ARMAddressingModes.h revision 360784
1//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the ARM addressing mode implementation stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
14#define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15
16#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/bit.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// ARM_AM - ARM Addressing Mode Stuff
26namespace ARM_AM {
27  enum ShiftOpc {
28    no_shift = 0,
29    asr,
30    lsl,
31    lsr,
32    ror,
33    rrx,
34    uxtw
35  };
36
37  enum AddrOpc {
38    sub = 0,
39    add
40  };
41
42  inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
43
44  inline const char *getShiftOpcStr(ShiftOpc Op) {
45    switch (Op) {
46    default: llvm_unreachable("Unknown shift opc!");
47    case ARM_AM::asr: return "asr";
48    case ARM_AM::lsl: return "lsl";
49    case ARM_AM::lsr: return "lsr";
50    case ARM_AM::ror: return "ror";
51    case ARM_AM::rrx: return "rrx";
52    case ARM_AM::uxtw: return "uxtw";
53    }
54  }
55
56  inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
57    switch (Op) {
58    default: llvm_unreachable("Unknown shift opc!");
59    case ARM_AM::asr: return 2;
60    case ARM_AM::lsl: return 0;
61    case ARM_AM::lsr: return 1;
62    case ARM_AM::ror: return 3;
63    }
64  }
65
66  enum AMSubMode {
67    bad_am_submode = 0,
68    ia,
69    ib,
70    da,
71    db
72  };
73
74  inline const char *getAMSubModeStr(AMSubMode Mode) {
75    switch (Mode) {
76    default: llvm_unreachable("Unknown addressing sub-mode!");
77    case ARM_AM::ia: return "ia";
78    case ARM_AM::ib: return "ib";
79    case ARM_AM::da: return "da";
80    case ARM_AM::db: return "db";
81    }
82  }
83
84  /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
85  ///
86  inline unsigned rotr32(unsigned Val, unsigned Amt) {
87    assert(Amt < 32 && "Invalid rotate amount");
88    return (Val >> Amt) | (Val << ((32-Amt)&31));
89  }
90
91  /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
92  ///
93  inline unsigned rotl32(unsigned Val, unsigned Amt) {
94    assert(Amt < 32 && "Invalid rotate amount");
95    return (Val << Amt) | (Val >> ((32-Amt)&31));
96  }
97
98  //===--------------------------------------------------------------------===//
99  // Addressing Mode #1: shift_operand with registers
100  //===--------------------------------------------------------------------===//
101  //
102  // This 'addressing mode' is used for arithmetic instructions.  It can
103  // represent things like:
104  //   reg
105  //   reg [asr|lsl|lsr|ror|rrx] reg
106  //   reg [asr|lsl|lsr|ror|rrx] imm
107  //
108  // This is stored three operands [rega, regb, opc].  The first is the base
109  // reg, the second is the shift amount (or reg0 if not present or imm).  The
110  // third operand encodes the shift opcode and the imm if a reg isn't present.
111  //
112  inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
113    return ShOp | (Imm << 3);
114  }
115  inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
116  inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
117
118  /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
119  /// the 8-bit imm value.
120  inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
121  /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
122  /// the rotate amount.
123  inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
124
125  /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
126  /// computing the rotate amount to use.  If this immediate value cannot be
127  /// handled with a single shifter-op, determine a good rotate amount that will
128  /// take a maximal chunk of bits out of the immediate.
129  inline unsigned getSOImmValRotate(unsigned Imm) {
130    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
131    // of zero.
132    if ((Imm & ~255U) == 0) return 0;
133
134    // Use CTZ to compute the rotate amount.
135    unsigned TZ = countTrailingZeros(Imm);
136
137    // Rotate amount must be even.  Something like 0x200 must be rotated 8 bits,
138    // not 9.
139    unsigned RotAmt = TZ & ~1;
140
141    // If we can handle this spread, return it.
142    if ((rotr32(Imm, RotAmt) & ~255U) == 0)
143      return (32-RotAmt)&31;  // HW rotates right, not left.
144
145    // For values like 0xF000000F, we should ignore the low 6 bits, then
146    // retry the hunt.
147    if (Imm & 63U) {
148      unsigned TZ2 = countTrailingZeros(Imm & ~63U);
149      unsigned RotAmt2 = TZ2 & ~1;
150      if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
151        return (32-RotAmt2)&31;  // HW rotates right, not left.
152    }
153
154    // Otherwise, we have no way to cover this span of bits with a single
155    // shifter_op immediate.  Return a chunk of bits that will be useful to
156    // handle.
157    return (32-RotAmt)&31;  // HW rotates right, not left.
158  }
159
160  /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
161  /// into an shifter_operand immediate operand, return the 12-bit encoding for
162  /// it.  If not, return -1.
163  inline int getSOImmVal(unsigned Arg) {
164    // 8-bit (or less) immediates are trivially shifter_operands with a rotate
165    // of zero.
166    if ((Arg & ~255U) == 0) return Arg;
167
168    unsigned RotAmt = getSOImmValRotate(Arg);
169
170    // If this cannot be handled with a single shifter_op, bail out.
171    if (rotr32(~255U, RotAmt) & Arg)
172      return -1;
173
174    // Encode this correctly.
175    return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
176  }
177
178  /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
179  /// or'ing together two SOImmVal's.
180  inline bool isSOImmTwoPartVal(unsigned V) {
181    // If this can be handled with a single shifter_op, bail out.
182    V = rotr32(~255U, getSOImmValRotate(V)) & V;
183    if (V == 0)
184      return false;
185
186    // If this can be handled with two shifter_op's, accept.
187    V = rotr32(~255U, getSOImmValRotate(V)) & V;
188    return V == 0;
189  }
190
191  /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
192  /// return the first chunk of it.
193  inline unsigned getSOImmTwoPartFirst(unsigned V) {
194    return rotr32(255U, getSOImmValRotate(V)) & V;
195  }
196
197  /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
198  /// return the second chunk of it.
199  inline unsigned getSOImmTwoPartSecond(unsigned V) {
200    // Mask out the first hunk.
201    V = rotr32(~255U, getSOImmValRotate(V)) & V;
202
203    // Take what's left.
204    assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
205    return V;
206  }
207
208  /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
209  /// by a left shift. Returns the shift amount to use.
210  inline unsigned getThumbImmValShift(unsigned Imm) {
211    // 8-bit (or less) immediates are trivially immediate operand with a shift
212    // of zero.
213    if ((Imm & ~255U) == 0) return 0;
214
215    // Use CTZ to compute the shift amount.
216    return countTrailingZeros(Imm);
217  }
218
219  /// isThumbImmShiftedVal - Return true if the specified value can be obtained
220  /// by left shifting a 8-bit immediate.
221  inline bool isThumbImmShiftedVal(unsigned V) {
222    // If this can be handled with
223    V = (~255U << getThumbImmValShift(V)) & V;
224    return V == 0;
225  }
226
227  /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
228  /// by a left shift. Returns the shift amount to use.
229  inline unsigned getThumbImm16ValShift(unsigned Imm) {
230    // 16-bit (or less) immediates are trivially immediate operand with a shift
231    // of zero.
232    if ((Imm & ~65535U) == 0) return 0;
233
234    // Use CTZ to compute the shift amount.
235    return countTrailingZeros(Imm);
236  }
237
238  /// isThumbImm16ShiftedVal - Return true if the specified value can be
239  /// obtained by left shifting a 16-bit immediate.
240  inline bool isThumbImm16ShiftedVal(unsigned V) {
241    // If this can be handled with
242    V = (~65535U << getThumbImm16ValShift(V)) & V;
243    return V == 0;
244  }
245
246  /// getThumbImmNonShiftedVal - If V is a value that satisfies
247  /// isThumbImmShiftedVal, return the non-shiftd value.
248  inline unsigned getThumbImmNonShiftedVal(unsigned V) {
249    return V >> getThumbImmValShift(V);
250  }
251
252
253  /// getT2SOImmValSplat - Return the 12-bit encoded representation
254  /// if the specified value can be obtained by splatting the low 8 bits
255  /// into every other byte or every byte of a 32-bit value. i.e.,
256  ///     00000000 00000000 00000000 abcdefgh    control = 0
257  ///     00000000 abcdefgh 00000000 abcdefgh    control = 1
258  ///     abcdefgh 00000000 abcdefgh 00000000    control = 2
259  ///     abcdefgh abcdefgh abcdefgh abcdefgh    control = 3
260  /// Return -1 if none of the above apply.
261  /// See ARM Reference Manual A6.3.2.
262  inline int getT2SOImmValSplatVal(unsigned V) {
263    unsigned u, Vs, Imm;
264    // control = 0
265    if ((V & 0xffffff00) == 0)
266      return V;
267
268    // If the value is zeroes in the first byte, just shift those off
269    Vs = ((V & 0xff) == 0) ? V >> 8 : V;
270    // Any passing value only has 8 bits of payload, splatted across the word
271    Imm = Vs & 0xff;
272    // Likewise, any passing values have the payload splatted into the 3rd byte
273    u = Imm | (Imm << 16);
274
275    // control = 1 or 2
276    if (Vs == u)
277      return (((Vs == V) ? 1 : 2) << 8) | Imm;
278
279    // control = 3
280    if (Vs == (u | (u << 8)))
281      return (3 << 8) | Imm;
282
283    return -1;
284  }
285
286  /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
287  /// specified value is a rotated 8-bit value. Return -1 if no rotation
288  /// encoding is possible.
289  /// See ARM Reference Manual A6.3.2.
290  inline int getT2SOImmValRotateVal(unsigned V) {
291    unsigned RotAmt = countLeadingZeros(V);
292    if (RotAmt >= 24)
293      return -1;
294
295    // If 'Arg' can be handled with a single shifter_op return the value.
296    if ((rotr32(0xff000000U, RotAmt) & V) == V)
297      return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
298
299    return -1;
300  }
301
302  /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
303  /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
304  /// encoding for it.  If not, return -1.
305  /// See ARM Reference Manual A6.3.2.
306  inline int getT2SOImmVal(unsigned Arg) {
307    // If 'Arg' is an 8-bit splat, then get the encoded value.
308    int Splat = getT2SOImmValSplatVal(Arg);
309    if (Splat != -1)
310      return Splat;
311
312    // If 'Arg' can be handled with a single shifter_op return the value.
313    int Rot = getT2SOImmValRotateVal(Arg);
314    if (Rot != -1)
315      return Rot;
316
317    return -1;
318  }
319
320  inline unsigned getT2SOImmValRotate(unsigned V) {
321    if ((V & ~255U) == 0) return 0;
322    // Use CTZ to compute the rotate amount.
323    unsigned RotAmt = countTrailingZeros(V);
324    return (32 - RotAmt) & 31;
325  }
326
327  inline bool isT2SOImmTwoPartVal(unsigned Imm) {
328    unsigned V = Imm;
329    // Passing values can be any combination of splat values and shifter
330    // values. If this can be handled with a single shifter or splat, bail
331    // out. Those should be handled directly, not with a two-part val.
332    if (getT2SOImmValSplatVal(V) != -1)
333      return false;
334    V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
335    if (V == 0)
336      return false;
337
338    // If this can be handled as an immediate, accept.
339    if (getT2SOImmVal(V) != -1) return true;
340
341    // Likewise, try masking out a splat value first.
342    V = Imm;
343    if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
344      V &= ~0xff00ff00U;
345    else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
346      V &= ~0x00ff00ffU;
347    // If what's left can be handled as an immediate, accept.
348    if (getT2SOImmVal(V) != -1) return true;
349
350    // Otherwise, do not accept.
351    return false;
352  }
353
354  inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
355    assert (isT2SOImmTwoPartVal(Imm) &&
356            "Immedate cannot be encoded as two part immediate!");
357    // Try a shifter operand as one part
358    unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
359    // If the rest is encodable as an immediate, then return it.
360    if (getT2SOImmVal(V) != -1) return V;
361
362    // Try masking out a splat value first.
363    if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
364      return Imm & 0xff00ff00U;
365
366    // The other splat is all that's left as an option.
367    assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
368    return Imm & 0x00ff00ffU;
369  }
370
371  inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
372    // Mask out the first hunk
373    Imm ^= getT2SOImmTwoPartFirst(Imm);
374    // Return what's left
375    assert (getT2SOImmVal(Imm) != -1 &&
376            "Unable to encode second part of T2 two part SO immediate");
377    return Imm;
378  }
379
380
381  //===--------------------------------------------------------------------===//
382  // Addressing Mode #2
383  //===--------------------------------------------------------------------===//
384  //
385  // This is used for most simple load/store instructions.
386  //
387  // addrmode2 := reg +/- reg shop imm
388  // addrmode2 := reg +/- imm12
389  //
390  // The first operand is always a Reg.  The second operand is a reg if in
391  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
392  // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
393  // fourth operand 16-17 encodes the index mode.
394  //
395  // If this addressing mode is a frame index (before prolog/epilog insertion
396  // and code rewriting), this operand will have the form:  FI#, reg0, <offs>
397  // with no shift amount for the frame offset.
398  //
399  inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
400                            unsigned IdxMode = 0) {
401    assert(Imm12 < (1 << 12) && "Imm too large!");
402    bool isSub = Opc == sub;
403    return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
404  }
405  inline unsigned getAM2Offset(unsigned AM2Opc) {
406    return AM2Opc & ((1 << 12)-1);
407  }
408  inline AddrOpc getAM2Op(unsigned AM2Opc) {
409    return ((AM2Opc >> 12) & 1) ? sub : add;
410  }
411  inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
412    return (ShiftOpc)((AM2Opc >> 13) & 7);
413  }
414  inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
415
416  //===--------------------------------------------------------------------===//
417  // Addressing Mode #3
418  //===--------------------------------------------------------------------===//
419  //
420  // This is used for sign-extending loads, and load/store-pair instructions.
421  //
422  // addrmode3 := reg +/- reg
423  // addrmode3 := reg +/- imm8
424  //
425  // The first operand is always a Reg.  The second operand is a reg if in
426  // reg/reg form, otherwise it's reg#0.  The third field encodes the operation
427  // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
428  // index mode.
429
430  /// getAM3Opc - This function encodes the addrmode3 opc field.
431  inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
432                            unsigned IdxMode = 0) {
433    bool isSub = Opc == sub;
434    return ((int)isSub << 8) | Offset | (IdxMode << 9);
435  }
436  inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
437  inline AddrOpc getAM3Op(unsigned AM3Opc) {
438    return ((AM3Opc >> 8) & 1) ? sub : add;
439  }
440  inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
441
442  //===--------------------------------------------------------------------===//
443  // Addressing Mode #4
444  //===--------------------------------------------------------------------===//
445  //
446  // This is used for load / store multiple instructions.
447  //
448  // addrmode4 := reg, <mode>
449  //
450  // The four modes are:
451  //    IA - Increment after
452  //    IB - Increment before
453  //    DA - Decrement after
454  //    DB - Decrement before
455  // For VFP instructions, only the IA and DB modes are valid.
456
457  inline AMSubMode getAM4SubMode(unsigned Mode) {
458    return (AMSubMode)(Mode & 0x7);
459  }
460
461  inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
462
463  //===--------------------------------------------------------------------===//
464  // Addressing Mode #5
465  //===--------------------------------------------------------------------===//
466  //
467  // This is used for coprocessor instructions, such as FP load/stores.
468  //
469  // addrmode5 := reg +/- imm8*4
470  //
471  // The first operand is always a Reg.  The second operand encodes the
472  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
473
474  /// getAM5Opc - This function encodes the addrmode5 opc field.
475  inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
476    bool isSub = Opc == sub;
477    return ((int)isSub << 8) | Offset;
478  }
479  inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
480  inline AddrOpc getAM5Op(unsigned AM5Opc) {
481    return ((AM5Opc >> 8) & 1) ? sub : add;
482  }
483
484  //===--------------------------------------------------------------------===//
485  // Addressing Mode #5 FP16
486  //===--------------------------------------------------------------------===//
487  //
488  // This is used for coprocessor instructions, such as 16-bit FP load/stores.
489  //
490  // addrmode5fp16 := reg +/- imm8*2
491  //
492  // The first operand is always a Reg.  The second operand encodes the
493  // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
494
495  /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
496  inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
497    bool isSub = Opc == sub;
498    return ((int)isSub << 8) | Offset;
499  }
500  inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
501    return AM5Opc & 0xFF;
502  }
503  inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
504    return ((AM5Opc >> 8) & 1) ? sub : add;
505  }
506
507  //===--------------------------------------------------------------------===//
508  // Addressing Mode #6
509  //===--------------------------------------------------------------------===//
510  //
511  // This is used for NEON load / store instructions.
512  //
513  // addrmode6 := reg with optional alignment
514  //
515  // This is stored in two operands [regaddr, align].  The first is the
516  // address register.  The second operand is the value of the alignment
517  // specifier in bytes or zero if no explicit alignment.
518  // Valid alignments depend on the specific instruction.
519
520  //===--------------------------------------------------------------------===//
521  // NEON/MVE Modified Immediates
522  //===--------------------------------------------------------------------===//
523  //
524  // Several NEON and MVE instructions (e.g., VMOV) take a "modified immediate"
525  // vector operand, where a small immediate encoded in the instruction
526  // specifies a full NEON vector value.  These modified immediates are
527  // represented here as encoded integers.  The low 8 bits hold the immediate
528  // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
529  // the "Cmode" field of the instruction.  The interfaces below treat the
530  // Op and Cmode values as a single 5-bit value.
531
532  inline unsigned createVMOVModImm(unsigned OpCmode, unsigned Val) {
533    return (OpCmode << 8) | Val;
534  }
535  inline unsigned getVMOVModImmOpCmode(unsigned ModImm) {
536    return (ModImm >> 8) & 0x1f;
537  }
538  inline unsigned getVMOVModImmVal(unsigned ModImm) { return ModImm & 0xff; }
539
540  /// decodeVMOVModImm - Decode a NEON/MVE modified immediate value into the
541  /// element value and the element size in bits.  (If the element size is
542  /// smaller than the vector, it is splatted into all the elements.)
543  inline uint64_t decodeVMOVModImm(unsigned ModImm, unsigned &EltBits) {
544    unsigned OpCmode = getVMOVModImmOpCmode(ModImm);
545    unsigned Imm8 = getVMOVModImmVal(ModImm);
546    uint64_t Val = 0;
547
548    if (OpCmode == 0xe) {
549      // 8-bit vector elements
550      Val = Imm8;
551      EltBits = 8;
552    } else if ((OpCmode & 0xc) == 0x8) {
553      // 16-bit vector elements
554      unsigned ByteNum = (OpCmode & 0x6) >> 1;
555      Val = Imm8 << (8 * ByteNum);
556      EltBits = 16;
557    } else if ((OpCmode & 0x8) == 0) {
558      // 32-bit vector elements, zero with one byte set
559      unsigned ByteNum = (OpCmode & 0x6) >> 1;
560      Val = Imm8 << (8 * ByteNum);
561      EltBits = 32;
562    } else if ((OpCmode & 0xe) == 0xc) {
563      // 32-bit vector elements, one byte with low bits set
564      unsigned ByteNum = 1 + (OpCmode & 0x1);
565      Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
566      EltBits = 32;
567    } else if (OpCmode == 0x1e) {
568      // 64-bit vector elements
569      for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
570        if ((ModImm >> ByteNum) & 1)
571          Val |= (uint64_t)0xff << (8 * ByteNum);
572      }
573      EltBits = 64;
574    } else {
575      llvm_unreachable("Unsupported VMOV immediate");
576    }
577    return Val;
578  }
579
580  // Generic validation for single-byte immediate (0X00, 00X0, etc).
581  inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
582    assert(Size >= 1 && Size <= 4 && "Invalid size");
583    unsigned count = 0;
584    for (unsigned i = 0; i < Size; ++i) {
585      if (Value & 0xff) count++;
586      Value >>= 8;
587    }
588    return count == 1;
589  }
590
591  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
592  inline bool isNEONi16splat(unsigned Value) {
593    if (Value > 0xffff)
594      return false;
595    // i16 value with set bits only in one byte X0 or 0X.
596    return Value == 0 || isNEONBytesplat(Value, 2);
597  }
598
599  // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
600  inline unsigned encodeNEONi16splat(unsigned Value) {
601    assert(isNEONi16splat(Value) && "Invalid NEON splat value");
602    if (Value >= 0x100)
603      Value = (Value >> 8) | 0xa00;
604    else
605      Value |= 0x800;
606    return Value;
607  }
608
609  /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
610  inline bool isNEONi32splat(unsigned Value) {
611    // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
612    return Value == 0 || isNEONBytesplat(Value, 4);
613  }
614
615  /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
616  inline unsigned encodeNEONi32splat(unsigned Value) {
617    assert(isNEONi32splat(Value) && "Invalid NEON splat value");
618    if (Value >= 0x100 && Value <= 0xff00)
619      Value = (Value >> 8) | 0x200;
620    else if (Value > 0xffff && Value <= 0xff0000)
621      Value = (Value >> 16) | 0x400;
622    else if (Value > 0xffffff)
623      Value = (Value >> 24) | 0x600;
624    return Value;
625  }
626
627  //===--------------------------------------------------------------------===//
628  // Floating-point Immediates
629  //
630  inline float getFPImmFloat(unsigned Imm) {
631    // We expect an 8-bit binary encoding of a floating-point number here.
632
633    uint8_t Sign = (Imm >> 7) & 0x1;
634    uint8_t Exp = (Imm >> 4) & 0x7;
635    uint8_t Mantissa = Imm & 0xf;
636
637    //   8-bit FP    IEEE Float Encoding
638    //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
639    //
640    // where B = NOT(b);
641    uint32_t I = 0;
642    I |= Sign << 31;
643    I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
644    I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
645    I |= (Exp & 0x3) << 23;
646    I |= Mantissa << 19;
647    return bit_cast<float>(I);
648  }
649
650  /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
651  /// floating-point value. If the value cannot be represented as an 8-bit
652  /// floating-point value, then return -1.
653  inline int getFP16Imm(const APInt &Imm) {
654    uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
655    int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
656    int64_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
657
658    // We can handle 4 bits of mantissa.
659    // mantissa = (16+UInt(e:f:g:h))/16.
660    if (Mantissa & 0x3f)
661      return -1;
662    Mantissa >>= 6;
663
664    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
665    if (Exp < -3 || Exp > 4)
666      return -1;
667    Exp = ((Exp+3) & 0x7) ^ 4;
668
669    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
670  }
671
672  inline int getFP16Imm(const APFloat &FPImm) {
673    return getFP16Imm(FPImm.bitcastToAPInt());
674  }
675
676  /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
677  /// floating-point value. If the value cannot be represented as an 8-bit
678  /// floating-point value, then return -1.
679  inline int getFP32Imm(const APInt &Imm) {
680    uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
681    int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
682    int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
683
684    // We can handle 4 bits of mantissa.
685    // mantissa = (16+UInt(e:f:g:h))/16.
686    if (Mantissa & 0x7ffff)
687      return -1;
688    Mantissa >>= 19;
689    if ((Mantissa & 0xf) != Mantissa)
690      return -1;
691
692    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
693    if (Exp < -3 || Exp > 4)
694      return -1;
695    Exp = ((Exp+3) & 0x7) ^ 4;
696
697    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
698  }
699
700  inline int getFP32Imm(const APFloat &FPImm) {
701    return getFP32Imm(FPImm.bitcastToAPInt());
702  }
703
704  /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
705  /// floating-point value. If the value cannot be represented as an 8-bit
706  /// floating-point value, then return -1.
707  inline int getFP64Imm(const APInt &Imm) {
708    uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
709    int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
710    uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
711
712    // We can handle 4 bits of mantissa.
713    // mantissa = (16+UInt(e:f:g:h))/16.
714    if (Mantissa & 0xffffffffffffULL)
715      return -1;
716    Mantissa >>= 48;
717    if ((Mantissa & 0xf) != Mantissa)
718      return -1;
719
720    // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
721    if (Exp < -3 || Exp > 4)
722      return -1;
723    Exp = ((Exp+3) & 0x7) ^ 4;
724
725    return ((int)Sign << 7) | (Exp << 4) | Mantissa;
726  }
727
728  inline int getFP64Imm(const APFloat &FPImm) {
729    return getFP64Imm(FPImm.bitcastToAPInt());
730  }
731
732} // end namespace ARM_AM
733} // end namespace llvm
734
735#endif
736
737