ARMParallelDSP.cpp revision 360784
1//===- ARMParallelDSP.cpp - Parallel DSP Pass -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
11/// purpose of this pass is do some IR pattern matching to create ACLE
12/// DSP intrinsics, which map on these 32-bit SIMD operations.
13/// This pass runs only when unaligned accesses is supported/enabled.
14//
15//===----------------------------------------------------------------------===//
16
17#include "ARM.h"
18#include "ARMSubtarget.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/Analysis/LoopAccessAnalysis.h"
23#include "llvm/Analysis/OrderedBasicBlock.h"
24#include "llvm/CodeGen/TargetPassConfig.h"
25#include "llvm/IR/Instructions.h"
26#include "llvm/IR/IntrinsicsARM.h"
27#include "llvm/IR/NoFolder.h"
28#include "llvm/IR/PatternMatch.h"
29#include "llvm/Pass.h"
30#include "llvm/PassRegistry.h"
31#include "llvm/PassSupport.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Transforms/Scalar.h"
34#include "llvm/Transforms/Utils/BasicBlockUtils.h"
35
36using namespace llvm;
37using namespace PatternMatch;
38
39#define DEBUG_TYPE "arm-parallel-dsp"
40
41STATISTIC(NumSMLAD , "Number of smlad instructions generated");
42
43static cl::opt<bool>
44DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
45                   cl::desc("Disable the ARM Parallel DSP pass"));
46
47static cl::opt<unsigned>
48NumLoadLimit("arm-parallel-dsp-load-limit", cl::Hidden, cl::init(16),
49             cl::desc("Limit the number of loads analysed"));
50
51namespace {
52  struct MulCandidate;
53  class Reduction;
54
55  using MulCandList = SmallVector<std::unique_ptr<MulCandidate>, 8>;
56  using MemInstList = SmallVectorImpl<LoadInst*>;
57  using MulPairList = SmallVector<std::pair<MulCandidate*, MulCandidate*>, 8>;
58
59  // 'MulCandidate' holds the multiplication instructions that are candidates
60  // for parallel execution.
61  struct MulCandidate {
62    Instruction   *Root;
63    Value*        LHS;
64    Value*        RHS;
65    bool          Exchange = false;
66    bool          ReadOnly = true;
67    bool          Paired = false;
68    SmallVector<LoadInst*, 2> VecLd;    // Container for loads to widen.
69
70    MulCandidate(Instruction *I, Value *lhs, Value *rhs) :
71      Root(I), LHS(lhs), RHS(rhs) { }
72
73    bool HasTwoLoadInputs() const {
74      return isa<LoadInst>(LHS) && isa<LoadInst>(RHS);
75    }
76
77    LoadInst *getBaseLoad() const {
78      return VecLd.front();
79    }
80  };
81
82  /// Represent a sequence of multiply-accumulate operations with the aim to
83  /// perform the multiplications in parallel.
84  class Reduction {
85    Instruction     *Root = nullptr;
86    Value           *Acc = nullptr;
87    MulCandList     Muls;
88    MulPairList        MulPairs;
89    SetVector<Instruction*> Adds;
90
91  public:
92    Reduction() = delete;
93
94    Reduction (Instruction *Add) : Root(Add) { }
95
96    /// Record an Add instruction that is a part of the this reduction.
97    void InsertAdd(Instruction *I) { Adds.insert(I); }
98
99    /// Create MulCandidates, each rooted at a Mul instruction, that is a part
100    /// of this reduction.
101    void InsertMuls() {
102      auto GetMulOperand = [](Value *V) -> Instruction* {
103        if (auto *SExt = dyn_cast<SExtInst>(V)) {
104          if (auto *I = dyn_cast<Instruction>(SExt->getOperand(0)))
105            if (I->getOpcode() == Instruction::Mul)
106              return I;
107        } else if (auto *I = dyn_cast<Instruction>(V)) {
108          if (I->getOpcode() == Instruction::Mul)
109            return I;
110        }
111        return nullptr;
112      };
113
114      auto InsertMul = [this](Instruction *I) {
115        Value *LHS = cast<Instruction>(I->getOperand(0))->getOperand(0);
116        Value *RHS = cast<Instruction>(I->getOperand(1))->getOperand(0);
117        Muls.push_back(std::make_unique<MulCandidate>(I, LHS, RHS));
118      };
119
120      for (auto *Add : Adds) {
121        if (Add == Acc)
122          continue;
123        if (auto *Mul = GetMulOperand(Add->getOperand(0)))
124          InsertMul(Mul);
125        if (auto *Mul = GetMulOperand(Add->getOperand(1)))
126          InsertMul(Mul);
127      }
128    }
129
130    /// Add the incoming accumulator value, returns true if a value had not
131    /// already been added. Returning false signals to the user that this
132    /// reduction already has a value to initialise the accumulator.
133    bool InsertAcc(Value *V) {
134      if (Acc)
135        return false;
136      Acc = V;
137      return true;
138    }
139
140    /// Set two MulCandidates, rooted at muls, that can be executed as a single
141    /// parallel operation.
142    void AddMulPair(MulCandidate *Mul0, MulCandidate *Mul1,
143                    bool Exchange = false) {
144      LLVM_DEBUG(dbgs() << "Pairing:\n"
145                 << *Mul0->Root << "\n"
146                 << *Mul1->Root << "\n");
147      Mul0->Paired = true;
148      Mul1->Paired = true;
149      if (Exchange)
150        Mul1->Exchange = true;
151      MulPairs.push_back(std::make_pair(Mul0, Mul1));
152    }
153
154    /// Return true if enough mul operations are found that can be executed in
155    /// parallel.
156    bool CreateParallelPairs();
157
158    /// Return the add instruction which is the root of the reduction.
159    Instruction *getRoot() { return Root; }
160
161    bool is64Bit() const { return Root->getType()->isIntegerTy(64); }
162
163    Type *getType() const { return Root->getType(); }
164
165    /// Return the incoming value to be accumulated. This maybe null.
166    Value *getAccumulator() { return Acc; }
167
168    /// Return the set of adds that comprise the reduction.
169    SetVector<Instruction*> &getAdds() { return Adds; }
170
171    /// Return the MulCandidate, rooted at mul instruction, that comprise the
172    /// the reduction.
173    MulCandList &getMuls() { return Muls; }
174
175    /// Return the MulCandidate, rooted at mul instructions, that have been
176    /// paired for parallel execution.
177    MulPairList &getMulPairs() { return MulPairs; }
178
179    /// To finalise, replace the uses of the root with the intrinsic call.
180    void UpdateRoot(Instruction *SMLAD) {
181      Root->replaceAllUsesWith(SMLAD);
182    }
183
184    void dump() {
185      LLVM_DEBUG(dbgs() << "Reduction:\n";
186        for (auto *Add : Adds)
187          LLVM_DEBUG(dbgs() << *Add << "\n");
188        for (auto &Mul : Muls)
189          LLVM_DEBUG(dbgs() << *Mul->Root << "\n"
190                     << "  " << *Mul->LHS << "\n"
191                     << "  " << *Mul->RHS << "\n");
192        LLVM_DEBUG(if (Acc) dbgs() << "Acc in: " << *Acc << "\n")
193      );
194    }
195  };
196
197  class WidenedLoad {
198    LoadInst *NewLd = nullptr;
199    SmallVector<LoadInst*, 4> Loads;
200
201  public:
202    WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
203      : NewLd(Wide) {
204      for (auto *I : Lds)
205        Loads.push_back(I);
206    }
207    LoadInst *getLoad() {
208      return NewLd;
209    }
210  };
211
212  class ARMParallelDSP : public FunctionPass {
213    ScalarEvolution   *SE;
214    AliasAnalysis     *AA;
215    TargetLibraryInfo *TLI;
216    DominatorTree     *DT;
217    const DataLayout  *DL;
218    Module            *M;
219    std::map<LoadInst*, LoadInst*> LoadPairs;
220    SmallPtrSet<LoadInst*, 4> OffsetLoads;
221    std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
222
223    template<unsigned>
224    bool IsNarrowSequence(Value *V);
225    bool Search(Value *V, BasicBlock *BB, Reduction &R);
226    bool RecordMemoryOps(BasicBlock *BB);
227    void InsertParallelMACs(Reduction &Reduction);
228    bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
229    LoadInst* CreateWideLoad(MemInstList &Loads, IntegerType *LoadTy);
230    bool CreateParallelPairs(Reduction &R);
231
232    /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
233    /// Dual performs two signed 16x16-bit multiplications. It adds the
234    /// products to a 32-bit accumulate operand. Optionally, the instruction can
235    /// exchange the halfwords of the second operand before performing the
236    /// arithmetic.
237    bool MatchSMLAD(Function &F);
238
239  public:
240    static char ID;
241
242    ARMParallelDSP() : FunctionPass(ID) { }
243
244    void getAnalysisUsage(AnalysisUsage &AU) const override {
245      FunctionPass::getAnalysisUsage(AU);
246      AU.addRequired<AssumptionCacheTracker>();
247      AU.addRequired<ScalarEvolutionWrapperPass>();
248      AU.addRequired<AAResultsWrapperPass>();
249      AU.addRequired<TargetLibraryInfoWrapperPass>();
250      AU.addRequired<DominatorTreeWrapperPass>();
251      AU.addRequired<TargetPassConfig>();
252      AU.addPreserved<ScalarEvolutionWrapperPass>();
253      AU.addPreserved<GlobalsAAWrapperPass>();
254      AU.setPreservesCFG();
255    }
256
257    bool runOnFunction(Function &F) override {
258      if (DisableParallelDSP)
259        return false;
260      if (skipFunction(F))
261        return false;
262
263      SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
264      AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
265      TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
266      DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
267      auto &TPC = getAnalysis<TargetPassConfig>();
268
269      M = F.getParent();
270      DL = &M->getDataLayout();
271
272      auto &TM = TPC.getTM<TargetMachine>();
273      auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
274
275      if (!ST->allowsUnalignedMem()) {
276        LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
277                             "running pass ARMParallelDSP\n");
278        return false;
279      }
280
281      if (!ST->hasDSP()) {
282        LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
283                             "ARMParallelDSP\n");
284        return false;
285      }
286
287      if (!ST->isLittle()) {
288        LLVM_DEBUG(dbgs() << "Only supporting little endian: not running pass "
289                          << "ARMParallelDSP\n");
290        return false;
291      }
292
293      LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
294      LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
295
296      bool Changes = MatchSMLAD(F);
297      return Changes;
298    }
299  };
300}
301
302template<typename MemInst>
303static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
304                                  const DataLayout &DL, ScalarEvolution &SE) {
305  if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE))
306    return true;
307  return false;
308}
309
310bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
311                                        MemInstList &VecMem) {
312  if (!Ld0 || !Ld1)
313    return false;
314
315  if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
316    return false;
317
318  LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
319    dbgs() << "Ld0:"; Ld0->dump();
320    dbgs() << "Ld1:"; Ld1->dump();
321  );
322
323  VecMem.clear();
324  VecMem.push_back(Ld0);
325  VecMem.push_back(Ld1);
326  return true;
327}
328
329// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
330// instructions, which is set to 16. So here we should collect all i8 and i16
331// narrow operations.
332// TODO: we currently only collect i16, and will support i8 later, so that's
333// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
334template<unsigned MaxBitWidth>
335bool ARMParallelDSP::IsNarrowSequence(Value *V) {
336  if (auto *SExt = dyn_cast<SExtInst>(V)) {
337    if (SExt->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
338      return false;
339
340    if (auto *Ld = dyn_cast<LoadInst>(SExt->getOperand(0))) {
341      // Check that this load could be paired.
342      return LoadPairs.count(Ld) || OffsetLoads.count(Ld);
343    }
344  }
345  return false;
346}
347
348/// Iterate through the block and record base, offset pairs of loads which can
349/// be widened into a single load.
350bool ARMParallelDSP::RecordMemoryOps(BasicBlock *BB) {
351  SmallVector<LoadInst*, 8> Loads;
352  SmallVector<Instruction*, 8> Writes;
353  LoadPairs.clear();
354  WideLoads.clear();
355  OrderedBasicBlock OrderedBB(BB);
356
357  // Collect loads and instruction that may write to memory. For now we only
358  // record loads which are simple, sign-extended and have a single user.
359  // TODO: Allow zero-extended loads.
360  for (auto &I : *BB) {
361    if (I.mayWriteToMemory())
362      Writes.push_back(&I);
363    auto *Ld = dyn_cast<LoadInst>(&I);
364    if (!Ld || !Ld->isSimple() ||
365        !Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
366      continue;
367    Loads.push_back(Ld);
368  }
369
370  if (Loads.empty() || Loads.size() > NumLoadLimit)
371    return false;
372
373  using InstSet = std::set<Instruction*>;
374  using DepMap = std::map<Instruction*, InstSet>;
375  DepMap RAWDeps;
376
377  // Record any writes that may alias a load.
378  const auto Size = LocationSize::unknown();
379  for (auto Write : Writes) {
380    for (auto Read : Loads) {
381      MemoryLocation ReadLoc =
382        MemoryLocation(Read->getPointerOperand(), Size);
383
384      if (!isModOrRefSet(intersectModRef(AA->getModRefInfo(Write, ReadLoc),
385          ModRefInfo::ModRef)))
386        continue;
387      if (OrderedBB.dominates(Write, Read))
388        RAWDeps[Read].insert(Write);
389    }
390  }
391
392  // Check whether there's not a write between the two loads which would
393  // prevent them from being safely merged.
394  auto SafeToPair = [&](LoadInst *Base, LoadInst *Offset) {
395    LoadInst *Dominator = OrderedBB.dominates(Base, Offset) ? Base : Offset;
396    LoadInst *Dominated = OrderedBB.dominates(Base, Offset) ? Offset : Base;
397
398    if (RAWDeps.count(Dominated)) {
399      InstSet &WritesBefore = RAWDeps[Dominated];
400
401      for (auto Before : WritesBefore) {
402        // We can't move the second load backward, past a write, to merge
403        // with the first load.
404        if (OrderedBB.dominates(Dominator, Before))
405          return false;
406      }
407    }
408    return true;
409  };
410
411  // Record base, offset load pairs.
412  for (auto *Base : Loads) {
413    for (auto *Offset : Loads) {
414      if (Base == Offset || OffsetLoads.count(Offset))
415        continue;
416
417      if (AreSequentialAccesses<LoadInst>(Base, Offset, *DL, *SE) &&
418          SafeToPair(Base, Offset)) {
419        LoadPairs[Base] = Offset;
420        OffsetLoads.insert(Offset);
421        break;
422      }
423    }
424  }
425
426  LLVM_DEBUG(if (!LoadPairs.empty()) {
427               dbgs() << "Consecutive load pairs:\n";
428               for (auto &MapIt : LoadPairs) {
429                 LLVM_DEBUG(dbgs() << *MapIt.first << ", "
430                            << *MapIt.second << "\n");
431               }
432             });
433  return LoadPairs.size() > 1;
434}
435
436// Search recursively back through the operands to find a tree of values that
437// form a multiply-accumulate chain. The search records the Add and Mul
438// instructions that form the reduction and allows us to find a single value
439// to be used as the initial input to the accumlator.
440bool ARMParallelDSP::Search(Value *V, BasicBlock *BB, Reduction &R) {
441  // If we find a non-instruction, try to use it as the initial accumulator
442  // value. This may have already been found during the search in which case
443  // this function will return false, signaling a search fail.
444  auto *I = dyn_cast<Instruction>(V);
445  if (!I)
446    return R.InsertAcc(V);
447
448  if (I->getParent() != BB)
449    return false;
450
451  switch (I->getOpcode()) {
452  default:
453    break;
454  case Instruction::PHI:
455    // Could be the accumulator value.
456    return R.InsertAcc(V);
457  case Instruction::Add: {
458    // Adds should be adding together two muls, or another add and a mul to
459    // be within the mac chain. One of the operands may also be the
460    // accumulator value at which point we should stop searching.
461    R.InsertAdd(I);
462    Value *LHS = I->getOperand(0);
463    Value *RHS = I->getOperand(1);
464    bool ValidLHS = Search(LHS, BB, R);
465    bool ValidRHS = Search(RHS, BB, R);
466
467    if (ValidLHS && ValidRHS)
468      return true;
469
470    return R.InsertAcc(I);
471  }
472  case Instruction::Mul: {
473    Value *MulOp0 = I->getOperand(0);
474    Value *MulOp1 = I->getOperand(1);
475    return IsNarrowSequence<16>(MulOp0) && IsNarrowSequence<16>(MulOp1);
476  }
477  case Instruction::SExt:
478    return Search(I->getOperand(0), BB, R);
479  }
480  return false;
481}
482
483// The pass needs to identify integer add/sub reductions of 16-bit vector
484// multiplications.
485// To use SMLAD:
486// 1) we first need to find integer add then look for this pattern:
487//
488// acc0 = ...
489// ld0 = load i16
490// sext0 = sext i16 %ld0 to i32
491// ld1 = load i16
492// sext1 = sext i16 %ld1 to i32
493// mul0 = mul %sext0, %sext1
494// ld2 = load i16
495// sext2 = sext i16 %ld2 to i32
496// ld3 = load i16
497// sext3 = sext i16 %ld3 to i32
498// mul1 = mul i32 %sext2, %sext3
499// add0 = add i32 %mul0, %acc0
500// acc1 = add i32 %add0, %mul1
501//
502// Which can be selected to:
503//
504// ldr r0
505// ldr r1
506// smlad r2, r0, r1, r2
507//
508// If constants are used instead of loads, these will need to be hoisted
509// out and into a register.
510//
511// If loop invariants are used instead of loads, these need to be packed
512// before the loop begins.
513//
514bool ARMParallelDSP::MatchSMLAD(Function &F) {
515  bool Changed = false;
516
517  for (auto &BB : F) {
518    SmallPtrSet<Instruction*, 4> AllAdds;
519    if (!RecordMemoryOps(&BB))
520      continue;
521
522    for (Instruction &I : reverse(BB)) {
523      if (I.getOpcode() != Instruction::Add)
524        continue;
525
526      if (AllAdds.count(&I))
527        continue;
528
529      const auto *Ty = I.getType();
530      if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
531        continue;
532
533      Reduction R(&I);
534      if (!Search(&I, &BB, R))
535        continue;
536
537      R.InsertMuls();
538      LLVM_DEBUG(dbgs() << "After search, Reduction:\n"; R.dump());
539
540      if (!CreateParallelPairs(R))
541        continue;
542
543      InsertParallelMACs(R);
544      Changed = true;
545      AllAdds.insert(R.getAdds().begin(), R.getAdds().end());
546    }
547  }
548
549  return Changed;
550}
551
552bool ARMParallelDSP::CreateParallelPairs(Reduction &R) {
553
554  // Not enough mul operations to make a pair.
555  if (R.getMuls().size() < 2)
556    return false;
557
558  // Check that the muls operate directly upon sign extended loads.
559  for (auto &MulCand : R.getMuls()) {
560    if (!MulCand->HasTwoLoadInputs())
561      return false;
562  }
563
564  auto CanPair = [&](Reduction &R, MulCandidate *PMul0, MulCandidate *PMul1) {
565    // The first elements of each vector should be loads with sexts. If we
566    // find that its two pairs of consecutive loads, then these can be
567    // transformed into two wider loads and the users can be replaced with
568    // DSP intrinsics.
569    auto Ld0 = static_cast<LoadInst*>(PMul0->LHS);
570    auto Ld1 = static_cast<LoadInst*>(PMul1->LHS);
571    auto Ld2 = static_cast<LoadInst*>(PMul0->RHS);
572    auto Ld3 = static_cast<LoadInst*>(PMul1->RHS);
573
574    if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
575      if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
576        LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
577        R.AddMulPair(PMul0, PMul1);
578        return true;
579      } else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
580        LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
581        LLVM_DEBUG(dbgs() << "    exchanging Ld2 and Ld3\n");
582        R.AddMulPair(PMul0, PMul1, true);
583        return true;
584      }
585    } else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
586               AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
587      LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
588      LLVM_DEBUG(dbgs() << "    exchanging Ld0 and Ld1\n");
589      LLVM_DEBUG(dbgs() << "    and swapping muls\n");
590      // Only the second operand can be exchanged, so swap the muls.
591      R.AddMulPair(PMul1, PMul0, true);
592      return true;
593    }
594    return false;
595  };
596
597  MulCandList &Muls = R.getMuls();
598  const unsigned Elems = Muls.size();
599  for (unsigned i = 0; i < Elems; ++i) {
600    MulCandidate *PMul0 = static_cast<MulCandidate*>(Muls[i].get());
601    if (PMul0->Paired)
602      continue;
603
604    for (unsigned j = 0; j < Elems; ++j) {
605      if (i == j)
606        continue;
607
608      MulCandidate *PMul1 = static_cast<MulCandidate*>(Muls[j].get());
609      if (PMul1->Paired)
610        continue;
611
612      const Instruction *Mul0 = PMul0->Root;
613      const Instruction *Mul1 = PMul1->Root;
614      if (Mul0 == Mul1)
615        continue;
616
617      assert(PMul0 != PMul1 && "expected different chains");
618
619      if (CanPair(R, PMul0, PMul1))
620        break;
621    }
622  }
623  return !R.getMulPairs().empty();
624}
625
626void ARMParallelDSP::InsertParallelMACs(Reduction &R) {
627
628  auto CreateSMLAD = [&](LoadInst* WideLd0, LoadInst *WideLd1,
629                         Value *Acc, bool Exchange,
630                         Instruction *InsertAfter) {
631    // Replace the reduction chain with an intrinsic call
632
633    Value* Args[] = { WideLd0, WideLd1, Acc };
634    Function *SMLAD = nullptr;
635    if (Exchange)
636      SMLAD = Acc->getType()->isIntegerTy(32) ?
637        Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
638        Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
639    else
640      SMLAD = Acc->getType()->isIntegerTy(32) ?
641        Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
642        Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
643
644    IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
645                                BasicBlock::iterator(InsertAfter));
646    Instruction *Call = Builder.CreateCall(SMLAD, Args);
647    NumSMLAD++;
648    return Call;
649  };
650
651  // Return the instruction after the dominated instruction.
652  auto GetInsertPoint = [this](Value *A, Value *B) {
653    assert((isa<Instruction>(A) || isa<Instruction>(B)) &&
654           "expected at least one instruction");
655
656    Value *V = nullptr;
657    if (!isa<Instruction>(A))
658      V = B;
659    else if (!isa<Instruction>(B))
660      V = A;
661    else
662      V = DT->dominates(cast<Instruction>(A), cast<Instruction>(B)) ? B : A;
663
664    return &*++BasicBlock::iterator(cast<Instruction>(V));
665  };
666
667  Value *Acc = R.getAccumulator();
668
669  // For any muls that were discovered but not paired, accumulate their values
670  // as before.
671  IRBuilder<NoFolder> Builder(R.getRoot()->getParent());
672  MulCandList &MulCands = R.getMuls();
673  for (auto &MulCand : MulCands) {
674    if (MulCand->Paired)
675      continue;
676
677    Instruction *Mul = cast<Instruction>(MulCand->Root);
678    LLVM_DEBUG(dbgs() << "Accumulating unpaired mul: " << *Mul << "\n");
679
680    if (R.getType() != Mul->getType()) {
681      assert(R.is64Bit() && "expected 64-bit result");
682      Builder.SetInsertPoint(&*++BasicBlock::iterator(Mul));
683      Mul = cast<Instruction>(Builder.CreateSExt(Mul, R.getRoot()->getType()));
684    }
685
686    if (!Acc) {
687      Acc = Mul;
688      continue;
689    }
690
691    // If Acc is the original incoming value to the reduction, it could be a
692    // phi. But the phi will dominate Mul, meaning that Mul will be the
693    // insertion point.
694    Builder.SetInsertPoint(GetInsertPoint(Mul, Acc));
695    Acc = Builder.CreateAdd(Mul, Acc);
696  }
697
698  if (!Acc) {
699    Acc = R.is64Bit() ?
700      ConstantInt::get(IntegerType::get(M->getContext(), 64), 0) :
701      ConstantInt::get(IntegerType::get(M->getContext(), 32), 0);
702  } else if (Acc->getType() != R.getType()) {
703    Builder.SetInsertPoint(R.getRoot());
704    Acc = Builder.CreateSExt(Acc, R.getType());
705  }
706
707  // Roughly sort the mul pairs in their program order.
708  OrderedBasicBlock OrderedBB(R.getRoot()->getParent());
709  llvm::sort(R.getMulPairs(), [&OrderedBB](auto &PairA, auto &PairB) {
710               const Instruction *A = PairA.first->Root;
711               const Instruction *B = PairB.first->Root;
712               return OrderedBB.dominates(A, B);
713             });
714
715  IntegerType *Ty = IntegerType::get(M->getContext(), 32);
716  for (auto &Pair : R.getMulPairs()) {
717    MulCandidate *LHSMul = Pair.first;
718    MulCandidate *RHSMul = Pair.second;
719    LoadInst *BaseLHS = LHSMul->getBaseLoad();
720    LoadInst *BaseRHS = RHSMul->getBaseLoad();
721    LoadInst *WideLHS = WideLoads.count(BaseLHS) ?
722      WideLoads[BaseLHS]->getLoad() : CreateWideLoad(LHSMul->VecLd, Ty);
723    LoadInst *WideRHS = WideLoads.count(BaseRHS) ?
724      WideLoads[BaseRHS]->getLoad() : CreateWideLoad(RHSMul->VecLd, Ty);
725
726    Instruction *InsertAfter = GetInsertPoint(WideLHS, WideRHS);
727    InsertAfter = GetInsertPoint(InsertAfter, Acc);
728    Acc = CreateSMLAD(WideLHS, WideRHS, Acc, RHSMul->Exchange, InsertAfter);
729  }
730  R.UpdateRoot(cast<Instruction>(Acc));
731}
732
733LoadInst* ARMParallelDSP::CreateWideLoad(MemInstList &Loads,
734                                         IntegerType *LoadTy) {
735  assert(Loads.size() == 2 && "currently only support widening two loads");
736
737  LoadInst *Base = Loads[0];
738  LoadInst *Offset = Loads[1];
739
740  Instruction *BaseSExt = dyn_cast<SExtInst>(Base->user_back());
741  Instruction *OffsetSExt = dyn_cast<SExtInst>(Offset->user_back());
742
743  assert((BaseSExt && OffsetSExt)
744         && "Loads should have a single, extending, user");
745
746  std::function<void(Value*, Value*)> MoveBefore =
747    [&](Value *A, Value *B) -> void {
748      if (!isa<Instruction>(A) || !isa<Instruction>(B))
749        return;
750
751      auto *Source = cast<Instruction>(A);
752      auto *Sink = cast<Instruction>(B);
753
754      if (DT->dominates(Source, Sink) ||
755          Source->getParent() != Sink->getParent() ||
756          isa<PHINode>(Source) || isa<PHINode>(Sink))
757        return;
758
759      Source->moveBefore(Sink);
760      for (auto &Op : Source->operands())
761        MoveBefore(Op, Source);
762    };
763
764  // Insert the load at the point of the original dominating load.
765  LoadInst *DomLoad = DT->dominates(Base, Offset) ? Base : Offset;
766  IRBuilder<NoFolder> IRB(DomLoad->getParent(),
767                          ++BasicBlock::iterator(DomLoad));
768
769  // Bitcast the pointer to a wider type and create the wide load, while making
770  // sure to maintain the original alignment as this prevents ldrd from being
771  // generated when it could be illegal due to memory alignment.
772  const unsigned AddrSpace = DomLoad->getPointerAddressSpace();
773  Value *VecPtr = IRB.CreateBitCast(Base->getPointerOperand(),
774                                    LoadTy->getPointerTo(AddrSpace));
775  LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr,
776                                             Base->getAlignment());
777
778  // Make sure everything is in the correct order in the basic block.
779  MoveBefore(Base->getPointerOperand(), VecPtr);
780  MoveBefore(VecPtr, WideLoad);
781
782  // From the wide load, create two values that equal the original two loads.
783  // Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
784  // TODO: Support big-endian as well.
785  Value *Bottom = IRB.CreateTrunc(WideLoad, Base->getType());
786  Value *NewBaseSExt = IRB.CreateSExt(Bottom, BaseSExt->getType());
787  BaseSExt->replaceAllUsesWith(NewBaseSExt);
788
789  IntegerType *OffsetTy = cast<IntegerType>(Offset->getType());
790  Value *ShiftVal = ConstantInt::get(LoadTy, OffsetTy->getBitWidth());
791  Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
792  Value *Trunc = IRB.CreateTrunc(Top, OffsetTy);
793  Value *NewOffsetSExt = IRB.CreateSExt(Trunc, OffsetSExt->getType());
794  OffsetSExt->replaceAllUsesWith(NewOffsetSExt);
795
796  LLVM_DEBUG(dbgs() << "From Base and Offset:\n"
797             << *Base << "\n" << *Offset << "\n"
798             << "Created Wide Load:\n"
799             << *WideLoad << "\n"
800             << *Bottom << "\n"
801             << *NewBaseSExt << "\n"
802             << *Top << "\n"
803             << *Trunc << "\n"
804             << *NewOffsetSExt << "\n");
805  WideLoads.emplace(std::make_pair(Base,
806                                   std::make_unique<WidenedLoad>(Loads, WideLoad)));
807  return WideLoad;
808}
809
810Pass *llvm::createARMParallelDSPPass() {
811  return new ARMParallelDSP();
812}
813
814char ARMParallelDSP::ID = 0;
815
816INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
817                "Transform functions to use DSP intrinsics", false, false)
818INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
819                "Transform functions to use DSP intrinsics", false, false)
820