbzw4_ap:
904          case L4_loadbzw4_ur:    return L2_loadbzw4_io;
905          case L4_loadbsw2_ap:
906          case L4_loadbsw2_ur:    return L2_loadbsw2_io;
907          case L4_loadbsw4_ap:
908          case L4_loadbsw4_ur:    return L2_loadbsw4_io;
909          case L4_loadalignh_ap:
910          case L4_loadalignh_ur:  return L2_loadalignh_io;
911          case L4_loadalignb_ap:
912          case L4_loadalignb_ur:  return L2_loadalignb_io;
913          case L4_ploadrubt_abs:  return L2_ploadrubt_io;
914          case L4_ploadrubf_abs:  return L2_ploadrubf_io;
915          case L4_ploadrbt_abs:   return L2_ploadrbt_io;
916          case L4_ploadrbf_abs:   return L2_ploadrbf_io;
917          case L4_ploadruht_abs:  return L2_ploadruht_io;
918          case L4_ploadruhf_abs:  return L2_ploadruhf_io;
919          case L4_ploadrht_abs:   return L2_ploadrht_io;
920          case L4_ploadrhf_abs:   return L2_ploadrhf_io;
921          case L4_ploadrit_abs:   return L2_ploadrit_io;
922          case L4_ploadrif_abs:   return L2_ploadrif_io;
923          case L4_ploadrdt_abs:   return L2_ploadrdt_io;
924          case L4_ploadrdf_abs:   return L2_ploadrdf_io;
925          case PS_storerbabs:
926          case S4_storerb_ap:
927          case S4_storerb_ur:     return S2_storerb_io;
928          case PS_storerhabs:
929          case S4_storerh_ap:
930          case S4_storerh_ur:     return S2_storerh_io;
931          case PS_storerfabs:
932          case S4_storerf_ap:
933          case S4_storerf_ur:     return S2_storerf_io;
934          case PS_storeriabs:
935          case S4_storeri_ap:
936          case S4_storeri_ur:     return S2_storeri_io;
937          case PS_storerdabs:
938          case S4_storerd_ap:
939          case S4_storerd_ur:     return S2_storerd_io;
940          case S4_pstorerbt_abs:  return S2_pstorerbt_io;
941          case S4_pstorerbf_abs:  return S2_pstorerbf_io;
942          case S4_pstorerht_abs:  return S2_pstorerht_io;
943          case S4_pstorerhf_abs:  return S2_pstorerhf_io;
944          case S4_pstorerft_abs:  return S2_pstorerft_io;
945          case S4_pstorerff_abs:  return S2_pstorerff_io;
946          case S4_pstorerit_abs:  return S2_pstorerit_io;
947          case S4_pstorerif_abs:  return S2_pstorerif_io;
948          case S4_pstorerdt_abs:  return S2_pstorerdt_io;
949          case S4_pstorerdf_abs:  return S2_pstorerdf_io;
950          default:
951            break;
952        }
953        break;
954      case HexagonII::BaseImmOffset:
955        if (!isStoreImmediate(ExtOpc))
956          return ExtOpc;
957        break;
958      default:
959        break;
960    }
961  }
962  return 0;
963}
964
965unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
966  switch (ExtOpc) {
967    case Hexagon::A2_addi:          return Hexagon::A2_add;
968    case Hexagon::A2_andir:         return Hexagon::A2_and;
969    case Hexagon::A2_combineii:     return Hexagon::A4_combineri;
970    case Hexagon::A2_orir:          return Hexagon::A2_or;
971    case Hexagon::A2_paddif:        return Hexagon::A2_paddf;
972    case Hexagon::A2_paddit:        return Hexagon::A2_paddt;
973    case Hexagon::A2_subri:         return Hexagon::A2_sub;
974    case Hexagon::A2_tfrsi:         return TargetOpcode::COPY;
975    case Hexagon::A4_cmpbeqi:       return Hexagon::A4_cmpbeq;
976    case Hexagon::A4_cmpbgti:       return Hexagon::A4_cmpbgt;
977    case Hexagon::A4_cmpbgtui:      return Hexagon::A4_cmpbgtu;
978    case Hexagon::A4_cmpheqi:       return Hexagon::A4_cmpheq;
979    case Hexagon::A4_cmphgti:       return Hexagon::A4_cmphgt;
980    case Hexagon::A4_cmphgtui:      return Hexagon::A4_cmphgtu;
981    case Hexagon::A4_combineii:     return Hexagon::A4_combineir;
982    case Hexagon::A4_combineir:     return TargetOpcode::REG_SEQUENCE;
983    case Hexagon::A4_combineri:     return TargetOpcode::REG_SEQUENCE;
984    case Hexagon::A4_rcmpeqi:       return Hexagon::A4_rcmpeq;
985    case Hexagon::A4_rcmpneqi:      return Hexagon::A4_rcmpneq;
986    case Hexagon::C2_cmoveif:       return Hexagon::A2_tfrpf;
987    case Hexagon::C2_cmoveit:       return Hexagon::A2_tfrpt;
988    case Hexagon::C2_cmpeqi:        return Hexagon::C2_cmpeq;
989    case Hexagon::C2_cmpgti:        return Hexagon::C2_cmpgt;
990    case Hexagon::C2_cmpgtui:       return Hexagon::C2_cmpgtu;
991    case Hexagon::C2_muxii:         return Hexagon::C2_muxir;
992    case Hexagon::C2_muxir:         return Hexagon::C2_mux;
993    case Hexagon::C2_muxri:         return Hexagon::C2_mux;
994    case Hexagon::C4_cmpltei:       return Hexagon::C4_cmplte;
995    case Hexagon::C4_cmplteui:      return Hexagon::C4_cmplteu;
996    case Hexagon::C4_cmpneqi:       return Hexagon::C4_cmpneq;
997    case Hexagon::M2_accii:         return Hexagon::M2_acci;        // T -> T
998    /* No M2_macsin */
999    case Hexagon::M2_macsip:        return Hexagon::M2_maci;        // T -> T
1000    case Hexagon::M2_mpysin:        return Hexagon::M2_mpyi;
1001    case Hexagon::M2_mpysip:        return Hexagon::M2_mpyi;
1002    case Hexagon::M2_mpysmi:        return Hexagon::M2_mpyi;
1003    case Hexagon::M2_naccii:        return Hexagon::M2_nacci;       // T -> T
1004    case Hexagon::M4_mpyri_addi:    return Hexagon::M4_mpyri_addr;
1005    case Hexagon::M4_mpyri_addr:    return Hexagon::M4_mpyrr_addr;  // _ -> T
1006    case Hexagon::M4_mpyrr_addi:    return Hexagon::M4_mpyrr_addr;  // _ -> T
1007    case Hexagon::S4_addaddi:       return Hexagon::M2_acci;        // _ -> T
1008    case Hexagon::S4_addi_asl_ri:   return Hexagon::S2_asl_i_r_acc; // T -> T
1009    case Hexagon::S4_addi_lsr_ri:   return Hexagon::S2_lsr_i_r_acc; // T -> T
1010    case Hexagon::S4_andi_asl_ri:   return Hexagon::S2_asl_i_r_and; // T -> T
1011    case Hexagon::S4_andi_lsr_ri:   return Hexagon::S2_lsr_i_r_and; // T -> T
1012    case Hexagon::S4_ori_asl_ri:    return Hexagon::S2_asl_i_r_or;  // T -> T
1013    case Hexagon::S4_ori_lsr_ri:    return Hexagon::S2_lsr_i_r_or;  // T -> T
1014    case Hexagon::S4_subaddi:       return Hexagon::M2_subacc;      // _ -> T
1015    case Hexagon::S4_subi_asl_ri:   return Hexagon::S2_asl_i_r_nac; // T -> T
1016    case Hexagon::S4_subi_lsr_ri:   return Hexagon::S2_lsr_i_r_nac; // T -> T
1017
1018    // Store-immediates:
1019    case Hexagon::S4_storeirbf_io:  return Hexagon::S2_pstorerbf_io;
1020    case Hexagon::S4_storeirb_io:   return Hexagon::S2_storerb_io;
1021    case Hexagon::S4_storeirbt_io:  return Hexagon::S2_pstorerbt_io;
1022    case Hexagon::S4_storeirhf_io:  return Hexagon::S2_pstorerhf_io;
1023    case Hexagon::S4_storeirh_io:   return Hexagon::S2_storerh_io;
1024    case Hexagon::S4_storeirht_io:  return Hexagon::S2_pstorerht_io;
1025    case Hexagon::S4_storeirif_io:  return Hexagon::S2_pstorerif_io;
1026    case Hexagon::S4_storeiri_io:   return Hexagon::S2_storeri_io;
1027    case Hexagon::S4_storeirit_io:  return Hexagon::S2_pstorerit_io;
1028
1029    default:
1030      break;
1031  }
1032  return 0;
1033}
1034
1035// Return the allowable deviation from the current value of Rb (i.e. the
1036// range of values that can be added to the current value) which the
1037// instruction MI can accommodate.
1038// The instruction MI is a user of register Rb, which is defined via an
1039// extender. It may be possible for MI to be tweaked to work for a register
1040// defined with a slightly different value. For example
1041//   ... = L2_loadrub_io Rb, 1
1042// can be modifed to be
1043//   ... = L2_loadrub_io Rb', 0
1044// if Rb' = Rb+1.
1045// The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range
1046// for L2_loadrub with offset 0. That means that Rb could be replaced with
1047// Rc, where Rc-Rb belongs to [Min+1, Max+1].
1048OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const {
1049  unsigned Opc = MI.getOpcode();
1050  // Instructions that are constant-extended may be replaced with something
1051  // else that no longer offers the same range as the original.
1052  if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
1053    return OffsetRange::zero();
1054
1055  if (Opc == Hexagon::A2_addi) {
1056    const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
1057    if (Rb != Register(Op1) || !Op2.isImm())
1058      return OffsetRange::zero();
1059    OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
1060    return R.shift(Op2.getImm());
1061  }
1062
1063  // HII::getBaseAndOffsetPosition returns the increment position as "offset".
1064  if (HII->isPostIncrement(MI))
1065    return OffsetRange::zero();
1066
1067  const MCInstrDesc &D = HII->get(Opc);
1068  assert(D.mayLoad() || D.mayStore());
1069
1070  unsigned BaseP, OffP;
1071  if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
1072      Rb != Register(MI.getOperand(BaseP)) ||
1073      !MI.getOperand(OffP).isImm())
1074    return OffsetRange::zero();
1075
1076  uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1077                  HexagonII::MemAccesSizeMask;
1078  uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1079  unsigned L = Log2_32(A);
1080  unsigned S = 10+L;  // sint11_L
1081  int32_t Min = -alignDown((1<<S)-1, A);
1082
1083  // The range will be shifted by Off. To prefer non-negative offsets,
1084  // adjust Max accordingly.
1085  int32_t Off = MI.getOperand(OffP).getImm();
1086  int32_t Max = Off >= 0 ? 0 : -Off;
1087
1088  OffsetRange R = { Min, Max, A };
1089  return R.shift(Off);
1090}
1091
1092// Return the allowable deviation from the current value of the extender ED,
1093// for which the instruction corresponding to ED can be modified without
1094// using an extender.
1095// The instruction uses the extender directly. It will be replaced with
1096// another instruction, say MJ, where the extender will be replaced with a
1097// register. MJ can allow some variability with respect to the value of
1098// that register, as is the case with indexed memory instructions.
1099OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
1100  // The only way that there can be a non-zero range available is if
1101  // the instruction using ED will be converted to an indexed memory
1102  // instruction.
1103  unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
1104  switch (IdxOpc) {
1105    case 0:
1106      return OffsetRange::zero();
1107    case Hexagon::A2_addi:    // s16
1108      return { -32767, 32767, 1 };
1109    case Hexagon::A2_subri:   // s10
1110      return { -511, 511, 1 };
1111  }
1112
1113  if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
1114    return OffsetRange::zero();
1115  const MCInstrDesc &D = HII->get(IdxOpc);
1116  uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
1117                  HexagonII::MemAccesSizeMask;
1118  uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
1119  unsigned L = Log2_32(A);
1120  unsigned S = 10+L;  // sint11_L
1121  int32_t Min = -alignDown((1<<S)-1, A);
1122  int32_t Max = 0;  // Force non-negative offsets.
1123  return { Min, Max, A };
1124}
1125
1126// Get the allowable deviation from the current value of Rd by checking
1127// all uses of Rd.
1128OffsetRange HCE::getOffsetRange(Register Rd) const {
1129  OffsetRange Range;
1130  for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
1131    // Make sure that the register being used by this operand is identical
1132    // to the register that was defined: using a different subregister
1133    // precludes any non-trivial range.
1134    if (Rd != Register(Op))
1135      return OffsetRange::zero();
1136    Range.intersect(getOffsetRange(Rd, *Op.getParent()));
1137  }
1138  return Range;
1139}
1140
1141void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
1142  unsigned Opc = MI.getOpcode();
1143  ExtDesc ED;
1144  ED.OpNum = OpNum;
1145
1146  bool IsLoad = MI.mayLoad();
1147  bool IsStore = MI.mayStore();
1148
1149  // Fixed stack slots have negative indexes, and they cannot be used
1150  // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat
1151  // unfortunate, but should not be a frequent thing.
1152  for (MachineOperand &Op : MI.operands())
1153    if (Op.isFI() && Op.getIndex() < 0)
1154      return;
1155
1156  if (IsLoad || IsStore) {
1157    unsigned AM = HII->getAddrMode(MI);
1158    switch (AM) {
1159      // (Re: ##Off + Rb<<S) = Rd: ##Val
1160      case HexagonII::Absolute:       // (__: ## + __<<_)
1161        break;
1162      case HexagonII::AbsoluteSet:    // (Rd: ## + __<<_)
1163        ED.Rd = MI.getOperand(OpNum-1);
1164        ED.IsDef = true;
1165        break;
1166      case HexagonII::BaseImmOffset:  // (__: ## + Rs<<0)
1167        // Store-immediates are treated as non-memory operations, since
1168        // it's the value being stored that is extended (as opposed to
1169        // a part of the address).
1170        if (!isStoreImmediate(Opc))
1171          ED.Expr.Rs = MI.getOperand(OpNum-1);
1172        break;
1173      case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
1174        ED.Expr.Rs = MI.getOperand(OpNum-2);
1175        ED.Expr.S = MI.getOperand(OpNum-1).getImm();
1176        break;
1177      default:
1178        llvm_unreachable("Unhandled memory instruction");
1179    }
1180  } else {
1181    switch (Opc) {
1182      case Hexagon::A2_tfrsi:         // (Rd: ## + __<<_)
1183        ED.Rd = MI.getOperand(0);
1184        ED.IsDef = true;
1185        break;
1186      case Hexagon::A2_combineii:     // (Rd: ## + __<<_)
1187      case Hexagon::A4_combineir:
1188        ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
1189        ED.IsDef = true;
1190        break;
1191      case Hexagon::A4_combineri:     // (Rd: ## + __<<_)
1192        ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
1193        ED.IsDef = true;
1194        break;
1195      case Hexagon::A2_addi:          // (Rd: ## + Rs<<0)
1196        ED.Rd = MI.getOperand(0);
1197        ED.Expr.Rs = MI.getOperand(OpNum-1);
1198        break;
1199      case Hexagon::M2_accii:         // (__: ## + Rs<<0)
1200      case Hexagon::M2_naccii:
1201      case Hexagon::S4_addaddi:
1202        ED.Expr.Rs = MI.getOperand(OpNum-1);
1203        break;
1204      case Hexagon::A2_subri:         // (Rd: ## - Rs<<0)
1205        ED.Rd = MI.getOperand(0);
1206        ED.Expr.Rs = MI.getOperand(OpNum+1);
1207        ED.Expr.Neg = true;
1208        break;
1209      case Hexagon::S4_subaddi:       // (__: ## - Rs<<0)
1210        ED.Expr.Rs = MI.getOperand(OpNum+1);
1211        ED.Expr.Neg = true;
1212        break;
1213      default:                        // (__: ## + __<<_)
1214        break;
1215    }
1216  }
1217
1218  ED.UseMI = &MI;
1219
1220  // Ignore unnamed globals.
1221  ExtRoot ER(ED.getOp());
1222  if (ER.Kind == MachineOperand::MO_GlobalAddress)
1223    if (ER.V.GV->getName().empty())
1224      return;
1225  Extenders.push_back(ED);
1226}
1227
1228void HCE::collectInstr(MachineInstr &MI) {
1229  if (!HII->isConstExtended(MI))
1230    return;
1231
1232  // Skip some non-convertible instructions.
1233  unsigned Opc = MI.getOpcode();
1234  switch (Opc) {
1235    case Hexagon::M2_macsin:  // There is no Rx -= mpyi(Rs,Rt).
1236    case Hexagon::C4_addipc:
1237    case Hexagon::S4_or_andi:
1238    case Hexagon::S4_or_andix:
1239    case Hexagon::S4_or_ori:
1240      return;
1241  }
1242  recordExtender(MI, HII->getCExtOpNum(MI));
1243}
1244
1245void HCE::collect(MachineFunction &MF) {
1246  Extenders.clear();
1247  for (MachineBasicBlock &MBB : MF) {
1248    // Skip unreachable blocks.
1249    if (MBB.getNumber() == -1)
1250      continue;
1251    for (MachineInstr &MI : MBB)
1252      collectInstr(MI);
1253  }
1254}
1255
1256void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
1257      AssignmentMap &IMap) {
1258  // Sanity check: make sure that all extenders in the range [Begin..End)
1259  // share the same root ER.
1260  for (unsigned I = Begin; I != End; ++I)
1261    assert(ER == ExtRoot(Extenders[I].getOp()));
1262
1263  // Construct the list of ranges, such that for each P in Ranges[I],
1264  // a register Reg = ER+P can be used in place of Extender[I]. If the
1265  // instruction allows, uses in the form of Reg+Off are considered
1266  // (here, Off = required_value - P).
1267  std::vector<OffsetRange> Ranges(End-Begin);
1268
1269  // For each extender that is a def, visit all uses of the defined register,
1270  // and produce an offset range that works for all uses. The def doesn't
1271  // have to be checked, because it can become dead if all uses can be updated
1272  // to use a different reg/offset.
1273  for (unsigned I = Begin; I != End; ++I) {
1274    const ExtDesc &ED = Extenders[I];
1275    if (!ED.IsDef)
1276      continue;
1277    ExtValue EV(ED);
1278    LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << "  " << ED << '\n');
1279    assert(ED.Rd.Reg != 0);
1280    Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
1281    // A2_tfrsi is a special case: it will be replaced with A2_addi, which
1282    // has a 16-bit signed offset. This means that A2_tfrsi not only has a
1283    // range coming from its uses, but also from the fact that its replacement
1284    // has a range as well.
1285    if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
1286      int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded
1287      Ranges[I-Begin].extendBy(-D).extendBy(D);
1288    }
1289  }
1290
1291  // Visit all non-def extenders. For each one, determine the offset range
1292  // available for it.
1293  for (unsigned I = Begin; I != End; ++I) {
1294    const ExtDesc &ED = Extenders[I];
1295    if (ED.IsDef)
1296      continue;
1297    ExtValue EV(ED);
1298    LLVM_DEBUG(dbgs() << "  " << I << ". " << EV << "  " << ED << '\n');
1299    OffsetRange Dev = getOffsetRange(ED);
1300    Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
1301  }
1302
1303  // Here for each I there is a corresponding Range[I]. Construct the
1304  // inverse map, that to each range will assign the set of indexes in
1305  // [Begin..End) that this range corresponds to.
1306  std::map<OffsetRange, IndexList> RangeMap;
1307  for (unsigned I = Begin; I != End; ++I)
1308    RangeMap[Ranges[I-Begin]].insert(I);
1309
1310  LLVM_DEBUG({
1311    dbgs() << "Ranges\n";
1312    for (unsigned I = Begin; I != End; ++I)
1313      dbgs() << "  " << I << ". " << Ranges[I-Begin] << '\n';
1314    dbgs() << "RangeMap\n";
1315    for (auto &P : RangeMap) {
1316      dbgs() << "  " << P.first << " ->";
1317      for (unsigned I : P.second)
1318        dbgs() << ' ' << I;
1319      dbgs() << '\n';
1320    }
1321  });
1322
1323  // Select the definition points, and generate the assignment between
1324  // these points and the uses.
1325
1326  // For each candidate offset, keep a pair CandData consisting of
1327  // the total number of ranges containing that candidate, and the
1328  // vector of corresponding RangeTree nodes.
1329  using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
1330  std::map<int32_t, CandData> CandMap;
1331
1332  RangeTree Tree;
1333  for (const OffsetRange &R : Ranges)
1334    Tree.add(R);
1335  SmallVector<RangeTree::Node*,8> Nodes;
1336  Tree.order(Nodes);
1337
1338  auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes,
1339                     uint8_t Align, uint8_t Offset) {
1340    for (RangeTree::Node *N : Nodes) {
1341      if (N->Range.Align <= Align || N->Range.Offset < Offset)
1342        continue;
1343      if ((N->Range.Offset - Offset) % Align != 0)
1344        continue;
1345      Align = N->Range.Align;
1346      Offset = N->Range.Offset;
1347    }
1348    return std::make_pair(Align, Offset);
1349  };
1350
1351  // Construct the set of all potential definition points from the endpoints
1352  // of the ranges. If a given endpoint also belongs to a different range,
1353  // but with a higher alignment, also consider the more-highly-aligned
1354  // value of this endpoint.
1355  std::set<int32_t> CandSet;
1356  for (RangeTree::Node *N : Nodes) {
1357    const OffsetRange &R = N->Range;
1358    auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset);
1359    CandSet.insert(R.Min);
1360    if (R.Align < P0.first)
1361      CandSet.insert(adjustUp(R.Min, P0.first, P0.second));
1362    auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset);
1363    CandSet.insert(R.Max);
1364    if (R.Align < P1.first)
1365      CandSet.insert(adjustDown(R.Max, P1.first, P1.second));
1366  }
1367
1368  // Build the assignment map: candidate C -> { list of extender indexes }.
1369  // This has to be done iteratively:
1370  // - pick the candidate that covers the maximum number of extenders,
1371  // - add the candidate to the map,
1372  // - remove the extenders from the pool.
1373  while (true) {
1374    using CMap = std::map<int32_t,unsigned>;
1375    CMap Counts;
1376    for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
1377      auto &&V = Tree.nodesWith(*It);
1378      unsigned N = std::accumulate(V.begin(), V.end(), 0u,
1379                    [](unsigned Acc, const RangeTree::Node *N) {
1380                      return Acc + N->Count;
1381                    });
1382      if (N != 0)
1383        Counts.insert({*It, N});
1384      It = (N != 0) ? std::next(It) : CandSet.erase(It);
1385    }
1386    if (Counts.empty())
1387      break;
1388
1389    // Find the best candidate with respect to the number of extenders covered.
1390    auto BestIt = std::max_element(Counts.begin(), Counts.end(),
1391                    [](const CMap::value_type &A, const CMap::value_type &B) {
1392                      return A.second < B.second ||
1393                             (A.second == B.second && A < B);
1394                    });
1395    int32_t Best = BestIt->first;
1396    ExtValue BestV(ER, Best);
1397    for (RangeTree::Node *N : Tree.nodesWith(Best)) {
1398      for (unsigned I : RangeMap[N->Range])
1399        IMap[{BestV,Extenders[I].Expr}].insert(I);
1400      Tree.erase(N);
1401    }
1402  }
1403
1404  LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI));
1405
1406  // There is some ambiguity in what initializer should be used, if the
1407  // descriptor's subexpression is non-trivial: it can be the entire
1408  // subexpression (which is what has been done so far), or it can be
1409  // the extender's value itself, if all corresponding extenders have the
1410  // exact value of the initializer (i.e. require offset of 0).
1411
1412  // To reduce the number of initializers, merge such special cases.
1413  for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
1414    // Skip trivial initializers.
1415    if (P.first.second.trivial())
1416      continue;
1417    // If the corresponding trivial initializer does not exist, skip this
1418    // entry.
1419    const ExtValue &EV = P.first.first;
1420    AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
1421    if (F == IMap.end())
1422      continue;
1423
1424    // Finally, check if all extenders have the same value as the initializer.
1425    // Make sure that extenders that are a part of a stack address are not
1426    // merged with those that aren't. Stack addresses need an offset field
1427    // (to be used by frame index elimination), while non-stack expressions
1428    // can be replaced with forms (such as rr) that do not have such a field.
1429    // Example:
1430    //
1431    // Collected 3 extenders
1432    //  =2. imm:0  off:32968  bb#2: %7 = ## + __ << 0, def
1433    //   0. imm:0  off:267  bb#0: __ = ## + SS#1 << 0
1434    //   1. imm:0  off:267  bb#1: __ = ## + SS#1 << 0
1435    // Ranges
1436    //   0. [-756,267]a1+0
1437    //   1. [-756,267]a1+0
1438    //   2. [201,65735]a1+0
1439    // RangeMap
1440    //   [-756,267]a1+0 -> 0 1
1441    //   [201,65735]a1+0 -> 2
1442    // IMap (before fixup) = {
1443    //   [imm:0  off:267, ## + __ << 0] -> { 2 }
1444    //   [imm:0  off:267, ## + SS#1 << 0] -> { 0 1 }
1445    // }
1446    // IMap (after fixup) = {
1447    //   [imm:0  off:267, ## + __ << 0] -> { 2 0 1 }
1448    //   [imm:0  off:267, ## + SS#1 << 0] -> { }
1449    // }
1450    // Inserted def in bb#0 for initializer: [imm:0  off:267, ## + __ << 0]
1451    //   %12:intregs = A2_tfrsi 267
1452    //
1453    // The result was
1454    //   %12:intregs = A2_tfrsi 267
1455    //   S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4
1456    // Which became
1457    //   r0 = #267
1458    //   if (p0.new) memb(r0+r29<<#4) = r2
1459
1460    bool IsStack = any_of(F->second, [this](unsigned I) {
1461                      return Extenders[I].Expr.Rs.isSlot();
1462                   });
1463    auto SameValue = [&EV,this,IsStack](unsigned I) {
1464      const ExtDesc &ED = Extenders[I];
1465      return ED.Expr.Rs.isSlot() == IsStack &&
1466             ExtValue(ED).Offset == EV.Offset;
1467    };
1468    if (all_of(P.second, SameValue)) {
1469      F->second.insert(P.second.begin(), P.second.end());
1470      P.second.clear();
1471    }
1472  }
1473
1474  LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI));
1475}
1476
1477void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
1478      LocDefList &Defs) {
1479  if (Refs.empty())
1480    return;
1481
1482  // The placement calculation is somewhat simple right now: it finds a
1483  // single location for the def that dominates all refs. Since this may
1484  // place the def far from the uses, producing several locations for
1485  // defs that collectively dominate all refs could be better.
1486  // For now only do the single one.
1487  DenseSet<MachineBasicBlock*> Blocks;
1488  DenseSet<MachineInstr*> RefMIs;
1489  const ExtDesc &ED0 = Extenders[Refs[0]];
1490  MachineBasicBlock *DomB = ED0.UseMI->getParent();
1491  RefMIs.insert(ED0.UseMI);
1492  Blocks.insert(DomB);
1493  for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
1494    const ExtDesc &ED = Extenders[Refs[i]];
1495    MachineBasicBlock *MBB = ED.UseMI->getParent();
1496    RefMIs.insert(ED.UseMI);
1497    DomB = MDT->findNearestCommonDominator(DomB, MBB);
1498    Blocks.insert(MBB);
1499  }
1500
1501#ifndef NDEBUG
1502  // The block DomB should be dominated by the def of each register used
1503  // in the initializer.
1504  Register Rs = ExtI.second.Rs;  // Only one reg allowed now.
1505  const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr;
1506
1507  // This should be guaranteed given that the entire expression is used
1508  // at each instruction in Refs. Add an assertion just in case.
1509  assert(!DefI || MDT->dominates(DefI->getParent(), DomB));
1510#endif
1511
1512  MachineBasicBlock::iterator It;
1513  if (Blocks.count(DomB)) {
1514    // Try to find the latest possible location for the def.
1515    MachineBasicBlock::iterator End = DomB->end();
1516    for (It = DomB->begin(); It != End; ++It)
1517      if (RefMIs.count(&*It))
1518        break;
1519    assert(It != End && "Should have found a ref in DomB");
1520  } else {
1521    // DomB does not contain any refs.
1522    It = DomB->getFirstTerminator();
1523  }
1524  Loc DefLoc(DomB, It);
1525  Defs.emplace_back(DefLoc, Refs);
1526}
1527
1528HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
1529  llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
1530  MachineBasicBlock &MBB = *DefL.Block;
1531  MachineBasicBlock::iterator At = DefL.At;
1532  DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
1533  const ExtValue &EV = ExtI.first;
1534  MachineOperand ExtOp(EV);
1535
1536  const ExtExpr &Ex = ExtI.second;
1537  const MachineInstr *InitI = nullptr;
1538
1539  if (Ex.Rs.isSlot()) {
1540    assert(Ex.S == 0 && "Cannot have a shift of a stack slot");
1541    assert(!Ex.Neg && "Cannot subtract a stack slot");
1542    // DefR = PS_fi Rb,##EV
1543    InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
1544              .add(MachineOperand(Ex.Rs))
1545              .add(ExtOp);
1546  } else {
1547    assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register");
1548    if (Ex.trivial()) {
1549      // DefR = ##EV
1550      InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
1551                .add(ExtOp);
1552    } else if (Ex.S == 0) {
1553      if (Ex.Neg) {
1554        // DefR = sub(##EV,Rb)
1555        InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
1556                  .add(ExtOp)
1557                  .add(MachineOperand(Ex.Rs));
1558      } else {
1559        // DefR = add(Rb,##EV)
1560        InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
1561                  .add(MachineOperand(Ex.Rs))
1562                  .add(ExtOp);
1563      }
1564    } else {
1565      unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
1566                               : Hexagon::S4_addi_asl_ri;
1567      // DefR = add(##EV,asl(Rb,S))
1568      InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
1569                .add(ExtOp)
1570                .add(MachineOperand(Ex.Rs))
1571                .addImm(Ex.S);
1572    }
1573  }
1574
1575  assert(InitI);
1576  (void)InitI;
1577  LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()
1578                    << " for initializer: " << PrintInit(ExtI, *HRI) << "\n  "
1579                    << *InitI);
1580  return { DefR, 0 };
1581}
1582
1583// Replace the extender at index Idx with the register ExtR.
1584bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
1585  MachineInstr &MI = *ED.UseMI;
1586  MachineBasicBlock &MBB = *MI.getParent();
1587  MachineBasicBlock::iterator At = MI.getIterator();
1588  DebugLoc dl = MI.getDebugLoc();
1589  unsigned ExtOpc = MI.getOpcode();
1590
1591  // With a few exceptions, direct replacement amounts to creating an
1592  // instruction with a corresponding register opcode, with all operands
1593  // the same, except for the register used in place of the extender.
1594  unsigned RegOpc = getDirectRegReplacement(ExtOpc);
1595
1596  if (RegOpc == TargetOpcode::REG_SEQUENCE) {
1597    if (ExtOpc == Hexagon::A4_combineri)
1598      BuildMI(MBB, At, dl, HII->get(RegOpc))
1599        .add(MI.getOperand(0))
1600        .add(MI.getOperand(1))
1601        .addImm(Hexagon::isub_hi)
1602        .add(MachineOperand(ExtR))
1603        .addImm(Hexagon::isub_lo);
1604    else if (ExtOpc == Hexagon::A4_combineir)
1605      BuildMI(MBB, At, dl, HII->get(RegOpc))
1606        .add(MI.getOperand(0))
1607        .add(MachineOperand(ExtR))
1608        .addImm(Hexagon::isub_hi)
1609        .add(MI.getOperand(2))
1610        .addImm(Hexagon::isub_lo);
1611    else
1612      llvm_unreachable("Unexpected opcode became REG_SEQUENCE");
1613    MBB.erase(MI);
1614    return true;
1615  }
1616  if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
1617    unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
1618                                                   : Hexagon::C2_cmpltu;
1619    BuildMI(MBB, At, dl, HII->get(NewOpc))
1620      .add(MI.getOperand(0))
1621      .add(MachineOperand(ExtR))
1622      .add(MI.getOperand(1));
1623    MBB.erase(MI);
1624    return true;
1625  }
1626
1627  if (RegOpc != 0) {
1628    MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1629    unsigned RegN = ED.OpNum;
1630    // Copy all operands except the one that has the extender.
1631    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1632      if (i != RegN)
1633        MIB.add(MI.getOperand(i));
1634      else
1635        MIB.add(MachineOperand(ExtR));
1636    }
1637    MIB.cloneMemRefs(MI);
1638    MBB.erase(MI);
1639    return true;
1640  }
1641
1642  if (MI.mayLoadOrStore() && !isStoreImmediate(ExtOpc)) {
1643    // For memory instructions, there is an asymmetry in the addressing
1644    // modes. Addressing modes allowing extenders can be replaced with
1645    // addressing modes that use registers, but the order of operands
1646    // (or even their number) may be different.
1647    // Replacements:
1648    //   BaseImmOffset (io)  -> BaseRegOffset (rr)
1649    //   BaseLongOffset (ur) -> BaseRegOffset (rr)
1650    unsigned RegOpc, Shift;
1651    unsigned AM = HII->getAddrMode(MI);
1652    if (AM == HexagonII::BaseImmOffset) {
1653      RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
1654      Shift = 0;
1655    } else if (AM == HexagonII::BaseLongOffset) {
1656      // Loads:  Rd = L4_loadri_ur Rs, S, ##
1657      // Stores: S4_storeri_ur Rs, S, ##, Rt
1658      RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
1659      Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
1660    } else {
1661      llvm_unreachable("Unexpected addressing mode");
1662    }
1663#ifndef NDEBUG
1664    if (RegOpc == -1u) {
1665      dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n";
1666      llvm_unreachable("No corresponding rr instruction");
1667    }
1668#endif
1669
1670    unsigned BaseP, OffP;
1671    HII->getBaseAndOffsetPosition(MI, BaseP, OffP);
1672
1673    // Build an rr instruction: (RegOff + RegBase<<0)
1674    MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
1675    // First, add the def for loads.
1676    if (MI.mayLoad())
1677      MIB.add(getLoadResultOp(MI));
1678    // Handle possible predication.
1679    if (HII->isPredicated(MI))
1680      MIB.add(getPredicateOp(MI));
1681    // Build the address.
1682    MIB.add(MachineOperand(ExtR));      // RegOff
1683    MIB.add(MI.getOperand(BaseP));      // RegBase
1684    MIB.addImm(Shift);                  // << Shift
1685    // Add the stored value for stores.
1686    if (MI.mayStore())
1687      MIB.add(getStoredValueOp(MI));
1688    MIB.cloneMemRefs(MI);
1689    MBB.erase(MI);
1690    return true;
1691  }
1692
1693#ifndef NDEBUG
1694  dbgs() << '\n' << MI;
1695#endif
1696  llvm_unreachable("Unhandled exact replacement");
1697  return false;
1698}
1699
1700// Replace the extender ED with a form corresponding to the initializer ExtI.
1701bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
1702      Register ExtR, int32_t &Diff) {
1703  MachineInstr &MI = *ED.UseMI;
1704  MachineBasicBlock &MBB = *MI.getParent();
1705  MachineBasicBlock::iterator At = MI.getIterator();
1706  DebugLoc dl = MI.getDebugLoc();
1707  unsigned ExtOpc = MI.getOpcode();
1708
1709  if (ExtOpc == Hexagon::A2_tfrsi) {
1710    // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces
1711    // another range. One range is the one that's common to all tfrsi's uses,
1712    // this one is the range of immediates in A2_addi. When calculating ranges,
1713    // the addi's 16-bit argument was included, so now we need to make it such
1714    // that the produced value is in the range for the uses alone.
1715    // Most of the time, simply adding Diff will make the addi produce exact
1716    // result, but if Diff is outside of the 16-bit range, some adjustment
1717    // will be needed.
1718    unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1719    assert(IdxOpc == Hexagon::A2_addi);
1720
1721    // Clamp Diff to the 16 bit range.
1722    int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768);
1723    if (Diff > 32767) {
1724      // Split Diff into two values: one that is close to min/max int16,
1725      // and the other being the rest, and such that both have the same
1726      // "alignment" as Diff.
1727      uint32_t UD = Diff;
1728      OffsetRange R = getOffsetRange(MI.getOperand(0));
1729      uint32_t A = std::min<uint32_t>(R.Align, 1u << countTrailingZeros(UD));
1730      D &= ~(A-1);
1731    }
1732    BuildMI(MBB, At, dl, HII->get(IdxOpc))
1733      .add(MI.getOperand(0))
1734      .add(MachineOperand(ExtR))
1735      .addImm(D);
1736    Diff -= D;
1737#ifndef NDEBUG
1738    // Make sure the output is within allowable range for uses.
1739    // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV,
1740    // not DefV - Ext, as the getOffsetRange would calculate.
1741    OffsetRange Uses = getOffsetRange(MI.getOperand(0));
1742    if (!Uses.contains(-Diff))
1743      dbgs() << "Diff: " << -Diff << " out of range " << Uses
1744             << " for " << MI;
1745    assert(Uses.contains(-Diff));
1746#endif
1747    MBB.erase(MI);
1748    return true;
1749  }
1750
1751  const ExtValue &EV = ExtI.first; (void)EV;
1752  const ExtExpr &Ex = ExtI.second; (void)Ex;
1753
1754  if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
1755    // If addi/subri are replaced with the exactly matching initializer,
1756    // they amount to COPY.
1757    // Check that the initializer is an exact match (for simplicity).
1758#ifndef NDEBUG
1759    bool IsAddi = ExtOpc == Hexagon::A2_addi;
1760    const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
1761    const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
1762    assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&
1763           "Initializer mismatch");
1764#endif
1765    BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
1766      .add(MI.getOperand(0))
1767      .add(MachineOperand(ExtR));
1768    Diff = 0;
1769    MBB.erase(MI);
1770    return true;
1771  }
1772  if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
1773      ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
1774    // M2_accii:    add(Rt,add(Rs,V)) (tied)
1775    // M2_naccii:   sub(Rt,add(Rs,V))
1776    // S4_addaddi:  add(Rt,add(Rs,V))
1777    // S4_subaddi:  add(Rt,sub(V,Rs))
1778    // Check that Rs and V match the initializer expression. The Rs+V is the
1779    // combination that is considered "subexpression" for V, although Rx+V
1780    // would also be valid.
1781#ifndef NDEBUG
1782    bool IsSub = ExtOpc == Hexagon::S4_subaddi;
1783    Register Rs = MI.getOperand(IsSub ? 3 : 2);
1784    ExtValue V = MI.getOperand(IsSub ? 2 : 3);
1785    assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch");
1786#endif
1787    unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
1788                                                   : Hexagon::A2_add;
1789    BuildMI(MBB, At, dl, HII->get(NewOpc))
1790      .add(MI.getOperand(0))
1791      .add(MI.getOperand(1))
1792      .add(MachineOperand(ExtR));
1793    MBB.erase(MI);
1794    return true;
1795  }
1796
1797  if (MI.mayLoadOrStore()) {
1798    unsigned IdxOpc = getRegOffOpcode(ExtOpc);
1799    assert(IdxOpc && "Expecting indexed opcode");
1800    MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
1801    // Construct the new indexed instruction.
1802    // First, add the def for loads.
1803    if (MI.mayLoad())
1804      MIB.add(getLoadResultOp(MI));
1805    // Handle possible predication.
1806    if (HII->isPredicated(MI))
1807      MIB.add(getPredicateOp(MI));
1808    // Build the address.
1809    MIB.add(MachineOperand(ExtR));
1810    MIB.addImm(Diff);
1811    // Add the stored value for stores.
1812    if (MI.mayStore())
1813      MIB.add(getStoredValueOp(MI));
1814    MIB.cloneMemRefs(MI);
1815    MBB.erase(MI);
1816    return true;
1817  }
1818
1819#ifndef NDEBUG
1820  dbgs() << '\n' << PrintInit(ExtI, *HRI) << "  " << MI;
1821#endif
1822  llvm_unreachable("Unhandled expr replacement");
1823  return false;
1824}
1825
1826bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) {
1827  if (ReplaceLimit.getNumOccurrences()) {
1828    if (ReplaceLimit <= ReplaceCounter)
1829      return false;
1830    ++ReplaceCounter;
1831  }
1832  const ExtDesc &ED = Extenders[Idx];
1833  assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def");
1834  const ExtValue &DefV = ExtI.first;
1835  assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch");
1836  const ExtExpr &DefEx = ExtI.second;
1837
1838  ExtValue EV(ED);
1839  int32_t Diff = EV.Offset - DefV.Offset;
1840  const MachineInstr &MI = *ED.UseMI;
1841  LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"
1842                    << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n');
1843
1844  // These two addressing modes must be converted into indexed forms
1845  // regardless of what the initializer looks like.
1846  bool IsAbs = false, IsAbsSet = false;
1847  if (MI.mayLoadOrStore()) {
1848    unsigned AM = HII->getAddrMode(MI);
1849    IsAbs = AM == HexagonII::Absolute;
1850    IsAbsSet = AM == HexagonII::AbsoluteSet;
1851  }
1852
1853  // If it's a def, remember all operands that need to be updated.
1854  // If ED is a def, and Diff is not 0, then all uses of the register Rd
1855  // defined by ED must be in the form (Rd, imm), i.e. the immediate offset
1856  // must follow the Rd in the operand list.
1857  std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
1858  if (ED.IsDef && Diff != 0) {
1859    for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
1860      MachineInstr &UI = *Op.getParent();
1861      RegOps.push_back({&UI, getOperandIndex(UI, Op)});
1862    }
1863  }
1864
1865  // Replace the instruction.
1866  bool Replaced = false;
1867  if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
1868    Replaced = replaceInstrExact(ED, ExtR);
1869  else
1870    Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);
1871
1872  if (Diff != 0 && Replaced && ED.IsDef) {
1873    // Update offsets of the def's uses.
1874    for (std::pair<MachineInstr*,unsigned> P : RegOps) {
1875      unsigned J = P.second;
1876      assert(P.first->getNumOperands() > J+1 &&
1877             P.first->getOperand(J+1).isImm());
1878      MachineOperand &ImmOp = P.first->getOperand(J+1);
1879      ImmOp.setImm(ImmOp.getImm() + Diff);
1880    }
1881    // If it was an absolute-set instruction, the "set" part has been removed.
1882    // ExtR will now be the register with the extended value, and since all
1883    // users of Rd have been updated, all that needs to be done is to replace
1884    // Rd with ExtR.
1885    if (IsAbsSet) {
1886      assert(ED.Rd.Sub == 0 && ExtR.Sub == 0);
1887      MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
1888    }
1889  }
1890
1891  return Replaced;
1892}
1893
1894bool HCE::replaceExtenders(const AssignmentMap &IMap) {
1895  LocDefList Defs;
1896  bool Changed = false;
1897
1898  for (const std::pair<const ExtenderInit, IndexList> &P : IMap) {
1899    const IndexList &Idxs = P.second;
1900    if (Idxs.size() < CountThreshold)
1901      continue;
1902
1903    Defs.clear();
1904    calculatePlacement(P.first, Idxs, Defs);
1905    for (const std::pair<Loc,IndexList> &Q : Defs) {
1906      Register DefR = insertInitializer(Q.first, P.first);
1907      NewRegs.push_back(DefR.Reg);
1908      for (unsigned I : Q.second)
1909        Changed |= replaceInstr(I, DefR, P.first);
1910    }
1911  }
1912  return Changed;
1913}
1914
1915unsigned HCE::getOperandIndex(const MachineInstr &MI,
1916      const MachineOperand &Op) const {
1917  for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
1918    if (&MI.getOperand(i) == &Op)
1919      return i;
1920  llvm_unreachable("Not an operand of MI");
1921}
1922
1923const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
1924  assert(HII->isPredicated(MI));
1925  for (const MachineOperand &Op : MI.operands()) {
1926    if (!Op.isReg() || !Op.isUse() ||
1927        MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
1928      continue;
1929    assert(Op.getSubReg() == 0 && "Predicate register with a subregister");
1930    return Op;
1931  }
1932  llvm_unreachable("Predicate operand not found");
1933}
1934
1935const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
1936  assert(MI.mayLoad());
1937  return MI.getOperand(0);
1938}
1939
1940const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const {
1941  assert(MI.mayStore());
1942  return MI.getOperand(MI.getNumExplicitOperands()-1);
1943}
1944
1945bool HCE::runOnMachineFunction(MachineFunction &MF) {
1946  if (skipFunction(MF.getFunction()))
1947    return false;
1948  if (MF.getFunction().hasPersonalityFn()) {
1949    LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName()
1950                      << " due to exception handling\n");
1951    return false;
1952  }
1953  LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr));
1954
1955  HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
1956  HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
1957  MDT = &getAnalysis<MachineDominatorTree>();
1958  MRI = &MF.getRegInfo();
1959  AssignmentMap IMap;
1960
1961  collect(MF);
1962  llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) {
1963    ExtValue VA(A), VB(B);
1964    if (VA != VB)
1965      return VA < VB;
1966    const MachineInstr *MA = A.UseMI;
1967    const MachineInstr *MB = B.UseMI;
1968    if (MA == MB) {
1969      // If it's the same instruction, compare operand numbers.
1970      return A.OpNum < B.OpNum;
1971    }
1972
1973    const MachineBasicBlock *BA = MA->getParent();
1974    const MachineBasicBlock *BB = MB->getParent();
1975    assert(BA->getNumber() != -1 && BB->getNumber() != -1);
1976    if (BA != BB)
1977      return BA->getNumber() < BB->getNumber();
1978    return MDT->dominates(MA, MB);
1979  });
1980
1981  bool Changed = false;
1982  LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n");
1983  for (unsigned I = 0, E = Extenders.size(); I != E; ) {
1984    unsigned B = I;
1985    const ExtRoot &T = Extenders[B].getOp();
1986    while (I != E && ExtRoot(Extenders[I].getOp()) == T)
1987      ++I;
1988
1989    IMap.clear();
1990    assignInits(T, B, I, IMap);
1991    Changed |= replaceExtenders(IMap);
1992  }
1993
1994  LLVM_DEBUG({
1995    if (Changed)
1996      MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);
1997    else
1998      dbgs() << "No changes\n";
1999  });
2000  return Changed;
2001}
2002
2003FunctionPass *llvm::createHexagonConstExtenders() {
2004  return new HexagonConstExtenders();
2005}
2006